
Computer Science

AD-A277 567

I Pursuit: Visual Programming in a Visual Domain

Francesinary Modugno Brad A. My~ers

-January 1994

CMIU-CS-94- 109

DTIC
ELECTE

CainegieSMAR 311994 I
1 1¶liellon

1 JDTU;iuA"
I ~4j94-09744

94 331 047

Best
Available

Copy

Pursuit: Visual Programming in a Visual Domain

Francesmary Modugno Brad A. Myers
January 1994

Accesion For CMU-CS-94-109

NTIS CRA&I
DTIC TAB
U:ý,mriou:iced•

By t -----o--:

Di.,t. ib.tioJl. School of Computer Science

Availability Codes Carnegie Mellon University
Pittsburgh, PA 15213 VI-,AvaiL anid I OL ,"'P''••

Dist Special -'A.

Abstract

We present a new visual programming language and environment that serves as a form of feedback
and representation in a Programming by Demonstration system. The language differs from existing
visual languages because it explicitly represents data objects and implicitly represents operations by
changes in data objects. The system was designed to provide non-programmers with programming
support for common, repetitive tasks and incorporates some principles of cognition to assist these
users in learning to use it. With this in mind, we analyze the language and its editor along cognitive
dimensions. The assessment provides insight into both strengths and weaknesses of the system,
suggesting a number of design changes.

This work supported by the National Science Foundation under grant number IRI-9020089. Additional support
provided by the hertz Foundation and the AAUW. The views and conclusions contained in this document are those
of the authors and should not be interpreted as representing the official policies, either expressed or implied, of the
U.S. Government.

o.v'i " ; '.d " I.

Keywords: Cognitive Dimensions, End-User Programming, Programming by Demonstration.

Visual Language, Visual Shell, Pursuit

1 INTRODUCTION

In his classic 1983 article, Ben Shneiderman introduced the concept of a "direct manipulation"
interface, in which objects on the screen can be pointed to and manipulated using the mouse and
keyboard (Shneiderman, 1983). The Apple Macintosh, introduced in 1984, quickly popularized
this interface style and today direct manipulation interfaces are widely used. Unfortunately, these
interfaces have some well recognized limitations. For example, in textual interfaces such as the
Unix shell, it is common for users to construct parameterized procedures ("shell scripts") that
automate repetitive tasks. This is often difficult to do in the Macintosh Finder or other -visual
shells". Direct manipulation interfaces also do not provide convenient mechanisms for expressing
abstraction or generalizations, such as "all . tex files edited on August 19, 1993." As a result, while
direct manipulation interfaces are often easier to learn and use than their textual counterparts,
users often find that complex, high-level, repetitive tasks are more difficult to perform in this
domain. Pursuit (Modugno, in progress) is a visual shell aimed at providing end-user programming
capabilities in a way that is consistent with the direct manipulation paradigm.

To enable users to construct programs, Pursuit contains a Programming by Demonstration
(PBD) system (Cypher, 1993). In a PBD system, users execute actions on real data and the
underlying system attempts to construct a program (Myers, 1991). Such systems enable users to
create general procedures without having special programming skills. They are easy to use because
users operate by manipulating data the way they normally do in the interface. Unfortunately. they
have limitations: they can infer incorrectly; most contain no static representation of the inferred
program; feedback is often obscure or missing; and few provide editing facilities. This makes it
difficult for users to know if the system has inferred correctly, to correct any errors. and to revise
or change a program.

Pursuit addresses these problems by presenting the evolving program in a visual language while
it is being constructed. Unlike other visual languages, which explicitly represent operations and
leave users to imagine data in their heads, Pursuit's visual language explicitly represents data
objects using icons and implicitly represents operations by the visible changes to data icons.

In general, programming forces users to navigate in two distinct work spaces (Ackermann and
Stelovsky, 1986): the physical reality of the data, computer and programming language and the
psychological reality of their mental model. The larger the gap between these work spaces. the
more difficult the programming process (Hutchins. Hollan and Norman, 1986). because users are
forced make paradigm shifts between them (Citrin, 1991). There are four properties of Pursuit
that attempt to reduce the gap between the two spaces. First, programs are specified by executing
real actions on real data. The Pursuit PBD system, therefore, extends the direct manipulation
paradigm to enable users to specify programs in much the same way that they invoke operations -
through direct manipulation. Second, programs are represented in a visual language in which the
data and operations of a program look very much like the actual objects and changes users see on
the desktop when constructing the program. Hopefully, this will make Pursuit programs look more
familiar than programs written in a textual language or in a visual language that does not reflect the
interface. Third, during a demonstration, the program appears incrementally as the user executes
each operation. In this way, users learn interactively how data and operations (i.e. program syntax)
are represented. Finally, Pursuit's visual representations are integrated within three different parts
of the PBD system - the program representation, the communicati'-n of inferences, and the editor.
This forms a close union between the interface, the PBD system and the program representation
and helps bridge the gap between the user's mental model of the programming process and the
actual programming task. Hopefully, the combination of these four properties will make it possible
for novices and non-programmers to learn to construct and recognize Pursuit programs.

This paper describes the Pursuit visual language and its editor. It then reports our experience
using cognitive dimensions (Green, 1989 and 1991) to determine how well Pursuit meets its design
criteria. Finally, we suggest a number of design changes to improve the language and editor based
on this analysis.

2 RELATED WORK

There have been several approaches to adding end-user programming to visual shells. Some vi-
sual shells contain a macro recorder (e.g., SmallStar (Halbert, 1984); QuicKeys2, MacroMaker and
Tempo II for the Macintosh; and HP NewWave) that makes a transcript of user actions that can
be replayed later. Although effective in automating simple, repetitive tasks, macro recorders are
limited because they record exactly what users do - only the object that is pointed to can be a
parameter and the transcript consists of a straight-line sequence of commands. To generalize tran-
scripts, some macro recorders produce a representation of the transcript in a textual programming
language for users to edit. However, this requires users to ,nderstand a programming language
that is significantly different from the desktop and does not take advantage of the visual aspects of
the interface.

Some visual shells have invented a special graphical programming language (e.g., Jovanovic
and Foley, 1986; Haeberli, 1988; Henry and Hudson, 1988; Borg, 1990) to enable users to write
programs. Most of these languages are based on the data flow model, in which icons represent
utilities and lines connecting them represent data paLhs. Unfortunately, most contain no way to
depict abstractions or control structures. The types of programs users can write are quite limited.
In addition, these languages require users to learn a special programming language whose syntax
differs significantly from what they see in the interface. Finally, constructing programs by wiring
together objects is quite different from the way users ordinarily interact with the system.

3 MOTIVATION FOR PURSUIT'S APPROACH

Visual shells are easy to use because of the constantly visible, concrete, familiar representations of
data objects and the illusion of concrete manipulation of these data objects (Shneiderman. 1983).
Unfortunately, this "conceptual simplicity" is often lost when programming is introduced: users
interact with the system visually, but usually program it off-line in a textual programming language.
Users must develop two very differ'ent bodies of knowledge: one for interacting with the system and
one for programming it. Pursuit attempts to bridge this gap. By allowing programs to be specified
by demonstration and by representing programs in a visual programming language that reflects the
desktop, users can apply knowledge of the interface and its objects to the visual language and its
objects when constructing, viewing and editing a program. With this in mind, this section briefly
discusses the motivation and history for some of Pursuit's design decisions.

