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ABSTRACT

In this report we present subroutines for finding all the roots
of a polynomial and bounds on their errors. To find the zeros we use
the algorithm of Madsen (1973) and to find error bounds we use the work
of Peters and Wilkinson (1971) with some significant modifications. Both

the real and complex cases are treated.
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1. Introduction
In this report we consider the problem of finding all the zeros of
the polynomial

f(z) = a, + a2 +...4a 2" (1.1)

and estimating error bounds for them. To find the set of zeros we use
the algorithm of Madsen (1973), which we have found to compare favourab’
with other algorithms. For error estimation we apply Rouché's theorem
as recommended by Peters and Wilkinson (1971), but with some difference
in detail. Both of these algorithms are a little simpler in the case
where the polynomial has complex coefficients, so we describe the
algorithms for this case in sections 2 and 3 and the modifications for :
real case in section 4.

We believe that our code is in accord with the ANSI standard, havir
checked it with Bell Telephone Laboratories Fortran verifier (Ryder,
1973} and run our test programé with array subscript checking. We
describe this code in section 5 and in an appendix give specification
sheets, and listings (produced by the Bell Laboratories’verifier, so th:
include cross references). For the Harwell subroutine library we have
made a small number of changes in order to shorten the arguTent 1ists,
at the expense of a departure from ANSI standard. We have decided agez-
including a single-length version in the library because the IBM 370/1€
has a very short single~Tength word (6 hexadecimal digits, so that
numbers just greater than unity are held to about 1 part in 106) but he
double-length hardware which executes very little slower tﬁan the sing:-
length hardware. Some results obtained with the library subroutines,
together with comparisons with other algorithms are given in section 6.
Our code (listed in section 7) contains comments suitable for machine

processing which detail the changes needed for the single-length and




Harwell licrary versions.
We would iike to acknowledge the heip of M.J.D. Powell in carefully
checking a draft of this report and making several valuable suggestions.

2. Finding the routs in the complex case

We use the algoritnm of Madsen (1973) to find the oot of minimal
or near-minimal modulus and then use forward deflation to construct a
polynomial of degree n-1 whose roots are the remaining roots of the
original polynomial. The process is repeated until approximations to
2all the roots have been found. Wilkinson (1363) has shown that forward
deflation is stable provided a large root is not accepted before a much
smaller one. Our algorithm does not guarantee that the moduli of the
roots are strictly increasing but our experience has a!ways been that they
are found in roughly increasing order. A version with the composite
deflation of Peters and Wilkinson (1971), which should be stable no matter
in which order the zeros are found, was tried but it did not give more
accurate results. In any case it is not clear how to apply the
composite deflation when two complex conjugate roots of a real polynomial
have been found so that deflation by a real quadratic factor is wanted.

It remains necessary to describe Madsen's (1973) algorithm in detail
and we will consider its application to the original polynomial. The
general strategy of the algorithm is that. given an iterate z;, @
tentative step dzk is found and the next iterate Z is taken at the best
point (in the sense of |f(z)|) encountered in a short search of values
on the Tine through z, and Zk+dzk' Because the search may sometimes
yield no better value than that at z, we may sometimes have 2172 and
in this case ensure that the next tentative step is shorter and in a
different direction. The inciusion of searches ensures rapid convergence

to multiple roots and reliable convergence when difficulties are

ATTRIBUTES: Col 1: C if in COMMON



" encountered. Such a search is, however, wasteful if we are so near a simple
root that Newton's iteration is reliable and fast. We have therefore
devised a ‘test (given by inequality (2.7)) which normally ensures this.

While the algorithm performs searches we say it is in stage 1; otherwise
it is in stage 2, performing straightforward Newton iteration. It begins in
stage 1, which we now describe.
The tentative step dz, is found with the help 6f stored values of
Z,s f(zk), f'(zk),zk_] and the previous tentative step dzk_]. If the

Tast iteration was successful (zk # Zk—1) then the Newton correction

N = -f(zk)/f'(zk) (2.2)

is calculated and the next tentative step is taken as

i - Ny if In | < 3|Zk'zk-]l (2.3a)

k = i8 .
3]zk-zk_]|e n/In | otherwise (2.3b)
where 6 is chosen (rather arbitrarily) as arctan(3/4). If the last
step was unsuccessful (Zk‘zk-l) then we take the tentative step to be
dz

= -3 eie dz (2.3¢c)

k k-1°

After a successful iteration we normally expect to want to take a Newton
step (2.3a), but we include the alternative (2.3b) because accidently
coming near to a stationary point of f{z) is likely to make the Newton step
ridiculously Targe. We include a chaﬁge of direction in (2.3b) because

if a saddle point is being approached the direction n, may be a worse
search direction than almost any other. After an unsuccessful iteration
we want to change the search direction to one likely to be successful

- and reduce the step size; this leads to formula (2.3c). Its repeated

use is sure to yield a descent direction.

