Final Technical Report

Grant No. N00014-93-1-0073

for support of

The Symposium on Inorganic and Organometallic Polymers

1993 Spring National ACS Meeting
Denver, Colorado
March 29 - April 2, 1993

Principal Investigator: Dr. Patty Wisian-Neilson
Department of Chemistry
Southern Methodist University
Dallas, TX 75275-0314
The program of the *International Symposium on Inorganic and Organometallic Polymers* reviewed the developments in the area of Inorganic Polymers since the previous symposium on this subject held at the Denver ACS Meeting in 1987. The program at this second meeting included 49 speakers from the United States, France, Germany, Japan, The Netherlands, and Italy, who gave 20 to 30 minute presentations. These were divided into six half-day sessions (Monday, March 28 through Wednesday, March 31) entitled Silicon-containing Polymers (2 sessions), Oxo-network Polymers (1 session), Poly(phosphazenes) (1 session), Main Group Element Polymers (1 session), and Metal-containing Polymers (1 session). In addition, 27 posters on these subjects were presented in the Polymer Division Tuesday evening session. These talks explored a multitude of important and often unique mechanical, thermal, photochemical, electrical, optical, and biomedical properties of Inorganic Polymers. Manuscripts from these papers and posters were published in *Polymer Preprints (Am. Chem. Soc. Div. Polym. Chem.)* 1993, 34(1). The relevant portion of the Table of Contents of *Polymer Preprints* is attached. Attendance at these sessions ranged from 40 to 200 people.

To acquaint those relatively new to the field, a tutorial session was held on Sunday afternoon, March 28 just prior to the regular sessions. Three one hour talks were presented by Harry Allcock, Dietmar Seyferth, and Walter Klemperer on "General Principles, Diversity of Systems, and Structure-Property Relationships in Inorganic and Organometallic Polymers", "A Survey of Organosilicon Polymers", and "Oxopolymers: An Introduction to Inorganic Network Polymerization", respectively.

