INVESTIGATION AND SIMULATION OF NONLINEAR PROCESSORS FOR SPREAD SPECTRUM RECEIVERS, USERS MANUAL

Illinois Institute of Technology
Donald R. Ucci, William Jacklin, and Jimm Grimm

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

Rome Laboratory
Air Force Materiel Command
Griffiss Air Force Base, New York

DTIC QUALITY INSPECTED 3
This report has been reviewed by the Rome Laboratory Public Affairs Office (PA) and is releasable to the National Technical Information Service (NTIS). At NTIS it will be releasable to the general public, including foreign nations.

Although this report references * limited document listed on page 18, no limited information has been extracted.

RL-TR-93-258, Vol II (of two) has been reviewed and is approved for publication.

APPROVED:

John J. Patti
Project Engineer

FOR THE COMMANDER

John A. Graniero
Chief Scientist for C3

If your address has changed or if you wish to be removed from the Rome Laboratory mailing list, or if the addressee is no longer employed by your organization, please notify RL (C3BB) Griffiss AFB NY 13441. This will assist us in maintaining a current mailing list.

Do not return copies of this report unless contractual obligations or notices on a specific document require that it be returned.
The objective of the recent research effort was to investigate and determine the viability of utilizing Locally Optimal (LO) nonlinear processing to mitigate non-Gaussian interfering signals in a Direct Sequence (DS) SS communications system. The effort centered on the use of memoryless techniques, as well as techniques employing memory, and performance comparisons of many receiver and nonlinear processor configurations. The approach used included the analysis and evaluation of several implementations of the various nonlinear processing algorithms. The analysis included the study of well known techniques, as well as newly developed methods. Evaluation was accomplished through the development of software simulations designed to test the algorithms in various signalling scenarios. The results illustrate the tradeoffs of each nonlinear processor algorithm for use in a spread spectrum receiver. This knowledge can be used to determine the most effective processor for a given interference scenario. The work presented in this report is directly in line with the mission of Rome Laboratory (RL) to provide secure, reliable communications to the United States Air Force.
TABLE OF CONTENTS

Volume II

<table>
<thead>
<tr>
<th>Section No.</th>
<th>Title</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Introduction</td>
<td>1</td>
</tr>
<tr>
<td>2.</td>
<td>The IIT SPW MNPs</td>
<td>1</td>
</tr>
<tr>
<td>3.</td>
<td>The IIT SPW Systems</td>
<td>4</td>
</tr>
<tr>
<td>4.</td>
<td>Using the MNPs in an IIT SPW System</td>
<td>6</td>
</tr>
<tr>
<td>5.</td>
<td>Parameters for IIT SPW Simulations</td>
<td>6</td>
</tr>
<tr>
<td>5.1</td>
<td>Parameter Overview</td>
<td>8</td>
</tr>
<tr>
<td>5.2</td>
<td>Detailed Parameter Discussion</td>
<td>10</td>
</tr>
<tr>
<td>5.2.1</td>
<td>System Parameters Related to the Information Signal and Gaussian Noise</td>
<td>10</td>
</tr>
<tr>
<td>5.2.2</td>
<td>System Parameters Relating the Continuous Wave Jammer to the Information Signal</td>
<td>12</td>
</tr>
<tr>
<td>5.2.3</td>
<td>System Parameters Relating the Partial Band Jammer to the Information Signal</td>
<td>15</td>
</tr>
<tr>
<td>5.2.4</td>
<td>Spread Spectrum System Parameters</td>
<td>17</td>
</tr>
<tr>
<td>6.</td>
<td>References</td>
<td>18</td>
</tr>
</tbody>
</table>

Appendix A
- NTIS CRA&I Accession For: A-1

Appendix B
- DTIC TAB Accession For: B-1
- Unannounced
- Justification

Distribution Codes
- Dist A-1
- Avail and/or Special
1. Introduction

This volume of the report serves as a user's guide to the Illinois Institute of Technology (IIT) Signal Processing Worksystem™ (SPW) simulations. These simulations consist of nine modular SPW systems and fifteen Memoryless Nonlinear Processor (MNP) blocks for use with these systems. A solid understanding of the concepts discussed in Volume I of this report is essential for using these systems and interpreting the results.

NOTICE TO THE USER:

The most important system parameter relationships in this report are summarized in three text boxes like this one. It is imperative that these fundamental constraints are maintained at all times during simulation of the systems. There are no provisions in the systems to automatically verify these constraints; it is entirely the responsibility of the user. If these constraints are violated, invalid results may be produced.

2. The IIT SPW MNPs

In the current and past research efforts five types of MNPs have been implemented in the SPW platform: Histogram [Illi93a], Equiprobable Bin Histogram (EBH) [Illi93b], Fourier Series Approximation (FSA) [Illi93b], Continuous Polynomial Approximation (CPA) [Grim93], and M Interval Polynomial Approximation (MIPA) [Illi91]. Table 1 summarizes the filenames
for the MNPs\(^1\) and the linear receiver. These filenames are for reference only since they may be copied directly from the SPW User Palette [Comd91] into the desired system.

Filenames of MNP Blocks

NONLINEAR RECEIVERS WITH CORRELATOR:

<table>
<thead>
<tr>
<th>Library/Filename</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>HISTO/serial_nonlin</td>
<td>Histogram MNP</td>
</tr>
<tr>
<td>HISTO/s_enonlin</td>
<td>EBH MNP</td>
</tr>
<tr>
<td>fourier/serial_nonlin</td>
<td>FSA MNP</td>
</tr>
<tr>
<td>CPA/s_cdf2_nonlin</td>
<td>CPA with Linear Transform MNP</td>
</tr>
<tr>
<td>CPA/s_cdf3_nonlin</td>
<td>CPA with Discontinuous Auxiliary Function MNP</td>
</tr>
<tr>
<td>CPA/s_pdf_gt_nonlin</td>
<td>CPA with Gaussian Tails MNP</td>
</tr>
<tr>
<td>MIPA/serial_nonlin</td>
<td>MIPA MNP (for 2(^{nd}) and 4(^{th}) order MIPA)</td>
</tr>
<tr>
<td>linear/serial_lin</td>
<td>Linear receiver</td>
</tr>
</tbody>
</table>

NONLINEAR RECEIVERS WITHOUT CORRELATOR:

<table>
<thead>
<tr>
<th>Library/Filename</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>HISTO/s_nonlin_nc</td>
<td>Histogram MNP</td>
</tr>
<tr>
<td>HISTO/s_enonlin_nc</td>
<td>EBH MNP</td>
</tr>
<tr>
<td>fourier/s_nonlin_nc</td>
<td>FSA MNP</td>
</tr>
<tr>
<td>CPA/s_cdf2_nl_nc</td>
<td>CPA with Linear Transform MNP</td>
</tr>
<tr>
<td>CPA/s_cdf3_nl_nc</td>
<td>CPA with Discontinuous Auxiliary Function MNP</td>
</tr>
<tr>
<td>CPA/s_pdf_gt_nl_nc</td>
<td>CPA with Gaussian Tails MNP</td>
</tr>
<tr>
<td>MIPA/s_nonlin_nc</td>
<td>MIPA MNP (for 2(^{nd}) and 4(^{th}) order MIPA)</td>
</tr>
</tbody>
</table>

Table 1

\(^1\) In this report SPW filenames are written as LIBRARY/Filename, where LIBRARY is the Block Diagram Editor (BDE) library in which the block or system is stored, and Filename is the name of the block or system.
There are two main categories of MNPs: MNPs with a correlator and MNPs without a correlator. The MNPs with a correlator implement the entire memoryless Locally Optimal (LO) algorithm [Illi93b]:

Choose \((\bar{s}_l, \bar{s}_q) \) which maximizes:

\[
I_n = \sum_{k=1}^{N} \left(s_{l_0} g(r_k) \cos \theta_k + s_{q_0} g(r_k) \sin \theta_k \right)
\] (1)

\[
\frac{d}{dr} f_k(\rho_k) + \frac{1}{\rho_k}
\]

where \(g(\rho_k) = -\frac{d}{dr} f_k(\rho_k) + \frac{1}{\rho_k} \) is the LO Memoryless Nonlinear Transform (MNT).

Since the correlator performs a decision, these blocks constitute the entire nonlinear receiver, and may be used in systems such as the conventional Quadrature Phase Shift Keying (QPSK) [Taub86] systems to be discussed in Section 3. It is important to make the distinction between the MNT, which is the mathematical formula, and the MNP, which is the block that applies the MNT.

The MNPs without a correlator only implement the MNT and convert it to rectangular coordinates as follows:

\[
\text{output} = [g_l, g_q]^T = [s_{l_0} g(r_k) \cos \theta_k, s_{q_0} g(r_k) \sin \theta_k]^T
\] (2)

These blocks may be used in systems where additional post-processing is required after the MNP, as in the Spread Spectrum (SS) systems to be discussed in Section 3.
3. The IIT SPW Systems

Nine modular SPW systems have been designed to incorporate the MNPs previously discussed. Four of these systems are conventional QPSK systems and five are Direct Sequence (DS) SS [Taub86] QPSK systems. The conventional systems aid in isolating and characterizing the performance of the MNPs, and the DSSS systems help analyze the performance of the MNPs in a spread spectrum environment. Both the conventional and the DSSS systems are based on QPSK modulation; however, it would be straightforward to modify them to employ alternative modulation schemes such as Minimum Shift Keying, Quadrature Amplitude Modulation, or M-ary Phase Shift Keying. The filenames and purposes of the IIT SPW systems are summarized in Table 2. All systems simulate a communication system with jammers and nonlinear processing, and each one has certain processing after the nonlinearity that is also listed in the table.

Figure (1) shows the basic conventional QPSK system, SIM/PE, which calculates the probability of bit error (P_b) for any of the serial MNPs or the linear receiver. Since QPSK is a basic form of modulation it was chosen to isolate the effect of the MNP on the overall system performance. The RL/COMPLEX_DATA block generates random QPSK data, and the JAM/CHANNEL block adds the jammers and Gaussian noise. An MNP or the linear receiver block must be copied by the user to the designated space in Fig. (1). The HISTO/PROB_OF_ERROR block counts the number of errors the receiver makes in decoding the bits and computes P_b.

The SIM/PES system shown in Fig. (2) is able to calculate P_b for up to three different receiver configurations simultaneously to facilitate comparisons of the MNPs. The SIM/PE and SIM/PES simulations may be used in conjunction with the SPW iteration macro [Varn93] to generate Bit Error Rate (BER) curves as a function of various system parameters.
Filenames of IIT SPW Systems

CONVENTIONAL QPSK SIMULATIONS:

<table>
<thead>
<tr>
<th>Library/Filename</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SIM/PE</td>
<td>Computes P_b for any MNP</td>
</tr>
<tr>
<td>SIM/PES</td>
<td>Computes P_b for any three MNPs</td>
</tr>
<tr>
<td>SIM/HSIGS</td>
<td>Computes P_b & plots signals for histogram MNPs</td>
</tr>
<tr>
<td>SIM/PSIGS</td>
<td>Computes P_b & plots signals for polynomial and FSA MNPs</td>
</tr>
</tbody>
</table>

QPSK SPREAD SPECTRUM SIMULATIONS:

<table>
<thead>
<tr>
<th>Library/Filename</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SIM/SSyPE</td>
<td>Computes P_b for any MNP</td>
</tr>
<tr>
<td>SIM/SSPES</td>
<td>Computes P_b for any three MNPs</td>
</tr>
<tr>
<td>SIM/DSSSH</td>
<td>Computes P_b & plots signals for histogram MNPs</td>
</tr>
<tr>
<td>SIM/DSSSP</td>
<td>Computes P_b & plots signals for polynomial and FSA MNPs</td>
</tr>
<tr>
<td>SIM/DSSSL</td>
<td>Computes P_b & plots signals for linear system</td>
</tr>
</tbody>
</table>

Table 2

The other two conventional systems are SIM/HSIGS and SIM/PSIGS, and are displayed in Figs. (3) and (4), respectively. HSIGS is an abbreviation of "histogram signals". In addition to computing P_b, this system outputs all relevant signals for detailed analysis. The SIM/HSIGS system works for both the histogram and EBH MNPs. PSIGS is short for "polynomial signals", and the SIM/PSIGS system works for the CPA and MIPA MNPs. SIM/PSIGS also works for the FSA MNP, even though the FSA is not a polynomial approximation method.

The DSSS systems are shown in Figs. (5) through (9). The basic system, SIM/SS_PE, is shown in Fig. (5). QPSK data is generated by the SPW QPSK SOURCE library block. The spectral spreading is achieved by multiplying the QPSK data by a Pseudo Noise (PN) sequence, and the jammers and Gaussian noise are added in the channel. The user must copy an MNP without a correlator into the designated space. The transformed sequence is multiplied by the
same PN sequence to despread the spectrum. A PSK matched filter demodulator library block is used to receive the message, and the HISTO/PROB_OF_ERROR block is used to compute P_e.

4. Using the MNPs in an IIT SPW System

A simple three step process is required to use the MNPs in the IIT SPW simulations. First, the user enters the Block Diagram Editor (BDE) and loads one of the systems listed in Table 2 into a viewport. Second, the desired MNP is copied from the User Palette into the designated space in the system, making sure that all wires are properly connected. The parameters in the MNP block are already exported to the parameters on the top level of the system. Finally, the system level parameters are adjusted by the user to their desired settings and the system is simulated.

5. Parameters for IIT SPW Simulations

There are numerous parameters which specify the configuration of the IIT SPW simulations. It is not possible to specify every parameter explicitly since some parameters are dependent on others. For example, the symbol rate, R_s, the sampling frequency, f_s, and the number of samples per symbol, N_s, are related by $R_s = f_s/N_s$. Thus, specifying any two of these parameters implies a value for the third. In this manual a parameter which is directly specified is enclosed in braces {} for clarity. The remaining parameters are considered to be variables, and their values are a function of the specified parameters. A listing of the parameters of the IIT SPW simulations is presented in Table 3.
IIT SPW System Parameters

<table>
<thead>
<tr>
<th>SOURCE PARAMETERS:</th>
<th>Symbol</th>
<th>Name in SPW</th>
</tr>
</thead>
<tbody>
<tr>
<td>Probability of Zero Symbol</td>
<td>P_z</td>
<td>prob_zero</td>
</tr>
<tr>
<td>Sampling Frequency</td>
<td>f_s</td>
<td>s_freq</td>
</tr>
<tr>
<td>Samples Per Symbol</td>
<td>N_z</td>
<td>samples_per_symbol</td>
</tr>
<tr>
<td>Symbol Rate</td>
<td>R_s</td>
<td>Rs</td>
</tr>
</tbody>
</table>

ADDITIONAL SOURCE PARAMETERS FOR SPREAD SPECTRUM SYSTEMS:

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Samples per Chip</td>
<td>N_c</td>
</tr>
<tr>
<td>Processing Gain</td>
<td>PG</td>
</tr>
</tbody>
</table>

CHANNEL PARAMETERS:

Continuous Wave Jammer

<table>
<thead>
<tr>
<th>Jammer to Signal Ratio</th>
<th>J/S</th>
<th>J1_S, J2_S, J3_S</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequency Fraction</td>
<td>f_c/R_z</td>
<td>freq1, freq2, freq3</td>
</tr>
<tr>
<td>Jammer Phase</td>
<td>ϕ_i</td>
<td>phase1, phase2, phase3</td>
</tr>
</tbody>
</table>

Partial Band Jammer

<table>
<thead>
<tr>
<th>Jammer to Signal Ratio</th>
<th>J_{pb}/S</th>
<th>Jpb_S</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cutoff Frequency Fraction</td>
<td>f_c/R_z</td>
<td>pfreq</td>
</tr>
</tbody>
</table>

Gaussian Noise

| Bit Energy to Gaussian Noise Power Ratio | E_b/N_0 | Eb_No |
| Gaussian Noise Power | N_0 | No |

RECEIVER PARAMETERS:

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Samples per Correlation</td>
<td>N</td>
</tr>
<tr>
<td>Order of Approximation</td>
<td>P</td>
</tr>
<tr>
<td>Number of Bins</td>
<td>B</td>
</tr>
<tr>
<td>Symbols per P_b calculation</td>
<td>N_{pb}</td>
</tr>
</tbody>
</table>

Table 3
5.1 Parameter Overview

Several of the parameters in the SPW simulations are interrelated, and certain relationships between them must be maintained. In addition, the number of iterations per simulation run is also dependent on certain parameters. It is necessary to choose the correct number of iterations per simulation to be certain that the desired number of P_b values will be calculated. Do not select run to EOF, because there is no end of file in these systems and they would run indefinitely.

