AD-A277 618 Computer Science N
AR e

. Structuring Z Specifications with Views .

Daniel Jackson
March 1994
CMU-CS-94-126

Y
e 68 B

aa 0 a1 OK0 bR EREE

7,
.
e

1]
-0

Structuring Z Specifications with Views

Daniel Jackson
March 1994
CMU-CS-94-126

School of Computer Science
Carnegie Mellon University
Pitesburgh, PA 15213

A view is a partial specification of a program, = onsisting of a state space and a
set of operations. A full specification is obtained by composing several views,
linking them though their states (by asserting invariants across views) and
through their operations (by defining external operations as combinations of
operations from different views).

By encouraging multiple representations of the program’s state, view struc-
turing lends clarity and terseness to the specification of operations. And by
separating different aspects of functionality, it brings modularity at the gross-
est level of organization, so that specifications can accommodate change more
gracefully.

View structuring in Z is demonstrated with a few small examples. The fea-
tures of Z that make it especially well suited to composing views are discussed,
along with some hints for adapting other languages to the purpose.

This research was sponsored in part by a Research Initiation Award from the National Science Founda-
tion (NSF), under grant CCR-9308726, by a grant from the TRW Corporation, and by the Wright Labo-
ratory, Aeronautical Systems Center, Air Force Materiel Command, USAF, and the Advanced Research
Projects Agency (ARPA), under grant F33615-93-1-1330. Views and conclusions contained in this docu-

ment are those of the author and should not be interpreted as necessarily representing official policies or
endorsements, either express or implied, of ARPA, NSF, TRW or the United States Government.

Keywords: formal specification, requirements, Z, views.

{ Introduction

The structure of most published Z specifications follows, quite closely, the
structure of an implementation. At the lowest level, of course, the structures
diverge, and predicates over sets replace loops, pointers and so on. But the
gross organization often retains the flavour of a program, with global variables
brought into a common area and operations packaged into modules. Even
procedure call has its analogue - in promotion, a technique in which the local
state of a schema is bound to a component of the global state, like the binding
of formals to actuals.

Conjunction is the lynchpin of implicit specification, and brings its most sig-
nificant benefit: separation of concerns. While the code of an operation must
exhibit several properties at once (obeying the Shanley principle of traditional
engineering), its specification may separate them. A line justification algorithm
must find hyphenation points and distribute spaces to optimize layout, but its
specification need only say that lines have fixed length, and hyphens are in-
serted according to the dictionary, and rivers are absent. The advantages of
this separation are clarity, terseness and modularity. The main disadvantage -
the dark side of conjunction - is the risk of overconstraint: there may be no
layout of the text that meets all the requirements. But in the early stages of
development, the risk is worth taking (and can be alleviated to some degree by
extra vigilance, in Z by calculating preconditions and in VDM by checking
implementability).

Why not extend the benefits of implicit specification beyond the definition
of operations? This paper proposes a structuring mechanism at the grossest
level, where separation of concerns has the same virtues but a different flavour.
The program is specified as the conjunction of several views. Like a module, a
view defines a state and some operations. But views are composed more freely
than modules: an operation may appear in more than one view, and the opera-
tions of the program as a whole may be formed by various combinations of
view operations.

Views decouple the aspects of a program’s functionality, so that each can be
constructed (and embellished) independently. A specification of a word pro-
cessor, for instance, might separate text-oriented functions, such as search/re-
place and checking spelling, from typographic functions, such as justification.
Each view has its own representation of the state space, so the text-oriented
functions might be defined over a string of alphabetic characters, while the ty-
pographic functions might call for a more elaborate state with soft-hyphens,

ligatures, kerning, etc. Nasty questions about interaction between aspects -
(what happens if you replace a word that straddles a soft line break? when do .

cuit ibution |

Availability Codes

3 W"

. Avail and/or
Dist Special

letter pairs become ligatures?) can be postponed until the views are composed,
and are more easily resolved than if the aspects were intertwined from the
start.

The seeds of view structuring are evident in many Z published specifica-
tions. Redundant state components are often declared purely to ease the defi-
nition of certain operations. Multiple representations have been used on a
larger scale too, as in Sufrin’s editor specification [Suf82], which relates the
appearance of a text buffer on the screen (given as a sequence of lines) to its
internal representation (a sequence of characters). Other languages, such as
VDM, tend to eschew the kind of redundancy and pervasive use of invariants
favored by Z, so these techniques are rarely seen elsewhere.

This paper contains no radical novelties. Its intent is to articulate, by means
of small illustrations, a style of specification based on views. It also attempts to
explain why Z is especially well suited to view structuring, pointing to features
that have not been stressed in recent comparisons [Hay92, HJN93, Hal93].

2 Why Views?

Views respond to a simple dilemma. The first step in writing a conventional
model-based specification is to define the state space. How the states are repre-
sented largely determines how easy it is to define the operations, so finding a
good representation can be hard. Sometimes no single representation does the
trick; some operations call for one, and some another.

Take cursor motion in an editor buffer, for example. A nice representation
[Suf82] of a buffer is two sequences of characters, one for the text preceding
the cursor and the other for the text following it:

File
’— left, right: seq Char

The operation that moves the cursor forward in the text can now be written
as:

_ csrRight

A File
right # ()

left’ = left~(head(right))

right’ = tail(right)

and the insertion of a character as:

_ insertChar.
A File
c?: Char

S

left’ = left~(c?) A right’ = right

Now consider moving the cursor up one line. Thinking that this is equivalent
to a series of leftward motions, we might look for an appropriate suffix of left
to amputate and append as a prefix to right. But this suffix is not easy to define.
If the text is wrapped automatically, so that soft line breaks are inserted in the
course of typing, the size of this suffix cannot be determined without knowing
the position of the last soft line break in left, which in turn depends on the
placement of word separators in the entirety of left!

