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1 Introduction

Background

The Defense Nuclear Agency funded the Explosion Effects Division (EED)
of the USAE Waterways Experiment Station (WES) to develop a large-bore
(4-ft-diameter) vertical gas gun. The primary purpose of the gas gun is to
simulate ground shock environments in a manner suitable for testing ground
shock measurement devices. An additional purpose for the gun is to obtain
dynamic material properties data from relatively large geologic samples.

Description of the DNA/WES Ground Motion Test
Facility

Design

The facility was designed over a 24-month period beginning in 1988 (see
White et al. 1991). An artist’s rendering of the facility is shown in Figure 1,
and a schematic of the gun is shown in Figure 2. The gun consists of a large
annular pressure vessel surrounding a vertical barrel. A series of orifices are
machined in the upper barrel wall. These allow the compressed air from the
vessel to expand into the barrel. When the gun is in the cocked position, a
projectile, with o-rings placed at the top and bottom, straddles the orifices,
and prevents the compressed air from being released into the barrel. The
projectile is held in place by a quick-release trigger mechanism. A water
reaction mass fills the top portion of the barrel above the trigger mechanism.
This mass is used to reduce the reaction of the gun to the pressure driving the
projectile. The bottom of the barrel may be sealed with a diaphragm to allow
a partial vacuum to be created in the barrel section below the projectile.
(Note: none of the tests reported here utilized a vacuum in the lower portion
of the barrel.)

Operation

To fire the gun, the projectile is released. The weight of the projectile
causes it to move downward. As the top o-ring clears the orifices, the
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Figure 2.  Schematic of the 4-ft-diameter gas gun
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compressed air expands into the barrel. The incoming air simu’taneously
drives the projectile downward and the water reaction mass upward. Theoret-
ically, the mass of the water can be adjusted so that the "bottom" of the mass
of water will exit the top of the barrel at the same time that the projectile
clears the bottom of the barrel. This would maintain maximum pressure on
the projectile for as long as it was in the barrel. The maximum operating
range is 2,070 kPa, which produces a projectile velocity of 71 mps.

Objectives

The primary objectives for all tests were to develop safe procedures for
testing and to determine the operating characteristics of the gun (e.g., determi-
nation of projectile velocity, far-field ground motion and nuisance noise levels
as a function of vessel pressure). The performance aspects of testing with the
4-ft gun with regard to the primary objectives have been reported by White
(1993).

The primary objectives of the development program for the gas gun could
have been met without including testbeds on each test. However, to take full
advantage of the gun, testbeds were included when possible. This, in turn,
led to a secondary set of objectives being associated with these testbeds.
These objectives included the initial dynamic testing of new ground shock
instruments for use in the HUSKY JAGUAR and the Seismic Hard-Rock In
Situ test programs, and the development of testing procedures and equipment
for routine use with the gun. The inclusion of a target on a test never became
the driving force of the gas gun program; however, its role increased in im-
portance as testing progressed. Of the twenty-two tests conducted under this
program, twelve of these tests included an instrumented testbed.

Scope

This report describes the testbed construction and test procedures. Stress
and velocity histories are presented from each test. Analysis of the data
includes determination of the propagation velocity of the loading wave for the
two types of sand used as a backfill. Two methods for determining the propa-
gation velocity of the rarefaction wave are discussed. Two methods for
analyzing impact angle and planarity are also presented. Conclusions are
drawn on the results of the development program to date.
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2 Experiment Description

Testbed Construction

Twelve tests were conducted using a sand testbed as a target beneath the
gun during the period addressed by this report (January 1990 - December
1992). Nine of the tests used masonry sand and three of the tests used
Socorro Plaster sand as the backfill material. The disposable target container
was a 1.37-m diameter by 0.76-m high corrugated 12-gauge steel pipe with a
welded 12-gauge steel bottom.

The target for each test was constructed by placing four lifts (typically
15-20 cm) of sand in the steel container. Each lift was compacted using a
vibratory compactor to obtain a maximum density. The wet density and
moisture content were measured, using a nuclear densitometer, at two
locations in each of the three lower lifts. For several tests, the moisture
content was also measured by weighing samples of the sand before and after
drying in a microwave oven (called the oven dry method). The last test, Test
22, was constructed to meet specifications for density and moisture content.
The construction methods used for the other tests were designed primarily to
produce a uniform testbed, as opposed to specific densities or moisture
contents.

The time required to build a testbed, once all materials were on hand
(gages, sand, vibrator, microwave oven, tools, etc.), was approximately one
day per test. An efficient method for testing with the gun was to prepare
several samples at a time, since objectives for subsequent tests were not
contingent on results from previous tests. For this series, two or three
testbeds were prepared (in a sheltered area) on successive days. Using a fork
lift, they were moved to the facility as required for testing. Approximately
two to three days were required for conducting a test.

Typical Instrumentation Layout

The total depth of each target was 61 cm. Two depths in a target were
typically instrumented. These two depths (15.2 cm and 30.5 cm) included a
variety of the stress and velocity instruments (Tables 1 and 2). The common
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Table 1
Stress Gages Used for Tests in Sand _ 7

High-Range SE gage
Oid Column-Based Stress gage

New Column-Based Stress gage

Stress and Velocity gage

| Log Shock-isolated Accelorometer canister AV-L

| Wedge Shock-Isolated Accelerometer canister AV-W

Micro Hard-Mounted Accelerometer canister AV-M

HIFl Accelerometer canister AV-N or SHMA

1 Stress and Velocity gage S&V or CSHMA

1 Sunburst Recovery, Inc. Constant Pitch Electromagnetic gage SC

Sunburst Recovery, Inc. Variable Pitch Electromagnetic gage sv

name used to describe each instrument is also listed in the tables. A represen-
tative example of the gage layout is presented in Figure 3. Gages were placed
in the correct lift as the testbed was being built. The instruments located at
the 30.5 cm depth were typically placed at a radius of 15.2 cm, and the in-
struments at the 15.2 cm depth were placed at a radius of 30.5 cm (see Fig-
ure 4). For some tests a gage was placed in the center of the testbed at one of
the two levels. A short length of cable was routed from each gage, through
the testbed, and terminated just outside of the target container. The gages
used in each testbed and their locations are listed in Appendix B.

Diagnostic measurements were included for each test. Two pressure gages
were located in the reservoir of the gas gun. One served as a direct readout
gage used to monitor system pressure, prior to firing, at the control panel for
the gun. The second gage was used to monitor the pressure drop in the vessel
during a test. An accelerometer was mounted on the base of the gun to
monitor acceleration levels in the vertical direction. Six piezoelectric pins at
the bottom of the barrel of the gun were used to measure the projectile
velocity and planarity as the forward face exited the barrel. A triaxial seismic
station and microbarograph gage were fielded at three different ranges on sev-
eral tests to monitor far-field ground motions and airblast. Sound pressure
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DEPTH = 15.2 CM 0° HRSE-1
RADIUS = 30.5 CM

270° 90°
Av-L AV-W
180° OCBS
DEPTH = 30.5 CM 45°
RADIUS = 156.2 CM HRSE-2

Figure 3. Typical layout for testbed instrumentation
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Figure 4. Cross section of the gas gun projectile and container of target material
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level measurements were made at five ranges on most tests, and a video
camera was used to photograph each test. The results of the diagnostic mea-
surements have been reported by White (1993).