-3-
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Once the tentative step has been found we test the inequality

|f(z,+dz, )] < |f(zk)| . (2.4)
If this is satisfied then we calculate the numbers

[f(zk+p dzk)[, p=1,2,...,0 (2.5)
continuing for as long as these are strictly decreasing. If inequality

(2.4) does not hold th .n we calculate the numbers
f(z, + dz,/2°)|, p=0,1,2, |f(z, + 1e'® dz,)| (2.6)

again continuing until the sequence ceases to decrease. In all cases we
take 2 to be the best point found. Note that if there is a true multiple
zero of multiplicity m or if we are a fair distance from a cluster of m
zeros then z, +mn, will be a very good estimate of the solution and will be
found by our search. In fact we get quadratic convergence to a multiple
zero. Note also that when an .iteration fails following a search to the
end of sequence (2.6), the choice (2.3c) leads to a step 1ikely to be in
a direction of decreasing |f(z)].

To complete our description of stage 1 we need to specify starting

iterates. We take these to be

z, = 0
_J-f(0)/f'(0) if f£'(0)=0
dzo "L otherwise (2.7)
a dz
zy =3 min (‘a—o-l]/k) —2 .
k>0 k |dz, |

The iteration really starts from Z but we have to include z, and dzo
because they are needed for choosing the tentative step dz]. This choice
of 7 is used because its modulus is certainly less than that of any root

of f(z) and it is in the direction of steepest descent of |f(z)| from the




origin. It is therefore 1ikely that we will converge to a root of near-
minimal modulus.

We do not make our main test for switching to stage 2 (straightforward
Newton iteration) until a stage 1 search has led to the choice
zk+l=zk+dzk' This is obviously sensible and has the added virtue that
we should (correctly) avoid the switch when converging to a muitiple root.
The test itself is based on the Kantorowitz theorem (see, for example,
Ostrowski (1966)) which states that if K0 is the circle with centre
z, 4 and radius |nk| where Ny is the Newton step (2.2) then the

conditions

f(zk) f'(zk) #0 (2.8)

2| (z)| max [£"(2)] s | (z,) |2
€

z Ko

ensure the convergence of Newton's iteration starting from Z,- This

Teads us to test the inequality-
t [] [ 2
2|f(zk)||f (Zk_]) - f (Zk)l < |f (Zk)l lzk_]'zkl . (2.9)

Of course this is not equivalent to test (2.8) because we have replaced

max |f"(z)] by a rather crude difference approximation but we
zeK ’
0

nevertheless expect it usually to predict correctly that straightforward

Newton iteration will be satisfactory. We check inequality (2.9) at every

step in stage 2 and switch back to stage 1 if it is violated. We also

check the inequality (2.4) and if this is violated return to stage 1

beginning by modifying the tentative step with formula (2.3c) as in stage 1.
We complete this section by describing our convergence criterion.

We terminate if a stage 1 search or a stage 2 iteration leads to a new

iterate Z 9 different from z, and yet such that the inequality




[zk+1-zk[ < e[zk+]f (2.10)

holds where € is the largest number such that to machine accuracy l+e = 1.

We also terminate if the condition

|f(zk+1)| = [f(z )] < 16n|a0|e (2.11)

holds. The expression 16n|ao|e is a generous overestimate of the final
roundoff made in calculating f(z) at the root of smallest modulus and we
expect that such accuracy will be attainable. The normal convergence
pattern is that If(zk)| decreases until well below 16n|aols and then
roundoff errors cause a new iterate 24172k to be taken s0 that (2.11) is
satisfied. If such accuracy is unattainable then the step will decrease
steadily because of the application of (2.3c) until (2.10) is satisfied.
This combination of convergence criteria means that we are certain to-
obtain a good solution and almost certain to obtain the best possible.
Furthermore this result is usually obtained with only one more iteration than
is necessary to get this good accuracy.