Based on the vast interest in the meeting and a number of new developments in the field of Inorganic Polymers, the organizers have initiated the publication of papers related to this symposium as an *ACS Symposium Series Volume*. Approximately 35 manuscripts have been received and reviewed and are now being returned to the authors for corrections. The tentative Table of Contents of this book is also attached to this report.
<table>
<thead>
<tr>
<th>author</th>
<th>Manuscript title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Silicon containing polymers</td>
<td></td>
</tr>
<tr>
<td>H. Sakurai</td>
<td>Anionic Polymerization of Masked Disilenes to Polysilylenes. Mechanism and Applications</td>
</tr>
<tr>
<td>C. Biran, M. Bordeau</td>
<td>Electrochemical Access to Di, Tri and Polysilanes</td>
</tr>
<tr>
<td>E. Fossum, K. Matyjaszewski</td>
<td>Stereoregular Polysilanes by Ring-Opening Polymerization</td>
</tr>
<tr>
<td>Joanne Schwark</td>
<td>Polysilazane Thermosets as Precursors for Silicon Carbide and Silicon Nitride</td>
</tr>
<tr>
<td>R. M. Waymouth</td>
<td>Substituent Effects on the UV Absorption of σ-Conjugated Polysilanes</td>
</tr>
<tr>
<td>K. J. Wynne</td>
<td>Surface Properties of Polydimethylsiloxane-Urea-Urethane Copolymers with 1,4-Benzenedimethanol as Chain Extender</td>
</tr>
<tr>
<td>J. C. van de Grampel</td>
<td>Silicon Containing Resist Materials Based on Chemical Amplification</td>
</tr>
<tr>
<td>Oxopolymers</td>
<td></td>
</tr>
<tr>
<td>C. J. Brinker</td>
<td>Structure-Property Relationships in Sol-Gel-Derived Thin Films</td>
</tr>
<tr>
<td>D. A. Loy</td>
<td>Porous Materials by Design. Plasma Oxidation of Hydrocarbon Templates in Polysilsesquioxanes</td>
</tr>
<tr>
<td>J. Livage</td>
<td>Sol-Gel Synthesis of Heterometallic Oxopolymers</td>
</tr>
<tr>
<td>A. R. Barron</td>
<td>A New Structural Model for Alumoxane Macromolecules</td>
</tr>
<tr>
<td>W. S. Rees, Jr.,</td>
<td>Use of the Reaction Products of Diols and Organoaluminum Compounds as Precursors to Al₂O₃. Control over Ceramic Material Phase and Particle Size by Choice of Chemistry</td>
</tr>
<tr>
<td>H. K. Schmidt, Herbert Krug</td>
<td>Sol-Gel Based Inorganic-Organic Composite Materials</td>
</tr>
<tr>
<td>author</td>
<td>Manuscript title</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>--</td>
</tr>
<tr>
<td>Polyphosphazenes</td>
<td></td>
</tr>
<tr>
<td>H. R. Allcock</td>
<td>Macromolecular and Materials Design Using Polyphosphazenes</td>
</tr>
<tr>
<td>R. H. Neilson</td>
<td>New Synthetic, Catalytic, and Structural Studies Related to Poly(alkyl/arylphosphazenes)</td>
</tr>
<tr>
<td>P. Wisian-Neilson</td>
<td>Backbone Coordination of Poly(alkyl/arylphosphazenes)</td>
</tr>
<tr>
<td>W. T. Ferrar,</td>
<td>Polyphosphazene Molecular Composites. In Situ Polymerizations of Silicon, Titanium, Zirconium and Aluminum Alkoxides</td>
</tr>
<tr>
<td>M. Kajiwara</td>
<td>Oxygen Gas Permeability and the Mechanical Properties of Poly(n-butylamino)(di-n-hexylamino)phosphazene Membranes</td>
</tr>
<tr>
<td>M. Gleria</td>
<td>Grafting Reactions onto Poly(organophosphazenes)</td>
</tr>
<tr>
<td>Y. W. Chen Yang</td>
<td>Poly[(bis-p-chlorophenoxy)phosphazene]/Polystyrene Blends: Preparation, Compatibility, and Properties</td>
</tr>
<tr>
<td>M. L. White, K. Matyjaszewski</td>
<td>Polyphosphazene Random and Block Copolymers with Alkoxyalkoxy and Trfluoroethoxy Groups</td>
</tr>
<tr>
<td>C. E. Hoyle</td>
<td>The Photophysics and Photochemistry of Poly(alkylarylphosphazenes) and Poly[methylphenylphosphazene-graft-polystyrene Copolymers</td>
</tr>
<tr>
<td>Main group element polymers</td>
<td></td>
</tr>
<tr>
<td>A. K. Roy</td>
<td>Poly(alkyl/aryloxothiazenes), [N = S(O)R]n, A New Direction in Inorganic Polymers</td>
</tr>
<tr>
<td>L. G. Sneddon/R. T. Paine</td>
<td>Recent Developments in Borazine Based Polymers</td>
</tr>
<tr>
<td>Y. Kimura</td>
<td>Synthesis and Preceramic Applications of Poly(aminoborazinyls)</td>
</tr>
<tr>
<td>C. Allen</td>
<td>Quantitative Reactivity Studies of the Copolymerization Reactions of Inorganic Rings Containing Olefinic Substituents</td>
</tr>
<tr>
<td>Y. Chujo</td>
<td>Synthesis of Organoboron Polymers by Hydroboration Polymerization</td>
</tr>
<tr>
<td>Name</td>
<td>Research Area</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>---</td>
</tr>
<tr>
<td>L. J. Henderson, Jr. Teddy Keller</td>
<td>Poly(Carbonane-Siloxane-Acetylene) as Precursor to High Temperature Thermoset and Ceramic</td>
</tr>
<tr>
<td>Jim Jensen</td>
<td>Organoaluminum Precursors Polymers for Aluminum Nitride Ceramics</td>
</tr>
<tr>
<td></td>
<td>Metal containing polymers</td>
</tr>
<tr>
<td>I. Manners</td>
<td>Ring-Opening Polymerization (ROP) of Strained, Ring-Tilted Metalloccenophanes: A New Route to Organometallic Polymers</td>
</tr>
<tr>
<td>M. E. Wright</td>
<td>Transition Metals in Polymer Chemistry: The Search for χ (2) Organometallic NLO Polymers</td>
</tr>
<tr>
<td>M. Hanack</td>
<td>Transition Metalphthalocyanines as Structures for Materials Design</td>
</tr>
<tr>
<td>D. R. Tyler</td>
<td>Synthesis, Characterization, and Reactivity of a New Class of Photochemically Reactive Polymers Containing Metal-Metal Bonds Along the Polymer Backbone</td>
</tr>
<tr>
<td>D. S. Bohle</td>
<td>Structural and Spectroscopic Studies of β-Hematin the Heme Coordination Polymer in Malária Pigment</td>
</tr>
<tr>
<td>Kenneth Gonsalves</td>
<td>Synthesis of Nanocomposites via Inorganic Polymeric Gels</td>
</tr>
</tbody>
</table>
Liquid crystalline block copolymers. **E. Cheliell**, G. Galli, A.S. Angeloai, M.C. Bignozzi, M. Laus, B.L. Serhatli, Y. Yagci. .. 190