3.1 Extending Programming to Non-Programmers

We set out to create a visual shell that would enable users to access the underlying power of the
computer to help with their tasks, without requiring that they learn complex programming skills,
or many special "little languages" or commands. We were particularly interested in providing this
power to people who use computers frequently, but who might not want to learn how to program
(we refer to these users as "non-programmers"). We began by studying the login files of and shell
scripts written by computer scientists at Carnegie Mellon and by informally interviewing some

2

non-programmers, such as secretaries and administrators. Our goal was to determine the types
of programs users wrote and the types of tasks non-programmers do that could be automated.
Our studies showed that most shell scripts (including those written by programmers) were very
simple, repetitively executing a few commands over a set of files. Often, the files were related in a
simple way, such as all being .tex files or all being edited on a certain day. A more rigorous study
supported these findings (Botzum, in progress). The informal discussions revealed that many of
the repetitive tasks that non-programmers do, such as backing up files, were similar in form to the
shell scripts.

3.2 Incorporating Principles of Cognition

Our goal became to design a system that would simplify this type of, programming. Therefore.
we created a language that emphasizes the manipulation of sets of objects related in some specific
way and that minimizes the use of explicit control constructs such as loops and conditionals, since
novice and non-programmers often have difficulty with them (Doane, Pellegrino and Klatzky 1990).
In addition, as we describe throughout the paper, the language and editor incorporate some of
the same principles of cognition that have made spreadsheets successful (Lewis and Olson, 1987):
familiar, concrete representations; immediate feedback; suppressing the inner world of variables
and computation; and automatic consistency maintenance. We feel that this will help users learn
to understand and use the language.

3.3 Providing Editable, Visual Feedback

Finally, we designed the language to serve as the main form of feedback between the PBD system
and the user. Pursuit contains an inferencE mechanism' that can detect loops over sets of data.
branches on exit code conditions, and common substring patterns (see Modugno, in progress.
for detail'S. Sinc all inference mechanisms will sometimes be wrong, it is important that users
know what the system has inferred. Having a good representation of the program during the
demonstration gives users full knowledge of the system's inferences at all times in an unobtrusive
way. Users can verify these inferences and help guide the PBD system to which features of the

examples should be generalized. Furthermore, Pursuit's visual language is not only used to represent
programs, but it is also used to indicate which operations to collapse into a loop, which data objects
to execute the loop over, which data objects to use as parameters, etc.

There are other forms of feedback we could have chosen: dialog boxes (Halbert. 1984); ques-
tions and answers (Myers, 1988; Maulsby and Witten, 1989); textual representation of the code
(Lieberman 1982); changing the appearance of actual interface objects (e.g. anticipation highlight-
ing (Cypher, 1991); animation (Finzer and Gould, 1984); and sound (Lieberman, 1993). However,
our approach has several benefits over these other forms. Unlike dialog boxes and the question and
answer style, it is not disruptive, since the user does not need to respond to it. Unlike programs
represented in a textual language, it does not require the user to learn a language that is very
different from the interface. Finally, unlike anticipation highlighting, animation and sound there is
a static representation for users to examine and edit.

1This research does not focus on improving inferencing. It focuses on other limitations of PBD sys-
tems: feedback, representation and editing. The techniques described here are independent of the inference
mechanism.

3

a-fokdew

A B C

Figure 1: The main data types in Pursuit: a) a file; b) a set of files; c) a folder; d) a set of folders.

Figure 2: The representation of the operation rename paper talk. The first panel shows the icon repre-
senting the file paper located in the report folder before it is renamed. The second panel shows the same
file after the rename operation. Notice that the icon's name has changed. This change represents the rename
operation.

4 PURSUIT'S VISUAL REPRESENTATION LANGUAGE

The Pursuit visual language 2 combines elements of the comic strip metaphor (Kurlander and Feiner,
1988) and the visual production system (Furnas, 1991; and Bell and Lewis, 1993). Familiar icons
are usedito represent data objects, such as files and folders. Sets are represented by overlaying
two icons of the same type (see Figure 1). Two panels are used to represent an operation. The
prologue shows the data objects before the operation and the epilogue shows the data objects after
(see Figure 2). A program ("visual script") is a series of operation panels concatenated together,
along with representations for loops, conditionals, variables and parameters. Because two panels
per operation result in long, space inefficient scripts, Pursuit contains space saving heuristics that
combine knowledge of the domain with information about operations. These and other features of
Pursuit are illustrated in the examples below.

In order to be extensible, Pursuit contains a declarative specification language (see Modugno,
in progress, for details) used to specify operations. An operation's specification defines its visual
representation, its error conditions and dialog boxes, and how it affects the graphical appearance of
data objects. During a demonstration, Pursuit uses this specification to generate a representation
of the operation in the visual program.

4.1 Example 1

This example illustrates how to write a program to backup all the . tex files in the papers folder
that were edited today. To backup the files, the user copies them to the backups folder and then
compresses the copies. To create a program to automate this task, the user demonstrates the actions
on a particular set of files. During the demonstration, the underlying PBD system constructs a
program.

2We are not interested in designing the most visually appealing language. Instead, we are exploring the utility of
this particular language paradigm for non-programmers. Hence, our visual representations appear primitive.

4

A B

Figure 3: A). A visual declaration binding the set to be all the .tex files in the papers folder that were
edited today. B). The copy operation.

Figure 4: After the user drags (moves) the copies to the backups folder, the third panel appears. Notice
that in the script the set of copies icon has moved from the papers folder to the backups folder, reflecting
the changes the user has seen in the actual interface when the real copies were moved.

CI •mov Tress

Figure 5: The completed script. The compress operation is represented by the difference in the height and
the name of the icon for the copies in the second and third panels. This difference is similar to the change
in appearance of the icons for the real files that the user would see in the actual interface (see Figure 6).
where the compress operation replaces a file's icon with a shorter icon and appends a "'. to its name. The
shadow beneath the third panel indicates that it represents multiple operations. Clicking on it reveals the
individual operation panels.

FILE NAME OWNER SIZE MONTH DAY TIME

a-file.Z fasu 988 Aug 07 08:55

abstr.tex fer 1976 Aug 15 08:55

backups fmm 938 Jun 9 08:56

conc.tex.Z fmm 128 Aug 19 11:29

intertex fmm 866 Aug 19 15:36

Spapers ftmi 938 Jun 9 08:56

• pursuit.tex.Z fmva 1358 Aug 19 11:25

Figure 6: A folder on the Pursuit desktop. The folder contains two different types of file objects. compressed
and uncompressed files, as well as folder objects.

