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ABSTRACT

Eight research projects supported by this grant during the reporting period have resulted
in three refereed publications, one under review, one book chapter and three conference
papers. Areas of reseach included design and simulation of neural architectures for: (1)
multichannel data fusion; (2) object recognition and image understanding; (3) development
and refinement of algorithms for segmentation, boundary completion, and featural filling-in
based on BCS/FCS architectures; (4) network design and simulations of an architecture for
breaking of unwanted persistence (hysteresis) of visual segmentations; (5) design of a network
architecture for explaining human capabilities for efficient detection of targets in clutter; (6)
design and execution of human psychophysical experiments for constraining development of
BCS; (7) design and simulation of a network architecture for enhancing featural contrast and
boundary localization at line-ends and corners through a novel circuit analog of V1 to lateral
geniculate nucleus feedback; and (8) relation of hyperacuity and illusory contour data.
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RESEARCH SUMMARIES

1. Multichannel data fusion by a self-organizing network for recognition and
prediction [Article 1]

Fusion ARTMAP is a self-organizing neural network architecture for multi-channel, or
multi-sensor, data fusion. Single-channel Fusion ARTMAP is functionally equivalent to
Fuzzy ART during unsupervised learning and to Fuzzy ARTMAP during supervised learn-
ing. The network has a symmetric organization such that each channel can be dynamically
configured to serve as either a data input or a teaching input to the system. An ART mod-
ule forms a compressed recognition code within each channel. These codes, in turn, become
inputs to a single ART system that organizes the global recognition code. When a predic-
tive error occurs, a process called parallel match tracking simultaneously raises vigilances
in multiple ART modules until reset is triggered in one of them. Parallel match tracking
hereby resets only that portion of the recognition code with the poorest match, or minimum
predictive confidence. This internally controlled selective reset process is a type of credit
assignment that creates a parsimoniously connected learned network. Fusion ARTMAP’s
multi-channel coding is illustrated by simulations of the Quadruped Mammal database.

2. Object recognition and image understanding [Article 2]

The What-and-Where filter forms part of a neural network architecture for spatial map-
ping, object recognition, and image understanding. The Where filter responds to an image
figure that has been separated from its background. It generates a spatial map whose cell
activations simultaneously represent the position, orientation, and size of the figure (where it
is). This spatial map may be used to direct spatially localized attention to these image fea-
tures. A multiscale array of oriented detectors, followed by competitive interactions between
position, orientation, and size scales, is used to define the Where filter. The Where filter
may be used to transform the image figure into an invariant representation that is insensitive
to the figure’s original position, orientation, and size. This invariant figural representation
forms part of a system devoted to attentive object learning and recognition (what it is).
The Where spatial map of all the figures in an image, taken together with the invariant
recognition categories that identify these figures, can be used to learn multidimensional rep-
resentations of objects and their spatial relationships for purposes of image understanding.
The What-and-Where filter is inspired by neurobiological data showing that a Where pro-
cessing stream in the cerebral cortex is used for attentive spatial localization and orientation,
whereas a What processing stream is used for attentive object learning and recognition.

3. Processing of synthetic aperture radar images by a multiscale boundary seg-
mentation and surface representation architecture [Article 7]

A multiscale image processing algorithm based on the Boundary Contour System (BCS)
and Feature Contour System (FCS) neural network models of preattentive vision, developed
at Boston University’s Center for Adaptive Systems and Department of Cognitive and Neural
Systems, has been transferred to MIT’s Lincoln Laboratory and applied to large images
containing range data gathered by a synthetic aperture radar (SAR) sensor. Researchers at
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Lincoln Laboratory have in turn supplied enhanced versions of that software to clients at
other laboratories. The goal of the algorithm is to make structures such as motor vehicles,
roads, or buildings more salient and more interpretable to human observers than they are
in the original imagery. Early automatic gain control by shunting center-surround networks
compresses signal dynamic range while performing local contrast enhancement. Subsequent
processing by filters sensitive to oriented contrast, including short-range competition and
long-range cooperation, segments the image into regions. The segmentation is performed
by three “copies” of the BCS and FCS, of small, medium, and large scales, wherein the
“short-range” and “long-range” interactions within each scale occur over smaller or larger
image distances, corresponding to the size of the early filters of each scale. Finally, a diffusive
filling-in operation within the segmented regions generates surface representations of visible
structures. The combination of BCS and FCS helps to locate and enhance structure over
regions of many pixels, without the resulting blur characteristic of approaches based on low
spatial frequency filtering alone.

4. Dynamic reset of boundary segmentations in response to rapidly changing
imagery [Articles 3—-4]

An analysis of the reset of visual cortical circuits responsible for the binding or segmenta-
tion of visual features into coherent visual forms yielded a model that explains properties of
visual persistence described in Francis, Grossberg, and Mingolla (in press). The reset mech-
anisms prevent massive smearing of visual percepts in response to rapidly moving images.
The model simulates relationships among psychophysical data showing inverse relations of
persistence to flash luminance and duration, greater persistence of illusory contours than real
contours, a U-shaped temporal function for persistence of illusory contours, a reduction of
persistence due to adaptation with a stimulus of like orientation, an increase of persistence
due to adaptation with a stimulus of perpendicular orientation, and an increase of persistence
with spatial separation of a masking stimulus. The model suggests that a combination of
habituative, opponent, and endstopping mechanisms prevent smearing and limit persistence.