3. Error estimation

We seek to estimate error bounds for all the roots produced by tne
algorithm of the previous section. We base our algorithm or *hat cf
Peters and Wilkinson (1971) and will follow their notation. The most
significant difference is that they look for non-overlapping discs each of
which contains precisely the same number of exact and approximate roots,
vhereas we allow overlapping discs. This 's because it can happen that
one root is well determined although it is inside the best disc
obtainable for another (il11-determined) root. We therefore look for a
separate disc for each root and take its centre to be at the calculated root

itself. This also allows a very simple form of output to the user since




all that is required is a radius for each root.
We suppose that we have approximate roots ays i=1,2,...,n. Then

the polynohial

n=a>3

P(z) = a,

o (z-a;) (3.1)
;

1
should agree with the original polynomial (1.1), but because the roots

are not exact there will be an error

Q(z) = P(z) - f(z). (3.2)

Now Rouché's theorem states that if P(z) and Q(z) are analytic

functions in and on the closed curve C and the inequality

la(z)} < {P(2)] (3.3)

holds on C then P(z) and P(z)-Q(z) have the same number of zeros inside C.

.y i1=1,2,...,n 0N

We apply this here by looking for circles with centres o5

which condition (3.3) holds. The following theorem shows that there is
no need to worry about the overlapping of some of these discs.
Theorem 1 If condition (3.3) holds on each of the circles centre 055
radius res i=1,2,...,n, then the roots ¢, of f(z) may be ordered so
that .

|ai~¢1| < T i=1,2,...,0 . (3.4)

Proof Regard the perimeters of the circles as dividing the plane into a
set of non-overlapping regions Ri’ each of which is the intersection of a
subset of the set of discs that the circles enclose and their complements.
A simple case is illustrated in Figure 1. Let Rki be the region
containing ais i=1,2,...,n. Note that a region may contain more than one
a; so that there may be coincidences among the ki (e.q. k]=k2=3 in

Figure 1). The set of regions Rki, i=1,2,...,n together contain all the




Fi i a, dividi in i R,
igure 1 Four circles centre o, dividing plane into seven regions 3

rocts ay of P(z) and each R, has a boundary on which condition (3.3)

K

holds so contains exactly the same number of roots of f(z) as of P(z).

Therefore the regions Rk (i=1,2,...,n) contain all the roots of f(z) and
i

these may bte ordered so that Rk contains ¢, (i=1,2,...,n). The result

i
now follows since each Rk is contained in the disc centre a; radius ry ]

i
Being able to use overlapping discs leads to simplifications in

coding and sometimes to much better error bounds. This improvement is
illustrated by the example shown in Figure 1, where a4 and a, are quite
i11-conditioned but aj and a, are not. The procedure of Peters and
Wilkinson would have forced us to regard all four a; as a cluster and to
enclose them in a single disc. This would have made 1ittle difference to

the bounds for o and ay but would have significantly worsened the bounds

-8-




for aq and a,. Another illustration of this point is given in §6 with
an example using our code.
We now suppose that the error polynomial is

e;2 (3.5)

I~

0z) =

1=0

and describe how to find a suitable circle for a typical root. For
simplicity of notation let us imagine that the roots are reordered so
that the one for which we are seeking a circle is 0 and Iai-a1[ increases
monotonically with i, Rouché's condition (3.3) is satisfied on a circle

centre o and radius r if the inequality

a3

n .
1
2 legl (el < oy

i=1
holds. If m is such that
lam-a'][ <rc< lam_]-a.ll (3.7)

(we ignore the case r = lai‘“]' for some i because clearly inequality (3.6)
cannot be satisfied in this case) then we may rewrite inequality (3.6) in

the form

k(r) < 1”1' (r - la-a 1) (3.8)

i= ‘

where k(r) is given by the equation

n .
DG RGNk
1=0
k(r) = ~ . (3.9)

I3l TT (logmey|-r)

i=m+l

Peters and Wilkinson (1971) solve the equation

(1.1) k(0) = (ry - max  Jaz=0q )" (3.10)

<ism

Ty » o P ——




and then check whether " satisfies irequalities (3.7} and (3.8). Almost
always inequality (3.8) holds because
(i) -the right hand side of (3.10) underestimates the corresponding
expression in {3.8),
(ii) the safety factor {1.1) has been introduced

and (iii) k{r) is rearly constant in the usual case where the roots

@ i=1,2,...,m are well separated from the rest.