The nonlinearity in the MNP blocks requires vector operation. In all of the MNPs listed in Table 1 the incoming serial data is buffered, operated on by the nonlinearity in vector form, and converted back to serial form. The length of this vector is N, the number of samples per correlation. This length also corresponds to the number of samples for each MNT approximation. The correlation must be based on an integer number of symbols, so N/N_s must be an integer. If N/N_s is not an integer correlations after the first one will not be synchronized to the symbol period and P_b will suffer as a result.

Let I_Q be the number iterations for a conventional QPSK simulation run and k be the number of P_b points to be computed. Also, let C be the number of correlations per P_b calculation. This also corresponds to the number of MNT approximations per P_b calculation. C is an implicit variable which is a function of other parameters. The following three constraints, (A), (B), and (C), must be maintained at all times:

\[
\begin{align*}
N / N_s \times C &= N_{Pb} \quad \text{(A)} \\
I_Q &= k \times N \times C + N \quad \text{(B)} \\
N / N_s \text{ must be an integer} \quad \text{(C)}
\end{align*}
\]

Fundamental Constraint Box (1)
For example, let \(\{N\} = 5,000 \), \(\{N_t\} = 25 \) and \(\{N_{\text{st}}\} = 1,000 \). (These are the default values in the IIT SPW systems.) From constraint (A),

\[
\frac{\{N\}}{\{N_t\}} \cdot C = \{N_{\text{st}}\} \\
5,000 / 25 \cdot C = 1,000 \\
C = 5
\]

The number of iterations required for a single \(P_b \) data point \((k = 1) \) is determined from constraint (B) to be \(I_Q = 25,000 + 5,000 = 30,000 \). To compute three \(P_b \) data points requires \(I_Q = 3 \cdot 25,000 + 5,000 = 80,000 \). Note that for both cases \(C = 5 \) and \(\{N\} / \{N_t\} = 200 \), which is an integer as required by constraint (C). When using the SPW iteration macro to iterate over \(N_t \), \(N \) must be an integer multiple of the least common multiple of all the values of \(N_t \). This insures that constraint (C) is satisfied throughout the iteration.

The additional \(N \) term in constraint (B) is a result of buffering requirements. If the number of iterations for each simulation are chosen to be greater than the required number \(I_Q \), more than \(k \) \(P_b \) values may be computed. Conversely, if the number of iterations is less than required, fewer than \(k \) \(P_b \) values will be computed. For the Spread Spectrum systems in this report, the required number of iterations is \(I_S = I_Q + N_t \), due to time delay in the PSK demodulator block.

Note: The CPA with Gaussian Tails nonlinearities (CPA/PDF_GT_NONLI and CPA/PDF_GT_NL_NC) must have at least four bins to function properly.
5.2 Detailed Parameter Discussion

This following discussion outlines the reasons why the parameters in Table 3 are the preferred way to specify the configuration of the SPW systems. In addition, two very important relationships which are summarized below are discussed:

<table>
<thead>
<tr>
<th>Maintain (R_s = f_s / N_s) at all times</th>
</tr>
</thead>
<tbody>
<tr>
<td>For the SS systems, also maintain (N_s = N_s PG) at all times</td>
</tr>
</tbody>
</table>

Fundamental Constraint Box (3)

The derivations in the following sections are performed in each channel separately. QPSK modulation may be viewed as Binary Phase Shift Keying (BPSK) in the In-Phase and Quadrature channels; each QPSK symbol consists of two BPSK bits. The Continuous Wave (CW) jammer may be viewed as a sinusoid in each channel, and the Partial Band (PB) jammer may be viewed as a filtered Gaussian signal in each channel. \(E_o / N_o \) and \(J/S \) are the same for each channel and for the composite signal. In addition, the bit rate of each channel, \(R_b \), is equal to \(R_s \), and the number of samples per bit, \(N_b \), is equal to \(N_s \).

5.2.1 System Parameters Related to the Information Signal and Gaussian Noise

Signal Energy

The energy, \(E \), of a signal \(s(t) \) is defined as

\[
E = \int_{-\infty}^{\infty} |s(t)|^2 dt
\]

(3)

For discrete signals this becomes
\[E = \sum_{n=-\infty}^{\infty} |s(n)|^2 \frac{1}{f_s} \]

where \(f_s \) is the sampling frequency. A BPSK bit maintains a constant level \(\pm A \) for the entire bit period. The energy of one bit, \(E_b \), is given by

\[E_b = \sum_{n=0}^{N_t} \frac{A^2}{f_s} = \frac{A^2 N_t}{f_s} = \frac{A^2}{R_t} \]

where \(N_t \) is equal to the number of samples per bit and \(R_t = \frac{f_s}{N_t} \) is equal to the bit rate.

In many analyses it is desirable to compute \(P_b \) as a function of \(E_b/N_0 \), where \(N_0 \) is the background noise power. This can be achieved by making \(E_b/N_0 \) a parameter, \(\{E_b/N_0\} \), and making \(N_0 \) a parameter, \(\{N_0\} \). Thus, for BPSK

\[\{E_b/N_0\} = \frac{E_b}{\{N_0\}} = \frac{A^2}{\{N_0\} R_t} \]

Then the bit amplitude is

\[A^2 = \{E_b/N_0\} \frac{\{N_0\} f_s}{N_t} \]

Signal Power

The power, \(P \), of a signal is defined as

\[P = \frac{1}{T} \int_{-T}^{T} |s(t)|^2 dt \]

where \(T \) is the period of the signal. For discrete signals the power is
\[P = \frac{1}{T} \sum_{n} |s(n)|^2 = \frac{1}{f_s} \]

(9)

For a BPSK signal with amplitude \(\pm A \) the power, \(S \), is

\[S = \frac{f_s}{N} \sum_{n=0}^{N} A^2 = A^2 \]

(10)

5.2.2 System Parameters Relating the Continuous Wave Jammer to the Information Signal

The power of a CW jammer is

\[J = \frac{1}{2\pi} \int_{-\pi}^{\pi} A_j^2 \cos^2(\omega_j t) dt = \frac{A_j^2}{2} \]

(11)

where \(A_j \) is the jammer amplitude and \(\omega_j \) is the jammer frequency. The jammer amplitude can be found as a function of the parameter \(\{J/N_0\} \):

\[\{J/N_0\} = \frac{J}{\{N_0\}} = \frac{A_j^2/2}{\{N_0\}} \]

(12)

\[A_j^2 = 2\{J/N_0\}\{N_0\} \]

(13)

It is often more useful to write the jammer amplitude as a function of the parameter \(\{J/S\} \):

\[\{J/S\} = \frac{J}{S} = \frac{A_j^2/2}{A^2} \]

(14)
Relationship between CW Jammer Parameters

It is quite straightforward to show that

\[A_j^2 = 2A^2\{J/S\} = 2\{E_s/N_0\} \frac{f_r}{N_s} \{J/S\} \] \hspace{1cm} (15)

Usually these parameters are specified in decibels (dB), and the following relationship results:

\[\{J/S\}_{dB} = \{J/N_0\}_{dB} + 10\log_{10} \left(\frac{N_s}{\{E_s/N_0\} f_r} \right) \] \hspace{1cm} (17)

Note that in Eq. (17) \{E_s/N_0\} is not in dB.

Choice of CW Jammer Parameters

One of the key assumptions in the LO derivation is that the signal is small compared to the jammer, i.e. the ratio \(A_j^2/A^2 \) is large. From Eqs. (7) and (13) it is seen that if the parameter \{J/N_0\} is used, this ratio becomes

\[\frac{A_j^2}{A^2} = \frac{2\{J/N_0\}}{\{E_s/N_0\} f_r} \] \hspace{1cm} (18)

This means that the validity of the small signal assumption is not only dependent on \{J/N_0\}, but also on many other parameters. However, if the parameter \{J/S\} is used instead of \{J/N_0\}, the ratio \(A_j^2/A^2 \) is determined from Eqs. (7) and (15) to be
Now the small signal assumption is only dependent on \(\{J/S\} \). For this reason, the use of the \(\{J/S\} \) parameter is preferred over \(\{J/N_0\} \).

Frequency Parameters

The message bandwidth is proportional to the bit rate, and \(R_s = \frac{f_s}{N} \). If \(N \) is varied, the message bandwidth will change but \(f_s \), the jammer frequency, will not. Thus, the spectrum of the message sequence will expand or contract while the spectral position of the jammer will remain unchanged. As the relative position of the jammer and the message change, the performance of the system will change dramatically. In order to isolate the performance of the MNP from the effects of this shift, it is useful to use a frequency ratio, \(\{f_s/R_s\} \), instead of \(\{f_s\} \). Using this ratio, the jammer frequency is \(f_j = \{f_s/R_s\} R_s \). This way, \(f_j \) and the message bandwidth change in the same manner when \(R_s \) is varied.

Alternatively, the sampling frequency may be set to \(f_s = \{N\} \{R_s\} \). Then if \(R_s \) is constant, the message bandwidth will remain constant as \(N \) is varied. The spectral positions of both the jammer and the message signal will remain constant.
5.2.3 System Parameters Relating the Partial Band Jammer to the Information Signal

PB Jammer Power

The autocorrelation function, $r_w(m)$, for sampled white Gaussian noise, $w(n)$, is given by

$$r_w(m) = \sigma_w^2 \delta(m) \quad (20)$$

where σ_w^2 is the variance of $w(n)$ and $\delta(m)=\begin{cases} 1, & m=0 \\ 0, & \text{else} \end{cases}$ is the Kronecker delta function. The Power Spectral Density (PSD), $S_w(f)$, is given by

$$S_w(f) = \sigma_w^2 \quad \text{for all } f \quad (21)$$

The frequency response of an ideal lowpass filter is

$$H(f) = \begin{cases} 1, & |f| < f_c \\ 0, & f_c < |f| < \frac{1}{2} \end{cases} \quad (22)$$

where f_c is the cutoff frequency (normalized by the sampling frequency, f_s). The Gaussian noise PB jammer is constructed by passing white Gaussian noise through the lowpass filter (for simulation at baseband). Therefore, the PSD of the PB jammer, $S_{PB}(f)$, is

$$S_{PB}(f) = \begin{cases} \sigma_w^2, & |f| < f_c \\ 0, & f_c < |f| < \frac{1}{2} \end{cases} \quad (23)$$

The power of the PB jammer, J_{PB}, may be found by integrating the PSD over the domain of f, resulting in
Given the jammer-to-signal ratio parameter \(\{J_{pb}/S\} \), then

\[
\{J_{pb}/S\} = \frac{J_{pb}}{A^2} = \frac{J_{pb}}{\{E_b/N_0\} \frac{\{N_0\} f_s}{N_s}} = \frac{2f_c N_s \sigma_w^2}{\{E_b/N_0\} \{N_0\} f_s}
\]

(25)

To find the required value of \(\sigma_w^2 \) for a given \(\{J_{pb}/S\} \)

\[
\sigma_w^2 = \frac{\{J_{pb}/S\} \{E_b/N_0\} \{N_0\} f_s}{2f_c \frac{f_s}{N_s}} = \frac{\{J_{pb}/S\} \{E_b/N_0\} \{N_0\}}{2f_c R_s}
\]

(26)
If f_c is chosen as a fraction of the bit rate, i.e. if \(\{f_c/R_s\} \) is used then

\[
\sigma_v^2 = \frac{\{J_{rb}/S\} \{E_b/N_0\} \{N_0\}}{2 \{f_c/R_s\}}
\]

(27)

5.2.4 Spread Spectrum System Parameters

The processing gain, number of samples per chip, and number of samples per symbol are related by

\[N_s = N_c PG \]

(28)

Also, since \(R_s = \frac{f_s}{N_s} \), then the chip rate, \(R_c \), is equal to

\[R_c = \frac{f_s}{N_c} = R_s \frac{N_s}{N_c} = R_s PG \]

(29)
6. References

NONLINEAR RECEIVER PROB. OF ERROR CALCULATION

SOURCE CHANNEL RECEIVER

SOURCE PARAMETERS
Probability of Zero: 0.5
Sampling Frequency: 1...1
Bit Rate: 0.1
FFT Length: 1024

CHANNEL PARAMETERS
 CH JIFFER Freqns. PB JIFFER Freqns.
J/S (dB): 30.0 | J/S (dB): -300.0 |
Freq. Fraction: 0.100 | Passband Ripple in dB: 1.0 |
Phase: 0.0 | Passband Edge Frequency Fraction: 0.25
 CH JIFFER 2 CH JIFFER 1
J/S (dB): -300.0 | J/S (dB): -300.0 |
Freq. Fraction: 0.336 | Stopband Edge Frequency Fraction: 0.3
Phase: 0.0 | Edge in dB: 18.0
 CH JIFFER 3
J/S (dB): -300.0 | No in dB: 0.0
Freq. Fraction: 0.176 | Phase: 0.0

RECEIVER PARAMETERS
Orders: 4
Samples per Correlation: 5000
Samples per Bit: 25
Number of Bits: 81
Number of Ref. Signals: 1
Number of plot points: 1000
Symbols per PE Calculation: 1000
Data Filter: "hist
Iteration number:

REFERENCE SIGNALS

Wed Aug 4, 1993 12:26:18
NONLINEAR RECEIVER PROB. OF ERROR CALCULATION

SOURCE CHANNEL RECEIVERS

SOURCE PARAMETERS

- Probability of Zero: 0.5
- Sampling Frequency: 100
- Bit Rate: 5.1
- FFT Length: 1024

RECEIVER PARAMETERS

- Orders: 1
- Samples per Correlations: 5000
- Samples per Bits: 25
- Number of Bits: 10
- Number of pilot points: 1000
- Symbols per PE Calculation: 100
- Base File Names: "sys".
- Iteration numbers:

CHANNEL PARAMETERS

- CH JINTER PARMS.
- JS (10Hz) -300.0
- Filter Grain: 15.0
- Phase: 0.0
- Fraction: 0.338
- Align PARMS.
- JS (10Hz) -300.0
- Phase: 0.0
- Ems in db: 10.0
- Num: 0.9

REFERENCE SIGNALS

sim/pes/system_10

Fig. (2)
GPSK Spread Spectrum Simulation
Locally Optimal Nonlinear Processing
Method 1: Nonlinearity Before Despreading

Figure (5)
QPSK Spread Spectrum Simulation

Method I: Nonlinearity Before Despreading

Figure (6)
Figure (7)
QPSK Spread Spectrum Simulation

(Locally Optimal Nonlinear Processing)

Method I: Nonlinearity Before Despreading

SOURCE

CHANNEL

RECEIVER

SOURCE PARAMETERS

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sampling Frequency</td>
<td>...</td>
</tr>
<tr>
<td>Samples per Chips</td>
<td>2.0</td>
</tr>
<tr>
<td>Spreading Gain</td>
<td>6.0</td>
</tr>
<tr>
<td>Bit Rate</td>
<td>8.1</td>
</tr>
</tbody>
</table>

CHANNEL PARAMETERS

<table>
<thead>
<tr>
<th>Jitter 1 Parameters</th>
<th>Jitter 2 Parameters</th>
<th>Jitter 3 Parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jitter 1 Filter</td>
<td>Jitter 2 Filter</td>
<td>Jitter 3 Filter</td>
</tr>
<tr>
<td>Frequency</td>
<td>Frequency</td>
<td>Frequency</td>
</tr>
<tr>
<td>Phase</td>
<td>Phase</td>
<td>Phase</td>
</tr>
<tr>
<td>Bandwidth</td>
<td>Bandwidth</td>
<td>Bandwidth</td>
</tr>
<tr>
<td>Symbol Rate</td>
<td>Symbol Rate</td>
<td>Symbol Rate</td>
</tr>
</tbody>
</table>

RECEIVER PARAMETERS

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Order</td>
<td>4</td>
</tr>
<tr>
<td>Samples per OFDM symbol</td>
<td>10000</td>
</tr>
<tr>
<td>Number of Bits</td>
<td>64.0</td>
</tr>
<tr>
<td>Number of points per symbol</td>
<td>10000</td>
</tr>
<tr>
<td>Output signal sinks</td>
<td></td>
</tr>
<tr>
<td>Output signal sinks</td>
<td></td>
</tr>
</tbody>
</table>

Figure (8)
QPSK Spread Spectrum Simulation

SOURCE PARAMETERS
- Coupling Frequency: 1.0
- Samples per Chip: 8.0
- Spreading Gain: 5.0

CHANNEL PARAMETERS

<table>
<thead>
<tr>
<th>Component</th>
<th>Symbol</th>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>CH JAMMER 1</td>
<td>S1</td>
<td>J-9 (dBm)</td>
<td>-300.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Filter Orders</td>
<td>11.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Phase</td>
<td>0.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Passband Ripple in dBm</td>
<td>0.1</td>
</tr>
<tr>
<td>CH JAMMER 2</td>
<td>S2</td>
<td>J-6 (dBm)</td>
<td>-300.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Passband Edge Frequency Fraction</td>
<td>0.25</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Phase</td>
<td>0.0</td>
</tr>
<tr>
<td>CH JAMMER 3</td>
<td>S3</td>
<td>J-9 (dBm)</td>
<td>-300.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Envelope in dBm</td>
<td>18.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Phase</td>
<td>0.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Noise in dBm</td>
<td>0.0</td>
</tr>
</tbody>
</table>

RECEIVER PARAMETERS
- Symbols per PE Calculations: 1000
- Base_filename: "spread"
- Iteration numbers: ...