A better state representation for the csrUp operation is a sequence of lines,
with a cursor given as a coordinate pair:
Grid
lines: seq seq Char
x,y: N

y € dom lines A x € dom lines[y]

Moving the cursor up is now easy to define
—csrUp
A Grid
y>1 Ay =y-1
x’ =min (x, #lines[y’))
lines’ = lines

as are other line-based operations, such as deleting from the cursor to the end
of the line:

- delEol

A Grid
lines'[y] = lines[y][1..x]
{y} alines’ = {y} < lines
x'=x Ay =y

Automatic text wrapping is easily defined on this representation too. A line is
legal if it ends with a newline or a space, and has no internal carriage returns:

legalLines: P seq Char

VI: seq Char .
| € legalLines = Vi€ dom l. ([[ij=\n = i=#l) A I[#]] € {\n, spc}

and a sequence of lines is wrapped if every constituent line is legal and no
longer than some maximum length:

wrapped: P seq seq Char
i Vis: seq seq Char «
Is € wrapped < ranls g legalLines A Y| € ran Is « #l < maxlinelen

This representation, however, is no good for the previous operations. Insert-
ing a character is a complicated affair; despite the text wrapping invariant, we
still have to place the inserted character, and are dragged into clumsy reason-
ing about what happens near the end of a line.

The solution to this dilemma is to have our cake and eat it. The specification
is divided into views. Each view can have a different state representation, and
an operation can be specified in one or more views. Here the character se-
quence operations fill one view (File) and the line operations another (Gria).
An invariant between the states of the two views ensures that they match as
expected. First, we state that the concatenation of all the lines in the Grid view
is the concatenation of the left and right portions of the text in the File view,
and that the length of the left portion in the File view is the sum of the lengths
of the line segments in the Grid view up to the cursor:

_ Flatten
File, Grid
left ~right = ~lines
#left =x + X i:1..y—1 « #lines{i)

Additionally, the division into lines should be optimal, so that if a word can fit
on a line, it will not be wrapped. One division is better than another if its first
line is longer, or if its first line is the same length and the division of the re-
maining lines is better:

>: seq seq Char — seq seq Char

Vs, Is,: seq seq Char «
Is, > Is, = (#head(ls,) > #head(ls,))
V (#head(ls,) = #head(ls,) A tail(ls,) > tail(ls)))

Now we can state the invariant fully. Any division into lines that also matches
the representation as a flat sequence must be no better than the actual division:

— Editor
Flatten

Vls: seq seq Char « Flatten(ls/lines]) = — (Is > lines)

_ File
left, right: seq Char

_ File.csrRight
A File

right #() A right’ = tail(right)
left’ = left~(bead(right))

_ File.insertChar
A File
c?: Char

left’ = left~(c?) A right’ =right
_ Grid

lines: seq seq Char

x,y: N

lines € wrapped A y € dom lines A x € dom lines[y]

_ Grid.csrUp
A Grid
y>1 Ay =y-1 A x’ =min(x, #lines[y’])
lines’ = lines

_ Grid.delEol

A Grid
lines'[y] = lines[y][1..x]

{y}<elines’ = {y}d lines
X=x Ay=y

_ Flatten
File, Grid
left~right = ~lines A #left =x + Zi:1..y—1 « #lines|i]
_ Editor
Flatten
Vis: seq seq Char « Flatten[ls/lines] = — (Is > lines)

insertChar = [AEditor | File.insertChar)
csrRight = [AEditor | File.csrRight)
csrUp = [AEditor | Grid.csrUp)

delEol = [AEditor | Grid.delEol)

Figure 1: An outline of an editor specification in two views

Finally, the operations of the whole program are defined, each being taken
from the appropriate view:

insertChar = [AEditor | File.insertChar)
csrRight = [AEditor | File.csrRight]
csrUp = [AEditor | Grid.csrUp]

delEol = [AEditor | Grid.delEol)

Superficially this resembles the standard composition of two modules. But
there is a crucial difference. There are no frame conditions that hold the state
of one view invariant when an operation from the other is executed; on the
contrary, almost any change to one will affect the other.

The specification fragments are brought together in Fig. 1. The benefit of
two representations is clear — a dubious reader might try to recast an operation
from one view in the representation of another. To see how views give a help-
ful modularity, consider a few likely modifications.

When the cursor is moved up or down it may jump to the left if otherwise it
would land beyond the line. In some editors the cursor remembers its previous
position, and will move back to the right when taken to a longer line. This is a
desirable feature, since it results in more natural behaviour (moving up then
immediately down, for instance, having no effect). How might we add it to
our specification? The feature is about lines, so the first place to look is the
Grid view. The state would be extended with the cursor’s “memory”, and the
csrUp and csrDown operations amended accordingly. Left and right move-
ments of the cursor must reset the memory, in addition to having their normal
effect. But this does not imply a change to csrLeft and csrRight in the File view.
Instead local specifications of the two operations would be added to the Grid
view. The aspect of functionality to do with cursor memory is this confined
within the appropriate view; its effect on the overall behaviour would be ob-
tained by defining the external csrLeft and csrRight operations as the conjunc-
tion of their partial specifications in the two views.

Even drastic changes can sometimes be confined within a view. To change
from a fixed-width character display to a bit-mapped screen with proportional
spacing would need a new Grid view, but the File view would remain un-
scathed.

More elaborate features might require new views. A Word view for specify-
ing spelling checks might represent the buffer as a sequence of words, abstract-
ing away distinctions between separators, and joining syllables separated by
soft-hyphens. An Outline view might structure the buffer as a sequence of sec-
tions, or perhaps as a tree.

(1d]

Onhook = {ringing, idle}
Tones = {dialtone, ringtone, busytone}
Status = Onhook U Tones U {waiting, connected}

Phone = [status: Status]

Phone.Initiate = [APhone | status = idle A status’ = dialtone)
Phone.Dial = [APhone; to?: Id | status = dialtone A status’ = waiting)
Phone.GetRing = [APhone | status = waiting A status’ = ringtone])
Phone.GetBusy = [APhone | status = waiting A status’ = busytone)
Phone.GetConn = [APhone | status = ringtone A status’ = connected)
Phone.LoseConn = [APhone | status = connected A status’ = dialtone]
Phone.Hangup = [APhone | status = connected A status’ = idle)
Phone.Replace = [APhone | status = dialtone A status’ = idle]

Phone Answer = [APhone | status = ringing A status’ = connected)
Phone.Ring = [APhone | status = idle A status’ = ringing]

Figure 2: The Phone view

3 Joining Views by their Operations

In the editor specification (Fig. 1), the two views are joined by an invariant
relating their states, and each operation of the program is an operation on one
view or the other, but never both. Another way to join views is to synchronize
their operations; in this case, the states of the views need not be related explic-
itly at all.