53

Figures 3-5 show the developing visual script during the demonstration. Figure 3A is a visual
declaration. It appears when the user executes the copy operation, and defines the scope of the
set variable. The icon on the right represents the set of all .tex files in the papers folder that
were edited today. The icon on the left is the icon used in the script to represent this set. The
string "date = TODAY" is an attribute. It constrains the set to those files edited today. Attributes
allow for abstract sets of objects and indicate the PBD system's inferences. In addition, users
can directly edit them to specify desired properties of data objects or to fix incorrect inferences.
Currently, the attributes Pursuit supports include an object's name, date, location, size, owner and
contents. Attribute strings can be simple arithmetic expressions defining a single value or a range
or values (e.g. "256 < size < 1024") and can contain variables, system constants such as "TODAY"
or "USER", and references to attributes of other objects.

Attributes and sets minimize the need for loops, conditionals and variables. For example. to
define the above set in a traditional programming language, one would have to write code to loop
through all the files in the papers folder and test to see which ones had names ending in .tex and
were modified today. Attributes and sets make this looping and testing implicit, thus hiding some
inner computations from users.

Figure 3B shows the first two panels as they appear after the user opens the papers folder,
selects the files to be copied and copies them. After the user moves the copies to backup folder.
the new panel in Figure 4 appears depicting the move. Only one panel is added because Pursuit
notices that the epilogue of the copy contains the prologue of the move operation. Determining
when to combine the prologue of an operation with the epilogue of the previous operation is an
example of a Pursuit space saving heuristic.

Finally, the user selects all the copies and compresses them. Figure 5 shows the completed
program. Another Pursuit heuristic determines when several operations can be represented in a
single panel. The shadow beneath the third panel of indicates that it contains both the move and
compress operations. By clicking on it, users can see the individual panels for the two operations.

Figure 5 also illustrates an advantage of having icons represent data: icons minimize the use of
explicit variables, and remove a level of indirection that variables introduce. To identify an icon in
a script. Pursuit assigns it a unique color. Although an icon's appearance may change throughout
the script, its color remains the same. For example, in the second panel the icon representing the
output of the copy operation has the name "copy-of-<nl>.tex" and is in the papers folder. In the
third panel, the same set has the name "copy-of-<nl>.tex.Z" and is in the backups folder. Users
can tell that the two icons represent the same set because they have the same color. Color serves
the same purpose as a variable name in textual programming languages. In these languages. a
variable is used to denote a data object. Operations manipulate a variable, but affect only the data
that the variable represents. The variable name (or its representation) is not changed. However. in
Pursuit operations affect the visual repre'sentations of icons. which serve as "variables" representing
data objects. Color insures that the link between an icon and the data it represents is not lost.
when the icon's appearance changes.

4.2 Example 2

This example illustrates how Pursait automatically creates conditionals and loops. When an op-
eration fails. Pursuit cannot construct an epilogue panel. Instead, it creates a conditional marRk"r
(e.g. the black square on the right side of the third panel in Figure 7) and a branch connector
with an annotation (or predicate) stating the condition for that branch. In this example. the copy
operation failed because a file with the required output name already existed, so the annotation is
"exists" plus a named file icon.

6

Figure 7: The two examples used to demonstrate a conditional program. The first two panels show a
successful execution of the copy operation. The remainder of the script shows the unsuccessful execution
and corrective actions the user wants the program to take in that case. The black square on the prologue
of the second copy operation (panel 3) indicates that the operation failed. The predicate following explains
why - the existence of a file with the name copy-of-biblio.tex. The dialog box icon indicates that the
operation popped up a dialog box to the user. Clicking on the icon, pops up the dialog box displayed when
the operation failed. To correct the operation, the user deletes the error causing file (panels 4 and 5) and
re-executes the copy operation (panels 6 and 7).

To build a conditional program. the user demonstrates the program's actions on two examples -
one in which the operation succeeds, and one in which it fails. When the user begins to demonstrate
the program on a third example. Pursuit recognizes a loop. It asks the user to verify the two loop
iterations by highlighting the panels in Figure 7. It then finishes executing the loop and updates the
visual script. The updated script (shown in Figure 8) is an example of an explicit loop containing
an explicit conditional.

The panel below the visual declaration states that the loop executes over all the files in the
declaration set. The operations in the body of the loop are surrounded by the large loop rectangle.
The conditional marker the right edge of the prologue of the copy operation indicates that the
program branches at this point. The first branch (labeled "no errors") is taken when tile copy
operation executes succesffully. The lower branch is taken when the copy operation fails because a
file with the output file name (copy-of -<nl>.tex in this case) already exists. To see the remaining
exit conditions of the copy operation, users can click on its conditional marker. This helps users
interactively consider all possible paths a program may take when executing.

This example also illustrates how Pursuit handles dialog boxes. Applications use dialog boxes
to relay messages or obtain information, such as the name of an output file. from users. In Pursuit.
applications use a special mechanism to display dialog boxes. If a dialog box appears when recording
a program. Pursuit tries to determine if it can compute user responses automatically. so than when
the program is executed no user intervention would be required. Pursuit then pops up a "meta'
dialog box asking the user to confirm the inferences (if there are any) and to state whether or not
the dialog box should appear whenever the program is executed (see Figure 9). To allow users to
view or edit dialog box responses, representations of dialog boxes are included in the script. An
example is shown on the lower branch of the copy operation in Figure 8. By clicking on the dialog
box icon, users can see the Putrsuit meta dialog box contAining both an abstraction of the dialog
box that appears when the copy operation fails and the user's response to Pursuit's query.

The previous example illustrated how Pursuit handles dialog boxes that relay messages to
users. Pursuit uses these same abstraction and inference mechanisms for dialog boxes that obtain
information from users. When recording a script, if such a dialog box appears. Pursuit pops lip
a "meta" dialog box asking users how the information for each field of the dialog box is to be
obtained when the program is executed: by being computed by the program, entered by the user,
or remaining constant. An icon representing this Pursuit dialog box appears in the script and
users can change their responses by clicking on the icon and editing the displayed meta dialog box
directly.

~~is

CU 3 Cap-0

JJ

Figure 8: The Pursuit script that copies each *.tex file in the papers folder. If the copy operation fails
because of the existence of a file with the output file name, the program deletes that old output file. and
re-executes the copy operation. Users can see the other possible outcomes of the copy operation by clicking
on the conditional marker.

4.3 Comparison to Chimera and Mondrian

Although Pursuit's representation language is similar to the editable histories of Chimera (Kur-
lander and Feiner. 1988), there are many important differences. First. Pursuit's visual language
contains abstractions that resemble the real interface objects they represent. [n contrast. Chimera
uses actual screen snapshots in their representations. Also, Pursuit panels contain only the objects
affected by the operation, since Pursuit objects can be identified by their icons. On the other hand.
Chimera panels contain objects not involved in operations (such as the cursor) in order to provide
contextual informacion to help identify objects and operations. Furthermore. Pursuit's inferences
are displayed in the visual script and are always visible, whereas Chimera's inferences are contained
in textual supplements and are not visible in scripts. In addition, Pursuit scripts are two 'limen-
sional. Information is conveyed from left to right and top to bottom (see figure 8). This in,.es
the language more powerful than Chimera, which use only a linear (left to right) display. Finally.
Pursuit scripts visibly represent loops and conditionals, which are inferred automatically. Chimera
macros must be edited to contain loops, which have no explicit representation and Chimera contains
no mechanism for inferring, adding or representing conditionals.

