
AD-A277 929 ...

ARO/AFOSR/ONR

Workshop

Increasing the Practical Impact of Formal Methods for
Computer-Aided Software Development:

Software Slicing, Merging and Integration

DTICt•ELECT

APR 12 199411 October 13 - 15, 1993

This docuzment bel
disPublic telease and s•ift

U.S. Naval Postgraduate School
Monterey, California

94-1089611t111 i11 IIII11II9 4' 4"I110l

Proceedings

of the

ARO/AFOSR/ONR

Workshop
Increasing the Practical Impact of Formal Methods for

Computer-Aided Software Development:

Software Slicing, Merging and Integration

Sponsored by

Army Research Office
Air Force Office of Scientific Research

Office of Naval Research
Naval Postgradaate School

'Accesion For

October 13 - 15, 1993 NTIS CRAM
DTIC TAB

Unannournced

U.S. Naval Postgraduate School Justion†

M onterey, California By.......................
Dit~tibutio' I

Workshop Chairman: C
Valdis Berzins Dist AiI

Program Committee Chairs:
Luqi

Dave Dampier

Workshop Chairman:

Valdis Berzins

Program Committee Chairs:

Luqi
Dave Dampier

Program Committee:

Joseph Goguen
David Hislop

Charles Holland
Mantak Shing

Andre Van Tilborg
Ralph Wachter

Local Arrangements:

Salah Badr
Jim Brockett

Mauricio Cordeiro
Yuh-Jeng Lee
Frank Palazzo

List of Attendees
Hiralal Agrawal Mauricio Cordeiro
Bellcore, MRE2D-388 Computer Science Department
445 South Street U.S. Naval Postgraduate School
Morristown, NJ 07960 Monterey, CA 93943
(201) 829-5023 (408) 656-2671
hira@bellcore.com cordeiro@cs.nps.navy.mil

Sergio Antoy David A. Dampier
Portland State University Computer Science Department
Computer Science Department U.S. Naval Postgraduate School
Portland, OR 97207 Monterey, CA 93943
(503)725-3009 (408) 656-2912
antoy@cs.pdx.edu dampier@cs.nps.navy.mil

Salah Badr Martin Feather
Computer Science Department Suite 1000, 4676 Admiralty Way
U.S. Naval Postgraduate School Marina Del Rey, CA 90292-6695
Monterey, CA 93943 (310) 822-1511
(408) 656-2903 feather@isi.edu
badr@cs.nps.navy.mil

Valdis Berzins Bill Griswold
Computer Science Department Department of CS and Engineering
U.S. Naval Postgraduate School University of California San Diego
Monterey, CA 93943 9500 Gilman Drive
(408) 656-2461 La Jolla, CA 92093
berzins@cs.nps.navy.mil (619) 534-6898

wgg@cs.ucsd.edu

A. Berztiss David Hislop
University of Pittsburgh U.S. Army Research Office Elec Div
Computer Science Department 4300 S. Miami Blvd
Room 321, Alumni Hall, University Drive Research Triangle Park, NC 27709-2211
Pittsburgh, Pennsylvania 15260 (919) 549-4255
(412) 624-8401 hislop@aro-emh 1 .army.mil
alpha@cs.pitt.edu

Jim Brockett J.C. Huang
Computer Science Department Department of Computer Science
U.S. Naval Postgraduate School University of Houston
Monterey, CA 93943 Houston, TX 77204-3475
(408) 656-2468 (713) 743-3350/3366
brockett@cs.nps.navy.mil jhuang@cs.uh.edu

Deepak Kapur Frank Palazzo
Department of Computer Science Computer Science Department
State University of New York U.S. Naval Postgraduate School
Albany, New York 12222 Monterey, CA 93943
(518) 442-4281 (408) 656-2225
kapur@cs.albany.edu palazzo@cs.nps.navy.mil

Yuh-Jeng Lee John Salasin
Computer Science Department ARPA/SISTO
U.S. Naval Postgraduate School 3701 N.Fairtax Dr.
Monterey, CA 93943 Arlington, Virginia 22203-1714
(408) 656-2361 (703) 908-8207
ylee@cs.nps.navy.mil jsalasin@sei.cmu.edu

Luqi Alan Shaw
Computer Science Department Department of Computer Science
U.S. Naval Postgraduate School University of Washington
Monterey, CA 93943 Seattle, Washington 98195
(408) 656-2461 (206) 543-9298
luqi@cs.nps.navy.mil shaw@cs.washington.edu

A. Mili Mantak Shing
Faculty of Science Computer Science Department
University of Ottawa U.S. Naval Postgraduate School
150 Louis Pasteur/Priv. Monterey, CA 93943
Ottawa, Ontario KIN 6N5 (408) 656-2634
Canada mantak@cs.nps.navy.mil
(613) 564-9234
amili@csi.uottawa.ca

R. Mili YV. Srinivas
Kanata Software Engineering Services Kestrel Institute
75 Waterton Crescent 3260 Hillview Avenue
Kanata, Ontario K2M 1Z2 Palo Alto, California 94304
Canada (415)493-6871
rmili@csi.uottawa.ca srinivas@kestrel.edu

Roland Mittermeir David Stemple
University Klagenfurt, Inst F Informatik Department of Computer Science
Universitaetsstr 63, A-9022 University of Massachusetts at Amherst
Klagenfurt Amherst, MA 01003
Austria stemple@cs.umass.edu
(463) 531-7575
roland@ifi.uni-klu.ac.at

Leon Sterling Douglas Waugh
Case Western Reserve University SEI
Cleveland, OH 801 N. Randolph St. Suite 405
(216) 368-5278 Arlington, Virginia 22203
leon@alpha.ces.cwru.edu (703) 908-8207

dww@sei.cmu.edu

Ray Strong Ed Wimmers
IBM Almaden Research Center IBM Almaden Research Center
650 Harry Rd. 650 Harry Rd.
San Jose, CA 95120 San Jose, CA 95120
(408) 927-1758 (408) 927-1882
strong@almaden.ibm.com winmrers@almaden.ibm.com

Table of Contents

Preface & Goal of the Workshop

Software Maintenance and Evolution
"Some Suggestions for Using Formal Methods in

Software Development", Luqi, Joseph Goguen 7

"Intra-Object Schemas to Enhance the Evolution
of Software-Objects", Roland Mittermeir, Klaus Kienzl 12

"A Theoretical Basis for Software
Evolution", Yellamraju Srinivas and Douglas Smith 15

Software Merging, Slicing and Restructuring
"Slicing Programs with Gotos", Hiralal Agrawal 18

"A Slicing Method for Semantic Based Merging of
Software Prototypes", David Dampier and Valdis Berzins 22

"An Architecture and Models for a Meaning-Preserving
Program Restructuring Tool", William Griswold 25

"A Methodology for Program Understanding", J. Huang 28

"On Merging Prolog Programs", Leon Sterling 31

Software Specification Methods
"A Formal Model of Software Specification and

its Automated Support", R. Mili and A. Mili 34

"Evolution of Specifications", Martin Feather 38

"The Limits of Formal Methods", Alfs Berztiss 41

"Formal Specification of the Software Process", Alfs Berztiss 44

"State-Based Specifications In-The-Large", Alan Shaw 47

"Designing and Specifying Flexible Concurrency Control", David Stemple 51

Software Verification, Testing & Synthesis
""Testing by Narrowing", Sergio Antoy and Dick Hamlet 54

"Finite-State Verification and Software Design", Rance Cleaveland 57

"Automated Reasoning in Software Design", Deepak Kapur 60

"Analysis of Critical Non-Functional Factors
of Systems", John Salasin and Douglas Waugh 64

"Toward Practical Applications of Software Synthesis", Douglas Smith 67

Conclusion & Workshop Report 70

Preface
1993 ARO/AFOSR/ONR Workshop on

Increasing the Impact of Formal Methods for Computer-Aided Software Engineering

by
Valdis Berzins

Computer Science Department, U.S. Naval Postgraduate School, Monterey, California

The U.S. spends billions of dollars per year on software, much of it for software modifications and
maintenance. Computer.aid should give software designers better control over their products. with resulting
improvements in software usefulness and reliability and reductions in time and cost for large scale changes.
Our basic premise is that appropriate formal methods supported by appropriate software tools can be very
beneficial for practical software development. We believe that it is possible and necessary to validate this
premise and to put it into common practice. As part of this effort, we would like to ask for your help to
establish and support an important research direction, computer aided software evolution.

1. Computer Aided Software Evolution

Aspects of computer aided software evolution have been studied for many years but the field has not
yet gained wide recognition and support. partially because the capabilities of existing theoretical solutions
are completely dwarfed by the complex and demanding needs of real software development projects. Much
early work in the area addressed relevant but simplified •4,.,proems. ignoring significant parts of real
practical problems. These partial solutions have not been integrated to solve the real problem because the
long term goals in this area have not been not well understood by researchers and funding agencies.

This is not the case in other disciplines such as operations research, physics, and applied mathematics.
The difference is that we have not educated ourselves or the funding agencies about the connections among
the different narrow areas of research, and the relationships to pressing national problems that span many
of those areas. Everyone is spread thin. There are many aspects to the subject of software evolution and it
is not easy for any single individual to recognize all of the connections among the different aspects. We need
a forum to bring us together and strengthen these connections. We are very happy that funding agencies and
researchers are willing to listed, even if they are primarily concerned with (apparently) different areas.

For computer support to provide enough practical benefit to justify the necessary investment in tools
and training, we need a better theoretical understanding of software modification and effective formal
methods for solving various subproblems associated with software evolution. We also need an effective
framework for integrating these methods and their associated tools, and we need to validate our theoretical
models against real software development efforts to make sure we are addressing the right questions.

Problems and solution procedures must be well understood before they can be successfully
automated. Much effort has been spent on building big software tools with nice interactive human interfaces
but with very little real power inside the wrappings. This has led to an increasingly widespread perception
that investment in computer tools for software development does not pay off. Such a practice is wasteful on
a large scale, and the perception it creates is very dangerous because it will block all hope of real progress
if it is left unchecked.

Our field of study should develop the theoretical understanding and algorithmic solutions that will
enable us to put powerful engines inside the pretty interfaces. It is our responsibility to make the capabilities
of these new engines match the most urgent practical needs in software development and evolution.

2. Workshop Goals and Procedures

The goals of this workshop are to:

(I) Identify the key technical problems in computer aided software evolution.

(2) Clanfy the relations to other parts of Computer Science.

(3) Examine plausible technical approaches and assess advantages and disadvantages.

(4) Identify directions for future work that can have a practical impact.

To provide the background for the workshop, we briefly survey some previous work and indicate its
relevance to computer aided software evolution. This introduction will be followed by presentations on
different aspects of the subject, interleaved with discussions to bring out implicit assumptions, clarify
relationships between different points of view, and make assessments. The conclusions of each session will
be summarized by the reporter for the session, and the results will be integrated into a workshop report.

We have a great deal to learn from each other, and this workshop can only start the process. We should
get together again next year to assess progress and to take the next steps towards practical application of
formal methods in software development.

3. Survey of Technical Problems

Software evolution has both global and local problems. The global problems concern modifying
software systems with many variants and coordinating concurrent changes to the same system. The local
problems concern a single engineer working on a single change. This workshop is focused on the global
problems to keep the scope manageable. We hope that the local problems can be addressed in a future
workshop.

To support the process of combining (and recombining) efforts of different people, we are interested
in formal methods and algorithms for checking whether a set of changes is compatible, for combining a set
of compatible changes, and for reconciling incompatible changes. A related issue is coordinating a set of
changes being developed concurrently by a team of engineers. This raises problems of preventing
inconsistencies between concurrent changes or detecting and reconciling inconsistencies, based on the
partial and uncertain information available while a change is in progress.

The basic assumption of change merging is that the behavior of a system can be separated into a set
of independent parts that can be recombined. Two changes are compatible (can be consistently combined)
if the parts of the system behavior affected by each change are independent. A change affects a part of
system behavior if thtl original version of the part is not equivalent to the changed version of that part.
Behavior can be considered at different levels: computation traces, functions computed by programs,
requirements satisfied by program behavior, etc. Each of these levels is associated with different notions of
part, independence and equivalence.

3.1. Software Slicing

A program slice is a subset of a program whose computation trace is independent of the rest of the
program[1, 12]. A slice includes the parts of a program that can influence the part of its behavior visible
from a particular point of view, such as the value of a set of variables or output streams. Slices can thus be
"independent parts" supporting change merging at the level of computation traces.

Previous approaches to slicing have mostly been based on data flow analysis of single-thread
imperative programs. Some current problems include increasing the resolution of representations and
methods for computing slices, developing slicing methods for wider classes of programming languages, and
developing analogs at the specification and requirements levels. More detailed semantic models of program
slicing can have the advantage of better resolution and the disadvantages of longer running times and
possible divergence because exact slicing is not a computable function.

2

3.2. Software Change Merging

Software change merging is the process of combining modifications to software system behavior. We
need methods that guarantee semantically correct results in all cases where they do not report conflicts.
Some of the problems in this area are finding better models of changes to software, safe merging methods
with fewer spurious conflict reports, methods for automatically resolving conflicts, accommodating
changes to data types, module interfaces, optimizing changes that introduce different algorithms, proving
safety of change merging procedures, etc.

One approach to semantically based change merging for programs is based on slicing [8]. Slicing has
the advantage of efficiency and the disadvantages of being unable to combine changes that can reach the
same output or changes that use different algorithms to compute the same function.

Another approach to change merging is based on meaning functions (4]. Meaning functions are the
functions computed by programs. The images of individual input values can be considered to be
independent pans, leading to high resolution change merging methods. Meaning functions can merge
changes to the same output if both changes can not take effect for the same input and the same initial state.
and they can accommodate algorithm changes such as speedup transformations. Meaning functions
introduce the possibility of recognizing some equivalences between programs denoting different execution
sequences that compute the same function. Methods based on meaning functions can involve large amounts
of computation and can fail to terminate if not suitably constrained, because exact solutions to these
problems are also not computable.

Change merging has also been investigated for specifications and requirements 151. although this
work has not yet been carried down to the code level. Responses to different stimuli can be considered to
be different components of a system's behavior, and the response to each stimulus can be specified by
postconditions. This raises large scale issues such as merging changes to the set of stimuli recognized by a
system, provides a means for modeling possible dependencies between responses to distinct system inputs,
and introduces a looser interpretation for the equivalence aspect of change merging. In the context of
meaning functions, two outputs are considered equivalent only if they are equal. because there is no weaker
criterion for equivalence that is safe. In the context of specifications that are not completely tight. two
distinct output values can be equivalent if they both satisfy the same postcondition.

3.3. Representing Software Design Decisions

Improved techniques for representing and reasoning about software design decisions are important
for supporting change merging as well as for providing intelligent assistance for software development. The
plan calculus was introduced in the programmer's apprentice project to help the system analyze the
programmer's design rationale and to fill in implied details of partial designs [I]. Similar approaches are
relevant to advances in change merging because more accurate techniques depend on the relations between
programs and meaning functions or specifications.

Improved change merging methods will have to process specifications or meaning functions to
combine changes, and then to transform these changes back into code. Although the general problem of
synthesizing code from specifications is not likely to be solved soon, the type of code synthesis required for
change merging is easier because pieces of code realizing all the parts of each version are already available.
The code synthesis required is to properly recombine these pans, possibly with some adaptations of details.
This process must ensure that putting the parts together in new ways still results in valid design
justifications, which will require some reasoning support. Although this is a big problem, the process does
not have to be "creative". In particular, it can be aided by knowledge of common patterns of program design,
such as those captured via the plan calculus and a library of cliches.

3

3.4. Transformations
Monotonic transformations ame another path to change merging. Monotonic transformations produce

results that are compatible with the starting point, but which may be further constrained 161. Thus these
transformations preserve meaning, and may add refinements[2]. Monotonic transformations are relevant to
change merging be ,•use a series of such transformations is one way to represent the dependence of lower
level informatior in higher level information.

Past work on transformations has considered changes with a desire to replay the derivation of an
implementation after a change to some of the earlier decisions. This capability is relevant to the problem of
turning a specification change into the corresponding program change, which is one aspect of change
merging. Direct consideration of the change merging problem in the context of transformations may also be
fruitful: given a base version and two enhanced versions of a transformational implementation, can we
determine which parts of the derivations correspond to the enhancements, and automatically construct a
derivation that incorporated both enhancements.

4. Conclusions

Change merging is an attractive context for research and development related to computer-aided
software construction because

(1) it is easier than unrestricted code synthesis. and

(2) much of the effort in software development is spent on modifications.

We have sketched some opportunities in this area and hope that the workshop will clarify the problems.
identify new relationships to existing work, and suggest additional directions for progress.

5. Overview of the Position Papers

The position papers for the workshop fall into five main areas: software maintenance and evolution.
software specification methods, software merging. slicing, and restructuring, software verification, testing.
and synthesis.

The papers on software evolution focus on computer assistance. Luqi and Goguen describe some
directions for making progress in software development using formal methods. Minermeir and Kienzl
discuss the use of intra-object schemas to automate certain kinds of changes to object classes. Srinivas and
Smith propose a model of evolution in which an aspect of a system is changed and then the change is
automatically propagated by constructing a minimal set of other changes that restore consistency.

The papers on specifications discuss the construction and evolution of specifications as well as some
of the processes that can be supported by specifications. Feather surveys some efforts at incremental
development of specifications. Mili and Mili describe a lattice structure for specifications that can support
checking whether specifications of different aspects of a system can be consistently combined and
materializing the combination if one exists. Berztiss evaluates the applicability of formal methods to
different kinds of software systems, and in a companion paper describes an approach for re-engineering
organizations by systematically identifying activities that can be incrementally automated. Shaw explores
the adequacy of communicating real-time state machines for specifying large real-time systems. Stemple
proposes an approach for extracting specification information from operational prototypes via derivation
and proof techniques.

The papers on slicing and merging examine different aspects of program slicing related to automated
synthesis and analysis of programs. Agrawal examines how to determine which gotos to include in a
program slice. Dampier and Berzins examine slicing and change merging for a prototyping language with
concurrency and real-time constraints. Griswold examine, the connection between slicing and program

4

restructuring. Huang examines the application of path decomposition, program slicing, and symbolic
execution to program understanding and simplification. Sterling describes a method for merging simple
PROLOG programs to automatically construct a complex one.

The papers on software verification, testing and synthesis examine various ways to use formal
approaches to achieve reliable software. Antoy and Hamlet describe a method for computing test inputs that
force a program down a specified path using the narrowing technique for solving symbolik equations.
Cleaveland examines the utility of finite-state approaches to software verification. Kapur presents some
recent advances in automated reasoning technology and assesses the potential for application to software
development. Salasin and Waugh propose annotation of software architectures with obligations to satisfy
non-functional requirements as a way to assess whether or not those requirements will be met in a complex
system. Smith describes the transformational development of a class of transportation scheduling
algorithms.

1. H. Agrawal and J. Horgan, "Dynamic Program Slicing". SIGPLAN Notices 25, 6 (June 1990). 246-256.

2. V. Berzins. "On Merging Software Extensions", Acta Informatica 23, Fasc. 6 (Nov. 1986), 607-619.

3. V. Berzins, "Software Merge: Semantics of Combining Changes to Programs", Technical Report NPS
52-91-4, Computer Science Department, Naval Postgraduate School, 1990. Revised for ACM
Transactions on Programming Languages and Systems.

4. V. Berzins, "Software Merge: Models and Methods". International Journal on Systems Integration 1, 2
(Aug. 1991), 121-141.

5. V. Berzins and Luqi, Software Engineering with Abstractions, Addison-Wesley. 1991.

6. V. Berzins. Luqi and A. Yehudai, "Using Transformations in Specification-Based Prototyping", IEEE
Transactions on Software Engineering 19, 5 (May 1993), 436-452.

7. D. Dampier, Luqi and V. Berzins, "Automated Merging of Software Prototypes", Journal of Systems
Integration, to appear.

8. S. Horwitz, J. Prins and T. Reps. "Integrating Non-Interfering Versions of Programs", Transactions
Programming Languages and Systems 1), 3 (July 1989), 345-387.

9. G. Ramalingam and T. Reps, "A Theory of Program Modifications", Proceedings of the Colloquium on
Combining Paradigms for Software Development, vol. LNCS 494, Springer-Verlag. Apr. 1991, 137-
152.

10. T. Reps, "Algebraic Properties of Program Integration", Science of Computer Programming 17, 1-3
(Dec. 1991), 139-215.

11. C. Rich and R. Waters, "Knowledge Intensive Software Tools", IEEE Transactions on Knowledge
and Data Engineering 4, 5 (Oct. 1992), 424-430.

12. M. Weiser, "Program Slicing", IEEE Transactions on Software Engineering SE-JO, 4 (July 1984), 352-
357.

Goal of the Workshop

The goal of the workshop is to try to answer the following questions:

"* Can formal methods be used in practice?

"* Are there formal methods that can scale up for large problems? If
so, which ones?

"• How can we develop a comprehensive and consistent set of formal
methods that can address all phases of software development?

" What are the most important difficulties with current research on
formal methods? What are the most important research problems
for the future?

"• How can research on formal methods be improved?

"* How can we increase the practical impact of formal methods?

6

Some Suggestions for Using Formal Methods in
Software Development*

Luqi
Computer Science Department, Naval Postgraduate School, Monterey, CA 93943

Joseph A. Goguent

Programming Research Group, Oxford University Computing Lab

1 Introduction

This paper describes an approach to producing reliable and useful software systems. Appro-
priate research goals are identified for improving software quality through taking account
of social factors, through formalization, and through computer aid for software analysis.
synthesis, and certification tasks at all phases of software development, from requirements
to maintenance.

Getting requirements right is crucial for success in software development; if the system
does not do what is really needed, then it will not be accepted by its users. In fact, this
is very common for large complex systems. Recent research suggests that most of the cost
of software development arises from errors in requirements, and that the most significant
of those errors arise through social, political and cultural issues [J]. Software evolution
(sometimes called maintenance) is another major concern in this context because errors are
often introduced as a system is modified, and evolution typically accounts for more than
half of a software system's total life cycle cost. See [K] for discussion of some statistics on
errors in software development.