A telephone can be described as a simple machine with states like idle,
dialtone, waiting, etc. Each operation corresponds to a transition, so lifting the
handset when the phone is idle, for example, can be modelled by

_ Initiate
APhone

status = idle A status’ = dialtone

In contrast, when the phone is ringing, lifting the handset is an instance of

_ Answer
APhone

status = ringing A status’ = connected

The separation of the same action (lifting the handset) into two different
classes of operation is determined locally by the status of the phone when the

Switch
regconns: Id — id
conrs: Id>— Id

conns g regconns

. Switch.Request
ASwitch
from?, to?: Id

reqconns’ = reqconns U {(from?, to?)}
conns’ = conns

_ Switch.Connect
ASwitch

from?, to?: Id
(from?, to?) € reqconns A to? € (dom conns U ran conns)
conns’ = conns U {(from?, to?)}
reqconns’ = reqconns

— Switch.Reject
ASwitch
from?, to?: Id

(from?, to?) € reqconns A to € (dom conns U ran conns)
reqconns’ = reqconns \ {(from? to?)}

_ Switch.Terminate
ASwitch
| from?, to?: Id

(from?, to?) € conns
conns’ = conns \ {(from?, to?)}
reqconns’ = reqconns \ {(from?, to?)}

Figure 3: The Switch view

action is performed; later we shall see how this kind of classification plays a
pivotal role.

The operations on a phone constitute one view of the phone system (Fig. 2).
Note that dialling (naively modelled as an atomic operation) takes an argu-
ment — the number of the phone being called - but does not use it in the
schema. The response to a dialling is either GetBusy or GetRing, but which of
the two occurs is not specified in this view.

10

_ PhoneSystem
phones: Id — Phone
Switch

_ Bind
APhoneSystem
APhone
i?: Ild
9phone(i?) = 9phone A 9phone’ (i?) = Sphone’

— Frame
APhoneSystem
c:PIld

Vi € dom phones \ c? « phones(t) = phones’(i)

Phones.Initiate = 3APhone « Bind A Phone.Initiate
Phones.Dial = 3APhone « Bind A Phone.Dial
Phones.GetRing = 3APhone « Bind A Phone.GetRing
Phones.GetBusy = 3APhone « Bind A Phone.GetBusy
Phones.GetConn = 3APhone « Bind A Phone.GetConn
Phones.LoseConn = 3APhone « Bind A Phone.LoseConn
Phones.Hangup = 3APhone « Bind A Phone.Hangup
Phones.Replace = 3APhone - Bind A Phone.Replace
Phones.Answer = 3APhone « Bind A Phone.Answer
Phones.Ring = 3APhone « Bind A Phone.Ring

Figure 4: Composition of Phone views into single Phones view

The switch that handles connections between phones is specified in another
view (Fig. 3). Its state is a set of requested connections (a partial function, since
a phone can only dial one number at a time) and a set of active connections (an
injection, since a phone can only receive a call from one phone at a time). A
connection that is active is considered requested until it terminates.

In this view, the dialling of a number by a phone is modelled as an instance
of the Request operation, which takes as arguments the number of the phone
making the call (from?) and the number dialled (to?). The switch executes a
Connect when a request can be fulfilled (the called phone is not busy), or a
Reject otherwise. Terminate ends the call. It is not executed autonomously by
the switch, but corresponds to either party hanging up (a relationship to be
expressed later when the views are connected).

11

DialRequest = Switch.Request A Phones.Dial(from?/i?] A
Frame[{from?}/c?]
RingConnect = Switch.Connect A Phones.Ring(to?/i?] A
Phones.GetRing[from?/i?] A Frame[{from?, to?}/c?]
RejectBusy = Switch.Reject A Phones.GetBusy|[from?/i?] A
Frame[{from?}/c?]
EndCall = Switch.Terminate A Frame[{from?}/c?] A
((Phones.Hangup(from? /i?] A Phones.LoseConn(to?/i?])
V (Phones.Hangup(to?/i?] A Phones.LoseConn[from?/i?)]))
Initiate = Phones.Initiate A Frame[{i?}/c?]
Replace = Phones.Replace A Frame[{i?}/c?]
Answer = Phones Answer A Frame[{i?}/c?]

Figure 5: Composition of Phones view and Switch view

Each phone has its own view. To relate the phone views and the switch view,
we first join the phones into a single view (Fig. 4), and then join that view with
the switch view (Fig. 5). The global states of the system are given by:

PhoneSystem
{ phones: Id «— Phone

Switch

To extend the scope of an operation defined on a single phone to the whole
system, we define a schema that binds the local state of a phone to the corre-
sponding part of the global state

_ Bind
APhoneSystem
APhone
i?: Id
9phone(i?) = 9phone A Iphone'(i?) = $phone’

An operation op from the Phone view can now be converted to an operation of
the Phones view, with an argument i? identifying the phone on which the op-
eration is executed :

Phones.op = 3APhone « Bind A Phone.op

This is not just a promotion, since there is no frame condition constraining the
status of any other phone. So for example

Phones.Hangup = 3APhone « Bind A Phone.Hangup
corresponds to replacing the handset of phone i?, but the Bind schema does

12

not require phones to be invariant at j?#i?. Indeed, the hanging up of one
phone will certainly affect the phone it was connected to. To limit the effects
of an operation to some set of phones, we define a framing schema that re-
quires all phones with an identifier not in the set ¢? to be unchanged:

_ Frame
APhoneSystem
c:Pld

Vi € dom phones \ c? « phones(i) = phones’(i)

On to the final combination: joining the telephones to the switch (Fig. §).
This time there is no inter-view invariant. Instead, each operation of the sys-
tem as a whole is defined as a combination of operations from the two views.
The declaration

DialRequest = Switch.Request A Phones.Dial(from?/i?] A
Frame[{from?}/c?]

for example says that the DialRequest event of the system consists of a Request
operation executed by the switch and a Dial operation executed at a particular
phone. Z’s syntax unfortunately hides the arguments of the operations, so the
renaming calls for explanation. Switch.Request has two arguments, froms and
to?, representing the number of the phone making the request and the number
it wants to connect to. Phones.Dial has two arguments likewise, i¢ for the
number of the phone executing the operation, and to? for the number dialled.
The renaming links the views by making the number of the requesting phone
in the switch the number of the phone at which the dial operation occurs. Fi-
nally, the frame condition says that only the phone with number from? may
suffer a state change.