Mondrian (Lieberman, 1993), a demonstrational graphical editor, also uses a similar represen-
tation paradigm. Like Chimera, Mondrian programs are one dimensional focused snapshots of the
screen augmented with other objects needed for context. Like Pursuit, Mondrian interactively oh-

8

mwin WOAAN DILG15goa~M09

The information in this dialog box is either constant

or can be determind by the program- Do you wish to have

this dialog box supressed weNwever the program is executed?

yes. always supress this dialog box

no, do not supress this dialog box

A file with the name
copy-of-xnl>.tax

[dready exists in the folder.

Figure 9: The Pursuit "meta" dialog box displayed when the user clicks on the dialog box icon in Figure 8
The user has indicated that the inner dialog box should not be displayed if the copy operation fails during
program execution. Pursuit has inferred how the file name in the dialog box is computed and replaced it
with the abstract representation "copy-of-<nl>.tex'. Pursuit made the inference using information about
the dialog box's contents contained in the declarative specification of the copy operation.

EDIT

cut

copy ______ ______________ TOM as

paste ppper backu pas backups

property sheet

add branch l i
continue demonstration F]ii

add stop point I copy-of- E
insert into loop ______________

make explicit loop _

undo

Figure 10: The user has selected a sequence of panels (indicated here by the outer gray rectangle) to wrap
in a loop.

tains advice from the user to help with generalizing. Mondrian is unique in its use of speech as a
form of feedback, the ability to create recursive procedures by including an iconic representation of
the developing program in that program during the demonstration, and the ability to add textual

annotations.

5 THE PURSUIT EDITOR

Pursuit contains a visual language editor. This enables users to fix incorrect inferences, add or
delete operations, change attributes, add loops and conditionals, select and name parameters. etc.
The editor is similar to a direct manipulation text editor. Data objects are selected by clicking on
them. and operations are selected by clicking and dragging the mouse across their panels. Once
an object is chosen. appropriate editing commands appear in the edit menu (see Figure 10). For
example, operations can be cut or copied into the cut buffer and pasted into another section of the
program, or they can be wrapped in a loop. File and folder objects can be edited to add, remove
or change attributes, or to make them into parameters.

9

d.1

a top cstan

Figure 11: Adding a user defined branch to a script. The upper branch shows the path to take when the
file paper.tew.Z in the backups folder is older than the file papert.ex in the paper folder. The user is
adding another predicate to branch construct by selecting it from the menu of predicate templates. The
menu choices provide templates for the user to further edit in order to construct a predicate.

To help maintain consistency, edits are immediately propagated throughout the script. For
example, if the user changes the name of a file set, all instances of the set and any members
of it arc iii'mediately updated. If an operation that produced an output file is deleted, then all
subsequent operations that involve that output file are highlighted and the user is informed that
deleting the operation can lead to an invalid program.

Users can also select a point in the script and add operations either by copying them from
another point in the script or by demonstrating them. Operations can not be drawn from scratch.
User defined branches (similar to the Lisp cond construct) can also be added to the script by
inserting a branch template and constructing the predicates via the predicate menus (Figure 11).
Currently, users can add predicates to test for the existence of an object, to compare the properties
of two objects, such as their names or date of modification, or to compare the property of an object
to a system constant, such as USER or TODAY.

After editing the script, it can be saved. Users indicate parameters by clicking on those objects
in the script that represent the actual parameters. For example, clicking on the papers folder in
Figure 8 indicates that the folder over which the program executes is a parameter to the script.
Once saved, a program can be executed by indicating its arguments and selecting the program from
the menu of user defined scripts. Programs can also be edited and re-saved, or deleted.

6 INTEGRATING VISUAL REPRESENTATIONS

The main purpose of Pursuit's visual language is to represent demonstrated programs. In addition.
Pursuit integrates the visual language into other parts of the PBD system. This helps improve
feedback and forms a closer union between the PBD system and the program representation.

6.1 Inferring Iterations

Pursuit uses the visual script to indicate thJ' it has inferred a loop. For example. suppose the
user wishes to extend the program of Figure 5 so that the "copy-of-"prefix is removed from the
compressed copies' names. To do so, the user removes the prefix from one of the copies and then
another. Once Pursuit detects a loop, it highlights the panels containing the loop's operations

10

FIRST ITERATION SECOND ITERATIO

Figure 12: When Pursuit detects a loop, it highlights the operations in the visual program so that users
can confirm the inference.

Would you like the loop to execute
over all the members of the set

The current members are highlighted.

yes, use this set.

no. do not use this set.

Figure 13: A Pursuit dialog box asking the user to confirm the set to loop over. The icon for the set of
files is the same icon found in the third panel of Figure 12. The dialog box appears when the user executes
the rename operation on two members of the set representing the copied files.

(Figure 12). In this way, users can determine if Pursuit has correctly inferred the loop by looking
at the highlighted operations.

Predictive methods like Eager (Cypher, 1991) and Metamouse (Maulsby and Witten, 1990)
force users to step through each operation of the iteration to verify the PBD system's inference.
For a loop containing many operations, this could be tedious. To avoid this tedium, users can
blindly trust the PBD system and have it complete the loop. They then can examine the interface
to see if the PBD system was right. For loops that make many changes throughout the interface.
this could be difficult and is very prone to error. By allowing users to confirm the loop's operations
before it is executed, Pursuit reduces users' work and worry.

6.2 Inferring Sets and Subsets

When Pursuit identifies a set to loop over, it displays a dialog box containing the set's graphical
representation (Figure 13). Users can confirm whether or not Pursuit has chosen the correct set by
identifying the set's icon. This could be quicker and less error prone than displaying a dialog box
listing ali the set members.

Set icons are also used in a unique way in the visual script - to indicate the subset relationship.
When Pursuit identifies one set as a subset of another. it defines the subset using the icon for the
original set (Figure 14). In this way, the subset relationship is graphically depicted.

11

Figure 14: Two Pursuit declarations. The first declaration defines the set icon to represent all the tex
files in the papers folder that were edited on April 19. The second declaration defines the set icon to be the
set containing those files with size less than 1000 bytes in the first file set. Using the first file set icon in the
second declaration concisely depicts the subset relationship.

bakp pa-per - -I -pa-pers. - bakp

date A < de mbiect

Figure 15: The user is adding a branch before the demonstrated operations. To construct the predicate.
the user selected a predicate template and directly edits it using the pull down menus in the template. The
menus for objects in the template contain miniature representations of the objects' data icons.

6.3 Editing Programs

Pursuit also uses a program's visual representation to assist in the editing process. For example,
when the user has forgotten to demonstrate a program path and the program is executed in a state
that causes it to go down that path, Pursuit pops up the visual representation of the program
and highlights the path that the program has taken, indicating where the program is incomplete.
The user can then continue demonstrating what the program should do and Pursuit automatically
updates the script.

