Abstract

The Conjugate Gradient Method is the most prominent iterative method for solving sparse systems of linear equations. Unfortunately, many textbook treatments of the topic are written so that even their own authors would be mystified, if they bothered to read their own writing. For this reason, an understanding of the method has been reserved for the elite brilliant few who have painstakingly decoded the mumblings of their forebears. Nevertheless, the Conjugate Gradient Method is a composite of simple, elegant ideas that even stupid people can understand. Of course, a reader as intelligent as yourself will learn them almost effortlessly.

The idea of quadratic forms is introduced and used to derive the methods of Steepest Descent, Conjugate Directions, and Conjugate Gradients. Eigenvectors are explained and used to examine the convergence of the Jacobi Method, Steepest Descent, and Conjugate Gradients. Other topics include preconditioning and the nonlinear Conjugate Gradient Method. I have taken pains to make this article easy to read. Sixty-two illustrations are provided. Dense prose is avoided. Concepts are explained in several different ways. Most equations are coupled with an intuitive interpretation.
Keywords: conjugate gradient method, preconditioning, convergence analysis, idiot
Contents

1. Introduction .. 1
2. Notation ... 1
3. The Quadratic Form 2
4. The Method of Steepest Descent 6
5. Thinking with Eigenvectors and Eigenvalues 9
 5.1. Eigen do it if I try 9
 5.2. Jacobi iterations 10
 5.3. A Concrete Example 12
6. Convergence Analysis of Steepest Descent 13
 6.1. Instant Results 13
 6.2. General Convergence 17
7. The Method of Conjugate Directions 21
 7.1. Conjugacy .. 21
 7.2. Gram-Schmidt Conjugation 25
 7.3. Properties of the Residual 26
8. The Method of Conjugate Gradients 28
9. Convergence Analysis of Conjugate Gradients 30
 9.1. Optimality of the Error Term 30
 9.2. Chebyshev Polynomials 33
10. Complexity .. 36
11. Starting and Stopping 36
 11.1. Starting .. 36
 11.2. Stopping .. 36
12. Preconditioning 37
13. Conjugate Gradients on the Normal Equations ... 39
14. The Nonlinear Conjugate Gradient Method 40
 14.1. Outline of the Nonlinear Conjugate Gradient Method 40
 14.2. General Line Search 41
 14.3. Preconditioning 45
A Notes .. 46
B Canned Algorithms 47
 B1. Steepest Descent 47
 B2. Conjugate Gradients 48
 B3. Preconditioned Conjugate Gradients 49
B4. Nonlinear Conjugate Gradients with Newton-Raphson and Fletcher-Reeves 50
B5. Preconditioned Nonlinear Conjugate Gradients with Secant and Polak-Ribière 51

C Ugly Proofs 52
C1. The Solution to $Ax = b$ Minimizes the Quadratic Form 52
C2. A Symmetric Matrix Has n Orthogonal Eigenvectors .. 52
C3. Convergence of Steepest Descent .. 53
C4. Optimality of Chebyshev Polynomials .. 53
List of Figures

1. Sample two-dimensional linear system and its solution ... 2
2. Graph of a quadratic form ... 3
3. Contours of a quadratic form ... 3
4. Gradient of a quadratic form .. 4
5. Quadratic forms for positive-definite, negative-definite, singular, and indefinite matrices (four illustrations). .. 5
6. The method of Steepest Descent (four illustrations). .. 7
7. On the search line, \(f \) is minimized where the gradient is orthogonal to the search line. 7
8. Convergence of Steepest Descent ... 8
9. Converging eigenvector. ... 9
10. Diverging eigenvector. ... 9
11. A vector can be expressed as a linear combination of eigenvectors. 10
12. The eigenvectors are directed along the axes of the paraboloid defined by the quadratic form. .. 12
14. Steepest Descent converges to the exact solution on the first iteration if the error term is an eigenvector. .. 15
15. Steepest Descent converges to the exact solution on the first iteration if the eigenvalues are all equal. .. 16
16. The energy norm .. 17
17. Convergence of Steepest Descent as a function of the slope and the condition number. 19
18. These four examples represent points near the corresponding four corners of the graph of \(\omega \) (four illustrations). .. 19
19. Starting points that give the worst convergence for Steepest Descent. 20
20. Convergence of Steepest Descent worsens as the condition number of the matrix increases. .. 21
21. Method of Orthogonal Directions. ... 22
22. A-orthogonal vectors (two illustrations). ... 23
23. The method of Conjugate Directions converges in \(n \) steps (two illustrations). 24
24. Gram-Schmidt conjugation ... 25
25. The method of Conjugate Directions using the axial unit vectors, also known as Gaussian elimination. .. 26
26. The search directions span the same subspace as the vectors from which they were constructed. .. 27
27. Conjugate Gradient search directions span the same subspace as the residuals. 28
28. The method of Conjugate Gradients. .. 29
29. CG minimizes the energy norm of the error at each step ... 30
30. The convergence of CG depends on how close a polynomial can be to zero on each eigenvalue (four illustrations). .. 32
31. Chebyshev polynomials of degree 2, 5, 10, and 49. .. 33
32. Optimal polynomial of degree 2. .. 34
33. Convergence of Conjugate Gradients as a function of condition number. 35
34. Number of iterations of Steepest Descent required to match one iteration of CG. 35
35. Contour lines of the quadratic form of the diagonally preconditioned sample problem. 38
36. Convergence of the nonlinear Conjugate Gradient Method (four illustrations). 42
37. Nonlinear CG can be more effective with periodic restarts. 43
38. The Newton-Raphson method. .. 43
39. The Secant method. ... 45
40. The preconditioned nonlinear Conjugate Gradient Method. 46
About this Article

An electronic copy of this article is available by anonymous FTP to REPORTS.ADM.CS.CMU.EDU (IP address 128.2.218.42) under the filename 1994/CMU-CS-94-125.ps. A PostScript file containing full-page copies of the figures herein, suitable for transparencies, is available electronically on request from the author (jrs@cs.cmu.edu). Most of the illustrations were created using Mathematica.

©1994 by Jonathan Richard Shewchuk. This article may be freely duplicated and distributed so long as no consideration is received in return, and this copyright notice remains intact.

This guide was created to help students learn Conjugate Gradient Methods as easily as possible. Please mail me (jrs@cs.cmu.edu) comments, corrections, and any intuitions I might have missed; some of these will be incorporated into a second edition. I am particularly interested in hearing about use of this guide for classroom teaching.

For those who wish to learn more about iterative methods, I recommend William L. Briggs' "A Multigrid Tutorial" [21, one of the best-written mathematical books I have read.

Special thanks to Omar Ghattas, who taught me much of what I know about numerical methods, and provided me with extensive comments on the first draft of this article. Thanks also to David O'Hallaron, James Stichnoth, and Daniel Tunkelang for their comments.

To help you skip chapters, here's a dependence graph of the sections:

```
1 Introduction 10 Complexity
2 Notation 13 Normal Equations
3 Quadratic Form
  4 Steepest Descent
  5 Eigenvectors
  6 SD Convergence
  7 Conjugate Directions
  8 Conjugate Gradients
  9 CG Convergence
  11 Stop & Start
  12 Preconditioning
  14 Nonlinear CG
```

This article is dedicated to every mathematician who uses figures as abundantly as I have herein.
1. Introduction

When I decided to learn the Conjugate Gradient Method (henceforth, CG), I read four different descriptions, which I shall politely not identify. I understood none of them. By the end of the last, I swore in my rage that if ever I unlocked the secrets of CG, I should guard them as jealously as my intellectual ancestors. Foolishly, I wrote this article instead.

CG is the most popular iterative method for solving large systems of linear equations. CG is effective for systems of the form

$$Ax = b$$

where x is an unknown vector, b is a known vector, and A is a known, square, symmetric, positive-definite (or positive-indefinite) matrix. (Don't worry if you've forgotten what "positive-definite" means; we shall review it.) These systems arise in many important settings, such as finite difference and finite element methods for solving partial differential equations, structural analysis, circuit analysis, and math homework.

Iterative methods like CG are suited for use with sparse matrices. If A is dense, your best course of action is probably to factor A and solve the equation by backsubstitution. The time spent factoring a dense A is roughly equivalent to the time spent solving the system iteratively; and once A is factored, the system can be backsubstituted quickly for multiple values of b. Compare this dense matrix with a sparse matrix of larger size that fills the same amount of memory. The triangular factors of a sparse A usually have many more nonzero elements than A itself. Factoring may be impossible due to limited memory, and will be time-consuming as well; even the backsolving step may be slower than iterative solution. On the other hand, most iterative methods are memory-efficient and run quickly with sparse matrices.

I assume that you have taken a first course in linear algebra, and that you have a solid understanding of matrix multiplication and linear independence, although you probably don’t remember what those eigenthings were all about. From this foundation, I shall build the edifice of CG as clearly as I can.

2. Notation

Before we begin, a few definitions and notes on notation are in order.

With a few exceptions, I shall use capital letters to denote matrices, lower case letters to denote vectors, and Greek letters to denote scalars. A is an $n \times n$ matrix, and x and b are vectors — that is, $n \times 1$ matrices. Equation 1, written out fully, looks like this:

$$\begin{bmatrix}
A_{11} & A_{12} & \ldots & A_{1n} \\
A_{21} & A_{22} & \ldots & A_{2n} \\
\vdots & \vdots & \ddots & \vdots \\
A_{n1} & A_{n2} & \ldots & A_{nn}
\end{bmatrix}
\begin{bmatrix}
x_1 \\
x_2 \\
\vdots \\
x_n
\end{bmatrix}
=
\begin{bmatrix}
b_1 \\
b_2 \\
\vdots \\
b_n
\end{bmatrix}$$

The inner product of two vectors is written x^Ty, and represents the scalar sum $\sum_{i=1}^{n} x_i y_i$. Note that $x^Ty = y^Tx$. If x and y are orthogonal, then $x^Ty = 0$. In general, expressions that reduce to 1×1 matrices, such as x^Ty and x^TAx, are treated as scalar values.
A matrix A is positive-definite if, for every nonzero vector x,

$$x^T A x > 0.$$ \hspace{1cm} (2)

This may mean little to you, but don’t feel bad; it’s not a very intuitive idea, and it’s hard to imagine how a matrix that is positive-definite might look differently from one that isn’t. We will get a feeling for what positive-definiteness is about when we see how it affects the shape of quadratic forms.

Finally, don’t forget the important basic identities $(AB)^T = B^T A^T$ and $(AB)^{-1} = B^{-1} A^{-1}$.

3. The Quadratic Form

A quadratic form is simply a scalar, quadratic function of a vector with the form

$$f(x) = \frac{1}{2} x^T A x - b^T x + c$$ \hspace{1cm} (3)

where A is a matrix, x and b are vectors, and c is a scalar constant. I shall show shortly that if A is symmetric and positive-definite, $f(x)$ is minimized by the solution to $Ax = b$.

Throughout this paper, I will demonstrate ideas with the simple sample problem

$$A = \begin{bmatrix} 3 & 2 \\ 2 & 6 \end{bmatrix}, \quad b = \begin{bmatrix} 2 \\ -8 \end{bmatrix}, \quad c = 0.$$ \hspace{1cm} (4)

The system $Ax = b$ is illustrated in Figure 1. In general, the solution x lies at the intersection point of n hyperplanes, each having dimension $n - 1$. The solution in this case is $x = [2, -2]^T$. The corresponding quadratic form $f(x)$ appears in Figure 2. A contour plot of $f(x)$ is illustrated in Figure 3. Because A is

![Figure 1: Sample two-dimensional linear system. The solution lies at the intersection of the lines.](image-url)
Figure 2: Graph of a quadratic form $f(x)$. The minimum point of this surface is the solution to $Ax = b$.

Figure 3: Contours of the quadratic form. Each ellipsoidal curve has constant $f(x)$.
The gradient of a quadratic form is defined to be

$$f'(z) = \begin{bmatrix} \frac{\partial}{\partial z_1} f(z) \\ \frac{\partial}{\partial z_2} f(z) \\ \vdots \\ \frac{\partial}{\partial z_n} f(z) \end{bmatrix}.$$ \hfill (5)

The gradient is a vector field that, for a given point z, points in the direction of greatest increase of $f(z)$. Figure 4 illustrates the gradient vectors for Equation 3 with the constants given in Equation 4. At the bottom of the paraboloid bowl, the gradient is zero. One can minimize $f(z)$ by setting $f'(z)$ equal to zero.

With a little bit of tedious math, one can apply Equation 5 to Equation 3, and derive

$$f'(z) = \frac{1}{2} A^T z + \frac{1}{2} A z \cdot b.$$ \hfill (6)

If A is symmetric, this equation reduces to

$$f'(z) = Az - b.$$ \hfill (7)

Setting the gradient to zero, we obtain Equation 1, the linear system we wish to solve. Therefore, the solution to $Ax = b$ is a critical point of $f(z)$. If A is positive-definite as well as symmetric, then this
solution is a minimum of $f(x)$, so $Ax = b$ can be solved by finding an x that minimizes $f(x)$. (If A is not symmetric, then Equation 6 hints that CG will find a solution to the system $\frac{1}{2}(A^T + A)x = b$. Note that $\frac{1}{2}(A^T + A)$ is symmetric.)

Why do symmetric positive-definite matrices have this nice property? Consider the relationship between f at some arbitrary point p and at the solution $x = A^{-1}b$. From Equation 3 one can show (Appendix C1) that if A is symmetric (be it positive-definite or not),

$$f(p) = f(x) + \frac{1}{2}(p - x)^T A(p - x).$$

(8)

If A is positive-definite as well, then by Property 2, the latter term is positive for all $p \neq x$. It follows that x is a global minimum of f.

The fact that $f(x)$ is a paraboloid is our best intuition of what it means for a matrix to be positive-definite. If A is not positive-definite, there are several other possibilities. A could be negative-definite — the result of negating a positive-definite matrix (see Figure 2, but hold it upside-down). A might be singular, in which case no solution is unique; the set of solutions is a line or hyperplane having a uniform value for f. If A is none of the above, then x is a saddle point, and techniques like Steepest Descent and CG will likely fail. Figure 5 demonstrates the possibilities. The value of y determines where the minimum point of the paraboloid lies, but does not affect the paraboloid's shape.