Some system operations involve state changes at more than one phone.
When the switch succeeds in making a connection, for instance, the calling
phone hears a ringing tone and the called phone rings:

RingConnect = Switch.Connect A Phones.Ring[to?/i?] A
Phones.GetRing{from?/i?] A Frame[{from?, to?}/c?]
Finally, we can express the effect of Hangup. A call ends when it is terminated
in the switch, and one phone hangs up and the other loses the connection:

EndCall = Switch.Terminate A Frame[{from?}/c?] A
((Phones.Hangup(from? /i?] A Phones.LoseConn[to?/i?}])
V (Phones.Hangup(to?/i?] A Phones.LoseConn[from?/i?}))

Again, relating the views involves something like promotion. Promoted opera-
tions are disjoint, so that the binding of local state to global state can be com-

13

bined with a frame condition. Here, however, the binding and framing must
be separated. When the local effect of a Hangup at some phone is related to
the global state, the repercussions on other components of the global state
have yet to be established. By conjoining Hangup, LoseConn and Terminate,
we can use the state of the switch to determine which phone should lose its
connection. It also prevents a Terminate from happening when there is no
Hangup, so the switch cannot drop a call at whim.

View structuring, as before, brings a useful separation of concerns. What
tones a phone generates and when a call may be made should not be bound up
with questions about how phones are connected and in what order connec-
tions are made. Of course views overlap, and eventually the generation of
tones and the making of connections must be linked, but this should be de-
layed as long as possible.

4 More Complex Specifications

The editor and phone specifications exemplify two kinds of view composition.
For the editor, the views were connected by an invariant relating their states;
for the phone, the views were connected by synchronizing their operations,
the states being related only indirectly.

Sometimes both forms of composition are needed. Suppose our phone
switch offers screening list features. “Selective call rejection”, for example, al-
lows a subscriber to enter a list of phone numbers from which calls should al-
ways be rejected. The subscriber sees the screening list as a set of numbers

enemies: P Id
that is part of the telephone’s state, and executes local operations to add and
remove numbers from the list such as

_ Phone Add
APhone
i2: Id
enemies’ = enemies U {i?}
status = dialtone A status’ = status

The switch, on the other hand, sees the screening lists as a relation between
subscribers

hates: Id — Id

and now a call can be rejected even if the number being called is not busy, so
we add a new operation:

14

_ Switch.SelectiveReject
ASwitch
from?, to?: Id

(from?, to?) € reqconns N hates~
reqconns’ = reqconns \ {(from?, to?)}

The predicate in the Connect operation (Fig. 3) determining when a requested
connection can be fulfilled is amended from

(from?, to?) € reqconns A to? ¢ (dom conns U ran conns)
to
(from?, to?) € reqconns \ hates™ A to? € (dom conns U ran conns)

Finally, the two representations of the screening lists are reconciled with an

invariant:

— PhoneSystem
phones: Id ~ Phone
Switch

Viedom phones « phones(i).enemies = hates{{i}]

Conversely, an editor specification is likely to connect operations as well as
states. Adding cursor memory (briefly mentioned at the end of Section 2) re-
quired that the csrLeft and csrRight operations be represented in both File and
Grid views. The event classification illustrated in the telephone example might
be useful too. Scrolling, for example, might be activated by a mouse click,
which is interpreted as either pageUp or pageDown, depending on where the
mouse is clicked on a scroll bar.

This technique also eases the treatment of exceptions. An operation might
be defined in several views even though the normal and erroneous cases are
only distinguishable in one. Following standard Z practice, the operation
would be split into two schemas, but these would not be combined within a
view. Instead, the classification is propagated from one view (V) to the others

(W) by conjunction, and only then are the normal and erroneous cases com-
bined:

op = (V.opNormal A Wi.opNormal A ...) V (V.opError A Wi.0pError A ...)

15

5 Local Reasoning and Operation Entailment

A view is a partial specification of the whole program, in contrast to a module,
which is a specification - often complete - of only part of the program. Read-
ing the specification of a single view should thus impart an understanding of
all the operations, albeit restricted to some aspect of behaviour. Some opera-
tions, however, are specified in only one view, apparently contradicting this
aim.

Take the csrUp operation of the editor (Fig. 1), for instance. Its specification
appears in the Grid view, whose state representation makes it easy to talk
about the relative position of characters on adjacent lines, and omirtted from
the File view, where its specification would have been tortuous. To allow an
independent reading of the File view specification, we would like at least all
the basic operations to be specified there. Attempting a full specification would
be foolish — it was omitted precisely because it was so hard to specify.

But this does not preclude a partial specification. We might, for exampie,
specify csrUp in the File view as:

_ File.csrUp
A File

31: seq Char « left = left' ~I A right’ = |~right

This partial description gives only the bare outlines of the behaviour, but in-
cludes the crucial features: that the total text of the buffer is unchanged, and
that the only effect of the operation is to move the cursor backwards.

How should this specification be treated when the views are composed? We
might write

csrUp = [AEditor | Grid.csrUp A File.csrUp)
but this would be entirely equivalent to
csrUp = [AEditor | Grid.csrUp)

since, with the invariant relating the views, the specification of File.csrUp
could be inferred from Grid.csrUp. So instead we write

cstUp = [AEditor | Grid.csrUp]
cstUp + [AEditor | File.csrUp]

The first line defines the system operation. The second asserts that the defini-
tion of File.csrUp follows logically from it. Instead of constraining the specifi-
cation further, it signals a proof obligation: to show that the description of the
operation given in the File view is an approximation to the exact behaviour
described in the Grid view.

