
- NAVAL POSTGRADUATE SCHOOL
Monterey, California

DTIC
ELECTE

THESIS APR12

LEAST SQUARES APPROXIMATION
BY G' PIECEWISE PARAMETRIC CUBICS

by

Marion R. Holmes

December 1993

Thesis Advisor: Richard Franke

Approved for public release; distributed is unlimited.

9 4 - 1 0 9 5 2 T C Qy"A1 •, -1y E'J

\l/l\\l5\0 ml' 4 11 070

REPORT DOCUMENTATION PAGE Form Approved OMS Np. 0704

u i reporting burden for this collection of information is estiniated to average I hour per response, including the time for reviewing instictiom.
searcling existing data sources. gathering and maintaining the data needed. and completing and reviewing the collection of information. Send comments
regarding this burden estimate or any other aspect of this collectioa of information, including suggestions for reducing this burden, to Washingon
headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204. Arlinglon, VA 22202-4302. and
to the Office of Management and Budget, paperwork Reduction Project (0704-0188) Washington DC 20503.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

December 1993 Master's Thesis

4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

LEAST SQUARES APPROXIMATION BY G1 PIECEWISE
PARAMETRIC CUBICS

6. AUTHOR(S) HOLMES, Marion R.

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING
ORGANIZATION

Naval Postgraduate School REPORT NUMBER
Monterey CA 93943-5000
9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10.SPONSORING/MONITORING

AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES

The views expressed in this thesis are those of the author and do not reflect the official policy or
position of the Department of Defense or the U.S. Government.
12a. DISTRIBUTION/AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

Approved for public release; distribution is unlimited.

13. ABSTRACT (maximum 200 words)

Parametric piecewise cubic polynomials are used throughout the computer graphics industry to
represent geometric curved shapes. The exploration of the use of parametric curves and surfaces can
be viewed as the birth of Computer Aided Geometric Design (CAGD). In this thesis, least squares
approximation is used for fitting a geometrically continuous (G1) piecewise parametric cubic
polynomial to a sequence of ordered points in the plane. Cubic Bdzier curves are used as a basis.
The parameterization, the control points, the number of knots, and their locations are determined as
part of the approximation process. A development of the algorithm is given, along with some results
for a variety of sets of ordered data.
14. SUBJECT TERMS Parametric continuity, Geometric continuity, Knot point, 15. NUMBER OF
Control point, Bdzier curve, Least squares, Approximation, Piecewise cubic, PAGES 70
Interpolation 16. PRICE CODE

17. SECURITY CLASSIFI- 18. SECURITY CLASSIFI- 19. SECURITY CLASSIFI- 20.LIMITATION OF
CATION OF REPORT CATION OF THIS PAGE CATION OF ABSTRACT ABSTRACT

Unclassified Unclassified Unclassified UL
SN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)

Prescribed by ANSI Std. 239-IS

Approved for public release; distribution is unlimited

LEAST SQUARES APPROXIMATION
BY G' PIECEWISE PARAMETRIC CUBICS

Marion R. Holmes
Lieutenant, United States Navy

B.S., Morehouse College, 1987

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN APPLIED MATHEMATICS

from the

NAVAL POSTGRADUATE SCHOOL
December 1993

Author:

Approved by: Rihad Franke, .. sor

-Carlos F. Borges, eReoeRr

Richard Franke, Chairman,
Department of Mathematics

ii

ABSTRACT

Parametric piecewise cubic polynomials are used throughout the computer

graphics industry to represent geometric curved shapes. The exploration of the use of

parametric curves and surfaces can be viewed as the birth of Computer Aided

Geometric Design (CAGD). In this thesis, least squares approximation is used for

fitting a geometrically continuous (GI) piecewise parametric cubic polynomial to a

sequence of ordered points in the plane. Cubic Blzier curves are used as a basis.

The parameterization, the control points, the number of knots, and their locations are

determined as part of the approximation process. A development of the algorithm is

given, along with some results for a variety of sets of ordered data.

Accesion For
NTIS CRA&M
DTIC TAB

.Unannounced 0
Justification.

Dist, ibution I

Availability Codes
Avail and Ior

Dist Special

iii°

TABLE OF CONTENTS

I. INTRODUCTION 1

A. GENERAL 1

B. CONTINUITY/PARAMETRIC AND GEOMETRIC 6

C. BERNSTEIN POLYNOMIALS 11

D. BEZIER CURVES 15

II. THE PROBLEM: FI'ITING ORDERED DATA IN A PLANE 24

A. USING BtZIER CURVES AS A BASIS 24

B. USING PIECEWISE PARAMETRIC CUBICS WITH G'

CONTINUITY 26

C. ALLOWING FREE PARAMETERS 28

D. COMPUTING NORMAL DISTANCE FROM

DATA POINTS TO CURVE 31

III. IMPLEMENTATION , 34

A. INITIAL GUESSES. 34

B. OPTIMIZATION ROUTINE 35

IV. CONCLUSIONS 37

A. EXAMPLES 37

B. CONCLUSIONS 47

iv

APPENDIX: MAIN PROGRAMS 49

LIST OF REFERENCES 61

INITIAL DISTRIBUTION LIST 63

V

ACKNOWLEDGEMENT

This thesis is dedicated to my parents, Mr. and Mrs. Robert L. Holmes, who

encouraged higher education, and to my thesis advisor and second reader, who

inspired me greatly and without which their efforts this document would not have

been possible.

vi

I. INTRODUCTION

A. GENERAL

In many CAGD applications, a user wishes to produce a smooth curve from a

given ordered set of data points such that the results captures the general shape of the

data. This is no easy problem as many numerical analysts have discovered. There

are several types of approximations that can be used to solve this problem. In simple

cases polynomial interpolation is generally used. In advanced cases, piecewise

polynomials are used. These methods are incorporated into least-squares data fitting

in approximating curved shapes from a set of discrete data points. When parametric

curves are used, an appropriate parameterization is essential in obtaining a good

representation of the original shape.

The method of fitting given data by a polynomial which coincides with the

data at certain specified points is in some cases a rather inefficient one. In particular,

when the function is known at all points in an interval, it seems undesirable to select

only a relatively small set of arbitrarily chosen points at which to "match", Weeg

[Ref. 1: p. 126]. Obviously, using a large number of points results in a prohibitively

high degree polynomial for numerical computations. Another undesirable case is one

in which the degree of reliability of such values is not clearly established, as is often

the case for experimental data.

The method of least squares is designed to treat these two classes of problems.

The usual criterion of least-squares approximation is to minimize the sum of the

squares of the errors within a specified domain. Detailed explanations of least

1

squares data-fitting can be found in most books on "Numerical Analysis", [Ref. 1-5].

Polynomial interpolation is the most fundamental of all approximation

concepts. The algebraic polynomials po(x) are by far the most important and popular

approximating functions, Carnahan [Ref. 2: p. 2]. The theory of polynomial

interpolation is well developed and fairly simple. Polynomials are easy to evaluate

and their sums, products, and differences are also polynomials. Polynomials can be

differentiated and integrated with little difficulty. In addition, if the origin of the

coordinate system is shifted or if the scale of the independent variable is changed, the

transformed polynomials remain polynomials, that is, if p3(x) is a polynomial, so are

p.(x+a) and p•(ax), Ralston [Ref. 3: p. 34].

