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FREE-STREAM BOUNDARIES OF TURBULENT FLOWS!

By Stantey CorrRsiy and Arax L. KistLer

SUMDMARY

An experimental and theorctical study has been made of the
Instautaneously sharp and irregular Jront which ix always
Jound to separate burbident flwid from contiguous “nonturbu-
lent’ fhuid at a free-stream boundary.  This distinet demarea-
tion ix knwwn Ao give an intcrmitlent character lo hot-wire
stynals in the boundary zone.

The ocerall behavior of the fronl is deseribed statistically in
terms of its wrinkle~amplitude growth and its lateral propagation
relative to the fluid as funetions of downstream coordinate.

1t ix proposed and justified that the front actually eonsists
of @ rery thin fhwid layer in achich direct viseous forces play the
central role of trawsmitting mean and fuctuating rvorticity to
previously nonturbulent fluid.  Owwtside this *laminar super-
layer” there is presumably a field of irrotational relocity

Auctnations (the “nonturbulent” Aow) with constant mean

veloetty.  Ax outlined i the following paragraphs, theoretical
aralysis based on this general physical picture gives results on
Jront beharior which are in plausible agreement with erperi-
mental results for three turbulent shear flows: rough-wall
bowndary layer, plane wake, and round jel.

It ix shown that the rate of inerease of wrinkle amplitude of
the front can be roughly erplained as a Lagrangian diffusion
process, using the statistieal properties of the turbulence in the
Jully turbulent zone.

The transrversal propagation relocity of the turbulence front
ix predicted by the behavior of a physicomathematical model of
the laminar superlayer.  The model is a generalized Stokes-
Rayleigh infinite wall, oxcillating in ils own plane, translating
lo give constant mean rorlicity al the boundary, plus local
rortictty production and uniform suetion relocity.

Finally, various statistical properties of the turbulence front
Incation ax a stationary random rvariable (for fired downstream
position) hare been either directly measured or indireetly inferred
Jrom known theorems on Gaussian stochastic processes; it is
fonnd that for boundary layer, wake, and jet the front location
is very nearly Gaussian.  Specifically, it is possible, therefore,
lu estimate the autocorrelalion funetion of the front position.

INTRODUCTION

Until the last few vears, basic experimental and (especially)
theoretical attacks upon the problems of turbulent flow have

centered on fully turbulent Lelds, both isotropic and shearing,
The experimental researches have heen concerned with the
measurement of significant statistieal quantities with the
hope that these will give some insight into the mechanisin of
fully developed turbulenee and might even suggest a profit-
able theoretical approach.

In reality, however, every turbulent flow is bounded hy
fluid not in a turbulent state.  If the boundary spacings can
be made very large compared with the characteristic correla-
tion lengths of the turbulence, for example, integral <eale and
dissipative seale (microseale), then an “infinite ficld” approxi-
mation can be used.
the decaying turbulence behind regular grids, a reasonably
good likeness of Tavlor's ideal coneept of isotropie turbulence
(ref. 1).

It now seems probable that the elassic turbulent shear
flows, boundary layer, wake, jet, channel, and so forth have
transversal integral seales not very small compared with
their characteristic widths,  This has been shown experi-
mentally for the round jet (ref. 2), the plane half jet (ref. 3,
the boundary layver (ref. 4), and the channel (ref. 5). This
implies that the general behavior of these shear flows cannot
be fully inferred on a (still unsolved) homogenecous shear flow
basis but must involve the boundary phenomena.

This has been possible in rescarch on

Turbulent shear low boundaries can be efassified in various
wayvs. A conventional one is the division into (a) solid and
(b) free (or free stream) boundaries, depending upon the
presence or absence of a solid wall and excluding possible
svmmetry planes from consideration as boundaries.

A further subdivision can be made in each elass according
to whether the outside flow or wall s traveling faster or
slower than the turbulent fluid just mside the boundary,
but this distinction is probably only a quantitative one
(beeause of the nonlinearity of the system), not affeeting the
nature of the boundary phenomena; a comparison of wake
and jet boundaries would illustrate this remark. One can
also visualize a boundary state in which this mean velocity
difference is zero, that is, the case of uniform veloeity fiekd
including both turbulent and outside flow.

This investigation is econcerned solely with the free
boundary condition. In practice, this case generally involves
a mean shear stress in the fullv turbulent region. reducing

tupersedes NACA TN 3133, ““The Free-Stream Boundaries of ‘Furbitlent Flows' by Stanley Corrsin and Alan L. Kistler, 1454,
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to zero monotonically toward the nonturbulent? frec-stream
flow.

The outstanding observable characteristic of free bound-
aries is the relatively sharp instantancous demarcation
surface between turbulent and nonturbulent fluid. This
shows up very clearly, for example, in short-duration shadow-
graphs of the turbulent wakes behind high-speed projectiles
(fig. 1). The sharpness of the irregular boundary illustrated
persists as far downstream as pictures have been taken,
about several hundred wake dinmeters.

L-81230

Frevre L.—Turbulent wuke of bullet.  (Courtesy of Ballistic Research
Laboratories, Aberdeen Proving Ground.)

In a mixed flow zone of this type, a probe stationary rela-
tive to the disturbance (e. g., the wall in a turbulent boundary
layver) will be swept over by successive sections of turbulent
and nonturbulent fluid.  With a hot-wire anemometer this
yvields an intermittent signal of the type which led to the
discovery of this characteristic of free turbulent boundaries
(ref. 2y, The relative time spent by the probe in turbuient
fluid was first measured by Townsend (ref. 6) and called
the intermittency factor vy,

Most steady-state shear zones spread with increasing
downstream  distance.  Therefore, there cannot be even
rough overall flow similarity unless the average lateral
position and the wrinkle amplitude of the sharp boundary
both increase at roughly the same rate as does the momentum
width of the shear flow. Sinece it is well known that most
“simple”  turbulent shear flows exhibit a rough overall
similarity, it can immediately  be anticipated that this
turbulence front must (a) propagate relative to the local
fluid in the same sense that a flame front propagates through
a combustible mixture and (b} inerease its geometrical
amplitude with increasing downstream coordinate,

The explanations of these necessary properties of the
turbulence front are two of the explicit purposes of this
investigation.  The two properties are to be measured and
to be analytically related to physical properties of the turbu-
lence in the fully turbulent zone,

For any r-station, the intermittency factor ¥(y) is just 1
minus the distribution function of }(#), the instantaneous
location of the sharp frou between turbulent and nonturbu-

TG oo tlaminar s reserved for g nontu budent How i sliesr, that is, where viscous
forees are important.  This 1s in contrast with the terminology introdueed in reference 2,
where laminar was used to indicste any nonturbulent flow.  Of course, in practice, s “‘non-
turbulent™ flow may be one whose turbulence level is mech tower than that of the con-
fignous turbulent flow,

lent fluid.  For a fixed value of r. Yt s a =tationary
random variable, and

vy problyYVih £ =] i

Sinee y(y) s differentiable (in fact, nondifferentiable fune-
tions cannot be experimentally so identified), oy oy is the
probability density of Vi,

A priori the fact that the free turbulence boundar
(vorticity fluctuation boundary according to the phyvsieal
preture proposed here) remains sharp can be attributed (o
the continuous irregular stretehing of the loeul vorticin
gradient in the boundary, that is, to the fact that the vorticin
propagation process is nonlinear: for a given stretehing rate
the production of new vortieity is proportional to the amount
already present.  This must be balanced on the average
by the viscous diffusion of the vorticity gradient at the front

It is obvious that the random vorticity field ordinarily
called turbulence can propagate only by dircet contact, as
opposed to action at a distance, beeause rotation ean be
transmitted to irrotational flow only through direer viscons
shearing action.  This insures that under ordinary eivenm-
stances the turbulence front will always be a continuons
surface; there will be no islands of turbulence out in the free
stream  disconnected  from  the main body of  turbulens
fluid.

The analytieal estimates will include a hyvpothetieal case
in which the turbulent part of the flow field i= also without

shear.  This is perhaps the simplest conceivable case under
which turbulence  propagates into nonturbulent  fluid

provided that one ean negleet the necessary monotonie time
decreases in turbulent energy per unit mass. Under these
conditions it is proposed that the distinetion between turbu-
lent and nonturbulent zones is the presence or absence,
respectively, of random vorticity fluctuations.

A more complex case is the one ordinarily encountered in
practice, as described  before: a shearing  turbulenee en-
eroaching on a nonshearing (irrotational) nonturbulent fluid.
In this case, the average propagation veloeity of the turbu-
lence front should also depend upon the mean shear stress
in the turbulent fluid near the front.

A somewhat different situtation, not included fully in the
above classes, occeurs in the transitional spreading of a turbu-
lent shear region into a shearing laminar region. when the
principal shear planes of laminar and turbulent flows are
parullel to each other but perpendicular to the mean propa-
gation front,

Such a phenomenon was first studied experimentally by
Charters (ref. 7). who ecalled it “transition by transverse
contamination.”  Emmons (ref. 8) has given good experi-
mental evidence that transition from laminar to turbulent
flow may often oceur in this way, usnally from irregularly
generated “ignition”” spots in the moving fluid. and a pre-
liminary analytical discussion of the turbulence spread under
these conditions has been given by Mitehner (ref. 9). How-
ever, it appears that Mitchner has omitted from his non-
turbulent region the very shear which distinguishos the tran
sitionn problem. 1t s not intended that this inportant case
be included in the present report.  Although some of the
same phenomena may oceur as in the simpler nonshear
boundary, it is possible that the dominant turbulenee propa-
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gation mechanisn is ditferent.  In particular, it may be
that a destabilization of the already rotational flow occurs in
addition to a transmission of random vorticity by direct
viscous action at the turbulent-laminar interface.

When the present work was begun, it was hoped that the
problem of propagation of turbulence into a nonturbulent
flow could be studied at the boundary between a grid-
generated isotropic turbulence and a nonturbulent flow
moving at the same uniform speed.  This would eliminate
the shear stress entirely, although involving a relatively rapid
turbulence-level change due to viscous dissipution with no
turbulent energy production.

The principal generating arrangement tried was a half grid
consisting of a conventional 1-inch-mesh, S-inch-dowel grid
covering half the tunnel cross section, with a fine mesh
sereen of virtually identical static-pressure drop covering
the other half.  Unfortunately, anomalous boundary be-
havior, arising from complexities in the flow around the joint
between grid and sereen, could not be eliminated with a
reasonable amount of effort.  Therefore, the turbulence
propagation has been studied in situ, chiefly at the outer
edge of a low-speed turbulent boundary laver, with a few
measurements in a round jet for an additional check of some
particular phenomena.  For completeness, some of Town-
setd’s plane-wake data (ref. 10 have also been analyzed in
the light of this investigation,

The general purpose of this investigation has been to
measure statistical properties of the propagating turbulence
front to permit qualitative or even rough quantitative theo-
retical explanation of the phenomenon.

The work has been carried out at the Department of
Aeronauties of The Johns Hopkins University with the
financial assistance and sponsorship of the National Advisory
Committee for Aeronautics.  The authors would like to
acknowledge the assistance of Miss Vivian O'Brien. Mr,
Aristoteles Scoledes, Mr. Donald Johnson, and Miss M, Ann
Emmart as well as the eritical adviee of Dr. Franeis H.
Clauser and Dr. Mark V. Morkovin,

SYMBOLS
.1 characteristic ordinate in sketeh (d)
a random variable representing some  flow
property
ar same property. taken in turbulent flow only
¥ constant
b random on-ofl’ signal, taken between zero
and 1
CD random variables
e, skin friction coefficient, ™
PT
2l
" diameter of rod used to produee plane wake
F. F. Fo,o i power spectra

« sealar funetion
Lieight of wall roughness
random variable
parameter in model of laminar superlayer,
equivalent to vortex stretehing eate
wave nnmber
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l.
L.
Lol
M
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AW
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ID
Prope

transversal Euleran seale

Lagrangian time scale

Lagrangian length seale, oL,

average pulse lengths of internmittent signal

empirieal constant

exponent of boundary-laver power-law ves
locity profile

average frequeney of occurrence of  any
particular value of random variable i)
average frequencey of oceurrence of } oand

zero, respectivelv, e front-location vari-
able Yt

evelie frequeney

total static pressure

probabilityv densities of turbulent and po-
tential segment lengths, respectively, in
intermittent signal

total velocity veetor

velocity lluctuation veetor, ) 0

dynamic pressure in free stream of wind
tunnel

instantancous radial location of twrbnlence
front in round jet

Lagrangian correlation fnetion

shear correlation coetheient, 77w’

Revnolds numbers of Taminar superlayver

turbulence Reyvnolds number, w’x v

coordinate vector

radial coordinate in round jet

jet orifiee radius

[, at 1 see-

radial position at which I7 =

tion of the jet

total shear foree veetor (per unit areas at
turbulent  side  of superlayer, Iving in
plane of superlayver

segtnent tor pulser lengths of turbulent and
potential signal, respeetively, inointer-
mittent signal

time

velocity along # oy, and =, respeetively

mean velocity on axis of jet or wake

mean veloeity in free stream of boundary
layer or wake

skin friction velocity, 7, 'p

velocity Huetuation along .y,
respect i\'(‘l_\'

and .

average veloeity of propagation of turbu-
lence front relative to fluid (perpendie-
ular to its own plane

Cartesian coordinates (¢ is measured [rom
beginning of working section in bound-
arv-laver ease)

Cartesian coordinates alined locally with
turbulencee front
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apparent origin of wake, boundary laver,
or jet

instantaneous y - location  of
front for boundary layver and wake

turbulence

instantancous y,—location of turbulence
front of plane wake

m wake

value of y at which mean velocity defect
is half maximum

radian  frequency  of  wall  osecillation  in
model of laminer superlayer

intermittencey factor, relutive time spent
by a fixed probe in turbulent fluid

mstantancous vector velocity jump across
laminar superlayer

boundaryv-layer thickness, the value of y
at which 7 T,

boundarv-layver displacement thickness

thickness of laminar superlayer

model superlayer thickness for mean and
fluetunting vorticity. respectively

momentum thickness of boundary layer

Lagrangian length seale in flow direction.
rL,

transversal
lenee

Lagrangian time microscale

Eulerian microscale of turbu-

microscale of V() times [,

Lagrangian length microscale. ),

viscosity coefficient

kinematic viscosity coefticient, u p

total vorticity components in r - and =
directions, respectively

total vorticity, Z=90

vorticity Huetuation components along r, y
and . respectively

vorticity fluctuation, §,=w Q - Q
density
standard deviation of (V7 Y)=1"

stress tensor

time interval

skin friction stress

rate of dissipation of turbulent energy per
unit mass of fluid

Kolmogoroff (minimum) length, x = (»3/d)1/

autocorrelation function of ¥,(

autocorrelation functions of a, ar, and b

sutocorrelation function of trigger output

total vorticity vector

vorticity fluctustion vector

average

“short” time or space average

|
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root meat square

hypothetical variable equal 1o actoal vara-
ble in turbulent luid only and obrained
by deleting potential fluid part of an
intermittent oscillogram

EXPERIMENTAL EQUIPMENT AND PROCEDURES

AERODYNAMIC EQUIPMENT

The wind tunnel (fig. 23 is an open-return NPL tvpe with

a 2- by 2-foot working

]

evel at entrance of W' U

section and a free-stream tarbulenee

0.05 percent and #0006 per-

cent at a mean velocitv of 17 26 Teet per sceond.
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Frornre 2,

Sehenuetic diagram of wind tannel

In order to have a reasonably thick turbulent bounsdary
layer in the relatively short working section, a wall was used

as a working surface, and it was roughened by corrugated

paper starting from the beginning of the contraction.