Testing Procedure

For these tests, the projectile was loaded into the gun prior to moving the
testbed beneath the barrel of the gun. The projectile was raised into its
cocked position via a chain hoist attached to a tripod at the top of the barrel.
Two chains were used to lift the projectile, and two were used as safety chains
during the loading process. The two safety chains remained in place after the
projectile was locked into position with the quick-release trigger mechanism.

The configuration of the projectile varied depending on the vessel pressure
planned for the test (see Figure 4). As test levels increased (higher vessel
pressures and projectile velocities), thicker pieces of foam were required at the
base of the projectile to absorb the impact energy, and thus protect the car-
riage from damage. The mass of the projectile varied slightly as a result of
changing the foam thickness. The mass of the projectile for most tests was
1,482 kg. The vessel pressure for these twelve tests varied from 345 to
1,379 kPa and the projectile velocity (as the leading edge exited the barrel)
varied from 27.9 to 59 mps. The location of the target was typically 120 cm
below the end of the barrel. The test level, projectile mass, and projectile
velocity for each test is listed in Table 3.

Sand was placed over the earthen portion of the trench bottom located
directly beneath the barrel of the gun. Several timbers (4-in. by 6-in.) were
placed in the sand base to support the sample. The sample was moved into
position beneath the barrel of the gun via a trolley that ran along channels cast
into the concrete walls on either side of the trench. The sample was centered
beneath the gun using a plumb bob suspended from crosshairs at the bottom of
the barrel. Final leveling of the testbed was achieved using a carpenter level
to guide placement of shims between the steel bottom of the sample and the
timbers. An advantage of supporting the sample with timbers is that it essen-
tially provides a "free" surface at its base. The shock wave reflecting off this
free surface may be seen in the stress wave forms, and thus may be used to
investigate the unloading wave speed of the testbed material.

After the testbed was positioned beneath the gun, instrument cables were
spliced to cables running to the Control Trailer. After all electrical checkouts
were completed, the safety chains on the projectile were removed. A
1-mm-thick fiberglass diaphragm and plastic liner, used for containing the
water reaction mass, were placed above the quick-release trigger mechanism
in the upper portion of the barrel. The depth of the water reaction mass for
all tests was 1.35 m, which corresponds to a mass of 1,570 kg. After placing
the reaction mass, the firing system for the trigger mechanism was enabled by
supplying pressurized gas to the system and by connecting battery power to a
solenoid valve used to control the flow of gas.
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Table 3
Test Pressure Level, Projectile Mass, and Projectile Velocity for
Tests in Sa

Vessse! Pressure Projectile Velocity
Teet No. kPa mps

v

27.9

37.%

35.5

47.2

50.3

-

i ' ] - - \‘
| ' Celculated value (no experiment data) ;

Instrument recording and remote operation of the gun were performed at
the Control Trailer, located approximately 50 m away. A picture of the re-
cording setup is shown in Figure 5. The control panel used for operating the
"fill system" for the gun is shown in Figure 6. The fill system (illustrated in
Figure 7) is comprised of three components; the pressure system, the vacuum
system, and the firing system. None of the tests reported here used a vacuum
in the lower section of the barrel. The pressure vessel was filled by a high-
pressure, high-volume air compressor. After the desired testing level was
reached, the air compressor was stopped. The time required to pressurize the
gun for these tests varied between 13 and 54 minutes. A master switch was
then used to ensure all components of the pressure system were in their proper
state; i.e., all valves closed and the air compressor shut off. The master
switch also provided power to the firing system. After sounding a warning
siren and a final check with instrumentation personnel, the gun was fired by
energizing the 4-way solenoid valve in the firing system. This allowed gas
pressure to activate the quick-release trigger mechanism, which released the
projectile. On average, approximately 450 msec were required for the trigger
mechanism to release the projectile. The additional time required for the pro-
jectile to travel the length of the barrel was anywhere between 100 and
400 msec, depending on the test level and length of the projectile.
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Figure 7.  Fill system used for conducting tests with the gas gun
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3 Experiment Data

Testbed Material Data

The wet density and moisture content of the test materials were measured
at two locations in each of the three lower lifts of a testbed using a nuclear
densitometer. The accuracy of the nuclear densitometer for measuring
moisture content is questionable, however, because the source and receiver are
both in the base of the gage, and experience has shown that the moisture
content is only measured to a depth of approximately S cm. For that reason,
the moisture content was also measured for several tests by weighing samples
of the sand before and after drying in a microwave oven {oven dry method).

A summary of the average wet density and moisture content of the entire
testbed is presented in Table 4. Presented in Appendix C are profiles of the
wet density and moisture content for each testbed. The values presented in
the appendix represent the average of two measurements at each depth.

Where moisture content measurements were made with both the nuclear deasi-
tometer and the oven dry method, the oven dry method (as the more accurate)
is presented. Considering the average moisture content of the entire testbed,
the oven drying method indicated values anywhere between 0.4 and

1.8 percent higher than those determined using the nuclear densitometer.

Active Measurement Data

Stress and impulse measurements from each test are presented in Fig-

ures D1-D12, contained in Appendix D. Acceleration records and the inte-
grated velocity and displacement records are presented in Figures D-13
through D-24. Data return from the tests was very good. The average peak
stresses produced in the test materials varied between 7 and 27 MPa. The
average peak particle velocities varied from 18 to 34 mps.

Chapter 3 Experiment Dats
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Table 4
Average Wet Density and Moisture Content for Sand Testbeds

Averags Wet Density Aversgs Moisuze Contamt
Teost No. gloc 7 parcant

Masonry

Masornry
Masonry
Masonry
Masonry
Masonry
Masonry
Masonry

Socorro Plaster

Socorro Plaster

Socorro Plaster

% Oven dry method
© Nuclear densitometer

Time-of-Arrival Data

The propagation velocity of the shock wave in sand was determined by
noting the time-of-arrival (TOA) at known depths within the testbed. For
eleven of the tests (all but Test 22), instruments were located at only two
depths within the testbed (15.2 cm and 30.5 cm). The centerline of each
gage/canister was placed at the designated depth (see Figure 8). After the
shock wave reached the upper edge of a canister, the time required for it to
traverse to the sensing element was negligible compared to the time required
for the shock wave in sand to traverse a like distance. As a result, the rela-
tive "distance” between the top surface of the various instruments was used to
determine the "depth” over which the shock wave propagated between the
TOA at each location.

Each test in sand (except Test 22) included a Log shock-isolated acceler-
ometer (SIA) canister (AV-L) at the 15.2 cm depth. This canister had the
largest thickness of those used in the tests, and for planar impacts should indi-
cate the first TOA. Presented in Figures 9 through 19 is the TOA at each
instrument location for the first eleven tests in sand. The x-axis for these fig-
ures is labeled as "distance,” since the values presented are the relative dis-
tance between the top surface of a Log canister and other gages/canisters in
the testbed. For Test 22, TOA crystals were placed at the surface and
throughout the depth of the testbed. The TOA data presented in Figure 20 is

Chapter 3 Experiment Dets
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plotted against the depth (from the surface of the testbed) to the top surface of
each gage. The inverse slope (P-wave velocity) of the best linear fit through
the data is shown in the figures and is tabulated in Table 5 below.