2 Assessing the State of the Art

High reliability is desired for safety-critical systems. It is practically impossible to produce
error-free software systems that solve complex real problems by purely manual methods.
because human error rates are too high. However, complete automation of software devel-
opment and evolution is not feasible in the near future. Some realistic near term research
goals in this situation include:

1. Developing methods and tools for requirements that accurately reflect stakeholders
needs and the social context of the proposed system. Support for communication
and learning is needed because developers and clients must pool their knowledge to
determine what a cost-effective system should do. Techniques from the social sciences
are needed because people often cannot accurately describe what they actually do or
how their organizations really operate.

2. Formulating a consistent set of mathematical models for a set of subproblems covering
the software development process. This is needed to integrate methods and tools for
different aspects of software development.

*The research reported in this paper has been supported in part by US Army Research Office. the National
Science Foundation. the British SERC. ESPRIT Working Group IS-CORE. British Telecommunications. and
Fujitsu Laboratories Limited.

tAlso at SRI International. Menlo Park CA 94025.

7

3. Developing and certifying the correctness of automatic synthesis methods for tractable
subproblems. In cases where this is possible, this approach provides gains in both
reliability and productivity.

4. Developing interactive synthesis methods that guarantee absence of errors for less
tractable subproblems. This approach combines the benefits of human creativity with
the accuracy computer tools through sound formal methods.

5. Improving analysis and certification methods for of detecting and diagnosing errors
in subproblems that cannot be covered by error prevention techniques. For aspects of
the process must remain manual, computer assistance in locating and removing errors
and in certifying that no errors are left is needed.

Most past work on improving software reliability has followed the last approach, largely
at the code level. This has provided some useful tools without needing a full understanding
of all the problems involved; It is also the least desirable direction for the future because
the search for errors is often very expensive and because it is difficult to predict how many
iterations will be needed to eliminate all errors. Thus error detection work is most reasonable
for those aspects of software development where error prevention techniques are not feasible.

Successful execution of test sets constructed by random sampling over a probability
distribution can give lower bounds on the mean number of executions between failures if
the actual input values correspond to the given probability distribution [F]. This kind of
statistical reliability assurance is sufficient in cases where input distributions are predictable
and non-zero failure rates can be tolerated.

For some specialized classes of programs, there are methods to construct a finite set
of test cases whose successful execution can establish correctness of the program for all
possible inputs [D, F]. This is not possible in the general case: testing can show the presence
of software errors but cannot certify their absence.

Work on program verification has produced methods for constructing and mechanically
checking mathematical proofs that given programs meet given specifications for all possible
inputs. This technology is not yet mature enough for practical applications; particular
weaknesses of current technology include the following:

I. Proving that a program satisfies a given specification is useless without some assurance
that the specification is valid, i.e., that it accurately represents the needs of the users.
Systematic methods for validation of specifications are not well developed, and social
issues may be critical in this case [J].

2. Since it can take more effort to construct correct code than to prove that the code
meets a specification [E,I]. aid for constructing the code together with the correctness
proof is desirable.

3. Current systems require considerable human assistance, and the mathematical skills
required to use these systems are beyond the abilities of many practicing software
developers.

4. Tool support and the range of applicability of particular methods need further devel-
opment.

8

3 Future Opportunities

Error prevention is possible both in cases where a software development task can be com-
pletely automated, and in cases where an automated tool realizes all of the designer's deci-
sion's in constrained ways that preclude mistakes. Some examples are meaning-preserving
software transformations, which prevent divergences between specifications and the code
[B], and syntax-directed editors, which prevent the creation of programs that do not con-
form to the syntax of the programming language.

It is commonly believed that error prevention is more difficult than error detection, but
this is not always the case. For example, checking whether an equational specification for
an abstract data type is consistent and complete is an undecidable problem. Nevertheless,
there exists an error prevention technique that guarantees that every specification generated
according to the rules is complete and consistent. These rules are simple enough to be
applied and checked by a text editor, and they are sufficiently loose to accommodate the
styles of specification that normally occur in practice [A].

Software development deals with information of many different kinds, at different lev-
els of abstraction. We summarize some of the types of software analysis, synthesis and
certification problems that should be investigated in Figure 1.

4 Conclusion

Advances in software analysis, synthesis and certification are essential for realizing trusted
software systems. Work in this area should be expanded beyond the traditional approach of
testing code in a programming language and proving that programs satisfy formal specifica-
tions, to include computer support at all phases of software development from requirements
analysis to system evolution. Some key areas for future research include:

1. Methods for validating requirements and specifications, such as prototyping and tech-
niques for testing prototypes and specifications assist user perceptions.

2. Methods for constructing programs that guarantee correctness with respect to formal
specifications, such as program synthesis by meaning-preserving transformations and
the certification of application-specific program generation schemes.

3. Approaches for making formal methods easier to use, reducing the amount of manual
effort required, and for reducing the amount of training and mathematical skill re-
quired for practitioners to apply these methods, by designing software tools that hide
theoretical compLkxities behind simple interfaces.

4. Methods relevant to software evolution, such as change merging, monotonic trans-
formations for modifying specifications and programs, and incremental versions of
conventional software analysis, synthesis, and certification methods.

5. Software analysis techniques addressing properties of parallel, distributed, real-time,
and knowledge-based systems should be explored as well as those for sequential sys-
tems.

6. Further work on program testing is needed, to expand the domains in which firm
conclusions about satisfying specifications can be drawn from finite sets of test cases

9

Level Type of Analysis/Synthesis
Requirements capture: social issues; use of video

traceability and consistency: hypermedia truth maintenance
model validation: prototyping and simulation
subgoal verification: prototyping

Specification adequacy: prototyping, operational scenarios
consistency: type and domain checking
safety: proofs
validation: paraphrasing, views, simplification
error prevention: refinement transformations

Design large grain issues: system composition
verification: proof of decomposition
liveness: deadlock and starvation checking
robustness: impact of degraded hardware
design for testing: control and observation
performance: complexity analysis
feasibility: satisfiability proofs
error prevention: cliches; assumption checking

Coding synthesis: meaning-preserving transformations
performance: time and space analysis; benchmarking
liveness: proof of (clean) termination
real-time: analysis of scheduling methods
generic units: analysis of component families
error detection: complete test sets
error location: weakest preconditions

Evolution requirements recapture: social and traceability issues
rebuilding: edit and execute system design
change impact: symbolic differences
restructuring: meaning-preserving transformations
error prevention: change merging

Figure 1: Types of Software Analysis and Testing

10

constructed by definite and effective methods, and to systematically check assumptions
about the operating environment on which the design of a system depends.

5 References

[A] S. Antoy, P. Forcheri and M. Molfino, "Specification-based Code Generation", in Proc. 23rd
Hawaii International Conference on System Sciences, IEEE Computer Society, Jan. 1990, 165-173.

(B] F. Bauer, B. Moller, H. Partsch and P. Pepper, "Formal Program Construction by Transfor-
mations - Computer-Aided, Intuition-Guided Programming", IEEE Trans. on Software Eng. 15, 2
(Feb. 1989), 165-180.

[C] V. Berzins, "Software Merge: Models and Methods", International Journal on Systems Integra-
tion 1, 2 (Aug. 1991), 121-141.

[D] J. Bicevskis, J. Borozovs, U. Straujums, A. Zarins and E. Miller, Jr., "SMOTL - A System to
Construct Samples for Data Processing Program Debugging", IEEE Trans. on Software Eng. SE-5.
I (Jan. 1979), 60-66.

[E] D. Good, "Mechanical Proofs about Computer Programs", in Mathematical Logic and Program-

ming Languages, Prentice-Hall, 1985.

(G] Luqi, "Software Evolution via Rapid Prototyping". IEEE Computer 22, 5 (May 1989). 13-2-5.

[H] A. Mili, W. Xiao-Yang and Y. Qing. "Specification Methodology: An Integrated Relational
Approach", Software Practice and Experience 16, 11 (Nov. 1986), 1003-1030.

[I] D. Craigen, S. Gerhart, T. Ralston, An International Survey of Industrial Applications of Formal
Methods, NISTGCR 93/626, National Institute of Standards and Technology, Gaithersburg, MD.
1993.

[J] J. Goguen, C. Linde, Techniques for Requirements Elicitation, Proceedings of Interenational
Symposium on Requirements Engineering. pp. 152-164, San Diego, CA, Jan. 4-6, 1993.

[K] B. Blum, Some Very Famous Statistics. The Software Practitioner, \To. 1, Number 2, March-
April 1991.

[L] D. Dampier, Luqi and V. Berzins. "Automated Merging of Software Prototypes", Proceedings
of the Fifth International Conference on Software Engineering and Knowledge Engineering, pp.
604-611, San Francisco, California June 16 - 18, 1993.

[Ml S. Badr and Luqi, "A Version and Configuration .Model for Software Evolution", Proceedings
of the Fifth International Conference on Software Engineering and Knowledge Engineering, pp.
225-227, San Francisco, California. June 16-18, 1993.

11

Intra.Object Schemas to Enhance the Evolution of Software.Objects

Rolnd T. MiUermeir, Klaus K/enzl
Institut Mr Informatik
Universitit Kiagenfurt

AUSTRIA

mtermeir, k.auki)@Mii.uni-khu.ac.at

1. PREMISES AND POSITION
Objects are - among other things - characterized by a clear separation between interface and
implementation.

In this paper we argue for extending this duality between the external appearance and the
internal mechanics by a third concept, the intra-object schema. It should be based on sound
formal semantics and provide a level of indirection, useful in supporting the maintenance
activities of objects.

The intra-object schema can be seen from the background of two perspectives:
1. provide a semantic roadmap to the various subcomponents of an object, be they

subobjects of complex objects or be they components of lower granularity such
a methods or state holders (instance variables).

2. provide a "service channel" into the object on which high level modification
operations on aspects of the structure of the object can be performed.

2. FACETTES OF OBJECTS
To establish a basis for this approach, we destinguish in the definition of objects the
definition of the structure of the object from the definition of the contents of the object.
Neither of these concepts is yet on the level of implementation; both are definitory aspects.

To demonstrate what we are referring to with this distinction let's use an analogy: With a
truck, the number of axes and the maximal payload it might carry are structural properties,
so is the general kind of payload it might carry (liquid, parcels, containers, ...). The actual
load of the truck, its actual volume, weight, and specific nature though are properties of its
contents. Likewise, if we have an object implementing some data structure, the accessing
discipline, the number of entries it might maximally support or the variety of values it might
assume would be structural properties while the actual value it exhibits at a given point in
time or the actual number of entries (and their values) it contains during a snapshot are
contents related properties.

12

In classical object oriented software development, these two aspects are not separated and it
is left to the programmer or designer (within the limits provided by the programming
language in use) to provide methods for changing the contents and within certain limits
methods for changing the structure (e.g. repaint the truck, change the quotient for computing
the sales tax).

On the basis of our separation, we distinguish the following four classes of objects:
1. state changes - modifications of the contents of an objecL
2. structure changes - modifications of structural properties such that the

"container" itself changes without necessarily inducing a change in the "user-
state" of the container object.

3. mapping changes - changes within a method such that the change is more
involved than one which can be handled by changing some parameter
(algorithmic consequences).

4. overall change - any change not covered by the three classes mentioned above.
Changes of this sort would necessitate a regular, hands-on maintenance
operation.

3. ELEMENTS OF AN INTRA-OBJECT SCHEMA
To support mechanized object evolution, an intra-object schema should contain at least the
following kind of information:

- description of the signature of the object,
- definition of virtual methods,
- specification of specific constraints methods would assume concerning their

attributes,
- specification of specific constraints concerning the usage fo methods,
- specification of inter-object constraints which are to hold between the

component-objects of complex objects,
- definition of the actual state space used by implemented base methods.

The distinction between vratal methods and implemented base methods which has been
referred to above is to be understood in a similar way as the distinction between implemented
base relations (or ground facts) and computed views (or derived results).

4. BENEFITS OF THE INTRA-OBJECT SCHEMA
On the first glance, introducing intra-object schemata would allow a clear separation between
methods supporting classical user operations (0- and V-operations on the user state space)
and structural operations, which would be implemented as schema updates.

Depending on the complexity of the operation involved such schema updates can be fully or
partially supported by executable code. For highly involved operations, the schema would
provide just a roadmap which would provide orientation for the maintenance programmer.

The following list should give an idea about such update operations which can be supported
by an intra-object schema and which are to be implemented as schema update operations
(note: the most complex among them might extend into the implementation though).

13

modifying the value of some constant (without consequences for the
dimensionality of the state space of the object,
extending (or shrinking) the value set of some argument type,
extending (or shrinking) the value set of the type of some state variable,
extending (or shrinking) the dimensionality of the state space (to the extent
supported by its actual implementation),
modifying the type of some (or all) dimensions in the state space to the extent
not prohibited by specific constraints,

- introducing new virtual methods,
- introducing new virtual state dimensions (and the associated methods),
- removing virtual state dimensions and their directly associated methods,
- removing virtual methods.

S. MERITS AND OUTLOOK
The approach outlined above should provide the following merits for software maintenance:

- Consistent (semi-automatic) high level modification via schema modification
operations (e.g. modification of the data-space as far as type info is concerned
and provision of a semantically clean treatment of genericity via method
constraints made explicit at a single location).

- Easy composition and recomposition of virtual functionality, hence it provides
for an architecture supporting normalization considerations.

- Explict expression of integrity constraints. These integrity constraints might be
"expressed to hold between regular user operations or even between privileged
maintainance operations. Even when they are not of such a quality that they can
be automatically maintained, they would at least provide support for testing local
modifications of methods. This becomes especially valuable, when these
modifications have been applied manually.

- The concept is extendible to provide constraints for runtime-maintenance
(support channels). To accomodate this notion, the intra-object schema has to be
further extended (e.g. by inclusion of modification checkpoints).

14

A Theoretical Basis for Software Evolution

Yellamraju V. Srinivas and Douglas R. Smith
Kestrel Institute, 3260 Hillview Avenue,

Palo Alto, CA 94304 ({srinivas,smith}@kestrel.edu)

1 Introduction

We describe an approach to software evolution that uses the same tools and techniques
that have been successfully used in the transformational development of software (e.g., in
KIDS [Smith 90]). We obtain an integrated view of software development and evolution by
considering what is preserved and what is changed by each process. Software development is a
sequence of transformations which preserve functionality but usually change some intensional
property such as performance. Software evolution is a dual process in which "evolution"
transformations change functionality but preserve properties such as well-formedness and
internal consistency.

2 A Model of Evolution

We view evolution as the transition from one consistent description to another (see Figure 1).
Each such transition can be decomposed into three phases: (1) start with a consistent de-
scription, (2) change some aspect of the description (possibly introducing inconsistency).
(3) minimally change other parts of the description to re-establish consistency (change prop-
agation). Here are some examples of artifacts, observations (invariant properties to be main-
tained) on these artifacts, and changes which affect these properties.

EXAMPLE 2.1. Artifact: a program. Observed property: well-formedness. Change: modifi-
cation of the signature of a function, say, by adding a parameter. Propagation: change all
references to the function. 0

EXAMPLE 2.2. Artifact: a theory interpretation I from theory A to theory B. Observed
property: (the assertion that) I is a valid theory interpretation. Change: some modification
to theory A. Propagation: change B and/or I to obtain a new interpretation. 0

EXAMPLE 2.3. Artifact: graphical representation of a data structure. Observed property:
(the assertion that) a tree-like picture on the screen is a representation of an abstract tree
stored inside. Change: any modification of the abstract tree. Propagation: update the
display to reflect the change. 0

EXAMPLE 2.4. Artifact: a transportation schedule. Observed property: satisfaction of
timing, trip separation, capacity, etc. constraints. Change: decrease in available resources.
Propagation: reschedule movements which use unavailable resources. 0

15

Artifact: A 1 4 B consistent structure

Property: B implements A via I

I change A to A'

Artifact: A' 14 B inconsistent structureProperty: B implements A' via I

I change propagation

Artifact: A' _--4 B' consistent structure
Property: B' implements A' via I'

Figure 1: A model of evolution

Example 2.2 captures the essence of propagating changes in the requirements into an
existing implementation. Example 2.3 characterizes situations where two or more interacting
entities are mutually constrained.

3 Change Propagation

For change to be detectible, there has to be an observation. For, if an artifact is changed,
and there is no change in the observed properties, then the change has no effect, and there
is no need for change propagation. However, if the property we observe changes as a result
of the change to the artifact, we have to do something to re-establish the observed property.
This is the problem of change propagation.

Propagating arbitrary changes is a hard problem. Therefore, we consider a restricted
class of changes, generalization and specialization, i.e., monotonic changes. Restricting the
class of changes to monotonic changes represents the next step in expanding our current
knowledge about change propagation. "Equational change," i.e., changing an entity into
an equivalent entity has been well explored, e.g., in rewriting, transformation systems, and
theorem-proving. Arbitrary change is too unconstrained, and ill-focussed. Monotonic change
(i.e., generalization or specialization) seems structured and constrained enough, yet, surpris-
ingly, encompasses a variety of situations (see examples above).

To model change, we associate a partial order (or several partial orders, if necessary) with
the type of each entity which can vary. Each partial order represents monotonic changes along
some dimension.

16

EXAMPLE 3.1. Typical examples of partial orders representing vaiiation are the natural

numbers with the less-than relation, trees with the subtree relation, sets with the subset
relation, sequences with the subsequence relation, formulas with the implication relation.
datatypes with the subtype relation, etc. Corresponding to the partial orders above, ex-
amples of the class of changes we consider are: strengthen or weaken a formula, expand or
contract a set, replace a numeric expression by an upper or lower bound, etc. 0

Variance. We analyze the dependence of the observed property (which we wish to main-

tain) using the notion of variance. Variance indicates the dependence of a term on its

subterms: it is the direction and amount of change of a term with respect to changes in the

subterms (variance is similar to the notioni of polarity that is used in logic).

EXAMPLE 3.2. The length of a sequence and the size of a tree are purely covariant functions;
the ordering on sequences is the subsequence relation, that on trees is the subtree relation.

x is a subsequence of y s is a subtree of t T C S

length(x) <• length(y) size(s) _< size(t) (Vx E T. O(x)) ,= (Vx E S - 0(.T))

Universal quantification is purely contravariant in the quantified set; the ordering on sets is

the subset relation, that on formulas is given by implication: 0 _< ', if and only if p =: '-. 0

Directed Inference. Knowing the invariant formula to be maintained and the variance

of its parts. we can determine the directions in which to change the parts of the formula

to re-establish its truth. The change propagation is done by directed inference [Smith 82.

Smith 90]: constrained by the direction of increasing the truth-value of the formula. we

generalize/specialize parts of the formula (as determined by variance) until the formula
becomes true. We recursively apply this procedure to change the parts, until we reach
entities for which we have explicit operators to effect the required change.

References

[Smith 82]

SMITH, D. R. Derived preconditions and their use in program synthesis,. In CADE 6
(1982), Lecture Notes in Computer Science, Vol. 138, Springer-Verlag, pp. 172-193.

[Smith 90)

SMITH, D. R. KIDS: A semiautomatic program development system. IEEE Trans.

Softw. Eng. 16, 9 (Sept. 1990). 1024-1043.

1:

Slicing Programs with Gotos

Hiralal Agrawal
Bellcore

hiraObellcore.com

1 Introduction conditional gotos included. Note that although the go-
toe on lines 7 and 13 are included, that on line 11 is

Program slicing has applications in many areas includ- not.
ing program understanding, testing, debugging, main- The same situation occurs in the presence of break,
tenance, optimization, parallelization, and integration continue, and return statements which are special cases
(see, e.g., [1, 3, 4, 6]). Algorithms to compute pro- of the unconditional goto statement. The program in
gram slices are based on finding the closure of data Figure 3-a shows a program with continue statements
and control dependences of relevant statements [4, 5]. that is equivalent to the program in Figure 1-a. Fig-
Although algorithms to compute control dependences ure 3-b shows the corresponding slice with respect to
in the presence of goto statements have been developed positives on line 17 obtained using the conventional slic-
[2], algorithms to decide which goto statements to in- ing algorithm. Note that, without the relevant continue
clude in a slice have obtained little attention. Even the statements in the slice, the assignment on line 9 is in-
"structured" derivatives of the goto statement such as correctly executed during each loop iteration irrespec-
the break, continue, and return statements, as in C, tive of the value of x. Figure 3-c shows the correct
have not been adequately considered in this context. slice with the relevant continue statements included.
In this paper, we present an algorithm to determine Note that although the continue statement on line 7 is
which goto statements to include in a slice when the included, that on line 12 is not.
program being sliced contains goto statements. Unless The question, then, is: how does one determine
otherwise specified, we will use the term goto to refer which unconditinal gotos to include in a slice? Can-
to both the goto statement as well as its structured sider a sequence, So; S2; S3, of three statements in aderivatives mentioned above. ie eune 1$,•,o he ttmnsi

program. Suppose S, and S3 belong to a slice obtained
using the conventional slicing algorithm and S2 does

2 Finding the Relevant Gotos net. If 52 is an assignment statement, then control
always passes from Si to S2 to S3 in the origin d pro-

A goto statement does not assign a value to any vari- gram. Deleting S2 from the slice will cause control to
able. Thus no statement may be data dependent on it. transfer automatically from S1 to Ss in the slice. Tbe
Also, as a goto statement is not a predicate, no state- same holds true if S2 is a compound statement, e.g., an
ment may be control dependent on it. Therefore, the if or a while statement, and the body of the compound
conventional slicing algorithm that finds the closure of statement does not contain any explicit gotos.
data and control dependences of a given node may not On the other hand, if there are explicit goto state-
cause any goto statementn to be included in a slice. ments in the body of S2 , then control need not always

It is easy to modify the conventional slicing algo- pass to S3 after the execution of S, and S2 in the origi-
rithm to determine which conditional goto statements, nal program, because the explicit gotos in S2 may cause
such as those on lines 3 and 5 in Figure 1-a, to include in the control to transfer elsewhere. In this case we may
a slice: If the predicate in a conditional goto statement not omit S2 from the slice, as otherwise control will
is included in a slice because some other statement is always pass unconditionally from S1 to S3 in the slice.
control dependent on it, then the associated goto must We need not, however, include all statements in S2 in
also be included. The predicate will not serve any pur- the slice. We only need to include certain gotos in it
pose in the slice without the accompanying goto. along with their dependences. This is required because

Figure 1-b shows the program slice of the program in in the presence of gotos, the statement that lexically
Figure 1-a with respect to positives on line 15 obtained follows a statement in a program need not also be its
using the above scheme. Unfortunately, the slice, un- immediate postdominator.
like the original program, fails to ensure that the as- A statement, S', is said to be the immediate lexical
signment on line 8 is executed iff z > 0 as it does successor of a statement, S, in a program if deleting S
not include the relevant unconditional goto statements. from the program will cause control to pass to S' when-
Figure 1-c shows the correct slice with the relevant un- ever it reaches the corresponding location in the new

is

2: postev0 0: 2: PaSS - 0;
1: S-0.O. 3: L3:I(eF (OMgl L14; 3: whie (%"eO) i
2: pmI.a 0'. 4: MsO(x): 1s 5 -0;.