The

corrugations, sct perpendicular to the flow, were roughly
sinusoidal, with abont Yanch wave length and % -inel anipli-
tude (half height).

The extent of two-dimensionality in the boundarv-laver
flow was checked by mean velocity profiles at several stations
across the 2-foot width of the working surface. at the farthest

downstream station, » - 102 inches,

The uniform zone was

18 inches wide, with a boundary-laver thickness of §=3
inches from wall to free-stream veloeity atd, estimating {rowm
reference 4, the transversal Eulerian seale was about 0.5 inch.

The boundarv-layer measurements were all made ar a

free-stream veloeity of 37 feet per second.

The statie pres-

sure was very nearly constant along the working section
. From comparisons with carlier work on this type
of flow (ref. 11), it appears that the flow state is such as 1o
have a fully rough wall condition,

(fig. 3)

The round-jet unit is sketched schematically in figure 4.
The orifice diameter was % ineh and 1t was run at an exit

velocity of 300 feet per second.
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seetion,

¢, dynamie pressure in free stream at g (0.
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Firavre +.—Schematice diagram of round-jet egnipment.
HOT-WIRE SET

Most of the measurements reported here were made with
the hot-wire anemometer as sensing element, The basie
amplifier and compensation unit, constructed by Mr, €. L.
Thiele, is desceribed in veference 12, The oscillograms were
taken with a General Radio Type 761 camera photographing
Viue cathode-ray tubes,  Measurements of the statistieal
distribution of lengths of turbulent bursts were made by
sealing direetly from the recorded oseillograms,

The power speetra were measured with a Hewlett-Packard
Type 300 wave analyvzer, followed by a vacuum thermo-
couple.  The strongly fluctuating output was averaged by
integrating with a fluxmeter and bucking eireuit as illustrated
in reference 12,

The hot-wires used were either 0.00010 inch platinum or
0.00015 inch tungsten, with lengths of about 1.5 millimeters
for the w-meters and 2 millimeters for the X-meters used to
measure /. w’, and %7, No correction was applied for finite
wire length.

MEASUREMENT OF INTERMITTENCY

Following Townsend (ref. 6) the intermitteney v is defined
as the fractional time spent by the (fixed) probe i turbulent
fluid.  Townsend has measured 4 in two wavs: (a) from the
“flattening factor™ (or “kartosis™) of the probability density
of the intermittent signal (ref, 6): (hy from the mean-~quare
output of an on-off signal trigeered by passing the intevit-
tent signal through a gate (ref. 100, The method used here
is 2 development of (b)), the relative “on time™ heing meas-
ured by counting a high-frequeney pulse signal as modulated
by the on-off signal.
at low values of 7.

The overall block diagram is given in figure 5. Figure 6 1s
a further breakdown of the manipulative details, with a
schematie diagram of a hypothetical signal as modified by
passage through the various blocks.  The actual cireunt
of this is given i figure 7. It is clear from tigure 6 that the
number of pulses counted for a given input signal will be
a monotonteally increasing function of diseriminator setting.
One would like o find & wide range of diseriminator settings

This <honld give more aceurate re<nlts

over which the count rate, for a given input <ignal. would
be unchanged.  Unfortunately, there is no such indication

Compensated
input from hot-wire
circurt

Amplifier

Differentating circut

Amplifier

Intermittency circuit

Counter

Figrre 5. —O0verall block diagram of intermitteney-measuring
arrangement.
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Signal

input
from amplifier

Noise clipper

Rechifier

Smoothing
filter

D.c amplifier
(clipping)
Discriminotor
_ [ ;
I N T
Schmitt | ! b
trigger ’ 1
|
< =TT
Gote Tre T~
LA .
Pulse Magnified time D-¢ —l | :
formation scale restoration | ! |
111111130
Square wave ifi i
q Maognified time To counter

scale

Fravre 6.—-Detailed block diagram of intermitteney-measuring device,

of a “correct” setting for the diseriminator, possibly heeause
of the lag introduced in the necessary smoothing process.
A typieal illustration is given in figure 8,

In practice. the diseriminator level was et for each signal
by visual observation on a dual-beam oscilloscope of simul-
taneous traces of the differentiated hot-wire signal and the
corresponding trigger output (e, ¢, fig. 9. The settings of
the noise clipper and of the smoothing-filter time constant
were chosen by visual comparison at the beginning of the
sequence of tests and kept fixed for the entire investigation.

The intermitteney circoit was desgined and built by N,
Donald 3. Johnson.

VORTICITY FLUCTUATIONS

The pyramidal configneation of four hot-wires conneeted
in a Wheatstone bridge responding primarily to the vorticity
fluctnation component along the flow direction is due to
Kovisznay (ref. 13). Figure 10 js an isometrie sketeh and
a wiring diagram.  Some of the pertinent details are given
in reference 14,

Calibration of sensitivity to vorticity has been tried by
spinning the meter about its axis (ref. 13) in a uniform flow,
but for the measurements presented here an indireet method
was used: The readings in a decayving isotropic turbulence
were compared with the valiues of vorticity fluetuation level

ADVISORY COMMITTEE FOR AERONAUTICS

computed from turbulence level und microscale measure-
ments.  Estimates of the parasitie sensitivities, especially
to the three components of turbulent velocity, were mmade by
measuring the steady-state vaw and speed sensitivities i g
low-turbulence stream. These were found 1o be negligibly
small for the particolar meter used in getting the & data
No correction has been made for finite wire lengih the
lengths were about 1 millimetert . and no correction has heen
made for the nonvero ratio of wire spacing 10 turbulene
microseale, a characteristic giving parasitic sensitivity 1o the
secotd derivatives of velocity fluetuations.,

MEAN VELOCITY PROFILES

A flattened no. 20 hypodermic needle was used as 1onal-
head tube in the measurement of the mean velocity profikes
from which boundary-layer and jet thicknesses were (de-
termined.

Although exact wall loeation is probably a meaningless
concept for rough-wall boundaryv-laver lows, the choiee of
sich a referenee value of y i convenient for presentation of
data in familiar coordinates. Therefore, a y
chosen by extrapolation to zero of the mean veloeity profile-
from a region outside the boundary tangent 1o the corruea-
tion peaks. In order to minimize seatter near the “wall”
all total-head traverses were made at the same phase position
in the corrugation peak.
side in cach case permitted the total-head tube to o com-
pletely into the boundary.

O reference was

A shight entout on the downstrenm

Sinee the exact details of mean veloeity profile <hape were
not of primary concern in this investigation, no correction
for the effeet of turbulence has been applied 1o the total-head
tube data.

MEASUREMENTS

MEAN VELOCITY FIELDS

Rough-wall boundary layer.
determined from total-head tube measurements arve plotted
in dimensionless form in figure 11,
similarity.  OF course, exact similarity is not to be expected
since boundaryv-layer Revoolds number varies considerably

Mean velocity profiles s
There ix reasonably elose

with » and effective roughness varies slightly.

The momentum-thickness distribution

v fr (og )

The solid hne 1= a simple power law
The <imilarity shown

2

is given in figure 12,
drawn from the apparent origin » s,
in fignre 11 is elose enough so that the displacenent thickness

. - r
oF(r) = ’ ( —_— ) /1 v
o J. | T Yy

and the total thickness 800, the value of y at which =7,
are assumed proportional to ey for the purpose of later
The () values are assumed to he more peliable
than 8* beeause equation (2) deemphasizes the relatively
uncertain region near the wall. The values of 8% and 600y
are then given by 80 times the average values of 5% 4 and
8:0. These values are 147 and 7.2 vespectively,

figures,
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is included in figure 12,

Round jet. Figures 13 and t4 present data for the round

(b} - ‘ L-8123¢
jet carresponding to the data for the boundary laye:. The
() “i,\‘('rill.lin:nnl" =et too high (signal is on Of). tail depression is, of course, due to the directional sensitivity
thy Good dixeriminator setting (signal i~ u(h, of the total-head tube; at the jet edge, the mean veloeity
Frovee 9. Oseillogrnms of hot-wire signad and trigger antput. i chielly radially inward.  These measurements agree with
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Fioore 12, Momentum thickness and =kin friction coetlicient in
rotgh-wall bonndary laver,

the results of references 2 and 12 on veloeity profile and
hnearity of jet momentum spread with . However. the
angle of spread is =hghtly grearer than that in referenee 2,
being 10.8° total angle for the half-veloeity cone as against
9.5° m the carlier work

Possible factors in thiz ditference are the following:

tay Different orifice boundary conditions: In reference 2
the jet emerged from a plane wall about 25 orifice diameters
in width: here there was no wall,
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Frorre 130 Mean velocity profiles for round jet,
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thi Different Resnolds numbers: At the <ate o0 this ot

field has o Revoolds number five times bizger than the on

in reference 2.
rer Ditferent

profiles of relerence 2 were meastired with o hot-wire ancinonm-

medsurine in<trument: The mean veloceis

total-head 1abe
dittepen

cter while these were messured with g
In neither ease were the data corrected for the
elfect of turbulence on apparent mean velocity .

However, the difference 1< of no miterest here sinee e
principal concern i< a comparison of the relative belviors
of overall mean How field and irrecalar turbatenee front

CHARACTER OF FLUCTUATIONS

The intermittent character of the outer part of the tarbin-
fent lmlllnl:ll“\' laver is indicated hv l‘\|)i(':l| o<citforraim-
Figure 9 meludes wit and 0w of, while ficure 15 inchules
nitr and oty
fluctuations in the nonturbulent parts of vhe flow,

Obviously there are <ull appreciable velocin
These
are of relatively low frequeney. The topieal time record of
vorticity Huctuations &7 indieates that the nonturbulent
parts are wrrotational, since the order of magnitude of the
low-freqiteney thuetnations visible between tarbudent sew-
ments can be accounted for by parasitie scnsitivity in thas
particular vortieity meter.
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Fravwe Eh.

. L-81232

O~cillograms of vorticity thietuations and of fongiradin
velocity fluetuations inintermittent zone,

A definite property of the with oseitlograms is one-sidedness
of the turbulent This result shows that on the
average the bulges of turbulent fluiid are moving more
slowly than the nonturbulent fluid passing by the <ame
This is not =ur-

bursts.

lateral y-position in the boumdary layer.
prising, sinee such turbulent bulges must largely origimate
from further in toward the fuliv turbulent region which = a
region of lower mean veloeity in the boundary-layer case.

This one-sidedness is sharpened up a bit by the fact that
(as will be proved later) the irrotationally fluctuating fhaid
must be traveling at the same mean veloeity as the free
stream.
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The qualitative deseription of the turbulence propagation
phenomenon given in the “Introduction”™ requires that n
actually takes place through a (presumably thiny viscons
shear laver plastered all over the boundary,  In fact, this
“laminar superfayer” is the boundary between turbulen
and nonturbulent fluid.
reveals no elear similarity among all the beginnings and ends
of the turbulent bursts, but this is not a contradic*ion of the
Any such tendeney must be completely

Lispection of the oscillograms

physical picture.
masked by the randomness of veloeity gradients iand henee
the shearsy in the laminar superlaver.  Furthermore, the
boundary itself is an irregularly wrinkled surface in three
dimensions that the relative hot-wire
and boundary at the moments of immersion and withdrawal

<0 orientations of

are also random.
TURBULENCE LEVELS

Turbulence-level distributions for the  three  velocity
components w’ L. T and o T at the boundary-layer
station studied in detail tr 102 inehest are plotted in figure
1h. with the corresponding mean velocity profile included
for reference. Clearly the velocity fluetnations due to the
presence of e Boundary laver extend far outside the vegion

conventionally identitied as the boundary layer.
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Frovne 160 Turbulence-level  dirreibutions w0 0 102 dnches in

bonndary laver.

Variation of turbulence level in the s-direction. for cor-
responding loeations i the boundary laver, is indieated by
A7 versus ooat several fixed valoes of y 6 it 1700 Ninee

c. . . T, . .
the Prandt] friction velocity f =Y ix probably the basie

reference quantity with the dimensions of Length Time in
a solid-wall shear flow, one expects that, for corresponding
/oand wocl T In
{7, versus

positions i the boundary layer, o',
turbulent pipe How, Laufer tref. 155 finds that
vadins s independent of Revnolds number except in the
vieinity of the wall.  This suggests that, in the boundary
laver, » {7, versus -8 may be constant away from the wall,
Fignre 17 shows at least no clear-ent contradiction with
this hvpothesis, within the overall experimental uneertainty.