Table 5
Propagation Velocity of Loading Shock Wave for ests in Sand |

Vessel Pressure | Projectile Velocity Wave Propagation
Test No. Sond Type | kPa mpe Velocity mpe

Masonry

Masonry

Masonry

Socorro

Socorro

Socorro

- T —— s -~

' Calculated value (no experiment data)

In these tests, perfectly normal impacts are unlikely. Nonnormal impacts
can result in apparent inconsistancies in the time-of-arrival versus depth-
to-top-of-canister data. For instance, in most tests the Wedge SIA canister
was placed 180° from the Log SIA canister, and at the same depth. If a
nonnormal impaci occurred where the projectile impacted the side of the test-
bed near the Wedge canister first, the shock wave could be witnessed by the
Wedge canister before the Log canister. This is seen in Test 11 (Figure 13).
Notice the TOA at AV-W occurs prior to that at AV-L. This is possibly the
explanation for several cases where gages at slightly lower depths witnessed
shock arrival prior to gages at higher locations in the testbed. Other explana-
tions for this might include accuracy of gage placements and variability in the
soil conditions across the diameter of the testbed.
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Determination of Propagation Velocity of
Rarefaction Wave

A rarefaction wave was generated in each testbed by the interaction of the
shock wave with the free surface at the bottom of container (and the sides as
well). Two methods were used to determine the propagation velocity of the
rarefaction wave (or unloading wave) for several tests in sand. Both methods
hinged on witnessing the TOA of the unloading wave on individual stress
records. The displacement of a stress gage was assumed to be identical to the
displacement of an accelerometer canister located at the same depth. Discus-
sion of these results is limited to Test 22.

Graphical Method

A schematic of the depths of the stress and velocity gages fielded in
Test 22 in their original position and at a later time is presented in Figure 21.
Representative stress records from the 15.2 and 30.5-cm depths are shown in
Figure 22. The TOA of the rarefaction wave at each gage location is noted in
the figure. The displacement of the accelerometer canister, at each depth, at
the arrival time of the relief wave is measured from the double-integrated ac-
celeration history. This displacement is added to the original gage position to
determine the location of the gage at the arrival time of the relief wave. The
location of each stress gage at the arrival time of the rarefaction wave is plot-
ted in Figure 23. The slope of the linear fit through this data indicates an
unloading propagation velocity of 966 mps.

If the loading and unloading wave velocities were constant throughout the
depth of the testbed, then the two lines representing the best fit through the
loading TOA and unloading TOA should meet at the bottom of the testbed
(i.e., at the 61-cm depth). The nominal stress at the 15.2-cm depth as record-
ed by HRSE-1 was 27.1 MPa, and the value at the 30.5-cm depth, as record-
ed by HRSE-2, was 16.6 MPa. This difference in the stress levels could
cause changes in the loading or unloading wave velocities. Other potential
reasons for the non-intersection of the lines at the 61-cm depth include experi-
ment error in placing the gages in the testbed, or uncertainty in the absolute
depth of the testbed.

Analytic Method

The second method used to determine the propagation velocity of the rar-
efaction wave in the soil is based on the geometry of the testbed and the deter-
mined loading wave velocity. After the shock wave impacted a stress gage, it
continued until it impacted the free surface at the bottom of the testbed. The
distance over which the shock wave traveled at the loading wave speed is
known. The reflected wave then traveled back though the testbed at the un-
loading wave speed. The distance over which the rarefaction wave traveled
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until it impacted the stress gage was determined by assuming that displacement
of the stress gage was identical to that of an accelerometer canister at the same
depth. The velocity of the loading and unloading waves was assumed to be
constant over the distance traveled.

In Figure 21 the original positions of gages at the upper and lower depths
are denoted by HI and H2, respectively. The displaced positions at TOA of
the relief wave are denoted by HI(T4) and H2(T3), respectively. The location
of the bottom of the target is denoted by H3. In Figure 22 the initial TOA of
the shock wave at each gage depth is labeled as 77 and 72. The TOA of the
relief wave at the lower and upper depths is labeled 73 and T4, respectively.
Given the time for a shock wave to travel these two known distances, and
knowing the velocity over one of those distances, the velocity over the second
distance may be determined. At the upper depth and lower depths (respec-
tively), the difference in time between loading and unloading wave arrival is
given by:

C C,

L

T3 - 12) - B3 - H2 | H3 - HXT3)
C C,

L

where
C. = the loading wave velocity
Cy = the unloading wave velocity

These equations may be rearranged to solve for the unloading wave velocity.
For gages located at the upper depth,

C - H3 - HI(T4)
174
1)
(74 - 1) - |H3 - H1
CL

For gages located at the lower depth, the unloading wave velocity may be
determined from
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H3 - HXT3)

C, =
H3 ~ H2
CL

)]
(3 -12) -

Equation (1) was applied to the stress records at the upper depth and Equa-
tion (2) was applied to the stress records at the lower depth for Test 22. The
results are presented in Table 6. The loading wave speed, C,, used in these
calculations was that determined by the linear fit to the TOA data; i.e.,

332 mps (see Figure 20). The thickness of the gage was also considered in
these calculations.

| Table 6
Unloading Wave Speed, C,. as Determined by the Analytic Method for |
| Test 22, Assung a nstant Loading Wave Spe - ‘

The variation in the determined unloading wave speed may be attributed to
experiment error in placing gages in the testbed, or the assumption that the
displacement of the stress gage is identical to that of an adjacent accelerometer
canister. However, the most plausible explanation is perhaps the error in as-
suming the loading wave travels at constant velocity through the depth of the
testbed. This may be seen in the values of the C, determined by the stress
gages at the lower depth. If a slower loading wave velocity is chosen for the
depths where stresses are lower, the determined unloading wave speed will be
larger.

This premise was investigated for the data of Test 22. A loading wave
speed, C,,, was determined for that portion of the testbed between the two
instrumented depths by considering only the TOA data at the two depths. A
different loading wave speed, C,,, was determined by the linear fit through the
TOA data at, and below, the lower instrumented depth. For gages at the up-
per depth, the mathematical description of the time required for the shock
wave to make the round trip is,
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H2 - Hl | H3 - H2  H3 - HI(T4)

4-TI) =
(T n) Cl.l CLZ CU

where

C,, = the loading wave speed between the upper and lower instrumented
depths

C,, = the loading wave speed between the lower depth and the bottom of
the sample

This may be rearranged to solve for C,,

H3 - HI(T4)

H2 - HI _ H3 - H2
CIJ CLZ

C,=

&)
(T4 - TI) -

Equation (3) is used to determine C,, from the stress records for the three
gages at the upper depth. Equation (2) is still applicable for the two stress
gages at the lower depth by substituting C,, for C,. The dashed line presented
in Figure 24 is the linear fit through the TOA data at the two instrumented
depths. The loading wave speed determined by the slope of this line
(364 mps) is the assumed C,, over the distance from H1 to H2 within the
testbed. The solid line in Figure 24 is a linear fit through instruments at and
below the lower depth. The wave speed determined from a linear fit through
this data is 242 mps. This is substituted as C,, in Equation (3) and as C, in
Equation (2) to determine the unloading wave speed. The results of this
analysis are presented in Table 7.