THURSDAY AM: (π-Conjugated and High Carbon Content Systems)

Synthetic approaches to carbon-rich and all-carbon networks. **F. Diederich.** .. 192

New approaches to all carbon ladder polymers: cyclization reactions of acetylenes. **Q. Zhou**, **T.M. Swager.** .. 193

Structurally perfect ladder polymers: Shape and conversion. **M. Loffler**, A.-D. Schlüter. .. 199

A new synthesis of polymers containing acetylenic groups. **M. Strukelj**, M. Paventi, A.S. Hay. .. 201

THURSDAY PM: (Blocks, Grafts and Networks)

Block copolymers via living transition metal initiated polymerizations: Change of mechanism and bimetallic initiator approaches. **B.M. Novak**, T.J. Deming. .. 207

Simultaneous hydrosilylation and ring-opening polymerization as a route to novel polymer architectures. **J.V. Crivello**, M. Fan. .. 213

INORGANIC AND ORGANOMETALLIC POLYMERS

(Organizers: H.R. Allcock, K.J. Wynne, P. Wissian-Neilson)

SUNDAY PM (Tutorial)

General principles, diversity of systems, and structure-property relationships in inorganic and organometallic polymers. **H.R. Allcock.**

A survey of organosilicon polymers. **D. Seyferth.**

MONDAY AM (Silicon-containing Polymers)

Unsaturated organosilicon polymers as preceramic and electrooptic materials. T.J. Barton, Y. Ding, Y. Pang, S. Ijadi-Maghsoodi. ... 217

Anionic polymerization of masked dienes to polysilienes. Mechanism and applications. H. Sakurai, K. Sakamoto, Y. Funada, M. Yoshida. ... 218

Electrochemical access to di, tri and polysilanes. C. Biran, M. Bordeau, M.-P. Léger-Lambert, F. Spirau, J. Dunogues. ... 220

Linear polysilienes by ring-opening polymerization of cyclotetrasilanes. J. Chrusciel, E. Fossum, K. Matyjaszewski. ... 221

Anionic polymerization of cyclic organosilicon compounds initiated by trimethylsilylmethylithium. T. Zundel, L. Lestel, D. Teysidé, J.M. Yu, S. Bolleau. ... 225

C60-Siloxane polymers for hydrosilylation reactions. R. West, M. Miller, H. Takahashi, T. Gunji, K. Oka. ... 227

MONDAY PM (Silicon-containing Polymers)

Functionalization of poly(phenyl)silane. J.P. Banovetz, Y.-L Hsiao, R.M. Waymouth. ... 228

Low temperature Wurtz-type polymerization of substituted dichlorosilanes. R.D. Miller, E.J. Ginsberg, P. Jenkner, D. Thompson. ... 232

Comparison of dialkyl and alkyl-aryl substituted polysilanes in solution. P.M. Cotts. ... 234

Surface properties of polydimethylsiloxane-urea-urethane copolymers with 1,4-benzenedimethanol as chain extender. K.L. Wynne, T. Ho. ... 236

Silicon containing resist materials based on chemical amplification. R. Puyenbroek, P. Werkman, J.J. Jansema, J.C. van de Graanp, B.A.C. Rousseuw, E.W.J.M. van der Driift. ... 238

Structural characterization of sol-gel derived siloxane-oxide materials. F. Babonneau, J. Maquet, S. Dire. ... 242

Porous materials by design, plasma oxidation of hydrocarbon templates in polysilsequioxanes. D.A. Loy, R.J. Buss, R.A. Assink, K.J. Shee, H. Oviatt. ... 244

TUESDAY AM (Oxo-network Polymers)

Sol-gel synthesis of heterometallic oxopolymers. J. Liva, P. Babonneau, L. Bonhomme-Coury. ... 246

Use of the reaction products of diols and organoaluminum compounds as precursors to Al₂O₃. Control over ceramic material phase and particle size by choice of chemistry. W.S. Rees Jr., W. Hesse .. 252