16

The partial operation is related to the exact operation by simple logical en-
tailment and not refinement. The weakening of the logical formula represent-
ing an operation increases its possible effects, and implicitly, the domain in
which it may be executed. Refinement. on the other hand, is contravariant: it
may weaken the precondition but strengthen the post-condition. In this case,
the partial operation allows the cursor to move back to any preceding position
in the buffer, or even not to move at all. This imprecision does not compro-
mise the soundness of local reasoning; a property P inferred from File.csrUp

File.csrUp - P

will hold for the exact operation csrUp, by the transitivity of . Completeness
is lost , of course; not all properties of csrUp will be deducible from File.csrUp.

6 WhyZ?

The choice of Z for our examples was not incidental; it has features that make
it especially well suited to view structuring. Their consideration points to the
difficulties that must be overcome to apply view-structuring in other lan-
guages, such as Larch [GHW85] and VDM [Jon86].

6.1 Frame Conditions

In most specification languages the scope of an operation is given explicitly.
Larch, for instance, has a modification clause in addition to pre- and
postconditions. The specification of a procedure with the arguments x, y and z
might say “modifies at most x”, indicating that y and z and certainly any global
variables, are invariant,. Z, in contrast, has no way to express frame condi-
tions, and the schema would include y' =y A 2’ = z.

For view structuring frame conditions that say “and nothing else changes”
are catastrophic. When specifying a view we cannot know which other views
will later be written, or what their variables will be. Inter-view invariants en-
sure that modification of the variables of one view almost always propagates
to those of another. So when using a language with frame conditions, their
scope must be confined to the view in which they appear.

Views could benefit from a different kind of frame condition. Sometimes a
view has local variables that are not related to the variables of another view,
and are thus unconstrained by the inter-view invariant. A phone might have a
volume control, for example, that is unaffected by the operations of another
phone or of the switch. To say this, the volume control must awkwardly be
brought into the scope of those operations. A better solution employs a frame
condition, declaring the volume to be a local component of the Phone view

17

that cannot change except by execution of local operations. This is a special
case of a more general scheme developed by Borgida et al [BMR93].

Finally, many of the equalities asserted when views are composed could be
dispensed with altogether if a more subtle kind of frame condition were ex-
pressible. Instead of saying “only these components change”, it would say
“only these are altered”, allowing others to change only when necessary to
maintain invariants. Schuman and Pitt [SP87] have shown how to express this
kind of frame condition by defining “completing assertions”. Compositional-
ity is retained, but at the expense of introducing meta-level notions.

6.2 Implicit Invariants

The principal novelty of Z is its pervasive use of invariants as a specification
mechanism. A typical Z specification introduces the abstract state space with
some strong invariants, and then gives far weaker specifications of operations
than one might expect, leaving the invariants to work magic and fill in the de-
tails. In VDM, on the other hand, invariants play a secondary role, as a proof
obligation rather than a specification mechanism. The operations are more
explicit, updating every state component that changes. Their is no magic; on
the contrary, the specifier must supply all the details and then demonstrate that
the resulting specification preserves the invariant.

The VDM approach has two advantages. First, the specification is easier to
implement: there tend to be fewer state components and the operation speci-
fications are more operational. Second, the risk of overconstraint (and worse,
inconsistency) is lower, the explicit specification being in a sense a constructive
proof that post-states exist satisfying the invariant. For designs, these advan-
tages matter a lot, but they seem less crucial in requirements specification.

Z-style invariants, along with conjunction, are the critical mechanism of
view structuring. Without them, every operation would have to be fully speci-
fied in every view, and the benefit of views would vanish.

The obstacle to view structuring in VDM is style more than semantics. The
inter-view invariant might simply be conjoined to the postcondition of each
operation, shifting the burden of proof from the maintenance of the invariant
(now true by decree) to the implementability of the operation.

6.3 Conjunction and Preconditions

Broadly speaking, pre- and postconditions can be related in three ways.
Whether or not they are specified separately, they can be viewed as a single
logical formula pre A post (as in Z); as the single formula pre = post (as in
Larch and in Hoare’s representation of programs as predicates [Hoa85]); or as
two distinct formulas (as in VDM). Each interpretation has its benefits. Keep-

18

ing them apart can simplify the treatment of infinite looping, with the precon-
dition being regarded as a termination criterion. The pre = post interpretation
nicely incorporates the natural contravariance of a procedure, so that the free-
dom of an implementation I to widen the precondition but narrow the
postcondition of a specification S can be expressed as [= S.

The Z interpretation is enforced syntactically: one actually writes the speci-
fication as a conjunction. This throws a spanner in the works for proving cor-
rectness of an implementation, since the contravariance demands that the pre-
condition be retrieved by logical manipulation, and than handled differently
from the postcondition.

View composition, however, demands this interpretation. To connect views,
we conjoined their operations; for two specifications pre; A post; and pre, A
post,, this gives*

(pre; A post;) A (pre; A post,) = (pre; Aprey) A (post; A post,)
and thus the resulting precondition is (pre; A pre;). Each view can thus restrict
the circumstances in which an operation may be invoked. A view of a phone
switch might prevent a connection to a busy phone, for instance, and a view of
an individual phone might prevent a connection when the phone is onhook.
Suppose, however, that our specifications were pre; = post; and pre, = post,.
Their conjunction would be

(pre; = post ;) A (pre; = post,)
which is not equivalent to

(prel A prez) = (pOStl A pOStz)

Instead, its precondition is something like (pre; V pre,): an operation can hap-
pen whenever some view allows it to happen. This does not allow the precon-
ditions of one view to determine the occurrence of operations in another view,
and our telephone specification would not work.

The Z interpretation comes from thinking of the specification as a state
machine. If an execution of an operation is a transition in the machine, the
sentences accepted by the machine are the allowable sequences of states. Ig-
noring the matching of operation names, the conjunction of two views is then
a state machine whose language is the intersection of the languages of the con-
stituent machines.

Unfortunately, the refinement ordering of Z is not consistent with this inter-

* When the precondition is not given explicitly, this equality becomes an implication
pre(Op,) A pre(Op,) = pre(Op, A Op,)
but the argument still holds.