While this analysis does not yield a unique value for the unloading wave
speed in the testbed, it does provide insight on how future tests may be instru-
mented in order to determine the changing loading wave speed through the
depth of the testbed. An advantage of the S&V canister for this type of analy-
sis is that the stress and velocity measurements are made in the same canister;
therefore the displacement of the stress gage is known as a function of time.
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Table 7
Unloading Wave Speed, C,. as Determined by the Analytic
Method for Test 22, Assuming a Varying Loading Wave s;d
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4 Analysis of Nonnormal
Impacts

Requirement

As mentioned in Section 3, it is not probable to have a completely normal
impact between the projectile and sample when testing with a 4-ft diameter
projectile. A full understanding of the interaction between the projectile and
the sample is required in order to use the large diameter gas gun for dynamic
material properties testing.

In the analysis of TOA measurements presented earlier, it was assumed
that the projectile impacted the testbed in a perfectly normal fashion. In order
to determine the propagation velocity of the shock front, the TOA at each
gage location was plotted against the relative distance between the top surfaces
of different instruments (for the first eleven tests). For Test 22, the TOA was
plotted against the actual depth to the top surface of each instrument in the
testbed. The wave speed in the sample was then determined by the inverse
slope of the linear fit through this data. For this type of analysis, the value to
be plotted as "depth” is the perpendicular distance between the gage and the
loading shock front. For a perfectly normal impact, this distance is simply
the vertical distance from the top of the testbed to the top surface of the
instrument. For a nonnormal impact, however, the gage depth is a function
of the projectile velocity, the angle of impact, and the propagation velocity of
the loading wave.

Description of Nonnormal Impact

Several assumptions are required for the analysis of nonnormal impacts.
These are:

® The surface of the impacting plate is flat.

® The surface of the testbed is flat.

Chapter 4 Anasiysis of Nonplanar Impacts




® The surface of the testbed is perpendicular to the centerline axis of the
testbed.

@ The centerlines of the projectile impact plate and the testbed are
collinear.

¢ The projectile does not rotate after initial contact with the testbed.
® The loading wave velocity, C,, is a constant.

In a nonnormal impact, a single point at the outer edge of the projectile
impact plate strikes the top surface of the testbed first (see Figure 25). The
projectile continues to be driven into the test sample. The last part of the
impact plate to come into contact with the sample is the point on the face of
the plate diametrically opposed to the first point of impact. The time delay,
AT, between the first point of impact and the last point of impact is a function
of the projectile velocity, Vel,, the projectile diameter, D, and the impact
angle, 8, according to the relation,

. D=Sin®)

AT
Vel,

The loading wave in the sample emanates from the first point of impact,
but does not become fully developed until the last point on the projectile
impacts the surface of the testbed. The angle, «, at which the normal loading
wave propagates through the testbed is a function of the propagation velocity,
C,, in the testbed; the difference in time, AT, between the first and last points
of impact of the projectile; and the angle of impact (6) of the projectile; ac-
cording to the relation,

o = Tan™!

C, * AT
D = Cos(6)

Substituting for AT from above, this expression becomes

C, = Tan(0)
Vel’

C)

a = Tan™!

From this equation, it is evident that as the projectile impact velocity in-
creases, the angle at which the wave propagates through the sample is
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minimized, for a given angle of impact, 6. On the other hand, for testbed
materials with a higher loading wave speed, the effect is increased.

Description of CLAP Code

A computer code was written (in BASIC) to assist in the analysis of non-
normal impacts. The code name, CLAP, is an acronym for loading wave
(CD angle (A) program (P). The code is used to calculate the first point of
impact on the testbed surface, the angle of impact of the projectile, and the
loading wave speed in the testbed.

Determination of First Point of Impact on the Surface of the Testbed
and Angle of Impact

For Test 22, three piezoelectric crystals were placed on the surface of the
testbed to determine the angle of projectile impact. The differences in TOA
for the crystals were calculated using the first crystal impacted as the
reference for the remaining crystals. Assuming that the crystals lie in a hori-
zontal plane perpendicular to the centerline of the testbed, differences in the
TOA'’s for the three crystals indicates that the projectile was tilted as it
impacted the testbed (see Figure 26). At the time the last crystal was
impacted, the product of the impact velocity and the difference in TOA yields
the relative height of the projectile (at the crystal locations) with respect to the
testbed surface, assuming the projectile does not rotate after impact. With the
centerlines of the projectile and testbed aligned, the (x,y) coordinates of the
crystals may be transferred to the face of the projectile. Three points on the
projectile’s impacting surface are now defined, with the origin of the coordi-
nate system at the top center of the testbed surface. The equation of the plane
through these three points is then determined.

Using the equation describing the plane of the impact plate, the first point
of contact onto the testbed surface is determined. The impact plate is divided
into 1440 equal segments (% degree increments). For each increment, the z
coordinate at the outer radius of the plate is calculated. The increment which
results in the minimum z represents the first point of impact at the surface of
the testbed. The angle formed by the horizontal testbed surface and the line
from the first point of impact through the center of the impact plate is the
angle of impact, @ (see Figure 26).

Chapter 4 Aneslysis of Nonplanar impacts

41




s10edwsy Jeuejduou 10} 8384NS PEQqIsel 8yl uo 1dedwi JO Julod 1541 94} BUIWILIEP O) Pesn sielswesed JO dnewsydS ‘9z 6.nBi4

(€) 30V4HNS 1v
SIVLSAHO VOL

8'LOVdNI 40 ITONV

10Vvdii 40

INIOd 1SHId

X

s dtoansts  maces  oootenen  ateids b siaatine

d

1 1vder=1HOmEH

30Vv4HNS
a3a1s3l

| W LOVdWI 40

1NIOd 1SV

31vd LOVdII
40 H3LIN3O

Chapter 4 Analysis of Nonplanar impacts

42




Determination of the Loading Wave Speed in the Testbed Using
TOA Measurements at the Surface of the Testbed

To begin, the loading wave speed is determined by the procedure described
in Section 3. That is, a normal impact is assumed and the loading wave speed
is the inverse slope of a linear fit through the TOA versus depth plot. A
correlation coefficient is determined that represents the quality of the linear fit
through the experiment data. For a perfect fit this coefficient is 1. For any
case other than a perfect fit this coefficient is less than 1. Using Equation (4),
the angle (c) at which the normal loading wave propagates through the testbed
is calculated. The "uepth” of each gage location is recalculated as the perpen-
dicular distance between the gage location and the new, fully-developed
loading wave (with angle «). This is illustrated in Figure 27.

A new loading wave speed is determined from the linear fit through a plot
of TOA versus (recalculated) depth. The correlation coefficient is also calcu-
lated. As the values of depth are adjusted for each gage location, the data
falls n e closely on a line, and thus increases the correlation coefficient.
Using the new value for the loading wave velocity, Equation (4) is used once
again to determine the angle at which the plane wave propagates through the
testbed. The "depth” of each gage is recalculated, and a new loading wave
velocity is determined as before. This iterative process continues until the
correlation coefficient converges to a constant value.