TURBULENT SHEAR STRESS

The turbulent  shear  stress  distribution pnriy), al
s 102 inches, is presented in dimensionless form i figure
18 and shows the same behuvior as in the smooth-wall cases

trefs. 4 amd 165, approaching zero appreciably faster than
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Frovre 170 Boundary-taver tarhubenes Tovel g o Gt of o o
correspcnding v-positions
the squared fluetuation intensities 0" -0 070 and

The shear correlation coeflicient 12 e 0’2" becomes guite
uncertain in the outer part of the boundary laver beeanse
the measurement then involves the taking of <mall differ-

ences between relatively large imeertain readings.
VORTICITY FLUCTUATION LEVEL

The measured disteibution of root-meni-square vortieny
Huctnation (&, the s-component only: across the boundar
laver at o 102 inches s given i figure 150 The instrument
wisx by chanee suflicienty symmetrical that, within the
purposes ol 1his investigation, no correction for parasitie
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Frovre I8
tions in boundary luyver at r

INTERMITTENCY

Boundary layer. 'The transversal distiibutions of inter-
mitteney YO at several r-siations in the boundary layer (v pi-
eal comparison with 77 in fig. 19 show good simiiarity
when y is normalized with o), the square root of the
second moment of dy:9y with v-origin chosen so that Oy oy

has zero first moment (fig. 200, As pointed out in the “in-
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troduction,” 0y Oy ix the probability density of Yih, the
instantaneous y-position of the front between turbulent and
nonturbulent thed, at u fixed ». Then

———— 2 . -, —_ [ )
alr) [l)' )')']I [' ({/*))'g;dw»—f))] (th)

where Oy Oy is written as a function of (y Vi Therefore,
airt is o suitable measure of the width of the intermittent
sone, that is. of the wrinkle amplitude of the turbulence
front.
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Foore 200 Intermitteney  distributions for ~everal r-siations in

bhoundary layver.

Another important statistical measure of the turbulenee
front is its average loeation,

Y J 7 y o 1y

()]/’ te)

Sinee 0y oy turned out to be svmmetrical and, i faet,
virtually Gaussian within the experimental precision (see
~eetion " Probability Density of Vi), the determination
of o and T Both
Yo are given in figure 21 and 8 is included for compari-
son. The logarithmie plot was used to estimate exponents
in power-law approximations for the three quantities,

The power-law fitting has been done with the best common
origin for the three sets of points in order to simplify the
comparison concept,

Round jet. Intermittency data for the ronnd jet cor-
respondding 1o the data for the boundary Inver are given in
fignres 22,23, and 24,

was considerably s<implified. alri and
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Siope = 0.88

G0 Amplitude of tarbulence frou.
thy Average position of turbulence front,

Frovre 240 —Amplitude and average position of turbulenee front in
round jet as functions of r 2r,.

Townsend's plane wake. For convenient comparison
Townsend's last published data (ref. 10) for the plane wake
have been put into a form corresponding to that of the other
data (figs. 25, 26, and 27).

Sinee, however, only the points for o d 800 and 930 are
in the fully developed wake, no attempt has been made to
determine separate power laws from his data.  Instead,

10

i t \15‘\
o] ! 2 3 4 5 6 7
yd-\IZ

Fisvae 25.—Typical intermittency distribution across a plane wake,
{Data from ref. 10.)
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Froves 270 Amplitnde and average position of tuebulenee front in

plme wake as functions of v «Datw from ref, 100
parabolas liave been drawn with his choice of apparent
origin simply to show that his results are not in contradiction
with the parabolic giry and Yir (predicted theoretieally
m a later section),

STATISTICAL ANALYSIS OF ON-OFF INTERMITTENCY SIGNAL

(Output of Schmitt Trigger)

As sketehed in figure 6, one stage in the eleetrieal signal
manipulation sequenee is a two-valued  (on-offt random
function.  These flat-top pulses have duration equal to the
time spent by the hot-wire in warbulent fluid and spacing
eqnal to the tune spent in nonturbulent fluid.

Two basie statistical characteristies of such a
on-off signal are (a1 its power spectrum and () the prob-
ability densities of its top lengths and 1ts bottom lengths.

random

Except in speeial eases. no one has vet deduced a relation
between  these  two  funetions  {see section “Probabilny
Density of Pulse Lengths™),

Sinee the jumps in this signal are generated by the random
occurrence of a particular amplitude of a more general sta-
tionary random variable, that is, Yy, its properties give
some information on the properties of Y. For example,
the probability densities of top and hottom lengths indicate
the statistical distribution of wave lengths of the turbulence
front, though less directly than the way in which 9v/0y gives
the statistical distribution of amplitudes. A detailed dis-




—”

12 REPORT 12414
cussion follows in the section “Statistienl Description of
Turbulence Front.”

The power speetrum of the on-off signal must be related
10 that of the total hot-wire signal, thongh not in any simple
fashion. s will be pointed out later, considering the total
signal as continuous turbulence modulated by this on-off
signal, it appears that carrier and modulation must be
statistically independent for the power spectrn to combine
simply,

Figure 28 is a series of power spectra F.(n) of the Schmitt
trigger output at various values of y for 5 102 inches,
Statistical svmmetry of (0 (indicated by the approximate
symmetry of 0y/0) requires that F.(n) for intermittency
v - 1 be equal to F.(n) for intermitteney v -1y, Figure
29 gives the probability densities of tops and of bottoms at
the sane hot-wire loeations.  These were obtained by direet
measurenent of oscillographic records,

The solid line in figure 28 is the theoretical power spectrum
for a random lat-top signal whose jumps have a Poisson
distribution in time (see section * Power Spectrum of Schmitt
Trigger Output.” espeeially eq. (8%,

Frovre 28 —-Power speetra of Schmitt trigger outputs for three differ-
ent intermittencies in honndary layer at r==102 inches.
F.lny v
Fo0) 7152497 10 2

THEORETICAL EXISTENCE OF TURBULENCE FRONT
Although the relatively sharp front between turbulent
and nonturbulent fluid has been well established experi-

mentally, this apparently ubiquitous phenomenon must still
be explained and explored analytieallv.  The oscillographic
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Freorre 29, —Probability densitiex of segment lengths of intermittent
signal for three different intermittencies in boundury laver at r— 102
inches,

records indicate that it is likely to be a boundary between
rotational and irrotational motion.  The theoretical dis-
cussion will therefore aim first at heuristic demonstration of
this coneept by showing in this context the known fact that
turbulent stretehine of the vortex lines in a loeal vorticity
gradient tends (o steepen the gradient (leading, of course, in
the limit to zero vorticity on one side),

Suecceeding sections will diseuss some of the ramifications
of this physieal pieture, in preparation for the more detailed
analvses which follow. The degree of agreement between the
predictions of these analyses and actual experimental vesults
will provide further indieation of the validity of the hypoth-
exis that the nonturbulent field is actually irrotational.

STEEPENING OF A VORTICITY GRADIENT WITH LOCAL PRODUCTION OF
VORTICITY

Sinee the distinetion to be made here between turbulent
and nonturbulent flow is on the basis of presence or absence,
respectively, of random vorticity fluctuations, the houndary
phenomena must obviously be studied in terms of vorticity
as a principal characteristic variable.

The vector fornt of the vorticity equation for three-
dimensional incompressible viscous flow is
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where i)t (OI+Q V) is the Stokes derivative (following u

fluid element), 2 is towal vorticity veetor, ¢ is total veloeity
veetor and v is kinematic viscosity,
[ntroducing o Reynolds tvpe restrietion:

Qe =2+ wlrb) z=0
QrH=QW+qrH  7=0
equation (8) vields the mean-vorticity equation:
(@DT+{V)a= @@+ @ V)g+ w2 o)

Subtracting equation (9) from equation (8) leaves the
equation for vorticity fluctuation:

SrH@ D2+ @ Da (g De—(ge=

Q- V)q—L(w V)Q+ (w- V)q (w- Y')q+vV' (o

The sealar product of w with equation (1) gives the
cquation for instantancous vorticity intensity:
1 Do? = —_— =
@ [(- 0T+ el g —w (@ T)gl +re (o) (i

In Cartesian tensor notation, but keeping vorticity as a
vector instead of an antisvinmetrie second-rank tensor,

1 Do*

o= ()S, Qu; 'y
e o=t (w05 )=EE, S be

ou; _ou; 2
Gy, —8 (85, ) PETE (W)

where a repeated index indicates summation and o' =&,
The averaged equation is

1 = 0w’ 1 0 b..,: T ou,
5 Coon, oo (we)+ 5‘"’0 ==hoant
—_ O , —
e o Cite, on THETE )

e - . . R o
It was Tavlor (ref. 171 who fiest identified £, ().l'l as the
2

rate of production of vorticity fluctuations by the random
stretehing of vortex lines, It is largely the absence of this
effect that makes fully two dimensional motion trivial in the
problem of fully developed turbulence,

To demonsteate the tendeney of a vorticity gradient (o
steepen in the presence of this vorticity production effoct,
consider the simplified form of equation (11a) for a low with
no mean veloeity or vorticity:

l ()a)2 OE(
2 ot + ')f —4 )

O () YT Y

It appears that no conelusion ean be r(-n(-hv(l without further
restriction.  Sinee the vortieity spectram varies like A2F(L),
the running second moment of the velocity speetrum,

vorticity-dominated phenomena must e assocated with the
fine structure of the turbulence, especially for high values of
turbulence Rexnolds number = 0'X v where ' 1= root-
mean-square veloeity fluctuation in the r-direction and N is
the Eulerian microseale.  For large enonghy values of 2,
there should exist a time long compared with that charae-
terizing the main body of vorticity fluctuations but short
compared with that ¢haracterizing the largest scale veloeity
fluctuations, which dominate the conveetive properties of
the turbulence.  For example, one can expeet

i

<1 (1)
E'N

where & is the root-mean-square r~component of vorticity

fluctuation and X, is the Lagrangian time microseale (ref. 1),

Introducing N, =¢'A, (ref. 18) and. with local isotopy, the

J

isotropice relation =45 )‘\, equation (14 becomes

0.45 (.£%)<<l (15

or, in terms of Ry, the large Ry approximation for XA, gives
(ref. 18;
2.4
<l (16)
{5\

For flows with equation {161 valid, equation (13 could he
averaged over a time long cnough to average vorticity
phenomena but short for convective velocity phenomena:

1008 1 du o— _
o o s,s,a e (am

where () = () for the fine-structure variables.
The veloeity derivative has characteristic time like that
of vortieity.

sinee the objective is to show the steepening of the o
gradient in the absence of », omit the last term and write

(18)
Therefore,
2Dt 149
‘-’Ut(a.u oJ(“)of (1)
T -, Ouy . .
Faxlor (ref. 173 has shown that £, J_,_>0 for isotropic

J
turbulence.  In fact, sinee this inequality just expresses the
general fendeney for fluid lim‘\' to lengthien in a turbulent

flow, it seems elear that &g, 'z)”;r >0 in any turbulence.  Fhen,
]

if 5'*'a ! is monotonic \\Hh @, it follows from cquation (19)
D (o0 . - :
that Di OT/ has the sane sign as 0w*/Oy. which means a

steepening of this o* geadient.
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The physical reason tor the steepening tendeney is, of
course, just the fact that the rate of production of new
vorticity by line stretehing is proportional to the vortieity
already present at any point in the fluid.  Hence the higher
vorticity regions experienee a greater rate of inerease of
vorticity than the lower vorticity regions, that is, the
gradients tend to steepen up, limited finally by viscous
diffusion and dissipation. Of course, the eradient of con-
cern here is that in the zone between fully turbulent fuid and
nonturbulent fluid. A steepening of this gradient means a
tendency toward a relatively sharp surface of demareation
between the two states. The above discussion does not
treat the question ot the equilibrium thickness e of the laminar
superlayer that results; this will be estimated later. Of
course, for the turbulence front to be sharp as observed
experimentally, it must be shown that e<a.

Although the analysis is valid only for extremely high
values of 2y, far higher, in fact, than those that occur in the
experinsents reported here, there appears to be no reason for
the situation to change qualitatively at lower values of R\
as long as nonlinear eftects in the Navier-Stokes equations
remain important, for example, f,°>10.

LAMINAR SUPERLAYER

Vorticity can be transmitted to an irrotational tlow only
through the tangential forees due to viscosity; it cannot be
transmitted to the irrotational flow by macroscopic Reyn-
olds tyvpe shear forces. 1t therefore follows that the
instantaneous border zone Iying between turbulent fluid and
irrotational fluid must be a region in which viscous {orees
play a central role, in spite of the presence of velocity
fluctuations which dominate the gross momentum transfer
of the turbulent field.  This border zone may be termed the
laminar superlaver and is exactly what is also referved to n
this report as the turbulence front, although the latter
designation implies emphasis on its overall hehavior rather
than its detailed structure.

This laminar superlayer differs in function from the well-
known laminar sublayer at the smooth solid boundary of a
channel. pipe, or boundary-layer flow. The sublayer is a
relatively fixed region in which mean flow momentum is
transported primarily by a net mean viscous (laminar)
shear foree. It transmits little mean vorticity (being a
zone of roughly constant Q(y)) and it remains “attached”
more or less to the same fluid particles. On the other
hand, the superlayer is a (convectively) randomly mov-
ing layer of fluid which probably transports relatively
small amounts of mean momentum and vorticity by viscous
shear forces; its distinguishing function is transport of
vorticity fluctuntions and mean vorticity, when present,
into what was previously an irrotational field, and in so
doing it continuously propagates (relatively to local fluid)
normal to its local “plane.”

Sketches (2) and (b) illustrate the concept of the super-
layer as & very narrow zone in which the vorticity fluctuation
level and the total shear (if any) drop from values charac-
teristic of fullv turbulent flow to practically zero.
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Fluctuoting potential flow

_Laminor superiayer

Turbulent flow

Sketeh .

Coordinate fixed in front
and perpendiculor to it

Turbulent
flow

Potential
flow

Lominar
superioyer

*keteh (b,

While the instantaneous loeal viscous shear foree in a
Jaminar sublayer is predominantly in the direction of the
mean shear foree, that in the superlayer must have a mueh
higher fluctuation level. often reversing its direction, for
example.  In fact, in a flow field with constant mean velocity
evervwhere, the superlayer viscous shear foree would have
no mean value at all,

The discussion headed “Steepening of a Vorticity Gradient
With Local Production of Vorticity™ s a justification
(not a proof) of the experimental fact that the continuons
fluid-line stretehing due to the veloeity fluctuations tends
to steepen up the laminar superlayer.  This steepening
effect 1s reinforced by the propagation and must. of course,
be balaneed ont at some state by the diffusive action of
viseosity, so that the superlayer muost have some average
thickness.  From the oscillograms, it appears that this
quantity, e say, is very small.