OUTPUT SIGNAL SINKS
Appendix A

Docgen Listing

This Appendix is an alphabetical listing of the help screens available for each IIT SPW block. In this Appendix the inputs, parameters and outputs of each block are capitalized in the description of the block to distinguish them from the text. However, in the listing of the inputs, parameters and outputs, the capitalization matches the capitalization of the actual parameter names in SPW.

The names of hierarchical blocks are marked with a dagger †. The details of these blocks are printed in alphabetical order in Appendix B.
Name:
 cpa/cdf2

Description:
This hierarchical block generates a Cumulative Distribution Function (CDF) and a Probability Density Function (PDF) of the magnitude of the input message by applying the Continuous Polynomial Approximation (CPA) algorithm to a histogram CDF. A vec/heap_sort block is used to sort the data to prepare it for the histo/equi block, which generates the histogram CDF. The cpa/slope1 block computes the derivatives of the histogram needed by the CPA algorithm. The cpa/coef_lt block uses the equiprobable bin histogram CDF, its derivatives, and the breakpoints to compute the CPA CDF and PDF.

This block applies the linear transform to the polynomial. Without the linear transform the magnitude values in each bin would range from BP[K-1] to BP[K]. The linear transform shifts each bin to the origin, so the new magnitude values range from 0 to BP[K]-BP[K-1].

Inputs:
 data Magnitude of input message sequence

Parameters:
 bins Number of bins
 samples Number of samples

Outputs:
 bp Breakpoints (CDF and PDF interval boundaries)
 cdf CDF polynomial coefficients
 pdf PDF polynomial coefficients

See also:
 vec/heap_sort, histo/equi, cpa/slope1, cpa/coef_lt

Name:
 cpa/cdf2_nonlin

Description:
This is a hierarchical block which applies the nonlinearity to the input signal in vector format. The histo/rec_to_polar block converts the two dimensional input signal from rectangular to polar coordinates, and a CPA of the Probability Density Function (PDF) of the magnitude is computed by the cpa/cdf2 block. The poly/mnt block obtains the Memoryless Nonlinear Transform.
(MNT) from the CPA PDF and applies it to the magnitude of the input message sequence. The result is converted back to rectangular coordinates by the histo/polar_to_rec block using the unmodified phase. The poly/plot block generates a plot of the PDF and CDF from their polynomial coefficients.

The coefficients in the cpa/cdf2 block are computed with the linear transform applied, thus each bin is shifted to the origin.

Refer to the poly/mnt block for more information on the MNT.

Inputs:
- i_in: In-Phase component of input message sequence
- q_in: Quadrature component of input message sequence

Parameters:
- samples: Number of samples in input vectors
- bins: Number of bins in the histogram PDF
- points: Number of plot points for PDF and MNT

Outputs:
- pdf: CPA PDF
- i_out: In-Phase component of transformed sequence
- q_out: Quadrature component of transformed sequence
- mnt: Plot of the Memoryless Nonlinear Transform
- bp: Breakpoints (PDF and MNT interval boundaries)

See also:
- histo/rec_to_polar, cpa/cdf2, poly/mnt, poly/plot, histo/polar_to_rec

Name:
cpa/cdf3

Description:
This hierarchical block generates a Cumulative Distribution Function (CDF) and a Probability Density Function (PDF) of the magnitude of the input message by applying the Continuous Polynomial Approximation (CPA) algorithm to a histogram CDF. A vec/heap_sort block is used to sort the data to prepare it for the histo/equi block, which generates the histogram CDF. The cpa/slope1 block computes the derivatives of the histogram needed by the CPA algorithm. The
The **cpa/cdf3_nonlin** block is a hierarchical block which applies the nonlinearity to the input signal in vector format. The input signal is converted from rectangular to polar coordinates by the **histo/rec_to_polar** block. A CPA of the Probability Density Function (PDF) of the magnitude is computed by the **cpa/cdf3** block. The **poly/mnt** block obtains the Memoryless Nonlinear Transform (MNT) from the CPA PDF and applies it to the magnitude of the input message sequence. The result is converted back to rectangular coordinates by the **histo/polar_to_rec** block using the **vec/heap_sort**, **hista/equi**, **cpa/slope1**, and **cpa/coef_ltdaf**.
unmodified phase. The poly/plot block generates a plot of the PDF and CDF from their polynomial coefficients.

The coefficients in the cpa/cdf3 block are computed with the linear transform applied, thus each bin is shifted to the origin. Also, the constraint that the CDF be continuous is removed.

Refer to the poly/mnt block for more information on the MNT.

Inputs:
- i_in: In-Phase component of input message sequence
- q_in: Quadrature component of input message sequence

Parameters:
- samples: Number of samples in input vectors
- bins: Number of bins in the histogram PDF
- points: Number of plot points for PDF and MNT

Outputs:
- pdf: CPA PDF
- i_out: In-Phase component of transformed sequence
- q_out: Quadrature component of transformed sequence
- mnt: Plot of the Memoryless Nonlinear Transform
- bp: Breakpoints (PDF and MNT interval boundaries)

See also:
- histo/rec_to_polar, cpa/cdf3, poly/mnt, poly/plot, histo/polar_to_rec

Name:
cpa/coef.gt

Description:
This block computes the Continuous Polynomial Approximation (CPA) to a function. In this implementation, the CPA is an approximation of a Probability Density Function (PDF).

The coefficients in this routine are computed with the linear transform applied, thus each bin is shifted to the origin. The first and last bins are a Gaussian tail instead of a polynomial. The mean and variance for the Gaussian are taken to be the mean and variance of the received signal.

Note that the value for BINS must be set to a value greater than or equal to 4.
WARNING:
This program modifies the histogram PDF input. If another block is going to also use the histogram PDF results will be unpredictable.

Inputs:
bp Breakpoints (PDF interval boundaries)
f Histogram PDF
df First derivative of Histogram PDF
mean Average of the received signal
var Variance of the received signal

Parameters:
bins Number of bins

Outputs:
pdf CPA PDF

Name:
cpa/coef_lt

Description:
This block computes the Continuous Polynomial Approximation (CPA) to a function. In this implementation, the CPA is an approximation of a Cumulative Distribution Function (CDF).

The coefficients in this routine are computed with the linear transform applied, thus each bin is shifted to the origin.

Inputs:
bp Breakpoints (CDF and PDF interval boundaries)
histo_cdf Histogram CDF
df First derivative of Histogram CDF
ddf Second derivative of Histogram CDF

Parameters:
bins Number of bins

Outputs:
cdf CPA CDF
pdf CPA PDF
Name:
 cpa/coef_ltdaf

Description:
 This block computes the Continuous Polynomial Approximation (CPA) to a function. In this implementation, the CPA is an approximation of a Cumulative Distribution Function (CDF).

 The coefficients in this routine are computed with the linear transform applied, thus each bin is shifted to the origin. Also, the constraint that the CDF be continuous is removed.

Inputs:
 bp Breakpoints (CDF and PDF interval boundaries)
 df First derivative of Histogram CDF
 ddf Second derivative of Histogram CDF

Parameters:
 bins Number of bins

Outputs:
 cdf CPA CDF
 pdf CPA PDF

Name:
 cpa/pdf_gt†

Description:
 This hierarchical block generates a Probability Density Function (PDF) of the magnitude of the input message by applying the Continuous Polynomial Approximation (CPA) algorithm to a histogram PDF. A vec/heapsort block is used to sort the data to prepare it for the histo/equi block, which generates the histogram PDF. The vec/ave_bp obtains values of the histogram at the breakpoints by averaging the values of the adjacent bins. The cpa/slope2 block computes the derivatives of the histogram needed by the CPA algorithm. The cpa/coef_gt block uses the equiprobable bin histogram, its derivatives, the breakpoints, and the mean and variance of the magnitude to compute the CPA PDF.

 The first and last bins are approximated using Gaussian tails instead of polynomials. Because of this, the poly/mnt_gt and poly/plot_gt blocks should be used with this block.
The linear transform is applied to the polynomial bins. Without the linear transform the magnitude values in each bin would range from BP[K-1] to BP[K]. The linear transform shifts each bin to the origin, so the new magnitude values range from 0 to BP[K]-BP[K-1].

Note that the value for BINS must be set to a value greater than or equal to 4.

Inputs:
- data
 Magnitude of input message sequence

Parameters:
- bins
 Number of bins
- samples
 Number of samples

Outputs:
- bp
 Breakpoints (PDF interval boundaries)
- pdf
 PDF polynomial coefficients

See also:
- vec/heap_sort, histo/equi, cpa/slope2, cpa/coef_ltdaf, poly/mnt_gt, poly/plot_gt

Name:
- cpa/pdf_gt_nonlin

Description:
This is a hierarchical block which applies the nonlinearity to the input signal in vector format. The histo/rec_to_polar block converts the two dimensional input signal from rectangular to polar coordinates, and a CPA of the Probability Density Function (PDF) of the magnitude is computed by the cpa/pdf_gt block. The poly/mnt block obtains the Memoryless Nonlinear Transform (MNT) from the CPA PDF and applies it to the magnitude of the input message sequence. The result is converted back to rectangular coordinates by the histo/polar_to_rec block using the unmodified phase. The poly/plot block generates a plot of the PDF and CDF from their polynomial coefficients.

The coefficients in the cpa/pdf_gt block are computed with the linear transform applied, thus each bin is shifted to the origin. The first and last bins are a Gaussian tail instead of a polynomial. The mean and variance for the Gaussian are taken to be the mean and variance of the received signal.

Refer to the poly/mnt block for more information on the MNT.
Inputs:
 i_in In-Phase component of input message sequence
 q_in Quadrature component of input message sequence

Parameters:
 samples Number of samples in input vectors
 bins Number of bins in the histogram PDF
 points Number of plot points for PDF and MNT

Outputs:
 pdf CPA PDF
 i_out In-Phase component of transformed sequence
 q_out Quadrature component of transformed sequence
 mnt Plot of the Memoryless Nonlinear Transform
 bp Breakpoints (PDF and MNT interval boundaries)

See also:
 histo/rec_to_polar, cpa/pdf_gt, poly/mnt, poly/plot, histo/polar_to_rec

Name:
 cpa/s_cdf2_nl_nc

Description:
 This hierarchical block buffers the received data and converts it from serial to vector data and
 applies it to the cpa/cdf2_nonlin nonlinearity. This block does not generate the summation part
 of the LO decision statistic.

 The romelib/timing block generates timing waveforms which enable and disable the
 nonlinearity and all subsequent blocks at appropriate times. Of particular interest are the
 CLK_OUT and HOLD_VEC signals. The HOLD_VEC signal holds vector blocks while the
 serial data is buffered into vector form. This signal goes low during the simulation iteration in
 which the vector processing completes and the outputs are available. The CLK_OUT signal
 provides flexibility for use in multirate systems by pulsing high when a valid data sample is
 produced at the output of the cpa/s_cdf2_nl_nc block. The CLK_OUT signal has the same
 period as the CLK_IN signal, thus output samples are produced at the same rate as that of the
 input signal. The remaining romelib/timing signals are internal to the cpa/s_cdf2_nl_nc block,
 and are used in serial to vector and vector to serial buffering.
The SAMPLES_PER_SYMBOL, NUM_REFS, and M_TYPE are characteristics of the reference symbols. The reference signals must be created before using this block, and are stored in the /spwdata/ref library. This permits the designer to use any desired signal constellation. The NUM_REFS parameter must be exported to the histo/correlator2 block, and the other two parameters are exported to the filename of the rl/inf_vsource block as "ref/"&substr("m_type":model,2,length("m_type":model)-2)"&"_&xstring("samples_per_symbol":model)&"spb_i"" for the I channel signals and "ref/"&substr("m_type":model,2,length("m_type":model)-2)"&"_&xstring("samples_per_symbol":model)&"spb_q"" for the Q channel signals. For example, the filenames for a Binary Phase Shift Keying (BPSK) signal with 25 samples per symbol would be /spwdata/ref/bpsk_25spb_i and /spwdata/ref/bpsk_25spb_q.

Inputs:

in Input message sequence (complex input)
clk_in Clock input for romelib/timing

Parameters:

samples Number of samples in input vectors
bins Number of bins in the Probability Density Function (PDF)
samples_per_symbol Number of samples per data symbol
num.refs Number of reference signals
m_type Modulation type

Outputs:

mnt Plot of the Memoryless Nonlinear Transform
g Complex transformed sequence (vector)
out Complex transformed sequence (serial)
clk_out Timing signal: goes high when valid data sample is available at the output of cpa/s_cdf2_nl nc
hold_vec Timing signal: goes low when vector outputs are available
pdf Plot of the PDF of magnitude
bp Breakpoints (PDF and MNT interval boundaries)

See also:
cpa/cdf2_nonlin, romelib/timing, rl/inf_vsource, cpa/s_cdf2_nonlin

A-10
Name:
cpa/s_cdf2_nonlin

Description:
This hierarchical block buffers the received data and converts it from serial to vector data and applies it to the cpa/cdf2_nonlin nonlinearity. In addition, the summation in the LO decision statistic is formed using the histo/correlator2 block. The output of the correlator is converted back to serial form.

The romelib/timing block generates timing waveforms which enable and disable the nonlinearity and all subsequent blocks at appropriate times. Of particular interest are the CLK_OUT and HOLD_VEC signals. The HOLD_VEC signal holds vector blocks while the serial data is buffered into vector form. This signal goes low during the simulation iteration in which the vector processing completes and the outputs are available. The CLK_OUT signal provides flexibility for use in multirate systems by pulsing high when a valid data sample is produced at the output of the cpa/s_cdf2_nonlin block. The CLK_OUT signal has the same period as the CLK_IN signal, thus output samples are produced at the same rate as that of the input signal. The remaining romelib/timing signals are internal to the cpa/s_cdf2_nonlin block, and are used in serial to vector and vector to serial buffering.

The SAMPLES_PER_SYMBOL, NUM_REFS, and M_TYPE are characteristics of the reference symbols. The reference signals must be created before using this block, and are stored in the /spwdata/ref library. This permits the designer to use any desired signal constellation. The NUM_REFS parameter must be exported to the histo/correlator2 block, and the other two parameters are exported to the filepath of the rl/inf_vsource block as "ref/"&substr("m_type":model,2,length("m_type":model)-2)" &xstring("samples_per_symbol":model)&"_" &xstring("samples_per_symbol":model)&"_" &xstring("samples_per_symbol":model)&"_" for the I channel signals and "ref/"&substr("m_type":model,2,length("m_type":model)-2) &"_" &xstring("samples_per_symbol":model)&"_" &xstring("samples_per_symbol":model)&"_" for the Q channel signals. For example, the filenames for a Binary Phase Shift Keying (BPSK) signal with 25 samples per symbol would be /spwdata/ref/bpsk_25spbi and /spwdata/ref/bpsk_25spbq.