Test 22 was the only test that used TOA crystals at the surface of the
testbed to determine the angle of impact. CLAP was used to evaluate the
angle of impact (6), the first point of impact, the angle at which the loading
wave travelled through the testbed (a), and the loading wave velocity (G), as
described above. A series of screen dumps from the code are included as
Figures 28 through 35. Figure 28 is an introductory screen allowing the user
to select one of two methods of analysis. The first selection is described
above and the second selection is a trial and error method, described below.
Data required by the program (e.g., gage locations, TOAs, etc.) may be
entered through the keyboard or by a data file. Figure 29 lists the data used
to calculate the equation of the plane through the impact plate. Also presented
are the coefficients for the equation of the plane. Figure 30 indicates the first
point of impact of the projectile onto the testbed surface. Figure 31 lists the
coordinates of the gage locations in the testbed. This coordinate system
defines the origin at the top center of the testbed, with the positive x-axis
pointing due east when looking at a plan view of the testbed (see Figure 3).
The values for z indicate the depth to the top surface of the gage (note: this is
a left handed coordinate system). Figure 32 lists the least squares curve fit
data for the data set of Figure 31. The plot of Figure 33 is identical to the
TOA versus depth plot of Figure 20. Figure 34 lists the least squares curve
fit data after one iteration on the angle at which the loading wave propagates.
The plot of Figure 35 shows the TOA data plotted against the recalculated
values for the depth of the gages. The loading wave speed changed from
332 mps to 336 mps after one iteration, and the correlation coefficient
decreased from 0.98222 to 0.97923. Further iterations do not significantly
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Program CLAP ... Loading Wave (Cl) velocity and Angle Program
February 09, 1993, program version 2.3

US Army Corp of Engineers
Waterways Experiment Station
Structures Laboratory, Explosion Effects Division
Vicksburg, Mississippi

1l -- Calculate Cl by a linear regression curve fit to data
2 -- Calculate Cl by fitting a plane to the wave front

Enter ’'1l’, '2' or 'q’' to quit

Figure 29. Introductory screen of the CLAP code
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Entered Impact Plate Data
The following data has been entered

Test name: test 22

Location of TOA gage 1 = ( 0 , .1524 )
Location of TOA gage 2 = ( .32385 ,-.32385 )
Location of TOA gage 3 = (-.32385 ,-.32385 )
Time of arrival for TOA gage 1 = 558.247 msec
Time of arrival for TOA gage 2 = 558.246 msec
Time of arrival for TOA gage 3 = 558.145 msec
Projectile velocity = 50 m/sec

The general equation for the equation of a plane is Ax+By+Cz+D=0

The following coefficients have been calculated for the projectile
A =-2.402651E-03

B =-1.668394E-03

C = .3084671

D --8.609789

strike 'c’ to continue or 'q’ to quUit =—ee—e———

Figure 30. CLAP screen listing data used for determining the equation of the plane of the
projectile and the calculated coefficients of the plane
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First Point of Impact

Using the equation for the plane representing the impact plate
previously calculated, the first point of impact on this plate
will now be determined.

Test name: test 22

Entered impact plate diameter = 47  inches
Entered impact plate diameter = 1.1938  meters
Entered projectile velocity = 50 m/sec

The first point of impact occurs on the impact plate at 236.25 degrees.
This occurs at the plate radius of 0.5969 meters.
The maximum angle of impact is 0.543 degrees. ( 9.48 mrad )

Strike ‘c’ to continue or ’'q’ to quit

Figure 31. CLAP screen indicating the first point of impact onto the surface of the testbed and
the angle of impact
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Entered gage Data
Gage TOA-0A X = 0.000 Y= 0.152 Z = 0.000 TOA=~ 558.247
Gage TOA-OD X = 0.324 Y= -0.326 Z = 0.000 TOA=~ 558.246
Gage TOA-OE X = -0.324 Y= -0.326 Z - 0.000 TOA= 558.145
Gage HRSE-1A X = 0.000 Y= 0.305 Z= 0.146 TOA= 558.674
Gage NCBS-1 X = 0.305 Y= 0.000 Z= 0.143 TOA~ 558.710
Gage CCBS-1 X = -0.305 Y= 0.000 Z= 0.143 TOA=- 558.538
Gage CSHMA-1 X = -0.305 Y= 0.000 Z = 0.143 TOA~ 558.551
Gage PAP-1V X = 0.216 Y= 0.216 Z= 0.089 TOA= 558.494
Gage PAP-1R X = 0.216 Y= 0.216 Z = 0.152 TOA=- 558.526
Gage PAP-1T X = 0.216 Y= 0.216 2Z = 0.152 TOA~ 558.522
Gage HRSE-2 X = 0.146 Y= 0.042 Z= 0.297 TOA- 558.951
Gage NCBS-2 X = -0.108 Y=~ -0.108 Z = 0.295 TOA~ 559.063
Gage SHMA-2 X = 0.042 Y= 0.146 Z = 0.295 TOA= 559.010
Gage TOA-3 X = 0.000 Y= ©0.051 Z= 0.076 TOA= 558.452
Gage TOA-9 X= 0.000 Y=~ -0.051 Z = 0.229 TOA~- 558.890
Gage TOA-12 X = -0.051 Y=~ 0.000 Z= 0.305 TOA= 559.089
Gage TOA-15 X = 0.000 Y= 0.051 Z=-= 0.381 TOA= 559.358
Gage TOA-18 X = 0.051 Y= 0.000 Z = 0.457 TOA= 559.687
strike ‘c’ to continue or ‘q’ to quit

Figure 32. CLAP screen listing the data used to determine the initial loading wave speed (with
no iterations in CLAP)
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Least Square Curve Fit

Test ID : Test 22, All gages included

0
0 degrees

Number of iterations
Wave Propagation Angle

Slope = 3.011879E-03

Cl based on slope = 332.0187 meter/sec
Intercept - .558178

Standard Error = 7.85667E-05
Correlation Coefficient (R) - ,9822238
Coefficient Determination (R2) = .9647636

== strike 'i’ to iterate, ’‘p’ to plot, or ’'q’ to quit or ‘c’ to continue ==

Figure 33. CLAP screen listing regression data for the least squares curve fit through the TOA
vs. depth data (prior to iterating with CLAP)

50

Chapter 4 Analysis of Nonplanar impacts




-

{dVv1D yim Bunesay o3 Joud) elep yidep ‘sA YOL Buimoys usaids dvid 'vE 2inBi4 o

3inb 03 b, o ‘afel Ajrjuapr o3 B, ‘a0 anurjuca o3 I3, LS

saajau ‘aoue}lsiq abey @ : Jaqunu uofjexay]

725'@ ¢SV'@ Z26E'@ 9Z€°@ 192°8 961°@0 TEYI'@ 590°0 pee’'vd S98° -

| 1 ] 1 l | 1 1 268"

A
Sb1° 8595
€SP 855
Z29L.° 855
828° 6SS
62E° 655

489° 655

S66° 655
7286°8 =4 aas, M 2@°ZEE = 1D
oasu ‘Yol
papniouy safel [y ‘ZZ 3Sal

Chapter 4 Analysis of Nonplanar Impacts




Least Square Curve Fit

Test ID : Test 22, All gages included

1
3.602976 degrees

Number of iterations
Wave Propagation Angle

Slope - 2.993212E-03

Cl based on slope = 334.0893 meter/sec
Intercept - 558279

Standard Error = B8.979428E-05
Correlation Coefficient (R) - .9767154
Coefficient Determination (R2) = .9539731

- gtrike ‘i’ to iterate, 'p’' to plot, or ‘q’ to quit or ‘c’ to continue ==

Figure 35. CLAP screen listing regression data for the least squares curve fit through the TOA
vs. depth data (after a single iteration with CLAP)
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change the loading wave speed or the correlation coefficient. For example,
after an additional four iterations the determined loading wave speed is

336 mps and the correlation coefficient is 0.97913. The angle at which the
wave propagated through the testbed was determined to be 3.65 degrees.