Data icons are also used by the editor. Sometimes users wishes to select a data object based on
some criteria that cannot be expressed using attributes. For example, users might wish to check for
the existence of an object or compare a property of one data object with a property of another data
object. In this case users must construct an explicit branch with user defined predicates. To do
so, the editor provides a menu of predicate templates describing all possible forms that a predicate
can take. Each template contains a list of menus for users to choose from in order to construct the
predicate. To describe the data objects that users can select, each menu presents a list of the data
objects using their visual representations (Figure 15). Users can select the desired data object by
selecting its icon from the menu.

Other ways that data icons are used by the editor include indicating program parameters when
saving a script, binding actual parameters to formal parameters when executing a script, and
indicating the loop iteration set when wrapping a sequence of operations in an explicit loop.

12

Dimension Informal Definition
Viscosity resistance to change
Hidden Dependencies important links between entities are not visible
Visibility ability to view components easily
Diffuseness/Terseness succinctness of language
Imposed Look-Ahead constraints on the order of doing things
Closeness of Mapping closeness of representation to domain
Progressive Evaluation effort required to meet a goal
Hard Mental Operations operations that place a high demand on working memory
Secondary Notation information in means other than program syntax
Abstraction Gradient types and availability of abstraction mechanisms
Role-Expressiveness the purpose of a program component is readily inferred
Consistency similar semantics are expressed in similar syntactic forms

Figure 16: The 12 cognitive dimensions identified by Green and Petre.

7 COGNITIVE DIMENSIONS OF PURSUIT

Cognitive dimensions (Green, 1989 and 1991) of an information artifact provide a framework for
a broad-brush assessment of a system's form and structure. By analyzing a system along each
dimension, the framework provides insight into the cognitively important aspects of the system's
notation and interaction style, and could reveal usability issues that may have been overlooked.
In this section, we briefly review the cognitive dimension framework. We then consider Pursuit
in light of these dimensions to see how far it is from a region of the design space suitable for its
intended purposes. In some cases it scores well; in other cases it scores badly, necessitating changes
to the system's design.

In understanding the cognitive dimension framework, it is important to understand that any
programming system is composed of its notational structure and its support environment. By
notation we mean the the symbols that the user sees and manipulates. By environment we mean
the mechanism available to manipulate these symbols. Cognitive dimensions apply to the entire
system because the way the user interacts with the system is determined by both the notation and
environment for manipulating that notation. One aspect of Pursuit that makes it an interesting
case study for cognitive dimensions is that unlike all previous systems studied in which programs
are statically defined with a text or visual language editor, Pursuit's PBD system and incremen-
tally evolving program provide a highly interactive and dynamic environment. The process of
programming, testing and debugging are intertwined.

7.1 The Dimensions

Green and Petre (in preparation) list 12 cognitive dimensions (see Figure 16) and apply them
to a set of contrasting programming languages. In this section we briefly review them for readers
not familiar with them. For a more formal discussion of each, the reader is referred to Green (1989

and 1991).

1. Viscosity - how resistant the language is to change. This dimension measures the effects of
changing a part of a program. In some systems, changing a part of the program necessi-
tates several other changes in the program. Viscosity measures how difficult these additional
changes are to make.

13

2. Hidden Dependencies - important information links between entities are not visible. Very
often the value of a data object depends on the value of another object. Thus changing the
value of one object affects the other object and can cause problems if the dependency is not
evident.

3. Visibility or Side-by-side-ability - how readily required information can be accessed and
whether related components can be viewed simultaneously. Very often users will want to
examine different parts of a program at the same time.

4. Diffuseness/Terseness - how succinctly the language can express operations.

5. Order constraints and Imposed Look-Ahead - constraints on the ordering of operations that
could force the user to commit too early to a program plan. If there are too many constraints,
then users may be forced to make certain choices too soon, locking them into a path that
may not be the best or most efficient one.

6. Hard mental operations - operations that have a high mental workload. For example, oper-
ations that require users to keep track of hidden information, to compose several operations
together, etc. This makes using and understanding the language more difficult.

7. Secondary notation - extra information about the program that is contained in means other
than its syntax, such as indenting, name choices, etc. This dimension also includes com-
ments or annotations the user may add to the program. Good secondary notation make
understanding programs easier.

8. Abstraction Level - the extent to which abstraction in supported in the system, both at
the level of data and operations. This also includes the ability to create subroutines and
encapsulate code fragments. Abstraction can help reduce viscosity, increase comprehensibility
and help protect from errors.

9. Closeness of Mapping - how close the syntax of the language reflects its domain. A close
mapping would enable users to transfer knowledge between the two domains.

10. Gratification Speed and Progressive Evaluation - effort required to meet a goal. This includes
the user's ability to execute partially complete programs in order to evaluate how close the
program is to the desired solution. This dimension is important particularly for novices, since
they often need to evaluate their problem solving progress more frequently than experts.

11. Role-expressiveness - how evident the purpose of a program component is from looking at it.
This aids users in recognizing and understanding program code.

12. Consistency - the language express similar semantics in similar syntactic forms. This helps
with understanding programs and transferring knowledge between similar syntactic struc-
tures.

7.2 How Pursuit Measures Up

There are no hard and fast rules for applying cognitive dimensions. This section represents a com-
pilation of the authors' interpretation and application of the dimensions to Pursuit. In analyzing
Pursuit along cognitive dimensions, we found several cognitive pitfalls for which we provide sug-
gestions. Since any notation by itself is never absolutely good. but good only in relation to certain
tasks it is important to keep in mind while reading this section that the system was analyzed in

14

light of the expected user group (non-programmers) and the tasks that these users are expected to
do (repetitive programs that execute over a set of related objects at the desktop level).

7.2.1 Viscosity

The Pursuit visual editor makes it relatively simple to cut, copy and paste operations in the pro-
gram; to add branch and conditional constructs; to add and delete parameters; and to modify the
attributes of objects. However, because the main method of program specification is by demon-
stration, to add new operations to a program users are forced to place "stop points" and re-execute
the program on another piece of data. This can place a heavy burden on users who have to place
the stop points in the correct position and insure that the state of the desktop is such that the
program will execute and follow the desired path. A way to avoid this problem would be to expand
the visual editor to include a method to construct an operation's representation. For example. the
editor could contain a menu of all system operations. The user can select a particular operation.
have a template of its prologue and epilogue appear, and edit the template to contain the correct
data objects.

7.2.2 Hidden Dependencies

There are two dependencies in Pursuit: between data objects and between operations. Data objects
dependencies define a relationship between two objects based on some shared attribute, which is
most often the objects' names. For example, in the program in Figure 8 the output file and the
predicate file (i.e. the files named copy-of-<nl>.tex) both are derived from (depend on) the
loop input file (named <nnl>.tex). Operation dependencies define a relationship between two
operations based on some shared data object. For example, both the move and the compress
operations in the program of Figure 5 depend on the copy operation.