All these advantages of the polynomial would be of little value if there were

no analytical justification for believing that polynomials can, in fact, yield good

(implies the error can be made arbitrarily small) approximations for a given function

f(x). This theoretical justification does exist; any continuous function f(x) can be

approximated to any desired degree of accuracy on a specified closed interval by

some polynomial p.(x). This follows from the Weierstrass approximation theorem

stated here:

If f(x) is continuous in the closed interval [a,b], then given any e >0, there is

some polynomial p.(x) of degree n m n(e) such that

I f(x)-p.(x)I <e , x c [a,b].

It is important to note that the usual criteria for generating interpolating polynomials

in no way guarantees that the polynomial found is the one which the Weierstrass

2

theorem shows must exist. This is why polynomial interpolation is mostly of

theoretical value, while faster and more accurate methods, piecewise polynomials, are

used extensively in approximation analysis.

Piecewise polynomials are more widely used in least-squares data fitting since

they are more flexible than simple polynomials. If we wish to approximate to a

function f on [a,b], we may divide [a,b] into N sub-intervals, by introducing points of

sub-division

a = x0<x,< ... < x. =fb,

and use some form of approximating or interpolating polynomial on each sub-interval

[xi 1,xJ], 1:5 i: N. This is called piecewise polynomial approximation. Phillips [Ref.

4: p. 113].

Generally, the approximating polynomials used on neighboring intervals

[x•,,xj and [x., xY÷,] will not take the same value at the common point xi. It is

natural to seek piecewise approximations which are continuous and whose first few

derivatives are also continuous at the nodes of subdivision, so that the connection

appears smooth. These are called spline approximations. The most common

piecewise polynomial approximation using cubic polynomials between each successive

pair of nodes is cubic spline interpolation. A piecewise cubic polynomial

approximation to a curved shape consists of a number of single cubic segments

connected end-to-end to form a continuous curve. A general cubic polynomial

involves four constants; so there is sufficient flexibility in the cubic spline procedure

to ensure not only that the interpolant is continuous on the interval, but also that it has

3

a continuous first and second derivative on the interval. But, as stated by Burden

[Ref. 5: p. 132] the constr'ction of the cubic spline does not assume that the

derivatives of the ir'#-rpolant agree with those of the function, even at the nodes.

If x and y are given as functions

x = f(t) y = g(t)

over an interval of t-values, then the set of points (x,y) = (f(t),g(t)) defined by these

equations is called a curve in the coordinate plane. The equations are a

ciiation for the curve. The variable t is called the parameter of the curve. When

we write parametric equations for the curve in the plane, we say that we have

lpmteam ize the curve. For example, a parametric equation of the unit circle is as

follows:

x=cost y = sint 0<t•2,r.

The spline interpolation problem is usually stated as "given data points %i and

parameter values uj,...". The simplest way to determine the uj is to set ui = i. This

is called uniform or cqidistant parameterization, Farin [Ref. 6: p. 130]. This

method is not useful in most practical situations. The reason is that uniform

parameterization does not take into account the geometry of the data points, for an

heuristic explanation see Farin [Ref. 6: p. 130]. There are exceptions in which

uniform parameterization fares better than other methods, according to Foley [Ref. 7:

p. 86].

The most commonly used parameterization or knot spacing is chord

1olth spacing, where i=.- Ioi, - chiI (Euclidean distance). Some authors have

4

suggested using chord length because it approximates the arc length of a parametric

curve, for example Ahlberg [Ref. 8: pp. 254-258]. Another advantage for chord

length parameterization, as proved by Epstein [Ref. 9: pp. 261-268], is that it

guarantees there will be no cusps for the case of a closed periodic curve. When the

data is poorly scaled or when the direction of the data changes abruptly, the chord

length knot spacing often produces visually poor results, as seen in Foley and Nielson

[Ref. 10: pp. 261-271]. A curve may be parametrized in many ways and the choice

of parametization is important as discussed by de Boor [Ref. 11: pp. 315-318]. There

is probably no "best" parametrization since most known methods can be defeated by a

suitably chosen data set. For our algorithm, chord length parametrization was chosen

as an initial guess.

The problem presented here is the following:

Given an ordered set m of data points Q. = (xj,y,) for i = 1,...,m, we wish to fit a

piecewise B1zier cubic polynomial B(t) = (x(t),y(t)) to Qj that minimizes the sum of

squares of distances from the data points to the nearest point on the piecewise Bdzier

curve. The optimization routine "fmins" minimizes this sum by optimizing the free

parameters (i.e., knot points, control points, unit tangent vectors). In particular we

wish to fit geometrically continuous (G') curves, rather than parametrically continuous

(C0) curves, generally because the former is a less restrictive condition.

5

B. CONTINUITY/PARAMETRIC AND GEOMETRIC

Parametric continuity (C) of a curve means that the component functions are r

times continuously differentiable in a given interval [a,b]. Therefore, C' continuity

implies that the component functions are one time continuously differentiable.

Furthermore, C' continuity is based on the interplay between domain and range

configurations. Without any information on the domain of a curve, we cannot make

any statements concerning differentiability. In another case, zero tangent vectors may

give rise to comers or cusps in curves (which are C'), a fact that intuitively

contradicts the concept of differentiability. Smoothness and differentiability only

agree for functional curves, the connection between them is lost in the parametric

case. Differentiable curves may not be smooth and smooth curves may not be

differentiable. We emphasize that by "smooth", we mean "perceptually smooth".

Geometric continuity of order r for a curve implies that the curve is r times

differentiable with respect to arc length, Farin [Ref. 6]. It also concerns how

parametric curves and surfaces can be pieced together in a smooth way. If a curve

has continuous curvature, it is G2 (second order geometrically continuous). Curves

with a zero tangent vector under the given parametrization, can be G2, for example

the parametric curve x = t3, y = t3 is G2 at t = 0. A tutorial view of the concepts of

geometric continuity within the subject of CAGD is presented by Gregory [Ref. 12:

pp. 353-371]. The following examples illustrate the difference between these two

concepts:

6

(1) Consider the parametric curve defined by

x = t3, y = It31, t e [-1,1].

--d d(I t13) = 3It121 !ý(l tl)d =31It~l- - =31tlt.
dt dt dt F

Note that y = Ixl. This curve is C' but not G', see Figure 1.

(2) Consider the B]zier parametric curves for the control points (0,0), (0,3), (3,3),

and (3,3), (6,3), (6,0) respectively.

(a) x(t) = 3t0 y(t) = 6t-3te t e [0,1]; and

(b) x(t) = 12t-3t2-6 y(t) = 6t-3t2 t c [1,2].

For curve (a),

d---6 t dy =6-6 t,
dt dt

d2x =6 d 2Y=-6
dt 2 dt

For curve (b),

d=12 -6 t, d2 x=-6 y and d 2y is same as (a).
dt dt 2 dt dt: 2

Thus, y(t) is infinitely differentiable, but x(t) is not twice differentiable at t= 1; as

shown above x'(1) = 6 for (a) and x" (1) = -6 for (b). However, the curve does

have continuous curvature at t= 1, as shown below. The curvature of a plane curve is

7

0.9

0.8-

0.7-

0.6-

>-0.5 -

0.4-

0.3-

0.2 Y = ABS(X)

0.1-

01
1 -0.5 0 0.5

x
Figure 1. x=te, y= I e I. This curve is C', thus parametrically continuous but not
GI.

8

defined as the following:

K (dt~ dt2y~d (dt

[dtE + dt)~c2 i~2
Therefore, for (a),

Kt=1 = (6) (-6) - (6-6) (6) - -36 _ -13 216 6'
((6)2 + (6-6)2] 2

(b),

Kt1 (12-6) (-6) - (6-6) (6) - -36 _ -1
2 216 6'

[(12-6)2 + (6-6)2] 2

Both curves have curvature equal to -1/6. Figure 2 depicts a graph of these two

curves that coincide at point (3,3).