Inputs:
in Input message sequence (complex input)
clk_in Clock input for romelib/timing

Parameters:
samples Number of samples in input vectors
 bins Number of bins in the Probability Density Function (PDF)
samples_per_symbol Number of samples per data symbol
 num.refs Number of reference signals
m_type Modulation type
Outputs:

- **mnt**: Plot of the Memoryless Nonlinear Transform
- **g**: Complex transformed sequence
- **out**: Decision of nonlinearity
- **clk_out**: Timing signal: goes high when valid data sample is available at the output of cpa/s_cdf2_nonlin
- **hold_vec**: Timing signal: goes low when vector outputs are available
- **pdf**: Plot of the PDF of magnitude
- **bp**: Breakpoints (PDF and MNT interval boundaries)

See also:
- cpa/cdf2_nonlin, histo/correlator2, romelib/timing, rl/inf_vsource

Name:
- **cpa/s_cdf3_nl_nc**

Description:
This hierarchical block buffers the received data and converts it from serial to vector data and applies it to the cpa/cdf3_nonlin nonlinearity. This block does not generate the summation part of the LO decision statistic.

The romelib/timing block generates timing waveforms which enable and disable the nonlinearity and all subsequent blocks at appropriate times. Of particular interest are the CLK_OUT and HOLD_VEC signals. The HOLD_VEC signal holds vector blocks while the serial data is buffered into vector form. This signal goes low during the simulation iteration in which the vector processing completes and the outputs are available. The CLK_OUT signal provides flexibility for use in multirate systems by pulsing high when a valid data sample is produced at the output of the cpa/s_cdf3_nl_nc block. The CLK_OUT signal has the same period as the CLK_IN signal, thus output samples are produced at the same rate as that of the input signal. The remaining romelib/timing signals are internal to the cpa/s_cdf3_nl_nc block, and are used in serial to vector and vector to serial buffering.

The SAMPLES_PER_SYMBOL, NUM_REFS, and M_TYPE are characteristics of the reference symbols. The reference signals must be created before using this block, and are stored in the /spwdata/ref library. This permits the designer to use any desired signal constellation. The NUM_REFS parameter must be exported to the histo/correlator2 block, and the other two parameters are exported to the filename of the rl/inf_vsource block as "ref/"&substr("m_type":model,2,length("m_type":model)-2)&"_"&xstring("samples_per_symbol":model)&
"spb_i" for the I channel signals and "ref/"&substr("m_type":model,2,length("m_type": model)-2) &"_"&xstring("samples_per_symbol":model)&"spb_q" for the Q channel signals. For example, the filenames for a Binary Phase Shift Keying (BPSK) signal with 25 samples per symbol would be /spwdata/ref/bpsk_25spb_i and /spwdata/ref/bpsk_25spb_q.

Inputs:
in
clk_in

Parameters:
samples
bins
samples_per_symbol
num.refs
m_type

Outputs:
mnt
g
out
clk_out
hold_vec
pdf
bp

See also:
cpa/cdf3_nonlin, romelib/timing, rl/inf_vsource, cpa/s_cdf3_nonlin
Name:
cpa/s_cdf3_nonlin

Description:
This hierarchical block buffers the received data and converts it from serial to vector data and applies it to the cpa/cdf3_nonlin nonlinearity. In addition, the summation in the LO decision statistic is formed using the histo/correlator2 block. The output of the correlator is converted back to serial form.

The romelib/timing block generates timing waveforms which enable and disable the nonlinearity and all subsequent blocks at appropriate times. Of particular interest are the CLK_OUT and HOLD_VEC signals. The HOLD_VEC signal holds vector blocks while the serial data is buffered into vector form. This signal goes low during the simulation iteration in which the vector processing completes and the outputs are available. The CLK_OUT signal provides flexibility for use in multirate systems by pulsing high when a valid data sample is produced at the output of the cpa/s_cdf3_nonlin block. The CLK_OUT signal has the same period as the CLK_IN signal, thus output samples are produced at the same rate as that of the input signal. The remaining romelib/timing signals are internal to the cpa/s_cdf3_nonlin block, and are used in serial to vector and vector to serial buffering.

The SAMPLES_PER_SYMBOL, NUM_REFS, and M_TYPE are characteristics of the reference symbols. The reference signals must be created before using this block, and are stored in the /spwdata/ref library. This permits the designer to use any desired signal constellation. The NUM_REFS parameter must be exported to the histo/correlator2 block, and the other two parameters are exported to the filename of the rl/inf_vsourse block as "ref/"&substr("m_type":model,2,length("m_type":model)-2)&"_"&xstring("samples_per_symbol":model)&"spbi" for the I channel signals and "ref/"&substr("m_type":model,2,length("m_type":model)-2) &"_"&xstring("samples_per_symbol":model)&"spbq" for the Q channel signals. For example, the filenames for a Binary Phase Shift Keying (BPSK) signal with 25 samples per symbol would be /spwdata/ref/bpsk_25spbi and /spwdata/ref/bpsk_25spbq.

Inputs:
in Input message sequence (complex input)
clk_in Clock input for romelib/timing

Parameters:
samples Number of samples in input vectors
bins Number of bins in the Probability Density Function (PDF)
samples_per_symbol Number of samples per data symbol
num_ref Number of reference signals
m_type Modulation type
Outputs:

- **mnt**: Plot of the Memoryless Nonlinear Transform
- **g**: Complex transformed sequence
- **out**: Decision of nonlinearity
- **clk_out**: Timing signal: goes high when valid data sample is available at the output of cpa/s_cdf3_nonlin
- **hold_vec**: Timing signal: goes low when vector outputs are available
- **pdf**: Plot of the PDF of magnitude
- **bp**: Breakpoints (PDF and MNT interval boundaries)

See also:

- cpa/cdf3_nonlin, histo/correlator2, romelib/timing, rl/inf_vsource

Name:

cpa/s_pdf_gt_nl_nc

Description:

This hierarchical block buffers the received data and converts it from serial to vector data and applies it to the cpa/pdf_gt_nonlin nonlinearity. This block does not generate the summation part of the LO decision statistic.

The romelib/timing block generates timing waveforms which enable and disable the nonlinearity and all subsequent blocks at appropriate times. Of particular interest are the CLK_OUT and HOLD_VEC signals. The HOLD_VEC signal holds vector blocks while the serial data is buffered into vector form. This signal goes low during the simulation iteration in which the vector processing completes and the outputs are available. The CLK_OUT signal provides flexibility for use in multirate systems by pulsing high when a valid data sample is produced at the output of the cpa/s_pdf_gt_nl_nc block. The CLK_OUT signal has the same period as the CLK_IN signal, thus output samples are produced at the same rate as that of the input signal. The remaining romelib/timing signals are internal to the cpa/s_pdf_gt_nl_nc block, and are used in serial to vector and vector to serial buffering.

The SAMPLES_PER_SYMBOL, NUM_REFS, and M_TYPE are characteristics of the reference symbols. The reference signals must be created before using this block, and are stored in the /spwdata/ref library. This permits the designer to use any desired signal constellation. The NUM_REFS parameter must be exported to the histo/correlator2 block, and the other two parameters are exported to the filename of the rl/inf_vsource block as "ref/"&substr ("m_type":model,2,length("m_type":model)-2)"_"&xstring("samples_per_symbol":model)&
"spb_i" for the I channel signals and "ref/"&substr("m_type":model,2,length("m_type": model)-2) &"_"&xstring("samples_per_symbol":model)"spb_q" for the Q channel signals. For example, the filenames for a Binary Phase Shift Keying (BPSK) signal with 25 samples per symbol would be /spwdata/ref/bpsk_25spb_i and /spwdata/ref/bpsk_25spb_q.

Inputs:

- in: Input message sequence (complex input)
- clk_in: Clock input for romelib/timing

Parameters:

- samples: Number of samples in input vectors
- bins: Number of bins in the Probability Density Function (PDF)
- samples_per_symbol: Number of samples per data symbol
- num.refs: Number of reference signals
- m_type: Modulation type

Outputs:

- mnt: Plot of the Memoryless Nonlinear Transform
- g: Complex transformed sequence (vector)
- out: Complex transformed sequence (serial)
- clk_out: Timing signal: goes high when valid data sample is available at the output of cpa/s_pdf_gt_nl_ncl
- hold_vec: Timing signal: goes low when vector outputs are available
- pdf: Plot of the PDF of magnitude
- bp: Breakpoints (PDF and MNT interval boundaries)

See also:

cpa/pdf_gt_nonlin, histo/correlator2, romelib/timing, cpa/s_pdf_gt_nonlini, rl/inf_vsourcet
Name:
cpa/s_pdf_gt_nonli

Description:
This hierarchical block buffers the received data and converts it from serial to vector data and applies it to the cpa/pdf_gt_nonlin nonlinearity. In addition, the summation in the LO decision statistic is formed using the histo/correlator2 block. The output of the correlator is converted back to serial form.

The romelib/timing block generates timing waveforms which enable and disable the nonlinearity and all subsequent blocks at appropriate times. Of particular interest are the CLK_OUT and HOLD_VEC signals. The HOLD_VEC signal holds vector blocks while the serial data is buffered into vector form. This signal goes low during the simulation iteration in which the vector processing completes and the outputs are available. The CLK_OUT signal provides flexibility for use in multirate systems by pulsing high when a valid data sample is produced at the output of the cpa/s_pdf_gt_nonli block. The CLK_OUT signal has the same period as the CLK_IN signal, thus output samples are produced at the same rate as that of the input signal. The remaining romelib/timing signals are internal to the cpa/s_pdf_gt_nonli block, and are used in serial to vector and vector to serial buffering.

The SAMPLES_PER_SYMBOL, NUM_REFS, and M_TYPE are characteristics of the reference symbols. The reference signals must be created before using this block, and are stored in the /spwdata/ref library. This permits the designer to use any desired signal constellation. The NUM_REFS parameter must be exported to the histo/correlator2 block, and the other two parameters are exported to the filename of the rl/inf_vsoure block as "ref/"&substr("m_type":model,2,length("m_type":model)-2)&"_"&xstring("samples_per_symbol":model)&"spb_i" for the I channel signals and "ref/"&substr("m_type":model,2,length("m_type":model)-2)&"_"&xstring("samples_per_symbol":model)&"spb_q" for the Q channel signals. For example, the filenames for a Binary Phase Shift Keying (BPSK) signal with 25 samples per symbol would be /spwdata/ref/bpsk_25spbi and /spwdata/ref/bpsk_25spbq.

Inputs:
in Input message sequence (complex input)
clk_in Clock input for romelib/timing

Parameters:
samples Number of samples in input vectors
bins Number of bins in the Probability Density Function (PDF)
samples_per_symbol Number of samples per data symbol
num_refes Number of reference signals
m_type Modulation type
Outputs:
- **mnt**: Plot of the Memoryless Nonlinear Transform
- **g**: Complex transformed sequence
- **out**: Decision of nonlinearity
- **clk_out**: Timing signal: goes high when valid data sample is available at the output of cpa/s_pdf_gt_nonli
- **hold_vec**: Timing signal: goes low when vector outputs are available
- **pdf**: Plot of the PDF of magnitude
- **bp**: Breakpoints (PDF and MNT interval boundaries)

See also:
cpa/pdf_gt_nonlin, histo/correlator2, romelib/timing, rl/inf_vsource

Name:
cpa/slope1

Description:
This block computes the three point derivative of the histogram CDF for use in the CPA MNT construction. Extra bins are added to compute the slopes at the endpoints. This is the method described in Appendix 3 of IIT Final Report 1991, F30602-91-C-0059. This block is used in the cpa/cdf2 and cpa/cdf3 blocks.

Note:
The additional derivative at each end is always zero, since HISTO_CDF[-2]=HISTO_CDF[0]=0.0 and HISTO_CDF[BINS]=HISTO_CDF[BINS+2]=1.0.

Inputs:
- **bp**: Breakpoints (CDF interval boundaries)
- **histo_cdf**: Histogram CDF

Parameters:
- **bins**: Number of bins

Outputs:
- **df**: First derivative
- **ddf**: Second derivative
Name:
cpa/slope2

Description:
This block computes the three point derivative of the histogram PDF for use in the CPA MNT construction. Extra bins are added to compute the slopes at the endpoints. This block is used in the cpa/pdf_gt block.

Note:
The additional derivative at each end is always zero, since $HISTO_PDF[-2]=HISTO_PDF[0]=0.0$ and $HISTO_PDF[BINS]=HISTO_PDF[BINS+2]=0.0$.

Inputs:
- bp: Breakpoints (PDF interval boundaries)
- histo_pdf: Histogram PDF

Parameters:
- bins: Number of bins

Outputs:
- df: First derivative
- ddf: Second derivative
Name:
fourier/mnt

description:
This block obtains the Memoryless Nonlinear Transform (MNT) from a Fourier Series
Approximation (FSA) of a Probability Density Function (PDF). It is a hierarchical block which
contains two fourier/mnt_calc blocks. One of them computes the MNT for each point of the
magnitude of the input message sequence, and the other generates a plot of the MNT from the
minimum to the maximum magnitude value with the aid of a vec/minmax_ramp block.

This block operates on the magnitude of the two dimensional message signal.

Inputs:
a Vector of A coefficients (cosine terms)
b Vector of B coefficients (sine terms)
T "Period" of the FSA, equal to MAX - MIN (T is computed by the
fourier/pdf block)
message Input message sequence (2 dimensional)

Parameters:
samples Number of samples in data vector
points Number of plot points for MNT
P Order of FSA

Outputs:
g_val MNT of each data sample
mnt Plot of MNT from minimum to maximum data value

See also:
fourier/mnt_calc, fourier/pdf, vec/minmax_ramp

Name:
fourier/mnt_calc

description:
This block obtains the Memoryless Nonlinear Transform (MNT) from a Fourier Series
Approximation (FSA) of a Probability Density Function (PDF). The MNT of each point of the
input message sequence is stored in the G_VAL output.
This block operates on the magnitude of the two dimensional message signal.

Inputs:
- a: Vector of A coefficients (cosine terms)
- b: Vector of B coefficients (sine terms)
- T: "Period" of the FSA, equal to MAX - MIN (T is computed by the fourier/pdf block)
- message: Input message sequence (2 dimensional)

Parameters:
- samples: Number of samples in data vector
- P: Order of FSA

Outputs:
- g_val: MNT of each data sample

Name:
fourier/nonlin

Description:
This is a hierarchical block which applies the nonlinearity to the input signal in vector format. The histo/rec_to_polar block converts the two dimensional input signal from rectangular to polar coordinates, and a histogram approximation of the Probability Density Function (PDF) of the magnitude is computed by the histo/histo block. The fourier/pdf block then constructs a Fourier Series Approximation (FSA) of the PDF based on the histogram. The fourier/mnt block obtains the Memoryless Nonlinear Transform (MNT) from the FSA PDF and applies it to the magnitude of the input message sequence. The result is converted back to rectangular coordinates by the histo/polar_to_rec block using the unmodified phase. The vec/ramp block computes the breakpoints for plotting purposes.

Refer to the fourier/mnt block for more information on the MNT.

Inputs:
- i_in: In-Phase component of input message sequence
- q_in: Quadrature component of input message sequence

Parameters:
- samples: Number of samples in input vectors
- bins: Number of bins in the histogram PDF
Name:
fourier/pdf

Description:
This block obtains the Fourier Series Approximation (FSA) of a Probability Density Function (PDF). This FSA method is based on a histogram of the input data magnitude.

Inputs:
- bins: Histogram PDF
- min: Minimum data value
- max: Maximum data value

Parameters:
- samples: Number of samples in data vector
- P: Order of FSA

Outputs:
- a: Vector of A coefficients (cosine terms)
- b: Vector of B coefficients (sine terms)
- T: "Period" of the FSA, equal to MAX - MIN
Name:
fourier/pdf_plot’

Description:
This hierarchical block plots the Fourier Series Approximation (FSA) of a Probability Density Function (PDF). A vec/minmax_ramp block generates a ramp from the minimum to the maximum input values, and the fourier/pdfplot block computes the PDF approximation for each point in the ramp.

Inputs:

a Vector of A coefficients (cosine terms)
b Vector of B coefficients (sine terms)
T "Period" of the FSA, equal to MAX - MIN (T is computed by the fourier/pdf block)
message Input message sequence

Parameters:

samples Number of samples in data vector
points Number of plot points for PDF
P Order of FSA

Outputs:

pdf FSA PDF

See also:
fourier/pdfplot, vec/minmax_ramp

Name:
fourier/pdfplot

Description:
This block plots the Fourier Series Approximation (FSA) of a Probability Density Function (PDF). The PDF approximation is computed for each point in the input, which must be a linear ramp over the desired plot range.
Inputs:
- points: Input data vector
- a: Vector of A coefficients (cosine terms)
- b: Vector of B coefficients (sine terms)
- T: "Period" of the FSA, equal to MAX - MIN (T is computed by the fourier/pdf block)

Parameters:
- points: Number of plot points for PDF
- P: Order of FSA

Outputs:
- pdf: FSA PDF

Name:
fourier/s_nonlin_nc

Description:
This hierarchical block buffers the received data and converts it from serial to vector data and applies it to the fourier/nonlin nonlinearity. This block does not generate the summation part of the LO decision statistic.