Why go to the trouble of converting the linear system into a tougher-looking problem? The methods under study — Steepest Descent and CG — were developed and are intuitively understood in terms of minimization problems like Figure 2, not in terms of intersecting hyperplanes such as Figure 1.
4. The Method of Steepest Descent

In the method of Steepest Descent, we start at an arbitrary point \(x(0) \) and slide down to the bottom of the paraboloid. We take a series of steps \(x(1), x(2), \ldots \) until we are satisfied that we are close enough to the solution \(x \).

When we take a step, we choose the direction in which \(f \) decreases most quickly, which is the direction opposite of \(f'(x(i)) \). According to Equation 7, this direction is \(-f'(x(i)) = b - Ax(i)\).

Allow me to introduce a few definitions, which you should memorize. The \(\text{error } e(i) = x(i) - x \) is a vector that indicates how far we are from the solution. The \(\text{residual } r(i) = b - Ax(i) \) indicates how far we are from the correct value of \(b \). It is easy to see that \(r(i) = -Ae(i) \), and you should think of the residual as being the error transformed by \(A \) into the same space as \(b \). More importantly, \(r(i) = -f'(x(i)) \), and you should also think of the residual as the direction of steepest descent. For nonlinear problems, discussed in Section 14, only the latter definition applies. So remember, whenever you read "residual", think "direction of steepest descent."

Suppose we start at \(x(0) = [-2, -2]^T \). Our first step, along the direction of steepest descent, will fall somewhere on the solid line in Figure 6(a). In other words, we will choose a point

\[x(1) = x(0) + \alpha r(0). \tag{9} \]

The question is, how big a step should we take?

A line search is a procedure that chooses \(\alpha \) to minimize \(f \) along a line. Figure 6(b) illustrates this task: we are restricted to choosing a point on the intersection of the vertical plane and the paraboloid. Figure 6(c) is the parabola defined by the intersection of these surfaces. What is the value of \(\alpha \) at the base of the parabola?

\(\alpha \) minimizes \(f \) when the directional derivative \(\frac{d}{d\alpha} f(x(1)) \) is equal to zero. By the chain rule, \(\frac{d}{d\alpha} f(x(1)) = f'(x(1))^T \frac{d}{d\alpha} x(1) = f'(x(1))^T r(0) \). Setting this expression to zero, we find that \(\alpha \) should be chosen so that \(r(0) \) and \(f'(x(1)) \) are orthogonal (see Figure 6(d)).

There is an intuitive reason why we should expect these vectors to be orthogonal at the minimum. Figure 7 shows the gradient vectors at various points along the search line. The slope of the parabola (Figure 6(c)) at any point is equal to the magnitude of the projection of the gradient onto the line (Figure 7, dotted arrows). These projections represent the rate of increase of \(f \) as one traverses the search line. \(f \) is minimized where the projection is zero — where the gradient is orthogonal to the search line.

To determine \(\alpha \), note that \(f'(x(1)) = -r(1) \), and we have

\[
\begin{align*}
r(1)^T r(0) &= 0 \\
(b - Ax(1))^T r(0) &= 0 \\
(b - A(x(0) + \alpha r(0)))^T r(0) &= 0 \\
(b - Ax(0))^T r(0) - \alpha (Ar(0))^T r(0) &= 0 \\
(b - Ax(0))^T r(0) &= \alpha (Ar(0))^T r(0) \\
r(0)^T r(0) &= \alpha r(0)^T Ar(0) \\
\alpha &= \frac{r(0)^T r(0)}{r(0)^T Ar(0)}.
\end{align*}
\]
The Method of Steepest Descent

Figure 6: The method of Steepest Descent. (a) Starting at \([-2, -2]^T\), take a step in the direction of steepest descent of \(f\). (b) Find the point on the intersection of these two surfaces that minimizes \(f\). (c) This parabola is the intersection of surfaces. The bottommost point is our target. (d) The gradient at the bottommost point is orthogonal to the gradient of the previous step.

Figure 7: The gradient \(f'\) is shown at several locations along the search line (solid arrows). Each gradient's projection onto the line is also shown (dotted arrows). The gradient vectors represent the direction of steepest increase of \(f\), and the projections represent the rate of increase as one traverses the search line. On the search line, \(f\) is minimized where the gradient is orthogonal to the search line.
Figure 8: Here, the method of Steepest Descent starts at \([-2, -2]^T\) and converges at \([2, -2]^T\).

Putting it all together, the method of Steepest Descent is:

\[
\begin{align*}
\mathbf{r}(i) & = b - A\mathbf{x}(i), \\
\alpha(i) & = \frac{\mathbf{r}(i)^T\mathbf{r}(i)}{\mathbf{r}(i)^T A\mathbf{r}(i)}, \\
\mathbf{x}(i+1) & = \mathbf{x}(i) + \alpha(i)\mathbf{r}(i).
\end{align*}
\]

The example is run until it converges in Figure 8. Note that the gradient is always orthogonal to the gradient of the previous step.

The algorithm, as written above, requires two matrix-vector multiplications per iteration. In general, the computational cost of iterative algorithms is dominated by matrix-vector products; fortunately, one can be eliminated. By premultiplying both sides of Equation 12 by \(-A\) and adding \(b\), we have

\[
\mathbf{r}(i+1) = \mathbf{r}(i) - \alpha(i)A\mathbf{r}(i).
\]

Although Equation 10 is needed to compute \(\mathbf{r}(0)\), Equation 13 can be used for every iteration thereafter. The product \(A\mathbf{r}\), which occurs in both Equations 11 and 13, need only be computed once. The disadvantage of using this recurrence is that the sequence defined by Equation 13 is generated without any feedback from the value of \(\mathbf{x}(i)\); so that an accumulation of floating point roundoff error may cause \(\mathbf{x}(i)\) to converge to some point near \(\mathbf{z}\). This effect can be avoided by periodically using Equation 10 to recompute the correct residual.

Before analyzing the convergence of Steepest Descent, I must digress to ensure that you have a solid understanding of eigenvectors.
5. Thinking with Eigenvectors and Eigenvalues

After my one course in linear algebra, I knew eigenvectors and eigenvalues like the back of my head. If your instructor was anything like mine, you recall solving problems involving eigendoohickeys, but you never really understood them. Unfortunately, without an intuitive grasp of them, CG won’t make sense either. If you're already eigentalented, feel free to skip this section.

Eigenvectors are used primarily as an analysis tool; Steepest Descent and CG do not calculate the value of any eigenvectors as part of the algorithm.

5.1. Eigen do it if I try

An eigenvector \(v \) of a matrix \(B \) is a nonzero vector that does not rotate when \(B \) is applied to it (except perhaps to point in precisely the opposite direction). \(v \) may change length or reverse its direction, but it won’t turn sideways. In other words, there is some scalar constant \(\lambda \) such that \(Bv = \lambda v \). The value \(\lambda \) is an eigenvalue of \(B \). For any constant \(\alpha \), the vector \(\alpha v \) is also an eigenvector with eigenvalue \(\lambda \), because \(B(\alpha v) = \alpha Bv = \lambda \alpha v \). In other words, if you scale an eigenvector, it’s still an eigenvector.

Why should you care? Iterative methods often depend on applying \(B \) to a vector over and over again. When \(B \) is repeatedly applied to an eigenvector \(v \), one of two things can happen. If \(|\lambda| < 1 \), then \(B^i v = \lambda^i v \) will vanish as \(i \) approaches infinity (Figure 9). If \(|\lambda| > 1 \), then \(B^i v \) will grow to infinity (Figure 10). Each time \(B \) is applied, the vector grows or shrinks according to the value of \(|\lambda| \).

![Figure 9: \(v \) is an eigenvector of \(B \) with a corresponding eigenvalue of -0.5. As \(i \) increases, \(B^i v \) converges to zero.](image)

![Figure 10: Here, \(v \) has a corresponding eigenvalue of 2. As \(i \) increases, \(B^i v \) diverges to infinity.](image)

However, there are practical applications for eigenvectors. The eigenvectors of the stiffness matrix associated with a discretized structure of uniform density represent the natural modes of vibration of the structure being studied. For instance, the eigenvectors of the stiffness matrix associated with a one-dimensional uniformly-spaced mesh are sine waves, and to express vibrations as a linear combination of these eigenvectors is equivalent to performing a discrete Fourier transform.
If B is nonsingular, then there exists a set of n linearly independent eigenvectors of B, denoted v_1, v_2, \ldots, v_n. This set is not unique, because each eigenvector can be scaled by an arbitrary nonzero constant. Each eigenvector has a corresponding eigenvalue, denoted $\lambda_1, \lambda_2, \ldots, \lambda_n$. These are uniquely defined for a given matrix. The eigenvalues may or may not be equal to each other; for instance, the eigenvalues of the identity matrix I are all one, and every nonzero vector is an eigenvector of I.

What if B is applied to a vector that is not an eigenvector? A very important skill in understanding linear algebra — the skill this section is written to teach — is to think of a vector as a sum of other vectors whose behavior is understood. Consider that the set of eigenvectors $\{v_i\}$ forms a basis for \mathbb{R}^n (because a nonsingular B has n eigenvectors that are linearly independent). Any n-dimensional vector can be expressed as a linear combination of eigenvectors, and because matrix multiplication is distributive, one can examine the effect of B on each eigenvector separately.

In Figure 11, a vector x is illustrated as a sum of two eigenvectors v_1 and v_2. Applying B to x is equivalent to applying B to the eigenvectors, and summing the result. Upon repeated application, we have $B^i x = B^i v_1 + B^i v_2 = \lambda_1^i v_1 + \lambda_2^i v_2$. If the magnitudes of all the eigenvalues are smaller than one, $B^i x$ will converge to zero, because the eigenvectors which compose x converge to zero when B is repeatedly applied. If one of the eigenvalues has magnitude greater than one, x will diverge to infinity. This is why numerical analysts attach importance to the spectral radius of a matrix:

$$\rho(B) = \max |\lambda_i|, \quad \lambda_i \text{ is an eigenvalue of } B.$$

If we want x to converge to zero quickly, $\rho(B)$ should be less than one, and preferably as small as possible.

![Figure 11: The vector x (solid arrow) can be expressed as a linear combination of eigenvectors (dashed arrows), whose associated eigenvalues are $\lambda_1 = 0.7$ and $\lambda_2 = -2$. The effect of repeatedly applying B to x is best understood by examining the effect of B on each eigenvector. When B is repeatedly applied, one eigenvector converges to zero while the other diverges; hence, $B^i x$ also diverges.](image)

Here's a useful fact: the eigenvalues of a positive-definite matrix are all positive. This fact can be proven from the definition of eigenvalue:

$$B v = \lambda v$$

$$v^T B v = \lambda v^T v.$$

By the definition of positive-definite, the left-hand term is positive (for nonzero v). Hence, λ must be positive also.

5.2. Jacobi iterations

Of course, a procedure that always converges to zero isn’t going to help you attract friends. Consider a more useful procedure: the Jacobi Method for solving $Ax = b$. The matrix A is split into two parts: D, whose
Thinking with Eigenvectors and Eigenvalues

diagonal elements are identical to those of \(A \), and whose off-diagonal elements are zero; and \(E \), whose
diagonal elements are zero, and whose off-diagonal elements are identical to those of \(A \). Thus, \(A = D + E \).

We derive the Jacobi Method:

\[
Ax = y \\
Dx = -Ex + y \\
x = D^{-1}Ex + D^{-1}b \\
x = Bz + z,
\]

where \(B = -D^{-1}E \), \(z = D^{-1}b \) \((14)\).

Note that because \(D \) is diagonal, it is easy to invert. This identity can be converted into an iterative method
by forming the recurrence

\[
x_{(i+1)} = Bx_{(i)} + z.
\]

Given a starting vector \(x_{(0)} \), this formula generates a sequence of vectors. Our hope is that each successive
vector will be closer to the solution \(x \) than the last. \(x \) is called a stationary point of Equation 15, because if
\(x_{(i)} = x \), then \(x_{(i+1)} \) will also equal \(x \).

Now, this derivation may seem quite arbitrary to you, and you’re right. We could have formed any
number of identities for \(x \) instead of Equation 14. In fact, simply by splitting \(A \) differently — that is,
by choosing a different \(D \) and \(E \) — we could have derived the Gauß-Seidel method, or the method of
Successive Over-Relaxation (SOR). Our hope is that we have chosen a splitting for which \(B \) has a small
spectral radius. I chose the Jacobi splitting arbitrarily for simplicity.

Suppose we start with some arbitrary vector \(x_{(0)} \). For each iteration, we apply \(B \) to this vector, then add
\(z \) to the result. What does each iteration do?

Again, apply the principle of thinking of a vector as a sum of other, well-understood vectors. Express
each iterate \(x_{(i)} \) as the sum of the exact solution \(x \) and the error term \(e_{(i)} \). Then, Equation 15 becomes

\[
x_{(i+1)} = Bx_{(i)} + z \\
= B(x + e_{(i)}) + z \\
= Bx + z + Be_{(i)} \\
= z + Be_{(i)} \quad \text{(by Equation 14),}
\]

\[
\therefore e_{(i+1)} = Be_{(i)} . \quad \text{(16)}
\]

Each iteration does not affect the "correct part" of \(x_{(i)} \) (because \(x \) is a stationary point); but each iteration
does affect the error term. It is apparent from Equation 16 that if \(\rho(B) < 1 \), then the error term \(e_{(i)} \) will
converge to zero as \(i \) approaches infinity. Hence, the initial vector \(x_{(0)} \) has no effect on the inevitable
outcome!