9

P1 P2 P"

2.5

2

>-1.5

1

0.5

PO P4

0 1 2 3 4 5 6
x

Figure 2. This curve consists of two piecewise parabolic arcs, that coincide at P2.
This curve is not twice differentiable at P2, but it has continuous curvature, and is
therefore G .

10

C. BERNSTEIN POLYNOMIALS

Bernstein polynomials are a useful tool for matching a curve to a function f on

a closed bounded interval [a,b]. The polynomials are so named because of their

central role in Bernstein's constructive proof of the Weierstrass approximation

theorem. The essence of this proof is the construction of a sequence of polynomials

which can be shown to converge uniformly to f. It also turns out that the derivatives

of these approximations converge uniformly to those of f - assuming the latter exists.

Buchanan [Ref. 13].

We begin with the definition of the Bernstein polynomials.

Definition: The Bernstein polynomial of degree n associated with the function

f on [a,b] is defined by

B" (f; X) = : (i) (x-a) 'i(b-x) n-if (x,)(1
1-0

where the points x - a + ih = a + (i/n)(b-a) for i = 0, 1,...,n. In the special case

where the interval is [0,1], equation (1) reduces to

n n
Bn (f ; X) = Z ('?)x(1 -X) n-'f Z =1 n X (2)

1-0 .-

where the Bernstein basis polynomials are defined by

Bn i W)= (n)xi(1-x)n-' (i = 0,1, .. ,n;n = 0,1,2 ...)

Those who have studied probability theory should recognize the Bernstein

basis polynomials as the probability density functions for a binomial distribution.

Specifically, B.,i(x) is the probability of achieving exactly i successes in a sequence of

11

n independent trials where the probability of success on any one trial is x. Bernstein

worked in probability theory as well as in differential equations and approximation

theory.

In view of this, it is clear that

n n

from which it can be deduced that the Bernstein polynomial for the function f(x) - I is

itself identically 1; equation (3) is the "partition of unity property".

As another example, by differentiating (3) we obtain

n

0 Eri()Xi''1-X)n''i-i1-x) - (n-i)x]
1-0n

-- • i (•1-x) n-i U -nx)
1-0

and multiplying by x(l-x) yields

n JnX j 1 -) U nx)= 0
2-0

Therefore, it follows that

Z(Z• il-.o-i=_ (q)x'-(I-X, n-'= x (4)

using (3). Thus, the Bernstein polynomial for the function f(x)=x reproduces this

function exactly.

Continuing in this way, differentiating (4) we have

and multiplying by x(l-x)/n yields

12

x~~l-X) (I • / (-X) "- -- X)
n n100

1= £ 2 i1n ~lx)n1-• x2

or

B,(x 2 ;x) = x2 + x(1-x)
n

Since

1
max x(1 - x)=

it follows that

Ix 2 -B. (x 2 ;x) 1. -.. ' 0 as n--
412

The good approximation properties of Bernstein polynomials give us hope that Bo(f;x)

should be a good approximation to f(x) over (0, 1]. As it turned out however,

Bernstein polynomials are good at mimicking the behavior of f, but slow in

converging to f.

Bernstein basis polynomials are usually used to express Bdzier curves. The

polynomial is defined explicitly by

13

where t e (0,1] and the binomial coefficients are given by

(n if O1iSIni, (n-i)'

0 else

One important property of Bernstein polynomials is that they satisfy the recursion:

Bnit) = (1-t)B•.-I(t) + tB•.I,i-(t)

with B0o0(t)-1 and Bn(t)-0 for j e {(0l,..1,n}. The proof can be found in Farin

[Ref. 6]. Also note that Bernstein polynomials are nonnegative over the interval

[0,1]; this leads to the convex hull property. The convex hull proQer'y states that the

curve is contained within the convex hull of the control polygon. The cnvex1iull of

a set of points is the smallest convex set containing the set of points. Bernstein

polynomials are also symmetric with respect to t and (l-t), and thus Bnj(t) =

B,,.i(l-t). The Bernstein polynomial Bo, has only one maximum and attains it at

t=i/n; given a function f(x), if the f(i/n) value is changed, then the Bernstein

polynomial is mostly affected by this change in the region of the curve around the

parameter value t = i/n, which relates to the local control property exhibited by

B-spline curves.

14

D. BIZIER CURVES

Bdzier curves and -,rfaces were independently developed by P. de Casteljau at

Citroen and by P. BWzier at Renault Automobile Company. BIzier developed them in

the early 1960's to fill a need for curves whose shape can be readily controlled by

changing a few parameters and which exhibit a "local control" property. Bdzier's

application was to construct pleasing surfaces for car bodies. de Casteljau's

development was never published, and so the whole theory of parametric polynomial

curves and surfaces in Bernstein form now bears BIzier's name. Farin [Ref. 6].

Bdzier curves are numerically the most stable of all polynomial bases currently

used in Computer Aided Design (CAD) systems. Therefore, Bdzier curves are the

ideal geometric standard for representation of piecewise polynomial curves. Blzier

curves also lend themselves easily to a geometric understanding of many CAGD

phenomena and may be used to derive the theory of rational and non-rational B-spline

curves.

Curve fitting has received a fair amount of attention, even before computer

graphics came along. Piecewise polynomial curves have been used to mathematically

interpolate discrete data sets. The algorithm developed fits a piecewise cubic Bdzier

curve to a set of data points. In particular it fits geometrically continuous (G')

curves, rather than parametrically continuous (C') curves.

The control points or BIzier points are coordinate pairs (xi, y.) for i =0,1,...N

15

which are used to define a Bzier curve by setting

N N
X(tC) = Ex. t) y(t) 4E ~YlBM, (t0

1-0 1-0

The polygon formed by (xo,y 0), (xi, y,),...(x,,y.) is called the zier...21i2yg or

cntrlQlyn.

Suppose we are given a set of data points, pi, and the points do not necessarily

progress from left to right. The coordinates of each point are treated as a two vector

components.

Pi Y'i "

In parametric form, the curve is

P(t) = €) ,

The n-th degree Bdzier polynomial determined by n +I points is given by

n

P(t) =F 1iP -

1 0

For n=2, this would give the quadratic curve defined by three points po,p,,P 2:

P(t) = (1)(l-t)2 po + 2(1-t)(t)pl + (1)t2p2

The parametric form of the above curve is

x(t)=(l-t)2xo + 2(1-t)(t)xl + t2x2

y(t)=(l-t)yo + 2(1-t)(t)y1 + t2y2

Note that if tf=0, x(O) = x and y(O) =yo. If tf= 1, the point is (x2,y2). As t

takes on values between 0 and 1, a curve is traced that goes from the first point to the

16

third point of the set. Usually, the curve will not pass through the central point of the

three unless the points are collinear; if the points are collinear, the curve is a straight

line through all three points. In effect, the points of the second-degree Bdzier curve

have coordinates that are weighted sums of the coordinates of the three points that are

used to define it.

For n-=-3, we get the cubic BNzier polynomial, which we will use in our

algorithm. The basic properties of higher degree Bdzier polynomials are the same as

for the cubic. The parametric form for the Bdzier cubic is the following:

x(t)=(l-t)3xo + 3(l-t)2(t)x, + 3(1-t)(t2)x2 + t3x3 .

y(t)=(1-t)yo + 3(1-t)2 (t)y1 + 3(l-t)(e)y2 + ty 3 .