The romelib/timing block generates timing waveforms which enable and disable the nonlinearity and all subsequent blocks at appropriate times. Of particular interest are the CLK_OUT and HOLD_VEC signals. The HOLD_VEC signal holds vector blocks while the serial data is buffered into vector form. This signal goes low during the simulation iteration in which the vector processing completes and the outputs are available. The CLK_OUT signal provides flexibility for use in multirate systems by pulsing high when a valid data sample is produced at the output of the fourier/s_nonlin_nc block. The CLK_OUT signal has the same period as the CLK_IN signal, thus output samples are produced at the same rate as that of the input signal. The remaining romelib/timing signals are internal to the fourier/s_nonlin_nc block, and are used in serial to vector and vector to serial buffering.

The SAMPLES_PER_SYMBOL, NUM_REFS, and M_TYPE are characteristics of the reference symbols. The reference signals must be created before using this block, and are stored in the /spwdata/ref library. This permits the designer to use any desired signal constellation. The NUM_REFS parameter must be exported to the histo/correlator2 block, and the other two parameters are exported to the filename of the rl/inf_vsource block as "ref/"&substr("m_type":model,2,length("m_type":model)-2)&"_"&xstring("samples_per_symbol":model)&
"spbi'" for the I channel signals and "ref/"&substr("m_type":model,2,length("m_type": model)-2) &"_"&xstring("samples_per_symbol":model)&"spb_q'" for the Q channel signals. For example, the filenames for a Binary Phase Shift Keying (BPSK) signal with 25 samples per symbol would be /spwdata/ref/bpsk_25spbi and /spwdata/ref/bpsk_25spb_q.

Inputs:
in
 Input message sequence (complex input)
clk_in
 Clock input for romelib/timing

Parameters:
samples
 Number of samples in input vectors
bins
 Number of bins in the histogram
samples_per_symbol
 Number of samples per data symbol
num_refs
 Number of reference signals
m_type
 Modulation type

Outputs:
mnt
 Plot of the Memoryless Nonlinear Transform
g
 Complex transformed sequence (vector)
out
 Complex transformed sequence (serial)
clk_out
 Timing signal: goes high when valid data sample is available at the output of fourier/s_nonlin_nc
hold_vec
 Timing signal: goes low when vector outputs are available
pdf
 Plot of the PDF of magnitude
bp
 Breakpoints (PDF and MNT interval boundaries)

See also:
fourier/nonlin, romelib/timing, rl/inf_vsoruce, fourier/serial_nonlin

Name:
 fourier/serial_nonlin

Description:
This hierarchical block buffers the received data and converts it from serial to vector data and applies it to the fourier/nonlin nonlinearity. In addition, the summation in the LO decision statistic is formed using the histo/correlator2 block. The output of the correlator is converted back to serial form.

The romelib/timing block generates timing waveforms which enable and disable the nonlinearity and all subsequent blocks at appropriate times. Of particular interest are the CLK_OUT and HOLD_VEC signals. The HOLD_VEC signal holds vector blocks while the serial data is buffered into vector form. This signal goes low during the simulation iteration in which the vector processing completes and the outputs are available. The CLK_OUT signal provides flexibility for use in multirate systems by pulsing high when a valid data sample is produced at the output of the fourier/serial_nonlin block. The CLK_OUT signal has the same period as the CLK_IN signal, thus output samples are produced at the same rate as that of the input signal. The remaining romelib/timing signals are internal to the fourier/serial_nonlin block, and are used in serial to vector and vector to serial buffering.

The SAMPLES_PER_SYMBOL, NUM_REFS, and M_TYPE are characteristics of the reference symbols. The reference signals must be created before using this block, and are stored in the /spwdata/ref library. This permits the designer to use any desired signal constellation. The NUM_REFS parameter must be exported to the histo/correlator2 block, and the other two parameters are exported to the filename of the rl/inf_vsource block as "ref/"&substr ("m_type":model,2,length("m_type":model)-2)&"_"&xstring("samples_per_symbol":model)&"spb_i" for the I channel signals and "ref/"&substr("m_type":model,2,length("m_type":model)-2) &"_"&xstring("samples_per_symbol":model)&"spb_q" for the Q channel signals. For example, the filenames for a Binary Phase Shift Keying (BPSK) signal with 25 samples per symbol would be /spwdata/ref/bpsk_25spb_i and /spwdata/ref/bpsk_25spb_q.

Inputs:
in Input message sequence (complex input)
clk_in Clock input for romelib/timing

Parameters:
samples Number of samples in input vectors
bins Number of bins in the histogram
samples_per_symbol Number of samples per data symbol
num.refs Number of reference signals
m_type Modulation type
Outputs:

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>mnt</td>
<td>Plot of the Memoryless Nonlinear Transform</td>
</tr>
<tr>
<td>g</td>
<td>Complex transformed sequence</td>
</tr>
<tr>
<td>out</td>
<td>Decision of nonlinearity</td>
</tr>
<tr>
<td>clk_out</td>
<td>Timing signal: goes high when valid data sample is available at the output of <code>fourier/serial_nonlin</code></td>
</tr>
<tr>
<td>hold_vec</td>
<td>Timing signal: goes low when vector outputs are available</td>
</tr>
<tr>
<td>pdf</td>
<td>Plot of the PDF of magnitude</td>
</tr>
<tr>
<td>bp</td>
<td>Breakpoints (PDF and MNT interval boundaries)</td>
</tr>
</tbody>
</table>

See also:

- `fourier/nonlin`
- `histo/correlator2`
- `romelib/timing`
- `rl/inf_vsource`

A-27
Name:
 histo/ave_bp

Description:
The histogram is defined only between breakpoints, leaving values at the breakpoints undefined. However, some of the polynomial curve fitting algorithms require knowledge of the histogram values at the breakpoints. This function computes the values at the breakpoints by averaging the values of the adjacent bins. The first and last values are taken to be the values of the first and last bins. The output "histogram" will have one more data point than the input histogram.

Inputs:
in Input histogram

Parameters:
bins Number of bins

Outputs:
out Output "histogram"

Name:
 histo/correk2

Description:
This block implements the matched filter - correlator for a two dimensional system. The input reference signals, I_REF and Q_REF, are assumed to have all possible signal pairs stored sequentially. The width of each signal is given by SAMPLES_PER_SYMBOL. The total number of reference signals is given by NUM_REFS.

Inputs:
i In-Phase component of input message sequence
q Quadrature component of input message sequence
i_ref I-channel Reference symbols
q_ref Q-channel Reference symbols

Parameters:
samples Number of samples in input vectors
samples_per_symbol Number of samples per data symbol
num.refs Number of reference symbols
Outputs:
- \(i_{\text{decision}} \) Decision of In-Phase component of the message
- \(q_{\text{decision}} \) Decision of Quadrature component of the message

Name:
histo/enonlin

Description:
This is a hierarchical block which applies the nonlinearity to the input signal in vector format. The histo/rec_to_polar block converts the two dimensional input signal from rectangular to polar coordinates, and the data is sorted by the vec/heap_sort block. An equiprobable bin histogram approximation of the Probability Density Function (PDF) of the magnitude is computed by the histo/equi block. The histo/mnt2 block obtains the Memoryless Nonlinear Transform (MNT) from the histogram and applies it to the magnitude of the input message sequence. The result is converted back to rectangular coordinates by the histo/polar_to_rec block using the unmodified phase.

Refer to the histo/mnt2 block for more information on the MNT.

Inputs:
- \(i_{\text{in}} \) In-Phase component of input message sequence
- \(q_{\text{in}} \) Quadrature component of input message sequence

Parameters:
- \(\text{samples} \) Number of samples in input vectors
- \(\text{bins} \) Number of bins in the histogram PDF

Outputs:
- \(\text{pdf} \) Equiprobable bin histogram PDF
- \(i_{\text{out}} \) In-Phase component of transformed sequence
- \(q_{\text{out}} \) Quadrature component of transformed sequence
- \(\text{mnt} \) Plot of the Memoryless Nonlinear Transform
- \(\text{bp} \) Breakpoints (PDF and MNT interval boundaries)

See also:
vec/heap_sort, histo/equi, histo/mnt2, histo/rec_to_polar, histo/polar_to_rec

A-29
Name:
 histo/equi

Description:
 This block generates an equiprobable histogram Probability Density Function (PDF) and an
 equiprobable histogram Cumulative Distribution Function (CDF) of the input data sequence.
 Since the PDF and CDF are equiprobable, the probability of a data point falling in any bin is
 equal to 1/BINS. **THE INPUT DATA MUST BE SORTED IN ASCENDING ORDER BEFORE IT IS APPLIED TO THIS BLOCK.**

Inputs:
 data
 Input data sequence (must be sorted in ascending order)

Parameters:
 bins
 Number of bins to generate
 samples
 Number of samples in data vector

Outputs:
 bp
 Breakpoints (PDF and CDF interval boundaries)
 pdf
 Equi-probable bin histogram PDF
 cdf
 Equi-probable bin histogram CDF

Name:
 histo/histo

Description:
 This block generates a histogram Probability Density Function (PDF) of the input data
 sequence. The width of each bin is (MAX-MIN)/BINS. The output is scaled so that the total
 area of the histogram is equal to 1.

Inputs:
 message
 Input data sequence

Parameters:
 message_len
 Number of samples in data vector
 bins
 Number of bins to generate
Outputs:
- bins: Probability Density Function
- min: Minimum data value
- max: Maximum data value

Name:
histo/mnt2

Description:
This block obtains the Memoryless Nonlinear Transform (MNT) from a histogram Probability Density Function (PDF). It is a hierarchical block which contains a histo/mnt_calc2 block and a histo/mnt_out2 block. The mnt_calc2 block computes the MNT, and the mnt_out2 block applies the MNT to each data point of the magnitude of the input message sequence.

This block is a generalized version of histo/mnt_q; it has a breakpoint input so it may be used for a histogram with bins of arbitrary width. Thus, it may be used in conjunction with either a histogram or an equiprobable bin histogram. The MNT of the Kth histogram bin is

$$g[K] = \frac{1}{BP[K]} - \frac{\log(PDF[K+1]) - \log(PDF[K-1])}{BP[K] - BP[K-1]}$$

In the case of a one dimensional data signal, the $1/BP[K]$ term is not included in $g[K]$. For a two dimensional data signal, this block operates only on the magnitude.

The G_PLOT output is the MNT computed for each histogram bin. Thus, the length of the G_PLOT vector must be the same as the BINS vector. The length of the G_VAL vector is the same as the DATA vector.

Inputs:
- bins: Histogram PDF
- bp: Breakpoints (PDF and MNT interval boundaries)
- data: Input message sequence (1 or 2 dimensional)

Parameters:
- bins: Number of bins in the PDF
- samples: Number of samples in data vector
- dim: Dimensionality of the message sequence (1 or 2)
Outputs:
 g_val MNT of each data sample
 g_plot Plot of MNT from minimum to maximum data value

See also:
 histo/mnt_calc2, histo/mnt_out2

Name:
 histo/mnt_calc2

Description:
 This function computes the Memoryless Nonlinear Transform (MNT) for a histogram with bins of arbitrary width. The MNT of the Kth histogram bin is

\[
 g[K] = \frac{1}{BP[K]} - \frac{\log(PDF[K+1]) - \log(PDF[K-1])}{BP[K] - BP[K-1]}
\]

In the case of a one dimensional data signal, the 1/BP[K] term is not included in g[K]. For a two dimensional data signal, this block operates only on the magnitude.

Inputs:
 bins Histogram Probability Density Function (PDF)
 bp Breakpoints (PDF and MNT interval boundaries)

Parameters:
 bins Number of bins in the PDF
 dim Dimensionality of the message sequence (1 or 2)

Outputs:
 g MNT for each histogram bin
Name:
 histo/mnt_calc_2d

Description:
This function computes the Memoryless Nonlinear Transform (MNT) for a histogram with
bins of equal width. The MNT of the K^{th} histogram bin is

$$g[K] = \frac{1}{R} - \log(PDF[K+1]) - \log(PDF[K-1])$$

where $\text{WIDTH} = \text{MAX} - \text{MIN}$ and
$$R = \text{MIN} + K \times \text{WIDTH}.$$

This block operates on the magnitude of the two dimensional data signal.

Inputs:
- bins: Histogram Probability Density Function (PDF)
- min: Minimum magnitude of input message sequence
- max: Maximum magnitude of input message sequence

Parameters:
- bins: Number of bins in the PDF

Outputs:
- g: MNT for each histogram bin

Name:
 histo/mnt_iq

Description:
This block obtains the Memoryless Nonlinear Transform (MNT) from a histogram Probability
Density Function (PDF). It is a hierarchical block which contains a histo/mnt_calc_d2 block
and a histo/mnt_out block. The mnt_calc_2d block computes the MNT, and the mnt_out block
applies the MNT to each data point of the magnitude of the input message sequence.

This block assumes that each histogram bin has equal width. In addition, the input message
sequence is assumed to be the magnitude of a two dimensional signal. The MNT of the K^{th}
histogram bin is
\[g[K] = \frac{1}{R} \log(PDF[K+1]) - \log(PDF[K-1]) \]

where \(WIDTH = MAX - MIN \) and
\[R = MIN + K \cdot WIDTH. \]

The \texttt{G_PLOT} output is the MNT computed for each histogram bin. Thus, the length of the \texttt{G_PLOT} vector must be the same as the \texttt{BINS} vector. The length of the \texttt{G_VAL} vector is the same as the \texttt{MESSAGE} vector.

\textbf{Inputs:}
- \texttt{bins} Histogram PDF
- \texttt{min} Minimum magnitude of input message sequence
- \texttt{max} Maximum magnitude of input message sequence
- \texttt{message} Input message sequence (2 dimensional)

\textbf{Parameters:}
- \texttt{bins} Number of bins in the PDF
- \texttt{samples} Number of samples in data vector

\textbf{Outputs:}
- \texttt{g_val} MNT of each data sample
- \texttt{g_plot} Plot of MNT from minimum to maximum data value

See also:
- \texttt{histo/mnt_calc_2d}, \texttt{histo/mnt_out}

\textbf{Name:}
\texttt{histo/mnt_out}

\textbf{Description:}
This block applies the Memoryless Nonlinear Transform (MNT) generated by the \texttt{histo/mnt_calc_2d} block to each sample in the input message sequence. This block assumes that each histogram bin has equal width. In addition, the input message sequence is assumed to be the magnitude of a two dimensional signal.
<table>
<thead>
<tr>
<th>Inputs:</th>
<th>Parameters:</th>
<th>Outputs:</th>
</tr>
</thead>
<tbody>
<tr>
<td>(g)</td>
<td>(\text{bins})</td>
<td>(g_{\text{val}})</td>
</tr>
<tr>
<td>(\text{min})</td>
<td>Number of bins in the Probability Density Function</td>
<td>(g_{\text{val}})</td>
</tr>
<tr>
<td>(\text{max})</td>
<td>(\text{samples})</td>
<td>MNT of each input sample</td>
</tr>
<tr>
<td>(\text{message})</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\text{MNT for input message sequence})</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\text{Minimum magnitude of input message sequence})</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\text{Maximum magnitude of input message sequence})</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\text{Input message sequence (2 dimensional)})</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Name:

histo/mnt_out2

Description:

This block applies the Memoryless Nonlinear Transform (MNT) generated by the histo/mnt_calc2 block to each sample in the input message sequence. This block permits the use of arbitrarily spaced breakpoints.