Of course, the choice of \(x_{(0)} \) does affect the number of iterations required to converge to \(x \) within
a given tolerance. However, its effect is less important than that of the spectral radius \(\rho(B) \), which
determines the speed of convergence. Suppose that \(v_j \) is the eigenvector of \(B \) with the largest eigenvalue
(so that \(\rho(B) = \lambda_j \)). If the initial error \(e_{(0)} \), expressed as a linear combination of eigenvectors, includes a
component in the direction of \(v_j \), this component will be the slowest to converge. The convergence of the
Jacobi Method can be described as follows:

\[
\|e_{(i)}\| \leq [\rho(B)]^i \|e_{(0)}\|
\]

where \(\|e\| = (e^T e)^{1/2} \) is the Euclidean norm (length) of \(e \). (In fact, the inequality holds for any norm.)
The eigenvectors of A are directed along the axes of the paraboloid defined by the quadratic form $f(z)$. Each eigenvector is labeled with its associated eigenvalue. Each eigenvalue is proportional to the steepness of the corresponding slope.

The convergence of the Jacobi Method depends on $\rho(B)$, which depends on A. Unfortunately, Jacobi does not converge for every A, or even for every positive-definite A.

5.3. A Concrete Example

To demonstrate these ideas, I shall solve the system specified by Equation 4. First, we need a method of finding eigenvalues and eigenvectors. By definition, for any eigenvector v with eigenvalue λ,

\[Av = \lambda v = \lambda I v \]

\[(\lambda I - A)v = 0. \]

Eigenvectors are nonzero, so $\lambda I - A$ must be singular. Then,

\[\det(\lambda I - A) = 0. \]

The determinant of $\lambda I - A$ is called the characteristic polynomial. It is an n-degree polynomial in λ whose roots are the set of eigenvalues. The characteristic polynomial of A (from Equation 4) is

\[\det \begin{bmatrix} \lambda - 3 & -2 \\ -2 & \lambda - 2 \end{bmatrix} = \lambda^2 - 9\lambda + 14 = (\lambda - 7)(\lambda - 2), \]

and the eigenvalues are 7 and 2. To find the eigenvector associated with $\lambda = 7$,

\[(\lambda I - A)v = \begin{bmatrix} 4 & -2 \\ -2 & 1 \end{bmatrix} \begin{bmatrix} v_1 \\ v_2 \end{bmatrix} = 0 \]

\[\therefore 4v_1 - 2v_2 = 0. \]
Any solution to this equation is an eigenvector; say, \(v = [1, 2]^T \). By the same method, we find that \([-2, 1]^T\) is an eigenvector corresponding to the eigenvalue 2. In Figure 12, we see that these eigenvectors coincide with the axes of the familiar ellipsoid, and that a larger eigenvalue corresponds to a steeper slope. (Negative eigenvalues indicate that \(f \) decreases along the axis, as in Figures 5(b) and 5(d).)

Now, let's see the Jacobi Method in action. Using the constants specified by Equation 4, we have

\[
x_{i+1}(1) = -\begin{bmatrix} \frac{1}{3} & 0 \\ 0 & \frac{1}{3} \end{bmatrix} \begin{bmatrix} 0 & 2 \\ 2 & 0 \end{bmatrix} x_i + \begin{bmatrix} \frac{1}{3} & 0 \\ 0 & \frac{1}{3} \end{bmatrix} \begin{bmatrix} 2 \\ -8 \end{bmatrix}
\]

\[
= \begin{bmatrix} 0 & -\frac{2}{3} \\ -\frac{1}{3} & 0 \end{bmatrix} x_i + \begin{bmatrix} \frac{2}{3} \\ -\frac{4}{3} \end{bmatrix}
\]

The eigenvectors of \(B \) are \([\sqrt{2}, 1]^T\) with eigenvalue \(-\sqrt{2}/3\), and \([-\sqrt{2}, 1]^T\) with eigenvalue \(\sqrt{2}/3\). These are graphed in Figure 13(a); note that they do not coincide with the eigenvectors of \(A \), and are not related to the axes of the paraboloid.

Figure 13(b) shows the convergence of the Jacobi method. The mysterious path the algorithm takes can be understood by watching the eigenvector components of each successive error term (Figures 13(c), (d), and (e)). Figure 13(f) plots the eigenvector components as arrowheads. These are converging normally at the rate defined by their eigenvalues, as in Figure 11.

I hope that this section has convinced you that eigenvectors are useful tools, and not just bizarre torture devices inflicted upon you by your professors for the pleasure of watching you suffer (although the latter is a nice fringe benefit).

6. Convergence Analysis of Steepest Descent

6.1. Instant Results

To understand the convergence of Steepest Descent, let's first consider the case where \(e^{(i)} \) is an eigenvector with eigenvalue \(\lambda_e \). Then, the residual \(r^{(i)} = -\lambda e^{(i)} = -\lambda e^{(i)} \) is also an eigenvector. Equation 12 gives

\[
e_{i+1}(i) = e_i(i) + \frac{r_{(i)}^T r_{(i)}}{r_{(i)}^T A r_{(i)}} r_{(i)}
\]

\[
= e_i(i) + \frac{r_{(i)}^T r_{(i)}}{\lambda_e r_{(i)}^T r_{(i)}} (-\lambda e^{(i)})
\]

\[
= 0.
\]

Figure 14 demonstrates why it takes only one step to converge to the exact solution. The point \(x_{(i)} \) lies on one of the axes of the ellipsoid, and so the residual points directly to the center of the ellipsoid. Choosing \(\alpha_{(i)} = \lambda_e^{-1} \) gives us instant convergence.

For a more general analysis, we must express \(e^{(i)} \) as a linear combination of eigenvectors, and we shall furthermore require these eigenvectors to be orthonormal. It is proven in Appendix C2 that if \(A \) is nonsingular and symmetric, there exists a set of \(n \) orthogonal eigenvectors of \(A \). As we can scale
Figure 13: Convergence of the Jacobi Method. (a) The eigenvectors of B are shown with their corresponding eigenvalues. Unlike the eigenvectors of A, these eigenvectors are not the axes of the paraboloid. (b) The Jacobi Method starts at $[-2, -2]^T$ and converges at $[2, -2]^T$. (c, d, e) The error vectors $e_{(0)}$, $e_{(1)}$, $e_{(2)}$ (solid arrows) and their eigenvector components (dashed arrows). (f) Arrowheads represent the eigenvector components of the first four error vectors. Each eigenvector component of the error is converging to zero at the expected rate based upon its eigenvalue.
Figure 14: Steepest Descent converges to the exact solution on the first iteration if the error term is an eigenvector.

eigenvectors arbitrarily, let us choose so that each eigenvector is of unit length. This choice gives us the useful property that

\[v_j^T v_k = \begin{cases} 1, & j = k, \\ 0, & j \neq k. \end{cases} \]

(17)

Express the error term as a linear combination of eigenvectors

\[e_{(i)} = \sum_{j=1}^{n} \xi_j v_j, \]

(18)

where \(\xi_j \) is the length of each component of \(e_{(i)} \). From Equations 17 and 18 we have the following identities:

\[r_{(i)} = -Ae_{(i)} = -\sum_j \xi_j \lambda_j v_j, \]

(19)

\[\|e_{(i)}\|^2 = e_{(i)}^T e_{(i)} = \sum_j \xi_j^2, \]

(20)

\[e_{(i)}^T A e_{(i)} = (\sum_j \xi_j v_j^T)(\sum_j \xi_j \lambda_j v_j) = \sum_j \xi_j^2 \lambda_j, \]

(21)

\[\|r_{(i)}\|^2 = r_{(i)}^T r_{(i)} = \sum_j \xi_j^2 \lambda_j^2, \]

(22)

\[r_{(i)}^T A r_{(i)} = \sum_j \xi_j^2 \lambda_j^3, \]

(23)

Equation 19 shows that \(r_{(i)} \) too can be expressed as a sum of eigenvector components, and the length of these components are \(-\xi_j \lambda_j \). Equations 20 and 22 are just Pythagoras’ Law.
Now we can proceed with the analysis. Equation 12 gives

\[e(i+1) = e(i) + \frac{r(i)r(i)}{r(i)^T A r(i)} r(i) \]
\[= e(i) + \frac{\sum_j \xi_j^2 \lambda_j^2}{\sum_j \xi_j^2 \lambda_j^3} r(i) \]
\[= e(i) + \frac{\lambda^2 \sum_j \xi_j^2}{\lambda^3 \sum_j \xi_j^2} (-\lambda e(i)) \]
\[= 0 \]

Figure 15 demonstrates why, once again, there is instant convergence. Because all the eigenvalues are equal, the ellipsoid is spherical; hence, no matter what point we start at, the residual must point to the center of the sphere. As before, choose \(\alpha(i) = \lambda^{-1} \).

However, if there are several unequal, nonzero eigenvalues, then no choice of \(\alpha(i) \) will eliminate all the eigenvector components, and our choice becomes a sort of compromise. In fact, the fraction in Equation 24 is best thought of as a weighted average of the values of \(\lambda_j^{-1} \). The weights \(\xi_j^2 \) ensure that longer components
of $e_{(i)}$ are given precedence. As a result, on any given iteration, some of the shorter components of $e_{(i)}$ might actually increase in length (though never for long). For this reason, the methods of Steepest Descent and Conjugate Gradients are called roughers. By contrast, the Jacobi Method is a smoother, because every eigenvector component is reduced on every iteration. Steepest Descent and Conjugate Gradients are not smoothers, although they are often erroneously identified as such in the mathematical literature.

6.2. General Convergence

To bound the convergence of Steepest Descent in the general case, we shall define the energy norm $\|e\|_A = (e^T A e)^{1/2}$ (see Figure 16). This norm is easier to work with than the Euclidean norm we used to analyze the Jacobi Method. It is in some sense a more natural norm, because a bound on the energy norm
of the error term corresponds to a bound on the optimality of \(f(x) \). With this norm, we have

\[
\|e_{(i+1)}\|_A^2 = e_{(i+1)}^T A e_{(i+1)}
\]

\[
= (e_{(i)}^T + \alpha_{(i)} r_{(i)}^T) A (e_{(i)} + \alpha_{(i)} r_{(i)}) \quad \text{(by Equation 12)}
\]

\[
= e_{(i)}^T A e_{(i)} + 2\alpha_{(i)} r_{(i)}^T A e_{(i)} + \alpha_{(i)}^2 r_{(i)}^T A r_{(i)} \quad \text{(by symmetry of } A\text{)}
\]

\[
= \|e_{(i)}\|_A^2 + 2 \frac{r_{(i)}^T r_{(i)}}{r_{(i)}^T A r_{(i)}} \left(-r_{(i)}^T r_{(i)} + \left(\frac{r_{(i)}^T r_{(i)}}{r_{(i)}^T A r_{(i)}}\right)^2 r_{(i)}^T A r_{(i)} \right)
\]

\[
= \|e_{(i)}\|_A^2 - \frac{(r_{(i)}^T r_{(i)})^2}{r_{(i)}^T A r_{(i)}}
\]

\[
= \|e_{(i)}\|_A^2 \left(1 - \frac{r_{(i)}^T A r_{(i)}}{r_{(i)}^T r_{(i)}} \frac{(e_{(i)}^T A e_{(i)})}{(r_{(i)}^T A r_{(i)})}\right)
\]

\[
= \|e_{(i)}\|_A^2 \left(1 - \frac{(\sum_j \xi_j^2 \lambda_j^2)}{(\sum_j \xi_j^2 \lambda_j^2)}\right) \quad \text{(by Identities 21, 22, 23)}
\]

\[
= \|e_{(i)}\|_A^2 \omega^2,
\]

\[
\omega^2 = 1 - \frac{(\sum_j \xi_j^2 \lambda_j^2)}{(\sum_j \xi_j^2 \lambda_j^2)}
\]

\[
= \left(1 - \frac{(\xi_1^2 \lambda_1^2 + \xi_2^2 \lambda_2^2)}{(\xi_1^2 \lambda_1^2 + \xi_2^2 \lambda_2^2)}\right)
\]

\[
= 1 - \frac{(\kappa^2 + \mu^2)^2}{(\kappa + \mu)^2 (\kappa^2 + \mu^2)}
\]

The analysis depends upon finding an upper bound for \(\omega \). To demonstrate how the weights and eigenvalues affect convergence, I shall derive a result for \(n = 2 \). Assume that \(\lambda_1 \geq \lambda_2 \). The spectral condition number of \(A \) is defined to be \(\kappa = \lambda_1/\lambda_2 \geq 1 \). The slope of \(e_{(i)} \) (relative to the coordinate system defined by the eigenvectors) is denoted \(\mu = \xi_2/\xi_1 \). We have

\[
\omega^2 = 1 - \frac{(\xi_1^2 \lambda_1^2 + \xi_2^2 \lambda_2^2)}{(\xi_1^2 \lambda_1^2 + \xi_2^2 \lambda_2^2)}
\]

\[
= 1 - \frac{(\kappa^2 + \mu^2)^2}{(\kappa + \mu)^2 (\kappa^2 + \mu^2)}
\]

The value of \(\omega \), which determines the rate of convergence of Steepest Descent, is graphed as a function of \(\mu \) and \(\kappa \) in Figure 17. The graph confirms my two examples. If \(e_{(0)} \) is an eigenvector, then the slope \(\mu \) is zero (or infinite); we see from the graph that \(\omega \) is zero, so convergence is instant. If the eigenvalues are equal, then the condition number \(\kappa \) is one; again, we see that \(\omega \) is zero.

Figure 18 illustrates examples from near each of the four corners of Figure 17. These quadratic forms are graphed in the coordinate system defined by their eigenvectors. Figures 18(a) and 18(b) are examples with a large condition number. Steepest Descent can converge quickly if a fortunate starting point is chosen (Figure 18(a)), but is usually at its worst when \(\kappa \) is large (Figure 18(b)). The latter figure gives us our best intuition for why a large condition number can be bad: \(f(x) \) forms a trough, and Steepest Descent bounces back and forth between the sides of the trough while making little progress along its length. In Figures 18(c) and 18(d), the condition number is small, so the quadratic form is nearly spherical, and convergence is quick regardless of the starting point.