3:. L9: (eAo)ga9ML14; 5: 1(x)0) OM1.8; 2: P0s 4: a.(x)

4: rea*X); 8: L11: . o 1: (W O) S: 5: (X -0)

5: Nf (it : 0) 9MO LS; 14: L14: 4: madx); 6:)

a: mim . sum fl l(); 15: wMn(poaws); 5: 9 (x 4 0)l 9: pos6rv4, POSMves, ;

7: g0L3. (0)) Mincorrect slice 6: sum . sum M (X); 15: }

& L.: p7:b =posts1;7: P 9 We 31/ 17: wrle(posoies);
2: poWAs. 0; 6:)

Ik 1(s%21,,0gloL12; 3:3: : 1(0e00)OotoL14: 9: posevves.pohASu.1: (*b) t1llSCM0: sum. -ur ow * Q); 4: OSO~X); 10: if (k%2 -. 0) {

11: gOt L13; 5: M (x -0) gatoJ M 11: sum . sum + 2(x) 2: pos -0;
12: L12: sum . +. 13(x); 7: 0M L13; 12: of rMW 31 3: whit(*oO)(
13: L13:gaioL3; 8: LO: posiSvs.posmAves 1; 13:) 4: read(x);

14: L14: wliW(sum); 13: L13: go *3; 14: sum. sum.13(x); 5: 9 (x C.O) 1

15: WIlt'nos•gves); 14: L14: 15:) 7: coflbnw;. rmotol 3"/

(a) a "golo" version of 5: 15 WtlSPosStves); 16; wrfl(sum): 8:)

the example propam (c) correct slice 17: wnoeipostives): 9: positis - POG~v. s * 1;

(a) a 'contnue" version of

Figure 1: An example program with gotos, and its pro- f examle program 17: wl"(Posftes),

gram slice with respect to positives on line 15 (C) correct slice

Figure 3: A "continue" version of the program in Fig-
ure l-a and the corresponding program slice

14 1

2 3,1

Is 16

4 14 1 7 9 11 12 Is
10

5 7 10 12 14
5 4 6 9 106. 17

(b) postdominator tree 1 4 6 1

.•:.; 10(b) postdominator tree

12 10 6 14 11 6*

43 16

11 712

a . 9 (a) f.owgraph

(c) control de 1P ndAence P graph 1 12 10

(d) lexical successor am I1I

Figure 2: Various graphs of the program in Figure 1-a 6 10

11 12 14

program. Like the postdominator relationship, the lex- (c) control dependence graph (d) lexical successor tee
ical successor relationship may be represented graphi-
cally in the form of a lexical successor free. It essen- Figure 4: Various graphs of the program in Figure 3-a
tially depicts the nesting structure of the program and
may be constructed in a purely syntax directed manner.
Figures 2-d and 4-d show the lexical successor trees of statement is always the same as its immediate post-
the programs in Figures 1-a and 3-a, respectively, dominator. Consequently, a slice of a "gotoless" pro-

In a "gotoless" program, the lexical successor of a gram may be constructed by simply deleting state-

19

ments that do not contribute towards the value of the 1: S•ce - the slce obinned usmS the cofvonOim slicing &gonthi

varabl inquetin. he tatmens hatconribte 2. Add any goto statemnents not in Slice. that are directly conaol dependentvariable in question. The statem ents that contribute on prd icts inS lie . to Sl .ic . u s cdpe npedaciates in Slice. to Slice.
towards the value of the variable in question are given 3: Preds - the set of pnldacates ol ain Slice whose newest posidmnato• in
by the conventional slicing algorithm. For a program Slice is different fomn the emu ltexi smcseor to Sike;

that contains gotos, however, the lexical successor of 4: while Preds is rso enp do(
a statement need not also be its immediate postdom- 4.1: Add all predicates in Prods, along with the closm of their da end
inator. Hence, we may not obtain a slice of such pro- coldepenews.toSce;

grams by simply deleting the statements that do not 42: Add any goto statements aot in Slice. da am now dircly conmol

contribute towards the value of the variable in question. dependent on predic•ses ia Slice. to Slice.

We must include other statements that ensure that the i SleisD th ferent f ao tSe wse newest lpossoroinSioin lic i no €fff thn ro e lezical s inr Slice;

statements included in the slice by the conventional
slicing algorithm get executed in the same relative or- 5: ewun (Slice);

der they are executed in the original program.
Suppose a statement, S, in a program is directly Figure 5: An algorithm to find program slices of pro-

control dependent on a predicate, P. Let D be the im- grams with gotos. For programs that contain only
mediate postdominator of P. By definition of control "structured" gotos, the loop at step 4 is never entered.
dependence, we know that there exists a branch, B, out
of P such that whenever control takes this branch, S is
guaranteed to be reached before D is reached. Suppose these two steps. Figure 2-b shows that node 13 is near-
P is included in a slice, Slice, obtained using the con- est postdominator of node 9 in the slice. Figure 2-d
ventional algorithm but S is not. If S is an assignment shows that node 13 is also the nearest lexical successor
statement, then we may omit it from the final slice of node 9 in the slice. Hence, in step 3 of the algorithm,
without adversely affecting the control flow from P to Preds is evaluated to be the empty set and the loop at
D via B, because the lexical successor of an assign- step 4 is never entered. Figure 1-c shows the resulting
ment statement is also its immediate postdominator. program slice.
If, however, S is a goto statement, we must include it Figure 6-a shows another version of the program in
in the final slice as omiting it from the slice may cause Figure 1-a where the indirect gotos from lines 7 and 11
the control flow from P to D in the slice to deviate from via line 13 to line 3 have been replaced with direct go-
the analogous control flow in the original program. tos to line 3. Figure 7 shows the corresponding graphs

If S is a predicate, then the decision about whether for this program. As in the above example, the pred-
or not to include it in the final slice depends on whether icate on line 9 is the only predicate not included in
or not its nearest postdominator in Slice is the same the slice during the first two steps. The nearest post-
as its nearest lexical successor in Slice. If the two are dominator of node 9 in the slice is node 3, as shown
different, we must include S in the final slice, which in in Figure 7-b, whereas its nearest lexical successor in
turn will cause the goto statements responsible for the the slice is node 15, as shown in Figure 7-d. As the
difference to also be included in the slice. If, however, two are different, node 9 is included in the slice during
the nearest postdominator of S in Slice is the same as step 4.1. This, in turn, causes step 4.2 to include the
its nearest lexical successor, then omitting S from the gotos on lines 11 and 13 in the slice. Figure 6-b shows
slice will not adversely affect the control flow from P the resulting program slice.
to D. Figure 5 shows an algorithm to determine which It can be shown that for programs that contain only
statements to include in a slice when the program under the 'structured" gotos, if a predicate is not included in
consideration contains goto statements. a slice by the conventional slicing algorithm, then its

Figure 2 shows the flowgraph, the postdominator nearest postdominator in the slice is the same as its
tree, the control dependence graph, and the lexical suc- nearest lexical successor in the slice. Thus, for such
cessor tree of the program in Figure 1-a. Node numbers programs the loop at step 4 of the algorithm is never
in the graphs correspond to line numbers of the pro- entered. Hence, for these programs we have a much
gram statements. The nodes with thick outlines denote simpler slicing algorithm. It is the same as the conven-
the unconditional goto statements. The control depen- tional algorithm with one additional step-whenever a
dence graph also contains a dummy predicate node, predicate is included in the slice, all gotos directly con-
viz., node 0. All top-level nodes-nodes that are not trol dependent on it are also included in the slice. Fig-
control dependent on any predicate in the program- ure 3-d shows the corresponding slice of the program
are made control dependent orn this node. in Figure 3-a obtained using this algorithm.

The shaded nodes in the graphs in Figure 2 indicate Note that for programs that do not contain any go-
the statements included in the slice by steps 1 and 2 tos, no statement is added to the slice during step 2
of the algorithm. The predicate on line 9 is the only of the algorithm. In this case the algorithm defaults,
remaining predicate not included in the slice during as desired, to the conventional slicing algorithm. Also

20

2: poewem . 0;
3: U3: I (seao) 9M0 L14;.

4: e•(x); 14

1: am,. O; 5: N (x 3.0) 9to LS;

2: pbe.O. 7: OMLI; 11

3: L,• I(solo) 0ot L14; S: LB: posils - poldsm + 1';

4g:Md(N): 9: (x %2•6. 0) gL12; 12

I: 1 (x a. O) glO LB; 11: 9M 1 13
&k a owa n, *u flix); 12; L12: I)
7: 9Mm L ; 13: M U;6 10 12
7: goa 1.3; 14: L14: 10

6: LI: poM - postim .1; 15: avrlsWasltzvs); 14 (b) pnosinmkinaor tree
9: UI(x%'f2 I. O) g~t0L12;10: m1 (x %2 6 (x) (b) is correct slice 9

To: Mno-orim * 12u(k):.0
11: 9lM U; 2. Im64•-O0; i

12: L12. amm - sm +13(x); 3: U.: f (.dO) goo L14; 6
13: 9M L&3; 4; . x); roa(*

14: L14: wl s(aum); 5: I (x 3- O) goto LS;U

Is. UOSOM8lU6); 7: 90M11 LI

(a) another 'goto" version 8: LI: pos.es - posftimv 1;
of the example pmn'n 9: goto U; 10 12

14: L14:
15: t(9o, sivs); 11 1

(c) another slice 1
(a) flowgraph 1(Y 21

Figure 6: Another "goto" version of the program in (c) control dependence graph
Figure 1-a and the corresponding program slice 1

(d) lexical successor tree

note that under this algorithm no special treatment of Figure 7: Various graphs of the program in Figure 6-a
conditional goto statements is required. Whenever the
predicate in a conditional goto is included in a slice,
the associated goto is also included because the latter dominator. For this reason, slices obtained using the
is directly control dependent on the former. Also, in- conventional slicing algorithm of such programs may
clusion of the dummy node 0 in the control dependence not preserve the behavior of the original program with
graph ensures that all top-level goto statements are in- respect to the slicing criterion. In this paper, we have
cluded in every slice, as the dummy node is included in proposed a new algorithm that alleviates this problem.
every slice and all top-level gotos are directly control
dependent on it.

A program slice is normally defined to be a sub- References
program of the original program. Some applications
of program slicing, however, may not require that the [1] H. Agrawal, R. A. DeMillo, and E. H. Spafford. Debug-

slice necessarily be a subprogram of the original pro- ging with dynamic slicing and backtrackng. Software

gram. In this case, we may omit step 4 of the algorithm Practice and Experience, 23(6):589-616, June 1993.

completely. Instead, we may simply insert a new state- [2] J. Ferrante, K. J. Ottenstein, and J. D. Warren. The
ment, goto D, in place of each predicate, P, identified program dependence graph and its uses in optimiza-
during step 3 of the algorithm where D is the nearest ticn. ACM Transactions on Programming Languages

postdominator of P in the slice. Figure 6-c shows the and Systems, 9(3):319-349, July 1987.

resulting slice of the program in Figure 6-a obtained us- [3] S. Horwitz, 3. Pins, and T. Reps. Integrating nonin-
ing this approach. Instead of including node 9 and the terfering versions of programs. ACM Transactions on
goto statements control dependent on it in the slice, a Programming Languages and Systems, 11(3):345-387,
new statement, goto LS, is inserted at line 9 as node 3 July 1989.
is the nearest postdominator of node 9 in the slice. [4] S. Horwitz, T. Reps, and D. Buikdey. Interprocedural

slicing using dependence graphs. ACM Transactions
3 Summary on Programming Languages and Systems, 12(1):26-60,

Jan. 1990.

For programs that contain goto statements, or even [5] M. Weiser. Program slicing. IEEE Transactions on
their structured derivatives, e.g., the break, continue, Software Engineering, SE-1i(4):352-357, July 1984.
and return statements, the lexical successor of a state-
ment is not necessarily the same as its immediate post-

21

A Slicing Method for Semantic Based Merging of Software
Prototypes

David A. Dampier
Valdis Berzins

Department of Computer Science
Naval Postgraduate School, Monterey, CA 93943

e-mail: dampier~cs.nps.navy.mil, berzinsOcs.nps.navy.mil

September 14; 1993

1 Introduction 2 Slicing of PSDL Prototypes

A slice of a PSDL prototype is defined in terms
of the prototype's dependence graph [3]. It cap-

Semantic based software merging is a problem tures the portion of the prototype which affects
which has been studied relatively little. Initial the history of a set of streams. This is useful
attempts at software merging were syntax based, in isolating changes made to a base version of a
and not very successful at preserving the seman- prototype in a modification. If the slices of two
tic meaning of the programs [6, 7]. Later at- versions with respect to the same set of streams
tempts to solve this problem have been focused are different, then there are significant changes
on merging of extensions to programs [1] and in- that have been made to one version and not the
tegration of modifications to simple imperative other. A formal definition of a slice follows:
programs [4]. We propose a method of merg-
ing prototypes based on slicing of (nhanced data
flow programs. We use the Prototyping System Definition 1 Slice of a PSDL Prototype:
Description Language (PSDL) [5], which uses en-
hanced data flow diagrams to represent concur-rent programs with real-time constraints. A slice of a PSDL prototype P with respect toa set of data streams X, Sp(X) = (V, E, C), is a

subgraph of the PDG, Gp, and is constructed
Initial attempts at merging PSDL programs as follows:

were syntax based and not completely success- (1) V is the smallest set that contains all ver-
ful [2]. Our current effort is centered on build- tices oi E Gp that satisfy at least one of the
ing a merged prototype with slices of the input following conditions:
versions which preserve the semantic meaning of a) ,oi writes to one of the data streams in
those inputs. We present a method for find- X.
ing slices of prototypes which affect particular b) oi precedes oj in Gp, and oj E V.
data streams and a theorem which guarantees (2) E is the smallest set that contains all of
the behavior of the slice is the same regardless of the edges zk E Gp which satisfy at least one of
whether it is contained in a larger prototype or is the following conditions:
self-contained. Then, we introduce a method for a) xk E X.
change-merging prototypes based on this slicing b) Xk is directed to some oi E V.
definition. (3) C is the smallest set that contains all

22

of the timing and control constraints associated a change merging operation that can provide se-
with each operator in V and each data stream in mantic guarantees of correctness.
E.

In order for a slice to be useful for merging,
we must be confident that removing the slice 3 Slicing Method for Change-
from a larger prototype will not change its se- Merging
mantic meaning. Our prototype slicing theorem
[3] demonstrates that this is the case.

The method we propose for change-merging in-
Slicing Theorem for PSDL Prototypes: volves using prototype slicing to determine auto-

matically which parts of the prototype have been
Let Sp(X) be the slice of a prototype P with affected by a change and which parts have been

respect to a set of streams X. If P and Sp(X) preserved. For example, consider the prototype
have the same visible behavior on the input in figure 1, and the changes to that prototype
streams of Sp(X), then: contained in figures 2 and 3.

Sp(X) and P have the same behavior on any ' "3 '
subset of the streams in Sp(X). A

The proof of this theorerm is a trans-finite in-c J 4 D
duction over the length of the longest sequence

of data vectors in the behavior of the slice. The
basis for the proof is that since each stream con- Figure 1: Base Version of a Prototype
tains an initial data value, and that value is part
of the definition of the stream, then the initial
data value for each stream is the same in the A Bs D
slice whether or not it is include'd in a larger
prototype. The induction is on thc length of the
longest sequence of vectors in the behavior of the
prototype. The induction step involves demon-
strating through the use of the possibility func- Figure 2: 1st Modification to the Prototype
tion of each operator that we can construct the
slice's behavior with length of no more than k + 1, B!O '@
and that behavior is the same whether or not the A
slice is contained in a larger prototype or not.
The last part involves demonstrating that the GA'-O

theorem is true for behaviors of infinite length,
by showing that if a behavior of infinite length
is different in or out of a larger prototype, then Figure 3: 2nd Modification to the Prototype
a finite prefix of that behavior must be different.

The merged version of this prototype, if feasi-
The significance of this theorem is that a slice ble, must preserve the changes made in both of

captures a fragment of the semantic behavior of the modified versions. Using prototype slicing,
a prototype, and the behavior captured by that we find the part of the base version, called the
slice remains the same even if that. slice is made preserved part and shown in figure 4, and the
a part of a different prototype, provided that it parts of each modification which have different
is also a slice with respect to that new proto- slices in the modified version and the base, called
type. This property is the basis for constructing the affected partsand shown in figures 5 and 6.

23

These three subgraphs are then merged together
to form the merged version shown in figure 7. DBSD

N1 Figure 7: Merged Version of a Prototype

Figure 4: Preserved Part References

[1] Berzins, V., "On Merging Software Ex-
tensions", Acta Informatica, Springer-
Verlag, 1986, pp. 607-619.

[2] Dampier, D., A Model for Merging Dif-
Figure 5: Affected Part of 1st Modification ferent Versions of a PSDL Program,

Master's Thesis, U.S. Naval Postgraduate
School, Monterey, California, June 1990.

[31 Dampier, D., Luqi, and Berzins, V., "Au-
tomated Merging of Software Prototypes",
Proceedings of the 5th International

Figure 6: Affected Part of 2nd Modification Conference on Software Engineering
and Knowledge Engineering, KSI, June

To ensure there are no conflicts between the 1993, pp. 604-611.
two modifications, we check the slice of the [4] Horwitz, S., Prins, J., and Reps, T., "In-
merged version and each modification with re- tegrating Non- Interfering Versions of Pro-
spect to the streams in the affected part for that grams". Conference Record of the Fif-
modification. If the slices are the same, then the teenth ACM Symposium on Princi-
semantic correctness of the merge is satisfied. ples of Programming Languages, As-

sociation for Computing Machinery, New
York, New York, 13 - 15 January 1988.

4 Conclusion [5] Luqi, Berzins, V., and Yeh, R., "A Proto-
typing Language for Real Time Software",
IEEE Transactions on Software Engi-

This methc-d of change-merging for software pro- neering, October 1988, pp. 1409-1423.
totypes sbhwo' great promise. An initial imple- [6] Siverberg, I., Source File Management
mentation ,.f the change-merge tool has been with SCCS, Prentice Hall, Englewood
completed and results of ongoing experimenta- Cliffs, NJ, 1992.
tion are positive. Possible future work for this
project is making this tool recognize and auto- [7] Tichy, W., "Design, Implementation, and
m'atically resolve some types of conflicts that cur- Evaluation of a Revision Control System",
rently have to be manually resolved by the de- Proceedings of the 6th International
signer. Conference on Software Engineering,

IEEE, Tokyo, September 1982, pp. 58-67.

24

An Architecture and Models
for a Meaning-Preserving Program Restructuring Tool

William G. Griswold
Department of Computer Science & Engineering, 0114

University of California, San Diego
San Diego, CA 92093-0114 USA

wggQcs.ucsd.edu

1 Introduction
Tools that manipulate multiple program representations are common. Optimizing and parallelizing compilers, program merging
tools, mad program restructuring tools are just a few examples. Constructing these tools is complicated, in part because it is
hard to ensure that the diverse representations are kept consistent. Simplifying this task requires that models be provided to the
tool builder for simplifying this task and that the realization be efficient enough for the tool user.

We approached this problem in the context of a program restructuring tool by developing a layered software architecture
and developing--for certain key layers-models for bow to build one layer from another. Although aspects of this approach are
limited to semantically constrained applications like program restructuring, studying this approach may benefit the designers of
related kinds of tools.

Automated assistance of program restructuring can overcome key aspects of program complexity [Griswold & Notkin 93].
A tool based on this technique uses a transformational approach by taking a locally-specified structural software change from
the software engineer and performing additional compensating changes throughout the program to ensure that the meaning of
the program does not change. If the tool cannot make meaning-preserving compensating changes, the engineer's change is
disallowed and the problem is reported to assist the engineer in circumventing it.

Constructing a simple, efficient restructuring tool is hard because the tool uses data flow representations such as a Control
Flow Graph (CFG) and a Program Dependence Graph (PDG) to compute the information needed to perform the semantic checks.
and compensating changes. The required interprocedural data flow analysis with alias (i.e., pointer) information is typically
expensive to compute, and needs to be updated after each transformation applied by the tool user. A batch update approach is
too slow, so instead the tool directly applies the equivalent of the syntactic change to the data flow representation [Griswold
931. The direct update approach requires the translation of each Abstract Syntax Tree (AST) transformation procedure into an
equivalent data flow representation transformation procedure. This translation task is performed by the transformation builder
by examining the procedure implementing the AST transformation and deriving an equivalent procedure for the data flow
representation. This process requires that the builder know the semantics of both representations and know the nature of the
transformation being translated. The direct update approach can be modeled as the application of two equivalent functions to
two different representations, one for the program text and one for the data flow information:

(F..,I(P.,d), Fpo,(,d.,,1)) --- (p..., d,...)