Note again that (x(O), y(O)) = Po and (x(l),y(l)) = P3, and that the curve will not

ordinarily go through the intermediate points. As illustrated in Figure 3(a) and 3(b),

changing the intermediate "control" points changes the shape of the curve. Figure

3(c) is a sixth degree BUzier curve, notice that the curve tends to follow along the

path of the points (this will be further explained later).

Sometimes it is convenient to represent the B1zier curve in matrix form. For

Bdzier cubics, this is

-1 3 -3 1j o

p(t) -lt3' t2' t'1] 3 -6 3 0I1Pi
6 -3 3 0 01,p2

1 0 0 0.Jp 3J

Some properties of Bizier cubics are:

17

3.5
P1

3.45-

3.4 P2

3.35-

3.3

>3.25

3.2-"

3.15

3.1- P3

P033.05-

PO

2 3 4 5 6 7
x

Figure 3(a).

18

3.5
P1

3.45-

3.4-
P2

3.35

3.3-

>"3.25-

3.2

3.15

3.1

3.055

1 1.5 2 2.5 3 3.5 4 4.5 5

x
Figure 3(b).

19

3.7
P2

3.6-

3.5 P6

3.4- P1

3.3 P3

3.2-

3.1-

PO P5II I

3 4 5 6 7X

Figure 3(c). Sixth degree Bdzier curve.

20

(i) Since

dx = 3 (xl-x0) and dy = 3 (yl-yo) at t=O
dt dt

the slope of the curve at t=O is

S= (y -y o)
dx (xI -xo)

which is the slope of the secant line between po and pl. Similarly, the slope at t= 1 is

the same as the secant line between the last two points.

(ii) The Bzier curve is contained in the convex hull determined by the four

points.

If a curve has a complex shape, then its Blzier representation will have a very

high degree (for practical purposes, degrees exceeding 10 are prohibitive). However,

such complex curves can be modeled using piecewise or composite Bdzier curves.

Bdzier cubic curves can be continued beyond the first set of four points by

subdividing seven points (p0 to P6) into two groups of four points, with the central

point P3 belonging to both sets. Because the curve is tangent to the control polygon at

the end control points, the piecewise curve has continuous slope provided the points

p2, p3, and p4 are collinear. See Figure 4 for an example of this.

A piecewise Bdzier curve s is the continuous map of a collection of intervals

Uo <... < UL into RW, where each interval [ui,ui,,] is mapped onto a polynomial curve

segment. Each real number t% is called a brEk int or knot. The collection of all uj

is called the knogtL,=.uen. For every parameter value u, there is a corresponding

21

4
' P6

3.9

3.8

3.7 +

3.6 piecewise Bezier polygon

P1 P2
-3.5-+

3.4 +

3.3 -
piecewise Bezier cubic

3.2 + -

P5
3.1- +

P0

2 3 4 5 6 7 8
x

Figure 4. 0 -,- control points, 0 -, knot points, + -. data points. The curve is
GI continuous at P3 because of tangency at the end control points.

22

point s(u) on the curve s. Let value v be from an interval [tu-u,.,.]. We can introduce

a local coordinate (or local parameter) t for the interval [u,,ui,] by setting

t - V-Ui
u1i. 1-Ui

One can check that t varies from 0 to 1 as v varies from ui to u,. 1. The collection of

the Bdzier polygons for all curve segments itself forms a polygon; it is called the

piecewise Bkzier polygon of s. Farin [Ref. 6].

It is the geometry of Bdzier curves that makes them a good choice for our

purposes. Sometimes, the shape of the curve may require a cusp or corner; this can

be achieved by having knot points coincide, which produced zero tangent vectors.

Piecewise Bdzier curves have the geometric property that by changing one of the

points we only change one portion of the curve, a "local" effect. Generally, cubic

spline curves have a "global" effect, in that the curve from the first to the last point

would be affected. Bdzier curves are not really interpolating splines, since the curves

do not normally pass through all of the points. In this respect they show some

similarity to least-squares curves and thus are effective in approximating data. Other

properties of Bdzier curves are discussed by Farin [Ref. 6] and Gerald [Ref. 14: pp.

217-222].

23

H. THE PROBLEM: FITTING ORDERED DATA IN A PLANE

A. USING BtZIER CURVES AS A BASIS

It is interesting to note how piecewise cubic polynomials relate to a more

common specification, BWzier curves. In this representation, the variables are vector

values called control points which are multiplied by real-valued functions of t to fix

the shape of the curve. The control points are therefore coordinate pairs (xq,y-) for

i=O,1,...,N which are used to define a parametric curve - a BIzier curve - by setting

N

x(t) = x• xIB. (t)

N

y(t) = y• y1 BI(t)
.1=0

Such a specification can be converted to a scheme of vector-valued basis

functions and real-valued coefficients as follows: let the control points be specified as

Sj = alj'1J '+ a 2j'b 2 J

each control point having its own coordinate system with basis

Furthermore, let the original basis functions be { 1j(t)}. Then the parametric curve is

= (a1j(S1j10j(t)) + azj(j5j(t))

24

so the appropriate set of vector valued basis functions is (b40j(t) Ii = 1,2). Plass and

Stone [Ref. 15].

This means we can preset linear constraints on the control points for the

resulting curve. Since each control point has been given its own coordinate system,

by appropriate choice of the coordinate systems and the free coefficients, each control

point can be constrained to be on a particular point or line, or to be free to move

anywhere in the plane.

It is the control points as seen in Figure 1(a) and 1(b), that control the

behavior of the Bzier curve, and in some sense make the curve "mimic" the Bdzier

polygon. This is the reason why B]zier curves provide such a handy tool for the

design of curves: In order to reproduce the shape of a hand drawn curve, it is

sufficient to specify a control polygon that "exaggerates" the shape of the curve.

Letting the computer draw the Btzier curve defined by the polygon, and if necessary,

adjusting the location and possibly the number of the polygon vertices, one will

reproduce a given curve after two to three iterations, Farin [Ref. 6].

25

B. USING PIECEWISE PARAMETRIC CUBICS WITH G' CONTINUITY

Our design methodology is to represent all shapes analytically using piecewise

parametric cubic polynomials, from an ordered set of discrete data points. A

parametric cubic polynomial is quite flexible, but has some limits. For instance, it

can contain at most one loop or, if it has no loop, at most two inflection points.

Therefore, the least-squares fit is very vulnerable to a poorly chosen continuity

constraint such as a bad tangent vector.

Following Plass and Stone [Ref. 15], the common specification of a parametric

cubic polynomial is F(X(t),Y(t)), where X and Y are cubic polynomials and t lies in

the range 0 to 1. Using continuous, piecewise functions will enable us to constrain

the endpoints and tangents for each cubic piece. To obtain GI continuity the knot

point must lie between two adjacent control points on the same line, as in Figure 5; p,

is a knot point. A cusp will occur if the two control points both precede or follow the

knot point along the same line. A = is also defined as a point on a curve where

the first derivative vector vanishes. Thus zero tangent vectors may give rise to

corners or cusps in curves, occurring when two or all three points coincide. A come

is a point on a curve where the tangent, not necessarily the tangent vector, changes in

a discontinuous way.

26

4 'P2

3.8-

3.6-

3.4-
3.2-

>" PO

2.8-
2.6-

2.4-

2.21-

2 3 4 5 6 7 8
x

Figure 5. 0 - control points, ® -- knot points, + - data points. Shows curve
with GI continuity at the second knot point.