Holding \(\kappa \) constant (because \(A \) is fixed), a little basic calculus reveals that Equation 26 is maximized when \(\mu = \pm \kappa \). In Figure 17, one can see a faint ridge defined by this line. Figure 19 plots worst-case starting points for our sample matrix \(A \). These starting points fall on the lines defined by \(\xi_2/\xi_1 = \pm \kappa \). An
Convergence Analysis of Steepest Descent

Figure 17: Convergence ω of Steepest Descent as a function of μ (the slope of $e_{(1)}$) and κ (the condition number of A). Convergence is fast when μ or κ are small. For a fixed matrix, convergence is worst when $\mu = \pm \kappa$.

Figure 18: These four examples represent points near the corresponding four corners of the graph in Figure 17. (a) Large κ, small μ. (b) An example of poor convergence. κ and μ are both large. (c) Small κ and μ. (d) Small κ, large μ.
Figure 19: Solid lines represent the starting points that give the worst convergence for Steepest Descent. Dashed lines represent steps toward convergence. Note that if the first iteration starts from a worst-case point, so do all succeeding iterations. Each step taken intersects the paraboloid axes (grey arrows) at precisely a 45° angle. Here, $\kappa = 3.5$.

The upper bound for ω (corresponding to the worst-case starting points) is found by setting $\mu^2 = \kappa^2$:

$$\omega^2 \leq 1 - \frac{4\kappa^4}{\kappa^5 + 2\kappa^4 + \kappa^3}$$

$$= \frac{\kappa^5 - 2\kappa^4 + \kappa^3}{\kappa^5 + 2\kappa^4 + \kappa^3}$$

$$= \frac{(\kappa - 1)^2}{(\kappa + 1)^2}$$

$$\omega \leq \frac{\kappa - 1}{\kappa + 1}. \quad (27)$$

Inequality 27 is plotted in Figure 20. The convergence becomes slow as κ grows large; hence, matrices with large condition numbers are called *ill-conditioned*. In Appendix C3, it is proven that Equation 27 is also valid for $n > 2$, if the condition number of a symmetric, positive-definite matrix is defined to be

$$\kappa = \lambda_{\text{max}} / \lambda_{\text{min}},$$

the ratio of the largest to smallest eigenvalue. Our convergence results for Steepest Descent are

$$\|e_i\|_A \leq \left(\frac{\kappa - 1}{\kappa + 1}\right)^i \|e_0\|_A, \quad (28)$$
7. The Method of Conjugate Directions

7.1. Conjugacy

Steepest Descent sometimes finds itself taking steps in the same direction as earlier steps (see Figure 8). Wouldn't it be better if, every time we took a step, we got it right the first time? Here's an idea: let's pick a set of orthogonal search directions $d_0, d_1, \ldots, d_{n-1}$. In each search direction, we'll take exactly one step, and that step will be just the right length to line up evenly with x. After n steps, we'll be done.

Figure 21 illustrates this idea, using the coordinate axes as search directions. The first (horizontal) step leads to the correct x_1-coordinate; the second (vertical) step will hit home. Notice that $e(1)$ is orthogonal to d_0. In general, for each step we choose a point

$$x_{(i+1)} = x_{(i)} + \alpha_{(i)}d_{(i)}.$$

(29)

To find the value of $\alpha_{(i)}$, use the fact that $e_{(i+1)}$ should be orthogonal to $d_{(i)}$, so that we need never step in
Figure 21: The Method of Orthogonal Directions. Unfortunately, this method only works if you already know the answer.

Unfortunately, we haven't accomplished anything, because we can't compute $\alpha(i)$ without knowing $e(i)$; and if we knew $e(i)$, the problem would already be solved.

The solution is to make the search vectors A-orthogonal instead of orthogonal. Two vectors $d(i)$ and $d(j)$ are A-orthogonal, or conjugate, if

$$d(i)^T A d(j) = 0.$$

Figure 22(a) shows what A-orthogonal vectors look like. Imagine if this article were printed on bubble gum, and you grabbed Figure 22(a) by the ends and stretched it until the ellipses appeared circular. The vectors would then appear orthogonal, as in Figure 22(b).

Our new requirement is that $e(i+1)$ be A-orthogonal to $d(i)$ (see Figure 23(a)). Not coincidentally, this orthogonality condition is equivalent to finding the minimum point along the search direction $d(i)$, as in
The Method of Conjugate Directions

Figure 22: These pairs of vectors are \(A \)-orthogonal... because these pairs of vectors are orthogonal.

Steepest Descent. To see this, set the directional derivative to zero:

\[
\frac{d}{d\alpha} f(x_{(i+1)}) = 0
\]
\[
f'(x_{(i+1)})^T \frac{d}{d\alpha} x_{(i+1)} = 0
\]
\[-r_{(i+1)}^T d_{(i)} = 0
\]
\[d_{(i)}^T A e_{(i+1)} = 0.
\]

Following the derivation of Equation 30, here is the expression for \(\alpha_{(i)} \) when the search directions are \(A \)-orthogonal:

\[
\alpha_{(i)} = -\frac{d_{(i)}^T A e_{(i)}}{d_{(i)}^T A d_{(i)}}
\]

Unlike Equation 30, we can calculate this expression. Note that if the search vector were the residual, this formula would be identical to the formula used by Steepest Descent.
Figure 23: The method of Conjugate Directions converges in \(n \) steps. (a) The first step is taken along some direction \(d_{(0)} \). The minimum point \(x_{(1)} \) is chosen by the constraint that \(e_{(1)} \) must be \(A \)-orthogonal to \(d_{(0)} \). (b) The initial error \(e_{(0)} \) can be expressed as a sum of \(A \)-orthogonal components (grey arrows). Each step of Conjugate Directions eliminates one of these components.

To prove that this procedure really does compute \(x \) in \(n \) steps, express the error term as a linear combination of search directions; namely,

\[
e_{(0)} = \sum_{j=0}^{n-1} \delta_j d_{(j)}.
\] (33)

The values of \(\delta_j \) can be found by a mathematical trick. Because the search directions are \(A \)-orthogonal, it is possible to eliminate all the \(\delta_j \) values but one from Expression 33 by premultiplying the expression by \(d_{(k)}^T A \):

\[
d_{(k)}^T A e_{(0)} = \sum_j \delta_j d_{(k)}^T A d_{(j)}
\]

\[
d_{(k)}^T A e_{(0)} = \delta_{(k)} d_{(k)}^T A d_{(k)} \quad \text{(by } A \text{-orthogonality of } d \text{ vectors)}
\]

\[
\delta_{(k)} = \frac{d_{(k)}^T A e_{(0)}}{d_{(k)}^T A d_{(k)}}
\]

\[
= \frac{d_{(k)}^T A e_{(0)} + \sum_{i=0}^{k-1} \alpha(i) d_{(i)}}{d_{(k)}^T A d_{(k)}} \quad \text{(by } A \text{-orthogonality of } d \text{ vectors)}
\]

\[
= \frac{d_{(k)}^T A e_{(k)}}{d_{(k)}^T A d_{(k)}} \quad \text{(By Equation 29)}
\] (34)

By Equations 31 and 34, we find that \(\alpha(i) = -\delta_{(i)} \). This fact gives us a new way to look at the error...
The Method of Conjugate Directions

term.

\[e(i) = e(0) + \sum_{j=0}^{i-1} \alpha(j) d(j) \]

\[= \sum_{j=0}^{n-1} \delta(j) d(j) - \sum_{j=0}^{i-1} \delta(j) d(j) \]

\[= \sum_{j=i}^{n-1} \delta(j) d(j). \]

(35)

Not surprisingly, Equation 35 shows that the process of building up \(x \) component by component can also be viewed as a process of cutting down the error term component by component (see Figure 23(b)). After \(n \) iterations, every component is cut away, and \(e(n) = 0; \) the proof is complete.

7.2. Gram-Schmidt Conjugation

All that is needed now is a set of \(A \)-orthogonal search directions \(\{d(i)\} \). Fortunately, there is a simple way to generate them, called a conjugate Gram-Schmidt process.

Figure 24: Gram-Schmidt conjugation of two vectors. Begin with two linearly independent vectors \(u_0 \) and \(u_1 \). Set \(d(0) = u_0 \). The vector \(u_1 \) is composed of two components: \(u^* \), which is \(A \)-orthogonal (or conjugate) to \(d(0) \), and \(u^+ \), which is parallel to \(d(0) \). After conjugation, only the \(A \)-orthogonal portion remains, and \(d(1) = u^* \).

Suppose we have a set of \(n \) linearly independent vectors \(u_0, u_1, \ldots, u_{n-1} \). The coordinate axes will do in a pinch, although more intelligent choices are possible. To construct \(d(i) \), take \(u_i \) and subtract out any components which are not \(A \)-orthogonal to the previous \(d \) vectors (see Figure 24). In other words, set \(d(0) = u_0 \), and for \(i > 0 \), set

\[d(i) = u_i + \sum_{k=0}^{i-1} \beta_{ik} d(k), \]

(36)

where the \(\beta_{ik} \) are defined for \(i > k \). To find their values, use the same trick used to find \(\delta(j) \):

\[d^T(i) A d(j) = u^T_i A d(j) + \sum_{k=0}^{i-1} \beta_{ik} d^T(k) A d(j) \]

\[= u^T_i A d(j) + \beta_{ij} d^T(j) A d(j), \quad i < j \quad \text{(by \(A \)-orthogonality of \(d \) vectors)} \]

\[\beta_{ij} = -\frac{u^T_i A d(j)}{d^T(j) A d(j)} \]

(37)
The difficulty with using Gram-Schmidt conjugation in the method of Conjugate Directions is that all the old search vectors must be kept in memory to construct each new one, and furthermore $O(n^3)$ operations are required to generate the full set. In fact, if the search vectors are constructed by conjugation of the axial unit vectors, Conjugate Directions becomes equivalent to performing Gaussian elimination (see Figure 25). As a result, the method of Conjugate Directions enjoyed little use until the discovery of CG — which is a method of Conjugate Directions — cured these disadvantages.

An important key to understanding the method of Conjugate Directions (and also CG) is to notice that Figure 25 is just a stretched copy of Figure 21! Remember that when one is performing the method of Conjugate Directions (including CG), one is simultaneously performing the method of Orthogonal Directions in a stretched (scaled) space.

7.3. Properties of the Residual

This section derives several properties needed to derive CG.

- As with the method of Steepest Descent, the number of matrix-vector products per iteration can be reduced to one by using a recurrence to find the residual:

\[
 r_{(i+1)} = -Ae_{(i+1)} \\
 = -A(e_{(i)} + \alpha_{(i)}d_{(i)}) \\
 = r_{(i)} - \alpha_{(i)}Ad_{(i)}
\]

(38)
Figure 26: Because the search directions \(d_{(0)}, d_{(1)} \) are constructed from the vectors \(u_0, u_1 \), they span the same subspace (the grey-colored plane). The error term \(e_{(2)} \) is \(A \)-orthogonal to this subspace, the residual \(r_{(2)} \) is orthogonal to this subspace, and a new search direction \(d_{(2)} \) is constructed (from \(u_2 \)) to be \(A \)-orthogonal to this subspace. The endpoints of \(u_2 \) and \(d_{(2)} \) lie on a plane parallel to the shaded subspace, because \(d_{(2)} \) is constructed from \(u_2 \) by Gram-Schmidt conjugation.

- This recurrence suggests that, at the same time as the error term is being cut down component by component, these components being parallel to the search directions \(d_{(i)} \), the residual is also being cut down component by component, these components being parallel to a different set of search directions \(Ad_{(i)} \). This suggestion is confirmed by premultiplying Equation 35 by \(-A\):

\[
\tau_{(j)} = - \sum_{k=j}^{n-1} \delta(k) Ad_{(k)}.
\]

- The inner product of \(d_{(i)} \) and this expression is

\[
d_{(i)}^T \tau_{(j)} = 0, \quad i < j \quad \text{(by \(A \)-orthogonality of \(d \)-vectors)}.
\]

We could have derived this identity by another tack. Recall that once we take a step in a search direction, we need never step in that direction again; the error term is evermore \(A \)-orthogonal to all the old search directions. Because \(r_{(i)} = -Ae_{(i)} \), the residual is evermore orthogonal to all the old search directions.

- Taking the inner product of Equation 36 and \(r_{(j)} \), we have

\[
\begin{align*}
d_{(i)}^T r_{(j)} &= u_i^T r_{(j)} + \sum_{k=0}^{i-1} \beta_{ik} d_{(k)}^T r_{(j)} \\
0 &= u_i^T r_{(j)}, \quad i < j \quad \text{(by Identity 39)}.
\end{align*}
\]

Each residual is orthogonal to all the previous \(u \) vectors. This isn’t surprising, because the search vectors are built from the \(u \) vectors; therefore the search vectors \(d_{(0)}, \ldots, d_{(i)} \) span the same subspace as \(u_0, \ldots, u_i \), and \(r_{(j)} \) (for all \(j > i \)) is orthogonal to this subspace (see Figure 26).

- There is one more identity we will use later. From Equation 40,

\[
d_{(i)}^T r_{(i)} = u_i^T r_{(i)}.
\]
8. The Method of Conjugate Gradients

It may seem odd that an article about CG doesn’t describe CG until page 28, but all the machinery is now in place. In fact, CG is simply the method of Conjugate Directions where the search directions are constructed by conjugation of the residuals (that is, by setting $u_i = r(i)$). There, we’re done.

Following the residuals worked well for Steepest Descent, so it makes sense to try using the residuals to construct search directions for CG. Let’s consider the implications. Equation 41 becomes

$$r_i^T r(j) = 0, \quad i \neq j.$$ \hspace{1cm} (43)

Because each residual is orthogonal to the subspace spanned by the previous search vectors, all the residuals must be mutually orthogonal (see Figure 27).

This relation allows us to simplify the β_{ij} terms. Let us calculate the value of $r_i^T A d(j)$ for Equation 37.