They give no recommendation for dealing with the case where ry does not
satisfy (3.8), but presumably intend that an iteration should be set up
with 0 and " in (3.10) being replaced by rj and rj+]. This yie1d§ a
montonically increasing sequence, so that we must eventually either

satisfy inequality (3.8) or break the right-hand inequality (3.7)
necessitating 5 new start with a greater value for m. Actually Peters and

m
Wilkinson take the centre of their circle to bea = £ ai/m rather than

oy and this means that the right-hand side of (3.]0)1:1 quite a good
estimate of the right-hand side of (3.8) so that the procedure gives a
realistic radius r without very much computation. Unfortunately this is
not the case with a in use, except when m=1 and we have sometimes

obtained solutions such that the right-hand side of (3.8) exceeds the left
by factors as big as 1,000. We have therefore decided to uselan iteration

based directly on (3.8). Given an iterate rs we seek a new iterate such

that

m
(1.08) k(r;) < 121 (rip = lagmog 1) < (10) K(rj). (3.11)

In view of inequality (3.7) it seems sensible to start with r = lam-a]l'
rather than Wilkinson and Peters' r0=0. To solve (3.11) we use the method
of bisection because m is usually small so that function evaluations are

cheap, no great accuracy is required in view of the slack in (3.11),

-10-
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and suitable initial upper and lower bounds are available in rj and the
Peters and Wilkinson overestimate obtained from the analogue of equation
(3.10). Typically between four and seven iterates are required.

Peters and Wilkinson suggest that rj+] should be checked directly
in (3.8) but a simple test often avoids any need for this. If the
inequality

rin ol fogy -l - ryy

ry* oy | lo

< 1.05 (3.12)

-a][ -r,

m+] J

holds then it follows from the definition (3.9) that the inequality

k(rsy) < 1.05 k(ry) | (3.13)

also holds. From this last inequality and the first inequality (3.11)
we deduce that riel satisfies inequality (3.8).

Rounding errors occur when the coefficients of P(z) are calculated,
but can be reduced by multiplying out the factors (z-ai) in order of
increasing ‘ail' We therefore use the same order as that in which they
were calculated. If bounds e, gn the errors were available we could
work with the error polynomial I (lel.|+e1.)z1 in place of the polynomial
(3.5) and obtain strict bounds L;Othe errors in the calculated roots.

We hoped to use the running error analysis of Peters and wglkinson for
this purpose, but unfortunately found that it sometimes gave gross over-
estimates, as explained in the last paragraph of this section. We
therefore have ignored this source of error, relying on such errors being
reflected in larger coefficients €5 in the polynomial Q(z);v It should be
noted that the sequence of constructed polynomials .E (z'“i)' r=1,2;...,n
is not identical with the sequence of deflated po]y;;;ials used when
finding the roots because we perform the multiplication in the same order

as that in which the roots were found. Therefore errors produced by the

-1-
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multiplication are likely to show in enlarged coefficients € Not
bounding these errors means that our bounds are not strict bounds, but
they are more realistic. In none of our tests did the actual errors exceed
the estimated bounds.
It is straightforward to allow for the effects of uncertainties in
the original coefficients by working with the error polynomial
igo (lei|+bi) where bi’ i=0,1,...,n, are bounds on these errors. This
we do in our subroutine.
We complete this section by explaining why the running error

n

analysis of Peters and Wilkinson for the coefficients of I (Z'ai)
i=1
sometimes gives very pessimistic results. If the computed product

r r -
n (z'“i) is & bgr)z] then they generate coefficients fgr) from the
i=1 i=0

recurrences.

1 1
f(())=f]()=0

fér+]) _ |ar+1|fér) + {bér+])i
f(rﬂ) - fff% + lo‘r+]lf1(r) + l“N]Hbgr)l +lb§r+])|’ r=1,2,...,n-1 (3.14)

i21,2,...,7

(r+1) _ (r41) _
f-] - fr+1 =0 .

to yield bounds Z'tfgn) for the coefficients of P(z) if floating-point
computation with t binary places is used. This can sometimes lead to
very pessimistic bounds since the recurrence (3.14) fails to'distinguish
properly between I(z-o;) and H(z+|a1|). In fact the recurrence (3.14)

is obtained by bounding the corresponding recurrence

e$r+]) = e§f? - e e§” - €1ar+1_b1(r) -6 b1(r+1) . (3.15)

=12~

NP1  (standard versions only) is an INTEGER which must be set to n+l.




Such bounds are particularly unrealistic in such a case as

f(z) = 2"-1 since the numbers f(r) grow with r in much the same way as the
recurrence for generating the coefficients of (z+1)n and these coefficients
are "Cr,r=0,1,...,n. In fact the recurrence (3.14) has some added

terms when compared with the recurrence for the coefficients of (z+1)n.