27

C. ALLOWING FREE PARAMETERS

We have seen the parametric form of a Bdzier curve. BUzier curves were

developed to fill a need for curves whose shape can be readily controlled by changing

a few parameters. By Figure 6, one can easily determine the parameters of the curve.

The parameters are the locations of the knot points, the direction or angle of the unit

tangent vectors at the knot points, and the distance from the knot points to adjacent

control points. Note that the unit tangent vector is parallel to the three collinear

control points. These three sets of parameters determine the shape of the

approximating curve.

The number and placement of the knot points are critical in getting a good

representation of the data, since the approximating curve must pass through each knot

point. Choosing the knot locations can be and has been done in several ways. The

technique described by Reeves [Ref. 16] in fitting cubic pieces to a set of data points

is stated thusly; "one simple method for defining the knots is to "grow" the pieces out

until the fit for that piece exceeds some threshold. In other words, starting with the

previous knot, keep adding data points until the piece is as long as possible. Each

new piece must be constrained to maintain continuity." This will work in the sense

that the resulting curve will fit everywhere within some specified tolerance, but is

vulnerable to local phenomena such as a badly defined tangent. Another choice, also

described by Reeves, is subdivision.

Plass and Stone [Ref. 15] used "dynamic programming" to search a subset of

28

Perturbed Exponential Spiral

0.5-

0"

-0.5

-1 -0.5 0 0.5 1 1.5X

Figure 6. 0 -- control points, ® -- knot points, + -- data points. Parameters:
Location of the knots, the direction or angle of the unit tangent vectors, and the
distance from the knot points to adjacent control points.

29

the sample points as potential knot positions. The criterion of Powell [Ref. 17: pp.

65-83] called the *trend" for data fitting, is that knots are inserted successively until a

satisfactory fit is obtained. An advantage of this criterion is that it is applicable even

if the magnitude of error is unknown. This method was also used by Ichida and

Kiyono [Ref. 18: pp. 164-174] in their one-pass method for curve fitting.

The unit tangent vectors are calculated at each knot point. The direction or

angle of the unit tangent vectors determined the direction in which the approximating

curve will travel. They are also used to calculate the positions of the interior control

points for each cubic segment. These control points lie along the same line as the

knot point and their location determines the geometric continuity of the curve at that

knot point; this line is parallel to the unit tangent vector.

So, the collinearity of three successive control points does guarantee a

continuously varying tangent. However, it is important to note that collinearity of

three distinct control points is not sufficient to guarantee C' continuity as explained by

Farin; this is because the notion of C' is based on the interplay between domain and

range configurations. Collinearity of three points is purely a range phenomenon.

Without additional information on the domain of the curve under consideration, we

cannot make any statements concerning differentiability. However, C' continuity can

exist under certain conditions, see Farin [Ref. 6: p. 93].

The distances from the knot point to adjacent control points determines the

continuity and shape of the curve at that knot point. If these distances were equal, the

curve would have G2 continuity. As seen in Figure 6, these distances are usually not

30

equal, thus the curve is G'. If these distances become zero, or the control points

coincide with the knot point, a comer will be formed. This will be shown in a later

example. If both control points precede or follow the knot point a cusp will occur.

These parameters are also available to the optimization function. Henceforth, the

control points, knot points, and data points will be represented as in Figure 6.

D. COMPUTING NORMAL DISTANCE FROM DATA POINTS TO CURVE

The basic problem can be stated thusly: given a parametric curve F(t) and a

point Q, both in the plane, find the point on the curve closest to Q. In other words,

find the parameter value t such that the distance from Q to F(t) is a minimum. Note

that the line segment (whose length we wish to minimize) from Q to F(t) is

perpendicular to the tangent vector of the curve at F(t), unless the closest point is an

endpoint of the curve segment. The equation we wish to solve for t is

[F(t)-Q] • F'(t)=O (1)

Curve F(t) is a cubic Bdzier polynomial in our case;

n

F(t) = 'E ViBn'itt) tE[O,1, where Vi

are the control points. Curve F'(t) can also be expressed in Bdzier form;

n-1

(t) = nJ (Vi.,-Vi)Bn. 1,i(t)
1-0

We are dealing with cubics, so polynomial F(t) is of degree three, and F'(t) is

of degree two. Polynomial F(t) - Q is also of degree three, so the polynomial

31

described by equation (1) is generally of degree five. Thus the problem can be

restated as one of finding the roots of this fifth-degree polynomial. There is no

closed-form solution to this problem. A technique developed by Schneider [Ref. 19:

pp. 607-6111, converts the equation to BUzier form, and then uses a recursive

algorithm to find the roots. The roots are evaluated to find the points on the curve.

By comparing the distances from those points on the curve to the arbitrary point, and

also considering the endpoints of the curve, the desired result is found - the point on

the curve closest to the arbitrary point, and also its parameter value.

Plass and Stone use Newton-Raphson iteration to find the root. The Newton-

Raphson iteration for solving f(t) = 0 is

t - t- f(t)
f,(t)

Referring back to equation (1), each iteration will reduce t by

[F(t) -Q] "F' (t) _t2

Because Newton-Raphson iteration converges quickly and is fairly inexpensive, only a

few steps are needed to find a close approximation to the root. This method has

proven to be very stable, however their algorithm is not suitable for fitting smooth,

continuous, piecewise functions because the endpoints and tangents for each cubic

piece cannot easily be constrained.

With the data parameterized by normalized accumulated chord length, Matin

and Smith [Ref. 20] used ODR (Orthogonal Distance Regression) splines to

32

approximate the data. Their fit is better as compared with using ordinary least

squares, however under certain circumstances, there will not exist a solution, or the

solution will not be unique.

33

MI. IMPLEMENTATION

A. INITIAL GUESSES

The algorithm consists of several MATLAB programs including a main driver,

"Isg2". We first start with a set of ordered data points, input by the user. The user

can either select the knot spacing or let the program do it. Regardless, the initial knot

locations are a subset of the data points. The program's knot sequence is based upon

the size of the data and the number of knot points. The ultimate goal of knot

placement is, of course, to use as few knots as possible to get a "good" representation

of the shape of the data.

Next, the unit tangent vector was estimated for each control point. This was

accomplished by using a chord length parametrization to fit a parametric quadratic

curve to five data points. The five data points consisted of a center knot point and its

two adjacent data points; at the end points the first five, or last five, points were

used. The unit tangent vectors were approximated by the unit tangent vectors for

those parametric quadratic curves, and indicated the direction of the adjacent control

points. The angles of the unit tangent vectors are also computed as they are the

parameter used in the optimization function.

The distance from the knot points to adjacent control points were calculated by

first taking one-third of the distance between successive knots. The unit tangent

vector multiplied by that distance was added or subtracted from each knot point to

obtain the locations of adjacent control points.

34

The above process can be found in the function "iguess". The data points,

knot points, and control points are then plotted; the control points are used to

calculate the points of the approximating cubic B1zier curve. Thus, an initial guess of

the shape of the curve is obtained and plotted.

B. OPTIMIZATION ROUTINE

The optimization routine used was "fmins". The purpose of "fmins" is to

minimize a function of several variables. For example, x=fmins('fun',x0) returns a

vector x which is a local minimizer of fun(x) near the starting vector xO; 'fun' is a

string containing the name of the objective function to be minimized. In our

algorithm, the xO array consists of the knot points, the angles of the unit tangent

vectors and the distance from the knot points to adjacent control points. These are

the control parameters.