We take the inner product of $r(i)$ and Equation 38:

$$r_i^T r(j+1) = r(i)^T r(j) - \alpha_i r(i)^T A d(j),$$

$$\alpha_i r_i^T A d(j) = \left\{ \begin{array}{ll}
\frac{1}{\alpha_i} r_i^T r(i), & i = j, \\
-\frac{1}{\alpha_{i+1}} r_i^T r(i), & i = j + 1, \\
0, & \text{otherwise}.
\end{array} \right.$$ \hspace{1cm} (By Equation 43.)

$$r_i^T A d(j) = \left\{ \begin{array}{ll}
\frac{1}{\alpha_i} r_i^T r(i), & i = j + 1, \\
0, & \text{otherwise}.
\end{array} \right.$$ \hspace{1cm} (By Equation 37.)

As if by magic, most of the β_{ij} terms have disappeared! It is no longer necessary to store old search vectors to ensure the A-orthogonality of new search vectors. This major advance is what makes CG as important an algorithm as it is, because both the space complexity and time complexity per iteration are reduced from $O(n^2)$ to $O(m)$, where m is the number of nonzero entries of A. Henceforth, we shall use the abbreviation
The performance of CG on our sample problem is demonstrated in Figure 28. The name “Conjugate Gradients” is a bit of a misnomer, because the gradients are not conjugate, and the conjugate directions are not all gradients. “Conjugated Gradients” would be more accurate.
Figure 29: In this figure, the shaded area is $\mathcal{E} = e_0 + \text{span}\{d_0, d_1\}$. The ellipsoid is a contour on which the energy norm is constant. After two steps, CG finds e_2, the point on \mathcal{E} which minimizes $\|e\|_A$.

9. Convergence Analysis of Conjugate Gradients

CG is complete after n iterations, so why should we care about convergence analysis? In practice, accumulated floating point roundoff error causes the residual to gradually lose accuracy, and cancellation error causes the search vectors to lose A-orthogonality. The former problem could be dealt with as it was for Steepest Descent, but the latter problem is not curable. Because of this loss of conjugacy, the mathematical community discarded CG during the 1960s, and interest only resurged when evidence for its effectiveness as an iterative procedure was published in the seventies.

A second concern is that for large enough problems, it may not be feasible to run even n iterations.

The first iteration of CG is identical to the first iteration of Steepest Descent, so without changes, Section 6.1 describes the conditions under which CG converges on the first iteration.

9.1. Optimality of the Error Term

The first step of the convergence analysis is to show that CG finds at every step the best solution within the bounds of where it's been allowed to explore. Where has it been allowed to explore? The value e_i is chosen from the subspace $\mathcal{E} = e_0 + \text{span}\{d_0, d_1, \ldots, d_{i-1}\}$. What do I mean by “best solution”? I mean that CG chooses the value from \mathcal{E} that minimizes $\|e_i\|_A$ (see Figure 29). In fact, some authors derive CG by trying to minimize $\|e_i\|_A$ within \mathcal{E}.

In the same way that the error term can be expressed as a linear combination of search directions (Equation 35), its energy norm can be expressed as a summation by taking advantage of the A-orthogonality of the search vectors.

$$\|e_i\|_A = \sum_{j=1}^{n-1} \delta_j^2 d_j A d_j \quad \text{(by Equation 35).}$$

Each term in this summation is associated with a search direction which has not yet been traversed. Any other vector e chosen from \mathcal{E} must have these same terms in its expansion, which proves that e_i must have the minimum energy norm.
A close examination of Equations 44, 46, and 48 reveals that the residual \(r_i \) is chosen from the subspace \(\mathcal{R} = r_0 + \text{span}\{ Ar_0, A^2 r_0, \ldots, A^i r_0 \} \). This subspace is called a Krylov subspace, a subspace created by repeatedly applying a matrix to a vector. Because \(r_i = -Ae_i \), it follows that \(e_i \) is chosen from the subspace \(\mathcal{E} = e_0 + \text{span}\{ Ae_0, A^2 e_0, \ldots, A^i e_0 \} \), and \(\mathcal{E} \) is also a Krylov subspace.

In other words, for a fixed \(i \), the error term has the form

\[
e_i = \left(I + \sum_{j=1}^{i} \psi_j A^j \right) e_0.
\]

The coefficients \(\psi_j \) are related to the values \(\alpha_i \) and \(\beta_i \), but the precise relation is not important here. What is important is the proof at the beginning of this section that CG chooses these \(\psi_j \) coefficients to minimize \(\|e_i\|_A \).

The term in parentheses above can be expressed as a polynomial. Let \(P_i(\lambda) \) be a polynomial of degree \(i \). \(P_i \) can take either a scalar or a matrix as its argument, and will evaluate to the same; for instance, if \(P_2(\lambda) = 2\lambda^2 + 1 \), then \(P_2(A) = 2A^2 + I \). This flexible notation comes in handy for eigenvectors, for which \(P_i(A)v = P_i(\lambda)v \).

Now we can express the error term as

\[
e_i = P_i(A)e_0,
\]

if we require that \(P_i(0) = 1 \). CG chooses this polynomial by choosing the \(\psi_j \) coefficients. Let's examine the effect of applying this polynomial to \(e_0 \). As in the analysis of Steepest Descent, express \(e_0 \) as a linear combination of orthogonal unit eigenvectors

\[
e_0 = \sum_{j=1}^{n} \xi_j v_j,
\]

and we find that

\[
e_i = \sum_{j} \xi_j P_i(\lambda_j) v_j
\]

\[
Ae_i = \sum_{j} \xi_j P_i(\lambda_j) \lambda_j v_j
\]

\[
\|e_i\|_A^2 = \sum_{j} \xi_j^2 [P_i(\lambda_j)]^2 \lambda_j.
\]

CG finds the polynomial that minimizes this expression, but convergence is only as good as the convergence of the worst eigenvector, so

\[
\|e_i\|_A^2 \leq \min_{\lambda} \max_{P_i} \left\{ [P_i(\lambda)]^2 \sum_{j} \xi_j^2 \lambda_j \right\} = \min_{\lambda} \max_{P_i} \left\{ [P_i(\lambda)]^2 \|e_0\|_A^2 \right\}.
\]

Figure 30 illustrates, for several values of \(i \), the \(P_i \) that minimizes this expression for our sample problem with eigenvalues 2 and 7. There is only one polynomial of degree zero that satisfies \(P_0(0) = 1 \), and that is \(P_0(\lambda) = 1 \), graphed in Figure 30(a). The optimal polynomial of degree one is \(P_1(\lambda) = 1 - 2z/9 \), graphed in Figure 30(b). Note that \(P_1(2) = 5/9 \) and \(P_1(7) = -5/9 \), and so the energy norm of the error...
term after one iteration of CG is no greater than 5/9 its initial value. Figure 30(c) shows that, after two
iterations, Equation 49 evaluates to zero. This is because a polynomial of degree two can be fit to three
points ($P_2(0) = 1$, $P_2(2) = 0$, and $P_2(7) = 0$). In general, a polynomial of degree n can fit $n + 1$ points,
and thereby accommodate n separate eigenvalues.

The foregoing discussion reinforces our understanding that CC yields the exact result after n iterations;
and furthermore proves that CG is quicker if there are duplicated eigenvalues. Given infinite floating point
precision, the number of iterations required to compute an exact solution is at most the number of distinct
eigenvalues.

We also find that CG converges more quickly when eigenvalues are clustered together (Figure 30(d))
than when they are evenly distributed between λ_{min} and λ_{max}, because it is easier for CG to choose a
polynomial that makes Equation 49 small.

If we know something about the characteristics of the eigenvalues of A, it is sometimes possible to
suggest a polynomial which leads to a proof of a fast convergence. For the remainder of this analysis,
however, I shall assume the most general case: the eigenvalues are evenly distributed between λ_{min} and
λ_{max}, the number of distinct eigenvalues is large, and floating point roundoff occurs.

Figure 30: The convergence of CG after i iterations depends on how close a polynomial P_i of degree i
can be to zero on each eigenvalue, given the constraint that $P_i(0) = 1$.
9.2. Chebyshev Polynomials

A useful approach is to minimize Equation 49 over the range $[\lambda_{\text{min}}, \lambda_{\text{max}}]$ rather than at a finite number of points. The polynomials that accomplish this are based on Chebyshev polynomials.

The *Chebyshev polynomial* of degree i is

$$T_i(\omega) = \frac{1}{2} [(\omega + \sqrt{\omega^2 - 1})^i + (\omega - \sqrt{\omega^2 - 1})^i].$$

(If this expression doesn't look like a polynomial to you, try working it out for i equal to 1 or 2.) Several Chebyshev polynomials are illustrated in Figure 31. The Chebyshev polynomials have the property that $|T_i(\omega)| \leq 1$ (in fact, they oscillate between 1 and -1) on the domain $\omega \in [-1, 1]$, and furthermore that $|T_i(\omega)|$ is maximum on the domain $\omega \notin [-1, 1]$ among all such polynomials. In other words, $|T_i(\omega)|$ increases as quickly as possible outside the boxes in the illustration.

It is shown in Appendix C4 that Equation 49 is minimized by choosing

$$P_i(\lambda) = \frac{T_i \left(\frac{\lambda_{\text{max}} + \lambda_{\text{max}} - 2\lambda}{\lambda_{\text{max}} - \lambda_{\text{min}}} \right)}{T_i \left(\frac{\lambda_{\text{max}} + \lambda_{\text{max}} - 2\lambda}{\lambda_{\text{max}} - \lambda_{\text{min}}} \right)}.$$

This polynomial has the oscillating properties of Chebyshev polynomials on the domain $\lambda_{\text{min}} \leq \lambda \leq \lambda_{\text{max}}$ (see Figure 32). The denominator enforces our requirement that $P_i(0) = 1$. The numerator has a maximum
Figure 32: The polynomial $P_2(\lambda)$ that minimizes Equation 49 for $\lambda_{\min} = 2$ and $\lambda_{\max} = 7$ in the general case. This curve is a scaled version of the Chebyshev polynomial of degree 2. The energy norm of the error term after two iterations is no greater than 0.183 times its initial value. Compare with Figure 30(c), where it is known that there are only two eigenvalues.

value of one on the interval between λ_{\min} and λ_{\max}, so from Equation 49 we have

\[
\|e_{(i)}\|_A \leq T_i \left(\frac{\lambda_{\max} + \lambda_{\min}}{\lambda_{\max} - \lambda_{\min}} \right)^{-1} \|e_{(0)}\|_A
\]

\[
= T_i \left(\frac{\kappa + 1}{\kappa - 1} \right)^{-1} \|e_{(0)}\|_A
\]

\[
= 2 \left[\left(\frac{\sqrt{\kappa} + 1}{\sqrt{\kappa} - 1} \right)^i + \left(\frac{\sqrt{\kappa} - 1}{\sqrt{\kappa} + 1} \right)^i \right]^{-1} \|e_{(0)}\|_A.
\]

The second addend inside the square brackets converges to zero as i grows, so it is more common to express the convergence of CG with the weaker inequality

\[
\|e_{(i)}\|_A \leq 2 \left(\frac{\sqrt{\kappa} - 1}{\sqrt{\kappa} + 1} \right)^i \|e_{(0)}\|_A.
\]

Figure 33 charts the convergence per iteration of CG, ignoring the lost factor of 2 (which will generally be amortized over many iterations). Of course, CG often converges faster than Equation 50 would suggest, because of good eigenvalue distributions or good starting points. Comparing Equations 50 and 28, it is clear that the convergence of CG is much quicker than that of Steepest Descent (see Figure 34). However, it is not necessarily the case that every iteration of CG enjoys faster convergence; for example, the first iteration of CG is always identical to the first iteration of Steepest Descent. The factor of 2 in Equation 50 allows CG a little slack for these poor iterations.
Figure 33: Convergence of Conjugate Gradients (per iteration) as a function of condition number. Compare with Figure 20.

Figure 34: Number of iterations of Steepest Descent required to match one iteration of CG.
10. Complexity

The dominating operations during an iteration of either Steepest Descent or CG are matrix-vector products. In general, matrix-vector multiplication requires $O(m)$ operations, where m is the number of non-zero entries in the matrix. For many problems, including those listed in the introduction, A is sparse and $m \in O(n)$.

Suppose we wish to perform enough iterations to reduce the norm of the error by a factor of ε; that is, $\|e_n\| \leq \varepsilon \|e_0\|$. Equation 28 can be used to show that the maximum number of iterations required to achieve this bound using Steepest Descent is

$$i \leq \left[\frac{1}{2} \kappa \ln \left(\frac{1}{\varepsilon} \right) \right],$$

whereas Equation 50 suggests that the maximum number of iterations CG requires is

$$i \leq \left[\frac{1}{2} \sqrt{\kappa} \ln \left(\frac{2}{\varepsilon} \right) \right].$$

I conclude that Steepest Descent has a time complexity of $O(m\kappa)$, whereas CG has a time complexity of $O(m\sqrt{\kappa})$. Both algorithms have a space complexity of $O(m)$.

For finite difference and finite element approximations of second-order elliptic boundary value problems posed on d-dimensional domains, $\kappa \in O(n^{2/d})$. Thus, Steepest Descent has a time complexity of $O(n^2)$ for two-dimensional problems, versus $O(n^{3/2})$ for CG; and Steepest Descent has a time complexity of $O(n^{5/3})$ for three-dimensional problems, versus $O(n^{4/3})$ for CG.

11. Starting and Stopping

In the preceding presentation of the Steepest Descent and Conjugate Gradient algorithms, several details have been omitted; particularly, how to choose a starting point, and when to stop.

11.1. Starting

There's not much to say about starting. If you have a rough estimate of the value of x, use it as the starting value x_0. If not, set $x_0 = 0$; either algorithm will eventually converge when used to solve linear systems. Nonlinear systems (coming up in Section 14) are trickier, though, because there may be several local minima, and the choice of starting point will determine which minimum the procedure converges to, or whether it will converge at all.