As a result of this analysis, the stated locations of several gages in the
testbed appear to contain errors. This is because the correlation coefficient
should increase after each iteration, and for this data set the coefficient de-
creased. Several factors could result in inaccurate gage locations: 1) gages
were not placed properly in the testbed, 2) gages locations were not measured
or recorded properly, or 3) the gage locations changed when the testbed was
relocated from the preparation area to the gas gun facility. An additional
source of error could simply be the tolerance at which the gages were placed
in the testbed (+3 mm).

From the plot of Figure 35, it is noted that, with the exception of five
TOA measurements, the data set is quite linear. These five measurements are
indicated as "outliers” in the figure. As an exercise, CLAP was used to
evaluate a modified data set that removed these measurements. A plot of this
data set after a single iteration is shown in Figure 36. The loading wave
speed determined using this reduced data set was 340 mps. The angle at
which the wave propagated through the sample was determined to be
3.71 degrees. The correlation coefficient increased to 0.99766, indicating a
tighter data set than that of Figure 35.

By accounting for nonnormal impact, the loading wave speed increased by
0.6 percent when considering the entire data set, and increased by 3 percent
when considering a modified data set. This difference is not significant in
either case. What is significant, however, is that this analysis provides an
independent check on the location of the gages. It will also assist in determin-
ing the required placement tolerances on future tests.

Determination of the Loading Wave Speed in the Testbed
on a Trial and Error Basis

If the angle of impact of the projectile is not known or cannot be deter-
mined, the CLAP code uses a trial and error method for determining the
loading wave speed in the soil. This method tries different combinations of
first points of impact and loading wave propagation angles (c) to determine
which condition will produce the highest correlation coefficient from the linear
regression curve fit.

To do this, CLAP sets the first point of impact at 0 degrees. Then the
angle between the loading wave and the testbed surface is varied from 0 to
12 degrees in %-degree increments. For each increment, the perpendicular
distance (or depth) between the gage location and the loading wave plane is
calculated, as described above. A linear fit through the TOA-versus-depth
data is made and the correlation coefficient is recorded. The first point of
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impact is then incremented by 1 degree. As before, the angle between the
loading wave and the testbed surface in incremented. A linear fit is made and
the correlation coefficient for each increment is calculated. This procedure is
continued as the first point of impact varies from 0 to 359.75 degrees. The
combination of the first point of impact and the angle of the loading wave
which produced the best (or highest) correlation coefficieat is said to represent
the actual test condition. The inverse slope of the linear fit through the data
for this combination is reported as the loading wave speed.

The graphical procedure for determining the loading wave speed, presented
in Section 3, is very sensitive to the accuracy of the gage placement. The
differenice in height between the top surface of some gage types (at the same
level) is on the same order as the placement tolerances. A comparison of
values for the loading wave speed as determined by the graphical procedure,
versus those determined by the CLAP trial and error procedure, can better
describe actual test conditions.

Agreement between the loading wave speed determined by the CLAP code
and the value determined by the graphical procedure (discussed in Section 3)
would indicate normal impact. However, large values for alpha would not
necessarily indicate a large impact angle, since the angle at which the wave
propagates through the sample is a function of the projectile velocity.

Repeated in Table 8 is the value of the loading wave speed determined by
the graphical method presented in Table S, Section 3. The trial and error
procedure within CLAP was used to determine the loading wave speed and
angle of propagation for the tests where the angle of impact could not be
determined (all except Test 22). The results are presented in Table 8. The
correlation coefficient for each method is listed in the table. Note that in each
instance the wave speed decreases or remains constant and the correlation
coefficient increases. Using Equation (4), Section 4, the angle of impact (6)
was calculated to check the consistency of the values for C,_ and « determined
using CLAP. The values presented in Table 8 are consistent and similar to
the value measured on Test 22. Hence the trial and error method used within
CLAP provides a mechanism to analyze the geometry of impact without sur-
face TOA measurements.
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Table 8

Comparison of Loading Wave Speed Determined by Graphical Pro-
cedure and by Trial and Error CLAP Calculatin _

CLAP, Trial and Error Method

Masonry

399 0.83697

0.95152

Masonry

491 0.98723

0.99841

Masonry

0.85381

0.93056

Masonry

0.98176

0.99986

Masonry

0.961861

1.0

Masonry

0.98081

1.0

Chapter 4 Analysis of Nonplanar Impacts

113 Masonry 337 0.95557 333 0.99608 5.72
14 Masonry 323 0.94881 296 0.96274 3.74 |123
{15 Masonry 323 0.89308 288 0.98996 7.44 | 26.7
16 Socorro 280 0.95149 276 0.97939 8.65 |25.5
Socorro 0.97052 0.97786 1.50 53
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5 Conclusions and
Recommendations

Conclusions

Twelve tests were conducted with the DNA/WES Ground Motion Test
Facility with sand testbeds as targets. Nine tests used Masonry sand and three
tests used Socorro Plaster sand as the target testbed material. A variety of
stress and motion transducers were included in each testbed to investigate the
environment in the testbeds, and to determine the robustness of the various
instruments.

These experiments provided valuable information on the mechanics of
testing with the gun. Analysis of the data provided insight for instrumentation
requirements and placement procedures/tolerances for future tests. The results
indicate that the facility is a viable tool for conducting dynamic tests for
instrumentation development and material properties studies.

Recommendations

Future tests with the gun will incorporate more diagnostic measurements in
the testbed. These will include time-of-arrival (TOA} measurements at the
surface of the testbed to determine the velocity and angle of impact of the
projectile. The TOA of the shock wave at various depths in the sample will
be measured (as was done for Test 22) to supplement the TOA measured at
the active gage locations. The inclusion of additional TOA measurements will
allow for more exact determination of the propagation velocity of the loading
and unloading waves in the sample. Also, the S&V canister will be fielded to
allow for more precise determination of the displacement of a stress sensor,
which will in turn allow a more definitive calculation of the unloading wave
speed.