To overcome the complexity of this approach, the system is layered to hide low-level concerns and AST updates are separated
from data flow updates. Additionally, conceptual models assist in building key layers. These techniques apply to any direct
update application, although the nature of direct update requires a semantically constrained application and an application-
specific solution to translating the operations from the source representation to the target representation.

The principal layers for program restructuring were chosen as follows, from bottom to top: the basic representation layer
for the AST and CFG/PDG, a layer on top for performing atomic updates on the AST and CFG/PDG, a layer-for meaning-
preserving updates on the AST and CFG/PDG (that is, F,,, and Fp~d), and a layer combining the separate AST and CFG/PDG
transformations (See Figure 1). Each layer builds on the layer below, adding one additional level of function. By supporting
only one additional functional requirement per layer and keeping AST and CFG/PDG updates separate, the functions in each
layer are smaller, and hence easier to understand and combine in the next layer. Providing the right abstractions in the higher
layers eases the implementation of new transformations. Two models-described in the next section---assist in defining AST
transformations and mapping them to an efficient CFG/PDG update.

*This work was supported io part by an IBM Graduate Fellowship. NSF Grants CCR-8859804 and CCR-9211002, a DEC External Research Program
Granmt, and dhe Xerox Corporation.

25

inmg-prestructuring layer

Figure 1: Layered Tool Design

2 Models for Designing Restructuring Transformations
Models of how to build one layer from another can help define an AST transformations and build an efficient CFG/PDG update
for it. Thae globalization skeleton [Griswold 93] helps define a global meaning-preserving transformation from operations in the
atomic update layer, based on the relationship between the tool user's initial change on a component and the tool's compensating
dianges to semantically affected components.

When invoking a transformation, the CFG/PDG needs to be updated to reflect the new AST structure. Although the
transformation builder's knowledge of AST and CiG/PDG semantics must be applied in much of this process, some help is
available by providing a small number of PDG subgraph substitution rules to help implement the CF/D operations in the
atomic update layer. These rules are in fact implemented as the atomic operations. To map an AST transformation (as described
with a globalization procedure) to the PDG, the transformation builder selects a combination of PDG subgraph substitution
rules that exactly describe the changes to the PDG that are needed to reflect the changes in the AST't Then the implementations
olf those rules are used to construct a full meaning-preserving update on the CFG/PDG.

Althoughi frequently two or more rules must be used to describe the required update, each rule alone describes a meaning-
lxesrvig change. Thus, in contrast to the globalization skeleton, which decomposes an AST transformation according
so the syntactic separation of its changes, the PDG• substitution rules divide the work according to structural and semantic
responsibilities. For instance, there are different rules for changing data flow dependences and control dependences. When
applied together to describe a single complete update, their substitutions change different aspects of the same subgraph. This
approach to dividing a complex PDG update into smaller pieces eases understanding because it ensures the semantic integrity of
each piece. The rules also specify preconditions for their correct application. These preconditions are the basis for the semantic
Checks performed before a tool transformation is applied.

Now one of the nmoe common substitution rules can be introduced. In this rule only data flow and control dependences are
shown. The handling of other edges is not difficult, but their inclusion here would obscure the algebra.

The lDistibutivity Rule. Thnis rule is used, for example, to replace a variable reference with the expression that defines it, or
vice versa. Intuitively, the rule states that if an expression's result is assigned to a variable, then a copy of that expression may
replace a subsequent reference to thant variable definition.

Given the data flow dependence subgraph consisting of a vertex u with flow dependence successors v, carried by the edges e s,,
and u' sequence-con gruenu2 to u, then is' may acquire the flow dependence successor es of u for any of the v, (Figure 2). The

I [e rules arcescrbe solely in taruw of the FDG, ruther than the combinled CF-/PD. becauste the ssabstitutzoos on the CR;G porno. are staghtforwaad

dke of mas tuctsu rlaioshipetolthe .AST and PDG.
SRuICS like the diatributivily rule replace a vertex or edge by an equivalent one to achieve a structral change. The Sequence-Congruence algorithm [Yang

90] provides a conservative definition of an equivalent vertex or edge. It computes equivalence classes of programs or subprograms tha over the course of
a program exeautiom produce rthe amue sequence of visible states. The Sequence-Congruence algorithm determines the equivalence of two PDG components

26

label on the edge must be changed to r, a unique variable. Furthermore. there must not exist an edge e• from a vertex other
than u to the affected vertex v

U

Figure 2: The Distributive Rule

This last qualifier disallows a second assignment to s from flowing to v. When implementing the distributive rule, this restriction
must be implemented as a runtime check that will prohibit the transformation if it fails. Multiple edges can be moved from u
to u' by applying the rule to other v%. The rule naturally extends toa duster of vertices (i.e., to u and its flow predecessors) by
transitively applying the rule backwards through the graph. Trbe vertex-equality part of the rule can be applied constructively
by copying u and its incoming edges, creating a trivially sequence-congruent u'. However, because replicating a vertex is
essentially multiple evaluation of the vertex, it could redefine the output variable. This is the reason why the rule changes the
edge variable label from s to r.

Two other common rules are the transitivity rule and the control rule. The transitivity rule describes how chains of
assignments between variables can be inserted or deleted. The control rule allows moving a definition of a variable to be moved
under a conditional arm if all its uses are under that conditional arm.

3 Conclusion
The layering approach with the accompanying models supported successfully implementing a prototype restructuring tool. For
restructuring, the globalization skeleton helps the transformation builder identify the changes to be performed and the program
components involved; the PDG substitution rules help map the changes onto the PDG and CFG. The result is a systematic
approach to implementing efficient direct updates of data flow representations for program restructuring.

Preliminary empirical comparisons indicate that direct updates are roughly constant time and fast enough to be used
interactively, even in the prototype. Although these results could not be compared directly to other incremental techniques, the
batch techniques used in the tool exhibit quadratic times with a large constant. When alias analysis in the batch algorithm is
turned off (just for performance comparison), the times are closer to linear with a smaller constant, but still too slow to be used
interactively.

One key question is whether there is a more formal method for deriving direct update transformations from source transfor-
mations. Denotational, operational, and data flow semantics techniques are promising [Cartwright & Felleisen 89] [Ramalingam
& Reps 89][Venkatesh 91][Parsons 92], but still in their early stages of development. Another question is whether there are
PDG substitution rules for applications other than meaning-preserving restructuring.

References
[Cartwright & Felleisen 89] R. Cartwright and M. Felleisen. Ile semantics of program dependence. In Proceedings of the SIGPLAN '89

Conference on Programming Languages Design and Implementation, July 1989. SIGPLAN Notices 24(7).

[Griswold & Notkin 93] W. Griswold and D. Notkin. Automated assistance for program restructuring. ACM Transactions on Software
Engineering and Methodology, July 1993.

[Griswold 93] W. G. Griswold. Direct update of dataflow representations for a meaning-preserving program restructuring tool. In ACM
SIGSOFT '93 Symposium on the Foundations of Software Engineering, December 1993. (To Appear).

[Parsons 92] R. Parsons. Semantic Program Dependence Graphs. PhD dissertation. Rice University, Dept of Computer Science. April 1992.
Technical Report No. Rice COMP TR93-202.

[Ramalingam & Reps 89] G. Ramalingam and T. Reps. Semantics of program representation graphs. Technical Report 900, Computer
Sciences Department, University of WVisconsin, Madison WI, December 1989.

[Venkatesh 91] G.A. Venkatesb. The semantic approachto program slicing. In Proceedin8softhe SIGPLAN '91 Conferenceon Programming
Languages Design and Implementation, June 1991. SIGPLAN Notices 26(6).

[Yang90] W. Yang. A NewAlgorithmforSemantics.BasedProgram Integration. PhD dissertation, University of Wisconsin, August1990.
Computer Sciences Technical Report No. 962.

based on three properties, (1) the equivalence of their operators, (2) the equivalence of their inputs, and (3) the equivalence of the predicates controlling their
evaluation. By definition, subgraphs of a PDG may be modified by the substitution of sequence-congruent vertices without changing the PDG's meaning.

27

A Methodology for Program Understanding

J. C. mums
Depanrten of Corpiaer Science

UVETsy of HowN,
Housa, IX M04-3475

The importance of being able to understand a program cannot be overstated. Given a
program, whether the task at hand is to debug, to validate, to modify, or to reuse it,. one
needs to understand precisely what it does first. Although in theory this understanding
can be achieved by reading the documentation, in practice the desired knowledge
ultimately has to be gained or verified firsthand by studying the source code: it is the fact
of ie that software documentation is mare than often inaccurate, incomplete, outdated,
or nonexistent

The methods of pathwise decomposition [HUAN90], program slicing [WEIS84], and
symbolic execution [KING76] together provide us with a methodology for program
understanding.

A program may become difficult to understand for many reasons. If it is so because of its
large size or complex logical structure, one may overcome the difficulty by using the
divide-and-conquer strategy, i.e., by understanding the program piecemeal.

Let P be a program written to implement a function f. In the process of designing and
implementing P, the programmer decomposes f repeatedly until the algorithm used to
compute f can be directly expressed in terms of the programming language used.
Basically, there are three ways to decompose a function. The first is to decompose f into
two functions f, and f2 such that f(x) = fl(f2(x)). In a procedural language this is to be
implemented in the form:

a :=f2(x);
b := f1(a);

The second is to decompose f into three functions fl, f2, and f3 such that f(x, y, z) =
fl(f2(x, y), f3(y, z)). In a procedural language this is to be implemented as

a := f2(x, y);
b = f3(y, z);
y := fl(a, b);

The third way is to decompose f into two functions f1 and f2 such that

f(x) = f1(x) if x e D, or, alternatively, f(x) = fl(x) if P1

= f2(x) if x e D2 = f2(x) if P2

if the subdomains can be defined as Di = (x e D I Pi(x)) for i =1, 2. In that case, the
function f will be implemented in the form:

28

If P1 then
a:=fl(x)

else if P2 then
a := f2 (x)

The first step towards understanding a program piecemeal, therefore, is to identify the
code segments that implement these subfunctions. These code segments are generally
easier to understand because, in comparison with the whole program, they have a smaller
size and simpler logical structure.

In practice, identifying a code segment that implements a subfunction is not as simple as
it may appear in the above discussion. Two consecutive assignment statements or
function calls in a program may not embody twb subfunctions of a function. The use of
loop constructs in a program further complicates definition and representation of
subprograms.

The three methods mentioned previously can be used to identify (and possibly to
simplify) the code segments discussed above.

To symbolically execute a program [KING76] is to identify the code segments in the
program that embody the first kind of decomposition (and to recompose the function in
the process). Thus a symbolic execution of

a:= fl;
b :=f2;

will yield a = ft and b = f2f1 = f if f, and f2 are subfunctions of f, and will yield a = f, and
b = f2 otherwise.

To slice a program [WEIS84] is to identify the code segments in the program that
embody the second kind of decomposition. A slice of

1 a :- f2(x, y);
2 b f3(y, z);
3 y fl(a, b);

with the slicing criterion (statement: 3, variable: a) is

a := f2(x, y);

and a slice of the critcrion (statement: 3, variable b) is

b := f3(y, z);

The method of pathwise decomposition [HUAN90] can be used to identify the code
segments that embody the third kind of decomposition. A pathwise decomposition of

if P then
a:= f,(x);

else
a := f2);

29

may yield a subprogram

/\ P,
ifP then

a := fI(x);
else

a :- f2(x),

which can be simplified to: I\ P; a -= fl(x). Here \ P is a swte consraint [HUANOL, a
shorthand notation of the following sentence:

The prosram se at t(A poW M" =do prediae P. or else dte program beco. unmd.ii

This methodology can be used to identify all three types of functionally significant code
segments in a program, and thus allows us to understand a program piecemeal. This
methodology not only integrates several concepts in program analysis but also provides a
seamless connection with the technique of proving program correctness by inductivetions. To prove that a program is (partially) correct is to post-contain the program
with its output assertion, and then show that that constraint is tautological as explained in
[HUAN9O].

References

HUAN90 J. C. Huang "State Constraints and Pathwise Decomposition of Programs,"
IEEE Trans. on Software Engineering, vol. 16, no. 8, Aug. 1990, pp. 880-
896.

KING76 J. C. King, "Symbolic Execution and Program Testing," Communications of
the ACM, vol. 19, no. 7, July 1976, pp. 385-394.

WEIS84 M. Weiser, "Program Slicing," IEEE Trans. on Software Engineering, vol.
SE-10, no. 4, July 1984, pp. 352-357.

30

On Merging Prolog Programs
Position Paper

Leon Sterling
Department of Computer Engineering and Science

Case Western Reserve University
Cleveland, Ohio. 44106, USA.

email: leon@ces. cvru. edu

Introduction

A critical issue for computer science is mastering the complexity of large software systems.
There is a real danger of programmers drowning in a sea of details. Complexity threatens all
aspects of the software lifecycle, from specification to coding to maintenance. Onie way to
handle complexity is to find ways of building complex pieces from simple, well-understood
pieces using automatic computer-aided methods.

This position paper advocates an approach to building complex Prolog programs from
simple pieces. At its heart is a method for merging Prolog programs called composition.
The approach has been successfully applied to the development of an explanation shell for
Prolog-based expert systems, a trace facility, and a software testing program for applying
coverage testing measures to programs written in C and Pascal.

Composition works on two programs that are related as sketched below. Indeed the
relationship between the program drives composition. I do not believe it makes sense to
merge two arbitrary unrelated programs.

We are able to prove properties of the merged program built by composition from the
properties of the individual components. Being able to prove correctness results of composite
programs is essential for handling complexity.

The mthod of composition has been developed for Prolog progrms but is applicable to
functional languages, and even imperative languages. The key is in identifying structures
which capture program behavior analogous to enhancement structures sketched below. The
reason that composition emerged for Prolog is the nature of logical variables and the concise
but clear programs that emerge naturally from writing in good style.

Skeletons, techniques and enhancement structures

Our view of program merging comes directly from our underlying program development
methodology. Prolog programs are best built systematically from two classes of standard
components. Skeletons are (usually) simple Prolog programs with a wen-understood control
flow. Good examples are traversals of recursive data structures. Other examples are parsers
and language interpreters. More discussion can be found in [3] and [4].

Techniques are standard Prolog programming practices. For example, the appropriate
method for counting the number of elements of a list, the number of nodes in a tree, or the
number of goal reductions or depth in a proof tree, is to increment an argument and then
carry it as a context. Applying a technique to a program creates an enhancement of that
program.

A relationship exists between an enhancement of a program, P say, and the program
itself, Q say. Each clause Cp in P corresponds to a clause CQ in Q. Far the basic merging

31

Input: A skeleton S
Programs P and Q which have been derived from S by application of techniques, and
are therefore enhancements of S.

Output: A program P.Q which combines the techniques of P and Q and which is an enhance-
men&t of P, Q and S.

for each clause Cs in S do:
fnd the corresponding clause, Cp, in P;

and the corresponding clause, CQ, in Q;
construct a new clause Cp~q such that the principal functor of the head of Cp.q is the
concatenation of the principal functors of the heads of Cp and CQ, and the head of
Cp.4 contains the arguments of the head oI:Cs followed by the additional arguments
of the head of Cp followed by the additional arguments of the head of CQ;
for each goal Ls in the body of Cs do:

find the corresponding goal, Lp, in Cp;
add the goals preceding Lp which do not correspond to any goal in the body
of Cs, and which have not been added already to the body of the new clause,
CP.•;

find the corresponding goal, Lq, in Cq;
add the goals preceding LQ which do not correspond to any goal in the body
of Cs, and which have not been added already to the body of the new clause,
Cp.q;
construct a new goal whose principal functor is the concatenation of the
principal functors of the goals Lp and Lq, and which contains the arguments
of Ls followed by the additional arguments of Lp followed by the additional
arguments of LQ, and add the new goal to the body of the new clause, Cpa;

add any remaining goals in Cp which do not correspond to any goal in the body of Cs,
and which have not been added already to the body of the new clause, Cp_Q;
add the remaining goals in Cq which do not correspond to any goal in the body of Cs,
and which have not been added already to the body of the new clause, Cpq;

Figure 1: An algorithm for composition

algorithm a 1-1 correspondence between the clauses in P and clauses in Q is assumed, though
we are also exploring more generality. For each literal LQ in CQ there is a corresponding
literal Lp in Cp. In general there will be additional goals in Cp. Lp may have a different
principal functor than LQ, but it contains all the arguments of LQ, possibly in different
order, and may contain additional arguments.

We have developed a theory of program maps to formalize our notion of correspondence.
The theory is described in [2]. In this position paper all concepts are presented informally.

Complicated programs are built by choosing a skeleton and repeatedly applying tech-
niques. Separate enhancements of the same skeleton can be merged into a single program
using a method we called composition. Figure 1 gives an algorithm for composition. The
composition algorithm in Figure 1 merges two programs, but the algorithm can be repeated
to merge more than two programs. A prototype tool has been implemented to support
building Prolog programs from skeletons and techniques, and can automatically merge pro-
grams.

The sequence of operations used to build a complicated program can be represented
graphically. An enhancement structure is a directed acyclic graph. Programs make up the
nodes of the graph. Edges of the graph correspond to programming techniques. If a node
A has out degree greater than one, then the program for A has been built by composition.

32

Maintenance of Composed Programs

Programming techniques and their composition can form the basis of a calculus of oper-
ations on programs. Maintenance of programs can be accomplished by manipulating the
techniques, a task far simpler than writing Prolog programs from scratch. As a result,
program maintenance can be performed by non-specialist Prolog programmers, for which
have growing anecdotal evidence. Indeed eventually the maintenance operations ideally will
be performed in a graphical environment manipulating the enhancement structure of the
program rather than the (more complicated) program text.

Enhancement structures can be used to analyze properties of merged programs. Proofs of
correctness of the final programs can be built from the correctness of individual programs,
which depend on the correctness of the composition algorithm. This work is described
further in [1].

References

(I] Marc Kirschenbaum, Ashish Jain, and Leon Sterling. Relative correctness of Prolog
programs. Technical Report CES-93-19, Department of Computer Engineering and
Science, Case Western Reserve University, 1993. Submitted for publication.

[2] Marc Kirschenbaum, Leon Sterling, and Ashish Jain. Relating logic program via pro-
gram maps. Annals of Mathematics and Artificial Intelligence, 8(III-IV), 1993.

[3] Arun Lakhotia. A Workbench for Developing Logic Programs By Stepwise Enhancement.
PhD thesis, Case Western Reserver University, 1990.

[4] Leon Sterling and Marc Kirschenbaum. Applying techniques to skeletons. In J.M.J.
Jacquet, editor, Constructing Logic Programs, chapter 6, pages 127-140. John Wiley,
1993.

33

A Formal Model of Software Specification and its Automated
Support

R. Mili A. Mili
Kanata Software Engineering Services Inc. University of Ottawa

75 Waterton Crescent 150 Louis Pasteur Private
Kanata Ont. K2M 1Z2 Ottawa Ont. K1N 6N5

email: rmili@csi.uottawa.ca email: amili~csi.uottawa.ca
fax: (613) 599 8842 fax: (613) 564 5045

We use a mathematical relation-based model for the specification of software systems. A specifica-
tion lifecycle is defined around this model, that allows for the systematic generation and validation
of specifications. Automated tools for the generation and validation phases are discussed.

1 Specifications: The Product and The Process

1.1 The Product and The Process

As a product, a specification is a description of requirements that a user imposes on a software
component he wishes to acquire. Such requirements may pertain to the functional properties of
the component, or to such features as time and space performance, computing platform, software
environment, etc...

As a process, a specification is best defined by its lifecycle. Like the overall software lifecycle,
the specification lifecycle can be defined by means of its phases and its activities [2]. We identify
two phases, namely the generation phase and the validation phase, and two activities, namely the
generation activity and the validation activity. The two-dimensional structure that this defines for
the specification lifecycle is given in figure 1.

1.2 Principles of Good Specification

In order to fulfill their function, specifications must satisfy a number of properties. We distinguish
between properties of the product -which are intrinsic to the product and can be established
by inspection of it, and properties of the process -which pertain to the relationship between the
specification product and the user requirements.

We identify three properties of the product, namely: simplicity, i.e. being easy to understand by
all parties concerned (the user, the programmer, the specifier, the domain expert, etc..); formality.
i.e. being written in a formal notation whose interpretation is unambiguously defined; abstraction,
i.e. being free of structural details and implementation biais. Further, we identity two properties of
the process, namely: completeness, i.e. carrying all the user requirements; minimality, i.e. carrying
nothing but the user requirements.

34

Specification Specification
Generation Validation

Activity Activity

Specification Generating
Generation Generating Redundant
Phase Specification Requirements

Information
Specification Updating the Matching the
Validation Specification Specification
Phase Using V&V against Validation

Feedback Information

Figure 1: The Specification Process

2 Specifying with Relations

2.1 A Relational Model

We have found that the theory of relations, relying as it does on simple set theory (for the sake
of simplicity and formality) and focusing on input output relations (for the sake of abstraction), is
well adapted to the task of specifying software components. A specification is defined as the triplet
(X, Y, R), where X (the input space) and Y (the output space) are sets and R is a relation from
X" (the set of input sequences) to 1.

This model, which is akin to Mills' black box specifications [3] and to Parnas' trace specifications
[1), encompasses the specification of simple input/output programs, abstract data type, and con-
tinuous processes. A specification (X, Y1 R) defines a simple input/output program whenever each
output is defined solely on the basis of the current input (vs. the history of past inputs). Formally,

Vx E X,VQ',Q" E X-,Vy E Y(Q'.xY) E R 4* (Q".x, Y) E R.

When the specification (X,Y,R) defines a state-bearing software component, the internal space
of the componer.,. (i.e. the set of internal states) can be defined as the quotient of X° by the
equivalence relation ý, where f (which captures that two input sequences are interchangeable as far
as the future is concerned) is defined as follows:

= {(Q,Q')jVq E X%,Vy E I`,(Q.q,y) E R * (Q'.q, Y) E R}.