Some heuristic comments ean be made about this thickness.
First of all, sinee the layer is primarily a vorticity-propagating
device, its thickness should be less than a length character-
izing vorticity  fluctuations on the turbulent side of the
boundary, for example, the dissipation seale N (Taylor’s
microscale). In fact, as a characteristic viscous shear
fength, it might be expected to be the same order ax

CANE VR )
Kolmogorofl’s minimum length (%) » where @ is the rate
of dissipation of turbulent energy per unit mass of fhuid,

A sccond intuitive specifieation is that, as « olently
disturbed free laminar shear layer, its characteristic Reynolds
number should be on the order of the lower eritical Revnolds
number for free laminar shear layers. A possible choice of
characteristic instantaneous Reynolds number would be
that based on thickness and instantaneous tangential
velocity  difference A across the superlayer. When the
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. . LA . .
instantancous viscous shear foree, A_S_»’:'-pf])(‘l‘ unit area in
the plane of the front, has a nonzero average (1. e., a pre-
ferred direction), a plausible average Revnokds number
might be

LY}

Ro=" (20)
where A is the magnitude of A, Of course, A and e are
doubtless negatively correlated, but inclusion of such a
refinement would be inconsistent with the crude nature
of the discussion.

For turbulence fronts in which theee is little or no mean
velocity difference across the superlayer, the above definition
is inapplicable and might be replaced by

a’e

v

21‘)( =

21

again ooitting the implications of Ae correlation.

Sinee, however, there still exists no analysis relating A
to the properties of the turbulence, a third definition, re-
placing , .R. and including such propertics, is preferable:

(22)

In fact, this definition is not too different from the other two:
A/e must be of the same order as the neighboring turbulent
vorticity fluctuations.

Given an order of magnitude of the lower critical Reynolds
number for free laminar shear flow plus a measurement or

estimate of o’ = w/E-’ +7 + ¢ in the turbulenece near the front,
an estimate can be made for e.

The only information available for estimating the desired
Reynolds number is the partial analysis of Lessen (ref. 19),
a small-perturbation analysis. Extrapolation ot his neutral
stability curve (a highly inaccurate process) suggests an
estimate

1< R, <10

The measured turbulent value of £ for a typical case
(fig. 18) is about 400 per second, which gives =700 per
second, if there is approximately local isotropy. With
v —0.15 square centimeter per secotud the estimate of super-
layer thickness turns out to be

0.015<€<0.05 centimeters

This appears to be a reasonable order of magnitude since

A=0.2 centimeter in this part of the flow.  The Kolmogoroll
3174
length (%) i= roughiy 0.03 centimeter.

In concluding this section it should be mentioned that,
although no systematic measurements of A have been made,
rough estimates from oscillograms in the intermittent zone
of the boundary layer indicated the order of 0.05 to 0.10
times .. This average velocity defeet indicates the
obvious fact that turbulent boundary bulges originate in a
region of lower mean velocity and also represents the presence
of vorticity and of locally laminar shear.

357386—56——3

A simple mathematical model of the luminar superlayer
will be taken up as a separate section in the discussion of
propagation velocity of the turbulenee tront.

The following important inference ean be made on the basis
of the highly localized character of the laminar superlayer:
Since no appreciable viscous effects extend bevond this thin
layer, and since only viscous effects can transmit vorteity,
it follows that the mean velocity everywhere i the potential
part of the flow moust be constant aned cqual to that at *“infinity.”
This is a consequence of the fact that the mean vortieity is
Q=20 /dy.

This conclusion will be analytically emphasized i the
following section. It is in contrast with an assumption of
Townsend (ref. 10) that the nonturbulent fluid Iving between
bulges in the turbulenee front “is constrained by pressure
gradients to move at the same mean veloeity™ as the fluid
in the adjacent turbulent bulges.

IRROTATIONALITY AND REYNOLDS SHEAR

In view of the evidenee that the fluctuations outside a
turbulence front are irrotational, it is pertinent to take a
look at the customary turbulent-flow equations (actually
valid for any stationary fluctuations: for the particular case
of irrotationul Huctuations.  ‘The hope is that some drastic
simplification will appear.

In Cartesian tensor notation, the Reynelds equation for
steady nrean motion is

1 o0

= ol ; R
_pb.l'i+VV[ oy, (uu,)

. — 9
ko (23

The last term is the turbulent apparent force veetor or
Reynolds vector.

For irrotational fluctuations,

ou; ou,
N (24

a."; O.l',- =)
therefore,

1o(w,w,) _1 O(}-

or, W=5 " 50 "= o,

which shows that the Reynolds foree reduces to a normal

force only, sinee 1t is expressible as the gradient of a sealar.
The Reyvnolds equation can then be written

=ol’; 10

'

P o —p or, (F_*_f:l—:)_{_yvll——,

and this form emphasizes the fact that. regardless of the mean
velocity field, irrotational fluctuations give no net apparcnt
shear forces on a fluid element?

This does not necessarily mean, however. that the Reynolds
shear force on a plane is zero or that the Reynolds stress
tensor —puu; has only leading diagonal terms.  Also there
may still be a continuous *‘production” of fluctuating kinetic
energy, that is, a transfer from the mean motion kinetie

energy (u,uk DOLI‘ #0)-
k

3 This fact was pointed out by Dr. F. H. Clauser.
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Comparison of equations (23) and (25) for the case of
motion two-dimensional in the mean (three-dimensional
irrotational fluctuations) vields the relations for the Reynolds
shear foree components

l.——jlv .a_ 7 W2yl 26
dy 2 8r (*+ u?) (26)
Qur_10 = — 5 27
-a‘r —2«6—‘—'/(11 +ll L) ("‘)

which may also be regarded as a pair of differential equations
relating the four nonzero components of the Reynolds stress
tensor.

Two provocative forms follow trom alternative combina-
tions of equations (26) and (27):

our ur_ 9 o~ 5 >
orr o "o ag/(u —) (28)
and
OWT | QT _ O'uP (20)
st 1 O Or Oy -

Equation (28) gives the interesting conclusion that if ¥? -2
is constant in either r or y the turbulent shear stress satisfies
a homogeneous plane-wave cquation with characteristies at
+45° in the ry-plane.

For the particular flows studied in this report, the experi-
mental results show that ¥t approaches zero faster than ¢’
as y (or r) is increased.  This scems to indieate that 77 -0
in the potential field. However, insufficient coverage and
accuracy of the data preclude the possibility of checking
this through equation (28). Since T ~1f =2 <0 for y -
such a cheek would require that %? =7 throughout the po-
tential field.

Parenthetically, viscous fluids with zero net shear force on
a fluid element but with nonzero shear stress are far from
unknown mathematically: Any irrotational laminar flow of
a viscous fluid is such a case (aside from the trivial case of
I__J =Constant). The requirement on a stress tensor oy
that it produce only normal forees is that

ba@;zb(? (30)
Ty OI(
where @ is a scalar.

The principal significance of equation (25) in the general
problem under investigation is as follows: Assuming that
the fluctuations on the free-stream side of the turbulence
front are actually irrotational, as both measurements and
heuristic reasoning indicate, the mean velocity there must
be equal to that for y = . This verifies the physical infer-
ence drawn in the previous section from the concept of the
localized laminar superlayer.

It appears paradoxical that the mean flow kinetic energy
should be unchanged in a zone where there has appeared an
appreciable kinetic energy in velocity fluctuations. How-
ever, the latter can come from the turbulent part of the field
through nonviscous effects, leaving mean flow kinetic energy
in the potential zone unchanged. This would be consistent
with the inference that #v=0.

Probably the highest intensity random irrotational fue-
tuntions easily available i the laboratory are those in the
“‘potential cone” of a round turbulent jet.  These apparently
get as high as //T =5 percent (ref. 2).

Equation (28) also can be deduced for the speeial case of
a constant mean veloceity field with arbitrary fluctuations,
provided only that the mean values are plane, that s
o}

O}( ) -0

THEORETICAL BEHAVIOR OF TURBULENCE FRONT

As mentioned in the “Introduction,” two of the fluid
mechanieally  pertinent  characteristies  of  the  relatively
sharp boundary between turbulent and nonturbulent fluid
are (a) its mean rate of increase of wrinkle amplitude i the
downstream direction and (b) its mean veloeity of propaga-
tion transversely into the irrotational fluid. The following
sections represent  erude  theoretical attempts 1o prediet
these two charaeteristies in terms of the statistical properties
of the fully turbulent fluid on one side of the boundary.

WRINKLING RATE

In turbulent flows with £2y greater than about 10, there s
no reason to expeet any particular chunk of fluid to return
to the nonturbulent state onee it has beeome turbulent.
Therefore, the presence of turbulence in a small piece of
fluid can be regarded as an indelible tagging, somewhat like
heat or a chemical contaminant.  Were it not for the con-
tinuous propagation of the turbulence front into new fluid.
this front would always consist of the same fluid particles
and would obviously be suseeptible to a [agrangian study
in terms of Taylor's theory of diffusion by continuous move-
ments (ref. 20, as has been applied to the wrinkling rate
(identical to turbulent diffusion rate) of a very thin sheet
of thermally tagged fluid in a turbulent flow (refs. 1 and 18).

In fact, a uniform translational velocity 7 of the tagging
attribute relative to the fluid does not render Taylor's con-
cepts invalid; it does, however, require a generalization of
the analysis to a mixed Eulerian and lagrangian treatment,
though somewhat different from the relative dispersion ease
set up by Brier (ref. 21) and by Batchelor (ref. 22).
Clearly in the limit of TEs (e. ., wrinkling of a Mach
wave propagating through low-speed turbulence) it reduces
to a simple Eulerian diffusion problem. while in the limit of
T*<¢’ the purely Lagrangian analysis of Taylor applies.

For the present problem it appears that neither of these
limiting conditions holds, although the latter is closer.
Consider the rough-wall boundary layer at r - 102 inches
as an example:

V2 U ds o
7‘~?><3;(} §*)=0.1

where /T is taken in the fully turbulent zone adjacent to
the intermittent zone. This formula is deduced in the
section “‘Applications to Particular Turbulent Flows.”
Sinee the basic problem (diffusion of a front propagating
through a homogencous turbulence) has yet to be analyzed,
the present phenomenon will be estimated as though
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1*<’.  Subsequent approximations are consistently rough.

Another peculiar property of the present problem is that
the surface whose turbulent diffusion is of interest has
turbulent flow on only one side; the thermally tagged sur-
fuce used in conventional diffusion studies has the same
kind of turbulence on both sides. However, the theory of
diffusion by continuous movements is simply a kinematic
analysis based on the presumably given velocity statistics
of the fluid particles in the surface. [If these are correctly
given, no further information or restriction is necessary.
Therefore, since the purpose of this section is to prediet the

form of a(.r):V/(Y—T’-)2 in terms of the properties of the
fully turbulent zone, the only additional assumption neces-
sary is that the velocity fluctuations of the fluid particles in
the frout are proportional to those in the fully turbulent fluid
near the front.

The analyvsis of one-dimensional diffusion by continuous
movements for a homogeneous field with no mean motion
leads to

’!g;-z‘l(n')zj ‘ R (n)dr (31
l[t 0

where ¢ is the standard deviation of the distance traveled due
to turbulent convection and 1 is the Lagrangian correlation
coefficient.  For times long compared with that for which
R, =0, the familiar asymptotic form results:

e®)=0"y2Lt (32)
where L‘EJ Rt is the Lagrangian (time) =scale.
Q

If a relatively high uniform nrean velocity in the s-direction
is introduced (l?>>r’), equations (31) and (32) can be inter-
preted approximately in spatial terms since Ut=r for any
particle (refs. 1, 18, and 23). Then

’

o (0) = ;: A2 (33)

where A,=U1L, is an approximate longitudinal Lagrangian
length scale.

It bas been pointed out in previous publications (refs. 18
and 24) that the most concise representation in such a flow
follows from introduction of a transversal Lagrangian length
seale Lpy=v"L,. Then

a(r) =~ \/ 2 (;_:) L,r (34)

which gives the dispersion (identical to surface wrinkle
anplitude) at large distances from a fixed source of tagging,
when o(t) following a fluid particle is a stationary random
variable and U is constant,

For the hypothetical case of the turbulence front bounding
a turbulent motion homogeneous in the stream direction, this
asymptotic form would pertain; the “source” lies indefinitely
far upstream. However, in virtually all turbulent flows of
interest, the statistical properties of the motion vary with »,
Consequently, application of equation (34) to these cases
implies the further restriction that these r-variations be slow,
that is, that there be little change in an s-interval comparable
with A..

A particular example of the degree of validity of this
restriction can be drawn from the case of decaying isotropie
turbulence, where Lagrangian scales have actually been
measured (ref. 18). At 43 mesh lengths behind a 1-inch-
square mesh grid of Y-inch dowel, with T"=23.8 feet per
second, 1t is found that v'/l_'::Z.() pereent, Ap =17 inches, and
de’ldr corresponds to a change of about % in T over an

1 dL,
"Ly odr

r-interval equal to A, However A, is only on the

order of 0.03.

In most shear flows, the .U changes will be slower than
for this decaying isotropic turbulence while the L, changes
may be slightly faster.  In general, it can be anticipated that
in the application of equation (34) to boundary laver, jet,
and wake the requirement of slow r-variations in turbulence
properties will be satisfied at least as well as the previously
mentioned restrictions for this Lagrangian treatment. These
applications and comparison of computed values of o) with
experimental results will be presented further along, under
the appropriate section headings.

PROPAGATION VELOCITY BY DIMENSIONAL REASONING
The average velocity of propagation of the laminar super-

layer (or turbulence front) relative to the loeal fluid T7* must
be monotonic with the average magnitude of the instan-

tancous (laminar) shear stress in the suporlnyur(pmpm'tinnul

A .. R
o 7)) However, the ratio is not a directly measurable

quantity and must be replaced by something more tractable.
As has been mentioned in the seetion **Laminar Superlayver,”
when there is no mean shear stress Afe must be of the same
order as the vorticity fluctuations in the turbulent fluid near
the front. Thercfore 7% should be monotonic in «’.  Sinee
this is a viscous phenomenon, it must also depend upon v.