Inorganic polymers derived from silica and alumina. An ion conducting polymer obtained by reaction of BaSi(OCH₂CH₂O)₃ with tetrastilene glycol. K.W. Chew, B. Dunn, T. Fulten, M.L. Hoppe, R.M. Laine, L. Nazar, H.-K. Wu ... 254

Polymer precursors to silicate ceramics: Studies of ceramic formation. C.K. Ober, M.H.E. Martin, L. Beecroft .. 256

Towards biomimetic composite materials. Organic-inorganic composite materials possessing rigid chain, helical polyisocyanate templates. B.M. Novak, S.M. Hoff, Y. He ... 258

Sol-gel based inorganic-organic composite materials. H.-K. Schmidt .. 260

TUESDAY PM (Polyphosphazenes)

Macromolecular and materials design using polyphosphazenes. H.R. Allcock .. 261

New synthetic, catalytic, and structural studies related to poly(alkyl-arylphosphazenes). C.E. Wood, R.C. Samuel, W.R. Kucera, C.M. Angelov, R.H. Neilson .. 263

Backbone coordination of poly(alkyl/arylphosphazenes). P. Wisian-Neilson, F.J. Garcia-Alonso .. 264

Oxygen gas permeability and the mechanical properties of poly(n-butylamino) (di-n-hexylamino)phosphazene membranes. M. Kallwar .. 268

The compatibility and properties of poly[(bis-p-chlorophenoxy)phosphazene]/polystyrene blends. Y.W. C. Yang, T.T. Wu .. 272

Synthesis of polyphosphazene random and block copolymers. K. Matyjaszewski, M.S. Lindenberg, M.K. Moore, M.L. White .. 274

The photophysics and photochemistry of poly(alkylarylphosphazenes). C.E. Hoyle, D. Creed, P. Subramanian, P. Chatterton, I.B. Rufus, P. Wisian-Neilson .. 276

TUESDAY (Posters) 6:00-8:00 PM

Towards identification of the stereoisomers of Me₄Ph₄Si₄. E. Fossen, S. Gordon, J. Maxka, K. Matyjaszewski .. 278

Temperature and solubility effects in the formation of polysilanes by the reductive-coupling of dichloro(organo)silanes. R.G. Jones, S.L. Webb .. 280

Hydrosilylation of alkenyl azlactones. K. Kumar, S.V. Pathre. 286

A novel catalytic polymerization reaction. Coupling allylxy and Si-H moieties. A. Sellinger, R.M. Laine. 288

Synthesis of carboxilane monomers and polymers with mesogenic pendant groups. S.J. Sargent, W.P. Weber. 290

Poled ordered phenoxalk siloxane polymers as second order nonlinear optical materials. R.J. Jeng, Y.M. Chen, J.I. Cha, J. Kumar, S.K. Tripathy. 292

Peroxide-substituted polysilazanes: Self-thermosetting ceramic precursors. J.M. Schwark. 294

Synthesis and characterization of polyphenylene-silica hybrid materials via sol-gel process. H.K. Kim, G. Yin, C.K. Ober. 298

Synthesis and properties of poly[(trimethylsilyl) silsesquioxane]. H. Yamane, Y. Kimura, T. Kitao. 300

Cureable liquid polyazlane precursors for aluminum nitride ceramics. J.A. Jensen. 302

Synthesis and properties of end-reactive oligomers having organosilyl and amino groups. Y. Nagasaki, E. Honzawa, M. Kato, K. Kataoka, T. Tsuruta. 304

Studies of cross-linking of poly(dimethyl siloxane) networks by inverse gas chromatography. Z. Tan, R. Jaeger, G.J. Vancso. 306

Poly(arylene ether)s containing phosphorus and heterocyclic pendant moieties. D.E. Priddy, Jr., M. Franks, M. Konas, M.A. Vrana, T.H. Yoon, J.E. McGrath. 310

Heat-resistant thermosetting resins and maleimido prepolymer based on a novel tetrakisaminophenoxycyclophosphazene. D. Kumar, A.D. Gupta, M. Khullar. 312

Synthesis and characterization of polyphosphazenes for potential electro-optical applications. A.I. Jaszkowski, R.E. Singler. 314

Chain terminators for polyphosphazenes. R.A. Montague, F. Burkus II, K. Matyjaszewski. 316

Synthesis routes to oxygen containing poly(alkyl/arylphosphazenes). L. Bailey, M. Bahadur, P. Wisian-Nelson. 318