2.2 A Lattice Structure

In our specification model, the refinement ordering is defined as follows: Relation R is a refinement
of relation R' if and only if:

R'L C RL A R'L n R C R',

where L represents the universal relation on Y and the concatenation represents the relational
product. This ordering is interpreted as: any implementation that satisfies R satisfies R'.

35

We have found this ordering to have lattice-like properties, whereby the join of relations R and
R', when it exists, represents the specification that contains all the requirements information of
R and all the requirements information of RI; and the meet of relations R and R' represents the
specification that contains all the information that is common to R and R'.

3 Specification Generation and Validation

The lattice properties that we have uncovered above are the basis for formalizing the specification
process, and automating it.

3.1 The Generation Activity

Given the very interpretation of the join operator of the lattice of specifications, it seems quite
natural to envisage the following pattern of specification generation: the specifier identifies several
distinct (not necessarily disjoint) aspects of the user requirements, focusses on each one of them
in turn, and produces a relation for each. If the individual relations so obtained have a join (they
dont always) then their join is taken as the overall specification; else the specifier goes back to
the drawing board to double check his specification (or to check whether the user requirement is
unsatisfiable).

To support this specification paradigm, we are designing a lattice based relational specification
language where the specifier may write individual subspecifications in turn and have the language
check that they have a join, and eventually compute it. This is done by compiling the specification
language into a first order logic representation, which is in turn processed by a theorem prover [4].

3.2 The Validation Activity

As described in the specification lifecycle (figure 1), the validation activity spans two phases: the
generation phase and the validation phase. In the generation phase, this activity consists of deriving
redundant information about the user requirements, to be used subsequently to double check the
generated specification. Two kinds of redundant information must be collected: completeness prop-
erties, which capture functional properties that the generated specification must have (but which
the specifier may have overlooked); and minimality properties, which capture functional properties
that the generated specification must not have (but which the specifier may have included inadver-
tently). The validation phase consists of proving that the generated specification is a refinement of
all the completeness properties; and that it is not a refinement of any minimality property. Let Vi,
i = 1,2,3.. be the relations that represent completeness properties, and let Wi, j = 1,2,3.. be the
relations that represent minimality properties. In order to be complete (with respect to Vi) and
minimal (with respect to Wi), relation R must lie within the band shown in figure 2.

We have built a first prototype for computer assisted specification validation based on the pro-
posed mathematical background and using Prolog. We are currently investigating a more powerful
system, which relies on compiling specifications and properties into first order logic, which is in
turn processed by a theorem prover [4].

Acknowledgements

The authors wish to acknow]edge the contributions that Professor Roland Mittermeir, from the University of Mla-
genfurt, has made to the foundations of the proposed specifications model as well as to the progress of our work

36

R

more-defined u•(I)

V, 2 Y3

Figure 2: The Range of Complete and Minimal Specifications

References

[1] Bartussek W. and D. L. Paxnas. Using Traces to Write Abstract Specifications For Software
Modules. UNC Report No. TR 77-012. December 1977.

[2] Boehm, B.W. Software Engineering Economics. Englewood Cliffs, NJ: Prentice Hall, 1981.

[3] Mills, H.D., R.C. Linger and A.R. Hevner. Principles of Information Systems Analysis and
Design. San Diego, CA: Academic Press, 1986.

[4] Wos, L., R. Overbeek, E. Lusk and J. Boyle. Automated Reasoning: Introduction and Appli-
cations. New York, NY: McGraw Hill, 1992.

37

Evolution of Specifications

Martin S. Feather *
USC / ISI, 4676 Admiralty Way, Marina del Rey, CA 90292, USA. Email: feather@isi.edu

1 Introduction 2 Specification evolution at ISI

The application of formal methods often makes the Our first foray into the incremental construction of
assumption that the object(s) being formalized and specifications was Goldman's observation that natural
manipulated are likely to be behaviorally correct. For language descriptions of complex tasks often incorpo-
example, compilers increase efficiency while preserving rate an evolutionary vein - the final description can
the (supposed) correctness of their source code; the be viewed as an elaboration of some simpler descrip-
program transformation paradigm takes for granted tion, itself the elaboration of a yet simpler descrip-
the correctness of the specification, and works incre- tion, etc., back to some description deemed sufficiently
mentally towards realizing effective and efficient im- simple to be comprehended from a non-evolutionary
plementations; stepwise refinement presupposes the description 18]. He identified three 'dimensions' of
starting point, and each intermediate point, to be a changes between successive descriptions: structural -
simple, correct, abstraction of the next step in the de- concerning the amount of detail the specification re-
velopment; formal verification seeks to determine that veals about each individual state of the process, tem-
a program denotes the same behaviors as a specifi- poral - concerning the amount of change between suc-
cation. The advantages of all these approaches stem cessive states revealed by the specification, and cover-
from the relative easy by which a piece of software can age - concerning the range of possible behaviors per-
be specified, as contrasted with the difficu!tv of realiz- mitted by a specification.
ing an efficient implementation of the sanie. How- Balzer went on to provide a complete characteriza-
ever, attaining a correct specification may itself be tion of generic changes to the structure of a domain
a difficult task, perhaps more difficult than imple- model, and considered propagating the effects of those
menting it. Specifications are not simply the con- changes through the operations that use the model
junction of requirements, but rather a compromise and through the already-established data base of in-
between conflicting requirements, a fleshing out of formation [3].
fragmentary requirements, a clear and organized de- These papers established the key ideas of our work on
scription of jumbled, incoherent requirements. For- the incremental construction / explanation / modifi-
mal methods can and should play a significant role
in the derivation of specifications from requirements,
with the understanding that this derivation process * the increments of the process often change the
does not necessarily preserve functional behavior, but specified behavior in a manner that is not neces-
rather achieves compromises, generalizations, and re- sarily a pure refinement
expressions of behaviors. * there are different classes of such changes, and
The Software Sciences division at ISI, headed by Bob a mechanical support is useful for conducting those

Balzer, has worked with program specifications for a changes over a large and detailed specification.

long period [2]. A major thread of our research has The main benefits provided by this incremental ap-
been the study of an incremental approach to specifi- proach are those of:
cation. In this position paper I summarize this thread, Specification Comprehension - to gain an under-
and mention some closely related efforts. standing of a large and complex specification, we

may begin from a simple starting point, and there-
"*Support for the author has been provided by Defense Ad- after incrementally introduce only a palatable amount

vanced Research Projects Agency contract No. BAPT 63-91- of additional information at each step, leading ulti-
K-(006; views and conclusions in this document are those of mately towards the fully detailed specification. Fur-
the author and should not be interpreted as representing the
official opinion or policy of DARPA, the U.S. Government, or thermore, because we are not limited to pure refine-
any other person or agency connected with them ments (as would be the case in the methodology of

38

stepwise refinement), the earlier stages of the specifi- linear sequence of steps to a tree structure: starting
cation need not be restricted to pure abstractions of from a single simple specification, different aspects of
the later stages. This permits the use of 'white lies', as that specification were elaborated independently, lead-
Balzer has termed them, namely simplifying assump- ing to multiple specifications; these then were com-
tions that we know to be untrue, and that we will later bined to achieve the all-inclusive specification [5]. This
retract, but which permit the expression of a readily is very similar to the program merging of Reps et al
understood idealized specification. and the software prototype merging work of Berzins et
Specificatiem Construction - analogously to compre- al 1. Several key assumptions underly our particular
hension, it is far easier to construct a specification style of merging:
incrementally than to compose the whole thing at The parallel lines of incremental development are
once (the so called 'big-bang' fallacy of specification mostly independent. Thus incompatibilities arise
construction). We came to call our mechanization relatively infrequently during combination; more
of these specification changes 'evolution transforma- commonly, combination of two lines of develop-
tions', to emphasize that theie very purpose is to ment gives rise to additional options from among
evolve (change) the meaning of the specifications to which the user has to choose.
which they are applied, in contrast to the more tradi- * Each of the specifications being merged has been
tional meaning-preserving transformations that leave derived from the single initial specification by
the meaning unchanged while changing some other as- a sequence of evolution transformations. As a
pect of the specification (typically efficiency or termi- result, some of the combination of the multiple
nology). specifications can be done by replaying the trans-
Specification Modification and Reuse - one of the ad- formations in a linear order. Also, detection of
vantages of using specifications during software devel- clashes or further options that arise during com-
opment is that they are more readily analyzable and bination can be determined by considering the
maintainable (i.e., modifiable) than would be the cor- transformation sequences that led to each of the
responding efficient code. This permits the rapid ex- specifications being combined [6].
ploration of alternatives during design. When analy-
sis reveals that the specification needs to be modified, 3 Some related work
then evolution transformations ease this task. This
is useful because, despite the advantages afforded by Fickas et al. have viewed specification development as
specification languages, specifications of complex sys- a planning problem [1]; their design operators move
tems can themselves be large and complex objects. within a search space of designs, transforming the
Our later work expanded upon these ideas, and is sum- specification as they do so. Interestingly, some of
marized next: their work also uses a model of parallel elaboration

(of requirements / specification) followed by combina-Requiremeata and specifications -- We built a system, tion, but in rather a different way: each elaboration is
ARIES, for the support of acquisition of requirements used to capture the ideal specification as seen by each
and development of specifications to meet those re- different 'stakeholder' (e.g., intended user of the soft-
quirements 110]. Central to this system was the notion ware system, administrator of the system, purchaser of
that the early stages of software design are a very ex- the system). As a result, the ideal specifications that
ploratory process, involving repeated cycles of exam- emerge from this process are very likely to be incom-
ination and adjustment of the emerging specification. patible, and much of the combination process must
To make formal specifications palatable to the user, deal with negotiation to reach an acceptable compro-
ARIES provided several 'presentations' (e.g., of data mise among those divergent ideals [11].
flow, type hierarchy) through which the user could
view various aspects of specifications. These presen- mental approach touseiican deveo
tations were used both for display to the user, and as wen is aoein pursuedb opqrat rs an Levy,a meiumthrughwhic th usr culd odiy sec- who use their development operators (akin to our evo-
ifications -t the user's direct manipulation of thse lution transformations) to modify the emerging spec-presentations were used to retrieve from the library ification. Additionally, their development operatorsof evolution transformations those that would achieve modify the workplan, an explicit record of the spec-the change the user had indicated [9]. ification process, and modify the links between theemerging specification and that workplan [12]. This
Parallel elaboration (specification merging) - We ex- helps record the specification process itself.
tended the incremental development paradigm from a

39Hopefully reported on in detail at this workshop'

39

4 Further applications [3) R. Balzer. Automated enhancement of knowledge
representations. In A. Joshi, editor, Proceedings,

To dose, I mention a couple of areas where the incre- 9th International Joint Conference on Arlificial
mental evolutionary approach may have a contribution Intelligence, Los Angeles, pages 203-207, August
to make, and that we are hoping to pursue further. 1985.

Tvssfoormations! development of distributed systems
- we would like to apply the program transforma- (4] R. BalIer. Tolerating inconsistency. In Proceed-tionparaigm o te deelopent f dstriuted83s, 13th International Conference on Software
tion paradigm to the development of distributed sys- Engineering, Austin, Texas, USA, pages 158-165.terns. To do this, we imagine commencing from an ini- IEEE Computer Society Press, August 1991.

tial, idealized, non-distriuuted specification of the de-
sired system, and proceed by the application of trans- [5] M.S. Feather. Constructing specifications by
formations that incrementally decompose the data combining parallel elaborations. IEEE Trans-
and activities of the system across multiple compo- actions on Software Engineering, 15(2):198-208,
nents. However, one of the important ramifications February 1989.
of this application area is that we must abandon the
premise that transformations are correctness preserv- [6] .S. Feather. Detecting interference when merg-
ing, in the face of the inevitable unreliability of the ing specification evolutions. In Proceedings, 5th
real distributed world. This suggests a blending of International Workshop on Software Specifics-
the more traditional kind of (correctness-preserving) pion and Design, Pittsburgh, Pennsylvania, USA,
transformational development with the issues of evo- pEs 19-c
lution transformations that we have been considering. IEEE, 1989
We are pursuing a collaboration in this direction with [7] M.S. Feather. An implementation of bounded
Steve Fickas et al. at the University of Oregon. obligations. To appear in Proceedings, KBSE '93,

Expedient systems - much of the complexity of real- The Eighth Knowledge-Based Software Engineer-

world systems st-rms from the need to deal with is- ing Conference, Chicago, Illinois, Sept., 1993.

sues such as misuse (unintentional or otherwise), com- [8] N. M. Goldman. Three dimensions of design de-
ponent failure, and exhaustion of limited resources. velopment In Proceedings, 3rd National Confer-
Clearly, there is some relationship between an ideal encc on Artificial Intelligence, Washington D.C.,
system (one which has perfect users, unfailing com- pages 130-133, August 1983.
ponents, unlimited resources, etc.) and an actual ex-
pedient system - one that embodies an appropriate (9] W.L. Johnson and M.S. Feather. Building an
compromise between ideals. Exploring the link be- evolution transformation library. In Proceedings,
tween ideals and approximations of those ideals is an 12th International Conference on Software Engi-
area that we think is worthy of further attention, and neering, Nice, France, pages 238-248. IEEE Com-
perhaps suitable for an evolutionary approach. Some puter Society Press, March 1990.
limited experiments in this direction show promise - [10) W.L. Johnson, M.S. Feather, and D.R. Harris.
starting from global constraints (akin to integrity con- [1]WLsonson and Feathn DR Hqrris
ditions), we can incrementally make them 'violatable', Representation and presentation of requirements
and introduce the code to detect and react to such vi- knowledge. IEEE Transactions on Software En-
olations: [4, 7]. gineering, 18(10):853-869, October 1992.

[11] W.N. Robinson. Automated negotionated de-
References sign integration: formal representations and algo-

rithms for collaborative design. Technical Report[1] J. Anderson and S. Fickas. A proposed perspec- CIS-TR-93-10, Department of Computer and In-

tive shift: viewing specification design as a plan- formation Science, University of Oregon, April

ning problem. In Proceedings, 5th International 1993.

Workshop on Software Specification and Design,

Pittsburgh, Pennsylvania, USA, pages 177-184. [12] J. Souquiires and N. Livy. Description of specifi-
Computer Society Press of the IEEE, 1989. cation developments. In Proceedings of the IEEE

International Symposium on Requirements En-

[2] R. Balzer. A 15 year perspective on auto- In eer ing l San pDieg o, C U Ju ar y 193

matic programming. IEEE Transactions on Soft- ges 26 3 ieEE CompUter Saciety Pres,

ware Engineering, SE-11(11):1257-1267, Novem- 1993.

ber 1985.

40

THE LIMITS OF FORMAL METHODS

(Extended abstract)

Alfs T. Berztiss

Department of Computer Science, University of Pittsburgh Pittsburgh,
PA 15260, USA (alpha@cs.pitt.edu)

and

SYSLAB, University of Stockholm, Sweden

We introduce a classification of software into (1) basic data types, (2) data-carrying

devices, (3) data transformers. A) information systems, and (5) control systems. Software

developers often take the view that the development of all software should follow the same

pattern, and suggest their favorite specification methodology. be it VDM, or Z, or Larch, as

the solution of all problems. Oji the other hand, special interest groups concerned with real-

time systems. or information sys* eoms. or decision support systems. consider their application
domain as all there is, and neglect to find out about approa hes that have been found useful in

other domains. Our purpose is i o show that the level of formalism appropriate for different
kinds of software differs. but that most application sysi,,is are made up of components

belonging to all five kinds, and that there is no essential difference between programs and
data bases. We further point, out that. in mathematics I here are three levels of formalism:
logic, "applied" mathematics, aud statistics. Each has its ovn approach to validation: formal
logical proof, informal mathem.ttical reasoning, and experiment (what we call testing).

Software systems are being classified according to a variety of criteria. Our classification
here regards all software as applications software and support software. We then classify

components of application software according to purpose into information components, con-
trol components, and data tran sformers. An informationi component responds to queries,

which are answered by examination of a persistent data base. The data base is subject to

updates, and the maintenance o" the integrity of the data base has to be addressed in system

specificatic.]. Examples are a lil,rary catalog or an account management data base of a bank.
Control components drive procCsses that are external to the controlling software. They are
said to be embedded in the dev ces to be controlled. Hcre the specific concerns are temporal
effects. Representative of conl oa] components are an elevator controller, an operating sys-
tem, an air traffic control system, and a climate controllei for a building. Examples of data
transformers: a text formatter. ;, compiler. a spelling che,'ker. Most application systems are
hybrids containing components of all three classes. For example, the banking system main-
tains information about accoun' s (information activ\ity), sC:nds out overdraft notices (control
activity), and prepares monithlY statements for the customers (a rather trivial instance of
data transformation).

-Il

In addition to the applicatimns there are standard data types, such as integers, reals,
and strings, and devices, such as stacks, arrays, and binary trees. We can think of all
data transformers as operations belonging to standard data types or to devices. Then most
application systems are essentially information-control systems that make use of standard

data types and devices as the need arises. All such application systems can be regarded
as embedded systems: systems with control as their primary function are embedded in

machinery; systems that provid.- information are embedded in society - they receive inputs
from society around them, and the information handed back by them is intended to affect
the future of this society, i.e., the information systems exert some control on this society.

Let us look at data transformers. A data transformer can be considered in two ways.
First, we take a type orientation. Under this orientation a particular set of objects and
various functions associated wit i this set are regarded as a data type, and the concern is
with individual elements of the set. For example, matrix multiplication is regarded as the

generation of a new element of the set of matrices (the product matrix) from two existing

elements of the set. The other is a stream orientation, and we speak then of a data stream
transformer. This is a procedurc that acts on a stream as a whole rather than on individual
items. Data stream transformers accept data streams and generate outputs that are again
data streams (e.g., a text formatter, a parser, a sorter, or a spelling checker) or that are
much compressed (the count of zero elements of a matrix).

Advocates of software development based on data types generally think of the operations
of a data type as functions, which leads to a classification of software according to the nature
of the functions. The classes are defined by two orthogonal two-way partitions. The first
relates to the determination of function values. The function telephone can be stored as a
table of entries of the form (subscriber, telephone number), for example (Berztiss, 624-8401).
and one finds telephone(Berzt.is-) by looking up the table. On the other hand, the value of

cosine for a given angle is founw by application of a comnutational rule to the angle. The
other partition separates functions into static or immutalble and dynamic or mutable. An
immutable function does not cLange - for example, the cosine function, or a finite function
that supplies the times of sunris.: at Pittsburgh for the 36.5 days of 1997. A mutable function
changes. Thus, before I got m\ present office, telephone(Berztiss) had the value 624-6458.
Now the value is 624-8401. However, the sunrise function can be implemented in two ways:
as a piece of code that comput,'s the time of sunrise for a given date, or as a a table with
365 entries. Hence, at a sufficiently high level of abstraction there is no difference between
a program and a section of a dat.a base.

Now, the support software. i.e., standard data types aind devices, can be very well spec-
ified in a formal way. and logic'al proofs are appropriate for this type of software. In this
context the proofs are tunlikely :o become excessively long. There is another group of soft-
ware for which logical proofs ci.n be constructed. This is software that is specified by the

software developers themselveh, because here validation is no more than showing that the
software satisfies its specificatiotl. But this holds only as long as the software specifiers in
fact understand their specifical"ons. and unreadable formal specifications arise more often
than one may think.

42

The real problems arise with software that contains coniceptual models of the domains in
which it operates. Here a specification is the point of contact between developers and domain
experts, and the domain experts must be able to read the specification to determine that
it has captured their expectations. The form of the specification is not required to support
logical proofs, but it should be sufficiently rigorous to prevent any ambiguity. Moreover,
reasoning of the type found in mathematical proofs should be possible, e.g., it should be
possible to prove that the specification has captured th ! informal requirement that the
doors of an idle elevator that has been moved to a holding floor are to be closed. Numerous
examples of mathematical proofs are given in [1].

References

fIl Berztiss, A., Programming with Generators: An Introduction. Ellis Horwood, Chich-
ester, England, 1990.

43

FORMAL SPECIFICATION OF THE SOFTWARE PROCESS

(Extended abstract)

Alfs T. Berztiss

Department of Computer Science, University of Pittsburgh Pittsburgh,
PA 15260, USA (alpha~cs.pitt.edu)

and

SYSLAB. University of Stockholm, Sweden

Reengineering of organizations is a term that is being heard more and more often, with
three books on business reengi•,ering having appeared this year alone [1, 2, 3]. Its purpose
is to improve the performance ot an organization by at least a factor of two, in terms of the
time to perform a task. in terms of costs, or in terms of the quality of a product. This is
achieved by considering the mode of operation of the organization as a set of processes, and
by improving each process. In oair context an organ .izatioi can be a business corporation, a
government office, or a military command.

Although there is no recipe for reengineering. there iz. a preferred approach. This is to
entrust the reengineering of anl organization to software engineers. They should be expe-
rienced in analysis of processe.•, and they should be familiar with notations and tools that
allow process descriptions to be transformed automatically into software systems to support
the operation of the reenginere , organizat lon. However, i he software engineers will have to
implement changes much more radical than the changes ihey have had to deal with in the
past. In fact, in order to deal with these changes. they will have to reeng'-eer their own
software development processes first. of all.

Unfortunately few of the pceple who regard themselves software engineers are capable of
carrying out any complex reengtieering task, for which various reasons have been given 14].
My contention is that the primary reason is an unwillingness or inability to take a formal
approach. Another major reason is the attitude that ther.- is a single software development
process that is to serve every software development effort. Indeed, there is no fundamental
difference between a business process. which is essentially a service activity, an industrial
manufacturing process, and a process embedded in a manufactured product to control its
operation. They can all be defined in terms of formally defined operations associated with
data types. But decisions have to be mad,- as to which operation is to be applied when. Hence
a process is made up of decision centers. and each decision can be made by an unassisted
human, by a human assisted by a decision support syst ni. or by the system itself. The
exact way the decisions are nmde defines a variety of process structures. Still, taking a

41

formal approach allows a process to be designed and validated without regard to its ultimate
implementation. This mcans that. once the essential nature of a process has been established,
the process can be implemented under a traditional organizational structure or a reengineered
structure. In other words, the essence of a process is independent of the structure of the
organization that supports the process. Summarizing: a process has the same basic structure
independent of the domain of application; the process is a sequence of decision steps; the
process can be defined independently of any organizational change introduced to improve
the execution of the process.