The objective function, named "objf2" calculates the function that will be

minimized by the optimization routine "fmins". Along with the x-array which was

the old xO array, "objf2" also calls the function "ctpts" that computes the control

points and "newk" that partitions the data points among the cubic segments.

Because the data is ordered, it is necessary for the closest points on the

approximating curve to be ordered in the same way. Consequently, it is necessary to

associate the data points with particular cubic segments to avoid computing distances

to a closer, but incorrect, cubic segment, as might occur if the data makes a loop.

The function "newk" determines which data points partition the data set into subsets

35

associated with the various cubic segments. These data points will be called dividing

points. So, given an initial knot sequence, the search for the dividing data points for

the interior knots is achieved by finding the smallest distance from that knot point to

the surrounding data points. From that knot point, the data points tested are those up

to but not including the previous and subsequent dividing points. For the first and

last knots, the data points tested are those up to the next and previous dividing points

respectively.

During the optimization routine, the knot points initially coincide with the data

points, and the subscripts of those data points indicate the dividing points (which are

represented by the global variable "dpkpc") for each segment. However, as the knot

points move, the dividing points may change. With each new iteration, the (possibly

new) dividing points must be obtained.

When the function "sod" is called, the sum of the squares of the distances

from the data points to the nearest point on the cubic segment is computed. In

addition, the square of the distance from the first and last data points to the first and

last knot points, respectively, was included in this sum. This was done to ensure that

the curve begins near the first knot point and ends near the last knot point.

36

IV. CONCLUSIONS

A. EXAMPLES

The following examples illustrate how well the optimization routine

approximates the curve given the initial guess. The initial guess is presented first,

followed by the final optimized curve.

A major limitation of the initial guess curve is the number and placement of

the knot points. If the spacing of the knot points is too close together the initial guess

curve will make a straight line where a small curve should appear. Given that the

curve must pass through the knot points, if the data points or knot points are spaced

far apart, certain sections of the curve would not come close to those data point.s

However, that distance is minimized by the optimization routine, resulting in a good

approximating final curve, as will be seen in the examples.

Example (1): This data is from a reacting chemical system, taken from Matin

and Smith [Ref. 20]. The abscissa, Coo, of each data point is an input concentration

of carbon monoxide in a catalytic system. The ordinate, R, is the steady state

oxidation rate achieved by the system. The initial guess curve consists of one interior

knot, and is not a "bad" approximating curve. The initial knot positions are

represented by "k" for the initial curve, and the dividing points for the cubic segments

are represented by "dpkpc", which in some sense is similar to new knot positions, for

the final curve. Figures 7 and 8 shows the improvement of the final curve.

Example (2): This data is also taken from Marin and Smith, and is a sample

data for parametric curve in 12, with seven knots. The initial guess curve is not very

37

Reaction Rate Data
-8.

-8.5-+ +

-9- +

- -9.5

-10

-10.5

-9.5 -9 -8.5 -8 -7.5 -7 -6.5
log(Cco)

Figure 7. Initial guess, K=[1 13 23].

38

Reaction Rate Data

-8-

-8.5

-9

-9.5

-10

-10.5

-9.5 -9 -8.5 -8 -7.5 -7 -6.5
Iog(Cco)

Figure 8. Final curve, dpkpc=[1 11 23].

39

good. The curve loops over itself and thus misses data points by great distances, see

Figure 9. But the power of the optimization function reduced this distance and

removed the loop, producing an excellent approximating final curve, Figure 10.

Example (3): This data contained eighty-two data points with eight knots.

The data represents the figure of the letter "H", Figures 11 and 12, again a much

improved final curve.

Example (4): This data contained thirty-six data points for the curve y f Ix

The curve contains one interior knot point located at the vertex. The data forms a

straight line, but the initial guess curve does not, because of the distances of the knot

points, see Figure 13. However, in Figure 14, the control points that were located

near xf= ±0.5 converged to the knot point at the vertex, forming a needed corner.

Thus, the final curve produced was an exact approximation, to within the convergence

tolerance. However, note that the "curve" degenerates to two straight-line segments

and that the location of one interior control point is arbitrary on the line segment.

This non-uniqueness however, did not affect the curve's convergence. In some

examples, such as (2) and (3), the maximum iterations allowed by "fmins" was

reached, but if required, the continuation of iterations is incorporated in the main

driver program "lsg2".

Figure 6, which contained sixty-four data points and five knots, was also a

very good final curve for that data; the initial guess curve contained no loops but

nevertheless, it was not good.

40

Parametric Curve in RxR

40

++

20 +

E
E+

0-++

-20-

-40 +

-60 -40 -20 0 20 40 60
x (mm)

Figure 9. Initial guess, k=[1 7 12 18 24 29 35].

41

Parametric Curve in RxR

60-

40

20-

-20-

-40

-60 -40 -20 0 20 40 60
x (mm)

Figure 10. Final curve, dpkpc=[l 7 13 18 23 29 35].

42

Letter "H"
20. + +

15

10

5-

0-

0 5 10 15 20 25
x

Figure 11. Initial guess, k=[l 9 20 38 49 59 68 82].

43

Letter "H"

20

15"

10-

5.

0-

0 5 10 15 20 25
x

Figure 12. Final curve, dpkpc=[l 9 16 37 49 67 82].

44

Absolute Value Function
I I

1.2

0.8

0.6 + +
>.+ +

0 . +-

0.4 + +

++ ++

0

-0.2

-1 -0.5 0 0.5
x

Figure 13. Initial guess, k=[l 19 36].

45

Absolute Value Function
I I

1.2

0.8

0.6-

0.4

0.2

0

-0.2

-1 -0.5 0 0.5
x

Figure 14. Final curve, dpkpc=[l 19 36].

46

B. CONCLUSIONS

We have presented a method for approximating ordered data by using

geometrically continuous piecewise parametric cubics. After choosing the knot points

which were a subset of the data points, we used local quadratic approximations with

chord length parametrization to estimate the unit tangent vectors. In turn, the unit

tangent vectors are used to calculate the position of the interior control points for each

cubic segment. Thus, an initial guess of the curve was approximated using the above

parameters. The optimization routine "fmins" minimized the sum of the squares of

the distances from the data points to the points on the approximating curve. By the

examples, this optimization routine works well, however, in some examples such as

(3), it was slow to converge which can become computationally expensive.

A better approach to this problem would be to first optimize on each cubic

segment, which can be achieved by fixing the knots and the unit tangent vectors for

that segment, and allowing the location of the control points on the necessary line to

be free parameters. The "sub" optimization routine would minimize the sum of the

squares of the distances between the data points associated with that cubic segment

and the curve. Since the above process would be performed for each cubic segment,

an improved initial approximating curve would result. Choosing a better initial guess

should speed up convergence to the final approximation curve.

Another approach would be to gear the optimization process to this problem

instead of using a general routine. In other words, an algorithm could be developed

that exploits the good approximating and other properties of piecewise cubic

47

polynomials. Exactly how this can be done remains open, but the process is

conceivable.

A large volume of work has already been done and is presently continuing in

approximating curves to fit ordered data in two or three dimensions. The algorithms

presented here, can be used as a basis for further work by geometric modelling

researchers and graphics programmers in the field of computer aided geometric

design.