In fact, the inference that VF=1"*(», &) can be made on a
much more direet and superficial level.  Since the laminar
superlayer is a device for the viscous propagation of vorticity
fluctuations into an irrotational fluid (in the case of zero
mean shear), the propagation velocity must depend at least
on « and on ». Furthermore, these alone are sufficient to
produce a parameter with the dimensions of velocity.

The only combination giving the appropriate dimensions
gives, by inspection,

TR 4 v’ (35)

for zero mean shear stress.* Of course, V* is directed per-
pendicular to the local tangent plane of the turbulence front.
The effects of nonplanarity of the whole front will be noted
later in this section,

Equation (35) would be expected to apply, for example,
in the case of the boundary between a homogeneous tur-
bulence and a nonturbulent fluid, with T constant over the
entire flow field.

At the free boundary of a turbulent shear flow it is to be
expected that the shear foree vector of the laminar super-

laver will have a mean value which will also promote 1%

41t should also be noted that the assumption that R.(where R. =45’ /»} has a “universal”
average value corresponding to a lower critical Reynolds number coincides with the plausible
dimensional hypothesis that s vi/jw’.
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If the whole front were nearly flat, this mean value would
be a function of y in the superlayer and also proportional 1o
the mean shear in the turbulent fluid just inside the tur-
bulence front,® varying from equality on the turbulent edge
to zero on the free-stream side. Sketeh (b) includes this
concept in a coordinate system attached to the laminar
superlayer.

In this more general case, the physical picture suggests
that T°* depends upon the average magnitude of the total
shear in the superlayer: T*=T7*(8%), where §(l)=~—3+§.(f) is
the shear foree veetor on a unit area on the turbulent edge
of the superlayer. With Cartesian coordinate system ry, y,
and =, fixed in and alined with the turbulence front (y, per-
pendicular to front), the fluctuation « has only - and
si-components.  Then, with gross mean shear directed along

Dimensional reasoning gives

e IS

TPy /™ (36)

If the random slope of the turbulence front in the r-, y-,
and z-coordinates is small on the average, the -, -, and
si-system ean be replaced by », y, and z, and :S_,_l is propor-
tional to the mean shear stress in the turbulence. Further-

more, with local isotropy in the turbulence, s, *=~x. % Asin

the simpler case, these are proportional to (w)®. Then
equation (36) can be written
— S,2+B#2(w')2 I o=
o [ -

where B is a numerical constant, probably of order unity.
This reduces to equation (35) for a shear-free turbulence.
For each particular type of turbulent shear flow, S; can be
taken proportional to some characteristic mean shear stress.
No application of equation (36) or (37) is made later in
this report.

Handling of the propagation problem in terms of a plane
torbulence front implies that € is much smaller than the
radit of curvature of the front. The degree of validity of
this assumption is not ecasy to cheek divecetly from the sta-
tisties of the turbulent fluid; it requires fairly detailed infor-
mation on }Y(r#). However, the measurements on statisti-
cal distribution of pulse lengths coming out of the trigger
eircuit (fig. 29), transformed by ', from time to length,
give indireet indication that the assumption is well satisfied.

Conversely, since T* is normal propagation velocity of
the front (especially in the case with zero mean shear),
propagation with constant V* over the whole front would
tend to introduce a skewness into the probability density of
Y, asin sketeh (¢). This is the effect mentioned by Karlovitz
(ref. 26) in accounting for the skew nature of the flame front
as observed in a turbulent bunsen flame.

The highly symmetrical shape of 9v/dy (indicated by

linearity in fig. 32) shows that this effect, if present, is
negligible in the phenomenon considered here.

$ In fact, ¥, H. Clauser proposes a propagation velocity, for the turbulent houndary layer,
depending only on the mean shear stress In the turbulence: Voo r./pa {ref. 25).
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Potential

Sketeh (e,

This negligibility is an indication that the radii of curva-
ture of the front are Inrge compared with the wave lengihs.
This means that V* is direeted very nearly perpendicular to
the Y(r) surface.  For two-dimensional flows in which the
boundary-layer approximation applies, this in turn is nearly
parallel to the rz-plane, thatis, ¥ de<t. Therefore, within
a corresponding approximation, the surface area of the
turbulence front on a two-dimensional flow is equal to its
projection on the rz-plane, and the average rate of conguest
of new fluid by the turbulent state is ¥, in units of volume
per unit time per unit arca of contact. A similar concept
holds for the axially symmetric flows.

Itis obvious that a turbulent shear flow can hav e similarity
only if both () and Y(r) are proportional to the boundary-
layer thickness 8(r) (which, of course, must be proportional
to any other characteristic thickness defined in terms of the
mean  velocity prefle).  Stated in different but  related
terms, the average rate of flow of turbulent fluid passing
through any constant s-plane must be proportional to the
rate of flow of boundary-layer fluid passing through the plane.

MODEL OF LAMINAR SUPERLAYER

Dimensional reasoning as employed in the preceding sec-
tion, and in earlier ones, gives at best the functional forms
of the laminar-superlayer characteristics in terms of the
statistical properties of the turbulence with which it is
associated. Fully quantitative results follow only through
deductive analysis, that is, actual solution of an appropriate
boundaryv-value problem. Since the actual problem appears
to be too complex for full solution at present, a simple
physicomathematical model will be used with the expectation
that the results, after interpretation in terms of pertinent
variables in the actual problem. will give a proper order-of-
magnitude relation among these variables.

The model proposed is a generalization of the Stokes and
Rayvleigh problem of the infinite wall moving in its own
plane (ref. 27). The first extension is the addition of a
constant suction velocity T(<0) with, of course. wall
The velocity T corresponds to propagation ve-
The differential equations

porosity.
locity of the turbulence front.
are thus

o, ol U e
o t? 21" oy (38a)
ol =0l iV .

Since the " and 1 equations are independent they can be
treated separately. In the absence of mean shear they are
identical, and only one need be considered.
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Since equations (38) are linear, the vorticity components
Z=00"/oy and Z=0W/0y obey the same equations as the
veloeities:

0Z , =07 o4

= 3¢
()f+‘ oy v oyt (39a)

0z 0=

2)7+ oy =y oy (:39b)

These equations are to be solved with boundary conditions

Z(t,»)=Z (t,)=0 (40a)
Z{t, 0)=7Z,+¢, sin af (40b)

J
Z (. 0)=§, sin Bt (40¢

Sinee = has only a fluctuating part, and since linearity
permits separation of the steady and fluctuating parts of 7,
the problem becomes

= dZ A7

' :iig;:u dy? 1)

with Z( ) =0 and 7(0):70. and

7o, 0% >
+ o~ oy ()

with ¢(f,©)=0 and {(#,0)={, sin at. There is an identical
boundary-value problem for £(¢.).

To get closer equivalence to the fully three dimensional
problem a purely mathematical extension can be made, cor-
responding roughly to the physical phenomenon of contin-
uous vorticity fluctuation production (by fluid-line streteh-
ing) at a rate proportional to that already present. This
is most simply done by adding a linear term to the £ equa-
tion, giving

% 'g;:u g!;+1cg (43)
where A is like a constant average vortex-line stretehing
rate.

No corresponding term is added to equation (41} because
the plane form of the mean-vorticity equation for turbulent
flow (eq. (9)) shows no term identifiable as production of
mean  vorticity due to random turbulent stretebing of
vortex lines.

The solution of equation (41) is

~ - (T
=/, exp (—; g/)

The solution of equation (43) is

oG-I
(-5 ool w[ 10

T\2 172
(2‘) +K} ,,] (F<0; o K3>0) (45)

(T<o) (44)

with a similar expression for & Here the negative root has
been chosen o that equation (451 reduces to Stokes" solu-
tion for V=K=0.

From equations (44) and (45) it is destrable to extract an
expression for the thickness of the disturbed layer. A con-
venient measure of thickness is simply the inverse of the
cocflicient of —y in the exponentials of both solutions.

(=—ns (46
i

€,== — .
) 1 l' A
"V {\ _) , —] )V) - "}

Application of equations (46) and (47) 1o the laminar-
superfayer problem requires identification of V. . and K
with measurable variables in the turbulent fluid near the
superlayer:

(1) —V=T*, the propagation veloeity.

(2) a=¢’, the root-mean-square value of any one of the
three orthogonal turbulent  vorticity  fluetuation compo-
nents.  In other words, root-mean-square vorticity may be
regarded as a characteristic frequeney of turbulence.  For
large values of R\, & = 7" =¢" by local izotropy.

(:3) 1\~\ (au) ~Y (g:/) \/( gz‘):f()l' large 12y, Henee,

with local isotropy, A=¢ 5 ix a measure of the rate of
fluid-line stretehing.
Substituted into equations (46) and (47)

(47)

. these give

€~ (48)
e
N 1
e"N‘— 2 % 2 £y = ¢ 1
2y +ﬂ{\[ 2y, —V\5J+(v)+ .)v)—_v\:')}
(49)

A simpler, more approximate form for e 15 attained alter
inspection of the experimental orders of magnitude of T#
and §. For example, at the imner side of the intermittent
zone, in the rough-wall boundary layver at »=102 inches,
T = 1.3 inches per second and & =400 per second. Therefore,
it turns out that equation (49) can be simplified by liberal
cmployment of chopped-off binominal expansions.  The
roughest (and simplest) resulting estimate is

€= ,\,‘J’ EV’ (-)“)

Sinee the laminar superlayer can be assumed to exist even
in the absence of a mean vorticity field, it is reasonable to
assume that the fluctuating part of the superlayer model s
the more pertinent one. Then one may take e to be ¢, giving

the theoretical prediction
e /g (502\)

as an order of magnitude. This is consistent with the eatlier
conjeeture on the constaney and order of a possible Reyvnolds
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number B, =¢wlv. 1t does not appear to be susceptible to
direct experimental verification, but, as mentioned earlier, is
of the same order as the Kolmogoroff (minimum) length

_ AL
e X = —)
(5

which follows from equation (50a) and the relation between
X and \.

No estimate of T* follows from equation (50) and, insofar
as a strictly Huctuating laminar superlayer is concerned, the
dimensionally induced equation (33) remains as sole predie-
tion of propagation velocity.

However, equation (48) for the mean thickness gives

(51)

T*= - (52

If there is a single layer, T* should be the same for both flue-
tuating and average vorticity. If ¢ happened to be of the
same order as e, equations (51) and (52) would give T#~
0(y#¢’). but there seems to be insufficient a priori basis to
make this guess a formal part of the analvsis.
INFERENCE OF TURBULENCE PROPERTIES FROM INTERMITTENT SIGNAL
Townsend (refs. 10 and 28) has suggested that it may be
possible to compute the statistical properties of the turbu-
lence inside the convex bulges of the turbulence front from a
knowledge of the corresponding statistical properties of the

full intermittent signal plus the intermitteney factor y.  His
hypothesis is that, in effeet,
—
Ay = 53
T v (‘ >3)

where a(f) is 2 random property of the flow and ¢ is the same
property but confined to the turbulent parts of the total sig-
Wit u

nal.  For example, Townsend refers to as “the

mean turbulent intensity within the jets™ (identical 1o
bulges).

Actually, the applicability of equation (53) is contingent
upon very definite restrictions.  For discussion purposes,
suppose that a(f) is the complete signal and b(f) is the inter-
mittent (0 or 1) signal.  Obviously, b=5=y, the intermit-
teney factor. Also a,(f) is a hypothetical signal whose phys-
ieal nature is the same az a(f) but applies to turbulent fluid
only. If az is chosen to have a mean value of zero, then it i«
necessary to introduce a constant quantity .1 which is the
distance between the zero line of az(f) and the signal Tevel
corresponding to b(1) at zero.

Sketeh (d) illustrates the definitions.  Implicit in this for-
mulation and sketeh is the restriction that @ (or @z) is a physi-
cal property which is zero in the potential flow region.

A

Zero line of gy ———
Zero line of whole

signol @ ‘r \ r

—

.

Sketeh (d),
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With this representation, the total signal expressed
terms of the other quantities is

alty = b(t)[(lr1l>+.l]—-m'—.\') 154
since =0 by defimtion and buay + V= bay - 1y, Whenee,

the mean-square value can be written as

= bart+ 240 — (hap =2 Avbar - v 1 — 41 15 (35

The objective is to express az? as a function of @2 and other
neeessary parameters.  Obviously this is impossible without
introducing some further restrictions, especiallv on the
statistical between  ap(f) and  biti. Therefore,
assume

relation

(1) bar=0 (whence ba, =0, since b b
()

(hy Fa=b0>a=va,

A sufficient but not necessary condition for these two s
that b(#) and a,(f) be statistically independent.

With restrictions (36), equation (351 reduces to

l_l—'“"—"yu_r"’* y(l—7y.1° =N
and the turbulence property azz can be computed from the
corresponding total-signal property plus measurements of
v and A,

For some physical variables «th it will turn out that
A =0 and then equation (37) reduces 1o equation (53).

For the quantity az2 to have any simple interpretation it
must of course be assumed that the physical variable it
represents is 2 homogeneous random variable i the turbulent
fluid.

Summarizing the conditions necessary for equation (53
to lead to meaningful results, the following restrictions are
necessary:

(1) The physical variable must be zero in the potential
flow.

(23 The physical variable must be homogencous in the
turbulent flow.

(3) The physieal variable (and its squarer in the turbulent
flow must be uncorrelated with the loeation of the front.

(4) There must be no mean value in the variable hetween
turbulent and potential flows for the same value of .

The first condition immediately eliminates veloeity flue-
tuations from this sort of treatment.  This renders uncertain
Townsend's turbulent cnergy application. mentioned above,
However, vorticity fluctuation and turbulent shear certammly
satisfy it, as may temperature or coneentration fluctnations
and heat or mass transfer, when these are present,

The second requirement is probably not satisfied by any
variables in flows with transport, including, of course, the
commonest example, shear flow.  This follows from the
fact that, even in spatial zones with 4 - 1 evervwhere. there
are gradients in all of the quantities which have been meas-
ured.  Consequently, the entire concept of @72 as a function
of position in a shear flow must be semiquantitative at best.