<table>
<thead>
<tr>
<th>Inputs:</th>
<th>Parameters:</th>
<th>Outputs:</th>
</tr>
</thead>
<tbody>
<tr>
<td>(g)</td>
<td>(\text{bins})</td>
<td>(g_{\text{val}})</td>
</tr>
<tr>
<td>(\text{bp})</td>
<td>Number of bins in the histogram</td>
<td>(g_{\text{val}})</td>
</tr>
<tr>
<td>(\text{data})</td>
<td>(\text{samples})</td>
<td>MNT of each data sample</td>
</tr>
<tr>
<td>(\text{MNT for input message sequence})</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\text{Breakpoints (MNT interval boundaries)})</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\text{Input message sequence (1 or 2 dimensional)})</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Name: histo/nonlin6

Description:
This is a hierarchical block which applies the nonlinearity to the input signal in vector format. The histo/rec_to_polar block converts the two dimensional input signal from rectangular to polar coordinates, and a histogram approximation of the Probability Density Function (PDF) of the magnitude is computed by the histo/histo block. The histo/mnt_iq block obtains the Memoryless Nonlinear Transform (MNT) from the histogram and applies it to the magnitude of the input message sequence. The result is converted back to rectangular coordinates by the histo/polar_to_rec block using the unmodified phase. The vec/ramp block computes the breakpoints for plotting purposes.

Refer to the histo/mnt_iq block for more information on the MNT.

Inputs:
- i_in: In-Phase component of input message sequence
- q_in: Quadrature component of input message sequence

Parameters:
- samples: Number of samples in input vectors
- bins: Number of bins in the histogram PDF

Outputs:
- pdf: Histogram PDF
- i_out: In-Phase component of transformed sequence
- q_out: Quadrature component of transformed sequence
- mnt: Plot of the Memoryless Nonlinear Transform
- bp: Breakpoints (PDF and MNT interval boundaries)

See also:
- histo/histo, histo/mnt_iq, histo/rec_to_polar, histo/polar_to_rec, vec/ramp
Name:
 histo/polar_to_rec

Description:
This block accepts a complex vector in polar coordinates and converts it to a complex vector in rectangular coordinates as follows:

\[I = R \cdot \cos(A) \]
\[Q = R \cdot \sin(A) \]

where \(R \) is the magnitude and \(A \) is the phase.

Inputs:
- mag
 Magnitude of input data
- phase
 Phase of input data

Parameters:
- samples
 Number of samples in input and output vectors

Outputs:
- i
 In-Phase component of input data
- q
 Quadrature component of input data

Name:
 histo/prob_error'

Description:
This hierarchical block computes the Probability of Bit Error (Pb) of a serial data stream. The number of errors in both the I and Q channel are summed over SYMBOLS_PER_CALC data bits in each channel. The Pb is equal to this sum divided by (SYMBOLS_PER_CALC*2).

The CLOCK_IN control signal must go high when a sample is present at the input. This signal may be generated using the CLK_OUT output of the romelib/timing block.

A-37
Inputs:
- i_in Reference signal--I channel
- i_dec Decision of receiver--I channel
- q_dec Decision of receiver--Q channel
- q_in Reference signal--Q channel
- clock_in Clock enable

Parameters:
- symbols_per_calc Number of symbols per Pb calculation
- samples_per_symbol Number of samples per data symbol

Outputs:
- pe Probability of Bit Error
- pe_clock Clock signal for Pb signal sink

Name:
 histo/rec_to_polar

Description:
This block accepts a complex vector in rectangular coordinates and converts it to a complex vector in polar coordinates as follows:

\[R = \sqrt{I^2 + Q^2} \]
\[A = \arctan(Q/I) \]

where R is the magnitude and A is the phase.

In the implementation of this block, the phase ranges from \(-\pi/2\) to \(3\pi/2\), instead of the usual \(-\pi\) to \(\pi\). This makes it possible to avoid using an extra IF statement in the program. The two forms are mathematically equivalent.
Outputs:
- mag Magnitude of input data
- phase Phase of input data

Name:
 histo/s_enonlin

Description:
This hierarchical block buffers the received data and converts it from serial to vector data and applies it to the histo/enonlin nonlinearity. In addition, the summation in the LO decision statistic is formed using the histo/correlator2 block. The output of the correlator is converted back to serial form.

The romelib/timing block generates timing waveforms which enable and disable the nonlinearity and all subsequent blocks at appropriate times. Of particular interest are the CLK_OUT and HOLD_VEC signals. The HOLD_VEC signal holds vector blocks while the serial data is buffered into vector form. This signal goes low during the simulation iteration in which the vector processing completes and the outputs are available. The CLK_OUT signal provides flexibility for use in multirate systems by pulsing high when a valid data sample is produced at the output of the histo/s_enonlin block. The CLK_OUT signal has the same period as the CLK_IN signal, thus output samples are produced at the same rate as that of the input signal. The remaining romelib/timing signals are internal to the histo/s_enonlin block, and are used in serial to vector and vector to serial buffering.

The SAMPLES_PER_SYMBOL, NUM_REFS, and M_TYPE are characteristics of the reference symbols. The reference signals must be created before using this block, and are stored in the /spwdata/ref library. This permits the designer to use any desired signal constellation. The NUM_REFS parameter must be exported to the histo/correlator2 block, and the other two parameters are exported to the filename of the rl/inf_vsource block as "ref/"&substr("m_type":model,2,length("m_type":model)-2)&"_"&xstring("samples_per_symbol":model)&"spb_i" for the I channel signals and "ref/"&substr("m_type":model,2,length("m_type":model)-2)&"_"&xstring("samples_per_symbol":model)&"spb_q" for the Q channel signals. For example, the filenames for a Binary Phase Shift Keying (BPSK) signal with 25 samples per symbol would be /spwdata/ref/bpsk_25spb_i and /spwdata/ref/bpsk_25spb_q.

Inputs:
- in Input message sequence (complex input)
- clk_in Clock input for romelib/timing
Parameters:
- samples: Number of samples in input vectors
- bins: Number of bins in the Probability Density Function (PDF)
- samples_per_symbol: Number of samples per data symbol
- num.refs: Number of reference signals
- m_type: Modulation type

Outputs:
- mnt: Plot of the Memoryless Nonlinear Transform
- g: Complex transformed sequence
- out: Decision of nonlinearity
- clk_out: Timing signal: goes high when valid data sample is available at the output of histo/s.enonlin
- hold_vec: Timing signal: goes low when vector outputs are available
- pdf: Plot of the PDF of magnitude
- bp: Breakpoints (PDF and MNT interval boundaries)

See also:
- histo/enonlin, histo/correlator2, romelib/timing, rl/inf_vsource

Name:
- histo/s_enonlin_nc

Description:
This hierarchical block buffers the received data and converts it from serial to vector data and applies it to the histo/enonlin nonlinearity. This block does not generate the summation part of the LO decision statistic.

The romelib/timing block generates timing waveforms which enable and disable the nonlinearity and all subsequent blocks at appropriate times. Of particular interest are the CLK_OUT and HOLD_VEC signals. The HOLD_VEC signal holds vector blocks while the serial data is buffered into vector form. This signal goes low during the simulation iteration in which the vector processing completes and the outputs are available. The CLK_OUT signal provides flexibility for use in multirate systems by puling high when a valid data sample is produced at the output of the histo/s_enonlin_nc block. The CLK_OUT signal has the same period as the CLK_IN signal, thus output samples are produced at the same rate as that of the input signal. The remaining romelib/timing signals are internal to the histo/s_enonlin_nc block, and are used in serial to vector and vector to serial buffering.
The SAMPLES_PER_SYMBOL, NUM_REFS, and M_TYPE are characteristics of the reference symbols. The reference signals must be created before using this block, and are stored in the /spwdata/ref library. This permits the designer to use any desired signal constellation. The NUM_REFS parameter must be exported to the histo/correlator2 block, and the other two parameters are exported to the filename of the rl/inf_vsource block as "ref/"&substr("m_type":model,2,length("m_type":model)-2) &"_"&xstring("samples_per_symbol":model)&"spb_i"" for the I channel signals and "ref/"&substr("m_type":model,2,length("m_type":model)-2) &"_"&xstring("samples_per_symbol":model)&"spb_q"" for the Q channel signals. For example, the filenames for a Binary Phase Shift Keying (BPSK) signal with 25 samples per symbol would be /spwdata/ref/bpsk_25spb_i and /spwdata/ref/bpsk_25spb_q.

Inputs:
- in: Input message sequence (complex input)
- clk_in: Clock input for romelib/timing

Parameters:
- samples: Number of samples in input vectors
- bins: Number of bins in the Probability Density Function (PDF)
- samples_per_symbol: Number of samples per data symbol
- num_refs: Number of reference signals
- m_type: Modulation type

Outputs:
- mnt: Plot of the Memoryless Nonlinear Transform
- g: Complex transformed sequence (vector)
- out: Complex transformed sequence (serial)
- clk_out: Timing signal: goes high when valid data sample is available at the output of histo/s_enonlinnc
- hold_vec: Timing signal: goes low when vector outputs are available
- pdf: Plot of the PDF of magnitude
- bp: Breakpoints (PDF and MNT interval boundaries)

See also:
- histo/enonlin, romelib/timing, rl/inf_vsource, histo/s_enonlin
Name:
 histo/s_nonlin_nc

Description:
This hierarchical block buffers the received data and converts it from serial to vector data and applies it to the histo/nonlin6 nonlinearity. This block does not generate the summation part of the LO decision statistic.

The romelib/timing block generates timing waveforms which enable and disable the nonlinearity and all subsequent blocks at appropriate times. Of particular interest are the CLK_OUT and HOLD_VEC signals. The HOLD_VEC signal holds vector blocks while the serial data is buffered into vector form. This signal goes low during the simulation iteration in which the vector processing completes and the outputs are available. The CLK_OUT signal provides flexibility for use in multirate systems by pulsing high when a valid data sample is produced at the output of the histo/s_nonlin_nc block. The CLK_OUT signal has the same period as the CLK_IN signal, thus output samples are produced at the same rate as that of the input signal. The remaining romelib/timing signals are internal to the histo/s_nonlin_nc block, and are used in serial to vector and vector to serial buffering.

The SAMPLES_PER_SYMBOL, NUM_REFS, and M_TYPE are characteristics of the reference symbols. The reference signals must be created before using this block, and are stored in the /spwdata/ref library. This permits the designer to use any desired signal constellation. The NUM_REFS parameter must be exported to the histo/correlator2 block, and the other two parameters are exported to the filename of the rl/inf_vsource block as "ref/"&substr ("m_type":model,2,length("m_type":model)-2)&"_"&xstring("samples_per_symbol":model)&"spb_i" for the I channel signals and "ref/"&substr("m_type":model,2,length("m_type":model)-2) &"_"&xstring("samples_per_symbol":model)&"spb_q" for the Q channel signals. For example, the filenames for a Binary Phase Shift Keying (BPSK) signal with 25 samples per symbol would be /spwdata/ref/bpsk_25spb_i and /spwdata/ref/bpsk_25spb_q.

Inputs:
in Input message sequence (complex input)
clk_in Clock input for romelib/timing

Parameters:
samples Number of samples in input vectors
bins Number of bins in the Probability Density Function (PDF)
samples_per_symbol Number of samples per data symbol
num_refs Number of reference signals
m_type Modulation type
Outputs:

<table>
<thead>
<tr>
<th>mnt</th>
<th>Plot of the Memoryless Nonlinear Transform</th>
</tr>
</thead>
<tbody>
<tr>
<td>g</td>
<td>Complex transformed sequence (vector)</td>
</tr>
<tr>
<td>out</td>
<td>Complex transformed sequence (serial)</td>
</tr>
<tr>
<td>clk_out</td>
<td>Timing signal: goes high when valid data sample is available at the output of histo/s_nonlin_nc</td>
</tr>
<tr>
<td>hold_vec</td>
<td>Timing signal: goes low when vector outputs are available</td>
</tr>
<tr>
<td>pdf</td>
<td>Plot of the PDF of magnitude</td>
</tr>
<tr>
<td>bp</td>
<td>Breakpoints (PDF and MNT interval boundaries)</td>
</tr>
</tbody>
</table>

See also:
histo/nonlin6, romelib/timing, rl/inf_vsource, histo/serial_nonlin

Name:

histo/serial_nonlin

Description:

This hierarchical block buffers the received data and converts it from serial to vector data and applies it to the histo/nonlin6 nonlinearity. In addition, the summation in the LO decision statistic is formed using the histo/correlator2 block. The output of the correlator is converted back to serial form.

The romelib/timing block generates timing waveforms which enable and disable the nonlinearity and all subsequent blocks at appropriate times. Of particular interest are the CLK_OUT and HOLD_VEC signals. The HOLD_VEC signal holds vector blocks while the serial data is buffered into vector form. This signal goes low during the simulation iteration in which the vector processing completes and the outputs are available. The CLK_OUT signal provides flexibility for use in multirate systems by pulsing high when a valid data sample is produced at the output of the histo/serial_nonlin block. The CLK_OUT signal has the same period as the CLK_IN signal, thus output samples are produced at the same rate as that of the input signal. The remaining romelib/timing signals are internal to the histo/serial_nonlin block, and are used in serial to vector and vector to serial buffering.

The SAMPLES_PER_SYMBOL, NUM_REFS, and M_TYPE are characteristics of the reference symbols. The reference signals must be created before using this block, and are stored in the /spwdata/ref library. This permits the designer to use any desired signal constellation. The NUM_REFS parameter must be exported to the histo/correlator2 block, and the other two parameters are exported to the filename of the rl/inf_vsource block as "ref/"&substr
For example, the filenames for a Binary Phase Shift Keying (BPSK) signal with 25 samples per symbol would be /spwdata/ref/bpsk_25spb_i and /spwdata/ref/bpsk_25spb_q.

Inputs:
- in: Input message sequence (complex input)
- clk_in: Clock input for romelib/timing

Parameters:
- samples: Number of samples in input vectors
- bins: Number of bins in the Probability Density Function (PDF)
- samples_per_symbol: Number of samples per data symbol
- num_refs: Number of reference signals
- m_type: Modulation type

Outputs:
- mnt: Plot of the Memoryless Nonlinear Transform
- g: Complex transformed sequence
- out: Decision of nonlinearity
- clk_out: Timing signal: goes high when valid data sample is available at the output of histo/serial_nonlin
- hold_vec: Timing signal: goes low when vector outputs are available
- pdf: Plot of the PDF of magnitude
- bp: Breakpoints (PDF and MNT interval boundaries)

See also:
- histo/nonlin6, histo/correlator2, romelib/timing, rl/inf_vsourc
Name:
jam/channel

Description:
This block adds Gaussian noise and jammers to the transmitted data sequence. Currently only three Continuous Wave (CW) jammers and a Partial Band (PB) are implemented. Any other interference blocks may be easily added. (All power parameters are measured in dB)

Inputs:
in Transmitted Message

Parameters:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>J1_S</td>
<td>Ratio of First CW jammer power to signal power</td>
</tr>
<tr>
<td>phase1</td>
<td>First CW phase</td>
</tr>
<tr>
<td>freq1</td>
<td>First CW frequency</td>
</tr>
<tr>
<td>J2_S</td>
<td>Ratio of Second CW jammer power to signal power</td>
</tr>
<tr>
<td>phase2</td>
<td>Second CW phase</td>
</tr>
<tr>
<td>freq2</td>
<td>Second CW frequency</td>
</tr>
<tr>
<td>J3_S</td>
<td>Ratio of Third CW jammer power to signal power</td>
</tr>
<tr>
<td>phase3</td>
<td>Third CW phase</td>
</tr>
<tr>
<td>freq3</td>
<td>Third CW frequency</td>
</tr>
<tr>
<td>Jpb_S</td>
<td>Ratio of PB jammer power to signal power</td>
</tr>
<tr>
<td>filt_order</td>
<td>Lowpass filter order</td>
</tr>
<tr>
<td>atten</td>
<td>Passband ripple in dB</td>
</tr>
<tr>
<td>pfreq</td>
<td>Passband 3 dB edge frequency</td>
</tr>
<tr>
<td>sfreq</td>
<td>Stopband 3 dB edge frequency</td>
</tr>
<tr>
<td>Eb_No</td>
<td>Ratio of Bit Energy to Gaussian noise power</td>
</tr>
<tr>
<td>No</td>
<td>Gaussian noise power</td>
</tr>
<tr>
<td>s_freq</td>
<td>Sampling frequency</td>
</tr>
<tr>
<td>samples_per_symbol</td>
<td>Number of Samples per Information Symbol</td>
</tr>
</tbody>
</table>

Outputs:
out Corrupted Message

See also:
rl/cw_jammer, rl/pb_jammer
Description:
This hierarchical block buffers the received data and converts it from serial to vector data and applies it to the histo/correlator2 block. The output of the correlator is converted back to serial form.