4, Changes to the algorithms in the real case

The only change made to our root-finding algorithm in the case where
f(z) has real coefficients is that once a complex root has been found it is
either perturbed into a real root or its conjugate is taken as another r- *
This ensures that each deflated polynomial is also real and that work 1
saved for genuinely complex roots. Once a complex root ak=xk+iyk has been
found we evaluate f(xk) and use Peters and Wilkinson's (1971) running

error analysis to bound the roundoff error made in this evaluation. The

recurrence used for evaluating f(xk) is given by the equations

Sn = an
Si = sti+]+ai, i=n-]’0..’0 (4.])
f(x ) = s

and the corresponding running error analysis is given by the equations

’

9, = 0
. (4.2)
9; = |xk|(91+]*|51+]|) + |51|’ i=n-1,...,0
to yield the bound €9, for the error in f(xk) where € is the relative

floating~-point accuracy. If the inequality

|s°| < Zego + If(ak)l (4.3)

holds (where f(ak) is the computed value at ak), we take v, to be a real
root and deflate with it, Otherwise we deflate with the complex conjugate

pair L iyk. It is very important that the case where we have a simple

-13-




real root well separated from the other roots should not be taken as a
complex pair because a double deflation in such a case would be disastrous.
We therefo;e consider this case and suppose that & is such a real root and
oy is the (complex) approximation to it found by the algorithm. Xy (real
part of ak) is a better approximation to o, in the sense that the
inequality
o] < 10| (4.4)
holds since o is real. Further the exact value f(z) behaves 1ike a
constant times (z-¢k) if z is near by - It is therefore reasonable to expect
that the inequality
[£(x )1 s [£(a)] ' (4.5)
holds between the corresponding exact values. We therefore expect Xg to be
at least as good a root as ) SO that it is virtually certain that in-
equality (4.3) will hold, since €9, is a rigorous upper bound on the round-
off error in computing f(xk) and may also be taken (slightly incorrectly)
as a bound on the error in computing ]f(ak)]‘
A disadvantage of the test (4.3) is that we may decide we have a
real root when a complex conjugate pair is the true position. We feel
that this disadvantage is quite slight because it is reasanabie to regard
any point for which inequality (4.3) holds as a good approximate root.
The only change to the error bounding algorithm is that once a
bound for a complex root has been found, this bound is also used for its

complex conjugate.




5. Description of Fortran subroutines

In this section we describe the Fortran subroutines themselves. It is
a short seetion because we have included rather full comments in the code
itself, since we believe that this provides the most convenient form of
documentation. Specification sheets and listings of the code are given
in section 7. The specification sheets document all three versions (double-
and singe-length standard Fortran and doub]e-1ength-IBM Fortran). The
listings are of the standard Fortran double-length versions and contain
specially coded comments detailing changes needed for the other versions.
We have been using a simple preprocessor (written in standard Fortran) to
convert from one version to another. Where a statement differs between
versions we preceded the genuine (double-length standard)lstatement by the
alternative version or versions modified by the insertion of C in column 1,
/ in column 72, and the letter I or S (for IBM version or single-length
version) in column 71,

The listings used are those produced by the Bell Telephone
Laboratories Fortran verifier because they include cross-references which are
very helpful when reading the code. They consist of lists of all the
identifiers and labels in lexographical order together with the statement
numbers of all references to them and the following coded information
for each identifier:

TYPE: Col 1:
Col 2:

E if explicitly typed
I for integer

R for real

D for double precision
C for complex

L for logical

H for Hollerith

USE: FA for arithmetic statement function argument
FN for function
E for external subroutine or function
GT for assigned "go to" variable
IF for intrinsic function
SN for subroutine
V for variable

-15-




ATTRIBUTES: Col 1: C if in COMMON
Col 2: E if an EQUIVALENCE
Col 3: A if a dummy argument
Col 4: S if value set by program unit
Col 5: S if scalar
A if array
Col 6: if array then number of dimensions

Because double-length complex facilities are not available in
standard Fortran we do not use any complex variables, although the arguments
A,R and E may be regarded as COMPLEX*16 (or COMPLEX for the single-length
version) on the IBM 360/370 series. A1l complex variables are written
as arrays of length two and all complex arrays are written as 2-dimensional
arrays whose first dimension is two. This leads to the code being almost
as easy to read as if the complex facilities were used. Complex division
is more complicated than can be written conveniently as in-line code so we
have taken this out of l1ine to the subroutines PAOGED/7ED,

We begin by describing the versions for complex polynomials, that
is PAO6AD/BD/CD/DD/ED.