Functionalization of polyphosphazenes: Synthesis and characterization of hydroxyl groups-containing poly[bis(alkoxy)phosphazenes]. R. Dejaeger, D. Houalla, C. Francart-Delprato. 320
New materials based on TEOS-poly(organophosphazene) systems. G. Facchini.
G. Fantin, M. Gleria, M. Guglielmi, F. Spizzo. ... 322

Synthesis and properties of aryloxy and mixed substituent alkoxy/aryloxy poly(thiolylphosphazenes) with halogen substituents at sulfur. M. Edwards, Y. Ni, M. Liang, A. Stummer, J. Massey, G.J. Vansco, I. Manners. ... 324

Ab initio studies on mimics of substituted poly(thiolylphosphazenes). J.B. Lagowski, R. Jaeger, I. Manners, G.J. Vansco. ... 326

Synthesis of poly(ferrocenylgermanes) and poly(ferroacenylphosphines) via ring-opening polymerization. C. Honeyman, D.A. Foucher, O. Mourad, R. Rulkens, I. Manners. ... 330

WEDNESDAY AM (Main Group Element Polymers)

New sulfur(VI)-nitrogen based inorganic polymers: Poly(alkyl/aryloxythiolazenes), \([N = S(O)R]_n\). Synthesis and characterization. A.K. Roy. ... 332

Synthesis and preceramic applications of poly(aminoborazinyls). Y. Kimura, Y. Kubo. ... 357

Versatile reactions of organoboron polymers prepared by hydroboration polymerization. Y. Chuo, I. Tomita, M. Morimoto, N. Takizawa, T. Sakurai. ... 341

The preparation, characterization and use of boron containing preceramic polymers as precursors to sintered silicon carbide. G.T. Burns, G.A. Zank. ... 343

Thermally and oxidatively stable carborane-siloxane-acetylene-based thermosetting polymers. L.J. Henderson, Jr., T.J. Keller. ... 345

WEDNESDAY PM (Metal-containing Polymers)

Transition metals in polymer chemistry: The search for \(\chi^{(2)}\) organometallic NLO polymers. M.E. Wright. ... 349

Approaches to stereoregular polyferrocenylene persulfides. D.L. Compton, T.B. Rauchfuss. ... 351

Coordination polymers based on orthobenzoquino none: Synthesis, reactions, and properties of [Ru₂(C₅H₄O₂)(CO)₄]₆. D.S. Bohle, P.A. Goodon. .. 358

Synthesis and characterization of metal ion binding polyesters containing 2,2'-bimimidazole. R.L. Lister, H.L. Collier. ... 360

FLUOROPOLYMERS
(Organizers: P.E. Cassidy and T. Davidson)

SUNDAY PM (Tutorial)
An overview of organofluorine chemistry. R. Flynn.
The chemistry of hexafluoroisopropanol-substituted aromatics. J.W. Fitch III.

Functional fluoropolymers. J. Griffith.

Polymers containing the hexafluoroisopropylidene group. P.E. Cassidy.

Introduction to commercial fluorooplastics. A.E. Feiring.

MONDAY AM (Special Properties)
Fluorine-19 NMR investigation of "6F" based amic acid model compounds. C.D. Smith, R. Mercier, H. Waton, B. Sillion. ... 364

Polymer dynamics studied by 19F multiple quantum coherences. D.A. Lathrop,
K.K. Gleason. ... 367

Photolysis of fluorinated polyimides. C.E. Hoyle, D. Creed, P. Subramanian,
R. Nagarajan, C. Pandey, E.T. Anzures. ... 369

FTIR study of the influence of stereoregular PMMA morphology on its miscibility with poly(styrene-co-p-(hexafluoro-2-hydroxy-2-propyl)styrene. D. Luo, T.K. Kwei,
E.M. Pearce. ... 371

Characterization of the electronic properties of the 6F and 3F groups. D.E. Fiare. ... 373

Effects of fluorine substitution on polarization and dielectric properties of polyimides. G. Hougham, G. Tesoro, A. Viebeck, J. Chapple-Sokol. ... 375

Synthesis, properties, and applications of composite materials based on grafted copolymers of perfluoropolymers and perfluorinated monomers with functional groups. B.V. Misiavsk, V.P. Melnikt. ... 377

Photoelectron spectra and macromolecular structure of fluorine-containing polyether ketones. T. Davidson, P.D. Bourgeois. ... 379

MONDAY PM (Synthesis)
Low dielectric, fluorinated polyimide copolymers. D.M. Stoskley, A.K. St. Clair,
C.I. Croall. ... 381