The model consists of the BCS with habituative chemical transmitters embedded at the
interface of its complex cells and hypercomplex cells. Thus all the properties used in image
processing applications of the BCS are retained in the present model, which provides the
additional advantage of rapidly resetting only those boundary groupings of a processed scene
which are changing in a time-varying environment.

5. A network architecture to rapidly search and detect visual targets in clutter
[Article 6]

Visual search data were given a unified quantitative explanation by a model of how
spatial maps in the parietal cortex and object recognition categories in the inferotemporal
cortex deploy attentional resources as they reciprocally interact with visual representations
in the prestriate cortex, as described in Grossberg, Mingolla, and Ross (in press). The
model visual representations are organized into multiple boundary and surface representa-
tions. Visual search in the model is initiated by organizing multiple items that lie within a
given boundary or surface representation into a candidate search grouping. These items are
compared with object recognition categories to test for matches or mismatches. Mismatches
can trigger deeper searches and recursive selection of new groupings until a target object is
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identified. This search model is algorithmically specified to quantitatively simulate search
data using a single set of parameters, as well as to qualitatively explain a still larger data
base, including data of Aks and Enns (1992). Bravo and Blake (1990), Chellazzi, Miller,
Duncan, and Desimone (1993), Cohen and Ivry (1991), Egeth, Virzi, and Garbart (1984).
Enns and Rensink (1990), He and Nakayama (1992), Humphreys, Quinlan, and Riddoch
(1989), Mordkoff, Yantis, and Egeth (1990), Nakayama and Silverman (1986), Treisman and
Gelade (1980), Treisman and Sato (1990), Wolfe, Cave, and Franzel (1989), and Wolfe and
Friedman-Hill (1992). T"ie model hereby provides an alternative to recent variations on the
Feature Integration and Guided Search models, and grounds the analysis of visual search
in neural models of preattentive vision, attentive object learning and categorization, and
attentive spatial localization and orientation.

6. Human psychophysical experiments on boundary segmentation [Article 8]

Lesher and Mingolla (1993) showed that illusory contours can be induced along direc-
tions approximately collinear to edges or approximately perpendicular to the ends of lines.
Using a rating scale procedure, they explored the relation between the two types of inducers
by systematically varying the thickness of inducing elements to result in varying amounts of
“edge-like” or “line-like” induction. Inducers for the illusory figures consisted of concentric
rings with arcs missing. Observers judged the clarity and brightness of illusory figures as
the number of arcs, their thicknesses, and spacing were parametrically varied. Degree of
clarity and amount of induced brightness were both found to be inverted-U functions of the
number of arcs. These results mandate that any valid model of illusory contour formation
must account for interference effects between parallel lines or between those neural units
respounsible for completion of boundary signals in directions perpendicular to the ends of
thin lines. Line width was found to have an effect on both clarity and brightness, a finding
inconsistent with those models which employ only completion perpendicular to inducer ori-
entation. Subsequent research reported in Lesher (1993) showed that the BCS could fit the
data of the Lesher and Mingolla (1993) experiment.

7. A link between brightness perception, illusory contours, and binocular cor-
ticogeniculate feedback

As reported in Gove, Grossberg, and Mingolla (1994), many illusory contour displays
induce apparent brightness along the ends of thin lines. “Brightness buttons” are usually
described as unnoticed for sinlge lines, but effective in producing the enhanced brightness
inside the illusory contours induced by Ehrenstein patterns. No satisfactory neural mecha-
nism for brightness buttons has yet been suggested. We propose that they are consequences
of corticogeniculate feedback whose primary functional role is to selectively prime monocular
LGN cells whose activation is consistent with fused binocular activation of cortical V1 cells.
We simulated a model of neural circuitry of LGN and V1. Model LGN relay cells receive
input from retinal cells, positive feedback from oriented V1 cells, and negative feedback from
LGN interneurons, which also receive cortical feedback. Brightness button signals can be
generated in two ways consistent with reported physiology: (1) Excitatory feedback from
cortical end-stopped cells can enhance LGN cell activity near line ends; (2) Net inhibitory
feedback from long-field cells, modulated by LGN interneurons, can suppress activity in LGN
cells coding the sides of lines, making brightness contrast at line ends relatively stronger.
A combination of the two mechanisms has the same properties. Our research shows that
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brightness enhancement of illusory figures that are induced at line ends may reflect cor-
ticogeniculate feedback mechanisms. These mechanisms select monocular LGN cells whose
activation is consistent with that of the binocular cortical cells that are used to form the
illusory contours.

8. Relation of hyperacuity and illusory contour data

Lesher’s (1993) dissertation contains (among other projects) simulations describing how
the BCS can fit the illusory contour data of Project 6 in a manner that unifies the treatment
of hyperacuity data and illusory contour formation, as first described by Grossberg (1987).
Tradeoffs in network design for optimal spatial resolution and for reconciling long-range
contextual information with local data are thereby accorded a unified treatment.
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