1t seems unlikely that the third requirement is satisfied by
all of the physical variables, but for most of them it may be
close enough that equation (57) would be approximately
true.
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Finally, the oceurrence of 2 mean value between potential
and torbulent fluid must also depend upon the particular
physical varigble under consideration. It certainly  does
oceur for longitudinal velocity at the boundary of a turbulent
shear low. [t certainly does not occur for z-component
velocity in a shear How which is two-dintensional in the
mean with greadients all in the r- and y-directions.  For
many physical variables its occeurrence or absence is not a
priori obvious. In any case it can be handled by resorting
to equation (57},

For complex eases, when even equation (37) is believed to
be inndequate, possibly because the variable is not zero in
the potential zone, it is still possible to obtain statistical
wformation on the signal structure within the turbulent
bursts by laborious computational procedure for the oscillo-
graphic trace,

A more detailed question may be raised at this point as to
the influence of intermitteney upon the measured power
speetrum  of velocity  fluctuation.  Again  the answer is
certain to be simple if the four conditions listed above are
satisfied,  In that case, with probe signal a(t) =ar(Hb(f), the
autocorrelation functions of the three varinbles are related by

Vol ) =, (T)n(r) (H8)
where 7 is time interval.  The power speetra are simply the
Fourier cosine transforms of the correlations and, since the
transform of a produet is equal to the convolution integral
of the individual transforms, the three power spectra are
related by

Fiin— J F i) Fon— ), (59
i

where F,in) ean be measured directly from the output of the
hot-wire anemometer; F,(ny=F.n), the speetrum of the
Schmitt  trigger output in the intermittencey-measuring
circuit (see fig. 28)1 and Fo.(n) is the spectrum of a hypo-
thetieal homogeneous turbulence variable which should give
the nature of the fluctuations within the bulges of the
wrinkled front.

Equation (59) is a Fredholm integral equation of the first
kind. readily solved in prineiple by Fourier integral methods- -
which corresponds in effect to going back to equation (38),

No attempt has been made to apply this relation beeause
the experimental results appear too uncertain to merit such
detailed manipulation, It is hoped, however, that such a
<tndy can be made in later shear-flow researeh.

APPLICATIONS TO PARTICULAR TURBULENT FLOWS

Applieation of the foregoing general concepts and theoreti-
cal predictions on the behavior of the turbulence front to
particular turbulent flows involves two explicit aspeets:

(n) Comparison of directly measured o(s) and Y (r) with
measured values of characteristic shear-layer thicknesses, for
exatmple, 0(r)(océ* océ) in the boundary layer.

(by Comporison of o(r) and Y(r), as computed from
measured turbulence data, with direetly measured values of
a(r) and Y(r).

The first step i= the striedy experimental process of ex-
amining a new aspect of the degree of similarity o be found
in the detalled =tructures of the various
flows.

The second has as its purpose the approximate veritication
of the rather crude hypotheses leading to prediction of the
turbulence front behavior, that 15, to equations sueh s G340
and (35).

turbulent shea

ROUGH-WALL BOUNDARY LAYER

Fitting the experimental results on boundarv-laver thick-
ness by a simple power-law relation (see appendixy, it turns
out that, neglecting Revnolds number effects,

dacd*echoc(s — o, P Y T
numerically,
S=0. 19— )" " in.
F=0.13r—r," " in. (60

8=0.026(r- +.)" " in.

The fitting of a power law to a set of points without origin
involves two steps: (1) An origin must be chiosen by trial and
error to give the closest approximation to linearity on
logarithmie graph paper, and (27 the “best’” straight line
must be drawn through the resulting plot. This proceduare
was also applied to the fitting of power-law approximations
to the experimental data on olr and Ve, Fignre 21
illustrates the degree to which a power-law fitting is suceess-

ful.  The latter quantities arve then given by this “direct”
mensurenent as
e =0.022(r—ux,)" 00N, (61
T =004 — 0, "5 i, (152)

The “best” common origin is r, - —20 inches.

Comparison of equations (611 and (620 with equation (61
shows that, within the preeision of these experimental resulis,
the turbulence front both progresses Interally and inereases
in amplitude at the same rate as the mean boundary-layver
flow grows.  The uncertainty range indicated is a
estimate of standard deviation. not the maxiomm,

Verfication of equation (34 requires knowledge of both
T and L, (the transversal Lagrangian seale) as funetions
On the basis of the ¢/ T measurements at corresponding

crude

of .
positions across the boundary layver at four different -
stations (fig. 17), it is assumed for the sake of this caleulation
that #’ocl’,, as dimensional reasoning and  Lanfer's pipe
measurements (rel. 15 also indicate. The {7 is obtained
from the measurements of 8 : {7 ccr™ ™
values of .

Unfortunately, there exist no measurenients of Lagrangian
scale in turbulent shear flows.  However, the ratio of La-
grangian to Fulerian scale L./ has been measured as a
function of " Liv for isotropic turbulence (ref. 18).  These
highly seattered measurements show L L to be a slowly
decreasing function of ' Liv. In order to estimate [ ()
for substitution into equation (34) it is assumed that this
varisgtion holds roughly for shear flow. Further, there is

for very large
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good evidence that for a given shear flow the Eulerian seale
is proportional to the characteristic width of the shear zone;
that is, in this ease, Locsd and the constant of proportion-
ality is taken from the smooth-wall boundary layver of
Schubaver and Klebanoff (ref. 4) at a station where J2dr 0.
Their data give L=0.178.

With this estimate of L8, «'L:v in the present boundary
layer goes from about 300 to 300 in the principal test area:
20 inches<Z r<7 110 inches.  But over this range of 'L v,
tigure 34 of reference 1R indieates (by extrapolatiom) litde
change in [, L. Therefore, for purposes of the present

rough  estimate, it is  assumed that L ol s With
docs” ™ feq. (600 and Mo T ™™, the  resulting

theoretical prediction (eq. (34)) is

olrroc (r—ur )7 (6:3)

which agrees with the direetly measured exponent (eq. (611)
perhaps better than the aceuracy of either measurement or
theoretical approximation.,

Veritication of equation (35 requires information only on
gir at corresponding y-positions in the boundary layer,

Sinee this information is not vet directly available. one
R4

. . . t . . W -
assumes the isotropie relation £ =4 5 N where () has been
measured and Ay can be inferred by using the well-known

. . . DY TrAY? . -
sotropic estimate” 5= and assuming L =0.17§ as
I J4 154

4
'L
hefore.  Using the experimental value of 8t (eq. (60a)),
thiz caleulation gives

Pl

T o e, ), 4

For comparison with experiment this is next translated
into Yo, Sinee 1 is propagation veloeity relative to the

Huid. one can write the approximate relation
(65)

which should hold for any reasonably flat turbulence front.
The term T is the mean fluid veloeity in the y-direction,
Equation (65) is approximate because () in some flows the
front is not very flat and (b) at y T the mean veloeity of
the turbulent fluid is somewhat less than that of the non-
turbulent fluid (i, e.. T, ).

For the boundary layver, it is well known that

ds* _V(5)
ir - I—

3

(66)
whieh is easily shown from the definition of 8*(r).

Sinee experiments show that T(YV) = T7(8) =0 _, one can
infer V(}) V(s), so that, for the boundary layer, equation
(65) gives

l/? V* s -
di =0 Tur (67)

o

¢ The constant of proportionality Is obtained empirically from reference 2,
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Ninee equation t60a) gives the expernoental resah

8*
A NN ~ s
4/.1'

it is clear that the power-law approximation o Yo will

lie between 0.70 af the V*term dominetes in ey hy
and 0.62 (if the 8*-term dominates,,

¥

tionahity constant of cquation 1353

In fact if the propor-
vioas determined from the

data at r 102 inches,

V* =008 6o
If this is used with equations (67 and 165: 1o predict
{ |
Yt =008 s ™ T0

the agreenrent with the direetly messured result. cquation
(62), is good.

It should be remarked parenthetically that, although ade-
quate measurements of ytron are still not available on the
smooth-wall turbulent boundary layver, an indirect vertlica-
tion of equations (34) and (357 follows from approximate
agreement between the experimental cor analytieallv in-
ferved) 80e) and the predicted otr and Yo, using reason-
ing like that presented in detatl for the rough-wall case.

TWO-DIMENSIONAL WAKE

The measurements of Townsend tref. 105 in the plane waha
far behind a ctreular rod provide another ease in which
cquations 136 and (35 can be checked against experiment.,

From conservation of momentum and the assumpiion of
similarity. dimensional reasoning yvieids the experimentally
verified predictions that far behind the obstacle a tarbulem
wake spreads parabolically (5o 5 and that the char-
aeteristic: mean  veloeity defec parabolicalls
(W, Toyeer 3y (ref. 300, that the plane
wake is a constant Revnolds number shear flow and there-
fore significantly simpler than. for example, the boundary
layer.

“ar behind the wake-producing obstacle, where the fully
developed wake ix finally reached. the difference hetween
minimum and maximum veloeity s so small that eqna-
tion (67} can be approximated by

decreases

This means

W~_‘—; (71
de T T o

Sinee there are only two points in the fully developed
r-range, it has not been possible to determine empirieal
power laws for 5. ¥ and o. The pertinent experimental
result is stmply that within the experimental uncertainty
the points in the fully developed range ave consistent with
parabolic growth for all three lengths,
.

;: (r)
and L, (r). As can be anticipated for a constant Revnolds
number flow, the root-mean-square turbulent veloeities are
proportional to the characteristic mean  veloeity  (mean
velocity difference in the wake) so that o™’ Tn this
asvmptotic state, the mean veloeity differences are all

Verification of cquation (34) again requires data on
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[ — = .
small 2 " ‘&t so that U=Constant=1"_. Further-

more, constant Revnolds number implies Lagrangian scale
proportional to Eulerian scale (L () oc L)y, and with the
general assumption of Locé it follows that L, ocr' *. Equa-
tion 341 then gives as prediction for the variction in wrinkle
aniplitude of the turbulence front

alriccr' (72

in agreement with the divectly measured result, in the simi-
larity Jarge ) zone.
For the comparison of equation (35) with experiment, no

data on ¢ are available,  As in the boundary layer, it will

therefore be assumed that Z e’ N0 Sinee 2 ocr™* and
Aot equation 35 predicts
V*oecr ' (T3
whenee
Yocr 174

again in agreement with the direetly measured vesult,
ROUND JET

sinee fairly detatled turbulence data were already avail-
able for the case of the round turbulent jet (refs. 2 and 31)
entering fluid at rest, intermitteney surveys y(roo have been
made during the course of this investigntion to provide
further experimental check on the proposed physical picture
of the turbulenee front.

From conservation of momentum and the assumption of
<imilarity dimensional reasoning vields the experimentally
verified predietions that far from itz source the round turbu-
fent jet spreuds linearly (1.5 0crs and that the characteristic
mean velocity decreases hyperbolically (7, ecr™ ') (ref. 30).
Thus, the round jet is another constant Revnolds number
flow and therefore relatively simple.

The new measurements made in the course of this study
tfig. 24) give as power-law approximations with the “hest”
comimon origin,

10020 0o

i oe( ;'/'— ) (75)
7.70:( ;’,.—:;‘)“.N\ o (76)
acc( ’—J/'—Si‘)“m’“ " (77)

which may all be taken as linear within the experimental
uneertainty.

Previous measurements have shown /7 to be constant
and independent of » at corresponding radieal positions in
the jet. Furthermore, the constaney of Revnolds number
agnin permits the inference that L, oL, With the assump-
tion that Lecr,,, cquation (34) predicts

ooc{r—ur, (7%)

in reasonable agreement with equation (77).

|
'

l

23

For the V=iry evaluation it 1= agaim assiumed that £7ec” A,

With " octr~u and Nocl oy [ xis-r, equation 30,
gives
V¥*ecis—r ! ST

and the comparison with experiment can bhe made by using
equation 179 to predict B merely replacing 'V by 12w
cquation (65, Instead of attempting a detatled proper eal-

culation enly a rough estimate was made by assuming
Vir ool v 8y oc I i

Then the prediction is

Riryoctr— o N0

in reasonable agreement with equation (76,0 in fact, a be-
lief in full similarity for constant Revnolds number <hear
flows suggests that equation (800 may be more nearly correel
than equation (76,

INTERMITTENCY AND MEASURED MEAN QUANTITIES

A= pointed out earlier in the seetion on “Inference of
Turbulence Properties From  Intermittent Signal.”" there
seerics o be only a restricted likelihood of extracting from
the measured statistical chiacteristies of the intermittent
signal respectable quantitative results on the ~tatistieal
properties of the turbulent flow in the convex bulges of the
turbulent front.  Probably the broadest obstacle to simple
physical interpretation of results computed om equation
(33) or (571 s the lack of homogeneity within a fullv tarbu-
lent zone supporting transfer.

Nevertheless, it seems worth while to present. for some
fluctuating variables which are zere in the potential fluid
(1. e, satisfy the first requirementy, the results of applyving
these two operators,

No detailed quantitative information has vet been obtained
on the mean-value jump for any physical variable. A rough
cheek from () oscillograms in the rough-wall boundary
laver where y=0.4 indicated that the jump in longitudinal
veloeity was about 3 to 10 percent of ..

Unfortunately, this still does not permit ealeulation of ;-
beeause all veloeity fluctuations vielate the first condition:
that is, they are nonzero in the potential flow,

For &vorticity, which dees satisfy this first condition, no
mean-value jump is observable on the oseillograms. This 1=
not surprising since this r~component has ne corresponding
mean vorticity in this flow field. It may be anticipated
that the ~component ¢ will be found to have a jump, if and
when it is nreasured, A plot of E2= & v is given in Higure 30.
To insure y-coordinate consisteney, this particular 40 has
been measured with the vorticity meter as sensing clement.
It does not differ appreciably from (y: as determined from
the differentiated signal of a v-meter.

In the outer part of the intermittent zone §
to he_roughly constant, leading to the possible conclusion
that & is relatively homogeneous in the turbulent flnid.

The Revnolds shear stress pur has been inferred to be
zero in the potential field outside a turbulence front. There-
fore, it may also be interesting to estimate  plzrr,

4 turns out
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Using a representation like equation (54 for w(tr and rif)
separately and assuming (w) no mean jump in o0, (b
b 0. and (¢ brupry  buprs. it follows that

l‘rb

wr

(81)

Wyt ==

- — O
Fownsend (ref. 28) has plotted w7 oy

versus y without
attempting a justification.