We have used the specification language SF (Sets-Functions) [5, 6] to express formal
definitions of processes, and, in particular, the software process itself. An SF specification
consists of one or more segments. Each segment hlis three components: a schema definition,
specifications of events, and a control component called the responder. A segment corre-
sponds to a data type. The sclema definition identifies a set of interest for the segment,
e.g., a set of bank accounIs or a set of persons. The schema definition also introduces a set
of functions (finite maps). Exan:iples of functions for bank accounts: balance in an account,
transactions for the current month (a set-valued function). Some functions have a null do-
main - these constant function i epresent properties that pertain to the entire segment, e.g.,
interest rate. The schemas of all the segments of a system may be regarded as defining a
data base.

The SF sets and functions are mutable. and events are operations that change them.
An event may be initialed by a user. e.g., by depositing money into an account, or by the
system itself, e.g.. the calculation and crediting of interest at set time intervals. Events may"
be provided with preconditions. which ensure that an event will take place only if all its
preconditions are true. Events may raise signals.

The responder consist. of t,'amisaclions, and each traiisaction is associated with a time
indicator. A transaction is activated bv a clock, one or more signals, or a combination of
clock and signals. If a signal •ione is to activate a traiisaction, the time indicator is set
to the value of a function that ,Iways returns the actual lime - then, as soon as the signal
that can activate the transaction is raised, the transaction is activated. An example of a
transaction activated by the clock alone causes all doors of a building to be unlocked at 7:00
each morning. In a different veiion of this transaction the unlocking would take place only
if a signal had been set. at. sonm.- earlier time.

A transaction can act. in thr.e different ways. First, it can initiate an event. For example,
in a library, after the library closes for the night, a transaction initiates an event for every
outstanding book that should have been returned on that day, and the event marks this book
overdue. Second, in a situation, where the system knows that an event is to be initiated,
but cannot supply the inputs to this event, a transaction issues a prompt. This we discuss
further down. Third. lhe trans,,ction may merely remind users of something or other, e.g.,
to send out an acknowledgemeiwt that the paper discussed above has been received.

What. we have here is that ý.n event raises a signal, and the signal is picked up in this or
some other segment. This becomiies interesting when the transaction initiates another event,

45

this event raises another signal. the signal is picked up, and so forth. We have then a facility
for defining processes - SF procosses correspond to Petri nets with events corresponding to
places, transactions to transitionis, and signaling to the movement of tokens.

Let us now look at transact ions that issue prompts. Consider the arrival of a paper at
the editorial office of a journal. Three referees are to be selected, and there are three options:
(i) an editor selects the referees without any support by the system; (ii) the system helps
the editor select the referees, by supplying the editor with information the system deems
relevant; (iii) an expert system is developed that takes over the referee selection. Every
prompting transaction is a decision center, and the prompting transactions define all the
opportunities for process automation that there exist. The automation can be carried out
incrementally, based on a priorit)' scheme determined by cost-benefit analysis carried out for
each prompting transaction.

References

(1] Davenport, T.H.. Process Innovation: Reengineering Work through Information Tech-
nology. Harvard Business School Press. Boston, MA. 1993.

[2] Johansson, H.J., Mcllugh. P., Pendlebury, A.J.. and Wheeler, WV.A., Business Process
Reengineering: Breakpoint Strategies for Reengiueeiing. Wiley. Chichester, England,
1993.

131 Hammer, 1M., and Champy. .J.. Rlenginvering du- Coi-,oration: A Manifesto for Business
Revolution. Harper Busincss. New York. 1993.

[4] Yourdon. E.. Decline and 1id1] of the A:mcricaii Programmer. Yourdon Press, Englewood
Cliffs, New York. 1992.

[5] Berztiss, A.T., Data abstraction in the specification of information systems. Proc. IFIP
World Congress 86, pp. 83-90.

[6] Berztiss, A., Formal specification methods and visualization. In Principles of Visual
Programming Systems. S.-K. Chang (Ed.), Prentice-Hall. Englewood Cliffs, NJ, 1990,
pp. 231-290.

46

State-Based Specifications In-The-Large*
Alan C. Shaw

Department of Computer Science and Engineering, FR-35
University of Washington, Seattle, WA 98195

shaw@cs. washington.edu

I. Introduction

Our goal is to provide mechanisms for the specification of software
requirements and designs for large real-time systems. Among other features,
these mechanisms should be executable, pniversal, formal, and scalable. The
basis for our work is the communicating real-time state machine (CRSM)
notation [5, 6, 7, 8]. CRSMs are universal state machines with guarded
commands as transitions, synchronous 1O communications over unidirectional
channels, and facilities for describing the execution times of transitions and
for accessing real-time. CRSMs are distinguished from other state machine
models mainly by their explicit timing features.

In this position paper, we propose both an architecture and a particular
set of in-the-large paradigms for specifying real-time software. Related work
includes statecharts with their superstates, series/parallel compositions,
shared storage model, and broadcast communications [3]; 1O automata with its
broadcast communications and nice formal composition [4]; and programming
notations such as timed CSP [1] and CSR [2] that use CSP-like synchronous
communications, deal with time explicitly, and provide some abstractions for
larger objects.

2. Behaviors, Components, and Interfaces

A real time system is treated as a closed world consisting of an external
environment and a controlling and monitoring computer system; the
environment and computer system communicate through 10 signals (events,
messages, commands,...). The behavior of a real-time system is characterized
by the set T of traces, where a trace is a (possibly infinite) sequence of timed
10 events. A timed 10 event is a triple, (event name, event_value, time). For
correct specifications, we assume that TR - TD z T"1 z TE, where the Ti are the
traces for the requirements, design, implementation, and execution,
respectively.

The environment and the computer system are each described by a set
of CRSMs and their communicating 1O channels. A connected channel has a
name, a message type, a sender CRSM, and a receiver CRSM.

1O channels are the interfaces among CRSMs and among subsystems of
CRSMs. Unconnected channels are those with either an undefined sender or
an undefined receiver, and represent possible interfaces to other components
(yet to be connected). System behaviors are defined by the traces over their
connected channels. Our in-the-large component is either a single CRSM or a

This research was supported in part by the National Science Foundation under grant
number CCR-9200858.

47

set of CRSMs. For most applications, we expect the set to be structured as

follows.

3. Controller-Client (C-C) Architecture

First, we assume a standard interface for a basic reusable CRSM,
consisting of a start channel for initiating execution, a stop channel for
signaling termination, and an arbitrary number of other 10 channels, Both
start and stop may have message parameters.

A higher-level component has the same standard interface, and
contains a controller machine and any number of client subsystems (sets of
machines). The clock machine* of the controller is used as the clock machine
for the higher-level component; similarly, the start and stop channels of the
controller are the start and stop channels for the component. The tasks of the
controller are to initiate clients, control their execution, and synchronize
their termination.

System composition and refinement are defined in terms of this C-C
architecture. A set of subsystems are composed into a larger component by
providing an appropriate controller. The refinement of a C-C subsystem is its
set of clients.

4. Standard Compositions and Date Encapsulations

Conventional control schemes for composing objects are defined by C-C
structures. In each case, the implementing controller can be given by a
CRSM.

Sequential and parallel combinations are both straightforward. The
parallel case corresponds to a fork and join of the controlled client subsystems.
Functional composition, where the clients specify mathematical functions, is a
special case of the sequential connection.

Slightly more complex is guarded selection, a control structure that
selects one of a given set of clients for execution based on the values of
Boolean guards. Repeated execution of a client while some guard remains true
- an in-the-large while loop - is yet another useful conventional control form.

Shared data in our distributed model can be specified with abstract data
type (ADT) components. At the lowest level, a shared data server with read and
write channels can be described easily by a single CRSM. For higher levels, a
server for an ADT implements general operations (procedures, methods, ...). A
send/receive protocol over the 10 channels defines the user interface of the
ADT for each operation; the controller interprets the protocol to invoke the
operation (client) that is requested.

5. Real-Time Paradigms

For specifications involving interrupts, faults, and time constraints, we
propose several higher level utilities and control structures.

* Every CRSM has an associated real-time clock machine and connected channel, which

provide global real-time and an interval time-out on request.

48

Two types of time-constrained utilities appear in many of our real-time
specifications. The first is alarm clocks, which work at a higher level than
our real-time clock machines. Alarm clock CRSMs are defined for both
relative and absolute time - the former generates a wakeup message at a given
interval and the latter generates a wakeup at some future absolute time.
Parameters to these machines include a reset and a ring time that determines
how long the alarm will be enabled after the wakeup is first triggered.

The second utility is a broadcast or multicast CRSM family, . that
broadcasts messages to some specified subset of system components. The
facility allows a message or signal to be broadcast for a given time interval;
during the interval, any of a set of designated receivers can elect to receive
the message.

We borrow an idea used in statecharts in order to handle software and
hardware interrupts. A transition that exits and reenters an entire CRSM or a
component is semantically equivalent to that transition connecting every
state in each CRSM of the component to its start state. The multicast facility
described above is used to construct the higher-level version that ensures that
all machines in a subsystem are (gracefully) interrupted.

From requirements through implementations, and from theory through
practice, the principal ways to organize real-time functions and tasks are as
periodic and sporadic (event-driven) activities. For most real-time tasks, we
propose a C-C structure. A periodic controller activates its client task
periodically and generates a timing fault interrupt if a deadline is exceeded;
the period and deadline are parameters of the controller. Similarly, a sporadic
task controller has event and deadline inputs; when the triggering event is
received on its 10 channel, the controller initiates its client sporadic task and
generates a timing fault interrupt if the deadline is exceeded.

Finally, we note that time-constrained sharing of resources that are
required by components can be included in the specifications. Higher-level
processor sharing among a set of independent components can be handled
through an "executive" controller that schedules clients, say in round robin
fashion. Sharing of communications lines, input-output devices, and
channels, can be accomplished by defining a CRSM and shared channels to
simulate the actual sharing.

6. Discussion

There are natural textual and graphical representations for (almost) all
of the structures proposed here. The textual forms are fairly obvious.
Graphically, we represent each CRSM and higher-level component by a
labeled rectangle with rounded corners; each channel is drawn as a labeled
wavy arrow (denoting communications) from its sender to its receiver.
Facilities defined by C-C architectures can also be represented by a
appropriate icon for the controller with connecting arrows to clients. We
need to build some software tools that permit the construction, editing, and
testing of these representations.

Several naming issues also arise. It should be possible to connect type-
compatible channels with systematic renaming of sender and receiver 10 calls.
Arrays of channels are clearly necessary for "server" subsystems, e.g.,
broadcasting, ADTs, n-way fork/join controllers. Class-instance declarations

49

also need to be provided. All of this seems no different than analogous
facilities in modern programming languages and can be directly borrowed.

Finally, beyond specifying in-the-large, we would like to monitor and
verify behaviors in-the-large. This requires some computer tools and
thinking beyond our present work.

We have presented some ongoing research that attempts two things -
first, to define the types of components needed for real-time specification in-
the-large and second, to show who these components may be constructed using
communicating real-time state machines.

References:

[1] J. Davies and S. Schneider, "An introduction to timed CSP," Tech.
Monograph PRG-75, Oxford University Computing Laboratory, Aug. 1989.

[2] R. Gerber and I. Lee, "A layered approach to automating the verification
of real-time systems," IEEE Trans. on Software Eng., Vol. 18, No. 9, Sept.
1992, pp. 768-784.

[31 D. Harel, "Statecharts: A visual formalism for complex systems," Science
of Computer Programming 8, 1987, pp. 231-274.

[4] N. Lynch and M. Tuttle, "An introduction to input/output automata," C WI
- Quarterly 2, 1989; also, Tech. Memo. MIT/LCS/TM-373, Laboratory for
Computer Science, MIT, Nov. 1988

[5] S. Raju, "An automatic verification technique for communicating real-
time state machines," TR #93-04-08, Dept. of Computer Science &
Engineering, University of Washington, Seattle, April 1993.

[6] S. Raju and A. Shaw, "A prototyping environment for specifying,
executing and checking communicating real-time state machines," T R
#92-10-03, Dept. of Computer Science & Engineering, University of
Washington, Seattle, October 1992. A revised version is in publication in
the journal Software-Practice & Experience.

[7] A. Shaw, "Communicating real-time system machines," IEEE Trans. on
Software Eng., Vol. 18, No. 9, Sept. 1992, pp. 805-816.

[8] A. Shaw, "A (more) formal definition of communicating real-time state
machines," TR #93-08-01, Dept. of Computer Science & Engineering,
University of Washington, Seattle, August 1993.

50

Designing and Specifying Flexible Concurrency
Control: Position Paper

David Stemple

Computer Science
University of Massachusetts

Amherst, MA 01003

Effective specification technology must facilitate the writing, reading and un-
derstanding of specifications by humans as well as enable mechanical reasoning
to prove desirable properties of specifications. Encapsulation and abstraction
mechanisms, similar to those of programming languages, can help meet both of
these goals. Types can be used to encapsulate algebraic specification modules
in ways that are easily understood by human designers, and higher order func-
tions can be used to produce abstractions that organize designers' thinking and
provide powerful hooks for mechanical reasoning.

In addition to using encapsulation and abstraction, it may be best to start
the specification task by designing an abstract operational model having formal
underpinnings that facilitate the verification of important properties. These
properties then become the specification of the system at hand. The major
benefits that can accrue to this approach are easier verification of specification
properties, assurance that a specification has a model, quicker prototyping, and
better human engineering of the specification process. The approach contrasts
with techniques where a predicate based specification of system invariants is
produced before operational models or designs.

We have used this approach for the specification of database systems where
our main goal was the design of transactions that provably obeyed all integrity
constraints, thus obviating the need for any run-time check beyond that con-
taine.d in transaction code and type checking of input values. We have now
turned to the task of specifying flexible concurrency control systems.

Coordinating a set of computations that share data is a complex undertak-
ing. Mechanisms for such coordination have been designed for operating sys-
tems, programming languages and database systems. These include semaphores,
monitors, mutual exclusion, path expressions, locks, and optimistic concurrency
control systems. It has proven difficult to characterize the power and behavior
of these mechanisms and to compare them with each other. This difficulty stems
from both the low level nature of the mechanisms and the inherent complex-

51

ity of the problem. We are concerned with simplifying and clarifying the task
of building systems for controlling the coordination of computations on shared
data in a persistent programming environment.

The goal of this approach is to control the coherence of sequences of oper-
ations on shared data, called actions. An extreme example of the coherence
of a sequence of operations is the atomic transaction in which the operations
are isolated from the effects of any other concurrent transaction and only al-
lowed to have an effect on the database as a single atomic unit. The actions are
programmed by specifying algorithms for manipulating the data and by anno-
tating the algorithms with markers that specify how the data sharing is to be
controlled. In systems supporting atomic transactions the strong coherence can
be programmed simply by inserting begin'and end transaction markers around
a set of database operations to delineate an atomic transaction. The effect of
begin and end has to be specified separately at another level in the system.
Examples of more complex coherence occur in design systems where parts of a
design are updated locally by multiple designers and the different changes are
reconciled before their joint effect is made to the global design. Many ways
of achieving the isolation of atomic transactions have been devised and imple-
mented and many mechanisms for coordinating cooperative computations have
been proposed. Our main purpose is to present an approach to designing con-
currency control in which multiple schemes beyond serializable models can be
specified in a manner that is understandable and supportive of implementation
efforts. We call the model embodying our approach the Communicating Actions
Control System or CACS.

The CACS language is a formal design language supporting mechanical the-
orem proving. The small set of structures of the CACS abstract machine are
themselves algebraic abstract data types. The manipulation of these structures
in the lanjrr age is controlled in a way that is designed to ease the problem of
verifying design properties. The main technique for this is to design control
structures and complex instructions around a few higher order functions. Thus
the CACS abstract machine is an example of using a small set of abstractions
and encapsulations - the few types, control structures and complex instructions
- to facilitate the production of understandable, tractable specifications.

The style of specification in CACS is to first develop an abstract model
design and then to verify its properties, the system invariants. This twofold
activity produces a set of invariants like those that constitute the first phase of
many specification approaches, but also a formal, abstract, behavioral design
that provides a model of the invariants. This not only provides a double view
of a concurrency control scheme, but shows productively that the invariants are
satisfiable. Using feedback during attempts to prove invariants of a CACS design
increases the probability that the design has its intended semantics. Assuring
that a design has its intended semantics is obviously a formally unattainable
goal but one that should nonetheless be strived for by a specification technique.
A hypothesis of the CACS experiment is that a combination of an abstract

52

model approach, verified invariants and the feedback provided during the phases
of specification can lead to a usable technology for the meaningful and useful
specification of concurrency control schemes.

In CACS the initiation of control behavior is specified using event patterns
in rules. The controlling behavior itself is specified in rule bodies using a version
of the abstract model technique: behavior is specified by its effect in terms of
an abstract model, a mathematically understood model such as that defined by
set theory. The CACS abstract model comprises structures (tuples), lists, finite
sets and enumerated, mutable functions (data functions). The core of CACS
behavior is specified in terms of changes to states constructed using these four
types. The semantics of the types are themselves based on four sets of alge-
braic specifications. Sets of theorems lroven from these algebraic specifications
can be used to support mechanical reasoning about CACS design properties.
In this way CACS layers an abstract model approach on top of an algebraic
specification level and delivers the power of reasoning about the predefined al-
gebraic specifications to the problem of verifying properties of individual CACS
designs. A secondary benefit of the approach is the elimination of the need
for writing algebraic specifications and its replacement by the opportunity to
specify abstractly and formally using manipulations of an abstract model.

A CACS design defines four major elements of a control system: the kinds
and sequence of events that can occur in the event stream, the patterns of
events that will initiate controlling behavior, the structure of the state used in
controlling the system, and the way in which the state of the system changes in
response to the events. The CACS specifications of these elements are formal
and together support mechanical proofs of properties of individual designs. The
interesting properties of designs include invariants on the state of the controlling
system, temporal relations between the state and events in the event stream,
and invariants on the event stream. Two styles of reasoning are to be used
in verifying CACS design properties and it is an experimental hypothesis of
the CACS experiment that using the two styles rather than one will lead to
tractable reasoning. The two styles derive from the fact that the rule bodies
that specify state changes have one formal capture and the rule patterns, rule
order and event stream that together determine the sequence of rule firings have
a different formal capture. Thus proving properties of CACS specifications will
involve multiple stages of the different kinds of reasoning. State invariants of
rule bodies will be verified by heuristically rewriting functional expressions and
temporal relationships will be shown by constructing chains of causality across
rule patterns.

53

Testing by Narrowing
Extended Abstract

Sergio Antoy and Dick Hamlet

Portland State University
Department of Computer Scimce

Portland, OR 97207
{antoy,hamz.et}Qcs.pdx. edu

1 Introduction guard of the second if statement succeeds, whereas
during thc second iteration these conditions are re-

Testing and debugging a prograta .t ' may require versed.
computing an input I such that the execution of P Problemi of this kind are unsolvable in general.
on input I goes through some given path T of p However, the technique that we describe is capable
We describe how to compute such an input for pro- of finding any existing solution to the problem.
grams coded in a simple imperative language with Our technique is a two-step procedure. First,
generic expressions including user-defined abstract given a program P, we compute the weakest precon-
data types, dition (4], say W, that guarantees the execution of

whichcompues cniterative a oow pr ogtraversalma a given pat h T of P. This computation is straight-
which computes iterative a preorder traversal of a forward. Second, we attempt to solve the equation
tree. Slack and tree are user-defined types. 1W = true with respect to the variables of P. Op-

declare s : stack; t : tree; erationally we use narrowing [5], a sound and com-

begin plete proced ure for solving equations involving sym-

if not(isnull(t)) then bols defined by a term rewriting system [6]. For our

s := empty; specific problem, if the narrowing procedure finds a

push(t, s); solution 1, then I is an input to P that executes T,

while not(is.empty(s)) loop and convesely, if there exists an input I to P that

declare z, y: tree; executes 1', then the narrowing procedure finds I as

begin a solutiol.
Y:= top(s); Next we describe in some detail the two steps of
pop(s); our technique, we outline a prototypical implemen-

visit(y); tation, we ciscuss how more difficult problems can

z := left(y); be solved, and finally we briefly relate our approach

if not(is-null(x)) to similar c nes previously proposed.

then push(z, s);
end if; 2 Weakest Precondition
z := right(y);if not(is-null(c)) Given a program P, a condition C, and a path

then push(z, s); T, we compute W = wp(P, C, T), the weakest pre-
end if; condition such that the execution of P begun in any

end; state satisf."ing W goes exactly through the state-

end loop; ments of T .nd leaves the program in a state satis-

end if; fying C. wl, is a standard predicate transformer for

end; a deterministic language [8], except for the presence
of a third argument, the path T.

We may wish to compute an input that leads to Such P r ath must be statically plausible, i.e., it
the execution of two iterations through the body of could be :3.ecuted if we were allowed to arbitrarily
the while statement such that during the first itera- change .Il.h the state and the constants in the pro-
tion the guard of the first if staten.nt fails and the gram before the execution of each statement. This

54

condition is easy to verify. The third argument of number of substitutions and positions that must
wp controls the choice of the next statement of a be considered in a narrowing step. These strate-
branching statement. A weakest precondition with gies preserve the completeness of narrowing for the
respect to a fixed path is computed more easily than rewrite syst, ms that we generally obtain in specify-
the general weakest precondition of a program. ing the data types used in programming.