Both these dependencies can lead to problems when editing the script, since editing the depen-
dency causing objects or operations can affect the dependent objects or operations. For example.
suppose the user changes the name attribute of the set of files in Figure 8 to be all .mss files.
The loop, output and predicate files must also be updated. Similarly, if the user deletes the copy
operation in Figure 5, then the move and compress operations would become invalid.

To avoid problems caused by these dependencies. Pursuit contains two features. The first is
the automatic propagation of attribute edits. Whenever the user edits an object, all dependent
objects are automatically updated. The second feature is automatic notification of invalid opera-
tions. Whenever the user deletes a dependency causing operation, Pursuit highlights the dependent
operations in the visual script and asks if these operations should also be deleted so that users can
see how deleting a single operation affects the entire program.

While these features address the problems of editing dependency causing objects and operations.
they do not make users aware of these dependencies until an editing action is taken. A mechanism
that shows the dependencies (for example, by highlighting the dependent objects or operations)
of an object or operation could help users see the possible effects of their actions before they do
anything and could decrease mental load when programming. Consider, for example, the current
Pursuit editor and the mental burden on the user in the following scenario. Imagine a fairly long
script in which the output of a copy operation is not used until several operations later, and the
distance between the two operations is such that both are not visible in the program window at
the same time. In this case, the dependency between the operations is not visible at any one time.
Users must rely on their memory to identify the dependency when scrolling through the program.
Similarly, if the user changes the name of the output file so it no longer contains the copied file

15

name string, then the dependency between the output and input files can only be discovered by
tracing the output file icon backwards through (possibly several) operation panels. In both these
instances, dependency tracking mechanism would simplify the search and memory requirements for
the user.

7.2.3 Visibility, Side-by-Side-ablility and Diffuseness

The entire Pursuit program can be viewed in a scrollable window, making all of the program readily
accessible. However, the portion a program that can be viewed at any one time is limited to the
width of the program window. Space saving heuristics, such as combining several operations into
one panel, increase the amount of the program that is visible at any one time, and the ability
to reveal the individual operations of a composite panel insures that the entire program can be
viewed at the level of granularity of individual operations. In addition, the ability to pop up a
data object's property sheet by clicking on any of its icons in the program allows users to view
readily information and attributes of the object. Finally, the use of color to uniquely identify an
icon makes it easier to identify and locate data objects when scanning a program.

There are many ways to improve visibility. One way is to allow multiple views of the program
so that users can simultaneously view semantically related but distant parts. To simplify accessing
information about a data object, it would be helpful to be able to display the object's declaration in
a separate window. This could reveal dependencies, such as subsets of file sets, that are not evident
in a property sheet. Finally, allowing complete program structures, such as loops and paths of a
branch, to be collapsed into a single icon as well as adding the ability of users to select groups of
panels to be collapsed into icons would increase the portion of the program visible at any one time,
and could provide a global overview of a program's structure.

7.2.4 Order Constraints and Imposed Look-ahead

Pursuit imposes certain order constraints on the programmer. A component is a sequence of
operations that may contain data dependencies. During a single demonstration, a component
can only be developed top-down. This is by nature of the demonstration specification method as
discussed above. However, between components that contain no data dependencies with each other.
there are no constraints.

To remove constraints between components that contain data dependencies, there are two re-
quirements. First, the user must be able to arrange the state of the desktop so that each component
can be successfully demonstrated. Second, the editor must be augmented to all w for two different
data objects (i.e. two icons of different colors) to be made into the same data object. For example.
the user can demonstrate moving and compressing a file as a single component. Then the user
can demonstrate copying a file as another component. To make the two components into a single
program of copying a file and moving and compressing the output, the user needs a way to indicate
that the icon representing the input to the move operation should be the same as the icon for the
copy operation. In this way, the user can demonstrate pieces of the program in any order and
then paste them together into a correct program without having to be constrained by the ordering
of operations. This would make programming in Pursuit more amenable to the "top-down with
deviation" programming process exhibited in other end-user programming domains (Visser, 1990:
Davies, 1991).

Constraints Imposed by PBD

It is interesting to note that the demonstrational specification technique both decreases and in-

16

creases the look-ahead necessary to write a program. Demonstrating a program on existing data
objects without considering all possible problems the program may encounter decreases look-ahead.
The user simply interacts with the system in the usual way. However, if users desires to construct
a program so that it "always" works, then, like all programmers, they must be able to consider all
possible data conditions that the program may have to deal with. In the PBD model this requires
users to arrange the state of the system so that the demonstration will encounter these situations
and construct the program accordingly. Such a look-ahead requirement is burdensome.

To decrease this burden, Pursuit incorporates two features: exit branch exposition and incom-
plete path exposition. Exit branch exposition allows the user to view all the possible outcomes of
a particular operation by clicking on an exit branch in a visual script. For example, clicking on
the conditional marker in Figure 8 displays the predicates for the remaining exit branches of the
operation. The user can then demonstrate what the program should do in each case. Similarly.
incomplete path exposition displays the predicate for a particular exit branch of an operation when
that branch is encountered during execution. When an operation of an executing program has
an outcome not included in the program, Pursuit displays the program, adds the undemonstrated
branch, highlights it, and asks the user what to do: abort the program execution; abort the execu-
tion of this data object; or allow the program to be augmented by the user demonstrating the new
path the program should take.

Both exit branch exposition and incomplete path exposition decrease the look-ahead require-
ment imposed by the PBD specification technique because the user is no longer forced to think
of all possible paths the program can take. Instead, the user can demonstrate the program in the
current state and then explore ways to augment the program by examining each operation's exit
branches. Furthermore, the program need not be edited immediately. Instead, the user can do so
any time the program is run and a forgotten path is encountered.

Constraints Imposed by Pursuit

In addition to the constraints imposed by the demonstrational specification technique, the Pursuit
programming model of sets and set manipulation also imposes some constraints. Consider the
example (section 4.1) in which the user copies, moves and compresses all the .tex files in a folder.
Suppose that one of the files originally copied was abstr.tex and that the backups folder contains
a file with the name copy-of-abstr.tex.Z. Then the compress operation will fail on that set
member. Thus, the users "plan" to manipulate the set of files in order to construct the program
was incorrect. To successfully demonstrate this program, the user must examine the state of the
system and notice the problem causing file. Then she must demonstrate the program with two
examples - one in which the compress operation succeeded and one in which it failed - so that
Pursuit could infer the explicit loop (similar to the example in section 4.2). This places a large
look-ahead constraint on the user, since for very long programs involving multiple operations in
multiple folders, the user would have to carefully inspect the system's state. remembering various
data states and operation outputs throughout. Such a search would most likely exceed working
memory capacity.

A similar problem arises when the user demonstrates a set of operations on a file set and
afterwards realizes that the set selection criteria cannot be expressed via the set attributes. but
must be explicitly tested for in a user defined branch. Imagine the frustration as the user exclaims
"Darn. I should have used only a single file!". That is, to have correctly demonstrated the program.
the user would have had to demonstrate it on a single data object, then edit the program to add
the branch and wrap it in a loop. This requires that the user completely understand before hand
how to express selection criteria.