The main call is to a short routine PAO6AD which calls PA0O6BD to find
the roots and PAO6CD to find error bounds. PAO6DD and PAOGED are short
subroutines for polynomial evaluation and complex division, respectively.
The time taken to find error bounds is usually about 25% of th;t taken to
find the roots themselves but can rise to as much as 100% when there are
many multiple roots. Because of this overhead we felt it was desirable
for the user to be allowed to call PA06BD directly and instructions about how
to do this are included in the specification sheet. When ca1Ting PAO6CD
(instruction 9 of PAO6AD) the work-space provided by the user is divided
into the four areas required by PAO6CD. Also PAO6AD checks for zero

leading coefficients and sets dummy error bounds to correspond, since

PAQO6CD assumes that the leading coefficient is non-zero.




The algorithm used by PAO6BD to find the roots has already been
explained in section 2 with the minor exceptions of the inclusion of
tests for zero leading coefficients (roots at infinity), tests for zero
trailing coefficients (roots at zero) and the scaling of all deflated
polynomials so that the largest coefficient has modulus approximately equal
to the reciprocal of the modulus of the smallest non-zero coefficient.
We implicitly assumed in section 2 that leading and trailing coefficients
were non-zero and the inclusion of scaling minimizes the 1ikelihood of
underflow or overflow. To avoid additional roundoff we scale by a power
of the floating-point base. For speed of execution (in function calls
rather than basic arithmetic) we use single-~length working for scaling and
for finding the initial iterate. Also we avoid time-wasting evaluations
of the moduli of complex numbers by working with the squares of the
moduli or the sums of the absolute values of the real and imaginary parts.
Subroutines PA06DD and PAOG6ED, called from several places in PAO6BD, should
be regarded as part of PA06BD. PAO6DD evaluates a complex polynomial at a
complex point and finds the square of the modulus of the result.  PAOGED
is a simple subroutine for complex division. The arguments of PAO6DD and
PAOGED are explained in comments at the heads of each subroutine. Other
coding details of PAO6BD are explained in comments. l

Subroutine PAO6CD, which finds the error bounds using the algorithm
of section 3, again makes use of single-length arithmetic whenever possible.
In particular we found that CABS executes significantly faster than its
double-precision equivalent (which in any case is not standard FORTRAN).
Therefore the error polynomial is held in single-length, the function
k(r) given by equation (3.9) is calculated in single-length and all the
Rouché tests are performed in single-length. The details of the code are

explained in comments.

-17-
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We have tried to make the code for the case with real coefficients,
namely subroutines PAQ7AD-PAQ7ED, resemble that for the complex case as
much as possible, using the same labels and the same comments wherever this
is appropriate. The only significant change in PAO7AD lies in the way
the work-array W is subdivided when PAQ7CD is called. The only
significant changes in PAQ7BD lie in the code for deflation (instructions
138-166), which is much more complicated because we need to test for a
real root and need to include code for deflation with a pair of complex
conjugate roots. The code for polynomial evaluation (in PAO7DD) is
longer because vie make use of the fact that the coefficients are real and
treat separately the case where the point of evaluation is real. "The
main changes in PAQ7CD are |

(i) Recognising complex roots when forming the polynomial n(z-ai)
and multiplying them in as a complex conjugate pair to preserve real
coefficients (instructions 18-28). It is assumed that conjugate pairs
are adjacent in array R.

(ii) Much more complicated code (instructions 39-59) for finding
distances from the Ith root to all the rest. This code avoids calling
CABS to find the distances between two real roots and so is much
faster where most roots are real. '

(iii) Using the same error bound for a complex root and its
conjugate (instructions 114-115).

6. Test results and comparisons with other methods

Our original reason for providing a new routine for the Harwell
library was that the existing routine PAO1 sometimes gave incorrect answers.
The new routine (PAQ7) is able to get answers all of which have good accuracy

in about half the time. We did not pursue the error in PAO1.
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We have compared our algorithm with that of Jenkins and Traub
(1970) in two ways. First we compared the Algol-W code given by Madsen
(1973) with an Algol-W version of the code of Jenkins (1969) and found
Madsen's to be 4 to 5 times faster. The required changes from Algol-60
to Algol-W are very minor. Next we compared our Fortran code with a rather
free translation into Fortran of Jenkins code. We did not try to make
a literal translation but rather to use his ideas to produce efficient
Fortran code. The resulting program executed between 2 and 4 times slower
than ours. A further advantage of our algorithm is that it is simpler and
so the code is less bulky (the object code being about 2/3 as long). The
accuracy of the roots produced by the two algorithms was very compafab]e
except in the last test shown in Table 1 (Jenkins' 6th example) where we
obtained much‘sma11er errors (all less than 2x10']4) because the roots of
modulus 0.9 were not all found before those of modulus 1 and therefore i11-
conditioned deflated polynomials were not generated. To compare the
error bounds with those of Jenkins we ran the examples documented in his
report. In his 6th example our bounds were much better simply because the
roots had been found so much more accurately. In his 5th example (a
complex polynomial of degree 21 having roots of multiplicities 1,2 and 3)
several of his bounds were quite unrealistic and our bounds'were all better,
most of them by factors over 100 and three (or seven if multiplicities are
included) by factors over 1,000. In the remaining examples the
differences between the bounds were not severe.