Weakest preconditions may be huge expressions
even for simple problems. The weakest precondi- 4 Implementation
tion of the tree traversal problem discussed earlier
is and(not(is.null(t)),...), where there are a total Our prtotypical implementation of our tech-
of 75 occurrences of the program's operations and nique is coded in Prolog. The implementation com-
the variable t. In the following, we will denote this prises two major modules. One computes weak-
expression with W. est preconditions and the other attempts to nar-

row them to true. The first module is small and
3 Narrowing conceptually simple, since the formal definition of

our predicate transformer is easily mapped to Horn
The meanings of both the predefined operations clauses. The translation of a program from its usual

of a language and the user-defined operations of a form to the form expected by the implementation of
program are given by an equational specification, the predicate transformer is a non-trivial, language-
If I = r is an equation, we stipulate that in an dependent problem that we have not undertaken
expression we can replace an instance of I with the yet.
corresponding instance of r, but not v.ce versa. For The second module is small too, but conceptu-
this reason we rather write our equation I --+ r and ally more complex. Several interesting implemen-
call it a rewrite rule [6]. tation issue-, arise, in particular, the completeness

For example, all the operation symbols occuring of the narrowing procedure and the efficiency of the
in W, whose computation was discussed earlier, are computation. We implement a lazy strategy that
specified as follows. The signature is obvious from takes advantage of a particular representation of
the context. Capital letters stand for variables. The the rewrite rules and we couple our strategy with a
symbol '-' represents an anonymous variable. breadth-first control regime.

and(true, X) -). Narrowing steps are "don't know" non-determin-
and(false,_) - false istic, whereas rewrite steps are, to a large extent,

not(true) -* false "don't care' non-deterministic. Thus, we gain effi-
not (false) -- r. ciency by r,:peatedly reducing the needed redexes of

is.empty(empty) - true an expression that is to be narrowed, Since some of

is-empty(push(_, _)) -false these expressions may not have a normal form, some

pop(push(_, S)) -. S care must be taken to preserve the completeness of

top(push(E, _)) -. E our implementation.
is-null(null) -* true

is_null(1ree(_,_,_)) - faise 5 Advanced features
left(tree(., L...))-' L Statically plausible paths may be semantically

right(tree(-.,.-, R)) -R impossible. For example, this is ewsy to see for the

A narrowing step of an expression su.h as W con- tree traver,.al program. Every time that push is in-
sists in computing a reduct of a(W), where a is a yoked one iteration through the loop body must also
substitution for the variables of W su.h that a(lW) be executed before the loop terminates. Thus, we
is reducible. For example, we may ii.stantiate t to may specify a path T that is not executed for any in-
tree(z, y, z), where z, y, and z are ai 5itrary values put. In this case, the resulting weakest precondition
and reduce is-null(tree(z, y, z)) to false. Thus, we W has no s.Autions. If we try to solve W = true by
solve an equation such as W = true by narrowing narrowing, the computation may or may not termi-
W all the way to true. nate. In practice, we fail to find inputs that reach

A solution for W, computed by narrowing, is t f the statem-. its following a while statement.
tree(u, null, tree(v, tree(w, z, y), null)), where u, v, To over,,ome this problem we weaken the con-
w, xr, and y are variables. straints im,)osed on the path through a while state-

A brute-force implementation of narrowing is ment. We specify how many iterations are exe-
generally very inefficient. Relatively :ficient imple- cuted through the body, but do not specify the
mentations are based on strategies that limit the path of each iteration. A weakest precondition for

55

such a less-constrained path is easily -omputed us- we believe that our approach is simpler. The fi-
ing power functions [1]. If f : S -. S is a function nal distinction is one of substance; narrowing can
on the state S of a program, the power function of not only handle the numerical data types that pre-
f, f" : N x S -. S, is defined by vious solvers could, but can in principle deal with

equations using arbitrary abstract types, and equa-
IfL (f', if k = 0; tions that arise from additional constraints. Thus(,) = (- 1, (s)), ifk > 0. we expect that our approach applies to a far wider

This approach allows us to find inputs to a program class of programs, and to wider and more difficult

for reaching the statements that follow a loop. problems.
For example, suppose that the pro'blem is to find Narrowing is the operational principle of lan-

an input to the while statement of our tree traver- guages that integrate the functional and logic pa-

sal program that leads to the termnnation of the radigms [3] Our application is unorthodox and the

loop after exactly three iterations through the body. closest related work concerns the implementation of
First, we compute the following weak ,st precondi- narrowing in Prolog, e.g., [7]. For our application

tion, where power denotes the power fl;nction of the the completeness of narrowing is crucial, thus, we

functional abstraction of the loop bony. have extend d previous approaches by replacing the

default dep.h-first search strategy with a breadth-
and(not(is-empty(power(O, a)) first one and by interleaving narrowing with exten-

and(not(isempty(power(1, s)), sive rewriting.
and(not(is~empty(power(2, s)),

is-empty(power(3, s))

Second, we solve this condition by narrowing, and References

we discover that there are only 10 distinct solutions: (1] S. Antoy. Automatically provable specifications.
5 in which s initially contains 1 tree only, 4 with 2 Technical Report 1876, Dept. of Computer Sci-
trees, and 1 with 3 trees. ence, University of Maryland, 1987.

For each solution we can find the path executed
within the loop body by symbolic execution or by [2] L. Clark. A system to generate test data and

profiling an actual execution. symbolically execute test programs. Trans. on
Soft. Eng., SE-2:215-222, 1976.

6 Related work (3] D. DeGroot and G. Lindstrom, editors. Logic

There are two research areas related to our work: Programming, Functions, Relations, and Equa-

program analysis and narrowing. T). t problem of tions. Prentice Hall, 198C.
finding inputs that will force the e:;ecution of a (4] E. W. Dijkstra. Guarded commands, nondeter-
path in a program has been attacked in a number minacy t formal derivation of programs. Comm.
of ways. For example, [2] used symLtulic execution of the ACM, 18:453-457, 1975.
and a linear-programming equation solver. Our ap-
proach differs from previous work in f.everal signifi- [5] M. J. Fay. First-order unification in an equa-
cant ways: tional theory. In Proc. 4th Workshop on Auto-

1. Whereas it is usual to convert programs into mated Deduction, pages 161-167, Austin, TX,
control-flow graphs and compute paths in these 1979. Academic Press.

graphs, we instead use a linear r.,-'ation based on [6] J. W. Klop. Term Rewriting Systems. In S. A-
the program syntax itself. bramsky et al., editor, Handbook of Logic in

2. Whereas it is usual to implement ,ymbolic exe- Computer Science, Vol. II, pages 1-112. Oxford

cution by following a flowgraph path from top to University Press, 1992.
bottom, we instead use the weakest-precondition [7] R. Loogen, F. Lopez Fraguas, and M. Rodri-
formalism that proceeds from bot om to top. guez Artalejo. A demand driven computation

3. Whereas the usual method of sof,. ing equations strategy for lazy narrowing. In Proc. PLILP'93.
is to employ some form of linear pr ;gramming or Springei LNCS, 1993. (To appear).
matrix manipulation, we use narr-. ,'ing. [8] R. T. Y,%. Verification of programs by predicate

The first two distinctions are mattei' of style only; transfor:,ation. In R. T. Yeh, editor, Current
nothing can be done using our apprc.2.ch that can- Trends -v Programming Methodology, volume 1,
not be done in the previous way. Nevertheless, pages 2 8-247. Prentice-Hall, 1978.

56

Finite-State Verification and Software Design

Rance Cleaveland
Department of Computer Science
North Carolina State University

Raleigh, NC 27695-8206
USA

tel: (919)'515" 7862
tax: (919) 515 7896

e-mail: rance@csc.ncsu.edu

September 14, 1993

Abstract

This note argues for the utility of finite-state specification verification methodologies in the
analysis of software design specifications.

1 Introduction

The past ten years have witnessed a surge in research on automatic techniques for establishing that
finite-state systems satisfy their specifications[6, 8, 12, 15]. This area of research has strong practical
motivations; systems whose correctness has been established formally are in some sense free from
error, and the purely automatic nature of the methods under investigation removes the burdens that
traditional non-automatic formal methods place on system builders. The domains to which these
methods have traditionally been applied include hardware design, communications protocols, and
process control systems. However, recent work indicates that software requirements specifications
and designs 11, 2] can also be formulated in ways that would benefit from such analyses. This
note suggests how finite-state specification and verification techniques may be brought to bear on
the problem of software design and advocates further collaboration between researchers in software
engineering and automatic verification.

2 Event-Based Specifications

Parnas and others 111] have suggested the use of an "event-based" style of software requirements
specification. In this style, one formulates the requirements of a system in terms of a finite-
state machine that describes the changes that a system undergoes in response to differ,>t inputs
given it by its environment. Sevcal different nontrivial systems have been specified Li, fhs style;
noteworthy examples include wo k related to A-7 fighter aircraft project [2] and Leveson et al.'s
landmark work [141 on the specifitation of air-traffic control software.

A chief virtue of such specifications is that, because they i re formulated in precise mathemat-
ical terms as finite-state machines. techniques for analyzing analyzing finite-state systems may be
brought to bear on them. Thus, design properties may be formally established without the expense
of implementing prototypes. At one level, for instance, the specifications may be rigorously exercise

57

using finite-state system simulators (such as those provided by the StateMate tool [91); at another,
specific properties such as deadlock-freedom may be formulated as temporal logic formulas and
tested against specifications using model checkers [1, 2]. Specifications may even be compared to

determine if they conform to one another.
Another virtue of event-based specifications is the existence of languages for the definition

of finite-state event-based systems and associated analysis tools. Languages such as LOTOS [4]

and ESTELLE (5] have been developed to facilitate the description of communications protocols,
while ESTEREL [3] and STATECHARTS [10] support the structured development of synchronous
systems used in process control. Typically, these languages include constructs for the modular
design of systems; these structuring facilities would also be useful in the development of high-

level software designs, since they can provide a formal.basis for the structured design and analysis

techniques commonly found in the different softwire design methodologies. So it appears to be the

case that methodologies and languages for finite-state systems that may be fruitfully brought to

bear on the analysis of event-based software requirements specifications; it is also likely to be the

case that an examination of such specifications will likely suggest new approaches to finite-state
analysis that have heretofore not been considered.

3 Tools for Finite-State Analysis

This note closes with an overview of tools that have been developed by the author and colleagues
for designing and analyzing such finite-state systems. The tool set at present includes the following.

The Concurrency Workbench [8]. The Workbench supports numerous techniques for specify-
ing and verifying networks of interacting finite-state processes specified in process algebra.
In particular, two systems may be compared for equivalence as well as for relative well-
definedness (useful in conjunction with a stepwise-refinement development strategy) accord-
ing to several different criteria, and a model checker may be used to determine if systems enjoy
specific properties formulatedl in a flexible temporal logic, the modal mu-calculus. Special-
purpose routines also enable the location of deadlocked states and the interactive simulation
of specifications. Recent versions of the system also provide flexible diagnostic-information
generation facilities. The tool has been applied to the study of a variety of different commu-
nicating systems, including hardware designs, communications protocols, and process control
systems by researchers from around the world.

VTVIEW [16, 7]. VTVIEW is a graphical editor that enables users to create structured networks
of finite-state systems. The graphical language supported has a formal semantics given in two
different fashions. One defines the system transitions a system may engage in, while the other
takes the form of a translation into a language supported by the Workbench. The latter is
implemented in the tool, thr..reby enabling systems created in VTVIEW to be analyzed using
the Workbench. The system is built on top of X-windows and is currently being alpha-tested.

VTSIM [13]. VTSIM, which is also being alpha-tested, provides users with a facility for stepping
through the "execution" of d-tsigns created using VTVIEW. The tool includes interactive and
automatic modes as well as a breakpoint feature and replay and undo facilities.

References

[1] J. Atlee. Automated Analysis of Software Requirements. PhD thesis, University of Maryland,
1992.

58

[21 J. Atlee and J. Gannon. State-based model checking of event-driven system requirements.
IEEE Transactions on Software Engineering, 19(1):24-41, January 1993.

[3] G. Berry and G. Gonthier. The ESTEREL synchronous programming language: Design,
semantics, implementation. Sci. Comput. Programming, 19:87-152, 1992.

[4] T. Bolognesi and E. Brinksma. Introduction to the iso specification language LOTOS. Com-
puter Networks and ISDN Systems, 14:25-59, 1987.

[5] S. Budkowski and P. Dembinski. An introduction to Estelle: A specification language for
distributed systems. Computtr Networks and ISDN Systems, 14:3-23, 1987.

[6] E. Clarke, E. Emerson, and A. Sistla. Automatit verification of finite-state concurrent sys-
terns using temporal logic specifications. A CM Transactions on Programming Languages and
Systems, 8(2):244-263, April 1986.

[7] IL Cleaveland, S. Jain, and V. Trehan. GCCS: A graphical language for network design. In
preparation, 1993.

[8] IL. Cleaveland, J. Parrow, and B. Steffen. The Concurrency Workbench: A semantics-based
tool for the verification of finite-state systems. A CM Transactions on Programming Languages
and Systems, 15(1):36-72, January 1993.

[9] D. H. et al. STATEMATE: A working environment for the development of complex reactive
systems. IEEE Transactions on Software Engineering, 16(4):403-413, April 1990.

[10] D. Harel. Statecharts: A visual formalism for complex systems. Sci. Comput. Programming,
8:231-274, 1987.

[11] K. Heninger. Specifying software requirements for complex systems: New techniques and their
application. IEEE Transactions on Software Engineering, SE-6(1):2-13, January 1980.

[12] G. Holzmann. Design and Validation of Computer Protocols. Prentice-Hall, 1991.

[13] S. Jain. VTSIM: A graphical simulator for finite-state networks. Master's thesis, North
Carolina State University, 1993.

[14] N. Leveson, M. Heimdahl, M. Hildreth, H. Reese, and J. Ortega. Experiences using Statecharts
for a system requirements specification. In Proceedings of the Sizth International Workshop on
Software Specification and Design, pages 31-41, Como, Italy, October 1991. Computer Society
Press.

[15] V. Roy and R. D. Simone. Auto/Autograph. In Computer-Aided Verification '90, pages
235-250, Piscataway, New Jersey, July 1990. American Mathematical Society.

[16] V. Trehan. VTVIEW: A graphical editor for hierarchical networks of finite-state processes.
Master's thesis, North Carobiaia State University, 1992.

59

Automated Reasoning in Software Design*

Deepak Kapur
The University at Albany
Albany, New York 12222

1 Introduction

We report on progress made in automated reasoning over the liast decade or so. We discuss recent work
in our group on automated reasoning, visualization of proofs and specification languages. Finally, we
outline possible aspects of software engineering and system design, where automated reasoning research
can be beneficial.

2 Automated Reasoning and Verification

The last decade has witnessed significant advances in automated reasoning methods and development of
powerful and sophisticated automated reasoning programs for inductive reasoning, first-order reasoning.
equational reasoning, higher-order reasoning, algebraic reasoning. model-checking. etc. For instance.
researchers at the Argonne National Laboratory have used thler OTTER program for resolution-based
theorem proving to settle open mathematical and logic problems. Difficult geometry problems can be
easily solved using Wu and Chou's program as well as programs I have developed using Grbibner basis
and characteristic set methods. We will not attempt to survey these developments, but. mention a few
significant ones insofar as they relate to system and software verification.

A particular mention should be made of the impressive work going on at Computational Logic Inc.
using the Boyer and Moore's theorem prover. In a special issue of J. of Automated Reasoning edited
by J Moore, this effort called CLI short stack was described in a series of five papers [1]. To quote
Moore, "The short stack is unique because it has been verified by computer, beginning with a simple
applications program in a high-level language down through the gate-level design of a microprocessor."
Papers discuss how Boyer and MWore theorem prover was used to verify a multi-tasking system, a
compiler, an assembler, a linker and a micro-processor. More recently, Yuan Yu, a student of Bob
Boyer, has verified machine code of many utility programs in C library on Motorola MC68020 using
Boyer and Moore's prover. These programs include the GCI). Quick Sort, Binary Search and other
programs[2].

Of course, there is impressive work by others also includ:ng significant advances made in using
model-checkers for hardware circuits, controllers and real-tin,, systems. And, then there is a devoted
community of HOL users hacking tactics and formalizing sv-t ms.

In our research group, we have been emphasizing developiiig met hodologies for design, specification
and verification of generic components [3]. By applying fornmal methods to generic components, we

PartiaJly supported by NSF Grant Number CCR-9303394.

60

are likely to attain improvements in the cost-effectiveness of applying formal methods to software
development, since the cost for a generic component, though high. can be amortized over its many

uses. The software built from generic reusable components ib likely to result in improved structure and
documentation for purposes of coordinating development in large projects and simplifying maintenance
and future enhancements. By abstracting not only away from implementation, but also from behavior

and carefully engineering interfaces, it is possible to produce generic components that can be much more
easily composed and widely usable than the specialized components usually constructed. We have been
using our theorem prover RRL (Rewrite Rule Laboratory) and "recton proof system for understanding
requirements for automatically generating and structuring proofs for properties of generic algorithms [4].
In particular, we have investigated sorting algorithms, string matching algorithms and a partitioning

algorithm.

2.1 Induction, Decision Procedures, Proof Structuring and Visualization

It is quite clear to those of us involved in the use of automated tools for specification analysis and
verification of properties of software that proofs by induction play an important and crucial role in

this application. Over the last 15 years, impressive advances have been made in automating induction
theorem proving methods, and many heuristics have been developed and successfully demonstrated

on difficult problems. These methods have been imnplemented in theorem prover such as NQTHM
(Boyer-Moore theorem prover), RRL (Rewrite Rule Laboratory) and NEVER. Simple properties about
recursive definitions can be automatically proved by induction; appropriate intermediate lemmas needed
for these proofs can be automatically generated.

There is still a great deal of work that needs to be done lo enhauce the automatic capabilities of
theorem provers, particularly in regards to appropriate use of known lemmas from libraries as well as
automatic generation of intermediate lemmas necessary for sihple proofs to go through automatically.

Libraries of properties of frequently used data structures such ;I, rmnibers. lists, sequences, arrays, etc..
need to be integrated into the th,:orem provers so that it is possible to build upon other's work. In
this regard, integration of decision procedures for linear arithmetic, arrays, records, and lists into a
theorem prover for induction is very significant. Proofs generated using integrated decision procedures

and known lemmas from libraries are compact and easier to understand, emphasizing relevant detail.
Model checking methods and binary decision diagrams for handling boolean formulas may also need

to be integrated for dealing with real-time software as well as for hardware systems.
In our work, we have been paying special attention to user-interface issues related to theorem

provers, and visualization aspects of proof attempts [4]. in, particular designing structured proof rep-

resentations using graphics icons and hyper-text. Mudl like software, successful proof attempts can
be reused. Related theorems have related proofs. A proof of a related theorem can be obtained by
slightly modifYing inference steps used in a proof of another theorem. This is especially evident while
carrying out proofs for reasoning about generic components. Proofs can be parameterized as well as
generalized by identifying and abstracting common pattern!s or inference steps. For developing support
for specifying and verifying generic components, it will be ust'ful to develop adequate representations
of generic proofs in the form of proof plans and tactics.

Most verification systems do not provide adequate tools to (leal with these issues. The structure

of the proofs is buried in a style of linear representations zno.!! suitable for texts. The theorems and
lemmas used in proofs are not readily available with the proofs, and have to be looked up in an often
large list of mostly irrelevant theorems and lemmas.

61

In Tecton our approach for escaping such limitations combiues the use of hypertext, graphical, and
tabular representations to show clearly the structure of proofs. An important advantage of hypertext
technology is its use in documenting, highlighting and analyziug dependencies among formulas, lem-
mas and inference steps. Possible effects of a change in a definition can be easily traced in a proof
management system, and for each proof which uses the definition being changed, it must be checked
whether redoing the same inference steps using the modified definition would lead to a successful proof
attempt. If not, old proofs must be invalidated, the status of a formula should be changed from a
theorem to a conjecture, and a new proof attempt should be 1 tied. In case of multiple proofs residing
in the system, proofs invalidated because of a change in a defiinition must be redone or deleted.

Theorem provers are lousy in providing decent user interfaces, documentation and user guides about
how to use them effectively. There is a need to devefop deceni user interfaces and methodologies for
presenting proofs which highlight proof structures at different levels of details. Unsuccessful proof
attempts can also provide useful information about specification and code. Tools need to be developed
to analyze failed attempts and extract useful, relevant information from them.

3 How can Automated Reasoning Methods Contribute?

Despite these impressive demonstrations, formal methods are not being used as widely as they should
be. We are interested in finding out why that is the case. llow can formal methods be integrated
in to the software development cycle, irrespective of design methodology being used? What are the
obstacles? How are rigorous modeling and analysis (which appear to be an integral part of requirements
and design phases) practiced? We can easily see automated reasoning tools being relevant and useful
there. How can that be achieved?

If one looks into any book on any software methodology. Oltere seems iL, be unaninity on the view
that requirement specifications should be clear, complete and consistent. Yet, we are not aware of any
formal tools used to ensure these properties. We are intere.sted in finding out what methods, tools
and techniques are used in practice to ensure these important properties of requirement specifications.
We would like to conjecture that existing automated reasoiiing tools can be adapted to provide some
support for checking such properties of requirement specifications.

A crucial aspect of the phase of system design is to validate that the design indeed meets the
requirements specifications. The importance and significance of this validation is well-recognized but
again, it is unclear how this is ensured.

Is it the case that formal methods are not popular because existing specification languages/logic
and theorem provers do not provide an adequate fit with methodologies used in system design? If so,
why not? We believe that structuring mechanisms used in mathematics and engineering have a great
deal to offer for system design. We would like to offer as an example, the design of a large software
project at IBM, namely the computer algebra system Axiom.

In the Tecton specification language for specifying generic .system components, we have emphasized
structuring principles and abstraction [3]. The language provides dcfinition, abbreviation, extension,
and lenmma constructs, which have general mathematical descriptive power, plus a computation-specific
realization construct. The semantics includes specification of he requirements ("legality conditions")
that must be met when using each construct. We believe that the language should be able to directly
support object-oriented design methodologies. We plan to discuss more about our specification language
at the workshop.

62

References

[1] W. Bevier, W. Hunt, J S. Moore and W. Young, Speci~d issue on System Verification, J. of
Automated Reasoning, 5 (4), 1989.