19

pretation. Refinement allows a precondition to be weakened, so that an opera-
tion may be executed in more contexts than its specification permits. This is
fine if the operations are the procedures of an abstract data type but disastrous
if they model the events of a state machine. Weakening the precondition of the
Reject operation of our phone switch (Fig. 3) would allow the switch to reject
a requested connection even when the number being called is not busy! The
operation is not a service to the phone user who might benefit from its wider
applicability, but an internal action whose more frequent occurrence will not
be appreciated. Therefore, if operations are used to model internal actions, the
conventional notion of refinement must be abandoned.

Z’s precondition is really not a precondition at all, but a firing condition,
determining the order in which operations may be invoked. The preconditions
of Larch and VDM are disclaimers; they assert that an operation is free to do
anything when invoked in a bad state. A specification that uses firing condi-
tions can more easily be interpreted as a process, and thus combined with
other process formalisms [Jac88], but becomes confusing if its firing condi-
tions are simultaneously interpreted as preconditions.

7 Related Work

7.1 ViewsinZ

View structuring can be detected in germinal form in many published Z speci-
fications. When the structure of the state variables makes the description of an
operation awkward, the Z specifier will frequently add redundant variables -
tied by an invariant to the existing variables — and constrain them instead. For
example, a specification of a program for allocating resources to users at vari-
ous times includes in its state not only the full relation between resources, us-
ers and times, but also various projections, such as a relation between re-
sources and times, appropriate for describing operations, like checking avail-
ability, that are not concerned with the users [FS93].

Sufrin’s specification of a text editor [Suf82] comes closest to full view-
structuring. He sidesteps the problem of defining the effect of editing opera-
tions on the text’s screen appearance by specifying all the operations over a
simple representation, which is then related to the layout on the screen by an
invariant. But these representations are not views. In a view-structured specifi-
cation, neither representation is primary, and the two views stand alone as
specifications in their own right. In Sufrin’s specification, the display represen-
tation has no associated operations, so the editor provides only left and right

20

cursor movements, for example, but not up or down. Furthermore, displaying
is regarded as an operation called show whose specification is the invariant
th.. would have related the two views. Nevertheless, Sufrin has views in mind;
in discussing related work he mentions the possibility of multiple representa-
tions related implicitly by invariants, each with its own operations.

Promotion [MS84], a common Z structuring technique, may also be seen as
a limited kind of view structuring. A library specification might define the state
of a book with operations such as lend and return. The entire library might
then be modelled as a mapping from identifiers to books. To specify the system
operation corresponding to a lend of a book with a particular identifier, the
book operation is “promoted” to the state of the entire system. The book op-
erations do not constitute a view, however, since they are regarded as part of
the larger system.

Most Z specifications are not view-structured in any sense. Whole and part
composition dominates. Frequently, not only the structure of the specification,
but also the structure of the development itself, is hierarchical. Woodcock
talks about the “onion skins of software development”, in which a specifica-
tion is developed from the inside out, with promotion at the interfaces be-
tween the layers [Woo89]. ,

Not all systems are easily described in this fashion. While a file system may
contain files, a telephone switch does not “contain” telephones in any sense.
So telephone operations cannot be simply promoted. Without views, however,
the behaviour of a single telephone cannot be separated from the behaviour of
the switch, and the two become intertwined. Woodcock’s telephone specifica-
tion [WL88] embeds the states of the individual phones in the global state of
the telephone system, so that every action of a subscriber becomes an action of
the whole system, and the observable behaviour at a given phone is relegated
to theorems.

This structure is not easily maintained. Consider adding “caller id”, which,
when a phone rings, causes the calling number to be displayed, and can be dis-
abled at will by the caller. In the view-structured specification (Figs. 2-5), the
display would be added as variable in the Phone view, along with a bit indicat-
ing whether the caller wishes to make her identity known, and a local toggling
operation. The functionality is then expressed by an inter-view invariant that
says that if a phone is ringing (Phone view) and connected to another phone
(Switch view) that has its bit set to true (Phone view), then the display of the
first phone holds the number of the second. But the elaboration has no natural
home in Woodcock’s specification, requiring ad hoc changes to the global state
and operations.

21

7.2 Other Specification Languages

Property-oriented specifications often support structuring mechanisms akin to
views. In the Larch Shared Language [GHM90], the basic unit of specification
is a “trait”. Several traits can assert different properties of the same operators,
and then be combined into a single trait. A queue, for example, can be speci-
fied in two traits: one that asserts basic container properties, and another ex-
pressing the fifo ordering. A specification of a set can share the container trait,
combining it instead with a trait expressing the notion of single occurrence of
each element. Trait composition is not used to structure operations, however;
one of the main contributions of Larch has been to isolate the basic properties
of types (defined algebraically) from execution concerns like preconditions,
termination and exceptions (defined in predicate calculus in a separate tier).
The problems of representing partiality and non-determinism algebraically are
thus side-stepped.

The idea of recording a proof obligation to relate the partial and full speci-
fication of an operation is taken from the Larch Shared Language, which pro-
vides an “implies” clause in which properties of operators that are expected to
follow from their definition are asserted.

7.3 Viewpoints in Requirements Analysis
The need for multiple views (usually called “viewpoints”) in requirements
analysis has long been recognized, but most of the work in this area starts from
assumptions that are different to mine, and has a different purpose altogether.

The viewpoints of Finkelstein, Kramer et al [F&92] arise from the different
domains of developers working together on a team. The developers of a lift
system, for instance, will include user-interface designers, mechanical engi-
neers and real-time experts; some will be concerned with performance, some
with functionality, some with safety, and so on. Clearly these viewpoints are so
disparate that to attempt a coherent model would be absurd: far better that
each developer work within a viewpoint, with its own notarions, models and
tools. But the risk of inconsistency is a problem. This approach dispenses with
any kind of universal model in which connections could be interpreted, advo-
cating an operational mechanism instead. Consistency is enforced by a set of
actions that are triggered by local changes to a viewpoint and propagated to
other viewpoints. Viewpoint construction in this approach is a kind of coop-
erative work (with problems similar to the joint editing of any document)
whose distributed nature is a fundamental assumption.