Special pUrpose subroutines exist in the Harwell 1ib}ary for solving
real cubic and quadratic equations (PAO3A/AD and PAOSA/AD, respectiveiy).
They use direct methods involving only the extraction of square and cube
roots but sometimes they lose accuracy through unnecessary cancellation.

We had hoped that a direct call of PAO7BD might be nearly as fast so that
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we could withdraw the special purpose subroutines, but the speed difference
is by a factor of about 7. It is hoped that better versions of PAO3A/AD
and PAOSA/AD will be written for the library in due course. Extra tests
for ensuring reliability are likely to slow down the programs a little, but
it seems likely that good programs significantly faster than PAQ7BD can be
written for these special cases.

To test our subrcutines we read in sets of roots and a relative error
level. We used extended precision arithmetic to cinstruct the correspording
polynomial and then made pseudo-random perturbaticns to its coefficients at
the required relative level. The polynomial and its errors were then
handed to our subroutines. This enables us to check the actual errors
against the computed error discs. We began by using all the polynomials of
Jenkins (1969) and about as many others from local sources, but eventually
reduced our test set to those shown in Table 1 (and a few trivial ones
designed to explore corners in our code) because the remainder showed no
useful additional information. We used the same test data for the real
case by adding an additional root consisting of the complex conjugate of any
complex root.

Our test results are summarised in Table 1. For each example we show
the errors and error bounds obtained for the first and last root found
and one intermediate one. This gives the reader an indication of our
success in finding the roots in order and we have been able to choose the
intermediate root displayed so that the three roots together indicate the
full range of conditioning. We also show the times (370/168 secs) for a
call of PAO6BD/7BD (roots only) and PAO6AD/7AD (roots and bounds). It can
be seen that finding the bounds usually involves quite a small overhead.

The last two cases are exceptional because of the large number of roots which

required discs containing many other roots. Such cases are relatively slow
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because we try to find a disc with only one root, then try with two, and
so on.

It was the complex version of the last example which led us to
abandon finding disjoint discs, because some of the roots (e.g. (0,0.9))
are so ill-conditioned that the best disc obtainable covers all the roots.
Therefore if we inSist on distinct discs all that can be obtained is one
disc for all the roots. By using overlapping discs;however, we obtained
12 good error bounds of which two are displayed in Table 1.

The real versions of the third and the last examples led us to
abandon Peters' and Wilkinsons' running error analysis on the computed
polynomial P(z) = H(z-ar). In the last example all the rpots are well
conditioned but the bounds for the errors in computing P(z) were so
pessimistic that each disc contained all the roots. Example 3 was less

8

dramatic but all the error bounds came to about 10°° instead of about
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' 7. Appendix. Specification sheets and listings
Harwell Subroutine Library PAO6AD/BD
1. Purpose

To find all the roots of a complex polynomial

n

+ +...+ X
a] azx a

n+l

and error bounds for these roots.

2. Argument List
CALL PAOBAD(A,N,R,E,W,S,NP1,LW) (double-length standard)
CALL PAOBAD({A,N,R,E,W,NP1,W) (single-length standard)
CALL PAOBAD(A,N,R,E, W) (I8M)

A is a DOUBLE PRECISION (REAL for the single~length version) array
of dimensions (2,n+1) which must be set by the user so that the
real and imaginary parts of a; are held in A(1,i), A(2,7). It
is unaltered by the subroutine. For the IBM version A may be a
COMPLEX*16 array of length n+l1.

N is an INTEGER variable containing the degree n of the polynomial.
Its value must be positive.

R is a DOUBLE PRECISION (REAL for the single-length version) array
of dimensions (2,n) used to return the roots. These are held with
real and imaginary parts in R(1,i), R(2,i), i=1,2,..:,n.  The dummy
value (1D70,1D70) is returned for each infinite root (corresponding
to a zero leading coefficient). For the IBM version R may be a
COMPLEX*16 array of length n.