17

To address these two problems, Pursuit needs a mechanism to convert a sequence of set opera-
tions to an explicit loop containing the operations. The loop's iteration set would be the data set to
the original operations. Such a mechanism should automatically infer an explicit loop whenever an
operation applied to a set has different outcomes for different set members, and should be available
for users to invoke whenever they need to make a sequence of set operations into an explicit loop.
In this way, users are less constrained to examine the system state or to fully know how to express
certain selection criteria before a demonstration.

7.2.5 Domain Interpretability or Closeness of mapping

In most language designs a close fit is thought desirable, because novices are expected already to
know the domain. We believe that in shell programming novices will not know the domain and
that it would be better if Pursuit hid some of the more idiosyncratic features. Pursuit is necessarily
driven by some domain requirements, such as the various possible outcomes of operations, but it
is mildly abstraction-tolerant: in Figure 5 the third panel probably conforms closer to the user's
conceptual structure than the multiple operations that it encloses.

7.2.6 Gratification Speed and Progressive Evaluation

In Pursuit, the program is constructed while it is being executed, so that the user can immediately
see its effects. Even when editing or revising a program, users add operations by demonstrating
actions so that they can see the results of the program. Incomplete programs are easy to execute
- indeed programs as they are being constructed are incomplete programs executing. Thus. the
programming process provides (almost) immediate means of evaluating progress and seeing results
quickly, makhUg for high gratification.

7.2.7 Hard Mental Operations

Since Pursuit is similar to procedural textual languages such as Pascal and Basic, and since it
has been shown that in these languages extracting declarative information from dense conditional
structures was not easy (Sime, Green and Guest. 1977), we can assume that Pursuit would suffer
the same limitation. We note, however, a study that may suggest that Pursuit's conditionals could
be easier to abstract information from. Green (1977) showed that professional programmers could
abstract declarative information more easily from a Pascal-like textual language when the branches
of the conditional were labeled with "predicate" and "not predicate" rather than "predicate" and
"else", and when the conditional ended with "end predicate" rather than just "end". Notice that
Pursuit branches, either those based on an exit code or those constructed by the user. contain
predicates along each path explaining the condition (e.g., exists file) that causes the path to be
taken. In addition, the end of a Pursuit branch is communicated visually - the user reaches the end
of the panel of operations along the branch. Perhaps this supplies the "visual equivalent" of negated
predicates and explicit ends that simplified mentally hard operations in the textual domain.

7.2.8 Secondary Notation

In traditional textual languages. which are by design 1-dimensional, layout on a page (the second
dimension) is often used to convey meaning and structure in the program. In Pursuit. as in other
VPLs. the second dimension is already incorporated (formally) into the language. Other means are
needed to maintain perceptual cues. In Pursuit, the use of different graphical structures, such as a

18

loop box and branch construct, as well as layout, such as paths of a branch being parallel to one
another, are ways that some control information is conveyed.

Other perceptual cues, such as the shadows beneath composite panels and the use of color to

identify an object or set elc "9nt throughout the script, are used to convey information on program
structure. In addition, the ability of users to collapse a loop into a loop icon or to choose several
panels to collapse into a single icon to identify components can be used to relay some overall
structural information about the program (similar to subroutine calls in textual languages).

The most common form of secondary notation in programming languages is the use of comments.
Currently, Pursuit provides no way to annotate the program. It would be easy to extend the
language to allow a panel to be annotated. However, since the real -action'" of a program occurs
between panels, and since users would most likely want to annotate a program component, some
way to add comments at random points in the program is necessary.

7.2.9 Abstraction Level

There are several types of abstractions in Pursuit. Declarations allow for specifying abstract sets of
objects. Property sheets also aid abstraction and provide for a built in form of search and replace
(e.g., Consider changing a file name. All dependent files are automatically updated). Automatic
panel collapsing provides abstraction at the operation level and future extensions will increase this
capability. In addition, parameterizing a script and incorporating into other scripts also provides
for operation abstraction.

An interesting feature of Pursuit is that abstraction is done both automatically (by the inference
mechanism in creating sets, collapsing operations, etc.) and by the user (parameterizing scripts.
editing attributes, etc.).

7.2.10 Role Expressiveness

One of Pursuit's goals is to maximize role expressiveness. The Pursuit visual language was de-
signed so that the graphical properties of a desktop object map to graphical properties of its iconic
representation in a visual script. For example. the icons for files and folders in the visual script
reflect the icon identifiers for files and folders in the interface (compare Figure 5 and Figure 6).
The whole basis for operation representations is depicting the changes operations cause to objects.
Theoretically, then, Pursuit is role expressive.

7.2.11 Consistency

We found two inconsistencies in the syntax/semantics relationship in Pursuit. First, an object's
name is really an attribute, but is not represented graphically like other attributes such as date.
Instead, it has its own unique location and representation. A similar objection was raised to the
representation of an object's location attribute (i.e. in a folder object, not as a graphical attribute).
There are two reasons to support this inconsistency. First, the name of an object and its location
serve as both attributes and graphical properties that operations can change. Hence. they each
serve two roles and should have a representation distinct from attributes only. Second. the location

of an object is something that we believe is easier to identify via a good graphical representation
(i.e. one that is more role expressive) than through an "artificial" graphical one like attribute
boxes.

The second inconsistency is how properties of objects are depicted one way in attributes, and
another way for user defined predicates. For example, compare how the date attribute is represented
in Figure 3A and the date properties is extracted in Figure 11. Both representations refer to the

19

date property of an object, yet both are represented differently. This inconsistency is defended by
the increased understandability the designers hope is gained.

Only user testing can support whether or not these inconsistencies increase or decrease program
understandability.

8 STATUS AND FUTURE WORK

A prototype of Pursuit has been implemented using Garnet (Myers, et al, 1990) and is currently
operational (Modugno and Myers, 1994). This prototype has been used to evaluate the Pursuit
design along the cognitive dimensions. Doing so has already revealed several ways to improve the
design, as discussed in the previous section. Using the prototype, we have also done some informal
user studies, which have provided important feedback to improve the system. For example, Pursuit
initially contained a heuristic that sometimes eliminated the prologue of the first operation of a
program. Since several people had difficulty understanding scripts in which this heuristic was
applied, we eliminated it. Further work is needed to refine the heuristics for generating attributes
and operation panels and to provide ways for making programs more concise.

We are also exploring other ways of using visual representations as feedback, such as with
animation. For example, consider the dialog box in Figure 13. Instead of suddenly appearing in
the middle of the screen, a representation of the file set could emerge from the script, move to the
center of the screen, and expand into the dialog box. Similarly, rather than disappearing instantly.,
the dialog box could shrink back into the set icon. Adding this animation would more closely link
dialog boxes to the relevant section of the visual script.

Finally, user studies are planned to evaluate the visual language itself as well as the entire
Pursuit system to determine how well it helps users automate tasks. In these studies. users will
construct programs for some tasks using Pursuit. These results will be compared with users doing
the same task in the Pursuit visual shell but whose program representation language is an "English-
like" textual language similar to the one found in SmallStar. This will help us evaluate whether or
not the visual representation really does help simplify the programming process. We also plan to
compare the recognizability of programs in both the Pursuit visual language and the "English-like"
textual language in the same way that recognizability was evaluated for dataflow languages and
textual languages (Green and Petre, 1992; Green, Petre and Bellamy, 1991).