Figure 31 shows the result of applying equation (811 to
the measured Revnolds shear stress in the rough-wall
boundary layer and in Townsend's plane wake (ref. 10).
The nonconstaney of 77 y ean probably be attributed largely
to nonhomogeneity within the turbulent field.

In coneluding this section it may be remarked that, if an
existing nonhomogeneity for any variable in the turbulent
part of the field depends only upon distanee in from the front,
a first-order estimate of its effect can be made by computing
the average value generated at a fixed point by randem
motion of a “fixed” pattern like that in sketeh (e,

_.--Nonzero slope (corresponding to nonhomogeneity
< of g in turbulent fluid}

N

Rigid pottern fluctuates
rondomly like Y (/)

Sketeh (e,

STATISTICAL DESCRIPTION OF TURBULENCE FRONT

The position of the turbulence front Y(rf) is a random
variable stationary in time and nonstationary in ». The
purpose of this section is to report some further measure-
ments which have been made on its statistical properties,
especially those of Y for a fixed value of »r. Earlier
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mitteney,
seetions have emphasized its statistieal variation with
particularly throngh Y and the standard deviation o1,

It is of course possible for } to be a multiple-valued fune-
tion (see, e. g. fig. 1), but in most flows the ocenrrence of
multiple values appears to be =ufliciently rare that a discus-
sion predieated upon a single-valued 1 is applicable with
good accuracy.  This is especially true for the boundary
layer, where turbulence levels tend to he appreciably lower
than, for example, in jets entering a still medium. This
conceptual restriction to single-valued Y, exereized through-
out the report, will be justified empirically for the boundary
layer by showing that the average wave length is considerably
greater than the average wrinkle amplitude.

As a stationary random funetion (0 ix susceptible of
quantitative statistical deseription in various ways, not all
independent.  Perhaps the two most commeon mutually
independent functional representations for such variables
are the autocorrelation function (or its Fourier transform,
the power spectrum) and the probability density (or its
Fourier transform, the characteristic funetion),  Usually
the lower order moments of the density and spectral fune-
tions, which have simple physical interpretations, are the
most easily measured statistieal properties,
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The problem of acquiring detailed statistieal information
on Y(f) is novel in the sense that nowhere in the experiment
is there a signal which is simply proportional to the stationary
variable under study.  Therefore, the conventional statistical
functions (above) are not readily measurable by standard
techniques. 1t is fortuitous that the dissimilar character of
the fields on opposite sides of Y(f) gives such a convenient
method of measuring probability density.  However, the
autocorrelation or power spectrum apparently cannot be
directly measured, and therefore other direct statistical data
have been sought, in particular, the probability density of
“pulse lengths,”” actually the statistical measure of the times
hetween suceessive oceurences of anv particular value of the
primary variable ().

A challenging problem in the theory of stochastic processes
i that of velating (if possible) these densities to the more con-
ventional statistical measures.  Up to the present time, only
a few fringe results seem to have been obtained by workers
in the field: these will be mentioned in appropriate context.,

PROBABILITY DENSITY OF Y (b

As has been pointed out in the “Introduction” (eq. (1)),
the intermittency factor v(y) is simply the distribution
function of 11tH and. therefore. 3y/dy is its probability
density.

Calculation of dv,9y shows that, except in the two tails of
the function, it is remarkably symmetrical,  Furthermore,
the physical picture given here of front wrinkling as pri-
marily a (Lagrangian) turbulent diffusion phenomenon then
suggests a check to see how nearly 0y/0y approximates a
Gaussian function, since studies of scalar diffusion in iso-
tropic turbulence have shown a closely Gaussian density.
Figure 32 shows this check. It inecludes typical plots on

-I.O(
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Ficvrre 32.—Typical intermittency distributions for boundary layer,
jet, and wake plotted on Gaussian probability scale.
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Gaussian paper of y(y1 for the boundary laver and for Town-
send’s wake, as well as v for the round jet. Clearly all
three disteibutions are Gaussian within the experimental
precision exeept in the tail regions.

Deviations from symmetry must, of course, oceur at the
tails since the boundary conditions on the two sides are
vastly different.

since the nearly Gaussian character of dispersion in iso-
tropic turbulence is stll unexpluined theoretically, it is not
to be expeeted that this mueh more complex phenomenon
can be clarified at present. Also. it must be emphasized that
even in the former ease it is not necessarily true that the
probability densities are precisely Gaussian: the current con-
clusion is only that a Gaussian curve fits the data as closely
as present experimental techniques produce data. Very
likely it is the deviations (however smally which, when
measured, will shed more light upon the central property of
turbulence, the nonlinearity.,

Batchelor (ref. 32) has pomnted ont that the Gaussian dis-
persion pattern observed at very large distanees downstream
from a contaminant sourece in # turbulent flow may be simply
a consequence of the central limit theorem.” sinee the relative
position of a fluid particle a long time after tagging nay be
regarded as the sum (time integral) of a large number of
small displacements, which are at least uncorrelated for mod-
erate intervals if not exactly statistically independent. In
fact, il this reasoning does apply, it s doubly effective:
Particle displacement, the prineipal variable. 1= itself the
integral of particle veloeity, so that the long-tiuie displace-
ment is the sum of a collection of sums,

Apparently. the central himit theorem has not bheen ex-
tended to integrals of continnous random variables, but some
pertinent work has been done by Kae and Siegert (ref. 33,
who showed mathematieally that passage of a particular
skew (probabifity density) random signal through a low-pass
filter reduces the skewness.  This prediction has been experi-
mentally verified by Jastram (ref. 34) and by Tribe (ref. 35)
A low-pass filter 1=, of course, qualitatively equivalent to
integration.

PROBABILITY DENSITY OF PULSE LENGTHS

Experimental results. -From a sketeh of Yy as a sta-
tionary random variable, it is easily seen that the intermit-
tent signal from a fixed probe provides a direet means of
measuring the statistieal distribution of the time intervals
between succeessive oceurrences of any particular value of '}

Y
Yi) -

T

Sketeh (),

=

— e
T Ineffeet, thisstates that the sum of 3 number of statistically independent random variables

approaches Guussian charaeter as the number inereases without lisuit (provided that no
finite group dominates the sume.
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From the fluid-mechanical point of view this gives a conven-
ient measure of the wave lengths of the mountains and valleys
in the turbulence front. The laminar superlayer is thin
enough to be considered a discontinuity in all of this analysis.

If T, is the duration of the probe in a turbulent zone and
Ts. the duration in a nonturbulent zone, figure 29 gives the
probability deunsities p (7)) and p.(T.) at three different
values of transversa. position, that is, three different values
of the intermittency factor.

By definition (of probability density), the curves in figure
29 are normalized to unit area. A check on their accuracy
is given by the more or less obvious condition

T =Y
T+T,
where T,= f CTop(TYdT, and  T.= f Tp(THdT..
[t} o

(82)

The terms -’I_', and 7 are average pulse durations in units
of time and are functions of y or, alternatively, of ¥ sinee ¥(y)
is monotonic.

The computations from figure 29 give (for §=3.5 inches):

¥ - - MR
ué directly T, se¢ T see from Th I, in. b, in.
measured : and T3
072 .75 DR 0, 0080 .72 0 7
[ 0. 30 00106 0, 0082 0,56 18 3.7
[T 0.25 1), Y 0. 0132 134 31 5.9

where [ =1 mT, and Igsrmﬁ are approximate measures of
the spatial extension of the average intervals in this r vicinity.
This interpretation of the I's as average intercept lengths for
the random variable Y(r) gets inereasingly accurate as the
veloeity fluctuation level decreases.  This time-space trans-
formation is, in fact, identical with that first proposed by
Taylor for an isotropic turbulence (ref. 36) and discussed in
more detail by others (refs. 37 and 18).

. 1
A comparison between ; (I, +1y) for ¥=0.50 and the stan-

dard deviation ¢ of Y,(f) at the same r-station gives a rough
measure of the flatness of the wrinkled turbulence front.
For this particular station in the boundary layer,

20

(1m0 (83)

which indicates a rather flat front, as assumed in the carlier
theoretical discussion on the propagation of the laminar
superlayer.

Inspection of figure 29 shows the following traits of the
data:

(a) The points are rather seattered,

(by For v-:.0.50, g and p; show an appreciable difference.

(¢) The ¥ -0.25 and v 0.75 cases, which might be ex-
peeted to have identical curves with reversed labels, show
this character qualitatively, though not accurately.

Properties (b) and (¢) can apparently be attributed chiefly
to the shortness of oscillographic samples;* therefore, the

¥ About 3 seeonds, as compared with the 2 minutes used in obtaining the 4°s directiy.,

curves in figure 29 have been labeled with the s actually
given by these short samples, and the apparent diserepancies
(b) and (¢) are qualitatively explained.  In other words, a
short sample with actual v 4, drawn from an infinite record
with ¥ =, can be expected to show other statistical proper-
ties resembling those of an infinite record with v v,

Two other sources of uncertainty in the data of figure 29
are (1) the natural uncertainty of measurement in the
presence of noise, even with perfect equipment, and 2) im-
perfections in measuring equipment and techniques,

The first of these difficulties affects all intermitteney nieas-
urements and is basically insurmountable.  Of course, the
noise level could be reduced somewhat and, under simplifying
statistical assumptions on both noise and signal, some esti-
mate of the effect could be made.

The second difficulty probably affects py and p. measure-
ments more seriously than direct ¥ measurements. For ex-
ample, suppose that the measuring process misses a sizable
number of the shortest turbulent bursts.  This fault will
scarcely affect the direetly measured y since these contain
only a small part of the total number of pulses to be counted
(except for y<1). On the other hand. this fault will not
only change the character of p (7)) for small values of T} but
also will change the level of p,(T)) for large values of 7%, sinee
the very short turbulent bursts subdivide long potential
bursts into shorter ones.  Henee, this fault will seriously
affect T, and, therefore, ¥ as computed from 7, and 7.
Precisely this fault is observable on the oscillographic traces.

Other defects similarly observed are the (relatively in-
frequent) missing of short potential bursts and the occasional
overhang of the trigger signal bevond the duration of a tur-
bulent burst. The last of these faults affects the direet v
measurement as well.

An obvious way around some of these difficulties is the
direct use of &) or %’» (t) oscillograms to compute p, and p..
To some extent this was done, and the extreme tediousness
of this method is exactly why the samples processed are so
short.

This inadequate sample length (fault (3)) most seriously
affects the results in the large 7, and T, ranges. The relative
seriousness of this limitation for long versus short pulses i=
not given (as might be guessed at first blush) by the ratio of
sample length to pulse length but by the ratio of sample
length to the tnverse of the frequeney of occurrence of the
particular length of pulse (actually a small range) in question.
For example, in a 3-sccond oscillographie sample, the points
on the tails of p; and p» may represent as few as one or two
actual occurrences.  With this in mind it can be concluded
that the agreement between values of v obtained via T, and
T, and values of y directly measured is surprisingly good.

It would be interesting to know whether pg and p, approxi-
mate exponential distributions for large values of 7T and 7.
However, the uneertainty of the points in just this range is
so great as to render such a quantitative question unanswer-
able. Some very indireet evidence via the power spectrum
of the Schmitt trigger output for v --0.50 will be discussed
in a following section.

Sincee the small 7 and 7, ranges of py and p. are quite un-
certain (i.e., for bursts shorter than 2 milliseconds), some
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qualitative analytical consideration of the anticipated be-
havior in this range is in order. These short segments arise
whenever the hot-wire passes just below a local maximum
(for turbulent fluid) or just above a local minimum (for po-
tential fluid) in Y(#).

The variable Y (1) must be differentiable (since it oceurs in
a  continuum); therefore, its extremes have horizontal
tangents. Thus, a Taylor series expansion of Y (¢) about any
local extreme t=#,, starts with a term proportional to (t—1,)*
The limiting behavior of p, and p can thus be obtained by
considering a parabola ('=1)* as in sketch (g).  The problem
is then as follows: Suppose (" has a flat probability density
pe(€);* what is the probability density p, of D=4 ?

c

D
Sketeh (g).
In general, if ('=¢'(D)) is unique,
) w O
poll)=pc(C) .1 (84)
whence, for this particular problem
polD)ocD (85)

[t follows from this caleulation that the probability density
of the intervals between successive occurrences of any particular
ralue of a differentiable random rvariable must start out (a)

Jrom the origin and (b) linearly. Specifically, p,(T)) and

p2(Ts) must behave in this fashion, even though the measured
curves do not all show this tendeney in the range covered.

By reasoning similar to the above it is obvious that for a
continuous but nondifferentiable variable (corresponding to
pointed but uncusped extremes) the corresponding density
starts out at a finite value.

Status of random-variable theory..—The mathematical
problem of relating the probability density of the intervals
between successive occurrences of any particular value of a
continuous random variable to the ordinarily more aceessible
statistical funetions (probability density of the primary
varinble, power spectrum, ete.) has apparently not been
solved, even for a Gaussian variable.

Rice (ref. 38) has deduced the probability of a zero of a
Gaussian variable I(f) in an interval (f,46).(,+6L4+dt)
when there is a zero at f,.  However, the probability density
of intervals between successive zeros (or suecessive occur-
rences of any other particular value) does not appear to

¢ The very small range to be studied, that s, just the immediate vicinity of an extreme,
permits approximating any small segment of i finite probability density by o constant value,

follow casily from Rice's result. Of course, in the particular
case when successive intervals are statistically independent,
the occeurrence numbers have a Poisson density, and the
interval lengths have a simple exponential  probability
density.

A more direetly applicable result, apparently due to Rice
(ref. 38), relates the expected rate of oceurrence of any
particular value of a Gaussian variable /() to the probability
density of the variable and the autocorrelation funetion
behavior in the vieimity of zero:

I:
\Y e WO gy (N6
B ) s

where ¢(r) is the nonnormalized autocorrelation function
IHI(t+7) and a prime indicates  differentiation.  The
proof of equation (86) requires also that 7 and 6 be
uncorrelated—which is automatically satisfied for a station-
ary variable.

However, it must he emphasized that the pristine simplicity
of this theorem is dependent upon the restriction to a
Gaussian variable. Two of the seemingly inexhaustible
number of fortuitous properties of the Gaussian probability
deasity are:

(a) If a variable is Gausstan, so is its derivative,

(b) If two Gaussian variables are uncorrelated, it follows
that they are statistically independent.