In order to make optimum use of the gun to validate or test ground motion
sensors in granular materials, a testbed material is required that will have
consistent and predictable properties. WES is investigating the selection of a
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standard granular material (perhaps synthetic) and the development of
emplacement procedures which will provide a testbed with well-controlled and

consistent properties.
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Appendix A
Notation

C Average loading wave velocity in a testbed (velocity of distur-
bance caused by projectile impact)

Cy Loading wave velocity between the two instrumented depths in a
testbed

Cp Loading wave velocity between the lower instrumented depth and
bottom of a testbed

Cy Unloading wave velocity in a testbed (wave resulting from reflec-
tion from bottom of testbed)

D Projectile diameter
Hl1 Upper instrumented depth in a testbed

HI(T3) Location of an instrument originally in the upper depth, at TOA
of relief wave

H2 Lower instrumented depth in a testbed

H2(T%) Location of an instrument originally in the lower depth, at TOA
of relief wave

TOA Time-of-arrival (of shock waves)

11 Initial TOA at a gage in the upper depth

N

Initial TOA at a gage in the lower depth
13 TOA of the relief wave at a gage in the lower depth

T4 TOA of the relief wave at a gage in the upper depth
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A2

AT

Vel,

Differeace in time between the first and last points of impact of
the projectile onto the surface of a testbed

Projectile velocity
angle at which the loading wave propagates through the testbed

angle at which the projectile impacts the testbed

Apperdix A Notation




Appendix B
Gage Locations for Tests in
Sand
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Table B1

Gage Locations for Tests in Sand

T

HRSE-1

Depth = 16.2 cm
Radius = 30.5 cm

Depth = 30.6 CM
Radius = 16.2 CM

0CBS-1

AV-W1

AV-W2

AV-L

AV-M

HRSE-2

0CBS-2

NCBS

HRSE-1

0CBS-1

AV-W

AV-L

AV-M

A AN AN ANAY

HRSE-2

HRSE-3?

NCBS

HRSE-1

OCBS-1

AV-W

AV-L

AV-M

HRSE-2

HRSE-3?

! Located in conter of testbed (radius = O cm)

| ? Oriented horizontally

N\
-
g
g |
~
-
o |
| Bl
.&‘
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Table B1 (Continued) 7 |
Depth = 16.2 cm Depth = 30.6 CM
T T

HRSE-1 s
ocBS®
10 AV-W

SN N

AV-L

HRSE-2

HRSE-32? 4

NCBS 4

HRSE-1

ocBs?®

AV-W

AV-L

HRSE-2

HRSE-3?

NCBS

NCBS 4 .
ey o e e e — o 7 - o e e e e e — - P—— .»7,«,_7774-.‘1:
‘ {Sheet 2 of 4] |
T e e e e

' Located in center of testbed {radius = 0 cm)
2 Oriented horizontally ]

B3
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Table B1 (Continued) - _ _—

r

1
|-
\
|
\

B4

]

e smsare]

! Located in center of testbed (radius = O ¢m)

| ? Oriented horizontally
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Table B1 (Concluded)

Teet No.

17

22

' Located in center of testbed (radius = O cm)
2 Oriented horizontally

3 No data

Gage Neme
HRSE-1

Depth = 16.2 cm
Radius = 30.6 cm

Depth = 30.56 CM
Radius = 16.2 CM

AV-W

AV-L

AV-N1

SC-$1

SV-S1

N IN N N SN S

HRSE-2

AV-N2

SC-52

SV-L1

HRSE-1

NCBS-1

cces-14

CSHMA-1®

SN SN

HRSE-2

NCBS-2

SHMA-2

¢ NCBS in canister with HIFI
 HIF! in canister with NCBS

Appendix B Gage Locations for Tests in Sand

{Sheet 4 of 4)

BS




Appendix C

Wet Density and Moisture
Content Profiles for Tests in
Sand

Appendix C Waet Density and Moisture Content Profiles for Tests in Sand

C1




C2

0 AVG. VALUE = 1.61 G/CC

5.1
10.2
15.2
20.3
254
305 E
35.6
40.6
45.7 k
50.8
55.9
61.0

DEPTH (CM)

L " J PR | . 1 —_

1.5 1.55 16 1.65 17 1.75
WET DENSITY (G/CC)
a. Profile of wet density

102 |
15.2
20.3
25.4
305 f
35.6

DEPTH (CM)

50.8 |~ AVG. VALUE = 4.9%
55.9 OVEN DRY METHOD

T

61.0

" L n Y i N 1 . 1 i

0 1 2 3 4 5 6
MOISTURE CONTENT (%)

b. Profile of moisture content

Figure C1.

Wet density and moisture content profiles for Test 6
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0 |-
51+
102
AVG. V. =1.
152 F G. VALUE = 1.59 G/CC
20.3
s
3] 25.4
T 305
l-ul'-l 35.6
& 3s.
40.6
457
50.8
55.9
61.0
L " ] N 1 . B S 1 "
15 1.55 16 1.65 1.7 1.75
WET DENSITY (G/CC)
a. Profile of wet density
ol
51 AVG. VALUE = 3.6%
OVEN DRY METHOD
10.2
152 F
- 20.3
5 254 -
> :
(=
Q.
w
(=]
| I L —l i A . Il N
0 1 2 3 4 5
MOISTURE CONTENT (%)

b. Profile of moisture content

Figure C2. Wet density and moisture content profiles for Test 7

Appendix C Wet Density and Moisture Content Profiles for Tests in Sand

C3




C4

i

5.1
10.2
15.2
203
254
30.5

1

AVG. VALUE = 1.61 G/CC

1

DEPTH (CM)
&
[«)]

40.6
45.7
50.8
55.9
61.0

I . L | " Il "

1.5 1.55 1.6 1.65 1.7 1.75
WET DENSITY (G/CC)
a. Profile of wet density

5.1 AVG. VALUE = 52%
OVEN DRY METHOD
10.2

15.2
20.3
25.4

DEPTH (CM)

a3 &84 8
© ®O® N OO O O

61.0

o 1 i 1 i i 1 : 1

0 1 2 3 4 5 6
MOISTURE CONTENT (%)
b. Profile of moisture content

Figure C3. Wet density and moisture content profiles for Test 8
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51|
102}
15.2
20.3
25.4 §
305
356
40.6
45.7 |
50.8
55.9
61.0

AVG. VALUE = 1.60 G/CC

DEPTH (CM)

. I —

1.5 1.55 1.6 1.65 1.7 1.75
WET DENSITY (G/CC)
a. Profile of wet density

10.2
15.2
20.3
254

DEPTH (CM)

45.7
5C.2
559 | AVG. VALUE = 3.5%

OVEN DRY METHOD
61.0 i~

I . | Yy B
Y 1 2 3 4 5
MOISTURE CONTENT (%)

b. Profile of moisture content

Figure C4. Wet density and moisture content profiles for Test 10
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Cé6

AVG. VALUE = 1.62 G/CC

-

o

LN
1

DEPTH (CM)

1 N | L | —— |

15 155 1.6 1.65 1.7 1.75
WET DENSITY (G/CC)
a. Profile of wet density

51
AVG. VALUE = 3.8%
102 + OVEN DRY METHOD

15.2

'?j

254 i

DEPTH (CM)

88465888
© ® N o o o

61.0 |-

i A . 1 N L i 1

0 1 2 3 4 5
MOISTURE CONTENT (%)
b. Profile of moisture content

Figure CS5.