9 CONCLUSION

Pursuit is a visual shell that is designed to provide much of the common programming power cur-
rently missing in visual shells in a way that is consistent with the direct manipulation paradigm. By
combining the techniques of Programming by Demonstration with an editable, visual representa-
tion of programs, users can create abstract programs containing variables, loops, and conditionals.
The goal is to enable users to access the underlying power of the computer by interacting with it
as much as possible in the way they normally do - by executing real actions on real data objects -
thus reducing the gap between between users' mental model and the difficult task of programming.

Analyzing the system along cognitive dimensions provided insight into the strong points of the
system and suggested ways to improve some of its weaknesses. In particular, it revealed hitherto
unnoticed weaknesses in viscosity, hidden dependencies and (quite unexpectedly to the designer)
imposed look-ahead. The results of the planned user studies will further evaluate how close Pursuit
comes to its intended goals.

20

10 ACKNOWLEDGEMENTS

The authors thank T.R.G. Green for his help and guidance with the cognitive dimension analysis.
We also thank Mitch Dsouza, Jade Goldstein, David Hendrey, Bonnie John, David Kosbie, David
Kurlander, James Landay and Marian Petre for enriching comments on this work.

11 REFERENCES

D. Ackermann and J. Stelovsky (1986). The Role of Mental Models in Programming: From
Experiments to Requirements for an Interactive System. In P. Gorny and M.J. Tauber,
editors, Visualization in Programming, pages 37-52.

Kjell Borg (1990). IShell: A Visual UNIX Shell. In Proceedings of CHI '90, pages 201-207.

Keys Botzum (in progress). An Empirical Study of Shell Programs. Technical Report in progress,
Bell Communications Research.

Wayne Citrin (1991). Visualization-Based Visual Programming. Technical Report CU-CS-535-91,
Unversity of Colorado, Boulder, Colorado.

Allen Cypher (1991). EAGER: Programming Repetitive Tasks by Example. In Proceedings of
CHI '91, pages 33-40.

Allen Cypher (1993). Watch What I Do: Programming by Demonstration. The MIT Press.
Cambridge, MA, 1993.

S. P. Davies (1991). Characterising the Program Design Activity: Neither Strictly Top-Down
Nor Globally Opportunistic. Behaviour and Information Technology, 10(3):173-190.

Stephanie M. Doane, James W. Pellegrino, and Roberta L. Klatzky (1990). Expertise in a Com-
puter Operation System: Conceptualization and Performance. Human-Computer Interaction.
5:267-304.

William Finzer and Laura Gould (1984). Programming by Rehearsal. Byte Magazine, 9(6):187-
210.

George W. Furnas (1991). New Graphical Reasoning Models for Understanding Graphical Inter-
faces. In Proceedings of CHI '91, pages 71-78.

T.R.G. Green (1977). Conditional Program Statements and Their Comprehensibility to Profes-
sional Programers. J. Occupational Psychology, 50:93-109.

T.R.G. Green (1989). Cognitive Dimensions of Notations. In A. Sutchiff and L. Macaulay,
editors, People and Computers V, pages 443-460. Cambridge University Press.

T.R.G. Green (1991). Describing Information Artifacts with Cognitive Dimensions and Structure
Maps. In D. Diaper and N. Hammonds, editors, People and Computers VI, pages 297-316.
Cambridge University Press.

T.R.G Green and M. Petre (1992). When Visual Programs are Harder to Read than Textual
Programs. In G.C. van der Verr, M.J. Tauber, S. Bagnarola, and M. Antavolits. editors,
Human-Computer Interaction: Tasks and Organisation (Proceedings 6th European Confer-
ence on Cognitive Ergonomics).

21

T.R.G. Green, M. Petre, and R.K.E. Bellamy (1991). Comprehensibility of Visual and Textual
Programs: A Test of Superlativism Against the *Match-Mismatch' Conjecture. In Empirical
Studies of Programmers: Fourth Workshop.

P.E. Haeberli (1988). ConMan: A Visual Programming Language for Interactive Graphics. In
A CM SIGGRA PH, pages 103-111.

Daniel C. Halbert (1984). Programming by Example. PhD thesis, Computer Science Division.
University of California, Berkeley, CA.

Tyson R. Henry and Scott E. Hudson (1988). Squish: A graphical shell for unix. In Graphics
Interface, pages 43-49.

Edwin L. Hutchins, James D. Hollan and Donald A. Norman (1986). Direct Manipulation
Interfaces. In D. Norman and S. Draper, editors, User Centered System Design, pages 87-
124.

Branka Jovanovic and James D. Foley (1986). A Simple Graphics Interface to UNIX. Techni-
cal Report GWU-IIST-86-23, The George Washington University, Institute for Information
Science and Technology, Washington, DC 20052.

David Kurlander and Steven Feiner (1988). Editable Graphical Histories. In Workshop on Visual
Languages, pages 127-134, Pittsburgh, PA 15213.

Clayton Lewis and Gary M. Olson (1987). Can Principles of Cognition Lower the Barriers to
Programming? In Empirical Studies of Programmers: Second Workshop. pages 248-263.

Henry Lieberman (1982). Constructing Graphical User Interfaces By Example. In Graphics
Interface '82, pages 295-302, Toronto, Ontario, Canada.

Henry Lieberman (1993). Mondrian: A Teachable Graphical Editor. In Proceedings of InterCHI
'93, page 144.

David L. Maulsby and Ian H. Witten (1989). Inducing Programs in a Direct-Manipulation
Environment. In Proceedings of CHI '89, pages 57-62, Austin. Tx.

Francesmary Modugno (in progress). Pursuit: Adding Programming in the Interface. PhD thesis.
Carnegie Mellon University. expected Deceraber 1994.

Francesmary Modugno and Brad A. Myers (1994). Pursuit: Graphically Representing Programs
in a Demonstrational Visual Shell. To appear in Proceedings of CHI "94.

Brad A. Myers (1988). Creating User Interfaces by Demonstration. Academic Press. Boston.
Massachusetts.

Brad A. Myers (1992). Demonstrational Interfaces: A Step Beyond Direct Manipulation. IEEE
Computer, 25(8):61-73.

Brad A. Myers et al (1990). Garnet: Comprehensive Support for Graphical. Highly-Interactive
User Interfaces. IEEE Computer, 23(11):71-85.

M.E. Sime and T.R.G. Green and D.J. Guest (1977). Scope Markings in Computer Conditionals
- A Psychological Evaluation, Int. J Alan-Machine Studies, 9:107-118.

22

Ben Shneiderman (1983). Direct Manipulation: A Step Beyond Programming Languages. Com-

puter, 16(8):57-69.

W. Visser (1990). More or Less Following a Plan During Design: Opportunistic Deviations in

Specification. Int. J. Alan-Machine Studies, 33(3):247-278.

23