11.2. Stopping

When Steepest Descent or CG reaches the minimum point, the residual becomes zero, and if Equation 11 or 47 is evaluated an iteration later, a division by zero will result. It seems, then, that we must stop immediately when the residual is zero. To complicate things, though, accumulated roundoff error in the recursive formulation of the residual (Equation 46) may yield a false zero residual; this problem could be resolved by restarting with Equation 44.
Preconditioning

Usually, however, one wishes to stop before convergence is complete. Because the error term is not available, it is customary to stop when the norm of the residual falls below a specified value; often, this value is some small fraction of the initial residual \(\|r_0\| < \varepsilon \|r_0\| \). See Appendix B for sample code.

12. Preconditioning

Preconditioning is a technique for improving the condition number of a matrix. Suppose that \(M \) is a symmetric, positive-definite matrix that approximates \(A \), but is easier to invert. We can solve \(Ax = b \) indirectly by solving

\[
M^{-1}Ax = M^{-1}b.
\]

If \(\kappa(M^{-1}A) \ll \kappa(A) \), or if the eigenvalues of \(M^{-1}A \) are better clustered than those of \(A \), we can iteratively solve Equation 51 more quickly than the original problem. The catch is that \(M^{-1}A \) is not generally symmetric nor definite, even if \(M \) and \(A \) are.

We can circumvent this difficulty, because for every symmetric, positive-definite \(M \) there is a (not necessarily unique) matrix \(E \) that has the property that \(EET = M \). (Such an \(E \) can be obtained, for instance, by Cholesky factorization.) The matrices \(M^{-1}A \) and \(E^{-1}AE^{-T} \) have the same eigenvalues (and therefore the same condition number). This is true because if \(v \) is an eigenvector of \(M^{-1}A \) with eigenvalue \(\lambda \), then \(ETv \) is an eigenvector of \(E^{-1}AE^{-T} \) with eigenvalue \(\lambda \):

\[(E^{-1}AE^{-T})(ETv) = (ETE^{-T})E^{-1}Av = E^T M^{-1}Av = \lambda E^Tv. \]

The system \(Ax = b \) can be transformed into the problem

\[
E^{-1}AE^{-T} \tilde{x} = E^{-1}b, \quad \hat{x} = ET \tilde{x},
\]

which we solve first for \(\hat{x} \), then for \(x \). Because \(E^{-1}AE^{-T} \) is symmetric and positive-definite, \(\hat{x} \) can be found by Steepest Descent or CG. The process of using CG to solve this system is called the Transformed Preconditioned Conjugate Gradient Method:

\[
\hat{d}_0 = \hat{r}_0 = E^{-1}b - E^{-1}AE^{-T} \hat{x}_0,
\]

\[
\alpha_i = \frac{\hat{r}_i^T \hat{r}_i}{\hat{d}_i^T E^{-1}AE^{-T} \hat{d}_i},
\]

\[
\hat{x}_{(i+1)} = \hat{x}_i + \alpha_i \hat{d}_i,
\]

\[
\hat{r}_{(i+1)} = \hat{r}_i - \alpha_i E^{-1}AE^{-T} \hat{d}_i,
\]

\[
\beta(i+1) = \frac{\hat{r}_{(i+1)}^T \hat{r}_{(i+1)}}{\hat{r}_i^T \hat{r}_i},
\]

\[
\hat{d}_{(i+1)} = \hat{r}_{(i+1)} + \beta(i+1) \hat{d}_i.
\]

This method has the undesirable characteristic that \(E \) must be computed. However, a few careful variable substitutions can eliminate \(E \). Setting \(\hat{r}_i = E^{-1}r_i \) and \(\hat{d}_i = ETd_i \), and using the identities
Figure 35: Contour lines of the quadratic form of the diagonally preconditioned sample problem.

\[
\hat{x}_{(i)} = E^T x_{(i)} \quad \text{and} \quad E^{-T} E^{-1} = M^{-1}, \quad \text{we derive the Untransformed Preconditioned Conjugate Gradient Method:}
\]

\[
\begin{align*}
 r_{(0)} &= b - Ax_{(0)}, \\
 d_{(0)} &= M^{-1} r_{(0)}, \\
 \alpha_{(i)} &= \frac{r_{(i)}^T M^{-1} r_{(i)}}{d_{(i)}^T A d_{(i)}}, \\
 x_{(i+1)} &= x_{(i)} + \alpha_{(i)} d_{(i)}, \\
 r_{(i+1)} &= r_{(i)} - \alpha_{(i)} A d_{(i)}, \\
 \beta_{(i+1)} &= \frac{r_{(i+1)}^T M^{-1} r_{(i+1)}}{r_{(i)}^T M^{-1} r_{(i)}}, \\
 d_{(i+1)} &= M^{-1} r_{(i+1)} + \beta_{(i+1)} d_{(i)}.
\end{align*}
\]

The matrix \(E \) does not appear in these equations; only \(M^{-1} \) is needed. By the same means, it is possible to derive a Preconditioned Steepest Descent Method which does not use \(E \).

The effectiveness of a preconditioner \(M \) is determined by the condition number of \(M^{-1} A \), and occasionally by its clustering of eigenvalues. The problem remains of finding a preconditioner that approximates \(A \) well enough to improve convergence enough to make up for the cost of computing the product \(M^{-1} r_{(i)} \) once per iteration. (Note that it is not necessary to explicitly compute \(M \) or \(M^{-1} \); it is only necessary to be able to compute the effect of applying \(M^{-1} \) to a vector.) Within this constraint, there is a surprisingly rich supply of possibilities, and I can only scratch the surface here.

Intuitively, preconditioning is an attempt to stretch the quadratic form to make it appear more spherical, so that the eigenvalues are close to each other. A perfect preconditioner is \(M = A \); for this preconditioner,
\(M^{-1}A \) has a condition number of one, and the quadratic form is perfectly spherical, so solution takes only one iteration. Unfortunately, the preconditioning step is solving the system \(Mx = b \), so this isn’t a useful preconditioner at all.

The simplest preconditioner is a diagonal matrix whose diagonal entries are identical to those of \(A \). The process of applying this preconditioner, known as diagonal preconditioning or Jacobi preconditioning, is equivalent to scaling the quadratic form along the coordinate axes. (By comparison, the perfect preconditioner \(M = A \) scales the quadratic form along its eigenvector axes.) A diagonal matrix is trivial to invert, but is often only a mediocre preconditioner. The contour lines of our sample problem are shown, after diagonal preconditioning, in Figure 35. Comparing with Figure 3, it is clear that some improvement has occurred. The condition number has improved from 3.5 to roughly 2.8. Of course, this improvement is much more beneficial for systems where \(n \gg 2 \).

A more elaborate preconditioner is incomplete Cholesky preconditioning. Cholesky factorization is a technique for factoring a matrix \(A \) into the form \(LL^T \), where \(L \) is a lower triangular matrix. Incomplete Cholesky factorization is a variant in which little or no fill is allowed; \(A \) is approximated by the product \(\tilde{L}\tilde{L}^T \), where \(\tilde{L} \) might be restricted to have the same pattern of nonzero elements as \(A \); other elements of \(L \) are thrown away. To use \(\tilde{L}\tilde{L}^T \) as a preconditioner, the solution to \(\tilde{L}\tilde{L}^Tw = z \) is computed by backsubstitution (the inverse of \(\tilde{L}\tilde{L}^T \) is never explicitly computed). Unfortunately, incomplete Cholesky preconditioning is not always stable.

Many preconditioners, some quite sophisticated, have been developed. Whatever your choice, it is generally accepted that for large-scale applications, CG should nearly always be used with a preconditioner if possible.

13. Conjugate Gradients on the Normal Equations

CG can be used to solve systems where \(A \) is not symmetric, not positive-definite, and even not square. A solution to the least squares problem

\[
\min_x \|Ax - b\|^2 \tag{52}
\]

can be found by setting the derivative of Expression 52 to zero:

\[
ATAx = ATb. \tag{53}
\]

If \(A \) is square and nonsingular, the solution to Equation 53 is the solution to \(Ax = b \). If \(A \) is not square, and \(Ax = b \) is overconstrained — that is, has more linearly independent equations than variables — then there may or may not be a solution to \(Ax = b \), but it is always possible to find a value of \(x \) that minimizes Expression 52, the sum of the squares of the errors of each linear equation.

\(ATA \) is symmetric and positive (for any \(x, x^TATAx = \|Ax\|^2 \geq 0 \)). If \(Ax = b \) is not underconstrained, then \(A^TA \) is nonsingular, and methods like Steepest Descent and CG can be used to solve Equation 53. The only nuisance in doing so is that the condition number of \(A^TA \) is the square of that of \(A \), so convergence is significantly slower.

An important technical point is that the matrix \(A^TA \) is never formed explicitly, because it is less sparse than \(A \). Instead, \(A^TA \) is multiplied by \(d \) by first finding the product \(Ad \), and then \(A^TAd \). Also, numerical stability is improved if the value \(d^TA^TAd \) (in Equation 45) is computed by taking the inner product of \(Ad \) with itself.
14. The Nonlinear Conjugate Gradient Method

CG can be used not only to find the minimum point of a quadratic form, but to minimize any continuous function $f(x)$ for which the gradient f' can be computed. Applications include a variety of optimization problems, such as engineering design, neural net training, and nonlinear regression.

14.1. Outline of the Nonlinear Conjugate Gradient Method

To derive nonlinear CG, there are three changes to the linear algorithm: the recursive formula for the residual cannot be used, it becomes more complicated to compute the step size α, and there are several different choices for β.

In nonlinear CG, the residual is always set to the negation of the gradient; $r(i) = -f'(x(i))$. The search directions are computed by Gram-Schmidt conjugation of the residuals as with linear CG. Performing a line search along this search direction is much more difficult than in the linear case, and a variety of procedures can be used. As with the linear CG, a value of $\alpha(i)$ that minimizes $f(x(i) + \alpha(i)d(i))$ is found by ensuring that the gradient is orthogonal to the search direction. We can use any algorithm that finds the zeros of the expression $[f'(x(i) + \alpha(i)d(i))]^T d(i)$.

In linear CG, there are several equivalent expressions for the value of β. In nonlinear CG, these different expressions are no longer equivalent; researchers are still investigating the best choice. Two choices are the Fletcher-Reeves formula, which we used in linear CG for its ease of computation, and the Polak-Ribi"ere formula:

\[\beta_{FR}(i+1) = \frac{r(i+1)^T r(i+1)}{r(i)^T r(i)}, \quad \beta_{PR}(i+1) = \frac{r(i+1)^T (r(i+1) - r(i))}{r(i)^T r(i)} \]

The Fletcher-Reeves method converges if the starting point is sufficiently close to the desired minimum, whereas the Polak-Ribi"ere method can, in rare cases, cycle infinitely without converging. However, Polak-Ribi"ere often converges much more quickly.

Fortunately, convergence of the Polak-Ribi"ere method can be guaranteed by choosing $\beta = \max\{\beta_{PR}, 0\}$. Using this value is equivalent to restarting CG if $\beta_{PR} < 0$. To restart CG is to forget the past search directions, and start CG anew in the direction of steepest descent.

Here is an outline of the nonlinear CG method:

\[d(0) = r(0) = -f'(x(0)), \]

Find $\alpha(i)$ that minimizes $f(x(i) + \alpha(i)d(i))$,

\[x(i+1) = x(i) + \alpha(i)d(i), \quad r(i+1) = -f'(x(i+1)), \]

\[\beta(i+1) = \frac{r(i+1)^T r(i+1)}{r(i)^T r(i)} \quad \text{or} \quad \beta(i+1) = \max\left\{ \frac{r(i+1)^T (r(i+1) - r(i))}{r(i)^T r(i)}, 0 \right\}, \]

\[d(i+1) = r(i+1) + \beta(i+1)d(i). \]
Nonlinear CG comes with few of the convergence guarantees of linear CG. The less similar \(f \) is to a quadratic function, the more quickly the search directions lose conjugacy. (It will become clear shortly that the term ‘conjugacy’ still has some meaning in nonlinear CG.) Another problem is that a general function \(f \) may have many local minima. CG is not guaranteed to converge to the global minimum, and may not even find a local minimum if \(f \) has no lower bound.

Figure 36 illustrates nonlinear CG. Figure 36(a) is a function with many local minima. Figure 36(b) demonstrates the convergence of nonlinear CG with the Fletcher-Reeves formula. In this example, CG is not nearly as effective as in the linear case; this function is deceptively difficult to minimize. Figure 36(c) shows a cross-section of the surface, corresponding to the first line search in Figure 36(b). Notice that there are several minima; the line search finds a value of \(\alpha \) corresponding to a nearby minimum. Figure 36(d) shows the superior convergence of Polak-Ribiére CG.

Because CG can only generate \(n \) conjugate vectors in an \(n \)-dimensional space, it makes sense to restart CG every \(n \) iterations, especially if \(n \) is small. Figure 37 shows the effect when nonlinear CG is restarted every second iteration. (For this particular example, both the Fletcher-Reeves method and the Polak-Ribiére method appear the same.)

14.2. General Line Search

Depending on the value of \(f' \), it might be possible to use a fast algorithm to find the zeros of \(f'^T d \). For instance, if \(f' \) is polynomial in \(\alpha \), then an efficient algorithm for polynomial zero-finding can be used. However, we will only consider general-purpose algorithms.

Two iterative methods for zero-finding are the Newton-Raphson method and the Secant method. Both methods require that \(f \) be twice continuously differentiable. Newton-Raphson also requires that it be possible to compute the second derivative of \(f(x + \alpha d) \) with respect to \(\alpha \).