E. 1is a REAL array of dimension at least (n+1) which must be set by
the user to error bounds on the coefficients, or to zero if these
are accurate to machine precision. On exit the first n locations
contain approximate bounds on the moduli of the errors in the roots.

W is a DOUBLE PRECISION (REAL for the single-length version) work

' array of dimensions (2,LW).
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S (double-length standard version only} is a REAL work array of
dimensions (4,LW), which may be eaquivalenced with W.
NP1 (standard versions only) is an INTEGER which must be set to n+l.
LW (standard versions only) is an INTEGER which must be set to
at least 5n/4+2 (or 3n/2+2 for the single-length version).

3. Alternative Entry

The error analysis part of a call to PAO6AD takes typically about
20% of its time. If speed is important and error bounds are not wanted

then a call of the form

CALL PAO6BD(A,N,R,W,NP1)  (standard versions)
or CALL PAOSBD(A,N,R,W) (1BM version)

should be made. The arguments are the same as those of the main call,
but W need Have Tength only (2,n+1).
4. Method

The roots are found by the algorithm of Madsen (BIT(1973) 13, 71-75),
the principal features of which are Newton iteration followed by
deflation. The error bounds are found by the application of Rouché's
theorem as recommended by Wilkinson (J.Inst.Maths Applics.(1971) 8,
16-35) except that discs are always taken with centres on the approximate
roots and errors in multiplying out the polynomial H(x-R(I))'are ignored.
The disc for each root is such that it contains exactly the same number
of approximate roots R(I) as exact roots of the true polynomial. Note
that in the case of true multiple roots the corresponding approximate
roots may be quite well separated but each will lie in the disc of all
the others and their mean will be a good estimate of the true multiple’

root.
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and error bounds for these roots.

2.
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PAO7AD/BD

Purpose
To find all the roots of a real polynomial

1"n

P R
a +a X a,

Argument List

CALL PAO7AD(A,N,R,E,W,S,NP1,LW) (double-length standard)
CALL PAQO7AD(A,N,R,E,W,NPT,LW) (single-length standard)
CALL PAO7AD(A,N,R,E,W) (IBM)

is a DOUBLE PRECISION (REAL for the single-length version) array of
length at least (n+1) which must be set by the user to contain the
coefficients and is unaltered by the subroutine.

is an INTEGER variable containing the degree n of the polynomial.
Its value must be positive. ‘

is a DOUBLE PRECISION (REAL for the single-length version) array

of dimensions (2,n) used to return the roots. These are held with
real and imaginary parts in R(1,1),R(2,1),i=1,2,...,n.  The dummy
value (1D70,0D0) is returned for each infinite root (corresponding
to a zero leading coefficient). For the IBM version R may be a
COMPLEX*16 array of length n. ’

is a REAL array of dimension at least (n+1) which must be set by
the user to error bounds on the coefficients, or to zero if these
are accurate to machine precision. On exit the first n locations
contain approximate bounds on the moduli of the errofs in the roots.
is a DOUBLE PRECISION (REAL for the single-length version) work
array of length LW.

(double-length standard version only) is a REAL work array of

dimensions (2,LW), which may be equivalenced with W.
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NP1 (standard versions only) is an INTEGER which must be set to n+l.
LW (standard versions only) is an INTEGER which must be set to
3n/2+42 (or 3n+2 for the single-length version).

3. Alternative Entry

The error analysis part of a call to PAO7AD takes typically about 20%
of its time. If speed is important and error bounds are not wanted then

a call of the form

CALL PAQ7BD(A,N,R,W,NP1) (standard versions)
CALL PAO7BD(A,N,R,W) (IBM version)

should be made. The arguments are the same as those of the main call,
but W need have length only n+l.
4. Method

The roots are found by the algorithm of Madsen (BIT(1973) 13,71-75),
the principal features of which are Newton iteration followed by
deflation. The error bounds are found by the application of Rouché's
theorem as recommended by Wilkinson (J.Inst.Maths Applics.(1971) 8,
16-35) except that discs are always taken with centres on the approximate
roots and errors in multiplying out the polynomial I(x-R(I)) are ignored.
The disc for each root is such that it contains exactly the same number
of approximate roots R(I) as exact roots of the true po]ynoﬁial. Note
that in the case of true multiple roots the corresponding approximate
roots may be quite well separated but each will 1ie in the disc of all

the others and their mean will be a good estimate of the true multiple

root.
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