For Wallis [Wal92, A893], viewpoints are partial specifications of function-
ality, written in Z but by different people, to be reconciled as soon as possible.
First, any irreconcilable differences must be eradicated; then the viewpoints

22

must be amalgamated. The process of reconciliation and amalgamation is the
focus of this work, and not the structure of the initial specifications (which is
standard). The division into viewpoints does not arise from any fundamental
difficulty in writing a single specification, but rather because different people
with different aims wrote different versions of the sp~cification. By analogy to
programming, view structuring is about a single program; Wallis’s concern is
the problem of integrating different versions [HPR89].

For view structuring, the same reasons that favour initial separation of views
militate against their amalgamation, and, in their present form, Wallis’s tech-
niques do not seem strong enough to handle views whose state components
are not matched in a fairly simple manner.

7.4 Views in Programming and Environments

Nord treats a similar problem at the programming level [Nor92]. He argues
(using the ubiquitous editor example) that implementing a type can be much
easier if multiple representations are allowed. His scheme has the programmer
code each operation in the most convenient representation, and assert invari-
ants between the diverse representations. A single representation is obtained
from these multiple representations by first forming their cross-product, and
then applying semi-automatic program transformation techniques to derive
code to maintain the relationship between components incrementally.

Nord’s focus on programs rather than specifications means that his compo-
sition mechanism is more limited, so he cannot allow, for instance, an opera-
tion that appears in two views. Nevertheless, these ideas raise an interesting
prospect of implementing view-structured specifications without amalgamat-
ing them first. ‘

Multiple views have been also proposed for the state shared by the tools of
a programming environment. In Garlan’s scheme [Gar87] for example, the
relationships between representations are inferred from their type structure,
and update algorithms are synthesized automatically. A set in one view and a
sequence in another, for example, would be assumed to contain the same ele-
ments if they had the same name. (In this work’s extension in the Janus project
[H&88], new mappings could be specified by the environment’s developer,
but were still selected on the basis of type.)

7.5 Structuring Mechanisms Similar to Views: Descriptions

Zave and Jackson propose a structuring mechanism for specifications whose
units they call “descriptions” [Z]93]. In two respects their work is more ambi-
tious than mine. First, descriptions can separate more fundamental concerns
than aspects of functionality, distinguishing the specification of the machine,

23

the specification of its domain, and the specification of the environment in
which the machine operates [Jac94]. In contrast, the views of this paper are all
descriptions of machines.

Second, descriptions can be cast in different paradigms. A telephone specifi-
cation might use Z to describe data aspects and JSP to describe the ordering of
events [Z]93]. To interpret these diverse descriptions as a single, coherent
specification, Zave and Jackson abandon their standard semantics and propose
instead a translation into a minimalist logical theory. The primirive predicates
of this theory are explicitly “designated” by the specifier, who says, for ex-
ample, that isRing(e, t, n) means that “in event e at time ¢ telephone 7 rings”.
The entire specification can thus be translated, at least in principle, to a state-
ment similar to a scientific claim that can be refuted by observation.

The synchronization of operations in my telephone specification can be seen
as a special case of “event classification” [Z]91, Z]94]. A description can par-
tition an event class into subclasses; other descriptions may then refer to the
names of the subclasses. Replacing the handset of a phone, for example, might
be an event called Replace that some description classifies into Hangup (when
terminating a call) and EndSession (when no call is in progress). Another de-
scription (of billing, say) might then refer only to Hangup events.

The choice of GetBusy or GetRing, in the Phone view (Fig. 2) is non-deter-
ministic, but resolved by conjoining them to Reject or Connect whose choice
in the Switch view (Fig. 3) is fully determined. This is a weak form of event
classification. In Jackson and Zave’s examples, the description that resolves
the choice exports the names of the operations, so the classification is local-
ized. The standard semantics of Z cannot accommodate this, since operations
are just relations on states whose names have no significance. Interpreting the
conjunction of two Z operations as synchronization is a convenient intuition,
but technically it makes no sense to talk of operations occurring in one or
other view.

8 Summary

Structuring a specification in views has many benefits. Separating different as-
pects of the function of a system into different views allows each to be ex-
pressed in its most natural representation. Since a view is a partial specification
of the entire system, it can be evaluated directly against the perceived require-
ments, and can be constructed and analyzed independently of other views.
The complexities of interaction between different functions may be deferred
until a later stage, when the views are connected. A view-structured specifica-

24

tion is easier to maintain because a change to only one aspect of functionality
can be confined within a view.

Z is especially well-suited to view structuring. The vital features are: the re-
lationship between pre- and postconditions; the lack of implicit frame condi-
tions; and the ability to conjoin operations and assert global invariants.

Despite its benefits, view-structuring has yet to be fully exploited. Although
its seeds are evident in many Z specifications, it has not been systematically
applied. The examples in this paper have attempted to demonstrate that views
offer a separation of concerns that is widely applicable, and that view structur-
ing could profitably be added to the specifier’s repertoire.

Acknowledgments

Many thanks to Gregory Abowd, Michael Jackson, Jeannette Wing, Michal
Young and Pamela Zave, who gave me helpful comments on drafts of this pa-
per. I am also grateful to David Garlan for his insights into Z, and to Mary
Shaw, whose advice has been invaluable.

References

[A&93] M. Ainsworth, A.H. Cruickshank, L.J. Groves and PBJ.L. Wallis,
“Formal Specification via Viewpoints”, Proc. 13th New Zealand
Computer Conference, New Zealand Computer Society,
Auckland, New Zealand, 1993.

[BMR93] Alex Borgida, John Mylopoulos and Raymond Reiter, “And Noth-
ing Else Changes: The Frame Problem in Procedure Specifica-
tions”, Proc. 15th International Conference on Software Engineer-
ing, Baltimore, Maryland, IEEE Computer Society Press, May
1993.

[F&92] A. Finkelstein, J. Kramer, B. Nuseibeh, L. Finkelstein and M.
Goedicke, “Viewpoints: A Framework for Integrating Multiple
Perspectives in System Development”, International Journal on
Software Engineering and Knowledge Engineering, 2(1):31-57,
World Scientific Publishing Company, March 1992,

[FS93] Bill Flinn and Ib Holm Sorensen, “Caviar: A Case Study in Specifi-
cation”, Chap. 5 of Specification Case Studies, lan Hayes, Prentice
Hall International, 2nd ed., 1993.