The Newton-Raphson method relies on the Taylor series approximation

\[
f(x + \alpha d) \approx f(x) + \alpha \left[\frac{d}{d\alpha} f(x + \alpha d) \right]_{\alpha=0} + \frac{\alpha^2}{2} \left[\frac{d^2}{d\alpha^2} f(x + \alpha d) \right]_{\alpha=0}
\]

\[
f(x) + \alpha [f'(x)]^T d + \frac{\alpha^2}{2} d^T f''(x) d
\]

where \(f''(x) \) is the Hessian matrix

\[
f''(x) =
\begin{bmatrix}
\frac{\partial^2 f}{\partial x_1 \partial x_1} & \frac{\partial^2 f}{\partial x_1 \partial x_2} & \cdots & \frac{\partial^2 f}{\partial x_1 \partial x_n} \\
\frac{\partial^2 f}{\partial x_2 \partial x_1} & \frac{\partial^2 f}{\partial x_2 \partial x_2} & \cdots & \frac{\partial^2 f}{\partial x_2 \partial x_n} \\
\vdots & \vdots & \ddots & \vdots \\
\frac{\partial^2 f}{\partial x_n \partial x_1} & \frac{\partial^2 f}{\partial x_n \partial x_2} & \cdots & \frac{\partial^2 f}{\partial x_n \partial x_n}
\end{bmatrix}
\]

The function \(f(x + \alpha d) \) is approximately minimized by setting Expression 55 to zero, giving

\[
\alpha = -\frac{f'^T d}{d^T f'' d}.
\]
Figure 36: Convergence of the nonlinear Conjugate Gradient Method. (a) A complicated function with many local minima and maxima. (b) Convergence path of Fletcher-Reeves CG. Unlike linear CG, convergence does not occur in two steps. (c) Cross-section of the surface corresponding to the first line search. (d) Convergence path of Polak-Ribière CG.
Figure 37: Nonlinear CG can be more effective with periodic restarts.

Figure 38: The Newton-Raphson method for minimizing a one-dimensional function (solid curve). Starting from the point z, calculate the first and second derivatives, and use them to construct a quadratic approximation to the function (dashed curve). A new point z is chosen at the base of the parabola. This procedure is iterated until convergence is reached.
The truncated Taylor series approximates \(f(x + ad) \) with a parabola; we step to the bottom of the parabola (see Figure 38). In fact, if \(f \) is a quadratic form, then this parabolic approximation is exact, because \(f'' \) is just the familiar matrix \(A \). In general, the search directions are conjugate if they are \(f'' \)-orthogonal. The meaning of "conjugate" keeps changing, though, because \(f'' \) varies with \(x \). The more quickly \(f'' \) varies with \(x \), the more quickly the search directions lose conjugacy. On the other hand, the closer \(x_{(i)} \) is to the solution, the less \(f'' \) varies from iteration to iteration. The closer the starting point is to the solution, the more similar the convergence of nonlinear CG is to that of linear CG.

To perform an exact line search of a non-quadratic function, repeated steps must be taken along the line until \(f^T d \) is zero; hence, one CG iteration may include many Newton-Raphson iterations. The values of \(f^T d \) and \(d^T f'' d \) must be evaluated at each step. These evaluations may be inexpensive if \(d^T f'' d \) can be analytically simplified, but if the full matrix \(f'' \) must be evaluated repeatedly, the algorithm is prohibitively slow. For some applications, it is possible to circumvent this problem by performing an approximate line search that uses only the diagonal elements of \(f'' \). Of course, there are functions for which it is not possible to evaluate \(f'' \) at all.

To perform an exact line search without computing \(f'' \), the Secant method approximates the second derivative of \(f(x + ad) \) by evaluating the first derivative at the distinct points \(\alpha = 0 \) and \(\alpha = \sigma \), where \(\sigma \) is an arbitrary small nonzero number:

\[
\frac{d^2}{d\alpha^2} f(x + \alpha d) \approx \frac{\left[\frac{d}{d\alpha} f(x + \alpha d) \right]_{\alpha = \sigma} - \left[\frac{d}{d\alpha} f(x + \alpha d) \right]_{\alpha = 0}}{\sigma} \quad \text{for} \quad \sigma \neq 0
\]

\[
= \frac{[f'(x + \sigma d)]^T d - [f'(x)]^T d}{\sigma}, \tag{56}
\]

which becomes a better approximation to the second derivative as \(\alpha \) and \(\sigma \) approach zero. If we substitute Expression 56 for the third term of the Taylor expansion (Equation 54), we have

\[
\frac{d}{d\alpha} f(x + \alpha d) \approx [f'(x)]^T d + \frac{\alpha}{\sigma} \left\{ [f'(x + \sigma d)]^T d - [f'(x)]^T d \right\}.
\]

Minimize \(f(x + \alpha d) \) by setting its derivative to zero:

\[
\alpha = -\sigma \frac{[f'(x)]^T d}{[f'(x + \sigma d)]^T d - [f'(x)]^T d} \tag{57}
\]

Like Newton-Raphson, the Secant method also approximates \(f(x + \alpha d) \) with a parabola, but instead of choosing the parabola by finding the first and second derivative at a point, it finds the first derivative at two different points (see Figure 39). Typically, we will choose an arbitrary \(\sigma \) on the first Secant method iteration; on subsequent iterations we will choose \(x + \sigma d \) to be the value of \(x \) from the previous Secant method iteration. In other words, if we let \(\alpha_{(i)} \) denote the value of \(\alpha \) calculated during Secant iteration \(i \), then \(\sigma_{(i+1)} = -\alpha_{(i)} \).

Both the Newton-Raphson and Secant methods should be terminated when \(x \) is reasonably close to the exact solution. Demanding too little precision could cause a failure of convergence, but demanding too fine precision makes the computation unnecessarily slow and gains nothing, because conjugacy will break down quickly anyway if \(f''(x) \) varies much with \(x \). Therefore, a quick but inexact line search is often the better policy (for instance, use only a fixed number of Newton-Raphson or Secant method iterations). Unfortunately, inexact line search may lead to the construction of a search direction that is not a descent direction. A common solution is to test for this eventuality (is \(r^T d \) nonpositive?), and restart CG if necessary by setting \(d = r \).
The Nonlinear Conjugate Gradient Method

A bigger problem with both methods is that they cannot distinguish minima from maxima. The result of nonlinear CG generally depends strongly on the starting point, and if CG with the Newton-Raphson or Secant method starts near a local maximum, it is likely to converge to that point.

Each method has its own advantages. The Newton-Raphson method has a better convergence rate, and is to be preferred if \(d^T f''d \) can be calculated (or well approximated) quickly (i.e., in \(O(n) \) time). The Secant method only requires first derivatives of \(f \), but its success may depend on a good choice of the parameter \(\sigma \). It is easy to derive a variety of other methods as well. For instance, by sampling \(f \) at three different points, it is possible to generate a parabola that approximates \(f(x + \alpha d) \) without the need to calculate even a first derivative of \(f \).

14.3. Preconditioning

Nonlinear CG can be preconditioned by choosing a preconditioner \(M \) that approximates \(f'' \) and has the property that \(M^{-1}r \) is easy to compute. In linear CG, the preconditioner attempts to transform the quadratic form so that it is similar to a sphere; a nonlinear CG preconditioner performs this transformation for a region near \(x_{(i)} \).

Even when it is too expensive to compute the full Hessian \(f'' \), it is often quite reasonable to compute its diagonal for use as a preconditioner. However, be forewarned that if \(x \) is sufficiently far from a local minimum, the diagonal elements of the Hessian may not all be positive. A preconditioner should be positive-definite, so nonpositive diagonal elements cannot be allowed. A conservative solution is to not precondition (set \(M = I \)) when the Hessian cannot be guaranteed to be positive-definite. Figure 40 demonstrates the convergence of diagonally preconditioned nonlinear CG, with the Polak-Ribière formula, on the same
Figure 40: The preconditioned nonlinear Conjugate Gradient Method, using the Polak-Ribière formula and a diagonal preconditioner. The space has been "stretched" to show the improvement in circularity of the contour lines around the minimum.

function illustrated in Figure 36. Here, I have cheated by using the diagonal of f'' at the solution point x to precondition every iteration.

A Notes

Conjugate Direction methods were probably first presented by Schmidt [14] in 1908, and were independently reinvented by Fox, Huskey, and Wilkinson [7] in 1948. In the early fifties, the method of Conjugate Gradients was discovered independently by Hestenes [10] and Stiefel [15]; shortly thereafter, they jointly published what is considered the seminal reference on CG [11]. Convergence bounds for CG in terms of Chebyshev polynomials were developed by Kaniel [12]. A more thorough analysis of CG convergence is provided by van der Sluis and van der Vorst [16]. CG was popularized as an iterative method for large, sparse matrices by Reid [13] in 1971.

CG was generalized to nonlinear problems in 1964 by Fletcher and Reeves [6], based on work by Davidon [4] and Fletcher and Powell [5]. Convergence of nonlinear CG with inexact line searches was analyzed by Daniel [3]. The choice of β for nonlinear CG is discussed by Gilbert and Nocedal [8].

A history and extensive annotated bibliography of CG to the mid-seventies is provided by Golub and O'Leary [9]. Most research since that time has focused on nonsymmetric systems. A survey of iterative methods for the solution of linear systems is offered by Barrett et al. [1].
B Canned Algorithms

The code given in this section represents efficient implementations of the algorithms discussed in this article.

B1. Steepest Descent

Given the inputs A, b, a starting value x, a maximum number of iterations i_{max}, and an error tolerance $\varepsilon < 1$:

\[
\begin{align*}
 i &\leftarrow 0 \\
 r &\leftarrow b - Ax \\
 \delta &\leftarrow r^T r \\
 \delta_0 &\leftarrow \delta \\
\end{align*}
\]

While $i < i_{\text{max}}$ and $\delta > \varepsilon^2 \delta_0$ do

\[
\begin{align*}
 q &\leftarrow Ar \\
 \alpha &\leftarrow \frac{\delta}{r^T q} \\
 x &\leftarrow x + \alpha r \\
\end{align*}
\]

If i is divisible by 50

\[
\begin{align*}
 r &\leftarrow b - Ax \\
\end{align*}
\]

else

\[
\begin{align*}
 r &\leftarrow r - \alpha q \\
 \delta &\leftarrow r^T r \\
 i &\leftarrow i + 1 \\
\end{align*}
\]

This algorithm terminates when the maximum number of iterations i_{max} has been exceeded, or when $\|r(i)\| \leq \varepsilon \|r(0)\|$.

The fast recursive formula for the residual is usually used, but once every 50 iterations, the exact residual is recalculated to remove accumulated floating point error. Of course, the number 50 is arbitrary; for large n, \sqrt{n} might be appropriate. If the tolerance is large, the residual need not be corrected at all. If the tolerance is close to the limits of the floating point precision of the machine, a test should be added after δ is evaluated to check if $\delta \leq \varepsilon^2 \delta_0$, and if this test holds true, the exact residual should also be recomputed and δ reevaluated. This prevents the procedure from terminating too quickly due to floating point roundoff error.
B2. Conjugate Gradients

Given the inputs \(A, b, \) a starting value \(\tau, \) a maximum number of iterations \(i_{max}, \) and an error tolerance \(\varepsilon < 1: \)

\[
\begin{align*}
i & \leftarrow 0 \\
r & \leftarrow b - Ax \\
d & \leftarrow r \\
\delta_{new} & \leftarrow r^T r \\
\delta_0 & \leftarrow \delta_{new} \\
\text{While } i < i_{max} \text{ and } \delta_{new} > \varepsilon^2 \delta_0 \text{ do} \\
& \quad q \leftarrow Ad \\
& \quad \alpha \leftarrow \frac{\delta_{new}}{d^T q} \\
& \quad x \leftarrow x + \alpha d \\
& \quad \text{If } i \text{ is divisible by 50} \\
& \quad \quad r \leftarrow b - Ax \\
& \quad \text{else} \\
& \quad \quad r \leftarrow r - \alpha q \\
& \quad \delta_{old} \leftarrow \delta_{new} \\
& \quad \delta_{new} \leftarrow r^T r \\
& \quad \beta \leftarrow \frac{\delta_{new}}{\delta_{old}} \\
& \quad d \leftarrow r + \beta d \\
& \quad i \leftarrow i + 1
\end{align*}
\]

See the comments at the end of Section B1.
B3. Preconditioned Conjugate Gradients

Given the inputs A, b, a starting value x, a (perhaps implicitly defined) preconditioner M, a maximum number of iterations i_{max}, and an error tolerance $\varepsilon < 1$:

\[
\begin{align*}
 i &\leftarrow 0 \\
 r &\leftarrow b - Ax \\
 d &\leftarrow M^{-1}r \\
 \delta_{\text{new}} &\leftarrow r^T d \\
 \delta_0 &\leftarrow \delta_{\text{new}} \\
\end{align*}
\]

While $i < i_{\text{max}}$ and $\delta_{\text{new}} > \varepsilon^2 \delta_0$ do

\[
\begin{align*}
 q &\leftarrow Ad \\
 \alpha &\leftarrow \frac{\delta_{\text{new}}}{d^T q} \\
 x &\leftarrow x + \alpha d \\
\end{align*}
\]

If i is divisible by 50

\[
 r \leftarrow b - Ax
\]

else

\[
 r \leftarrow r - \alpha q \\
\]

\[
\begin{align*}
 s &\leftarrow M^{-1}r \\
 \delta_{\text{old}} &\leftarrow \delta_{\text{new}} \\
 \delta_{\text{new}} &\leftarrow r^T s \\
 \beta &\leftarrow \frac{\delta_{\text{new}}}{\delta_{\text{old}}} \\
 d &\leftarrow s + \beta d \\
 i &\leftarrow i + 1
\end{align*}
\]

The statement "$s \leftarrow M^{-1}r$" implies that one should apply the preconditioner, which may not actually be in the form of a matrix.