Without these built-in conveniences, it seems likely that
such a theoremn could be deduced only with the general
assumptions that the variable and its derivative are statisti-
cally independent.

For the expeeted rate of zeros, equation (861 reduces to
(ref. 38)

ATy -
‘\ n'—*[ lﬁ(()) ('\4 )

Equation (87) has been used by Liepmann, Laufer. and
Liepmann (ref, 39) to measure the microseale in a decayving
isotropic turbulence. It will be used here to obtain 7 ()
for the turbulence front Y(¢).

Measurements have also been made of the average rate of
occurrence of the values of Y6 corresponding to y=025
and 0.75 in the intermittent zone of the rough-wall boundary
laver. In figure 33, the three experimental points are

. . o o =Y .
compared with equation (86). The Y location of the

three experimental points has been chosen according to the
value of v of the short samples (from which the N'sx were
measured; see the preceding table) rather than the true
physical locations of the probe. The agreement is better
than can be expected with the uncertainty of the measure-
ments and therefore fortuitous.  The number given for the
rate of occurrence of zeros, Noy=108 per second, is inter-
polated along the Gaussian curve.

Measurements of the probability density of zeros in the
fluctuating part of the signal from a human voice have been
reported by Davenport (ref. 40).
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Frovre 33.—Frequeney of oceurrence of zero and two other particular
values of Yi(f) in boundary laver at r=102 inches. Solid curve is
that of a strictly Gaussian variable.  Na= 108,

POWER SPECTRUM OF SCHMITT TRIGGER OUTPUT

As indicated in figure 6, the output of the Schmitt trigger
is in principle a random flat-top signal which is on whenever
the probe is in turbulent fluid and off whenever it is in poten-
tial flow. Obviously the statistical properties of this signal
must have some relation to those of the primary variable
Y(¢t). and therefore two convenient properties have been
measured. The first is the probability density of pulse
lengths, tops and bottoms separately; these are, of course,
just p(T)) and p(Ty) (fig. 29). The second is the power
speetrum of the trigger output, measured at the same loca-
tions as the densities (fig. 28).

The three spectra have the same general shape, with power-
law decrease for high frequeney as indicated in the figure.

It might be expected that a relation should exist between
the pulse-length densities of any flat-top signal and its power
spectrum, but a search of the literature has uncovered no
such analyvtical results except in special cases, one of which
is used below,

The simplest of the three signals is that corresponding to
¥=0.50, and in figure 28 this power spectrum is seen to agree
closely with that for a “Poisson type” flat-top signal (see,
e. g.. ref. 38):

AV

Flnyec AM4-=wn?

(88)
where M is the average number of jumps per second and » s
cyelic frequency.  For this application and y=10.50, M= N,
the average number of zeros per second in }'—7T., since the
distribution of zeros cannot be truly Poisson.

The very good agreement in figure 28 implies only that in
this case py(Ty) and p(Ts) could be exponential away from
the origin, even though the directly measured data are too
uncertain to permit any estimates. However, no assertion
can be made, since the —2 power spectral decrease is charac-
teristic of most signals with “discontinuities.”

AUTOCORRELATION FUNCTION OF Y

The approximately Gaussian character of Y—7 permits
application of equation (87) relating the zero occurrence rate
and the autocorrelation. For this purpose the nonnormal-
ized autocorrelation is defined by

Y=Y (Y (t+7) (89)

|
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where ¥V, =Y. Obviously ¢(0) =¢* and. since N, and o
are the measured quantities, equation (87) is written

Y7 (0) = —xa’ N3 (90
where
2
No=7= = zerossec (902)
T+ T ‘

For the rough-wall turbulent boundary layver at r=102
inches, ¢=0.55 inch and N.=108 zeros per second, so

¢(0)=3.4 > 10° sq in.sec? (91

A corresponding characteristie length mathematieally equiva-
lent to the dissipative scale (microseale) in turbulenee can
be deduced by the time-space transformation mentioned
earlier:

29 (0] 207,

A=, | ¥ =37 (92
¥ il () .\ )

For this particular case,
Ay =1.91n. (9:3)

which is a bit smaller than /; and /, in the preceding table
for y=0.50.

For low turbulence levels, one might expeet the quantity
’

v . . .
7 Ay to be of the order of the Lagrangian spatial microscale

A=X\e" (ref. 18), which is roughly equal to the Eulerian
microscale X over a wide range of £y in isotropic turbulence

(ref. 18). 1In this case, (;: Ay }=0.09inch. This is the same

order as X\ in the neighboring turbulence.  Since £y for this
turbulence is roughly 70, which (in isotropic turbulence)
gives \, = 1.5, the conclusion here is that

’

% A=\, (94)

». the Lagrangian time mocroscale of the
neighboring turbulence is given roughly by
L= t =l - tal - .

or, since {'=1["

A2
74\70

A (95)

Equation (90) gives only the vertex curvature of the auto-
correlation function. Because of the Gaussian character of
¥(#), it is possible to estimate the entire ¢(7) from the spec-
trum of the trigger output. It has been shown by North
(see ref. 41) that the autocorrelation function of a strongly
clipped Gaussian variable is simply related to the autocor-
velation function of the variable itself:

b 2 ¥ .
e @) w0 [w ©) (96)

A strongly elipped variable is just a flat-top signal which
changes sign whenever the primary variable passes through
zero— which exactly deseribes the relation between the trigger
output and the primary variable Y (7).
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Since, as shown by Wiener (ref. 42), the autocorrelation
function of a stationary random variable is just the Fourier
cosine transform of its power spectrum (and vice versa),

Ve (r)=fm1"c (n) cos 2wnrdn 97)
0

F. (n)=4J Ve () cos2mnrdr
0

the autocorrelation of the trigger output is computed from
the measured power spectrum. The good agreement of
F_(n) with the form in equation (88) permits using a simple
exponential for ¢ (1) (ref. 38):

!kt (T)
¥ 1)

Then, equation (94) gives the autocorrelation funetion o7
the turbulence front location:

tg(); sm( —%\h) 199)

which is plotted in figure 34. The vertex osculating parabola
corresponding to ¢'’(0) as given by equation (87) and the
directly measured zero occurrence rate are drawn in for com-
parison. The former parabola should give the origin be-
havior of ¢(r) more accurately than equation (99).

e B (9%)
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Frevre 34.—Autocorrelation function of turbulence front location

as a funetion of time in boundary layer at r =102 inches,

As should be expected, the calculation of ¢7(0) for equa-
tion (99) gives
v'(0) 2
o = M
yoy "

identical with equation (87), if MM—N,,.

In fact, it found experimentally that M =2N, for this in-
vestigation. This is not surprising since the differentiability
of Y(¢), whose zeros give the square-wave jumps, leads to
a considerable deficit of short pulses as compared with a
truly Poisson square wave (see the section ““Experimental
results” under ‘“‘Probability Density of Pulse Lengths”).

Of course, the power spectrum of Y,(f) could be calculated
by taking the Fourier cosine transform of y(r) but the data

(100)

are sufficiently inaccurate that further manipulation scarcely
seems worth while.

Other characteristic lengths of the wrinkled turbulence
front can be estimated from the integral of (7)., mathemati-
cally analogous to the integral scale of turbulence, but these
may be less pertinent than, for example, 7, and 1, the average
pulse lengths:

w

L. S
e _ 1 (*Fsinp 2
w(())j; () ’17—2“16-1}‘) » dp= 244 (101

whence,

C.(” o
'M,O)Ju Y(r)dr=74in.

which turns out to be the same order as {; and /..
Alternatively,

\,01(.())J T Y(r) dr=0.35in.
0

both values being for the rough-wall houndary layer at
r=102 inches.

CONCLUDING DISCUSSION

From the analytical and experimental results reported
here on the problem of the relatively sharp instantancous
front separating turbulent fluid from nonturbulent fluid (as
at a free-stream boundary), the following new conclusions
are drawn:

1. The nonturbulent region is a field of irrotational fue-
tuations.

2. The front separating turbulent from potential flow is
actually a very thin fluid layer in which viscous forces are of
primary importance. The role of this “laminar superlayer’™ is
the propagation of vorticity (both mean fluctuating) into
the potential field. It is maintained thin by propagation
relative to the fluid and by the random stretching of vortex
lines in its local vorticity gradient,

3. The common occurrence of contiguous rotational and
irrotational velocity fluctuation fields underscores the useful-
ness of confining the word *‘turbulent’” to random rotational
fields only.

The rate of inerease of wrinkle amplitude of the turbu-
lence front can be roughly predicted in terms of a Lagrangian
diffusion analysis, using the statistical properties of the
turbulence in the fully turbulent zone. The actual estimate
is given by equation (34).

5. By dimensional reasoning and, independently, through
a model of the laminar superlayer, the thickness of the super-
layer can be estimated. The simplest approximation 1s
equation (51), giving a thickness of the same order as the
Kolmogoroff (minimum) turbulence length.

The propagation velocity V* of the turbulence front is
taken by dimensional reasoning to be proportional to %¢’.
This is roughly verified by experiment,

7. The downstream rate of growth of the turbulence front,
as measured by standard deviation ¢(r) and transversal
position T (x), is found to be proportional to the shear-zone
thickness, within the experimental precision, for plane wake,
round jet, and rough-wall boundary layer. This is shown
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independently by direct experiment and by application of
the results outlined in the previous paragraphs.

8. The probability density of the turbulence front location
at any fixed downstream station is Gaussian within the
precision of the measurements everywhere except at the tails.
This is found experimentally for all three types of turbulent
shear flow studied.

9. The probability density of the pulse lengths in the
intermittent signal deviates strongly from the simple expo-
nential type, presumably because 1(2) is differentiable.

10. The autocorrelation function of ¥(f) for the boundary
laver 1s found very indirectly from experiment to be as
shown in figure 34.

It seems likely that the presence of the turbulence front
with its attendant detailed statistical properties will have
to be included in basic research on turbulent shear flows
with free-stream boundaries. It is not quite so clear that
it must be explicitly included in semiempirical engineering
estimates concerned only with overall transfer; so far no
case has been encountered in which the front grows at a
rate distinetly different from the gross shear-laver growth,

It appears that at present this new physical picture
introduces at least as many new questions as it gives expla-
nations of older observations. Insofar as it is concerned
with a boundary condition, it tells nothing about transport
phenomena within a turbulent region. Yet, since the
wrinkle amplitude o(r) and transversal travel I'(x) of the
turbulence front appear to be governed by for related to)
properties of the contiguous turbulence, any gross assump-
tion on these variables implies consequent relations among
the turbulence properties.

It should especially be pointed out that the present
investigation does not appear to shed anyv light on the

characteristic difference between transport rates of vector
(momentum) and scalar (heat, mass) properties.  In fact,
since it is concluded that no mean momentum can be trans-
ported bevond the turbulence front it appears that for
laminar Prandtl and Schmidt numbers not very much smaller
than unity) the front should apply equally well to heat or
chemical composition.  Oscillographic  observations  not
mentioned in the body of the report) in a hot jet show a
temperature fluctuation intermitteney, presumably coinei-
dent with the vorticity intermitteney.  If this inferenee is
true, then the veetor versus sealar transport rate difference
will have to be explained in terms of properties of the en-
tirely turbulent region.

Interesting speculations in this direction have been made
by Townsend (ref. 10), who suggests that momentum is
largely transported by relatively high wave number Huctua-
tions while heat is transported by both low and high wave
number fluctuations, that is, by jet conveetion and by
gradient diffusion, respectively.  However, there are 1wo
dubious minor postulates in his analysis tmentioned here
i the section “Inference of Turbulence Propertios From
Intermittent Signal™ and at the end of the section “Laminay
Superlayer’™) and also he has not clarified the prineipal
assumption vis-a-vis the known fact that the shear correla-
tion u¢ appears to get ever inereasing contributions toward
the low wave numbers (ref. 43).  Finally, his inference that
the lateral jets (bulges) conveet little longitudinal momentum
appears to be in contradiction to the fact that the inter-
mittent veloeity signal shows an appreciably lower mean
in the turbulent segments that in the potential ones, as
seen in figures 9 and 15,

Tuar Jouxs Hopkixs UNIVERSITY,
Bavtivore, Mo., January 20, 14153,




APPENDIX

GROWTH OF ROUGH-WALL BOUNDARY LAYER

Although the growth of turbulent boundary layers with
zero static-pressure gradient is better approximated by a
logarithmic function (ref. 11), the exploratory purposes of
this investigation are satisfied by the simpler and less
accurate power-law treatment.

The momentum integral relation for turbulent boundary
layer with zero static-pressure gradient can be written
approximately as (ref. 11)

do_. (A1)

de [ 2

The following rough assumptions are made:
(a) Simple geometrical similarity in mean velocity profiles:

C_ (Y
(—'m —/ n (5 )
(by *Fully rough’ wall conditions:
.L,I(‘ =100
14

Therefore,

oo pll WI

where A is effective roughness height.
{¢) Power-law veloeity profile:

-y

From assumptions (a) and (¢)

F(h)__(h‘ " o
r. = ‘6) (A2)
whenee the second assumption gives
— h\ 2m .
Ty p( @ (g) (;\.{)

Sinee 8ocd, substitution of equation (A3) into equation (A1)
gives

e —tm
i o« (A4)
for h=Constant. Thercfore,
1
foc (r—ury)imtt (A5)

Equation (A5), a simple power law, permits approximation
to the actual boundary-layer growth with accuracy adequate
for the present investigation.

In fact, since both m and the exponent in equation (A3)
have been measured independently, there is opportunity for

an experimental check on the accuracy of the present crude
approach: Mean velocity profiles (fig. 110 give m=13.5.
Therefore, the analysis prediets

o< (r—r,)"

whereas measurements of houndary-laver growth (fig. 12,
give

0«(“,._". )U.ﬂl(xli 1
X o

It should be pointed out that boundary layers in general
cannot have simple geometrical similarity  because  their
characteristic Reynolds numbers increase with .

This particular **rough-wall” houndary layer is fully rough
all the way downstream (from r=0 to r=102, { kv fall:
from 200 to 145), if the peak-to-peak height of the corruga-
tion is interpreted as h.
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