25

[Gar87]

[GHM90]

[GHWSS]

[H&88]

[Hal93]

[Hay92]

[HJN93]

[Hoa85]

[HPR89]

[Jac88]

Jac94]

David Garlan, Views for Tools in Integrated Environments, Techni-
cal Report CMU-CS-87-147, School of Computer Science,
Carnegie Mellon University, May 1987.

John V. Guttag, James J. Horning and Andres Modet, Report on
the Larch Shared Language: Version 2.3, Technical Report 58,
Digital Systems Research Center, Palo Alto, CA, April 1990.

John Guttag, James Horning and Jeannette Wing, “The Larch
Family of Specification Languages”, IEEE Software, Sept. 1985.

A.N. Habermann, Charles Krueger, Benjamin Pierce, Barbara
Staudt and John Wenn, Programming with Views, Technical Re-
port CMU-CS-87-177, School of Computer Science, Carnegie
Mellon University, January 1988.

Anthony Hall, “A Response to Florence, Dougal and Zebedee”,
FACS Europe (Newsletter of the British Computing Society Formal
Aspects of Computing Science Special Interest Group and Formal
Methods Europe), Series 1, Vol. 1, Num. 1, Autumn 1993.

[an Hayes, “VDM and Z: A Comparative Case Study”, Formal As-
pects of Computing, Vol. 4, No. 1, 1992, Springer International.

L.J. Hayes, C.B. Jones and J.E. Nicholls, “Understanding the Dif-
ferences Between VDM and Z”, FACS Europe (Newsletter of the
British Computing Society Formal Aspects of Computing Science
Special Interest Group and Formal Methods Europe), Series 1, Vol.
1, Num. 1, Autumn 1993.

C.A.R. Hoare, “Programs are predicates”, in Mathematical Logic
and Programming Languages, C.A.R. Hoare and J.C. Shepherdson
(eds.), pp. 141-154, Prentice-Hall International, 1985.

S. Horwitz, J. Prins and T. Reps, “Integrating Non-interfering Ver-
sions of Programs”, ACM Trans. on Programming Languages and
Systems, 11(3), Jan. 1990.

Daniel Jackson, Composing Data and Process Descriptions in the
Design of Software Systems, Technical Report MIT/LCS/TR-419,
Laboratory for Computer Science, Massachusetts Institute of
Technology, Cambridge, MA 02139, May 1988.

Michael Jackson, “Software Development Method”, in A Classical
Mind: Essays in Honour of C.A.R Hoare, ed. A.W. Roscoe, Prentice
Hall International, 1994.

26

[Jon86]

[JZ93]

[MS84]

[Nor92]

[SP87]

[Suf82]

[Wal92]

[Woo089]

[WL88]

[Z]91]

[£]93]

[2]94]

Cliff B. Jones, Systematic Software Development Using VDM,
Prentice Hall International, 1986.

Michael Jackson and Pamela Zave, “Domain Descriptions”, Proc.
IEEE International Conference on Requirements Engineering,
IEEE Computer Society Press, pp. 56—64, 1993.

C.C. Morgan and B.A. Sufrin, “Specification of the UNIX Filing
System”, IEEE Transactions on Software Engineering, SE-10(2),
1984.

Robert L. Nord, Deriving and Manipulating Module Interfaces,
Technical Report CMU-CS-92-126, School of Computer Science,
Carnegie Mellon University, May 1992.

S.A. Schuman and D.H. Pitt, “Object-Oriented Subsystem Specifi-
cation”, in Program Specification and Transformation, ed. L.G.L.T.
Meertens, North Holland, pp. 313-341, 1987.

Bernard Sufrin, “Formal Specification of a Display-Oriented Text
Editor”, Science of Computer Programming, 1, pp 157-202.

Peter J.L. Wallis, A New Approach to Modular Formal Description,
Technical Report 92-57, University of Bath, 1992.

J.C.P Woodcock, “Mathematics as a Management Tool: Proof
Rules for Promotion”, Proc. of the Centre for Software Reliability
Conference entitled “Large Software Systems”, Bristol, UK, Sept.
1989.

Jim Woodcock and Martin Loomes, “Case Study: A Telephone Ex-
change”, Chap. 9 of Software Engineering Mathematics, Addison-
Wesley, 1988.

Pamela Zave and Michael Jackson, “Techniques for Partial Specifi-
cation of Switching Systems”, in VDM’91: Formal Software Devel-
opment Methods, Proc. 4th International Symposium of VDM Eu-
rope, Springer-Verlag, pp. 511-525, 1991.

Pamela Zave and Michael Jackson, “Conjunction as Composi-
tion”, ACM Trans. on Software Engineering and Methodology, 2(4),
pp- 379411, Oct. 1993.

Pamela Zave and Michael Jackson, “Where Do Operations Come
From? A Multiparadigm Specification Technique”, submitted for
publication, Feb. 1994.

27

School of Computer Science
Carnegie Mellon University
Pittsburgh, PA 15213-3890

verely s recared rotlo
Fhas s Gt race oo
si Rigris Act of 18 ot ine

o 1973 0r otrer federa

d Carvege Moo e

Caf Dy Drogearts a0 e

Carrege Moron Urversy does net aises et 4
LRI NN 1 ATIGGION (T DIQYTIROT O Gt
~atorg. of of Tre vig
Educatona! o 504 ofrra R
Slale Oriocal aws or edecubve orders

- 0

Gk 07 naadieap ot vl
mendmernrts of 1972 and Sec:

abytat o Ace

P @06ty GO0S 01 ECTIT ORI 0 G0 55 G RmIGYMEent Or JUmanig.
Sy, beef age veteran status. sexuai

)

i aaatar Carmege Melon i
rraton of 1s rograms or the bas.s of rekgon creed arc
orentaton orin vaoiatinn of tederal state or incal laws nr executve oriterg

Ingquiries concerning apphcaton of these statements srouid be drecied o the Provost. Carnegie
Metlon Urivers:ty. 5000 Forbes Avenue Piltspourgh. PA 15213 telephone (412) 268-6684 or the Vice
President for Errotiment. Carnegie Metlon Umiversity 5000 Forbes Avenue, Pittsburgh. PA 15213
telephone (412) 268-2056

+y