Wet density and moisture content profiles for Test 11

Appendix C Wet Density and Moisture Content Profiles for Tests in Sand




T

51
10.2
152 - AVG. VALUE = 1.58 G/CC
20.3
254 §
30.5
356 ¢
40.6 }
45.7
50.8
559 E
61.0

DEPTH (CM)

PR L | —_ i

1.5 1.55 1.6 1.65 1.7 1.75
WET DENSITY (G/CC)
a. Profile of wet density

A
5 AVG. VALUE =3.0%
10.2 |- OVEN DRY METHOD

15.2
20.3 +
254 |

DEPTH (CM)

610

e 1 . L N i N

0 1 2 3 4 5
MOISTURE CONTENT (%)
b. Profile of moisture content

Figure C6. Wet density and moisture content profiles for Test 12

Appendix C Waet Density and Moisture Content Profiles for Tests in Sand

c7




cs8

51

102
182 AVG. VALUE = 1.58 G/CC

20.3
25.4
30.5
35.6
406 |
45.7
50.8
55.9
61.0

DEPTH (CM)

| X - b j .
1.5 1.55 1.6 1.65 1.7 1.75

WET DENSITY (G/CC)
a. Profile of wet density

5.1
10.2
15.2
203
254
30.5
35.6
40.6
45.7
50.8
55.9 |
61.0

AVG. VALUE = 14%
NUCLEAR DENSITOMETER

T 1

DEPTH (CM)

b i 1 " . o

0 1 2 3 4 5
MOISTURE CONTENT (%)
b. Profile of moisture content

Figure C7. Wet density and moisture content profiles for Test 13

Appendix C Wet Density and Moisture Content Profiles for Tests in Sand




51
10.2 r
152 AVG. VALUE = 1.59 G/CC
20.3 B .
254 f
30.5
35.6 |
40.6
457 &
50.8
55.9 k
61.0

DEPTH (CM)

i L DS B

1.5 1.55 1.6 1.65 1.7 1.75
WET DENSITY (G/CC)
a. Profile of wet density

511
AVG. VALUE = 2.8%
10.2 |-NUCLEAR DENSITOMETER

15.2 R
20.3

DEPTH (CM)
8
(&)

61.0

0 1 2 3 4 5
MOISTURE CONTENT (%)
b. Profile of moisture content

Figure C8. Wet density and moisture content profiles for Test 14

Appendix C Wet Density and Moisture Content Profiles for Tests in Sand

Cco




51}
102 |
15.2 AVG. VALUE = 1.60 G/CC
20.3 =
25.4
30.5
35.6
406
457 k
50.8
55.9 k
61.0

DEPTH (CM)

L L !

1.5 1.55 1.6 1.65 1.7 1.75
WET DENSITY (G/CC)
a. Profile of wet density

AVG. VALUE = 3.1%
NUCLEAR DENSITOMETER

DEPTH (CM)
<]
18]

0 1 2 3 4 5
MOISTURE CONTENT (%)
b. Profile of moisture content

Figure C9. Wet density and moisture content profiles for Test 15
c10

Appendix C Waet Density and Moisture Content Profiles for Tests in Sand




51
10.2
1582 AVG. VALUE = 1.69 G/CC
20.3
25.4
30.5
35.6
40.6 }
45.7
50.8 |
55.9
61.0

T

DEPTH (CM)

! i i " | !

15 1.55 1.6 1.65 1.7 1.75
WET DENSITY (G/CC)
a. Profile of wet density

0 =
sir AVG. VALUE = 2.4%
10.2 - NUCLEAR DENSITOMETER
152
20.3
25.4

DEPTH (CM)

8368868
© O N O O O,

61.0

R | N L " - A |

0 1 2 3 4 5
MOISTURE CONTENT (%)
b. Profile of moisture content

Figure C10. Wet density and moisture content profiles for Test 16

Appendix C Wet Density and Moisture Content Profiles for Tests in Sand Ci1




Ci2

5.1
10.2
15.2
203

30.5

DEPTH (CM)

40.6
45.7
50.8

559 ¢

61.0

1.

5.1
10.2
15.2

<]
w

25.4

DEPTH (CM)

636888
© O N O O O;

61.0

254 F

35.6 F

o AVG. VALUE = 1.70 G/CC

- ! " i — i .

5 1.55 16 1.65 17
WET DENSITY (G/CC)
a. Profile of wet density

-

AVG. VALUE = 2.5%
- NUCLEAR DENSITOMETER

L " I _ ! i l

0 1 2 3 4

MOISTURE CONTENT (%)
b. Profile of moisture content

Fiqure C11.

Wet density and moisture content profiles for Test 17

Appendix C Wet Density and Moisture Content Profiles for Tests in Sand




T

5.1
10.2 i
15.2
20.3
25.4
30.5
356k i
40.6
45.7
50.8 fr
55.9
61.0

AVG. VALUE = 1.67 G/CC

DEPTH (CM)

I B H " L v "

15 1.55 1.6 1.65 1.7 1.75
WET DENSITY (G/CC)
a. Profile of wet density

102 -
15.2
203
254
30.5
35.6
45.7

50.8 | AVG. VALUE = 4.0%
OVEN DRY METHOD
559 -

61.0 |-

DEPTH (CM)

. 1 " ] PR | PR

0 1 2 3 4 5
MOISTURE CONTENT (%)
b. Profile of moisture content

Figure C12. Wet density and moisture content profiles for Test 22

Appendix C Wet Density and Moisture Content Profiles for Tests in Sand c13




Appendix D
Active Measurement Data for
Tests in Sand

Appendix D Active Measurement Data for Tests in Sand

D1




40 —
0 HRSE -1

20 [~
0

_10 o

40
30
20 —
10
0
-10

1

0CBS-1

PRESSURE MPA

40 —
30 HRSE-2

20r—
10

0 M

-10 e

40
30 0cBS-2
20 I~

10 ~

0
-10 L

L 1 l L 1 | ] | | ] J

647.4 647.9 648.4 648.9 649.4 649.9 650.4 650.9 651.4 651.9 652.4

f

TIME - MSEC

Figure D1. Stress and impulse wave forms from Test 6 (Continued)
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Figure D13. Acceleration, velocity, and displacement wave forms from Test 6 (Sheet 1 of 3)
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Figure D14. Acceleration, velocity, and displacement wave forms from Test 7 (Sheet 1 of 3)
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Figure D15. Acceleration, velocity, and displacement wave forms from Test 8 (Sheet 1 of 3)
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Figure D16.  Acceleration, velocity, and displacement wave forms from Test 10 (Sheet 1 of 3)
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Figure D17.  Acceleration, velocity, and displacement wave forms from Test 11 (Sheet 1 of 3)
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Figure D18. Acceleration, velocity, and displacement wave forms from Test 12 (Sheet 1 of 3)
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Figure D19. Acceleration, velocity, and displacement wave forms from Test 13 (Sheet 1 of 3)
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Acceleration, velocity, and displacement wave forms from Test 14 (Sheet 1 of 3)
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Figure D21.  Acceleration, velocity, and displacement wave forms from Test 15 (Sheet 1 of 3)
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Figure D23. Acceleration, velocity, and displacement wave forms from Test 17 (Sheet 1 of 4)
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Figure D24.  Acceleration, velocity, and displacement wave forms from Test 22 (Sheet 1 of 3)
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