[2] R.S. Boyer and Y. Yu, "Automated correctness proofs of machine code programs for a commercial
microprocessor," Proc. Automated Deduction - CADE-]] (11th Intl. Conf. on Automated Deduc-
tion, (ed. D. Kapur), Springer LNAI 607, Saratoga Springs, NY, 1992, 416-430.

[3] D. Kapur and D.R. Musser, Tecton: a framework for specifying and verifying generic system com-
ponents, Rensselaer Polytechnic Institute Computer Science Technical Report 92-20, July, 1992.
Invited talk at TPCD Conf. 1992 (Theoreni Provers in Circuit Design, University of Nijmegen,
The Netherlands, June 22-24, 1992.

[4] D. Kapur, D.R. Musser, and X. Nie, "The Tecton Proof System," invited talk, Proc. of a Workshop
on Formal Methods in Databases and Software Engineering, Montreal, May 15-16, 1992 (Alagar,

Lakshmanan. Sadri (eds.)), Workshop in Computing Series, Springer Verlag, 54-79.

63

Satasi and Waugh August 2, 1993

POSITION PAPER

Analysis of Critical Non-Functional Factors of Systems

by John Salasin and Douglas Waugh
Software Engineering Institute

Non-functional, or quality, aspects of large systems are often treated In an ad
hoc manner - even when they are critical to the system's ultimate success. It
Is usually difficult to defend claims about a system's reliability or performance,
for example, before large portions of the system have been implemented and
tested. A high reliance Is placed on the skill and experience of the system's
designers to make sure that these quality aspects will be present once the
system is fielded, but there Is little evidence to comfort the program manager
that this trust is well-placed until the actual fielding takes place.

There has been a long history of efforts to define and evaluate quality of
software. Much of the previous work in this area has focused on either the
process used to develop the software or on the analysis and testing of
"finished" software products.

We define a systematic way of integrating concern with non-functional
attributes from the earliest stages of the life cycle. Through this approach, we
attempt to:

1) Ensure that non-functional attributes are identified and included in the
architecture/design at the earliest possible stage.

2) Provide a means for tracking required non-functional attributes to
ensure satisfaction.

3) Provide quantitative measures of degree of satisfaction of non-
functional attributes.

This approach was developed in support of the Ballistic Missile Defense
Office (BMDO). The BMDO Is developing a multi-layered, object-oriented
Information Architecture for the Ballistic Missile Defense (BMD) Battle
Management/Command Control Communications (BM/C3) System. Our goal
in analyzing non-functional aspects is to assure that one can easily identify,
measure, and track the non-functional aspects of the developing system at
each stage of design, implementation, and operation.

Non-functional critical quality factors for the BM/C3 system include desired
operational behavior and design characteristics relating to:

- timeliness (stringent performance requirements)

64

Salasin and Waugh August 2,1993

* useability (operability, understandability, ease of use, etc.)
• dependability (availability, integrity, fail-safe, trust, etc.)
* adaptability (maintainability, evolvability, etc.)

Our approach requires annotation of the architecture at the most abstract
levels with non-functional requirements called obligations. A stepwise
refinement process Is used to refine obligations into commitments (and other
obligations) In concert with the development of the layered architecture. The
refinement process employs defined metrics and indicators to validate each
refinement step.

To illustrate the stepwise refinement of obligations and commitments,
consider the obligation -1continued operation in case of computer
hardware failure"

This could be refined into: commitment a --"operating system will detect
hardware failures*; obligation b - "backups specified for hardware
(hot/cold spares)*; and obligation c --"automatic switching to backup
processor.

The obligation labeled obligation b, then, could be refined into the
commitment d -- "satisfied by behavior specification for
Initialization/Configuration function. And obligation c could result in 3
additional obligations - (1) "receive and process interrupt", (2) "save system
state", and (3) "transfer control to backup" and so on, until all obligations have
been committed.

The approach also defines a set of indicators and metrics that enable
quantitative and qualitative assessments of the Information Architecture's
treatment of non-functional factors. These indicators/metrics fall into 3
categories:

1. existence: Has a process or rule been defined to assure satisfaction of
an attribute. For example, is there a monitor function or object specified to
assure task completion? are there rules regarding layering and encapsulation
of exception handdling mechanisms?

2. allocation: Has the satisfaction of the desired attribute been allocated
to the hardware/software infrastructure, design rules and conventions, or to
the application design itself?

3. adequacy: How likely is the specified mechanism to ensure
satisfaction of the desired attribute?

Examples of indicators in the 3 categories are shown in the table below.
Consider, for example, the survivability factor. An indicator of satisfaction of
the requirement is that objects have been defined in the architecture that
monitor for task completion; An allocation indicator is the notation that the

65

Salasin and Waugh August 2, 1993

operating system will be responsible for detecting hardware failures; And the
adequacy metric shows a high score for the solution chosen -- automatic
switching to hot spares.

Examples of Indicalom and Metrics for Non-Functional Factors

INDICATORS and METRICS
FACTORS EXISTENCE ALLOCATION ADEQUACY

Tsablity pro dW post wonifon bondytatin to-be covered High: lomal behavior
for prowese by ea plan space

Swvlvsblty monitor obets 0S responsible for detection High: auto switch to
for task ompletion of hardwsa bilures hot spares

"Into. Vaidity value range annotations Rule: use Ada strong typing Low: rely on sensor
on object attributes w•it constraint checking pro1essorsto sreen

Useebitity annotations to Indicate Rule: control board to rule High: real user
points of human on HCI a Involved In early
Interaction Ha prototyping

Trust objects and processes OS to provide priviledged High: formal
annotated with trust Interface I Instructions meXiods/proofs
levels

Evolvability class hierarchy provides Style rules for design end Med: analysis of
levels of abstraction programming likely changes

By providing a set of metrics and indicators along with a process that
complements the design process in use on the project, we enable system
architects to defend their architecture decisions in terms of quality of the
system which will result

We believe that this approach offers several benefits:

To the architecture team - The early focus on non-functional aspects forces
out common definitions of quality attributes. The approach provides a
capability to examine alternative solutions or means for satisfying desired
quality atteibutes. And it makes requirements on infrastructure and design
rules and conventions explicit and visible.

To the design and develooment team - The approach provides through the
Information Architecture a well reasoned approach to satisfying quality
requirements as well as characteristics and requirements for the
hardware/software infrastructure selection and guidelines for the software
design.

To the validation/verification/test team -- It provides early opportunities for
V&V assessment and specific test requirements.

66

Toward Practical Applications of Software Synthesis *

Douglas R. Smith
Kestrel Institute

3260 Hillview Avenue
Palo Alto, California 94304

smithOkestrel.edu

My colleagues and I at Kestrel Institute have been exploring automated tools for transform-
ing formal specifications into efficient and correct programs. In particular, I have specialized in
automating the design of algorithms. KIDS (Kestrel Interactive Development System) [31 serves
as a testbed for our experiments and provides tools for performing deductive inference, algorithm
design, expression simplification, finite differencing, partial evaluation, data type refinement, and
other transformations. We have used KIDS to derive over 60 algorithms for a wide variety of appli-
cation domains, including scheduling, combinatorial design, sorting and searching, computational
geometry, pattern matching, and mathematical programming.

Formal methods need some dramatic success stories to spur the interest of industry and gov-
ernment (and even the U.S. academic community!). My current strategy for selling the ultimate
practicality of tools to support formal methods is to synthesize high-payoff algorithms, specifi-
cally scheduling algorithms. The intent is to show that automated algorithm design tools can
economically generate families of high-performance scheduling codes. To this end we are producing
a scheduling synthesis workstation that combines general-purpose synthesis tools with extensive
knowledge about the scheduling domain and effective programming techniques for scheduling.

Tremendous benefits arise from having good scheduling systems. Many practical scheduling
problems are NP-hard, so it is likely that there is no general and efficient solution method. However
the problem cannot be avoided - it must be solved. The intrinsic combinatorial difficulty of schedul-
ing practically requires heuristic algorithms for solving large-scale problems - optimal schedules can
only be obtained for problems involving tens or hundreds of activities. The suboptimal schedules
produced by most schedulers means that time, money, and resources are wasted.

As part of the ARPA/Rome Laboratories Planning and Scheduling Initiative, we have focused
on the transformational development of transportation schedulers [2]. Our approach involves sev-
eral stages. The first step is to develop a formal model of the transportation scheduling domain,
called a domain theory. Second, the constraints, objectives, and preferences of a particular schedul-
ing problem are stated within a domain theory as a problem specification. Finally, an executable
scheduler is produced semiautomatically by applying a sequence of transformations to the problem
specification. The transformations embody programming knowledge about algorithms, data struc-
tures, program optimization techniques, etc. The result of the transformation process is executable
code that is guaranteed to be consistent with the given problem specification. Furthermore, the
resulting code can be extremely efficient.

The U.S. Transportation Command and the component service commands use a relational
database scheme called a TPFDD (Time-Phased Force and Deployment Data) for specifying the

"*This research was supported in part by DARPA/Rome Laboratories under Contract F30602-91-C-0043, in part
by the Office of Naval Research under Grants N00014-90-J-1733 and N00014-93-C-0056, and in part by the Air Force
Office of Scientific Research under Contract F49620-91-C-0073.

67

transportation requirements of an operation, such as the Somalia relief effort. We developed a
domain theory of TPFDD scheduling defining the concepts of this problem and developed laws for
reasoning about them. KIDS was used to derive and optimize a variety of global search scheduling
algorithms that are generically called KTS (Kestrel Transportation Scheduler). The KTS schedulers
are extremely fast and accurate (see below).

Transportation scheduling tools currently used by the U.S. government are based on models
of the transportation domain that few people understand (1]. Consequently, users often do not
trust that the scheduling results reflect their particular needs. Our approach tries to address this
issue by making the domain model and scheduling problem explicit and clear. If a scheduling
situation arises which is not treated by existing scheduling tools, the user can specify the problem
and generate an situation-specific scheduler.

There are several advantages to a transformational approach to scheduling. First, there is no
one scheduling problem - there are families of related problems in any given scheduling situation.
The problems can differ in the mix of constraints to satisfy, cost objectives to minimize, and
preferences to take into account. A typical problem is to schedule a given collection of activities
on given resources. Another kind of problem is to find an estimate of the resources needed to
bring about a desired completion date. Another kind of problem is to work backwards from a
given completion date to feasible start dates for individual activities. Another kind of problem
is incremental or reactive scheduling. We believe that transformation systems such as KIDS will
provide the most economical means for generating such families of schedulers. We have observed a
great deal of reuse of concepts and laws from the underlying domain theory and of the programming
knowledge in the transformations.

A second advantage is the reuse of best-practice programming knowledge. The systematic
development of global search algorithms has helped ur exploit problem structure in ways that other
projects sometimes overlook. The surprising efficiency ot KTS stems from two sources. First, the
derived pruning and propagation tests are surprisingly strong. The stronger the test, the smaller
the size of the runtime search tree. In fact, on many of the TPFDD problems we've tried so
far, KTS finds a complete feasible schedule without backtracking! The pruning and propagation
tests are derived as necessary conditions on feasibility, but for this problem they are so strong
as to be virtually sufficient conditions. The second reason for KTS' efficiency is the specialized
representation of the problem constraints and the development of specialized and highly optimized
constraint operations. The result is that KTS explores the runtime search tree at a rate of several
hundred thousand nodes per second, almost all of which axe quickly eliminated.

The chart in Figure 1 lists 4 TPFDD problems, and for each problem (1) the number of TPFDD
lines (each requirement line contains up to several hundred fields), (2) the number of individual
movement requirements obtained from the TPFDD line (each line can specify several individual
movements requirements), (3) the number of movement requirements obtained after splitting (some
requirements are too large to fit on a single aircraft or ship so they must be split), (4) the cpu time
to generate a complete schedule, and (5) time spent per scheduled movement. Similar results were
obtained for sea movements.

We have compared these results with other schedulers. The OPIS project at CMU takes a
similar declarative approach to modeling scheduling as a constraint satisfaction problem. OPIS
requires about 30 minutes to solve the CDART data and it does not find a complete feasible
schedule (some latest arrival dates axe relaxed). KTS finds a complete feasible solution in 0.4
seconds - a factor of 4500 faster.

We have also compared these results with the PFE (Prototype Feasibility Estimator), which
is a CommonLisp re-implementation of a military feasibility estimator called TFE (Transporta-
tion Feasibility Estimator). Including preprocessing time, PFE takes about 206 seconds on the

68

Data # of input # of # of scheduled Solution Msec per
Sets TPFDD individual movements after time scheduled

(Air only) records movements splitting movement

CDART 403 539 0.4 sec 1.0

CSRT01 624 1271 3120 8.3 sec 2.6

090TP/PFE 4471 6160 8085 27 sec 3.3

9002T Borneo 9480 12370 15460 71 sec 4.6

Figure 1: Scheduling Statistics

090TP/PFE data to schedule the sea movements and estimate the schedulability of the air move-
ments. KTS is 78% faster, taking 43 seconds to produce a detailed feasible schedule for both air
and sea movements. Furthermore the KTS schedule produces 75% less delay in the sea movements
and provides a far more accurate measure of the number of planes required for the air movements.

From [1] it appears that KTS is hundreds of time faster than active duty transportation sched-
ulers FLOGEN (for air movements) and SEACOP (for sea movements). We plan to visit Scott AFB
later this year to compare KTS with the JFAST system at UTC (US Transportation Command)
and the ADANS system at AMC (Airlift Mobility Command).

To conclude, it appears that there is an opportunity to demonstrate that formal software devel-
opment tools could fill a real need for high-performance schedulers. To get around the problem that
schedulers are usually embedded within a larger system, we develop "plug-compatible" interfaces
to our derived schedulers. In this manner we have delivered KTS into the Common Prototyping
Environment at Rome Labs. The idea is to allow the substitution of our schedulers for existing
schedulers and to perform comparative experiments. This seems the most tenable way to allow
formally developed code to be useful in legacy systems.

References

[1] JOHN SCHAN K. ET. AL. A Review of Strategic Mobility Models and Analysis. Rand Corporation.
Santa Monica, CA, 1991.

[2] SMITH, D. R. Transformational approach to transportation scheduling. In Proceedings of the
Eighth Knowledge-Based Software Engineering Conference (Chicago, IL, September 1993).

131 SMITH, D. R. KIDS - a semi-automatic program development system. IEEE Transactions on
Software Engineering Special Issue on Formal Methods in Software Engineering 16, 9 (Septem-
ber 1990), 1024-1043.

69

Summary and Conclusions
Increasing the Practical Impact of Formal Methods for

Computer-Aided Software Development

Valdis Berzins

1. Summary of the Presentations and Discussions

The main theme of the presentations and discussions at the workshop was how to provide
computer support for combining changes to software systems, which is the software merging
problem. Secondary themes at the workshop were the supporting technologies that are relevant
to solving the software merging problem, and other aspects of computer support for software
changes.

Software merging has subproblems that include decomposing software into independent
parts, recombining parts, and choosing the parts of the different versions to recombine. A spe-
cial case of the software merging problem is one where all of the changes are pure extensions
to the behavior, rather than modifications. The presentations by Mili, Sterling and Huang
explored this special case in different contexts. A result of the discussions was that all of
these efforts appeared to be aimed at constructing least upper bounds in different lattices. A
common point of Mili's work and Sterling's was the desire to allow different people to work
on different aspects of a system and then to put the parts together with some guarantees of
consistency if the process succeeded. Huang was more concerned with decomposing a pro-
gram into parts, simplifying the parts, and recombining them, so that consistency was not an
issue in that context. The unrestricted problem, including changes that could modify or retract
the behavior of the system as well as extend it, was considered by Dampier (for prototypes
with real-time constraints) and Feather (for requirements specifications). Dampier's approach
was formal and relied on a behavior invariance theorem for the prototyping language for its
correctness. Feather's approach was informal, partially because of the social issues that
interact with the early stages of requirements formulatioi. The elaboration structure of the
requirements was used mainly as a vehicle for simplifying explanations of the requirements to
the clients, and relied on human thinking to detect interactions between "almost independent"
elaborations.

One of the supporting technologies for software merging is program slicing, which can be
used for the decomposition aspect of the problem. The presentation by Dampier showed how
slicing could be applied to combining unrestricted changes to prototypes with real-time con-
straints, using an augmented dataflow representation that has a formal semantics. Other appli-
cations of program slicing include debugging, simplification, and change impact analysis
(which uses forward slicing instead of backward slicing), and can be used to provide guidelines
to concurrent updaters to prevent conflicts, as pointed out by Agrawal and others.

Another supporting technology is meaning-preserving transformations. Such transforma-
tions can be used as a normalizing procedure that enables sound recognition of some classes of
behavioral equivalence for programs, which is another subproblem of software merging. Other
applications of meaning-preserving transformations that were explored at the workshop include
program simplification to aid understanding (Huang) and restructuring to make subsequent
semantic changes easier to realize, both in terms of effort and accuracy (Griswold). Anecdotal
evidence from the participants suggested that restructuring is often a large part of the effort to
realize a "difficult" change in software behavior. Sterling indicated that in some cases restruc-
turing was needed to avoid unification problems with merging (i.e. in joins of PROLOG pro-
grams).

70

Transformations that make refinements were also discussed at the workshop, and it was
suggested that monotonic and correctness conserving transformations were better names than
meaning preserving transformations, because the transformations could add information that
consistently extends the meaning of the software artifact (program, specification, etc.).

The problem of how to realize evolution for systems that must provide continuous ser-
vice, was explored by Mittermeir. The main point of the presentation was that the interface of
a module must be decoupled from the realization of the operations via an intermediate level
that can be updated. Some of the questions about the details of this intermediate level had to
be deferred because the project related to these aspects is still in its early stages.

The problem of automatically finding test data that would drive a program down a
specified path was explored by Antoy. This problem is similar to one of the subproblems that
arises in change merging, which is to decide if it is possible for two path conditions to be
satisfied by the same input data. The approach used was to apply the narrowing algorithm for
solving symbolic equations over abstract data types. The formal method was very clean, and
had associated completeness results and optimal efficiency results, in the sense that the method
explored only those paths in the derivation that could not be avoided without discarding some
solutions. The method worked very nicely for a variety of small problems. It was pointed out
that the completeness result seemed to imply that the method could not scale up, because the
problem that was being solved had at least (single, double, or triple) exponential complexity.
depending on what restrictions were imposed.

2. Conclusions of the Workshop

The opinions summarized below emerged from the workshop and received more or less
general agreement from the participants.

(1) Since all nontrivial behavioral properties of programs are undecidable, interesting
software development tools are necessarily incomplete. The general feeling was that this
is not a problem, provided that the tools treat cases that were too difficult to decide as
failures. Such tool incompleteness was considered to be a useful diagnostic for inap-
propriate designs - if the tools could not understand the design, that was an indication
that it was too complex and too hard, and should be corrected to make it maintainable.
The real challenge is "how much can we do automatically?".

(2) A related difficulty is demonstrating the usefulness of a tool that does something better
than we can do manually or does something that is too difficult to be done manually.
Explanations of small portions of the tools can help provide users with an intuitive "hap-
piness" with the tool, and empirical tests can provide evidence to support the feeling that
"I now believe in the tool". Another option is to provide methods for tracing the deci-
sion processes of the tools, and different "verbosity levels", so that users have some
rational options when the tool makes a non-intuitive decision (that may nevertheless be
correct). A related issue is integrating computer support for software evolution with reli-
ability engineering and performance engineering applied to the tools because we may not
completely trust the tools. This is entirely rational because the tools themselves are com-
plex software systems that are attempting to solve problems that have not been previously
automated. Consequently there may be subtle requirements errors as well as implementa-
tion errors induced by complexity and confusion.

(3) Perhaps facilitating slicing and merging should be another guideline for organizing
specifications, designs, and programs. This is a different dimension of modularity:
"software design for slicability and mergability". This may not be easy because change

71

merging does not distribute over functional composition (as expressed by the inequalities
in the opening remark slides, see [1].) This means that changes to different parts of a
dataflow decomposition are not in general independent. The practical goal is to be able
to make reliable local changes without having to understand or analyze the whole pro-
gram. One approach is to assign slices rather than modules as work units, but some
problems are that slices can be rather large, and different slices can overlap.

(4) The question "what is a change?" needs more attention. There are different answers at
different levels. Lee White (Case Western) has characterized types of changes in the
context of regresssion testing. Mutation testing provides another view, which is structural
rather than behavioral. The functional view explored by Berzins and Reps is based on a
decomposition of functions into the part that is the same in both versions, the part that is
added by the change, and the part that is removed by the change. At the specification
and requirements level we can talk about constraints or goals that are preserved, added or
removed. There is probably a low consensus on what a change is and what the different
levels of change mean. Perhaps a taxonomy of changes is in order. Reasoning about the
code is not enough, we need to consider different views, including design rationale. The
higher level information can help to resolve conflicts, but mapping high level
modifications back to the code level is a tough problem. Decisions to tailor the require-
ments can be motivated by impact on the context of the system, feasibility, cost, perfor-
mance, etc. Changes to data, both at the schema level (classes and subtypes) and at the
instance level, and the interaction with consistency constraints should be explored.
Another issue is the relation to specification languages and inheritance mechanisms.

(5) Remember to keep the highest levels goals in mind. Techniques are not the core of the
workshop, but rather creating reliable and correct software at low cost, as noted in the list
of goals for the workshop (page 6).

(6) If we make software more easily modifiable. it is not clear if the costs associated with
modification will really go down, or if more modifications will be made because it is
easier to do. Hopefully a positive answer will !ie in the extended lifetime of maintainable
systems and less discarding and rebuilding of systems that are almost correct but cannot
be changed because no one can understand them any more or because the changes would
require manual fixes to most of the code.

3. Acknowledgement

We would like to thank all of the participants of the 1993 Monterey workshop for their
active participation and insights, which enabled us all to create a successful workshop.

References

1. V. Berzins, "Software Merge: Semantics of Combining Changes to Programs-,
Technical Report NPS 52-91-4, Computer Science Department, Naval Postgraduate
School, 1990. Revised for ACM Trans. Prog. Lang and Systems.

72