The romelib/timing block generates timing waveforms which enable and disable the nonlinearity and all subsequent blocks at appropriate times. Of particular interest are the CLK_OUT and HOLD_VEC signals. The HOLD_VEC signal holds vector blocks while the serial data is buffered into vector form. This signal goes low during the simulation iteration in which the vector processing completes and the outputs are available. The CLK_OUT signal provides flexibility for use in multirate systems by pulsing high when a valid data sample is produced at the output of the linear/serial_lin block. The CLK_OUT signal has the same period as the CLK_IN signal, thus output samples are produced at the same rate as that of the input signal. The remaining romelib/timing signals are internal to the linear/serial_lin block and are used in serial to vector and vector to serial buffering.

The SAMPLES_PER_SYMBOL, NUM_REFS, and M_TYPE are characteristics of the reference symbols. The reference signals must be created before using this block, and are stored in the /spwdata/ref library. This permits the designer to use any desired signal constellation. The NUM_REFS parameter must be exported to the histo/correlator2 block, and the other two parameters are exported to the filename of the rl/inf_vsource block as "ref/"&substr ("m_type":model,2,length("m_type":model)-2)&"_"&xstring("samples_per_symbol":model)&"spb_i" for the I channel signals and "ref/"&substr("m_type":model,2,length("m_type":model)-2) &"_"&xstring("samples_per_symbol":model)&"spb_q" for the Q channel signals. For example, the filenames for a Binary Phase Shift Keying (BPSK) signal with 25 samples per symbol would be /spwdata/ref/bpsk_25spb_i and /spwdata/ref/bpsk_25spb_q.

Inputs:
in Input message sequence (complex input)
clk_in Clock input for romelib/timing

Parameters:
samples Number of samples in input vectors
samples_per_symbol Number of samples per data symbol
num_refs Number of reference signals
m_type Modulation type
Outputs:

<table>
<thead>
<tr>
<th></th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>out</code></td>
<td>Decision of linear receiver</td>
</tr>
<tr>
<td><code>clk_out</code></td>
<td>Timing signal: goes high when valid data sample is available at the output of linear/serial_lin</td>
</tr>
<tr>
<td><code>hold_vec</code></td>
<td>Timing signal: goes low when vector outputs are available</td>
</tr>
</tbody>
</table>

See also:
```
histo/correlator2, romelib/timing, rl/inf_vssource
```
Name:
mipa/nonlin

Description:
This is a hierarchical block which applies the nonlinearity to the input signal in vector format. The histo/rec_to_polar block converts the two dimensional input signal from rectangular to polar coordinates, and a MIPA of the Probability Density Function (PDF) of the magnitude is computed by the mipa/pdf block. The poly/mnt block obtains the Memoryless Nonlinear Transform (MNT) from the MIPA PDF and applies it to the magnitude of the input message sequence. The result is converted back to rectangular coordinates by the histo/polar_to_rec block using the unmodified phase. The poly/plot block generates a plot of the PDF from the polynomial coefficients.

Refer to the poly/mnt block for more information on the MNT.

Inputs:
 i_in In-Phase component of input message sequence
 q_in Quadrature component of input message sequence

Parameters:
 samples Number of samples in input vectors
 bins Number of bins in the histogram PDF
 points Number of plot points for PDF and MNT

Outputs:
 pdf CPA PDF
 i_out In-Phase component of transformed sequence
 q_out Quadrature component of transformed sequence
 mnt Plot of the Memoryless Nonlinear Transform
 bp Breakpoints (PDF and MNT interval boundaries)

See also:
 histo/rec_to_polar, mipa/pdf, poly/mnt, poly/plot, histo/polar_to_rec
Name:
mipa/pdf

Description:
This block obtains the M-Interval Polynomial Approximation (MIPA) of a Probability Density Function (PDF). The MIPA is a concatenation of polynomial curves, which minimizes the squared error between the approximation and the actual PDF. This implementation only supports 0th, 2nd, and 4th order MIPAs.

Inputs:
message
Input message sequence

Parameters:
bins
Number of bins

samples
Number of samples in input message sequence

order
Order of MIPA

Outputs:
bp
Breakpoints (PDF interval boundaries)

coeff
Polynomial coefficients values a_0, a_1, \ldots, a_p

Name:
mipa/s_nonlin_nc

Description:
This hierarchical block buffers the received data and converts it from serial to vector data and applies it to the mipa/nonlin nonlinearity. This block does not generate the summation part of the LO decision statistic.

The romelib/timing block generates timing waveforms which enable and disable the nonlinearity and all subsequent blocks at appropriate times. Of particular interest are the CLK_OUT and HOLD_VEC signals. The HOLD_VEC signal holds vector blocks while the serial data is buffered into vector form. This signal goes low during the simulation iteration in which the vector processing completes and the outputs are available. The CLK_OUT signal provides flexibility for use in multirate systems by pulsing high when a valid data sample is produced at the output of the mipa/s_nonlin_nc block. The CLK_OUT signal has the same period as the CLK_IN signal, thus output samples are produced at the same rate as that of the input signal. The remaining romelib/timing signals are internal to the mipa/s_nonlin_nc block, and are used in serial to vector and vector to serial buffering.
The SAMPLES_PER_SYMBOL, NUM_REFS, and M_TYPE are characteristics of the reference symbols. The reference signals must be created before using this block, and are stored in the /spwdata/ref library. This permits the designer to use any desired signal constellation. The NUM_REFS parameter must be exported to the histo/correlator2 block, and the other two parameters are exported to the filename of the rl/inf_vsource block as "ref/"&substr("m_type":model,2,length("m_type":model)-2)&"_"&xstring("samples_per_symbol":model)&"spbi" for the I channel signals and "ref/"&substr("m_type":model,2,length("m_type":model)-2) &"_"&xstring("samples_per_symbol":model)&"spb_q" for the Q channel signals. For example, the filenames for a Binary Phase Shift Keying (BPSK) signal with 25 samples per symbol would be /spwdata/ref/bpsk_25spbi and /spwdata/ref/bpsk_25spb_q.

Inputs:
- in: Input message sequence (complex input)
- clk_in: Clock input for romelib/timing

Parameters:
- samples: Number of samples in input vectors
- bins: Number of bins in the Probability Density Function (PDF)
- samples_per_symbol: Number of samples per data symbol
- num.refs: Number of reference signals
- m_type: Modulation type

Outputs:
- mnt: Plot of the Memoryless Nonlinear Transform
- g: Complex transformed sequence (vector)
- out: Complex transformed sequence (serial)
- clk_out: Timing signal: goes high when valid data sample is available at the output of mipa/s_nonlin_nc
- hold_vec: Timing signal: goes low when vector outputs are available
- pdf: Plot of the PDF of magnitude
- bp: Breakpoints (PDF and MNT interval boundaries)

See also:
- mipa/nonlin, romelib/timing, rl/inf_vsource, mipa/serial_nonlin
Name:
mipa/serial_nonlin

Description:
This hierarchical block buffers the received data and converts it from serial to vector data and applies it to the mipa/nonlin nonlinearity. In addition, the summation in the LO decision statistic is formed using the histo/correlator2 block. The output of the correlator is converted back to serial form.

The romelib/timing block generates timing waveforms which enable and disable the nonlinearity and all subsequent blocks at appropriate times. Of particular interest are the CLK_OUT and HOLD_VEC signals. The HOLD_VEC signal holds vector blocks while the serial data is buffered into vector form. This signal goes low during the simulation iteration in which the vector processing completes and the outputs are available. The CLK_OUT signal provides flexibility for use in multirate systems by pulsing high when a valid data sample is produced at the output of the mipa/serial_nonlin block. The CLK_OUT signal has the same period as the CLK_IN signal, thus output samples are produced at the same rate as that of the input signal. The remaining romelib/timing signals are internal to the mipa/serial_nonlin block, and are used in serial to vector and vector to serial buffering.

The SAMPLES_PER_SYMBOL, NUM_REFS, and M_TYPE are characteristics of the reference symbols. The reference signals must be created before using this block, and are stored in the /spwdata/ref library. This permits the designer to use any desired signal constellation. The NUM_REFS parameter must be exported to the histo/correlator2 block, and the other two parameters are exported to the filename of the rl/inf_vsource block as "ref/"&substr("m_type":model,2,length("m_type":model)-2)"&_"&xstring("samples_per_symbol":model)"spb_i" for the I channel signals and "ref/"&substr("m_type":model,2,length("m_type":model)-2)"&_"&xstring("samples_per_symbol":model)"spb_q" for the Q channel signals. For example, the filenames for a Binary Phase Shift Keying (BPSK) signal with 25 samples per symbol would be /spwdata/ref/bpsk_25spbi and /spwdata/ref/bpsk_25spbq.

Inputs:
in Input message sequence (complex input)
clk_in Clock input for romelib/timing

Parameters:
samples Number of samples in input vectors
bins Number of bins in the Probability Density Function (PDF)
samples_per_symbol Number of samples per data symbol
num.refs Number of reference signals
m_type Modulation type

A-51
Outputs:

- **mnt** Plot of the Memoryless Nonlinear Transform
- **g** Complex transformed sequence
- **out** Decision of nonlinearity
- **clk_out** Timing signal: goes high when valid data sample is available at the output of histo/serial_nonlin
- **hold_vec** Timing signal: goes low when vector outputs are available
- **pdf** Plot of the PDF of magnitude
- **bp** Breakpoints (PDF and MNT interval boundaries)

See also:

- mipa/nonlin, histo/correlator2, romelib/timing, rl/inf_vsourse
Description:
This block obtains the Memoryless Nonlinear Transform (MNT) from a polynomial approximation to a Probability Density Function (PDF). It is a hierarchical block which contains two poly/mnt_calc blocks. One of them computes the MNT for each value of the magnitude R of the input message sequence, and the other generates a plot of the MNT from the minimum to the maximum R value with the aid of a vec/minmax_ramp block. This block only operates on the magnitude of the input message sequence. For a \(P^\text{th} \) order polynomial the MNT is

\[
g[R] = \frac{1}{R} \cdot \frac{a_0 + a_1 R + a_2 R^2 + \ldots + a_p R^P}{a_0 + 2a_2 R + \ldots + P a_p R^{P-1}}
\]

If the LT parameter is set to 1, the linear transform will be applied to the coefficients. That means that the R values in the \(K^\text{th} \) bin must range from 0 to the width of the \(K^\text{th} \) bin (\(\text{BP}[K] - \text{BP}[K-1] \)), whereas without the transform the R values in each bin will range from \(\text{BP}[K-1] \) to \(\text{BP}[K] \).

Inputs:
- \(\text{bp} \): Breakpoints (PDF and MNT interval boundaries)
- \(\text{coeff} \): PDF polynomial coefficients values \(a_0, a_1, \ldots, a_p \)
- \(\text{data} \): Input message sequence (1 or 2 dimensional)

Parameters:
- \(\text{samples} \): Number of samples used to compute MNT
- \(\text{bins} \): Number of bins
- \(\text{points} \): Number of plot points in G_PLOT
- \(\text{order} \): Polynomial order (number of coefficients - 1)
- \(\text{lt} \): Linear transform flag

Outputs:
- \(\text{g_val} \): MNT of input data
- \(\text{g_plot} \): Plot of MNT from minimum to maximum data value

See also:
- poly/mnt_calc, vec/minmax_ramp
Name:
poly/mnt_calc

Description:
This function computes the Memoryless Nonlinear Transform (MNT) from a polynomial approximation to a Probability Density Function (PDF) for each value of the magnitude \(R \) of the input message sequence. For a \(P^\text{th} \) order polynomial the MNT is

\[
g[R] = \frac{1}{R} - \frac{a_1 + 2a_2 R + \ldots + Pa_p R^{P-1}}{a_0 + a_1 R + a_2 R^2 + \ldots + a_p R^P}
\]

In the case of a one dimensional data signal, the \(1/R \) term is not included in \(g[R] \). For a two dimensional data signal, this block operates only on the magnitude \(R \).

If the LT parameter is set to 1, the linear transform will be applied to the coefficients. That means that the \(R \) values in the \(K^\text{th} \) bin must range from 0 to the width of the \(K^\text{th} \) bin \((BP[K]-BP[K-1]) \), whereas without the transform the \(R \) values in each bin will range from \(BP[K-1] \) to \(BP[K] \).

Inputs:
- bp: Breakpoints (PDF and MNT interval boundaries)
- coeff: PDF polynomial coefficients values \(a_0, a_1, \ldots, a_p \)
- data: Input message sequence (1 or 2 dimensional)

Parameters:
- bins: Number of bins
- samples: Number of samples used to compute MNT
- order: Polynomial order (number of coefficients - 1)
- dim: Dimensions of data signal (1 or 2)
- lt: Linear transform flag

Outputs:
- mnt: MNT for polynomial
Name: poly/mnt_calc_gt

Description:
This function computes the Memoryless Nonlinear Transform (MNT) from a polynomial approximation to a Probability Density Function (PDF) for each value of the magnitude R of the input message sequence. For a P^{th} order polynomial the MNT is

$$g[R] = \frac{1}{R} \left(\frac{a_1 + 2a_2 R + \cdots + Pa_R R^{P-1}}{a_0 + a_1 R + a_2 R^2 + \cdots + a_P R^P} \right)$$

In the case of a one dimensional data signal, the $1/R$ term is not included in $g[R]$. For a two dimensional data signal, this block operates only on the magnitude R.

The first and last bins are fitted with the MNT of a Gaussian PDF instead of a polynomial MNT. **This block is to be used in conjunction with the CPA/PDF_GT block.**

If the LT parameter is set to 1, the linear transform will be applied to the coefficients. That means that the R values in the K^{th} bin must range from 0 to the width of the K^{th} bin ($BP[K]-BP[K-1]$), whereas without the transform the R values in each bin will range from $BP[K-1]$ to $BP[K]$.

Inputs:
- **bp**: Breakpoints (PDF and MNT interval boundaries)
- **coeff**: PDF polynomial coefficients values a_0, a_1, \ldots, a_P
- **data**: Input message sequence (1 or 2 dimensional)

Parameters:
- **bins**: Number of bins
- **samples**: Number of samples used to compute MNT
- **order**: Polynomial order (number of coefficients - 1)
- **dim**: Dimensions of data signal (1 or 2)
- **lt**: Linear transform flag

Outputs:
- **mnt**: MNT for polynomial

A-55
Name:
poly/mnt_gt

Description:
This block obtains the Memoryless Nonlinear Transform (MNT) from a polynomial approximation to a Probability Density Function (PDF). It is a hierarchical block which contains two poly/mnt_calc_gt blocks. One of them computes the MNT for each value of the magnitude R of the input message sequence, and the other generates a plot of the MNT from the minimum to the maximum R value with the aid of a vec/minmax_ramp block. This block only operates on the magnitude of the input message sequence. For a Pth order polynomial the MNT is

\[g(R) = \frac{1}{R} - \frac{a_1 + 2a_2R + \ldots + P a_p R^{P-1}}{a_0 + a_1 R + a_2 R^2 + \ldots + a_p R^P} \]

The first and last bins are fitted with the MNT of a Gaussian PDF instead of a polynomial MNT. **THIS BLOCK IS TO BE USED IN CONJUNCTION WITH THE CPA/PDF_GT BLOCK.**

If the LT parameter is set to 1, the linear transform will be applied to the coefficients. That means that the R values in the Kth bin must range from 0 to the width of the Kth bin (BP[K]-BP[K-1]), whereas without the transform the R values in each bin will range from BP[K-1] to BP[K].

Inputs:
- bp: Breakpoints (PDF and MNT interval boundaries)
- coeff: PDF polynomial coefficients values a₀, a₁, ..., aₚ
- data: Input message sequence (1 or 2 dimensional)

Parameters:
- bins: Number of bins
- samples: Number of samples used to compute MNT
- order: Polynomial order (number of coefficients - 1)
- lt: Linear transform flag

Outputs:
- g_val: MNT of input data
- g_plot: Plot of MNT from minimum to maximum data value

See also:
- poly/mnt_calc_gt, vec/minmax_ramp

A-56
Name:
poly/plot

Description:
This function plots a piecewise polynomial curve with the number of intervals equal to BINS.
The polynomial in each interval is of the form

\[y[X] = a_0 + a_1 X + a_2 X^2 + \ldots + a_p X^p \]

where \(P \) is the ORDER. The \(X \) value is varied from its minimum to maximum value to generate the plot. The number of points in this plot is equal to POINTS.