48

APPENDIX: MAIN PROGRAMS

Program bag

% Program lsg2
% This program is the main driver for Least Squares Approximation By Gi
% Piecewise Parametric Cubics. It takes data points,Q; and uses the
% the function 'iguess' to get a plot of the initial guess curve. It also
% uses the array returned by the function 'iguess, for input to the
% optimization function 'FMINS'. Furthermore, it enables the user to continue
% with the iterations, if the maximum iterations are reached by the
% optimization routine.

global dpkpc

disp('Choose one of the following: dpts, dptsl, ... , dptsN')
Q =input(' 1);

(r,m] = size(Q);

% Error checking.

if r -= 2
disp('Set of points must be 2 x n matrix, try again.'), pause(2)
1 sg2

end

% Obtains the xO array for input to the optimization function 'PMINS'.

xO = iguess(Q);

pause (5)

options = (O,l.e-3..l.e-3];

tb = clock;

% Calls the function 'FM4INS'.

x =fmins('objf2', xO, options, [,)

et =etime(clock,tb);

% Enables the user to continue with the iterations, start anew or end.

disp('Type 10 to continue iterations; "24 to start anew, "3" to end')

b = input(' ');

49

if b == 1
disp(' How many more iterations would you like? '
o = input(' ');
options(14) = o;
x0 = X;
x = fmins('objf2', xO, options, [], Q)

elseif b == 2
lsg2;

elseif b == 3 1 b -= 1 I b -= 2
disp(' This program will now end!)

end

50

function G = iguess(Q)

% function G = iguess(Q)
% This function takes data points, Q; and with a subset of the data points
% computes knot pointsP; the position of the knot points,k; and the distance
% between the successive knot points,dt. It calls the functions 'unity' to
% compute the unit tangent vectors for each knot point, 'ctpts' to compute
% the control points, and 'plotC' to plot the initial guess curve. The function
% returns the array that contains the initial guess curve's parameters. This
% array will be used by the main driver program 'Ilsg2' for input to the
% optimization function 'FMINS'.

global dpkpc

Jr,m] = size(Q);

disp(' Give the number of knotpoints')
n = input(');

disp('Type "10 for default knot position or 020 to input your own.')
h = input(' ');

if h == 1

k = round(((m-l)/(n-l))*[O:n-l] + ones(l,n));

k;
elseif h == 2

disp('Input the initial knot point position, example; [1 4 8 ... n]')

k = input(' ');

elseif h -= 1 I h -= 2

disp(' You can only choose 01" or "24. You must start over.'),pause(2)
iguess

end

dpkpc = k;

% Gets the knotpoints

P = [P Q(:, k)];

% Computes the distance between successive points

[s,t] = size(P);

51

d = P(:,l:t-1) - P(:,2:t);

d (1/3) * sqrt(sum(d.*d));

dt = [d;d];

% Calls the function "unitvO to compute the unit tangent vectors.

u = unitv(Q,k);
ang = atan2(u(2,:) ,u(l,:));

% Calls the function "ctpts" to compute the control points.

C = ctpts(P,ang,dt);

% Calls the function OplotC* to plot the initial guess curve.

plot = plotC(C,Q,P);

% Sets up the array that contains the initial guess curve's parameters
% that are available to the optimization routine.

G = [P(1,:) P(2,:) ang dt(l,:) dt(2,:)];

52

function os = objt2(x,Q)

% function os = objf2(x,Q)
% This is the objective function that will be minimized by the optimization
% function 'fmins'. The input arguments are the vector x that minimizes
% function objf2(x), and the data points Q. The output is the sum from
% the function 'sod' plus the distance squared from the first and last data
% points to the first and last knot points.

% Begin function
global dpkpc
m = length(x);
n = round(m/5);
(r,s] = size(Q);

% Picks out the knot points.
P(1, :) = x(l:n);
P(2,:) = x(n+l:2*n);

% Picks out the angles of the unit tangent vectors.
ang = x(2*n+l:3*n);

% Picks out the distances.
dt(l,:) = x(3*n+l:4*n-1);
dt(2,:) = x(4*n:m);

% Calls function that compute the control points.
C = ctpts(P,ang,dt);

% Calls function that computes the new dividing point positions.
dpkpc = newk(Q.P);

% Calls the function that computes the sums of the square of the distances
% from the data points the nearest point on the cubic segment. The distance
% from the first and last data points to the first and last optimization
% points are also added to this sum.

fp = P(:,l) - Q(:,I);
lp = P(:,n) - Q(:,s);

os = sod(C,Q,dpkpc) + fp'*fp + lp'*lp;

disp([os])

53

function uv = unitv(Qk)

% function uv = unitv(Q,k)
% This function takes data points 'Q' from a separate file, and the position of
% knotpoints 'k'as input variables. It uses chord lengths parameterization to
% fit a parametric quadratic curve to five data points. The unit tangent
% vectors are approximated by the unit tangent vectors for these quadratic
% functions.The output is the set of unit tangent vectors in the direction of
% the knot points.

% Begin function.

[r,m] = size(Q);

n = length(k);

for j = l:n
if j == 1, k(j) = 1; kt = 1;
elseif j == n, k(j) = m-4; kt = 5;
else k(j) = k(j)-2; kt = 3;
end

% Extracting the knot point and four adjacent points
x = Q(l,k(j):k(j)+4)';
y = Q(2,k(j):k(j)+4)';

% Calculating the chord lengths
xd = diff(x);
yd = diff(y);

d = sqrt(xd.*xd + yd.*yd);
t(l) = 0; t(2) = d(l);
t(3) = t(2) + d(2);
t(4) = t(3) + d(3);
t(5) = t(4) + d(4);

% Approximating coefficients of quadratic

c = [ones(5,l) t' (t.*t)'] \ [x y];

u = c(2,:) + 2*c(3,:)*t(kt);

u = u / norm(u);

uv(:,j) = u';

end

54

function nk = newk(QP)

% function nk = newk(Q,P)
% This function takes data points, Q; and knot points, P; as input. The
% function finds the closest data point of that cubic segment that is
% associated with that knot point, and returns a new k-array, nk.
% dpkpc is a global variable that is initially equal to the old k-array, k.

% Begin function.

global dpkpc

(r,m] = size(Q);

[s,n] = size(P);

nk(l) = 1; nk(n) = m;

for i = 2:n-1
js = dpkpc(i-1); je = dpkpc(i+l); jr= dpkpc(i);
z = je-js+l; mm = jm - js + 1;
R = Q(:,js:je) - P(:,i) * ones(l,z);

for jj = l:z
D(jj) = R(:,jj)' * R(:,jj);

end

sd = sign(D(mm) - D(mm+l));
while D(mm) - D(mm+sd) > 0

if mm == 2 & sd < 0
break, end

if mm == m-1 & sd > 0
break, end

mm = mm + sd;
end

nk(i) = mn + js - 1;
end

dpkpc = nk;

55

function sumofdist = sod(C,Qdpkpc)

% function sumofdist = sod(C,Q,dpkpc)
% This function takes control pointsC; data points,Q; and the position
% of the data point closest to that knot point within that segment. The
% function returns the sum of the distance squared from the data points
% to the nearest point on the cubic segment.

% Begin function

n = length(C);
(r,s] = size(Q);

y = dpkpc;

t = length(dpkpc);

% Initialize counter and sum.

cntr = 0;
sum = 0;

for i = 1:3:n-3
cntr = cntr + 1;
for j = y(cntr):y(cntr+l)

xy = NearestPoint(C(:,i:i+3)', Q(:,j)'); % See note.
d = (Q(:,j)' - xy);
sum = sum + d *d';

if j == y(cntr) & i>l
d2 =d*d';
ds2 = ds*ds';
dm = max(d2,ds2);
sum = sum - dmn;

end
end
ds =d;

end

sumofdist = sum;

% Note: NearestPoint; obtained from 'Solving the Nearest Point-on-Curve
% Problem' and 'A Bezier Curve Root-Finder' developed by Philip J.
% Schneider in NGraphics Gems', Academic Press, 1990.