See also the comments at the end of Section B1.
Given a function \(f \), a starting value \(x \), a maximum number of CG iterations \(i_{\text{max}} \), a CG error tolerance \(\varepsilon < 1 \), a maximum number of Newton-Raphson iterations \(j_{\text{max}} \), and a Newton-Raphson error tolerance \(\varepsilon < 1 \):

\[
\begin{align*}
&i \leftarrow 0 \\
&k \leftarrow 0 \\
&r \leftarrow -f'(x) \\
&d \leftarrow r \\
&\delta_{\text{new}} \leftarrow r^T r \\
&\delta_0 \leftarrow \delta_{\text{new}} \\
\text{While } i < i_{\text{max}} \text{ and } \delta_{\text{new}} > \varepsilon^2 \delta_0 \text{ do} \\
&\quad j \leftarrow 0 \\
&\quad \delta_d \leftarrow d^T d \\
&\quad \text{Do} \\
&\quad \quad \alpha \leftarrow -\frac{[f'(x)]^T d}{d^T f'(x) d} \\
&\quad \quad x \leftarrow x + \alpha d \\
&\quad \quad j \leftarrow j + 1 \\
&\quad \text{while } j < j_{\text{max}} \text{ and } \alpha^2 \delta_d > \varepsilon^2 \text{ do} \\
&\quad \quad r \leftarrow -f'(x) \\
&\quad \quad \delta_{\text{old}} \leftarrow \delta_{\text{new}} \\
&\quad \quad \delta_{\text{new}} \leftarrow r^T r \\
&\quad \quad \beta \leftarrow \frac{\delta_{\text{new}}}{\delta_{\text{old}}} \\
&\quad \quad d \leftarrow r + \beta d \\
&\quad \quad k \leftarrow k + 1 \\
&\quad \text{If } k = n \text{ or } r^T d \leq 0 \\
&\quad \quad d \leftarrow r \\
&\quad \quad k \leftarrow 0 \\
&\quad i \leftarrow i + 1 \\
\end{align*}
\]

This algorithm terminates when the maximum number of iterations \(i_{\text{max}} \) has been exceeded, or when \(\|r(i)\| \leq \varepsilon \|r(0)\| \).

Each Newton-Raphson iteration adds \(\alpha d \) to \(x \); the iterations are terminated when each update \(\alpha d \) falls below a given tolerance \(\|\alpha d\| \leq \varepsilon \), or when the number of iterations exceeds \(j_{\text{max}} \). A fast inexact line search can be accomplished by using a small \(j_{\text{max}} \) and/or by approximating the Hessian \(f''(x) \) with its diagonal.

Nonlinear CG is restarted (by setting \(d \leftarrow r \)) whenever a search direction is computed that is not a descent direction. It is also restarted once every \(n \) iterations, to improve convergence for small \(n \).

The calculation of \(\alpha \) may result in a divide-by-zero error. This may occur because the starting point \(x(0) \) is not sufficiently close to the desired minimum, or because \(f \) is not twice continuously differentiable. In the former case, the solution is to choose a better starting point or a more sophisticated line search. In the latter case, CG might not be the most appropriate minimization algorithm.
B5. Preconditioned Nonlinear Conjugate Gradients with Secant and Polak-Ribière

Given a function f, a starting value x, a maximum number of CG iterations i_{max}, a CG error tolerance $\varepsilon < 1$, a Secant method step parameter σ_0, a maximum number of Secant method iterations j_{max}, and a Secant method error tolerance $\varepsilon < 1$:

\begin{align*}
 i &= 0 \\
 k &= 0 \\
 r &= -f'(x) \\
 \text{Calculate a preconditioner } M &\approx f''(x) \\
 s &= M^{-1}r \\
 d &= s \\
 \delta_{\text{new}} &= r^T d \\
 \delta_0 &= \delta_{\text{new}} \\
 \text{While } i < i_{\text{max}} \text{ and } \delta_{\text{new}} > \varepsilon^2 \delta_0 \text{ do} \\
 &\quad j = 0 \\
 &\quad \delta_d = d^T d \\
 &\quad \alpha = -\sigma_0 \\
 &\quad \eta_{\text{prev}} = [f'(x + \sigma_0 d)]^T d \\
 &\quad \text{Do} \\
 &\quad \eta = [f'(x)]^T d \\
 &\quad \alpha = \frac{\eta}{\eta_{\text{prev}} - \eta} \\
 &\quad x = x + \alpha d \\
 &\quad \eta_{\text{prev}} = \eta \\
 &\quad j = j + 1 \\
 &\quad \text{while } j < j_{\text{max}} \text{ and } \alpha^2 \delta_d > \varepsilon^2 \\
 &\quad r = -f'(x) \\
 &\quad \delta_{\text{old}} = \delta_{\text{new}} \\
 &\quad \delta_{\text{mid}} = r^T s \\
 &\quad \text{Calculate a preconditioner } M &\approx f''(x) \\
 &\quad s &= M^{-1}r \\
 &\quad \delta_{\text{new}} &= r^T s \\
 &\quad \beta &= \frac{\delta_{\text{new}} - \delta_{\text{mid}}}{\delta_{\text{old}}} \\
 &\quad k &= k + 1 \\
 &\quad \text{If } k = n \text{ or } \beta \leq 0 \\
 &\quad &\quad d &= s \\
 &\quad &\quad k &= 0 \\
 &\quad \text{else} \\
 &\quad &\quad d &= s + \beta d \\
 &\quad i &= i + 1 \\
\end{align*}

This algorithm terminates when the maximum number of iterations i_{max} has been exceeded, or when $\|r_{(i)}\| \leq \varepsilon \|r_{(0)}\|$

Each Secant method iteration adds αd to x; the iterations are terminated when each update αd falls below a given tolerance ($\|\alpha d\| \leq \varepsilon$), or when the number of iterations exceeds j_{max}. A fast inexact line search can be accomplished by using a small j_{max}. The parameter σ_0 determines the value of σ in Equation 57 for the first step of each Secant method minimization. Unfortunately, it may be necessary to adjust this parameter to achieve convergence.
The Polak-Ribière \(\beta \) parameter is
\[
\frac{\delta_{\text{new}} - \delta_{\text{old}}}{\delta_{\text{old}}} = \frac{r_{(i+1)}^T x_{(i+1)} - r_{(i)}^T x_{(i)}}{r_{(i)}^T x_{(i)}} = \frac{r_{(i+1)}^T M^{-1} (r_{(i+1)} - r_{(i)})}{r_{(i)}^T M^{-1} r_{(i)}}.
\]
Care must be taken that the preconditioner \(M \) is always positive-definite. The preconditioner is not necessarily in the form of a matrix.

Nonlinear CG is restarted (by setting \(d = r \)) whenever the Polak-Ribière \(\beta \) parameter is negative. It is also restarted once every \(n \) iterations, to improve convergence for small \(n \).

Nonlinear CG presents several choices: Preconditioned or not, Newton-Raphson method or Secant method or another method, Fletcher-Reeves or Polak-Ribière. It should be possible to construct any of the variations from the versions presented above. (Note that Polak-Ribière is almost always to be preferred.)

C Ugly Proofs

C1. The Solution to \(Ax = b \) Minimizes the Quadratic Form

Suppose \(A \) is symmetric. Let \(x \) be a point that satisfies \(Ax = b \) and minimizes the quadratic form (Equation 3), and let \(e \) be an error term. Then

\[
f(x + e) = \frac{1}{2}(x + e)^T A(x + e) - b^T(x + e) + c \quad \text{(by Equation 3)}
\]

\[
= \frac{1}{2} x^T A x + e^T A x + \frac{1}{2} e^T A e - b^T x - b^T e + c \quad \text{(by symmetry of \(A \))}
\]

\[
= \frac{1}{2} x^T A x - b^T x + c + e^T b + \frac{1}{2} e^T A e - b^T e
\]

\[
= f(x) + \frac{1}{2} e^T A e.
\]

If \(A \) is positive-definite, then the latter term is positive for all \(e \neq 0 \); therefore \(x \) minimizes \(f \).

C2. A Symmetric Matrix Has \(n \) Orthogonal Eigenvectors.

Suppose \(A \) is nonsingular, so that there is a set of \(n \) linearly independent eigenvectors \(v_1, v_2, \ldots, v_n \). Suppose furthermore that \(A \) is symmetric. For any two eigenvectors, we have

\[
v_i^T v_j = v_i^T A^{-1} A v_j
\]

\[
= (A^{-1} v_i)^T A v_j \quad \text{(by symmetry of \(A \))}
\]

\[
= \frac{\lambda_j}{\lambda_i} v_i^T v_j.
\]

This equation can hold only if \(v_i^T v_j = 0 \) or \(\lambda_i = \lambda_j \). In the former case, \(v_i \) and \(v_j \) are orthogonal. In the latter case, both \(v_i \) and \(v_j \) have the same eigenvalue \(\lambda \), so any linear combination of \(v_i \) and \(v_j \) is also an eigenvector with eigenvalue \(\lambda \). Replace \(v_j \) with a vector that is a linear combination of \(v_i \) and \(v_j \), and is orthogonal to \(v_i \). (In other words, apply Gram-Schmidt orthogonalization to \(v_i \) and \(v_j \), and any other vectors with the same eigenvalue.)

By applying this reasoning to every pair of eigenvectors, one can generate an orthogonal set of eigenvectors.
C3. Convergence of Steepest Descent

Consider the expression \(\omega \) from Equation 25:

\[
\omega^2 = 1 - \frac{(\sum_j \xi_j^2 \lambda_j^2)^2}{(\sum_j \xi_j^2 \lambda_j^2)(\sum_j \xi_j^2 \lambda_j)}
\]

Several simplifications can be made:

\[
\sum_j \xi_j^2 \lambda_j = \sum_j \xi_j^2 \lambda_j^2 \left(\frac{1}{\lambda_j} + \frac{\lambda_j}{\lambda_{\min} \lambda_{\max}} \right) - \sum_j \xi_j^2 \lambda_j^3 \frac{\lambda_j^3}{\lambda_{\min} \lambda_{\max}}
\leq \sum_j \xi_j^2 \lambda_j^2 \frac{\lambda_{\min} + \lambda_{\max}}{\lambda_{\min} \lambda_{\max}} - \sum_j \xi_j^2 \lambda_j^3 \frac{\lambda_j^3}{\lambda_{\min} \lambda_{\max}}
\text{(because } \lambda_{\min} \leq \lambda_j \leq \lambda_{\max})
\]

\[
= \frac{(\lambda_{\min} + \lambda_{\max}) \sum_j \xi_j^2 \lambda_j^2 - \sum_j \xi_j^2 \lambda_j^3}{\lambda_{\min} \lambda_{\max}}.
\]

If we define \(\phi = \sum_j \xi_j^2 \lambda_j^2 \), we have

\[
(\sum_j \xi_j^2 \lambda_j^3)(\sum_j \xi_j^2 \lambda_j) \leq \phi \frac{(\lambda_{\min} + \lambda_{\max}) \sum_j \xi_j^2 \lambda_j^2 - \phi}{\lambda_{\min} \lambda_{\max}}.
\]

Basic calculus shows that this expression is maximized when \(\phi = \frac{1}{2} (\lambda_{\min} + \lambda_{\max}) \sum_j \xi_j^2 \lambda_j^2 \), so we have

\[
(\sum_j \xi_j^2 \lambda_j^3)(\sum_j \xi_j^2 \lambda_j) \leq \frac{(\lambda_{\min} + \lambda_{\max})^2 (\sum_j \xi_j^2 \lambda_j^2)^2}{4 \lambda_{\min} \lambda_{\max}}.
\]

It follows that

\[
\omega^2 \leq 1 - \frac{4 \lambda_{\min} \lambda_{\max}}{(\lambda_{\min} + \lambda_{\max})^2}
= \frac{(\lambda_{\min} - \lambda_{\max})^2}{(\lambda_{\min} + \lambda_{\max})^2}
\omega \leq \frac{\kappa - 1}{\kappa + 1},
\]

where \(\kappa = \frac{\lambda_{\max}}{\lambda_{\min}} \). Thus, Equation 27 is true for any \(n > 1 \).

C4. Optimality of Chebyshev Polynomials

Chebyshev polynomials are optimal for minimization of expressions like Expression 49 because they increase in magnitude more quickly outside the range \([-1, 1]\) than any other polynomial that is restricted to have magnitude no greater than one inside the range \([-1, 1]\).

The Chebyshev polynomial of degree \(i \),

\[
T_i(\omega) = \frac{1}{2} \left[(\omega + \sqrt{\omega^2 + 1})^i + (\omega - \sqrt{\omega^2 - 1})^i \right].
\]
can also be expressed on the region $[-1, 1]$ as

$$T_i(\omega) = \cos(i \cos^{-1} \omega), \quad -1 \leq \omega \leq 1.$$

From this expression (and from Figure 31), one can deduce that the Chebyshev polynomials have the property

$$|T_i(\omega)| \leq 1, \quad -1 \leq \omega \leq 1$$

and oscillate rapidly between -1 and $1:

$$T_i \left(\cos \left(\frac{k\pi}{i} \right) \right) = (-1)^k, \quad k = 0, 1, \ldots, i.$$

Notice that the i zeros of T_i must fall between the $i + 1$ extrema of T_i in the range $[-1, 1]$. For an example, see the five zeros of $T_3(\omega)$ in Figure 31.

Similarly, the function

$$P_i(\lambda) = \frac{T_i \left(\frac{\lambda_{\min} + \lambda_{\max}}{\lambda_{\max} - \lambda_{\min}} \right)}{T_i \left(\frac{\lambda_{\max} + \lambda_{\min}}{\lambda_{\max} - \lambda_{\min}} \right) - 1}$$

oscillates in the range $\pm T_i(\frac{\lambda_{\max} + \lambda_{\min}}{\lambda_{\max} - \lambda_{\min}})$ on the domain $[\lambda_{\min}, \lambda_{\max}]$. $P_i(\lambda)$ also satisfies the requirement that $P_i(0) = 1$.

The proof relies on a cute trick. There is no polynomial $Q_i(\lambda)$ of degree i such that $Q_i(0) = 1$ and Q_i is better than P_i on the range $[\lambda_{\min}, \lambda_{\max}]$. To prove this, suppose that there is such a polynomial; then, $Q_i(\lambda) < T_i(\frac{\lambda_{\max} + \lambda_{\min}}{\lambda_{\max} - \lambda_{\min}})$ on the range $[\lambda_{\min}, \lambda_{\max}]$. It follows that the polynomial $P_i - Q_i$ has a zero at $\lambda = 0$, and also has i zeros on the range $[\lambda_{\min}, \lambda_{\max}]$. Hence, $P_i - Q_i$ is a polynomial of degree i with at least $i + 1$ zeros, which is impossible. By contradiction, I conclude that the Chebyshev polynomial of degree i optimizes Expression 49.

References

References