If the LT parameter is set to 1, the linear transform will be applied to the coefficients. That means that the \(X \) values in the \(K^{th} \) bin must range from 0 to \((BP[K]-BP[K-1]) \), whereas without the transform the \(X \) values in each bin will range from \(BP[K-1] \) to \(BP[K] \).

Inputs:
bp X-axis Breakpoints (interval boundaries)
coeff Polynomial coefficients values \(a_0, a_i, \ldots, a_p \)

Parameters:
bins Number of bins
points Number of points to plot
order Polynomial order (number of coefficients - 1)
lt Linear transform flag

Outputs:
plot Polynomial curve

Name:
poly/plot_gt

Description:
This function plots a piecewise polynomial curve with the number of intervals equal to BINS. The polynomial in each interval is of the form

\[y[X] = a_0 + a_1 X + a_2 X^2 + \ldots + a_p X^p \]

A-57
where P is the ORDER. The X value is varied from its minimum to maximum value to generate the plot. The number of points in this plot is equal to POINTS.

If the LT parameter is set to 1, the linear transform will be applied to the coefficients. That means that the X values in the K^{th} bin must range from 0 to $(BP[K] - BP[K-1])$, whereas without the transform the X values in each bin will range from $BP[K-1]$ to $BP[K]$.

The first and last bins are fitted with a Gaussian PDF instead of a polynomial.

Inputs:
- **bp**
 - X-axis Breakpoints (interval boundaries)
- **coeff**
 - Polynomial coefficients values a_0, a_1, \ldots, a_p

Parameters:
- **bins**
 - Number of bins
- **points**
 - Number of points to plot
- **order**
 - Polynomial order (number of coefficients - 1)
- **lt**
 - Linear transform flag

Outputs:
- **plot**
 - Polynomial curve
Name:
 rl/complex_cw'

Description:
 This block generates a single Continuous Wave (CW) complex sinusoid with a specified
 amplitude, frequency, and phase.

Inputs:
 none

Parameters:
 amp CW amplitude
 phase CW phase
 freq CW frequency
 s_freq Sampling frequency

Outputs:
 cw_out Jammer output

Name:
 rl/complex_data'

Description:
 This block generates a random Quadrature Phase Shift Keying (QPSK) data sequence. A
 fundamental relationship exists between the symbol rate and the sampling frequency, namely
 S_FREQ = Rs * SAMPLES_PER_SYMBOL. This means that all three of these parameters
 may not vary independently, but one must be a function of the other two. For this reason, the
 symbol rate parameter is exported as Rs = S_FREQ / SAMPLES_PER_SYMBOL.

Inputs:
 none

Parameters:
 amp Bit amplitude
 Rs Symbol rate
 prob_zero Probability of a bit being zero
 s_freq Sampling frequency
Name:
rl/cw_jammer†

Description:
This block generates three Continuous Wave (CW) jammers with specified amplitude, frequency, and phase. Any number of CW jammers up to three may be obtained by setting the amplitude of the undesired jammers to an arbitrarily small value.

Inputs:
none

Parameters:
- **amp1**: First CW amplitude
- **phase1**: First CW phase
- **freq1**: First CW frequency
- **amp2**: Second CW amplitude
- **phase2**: Second CW phase
- **freq2**: Second CW frequency
- **amp3**: Third CW amplitude
- **phase3**: Third CW phase
- **freq3**: Third CW frequency
- **s_freq**: Sampling frequency

Outputs:
- **cw_out**: Jammer output

See also:
- rl/complex_cw
Name: rl/hold

Description:
This block generates an output that goes high every SAMPLES iterations. There is no pulse on the 0th iteration.

Inputs: none

Parameters:
samples Number of iterations between pulses

Outputs:
hold Output clock

Name: rl/inf_vsourcet

Description:
This block is identical to the spb/vsource SPW library block except that when an end of file (EOF) occurs the last output is retained for the remainder of the simulation. This block detects the EOF from the spb/vsource and holds the spb/vsource from then on.

Inputs: none

Parameters:
same as spb/vsource

Outputs:
same as spb/vsource

See also:
spb/vsource

A-61
Name: rl/pb_jammer

Description:
This block generates a baseband Partial Band (PB) jammer by low pass filtering Gaussian noise with an elliptic lowpass filter. The Passband and Stopband edge frequencies are assumed to be normalized by the symbol rate.

Inputs:
none

Parameters:
- Jpb_S: Ratio of jammer power to signal power in dB
- filt_order: Lowpass filter order
- atten: Passband ripple in dB
- pfreq: Passband 3 dB edge frequency
- sfreq: Stopband 3 dB edge frequency
- s_freq: Sampling frequency

Outputs:
- pb_out: Jammer output

Name: rl/psk_err_cnt

Description:
THIS BLOCK DOES NOT WORK CORRECTLY BECAUSE COMM/REAL_ERR_CNT DOES NOT WORK CORRECTLY.

Inputs:
- X: Actual transmitted message
- Y: Decision of receiver

Parameters:
Outputs:
 pe Probability of error
 num_symbols
 results_clk

See also:
 rl/real_err_cnt

Name:
 rl/real_err_cnt'

Description:
 THIS BLOCK DOES NOT WORK CORRECTLY BECAUSE COMM-REAL_ERR_CNT
 DOES NOT WORK CORRECTLY.

Inputs:
 X Actual transmitted message
 Y Decision of receiver

Parameters:

Outputs:
 pe Probability of error
 num_symbols
 results_clk

See also:
 rl/real_err_cnt

A-63
Name:
 romelib/timing

Description:
This block generates the timing signals for the nonlinear receiver and all subsequent blocks. In particular, it allows for serial-to-vector conversion of the input data to the nonlinearity blocks, and vector-to-serial conversion at the output. The CLK_IN input is provided to facilitate the integration of the nonlinear blocks into multirate systems. This input should be tied to a timing source which goes high on every simulation iteration during which a valid input data sample is present. The only parameter for this block, SAMPLES, should be set to the length of the data vector which will be processed by the nonlinear block.

The sequence of output signal states is as follows:

a) The HOLD_IN output goes low every iteration that the CLK_IN input goes high and indicates when a valid input signal sample is present.

b) The LOADOUT output goes high during the simulation iteration when the last of the SAMPLES samples is available at the input. This is a signal to the circular_buffer block that all the required data samples are present and that the data vector is complete.

c) The HOLD_VEC output goes low one simulation iteration after the last of the SAMPLES samples is available at the input. This signal should be tied to the HOLD input of the nonlinearity blocks as well as all vector output sinks/blocks associated with the nonlinearity block, allowing these blocks to go active during the simulation iteration when all the required data samples are present in vector form.

d) The LOADIN goes high one simulation iteration after the last of the SAMPLES samples is available at the input. This signal is used to "latch" the output signal vector of the nonlinearity block for vector-to-serial conversion.

e) The HOLD_OUT signal goes low one simulation iteration after each iteration when the CLK_IN input goes high. This signal is provided for clocking the serial blocks located after the nonlinearity block.

f) The CLK_OUT output first goes high on the same simulation iteration as the HOLD_VEC output goes low and the LOADIN output goes high, and then it periodically goes high after this with a period equal to that of the CLK_IN input signal. The CLK_OUT signal is used to indicate when a valid serial data sample is present at the output of the nonlinearity block.

Inputs:
 clk_in Synchronizing clock input

Parameters:
 samples Length of input data vector

A-64
Outputs:

- **hold in**: Activation signal for serial blocks preceding the nonlinearity block
- **loadout**: Indicates when input data vector has been filled
- **hold_vec**: Activation signal for the vector processing/output blocks
- **loadin**: "Latches" the output data vector for vector-to-serial conversion
- **hold_out**: Activation signal for serial blocks following the nonlinearity block
- **clk_out**: Synchronizing clock output
Name:
vec/heap_sort

Description:
This block heap sorts the input data in ascending order. This sort is of order \(N \log (N) \). For a description of the heap sort algorithm see Numerical Recipes in C (1988).

Inputs:
in Input vector

Parameters:
points Number of points in the vector

Outputs:
out Sorted vector

Name:
vec/minmax

Description:
This block finds the minimum and maximum data points in the given data sequence.

Inputs:
in Input data vector

Parameters:
length Number of points in input vector

Outputs:
min Minimum value
max Maximum value

A-66
Name: vec/stretch_nl

Description: This block plots a histogram by copying the value of each bin to the output a number of times that is proportional to the width of the bin. The total width of the histogram is $T_{\text{WIDTH}} = \text{BP}[\text{BINS}] - \text{BP}[0]$, and the width of the K^{th} bin is $\text{WIDTH}[K] = \text{BP}[K] - \text{BP}[K-1]$. The K^{th} bin value is copied to the output N times, where $N = \text{POINTS} \times \text{WIDTH}[K] / T_{\text{WIDTH}}$.

The number of breakpoints is one more than the number of input points.

Inputs:
- bp Breakpoints of histogram
- in Input histogram

Parameters:
- bins Number of bins in the input sequence
- points Number of points in the output sequence

Outputs:
- out Plot of histogram
Name:
vec/minmax_ramp

Description:
This block generates a linear ramp of length RAMP_LEN from the minimum to the maximum values in the given data sequence. If RAMP_LEN = 1 it is not possible to generate a line through both min and max unless min = max. In the event that RAMP_LEN = 1, RAMP is set equal to the average of min and max.

Inputs:
in Input data vector

Parameters:
data_len Input data vector length
ramp_len Ramp vector length

Outputs:
ramp Output ramp

See also:
vec/minmax, vec/ramp

Name:
vec/ramp

Description:
This block generates a linear ramp of length POINTS from MIN to MAX. If POINTS = 1 it is not possible to generate a line through both MIN and MAX unless MIN = MAX. In the event that POINTS = 1, the ramp is equal to the average of MIN and MAX.

Inputs:
min Minimum data value
max Maximum data value

Parameters:
points Ramp vector length

Outputs:
ramp Output ramp
Name: vec/var

Description:
This block computes the mean and variance of the input data vector as follows:

\[\text{MEAN} = \frac{1}{\text{LEN}} \sum_{i=0}^{\text{LEN}-1} \text{IN}[i] \quad \text{VAR} = \frac{1}{\text{LEN}-1} \sum_{i=0}^{\text{LEN}-1} (\text{IN}[i]-\text{MEAN})^2 \]

Inputs:
in Input data vector

Parameters:
len Input vector length

Outputs:
mean Mean of the input data sequence
var Variance of the input data sequence
Appendix B

SPW Block Diagrams

This Appendix is an alphabetical listing of the details of the hierarchical IIT SPW blocks that were used to generate the results in Volume 1 of this report.

When the BDE prints a block diagram, the parameters do not reflect their exported values. Rather, the default values for these parameters are displayed. However, in the actual simulation the parameter values have all been correctly exported.
Continuous Polynomial Approximation
with
Linear Transform

samples: 1000
bins: 8

The CDF polynomial order is 5
The PDF polynomial order is 4

Figure (B-1)
Figure (B-2)
Continuous Polynomial Approximation

with

Linear Transform and Discontinuous Auxiliary Function

samples: 1000
bins: 8

The CDF polynomial order is 4
The PDF polynomial order is 3
Continuous Polynomial Approximation

with

Gaussian Tails

samples: 1000
bins: 8

The PDF polynomial order is 3
CPA with Gaussian Tails Nonlinear Block

Figure (B-6)
null
Figure (B-8)
CPA Method III Nonlinearity Function Block

NO CORRELATOR

Block Parameters

<table>
<thead>
<tr>
<th>Samples</th>
<th>1000</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of Bins</td>
<td>8</td>
</tr>
<tr>
<td>Number of Plot Points</td>
<td>100</td>
</tr>
</tbody>
</table>
CPA Nonlinearity Function Block with Gaussian Tails

CPA S PDF GT NL NC

Figure (B-11)
Figure (B-12)
Figure (B-13)
Figure (B-14)
FOURIER/S_NONLIN_NC

FSA Nonlinearity Function Block
NO CORRELATOR

Figure (B-16)
FOURIER/serial_NONLIN

Figure (B-17)
This block accepts the received signal (message) and its corresponding PDF and computes the value of the memoryless, nonlinear transform for each received sample. The output is in vector form.
Histogram Nonlinear Block

Figure (B-21)
HISTO/PROB_ERROR

Figure (B-22)
Figure (B-23)
Histogram Nonlinearity Function Block
with Equiprobable Bins
NO CORRELATOR

Block Parameters
Number of dimensions: (1 or 2) 2
Samples: 1000
Number of Bins: 8
Linear Receiver Function Block

Block Parameters

- Samples: 1000
- Samples Per Bit: 5
- Number of Reference Signals: 4
- Modulation Type: 'bpsk'

Figure (B-28)
Figure (B-29)
MIPA Nonlinearity Function Block
NO CORRELATOR

Block Parameters
Order of Approximation: 4
Samples: 1000
Number of Bins: 8
Number of Plot Points: 100
MIPA Nonlinearity Function Block

Block Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Samples</td>
<td>1000</td>
</tr>
<tr>
<td>Number of Bins</td>
<td>8</td>
</tr>
<tr>
<td>Order of Approximation</td>
<td>2</td>
</tr>
<tr>
<td>Number of Plot Points</td>
<td>100</td>
</tr>
<tr>
<td>Samples Per Bit</td>
<td>5</td>
</tr>
<tr>
<td>Number of Reference Signals</td>
<td>4</td>
</tr>
<tr>
<td>Modulation Type</td>
<td>'bpsk'</td>
</tr>
</tbody>
</table>

Figure (B-31)
Figure (B-33)
Complex CW Interference Source

Figure (B-34)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>CW Amplitude</td>
<td>10.0</td>
</tr>
<tr>
<td>CW Phase (rad)</td>
<td>0.5236</td>
</tr>
<tr>
<td>CW Frequency</td>
<td>0.031</td>
</tr>
<tr>
<td>Sampling Frequency</td>
<td>1.0</td>
</tr>
</tbody>
</table>
Figure (B-35)
COMPLEX CW JAMMER BLOCK

Figure (B-36)

RL CW JAMMER

COMPLEX CW

amplitude

Sampling Frequency: 1.0

CH JAMMER BLOCK PARAMETERS

CH JAMMER 1
- Amplitude: 100.0
- Frequency: 0.031
- Phase: 0.0

CH JAMMER 2
- Amplitude: 10.0
- Frequency: 0.921
- Phase: 0.05

CH JAMMER 3
- Amplitude: 1.0
- Frequency: 0.011
- Phase: 0.10

Resulting Block Parameters
(No Effect on Block Output)

CH JAMMER 1
- J/No (in dB): J1_No

CH JAMMER 2
- J/No (in dB): J2_No

CH JAMMER 3
- J/No (in dB): J3_No

Thu May 27, 1993 07:37:38
RL/HOLD

Figure (B-37)
VECTOR SIGNAL SOURCE

BLOCK PARAMETERS

- Feed through type: ALL_FEED_THROUGH
- I/O vector list: X
- Vector size: 64
- File format (binary or ascii): 'binary'
- Error count before action: 1
- Action taken (stop or continue): 'stop'
- GET_SIM Signal Display Order: 1
- Interactive Signal Selection Order: 1
 (18 => don’t prompt, use file)
- Interactive Signal Selection Prompt: 'Select input signal'
Figure (B-39)
Figure (B-41)
VEC/MINMAX_RAMP

Data length: 100
Ramp length: 100

VEC RAMP

VEC MINMAX

Figure (B-43)
ROME LABORATORY

Rome Laboratory plans and executes an interdisciplinary program in research, development, test, and technology transition in support of Air Force Command, Control, Communications and Intelligence (C3I) activities for all Air Force platforms. It also executes selected acquisition programs in several areas of expertise. Technical and engineering support within areas of competence is provided to ESC Program Offices (POs) and other ESC elements to perform effective acquisition of C3I systems. In addition, Rome Laboratory’s technology supports other AFMC Product Divisions, the Air Force user community, and other DOD and non-DOD agencies. Rome Laboratory maintains technical competence and research programs in areas including, but not limited to, communications, command and control, battle management, intelligence information processing, computational sciences and software producibility, wide area surveillance/sensors, signal processing, solid state sciences, photonics, electromagnetic technology, superconductivity, and electronic reliability/maintainability and testability.