56

function C = ctpts(Pang,dt)

% function C = ctpts(P,angdt)
% This function takes knot points, P;angle of the tangent vector, ang ; and
% the distance between successive knot points,dt; as input.It then
% computes the unit tangent vector and the control points.

% Begin function.

n = length(P);

% Converts the angle to its x and y components,and computes the control points.

for k = 2:n-1

u = [cos(ang(k)) ; sin(ang(k))];

T = [T P(:,k)-u*dt(2,k-l) P(:,k) P(:,k)+u*dt(l,k)];
end

ul = [cos(ang(l)); sin(ang(l))]; un = [cos(ang(n)) ; sin(ang(n))];

C = [P(:,5) P(:,l)+ul*dt(l,l) T P(:,n)-un*dt(2,n-) P(:,n)];

57

function plotC = pltC(C,Q,P)

% function plotC = pltC(C,Q,P)
% This function takes as input: control points,C; data points,Q; and knot
% points. The control points are used to calculate the points of the
% approximating cubic Bezier curves. The control, data, and knot points
% are then plotted along with the curve.

% Begin function.

(s,t] = size(C);

x = (0:.025:1];
[a,b] = size(x);

W = [1
for j = 1:3:t-3

Y = zeros(2,b);
M = (berny(3,0,x)' berny(3,l,x)' berny(3,2,x)P berny(3,3,x)'];
Y = Y + C(:,j:j+3) *M'

W = [W Y];
end

plot(W(1,:) , W(2,:)), hold

plot(C(1,:) , C(2,:)

plot(Q(1,:) , Q(2,:) '+')

plot(P(1,:) , P(2,:) , 'x')

plot(C(1,:) , C(2,:) , 'o')

58

function pop = popt(xQ)

% function pop = poplt(x,Q)
% This function picks out the knot points, angles, and distances from
% the optimization function x = 'fmins'. It then calls the function that
% computes the control points. Using the given data points; Q, a plot of
% the piecewise cubic curve is returned.

% Begin function.

m = length(x);
n = round(m/5);

% Picks out knot points,P; angles,ang; and distances, dt.

P(1,:) = x(l:n); P(2,:) = x(n+l:2*n);

ang = x(2*n+l:3*n);

dt(l,:) = x(3*n+l:4*n-l); dt(2,:) = x(4*n:m);

% Calls the function that computes the control points.

C = ctpts(P,ang,dt);

% Calls the function that plots the piecewise cubic curves.

plotC (C, Q, P)

59

function val = bermy(n, i, x)

% function val = berny(n, i, x)

% This function is a non-recursive formula for Bernstein Polynomials which
% form a basis for Bezier curves. The inputs are the degree of the poly-
% nomial, n; the particular curve that is assigned a value of zero up to
% and including the degree, i; and the points between (0,1] to be evaluated, x.
% The output is the coordinates of points on the curve.

% Begin function.

ni = [1 3 3 1]; % See note.

m = size(x);

if n < i
val = zeros(m);

elseif i < 0
val = zeros(m);

elseif ((n == 0) & (i == 0))
val = 1;

else
val = ni(i+l) * (x.^i) .* ((ones(m) - x) .^(n-i));

end

% Note: This function will only work for cubics (which are used throughout
% the supporting programs). For that reason, it is more efficient to use
% the coefficients for a third degree polynomial rather than one for a
% general n-degree polynomial.

60

LIST OF REFERENCES

1. Weeg, G. P., and Reed, G. B., Introduction to Numerical Analysis, Blaisdell
Publishing Co., 1966.

2. Carnahan, B., and others, Applied Numerical Analysis, John Wiley & Sons,
Inc., 1969.

3. Ralston, A., and Rabinowitz, P., A First Course in Numerical Analysis,
McGraw-Hill Book Co., 1978.

4. Phillips, G.M., and Taylor, P. J., Theory and Applications of Numerical
Analysis, Academic Press, 1973.

5. Burden, R. L., and Faires, J. D., Numerical Analysis, fifth ed., PWS-Kent
Publishing Co., 1993.

6. Farin, G., Curves and Surfaces for Computer Aided Geometric Design,
second ed., Academic Press, 1990.

7. Foley, T. A., "Interpolation with Interval and Point Tension Controls Using
Cubic Weighted ,-splines", ACM Transactions on Mathematical Software, V. 13, No.
1, 1987.

8. Ahlberg, J. H., and others, The Theory of Splines and Their Applications,
Academic Press, 1967.

9. Epstein, M. P., "On the Influence of Parametrization in Parametric
Interpolation", SIAM Journal on Numerical Analysis, V. 13, 1976.

10. Foley, T. A., and Nielson, G. M., "Knot Selection for Parametric Spline
Interpolation, Mathematical Methods in Computer Aided Geometric Design, T. Lynch
and L. Schumaker (eds.), Academic Press, 1989.

11. deBoor, C., A Practical Guide to Splines, Springer-Verlag, 1978.

12. Gregory, J. A., "Geometric Continuity", Mathematical Methods in Computer
Aided Geometric Design, T. Lynch and L. Schumaker (eds.), Academic Press, 1989.

13. Buchanan, J. D., and Turner, P. R., Numerical Methods and Analysis,
McGraw-Hill, 1992.

61

14. Gerald, C. F., and Wheatley, P. 0., Applied Numerical Analysis, fourth
edition, Addison-Wesley, 1989.

15. Plass, M., and Stone, M., "Curve Fitting with Piecewise Parametric Cubics",
Computer Graphics, V. 17, No. 3, 1983.

16. Reeves, W. T., "Quantitative Representation of Complex Dynamic Shapes for
Motion Analysis", Ph.D. Thesis, Department of Computer Science, University of
Toronto, 1980.

17. Powell, M. J. D., "Curve Fitting by Splines in One Variable", Numerica
Approximation to Functions and Data, J. G. Hayes (ed.), Athlone Press, 1970.

18. Ichida, K., and Kiyono, T., "Curve Fitting by a One-Pass Method with a
Piecewise Cubic Polynomial", ACM Transactions on Mathematical Software, V. 3,
No. 2, 1977.

19. Scheider, P. J., "Solving the Nearest-Point-on-Curve Problem", Graphics
Gems, A. S. Glassner (ed.), Academic Press, 1990.

20. Matin, S. P., and Smith, P. W., "Parametric Approximation of Data Using
ODR Splines", to appear in Computer Aided Geometric Design.

62

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center 2
Cameron Station
Alexandria, VA 22304-6145

2. Library, Code 52 2
Naval Postgraduate School
Monterey, CA 93943-5002

3. Professor Richard Franke, Code MA/Fe 4
Department of Mathematics
Naval Postgraduate School
Monterey, CA 93943-5216

4. Professor Carlos F. Borges, Code MA/Bc
Department of Mathematics
Naval Postgraduate School
Monterey, CA 93943-5216

5. LT Marion R. Holmes 2
9231 Fairhaven PL
Jonesboro, GA 30236

6. Dr. Sharon E. Wormly
4822 Verano PL
Irvine, CA 92715

7. Professor Henry Gore
Department of Mathematics
Morehouse College
830 Westview Drive S.W.
Atlanta, GA 30314

8. Dr. Samuel P. Marin
Mathematics Department
General Motors Research Laboratories
Warren, MI 48090-9055

9. Professor G.M. Nielson
Department of Computer Science
Arizona State University
Tempe, AZ 85287

63

