Performance Demonstration:
UH-60Q External Rescue Hoist
and Cargo Loadmeter

By
James E. Bruckart
and
Joseph R. Licina

Aircrew Protection Division

January 1994

Approved for public release; distribution unlimited.

94-09481

United States Army Aeromedical Research Laboratory
Fort Rucker, Alabama 36362-0577
Notice

Qualified requesters

Qualified requesters may obtain copies from the Defense Technical Information Center (DTIC), Cameron Station, Alexandria, Virginia 22314. Orders will be expedited if placed through the librarian or other person designated to request documents from DTIC.

Change of address

Organizations receiving reports from the U.S. Army Aeromedical Research Laboratory on automatic mailing lists should confirm correct address when corresponding about laboratory reports.

Disposition

Destroy this document when it is no longer needed. Do not return it to the originator.

Disclaimer

The views, opinions, and/or findings contained in this report are those of the author(s) and should not be construed as an official Department of the Army position, policy, or decision, unless so designated by other official documentation. Citation of trade names in this report does not constitute an official Department of the Army endorsement or approval of the use of such commercial items.

Reviewed:

KEVIN T. MASON
LTC, MC, MFS
Director, Aircrew Protection Division

Released for publication:

ROGER W. WILLEY, O.D., Ph.D.
Chairman, Scientific Review Committee

DAVID H. KARNEY
Colonel, MC, SFS
Commanding
The UH-60Q prototype MEDEVAC Black Hawk is configured to provide day/night, adverse weather, emergency movement of patients. The objective of this report is to describe the results of capability demonstrations for operating the external rescue hoist and cargo hook. The external rescue hoist is electrically operated and includes a digital indication of the cable payout. Hoist operations were accomplished with manikins in Stokes and Skedco litters. External cargo loading operations were completed lifting a 1200-lb external load. External hoist and cargo load operations can be completed in the prototype aircraft with a typical MEDEVAC Black Hawk crew. The hoist operator is not able to operate the hoist from the crew seat. He has to push the litter clear of the aircraft tire and pull the weight of the litter aft to load it into the aircraft. The external cargo loading procedures essentially are unchanged with the addition of the cargo loadmeter. The aircraft crew stated that the loadmeter provided valuable information on the status of the external load.
## Table of contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>List of figures</td>
<td>2</td>
</tr>
<tr>
<td>Introduction</td>
<td>3</td>
</tr>
<tr>
<td>Materials and methods</td>
<td>3</td>
</tr>
<tr>
<td>Results</td>
<td>5</td>
</tr>
<tr>
<td>Discussion</td>
<td>5</td>
</tr>
<tr>
<td>Summary</td>
<td>8</td>
</tr>
<tr>
<td>References</td>
<td>9</td>
</tr>
<tr>
<td>Appendix A. Mission profile summaries</td>
<td>10</td>
</tr>
</tbody>
</table>
List of figures

Figure Page

1. External rescue hoist on the prototype aircraft ........................ 4
2. Prototype aircraft hoisting a Skedco litter ............................... 6
3. Prototype aircraft lifting an external cargo load .......................... 7

Acknowledgement

The authors would like to recognize the important contributions of SSG Martin, SSG Walczyk, and SGT Wright, U.S. Army School of Aviation Medicine and SPC Edmisten and SPC Sheets, A Co. 511th Fort Rucker, in this effort.
Introduction

The UH-60Q prototype MEDEVAC Black Hawk is configured to provide day/night, adverse weather, emergency movement of patients. The Materiel Need Statement for the UH-60Q directs that the aircraft be capable of performing medical evacuation in several mission profiles (Department of the Army, 1992). These include Southwest Asia, Europe, MAST, and Persian Gulf scenarios that are summarized in Appendix A. The U.S. Army Aeromedical Research Laboratory (USAARL) was tasked by the Utility Helicopter Program Manager to evaluate the UH-60Q prototype aircraft in flights that simulate the typical mission profiles. This information is needed to determine functional requirements for future operational and user tests of the UH-60Q. This report details the results of performance demonstrations of the external rescue hoist and cargo loadmeter on the UH-60Q prototype. An analysis of other features of the medical interior and details on the performance of the aircraft system in mission scenarios is detailed in other reports.

The UH-60 aircraft, serial number 86-24560, is configured as the Proof of Principle Aircraft YUH-60A(Q). This helicopter is equipped with an enhanced medical interior, enhanced avionics and visual displays, and an externally-mounted rescue hoist.

The objective of this report is to describe the results of performance demonstrations for the rescue hoist and cargo loadmeter. The specific purpose was to determine if the current procedures and crew configuration for a MEDEVAC Black Hawk could be adapted to operate these modified systems on the prototype aircraft. This information will be useful to the Utility Helicopter Project Manager when evaluating how each component of the medical interior enhances or degrades the ability of a typical flight medic to perform his duties.

Materials and methods

External rescue hoist

The rescue hoist system on the prototype aircraft is an electrically powered external rescue hoist capable of lifting a maximum load of 600 pounds with a usable cable length of 290 feet. The hoist is controlled by the hoist operator using a pendant which also allows for digital readout of cable deployed, intercom, and crew searchlight operations. The digital readout also is displayed in the cockpit where a cable shear system is present for emergency override. The external rescue hoist is shown in Figure 1.

There were no formal procedures, manuals, or training program available for operating the external rescue hoist system. Typical rescue hoist operations were undertaken by instructors from the U.S. Army School of Aviation Medicine acting as aircraft and ground crew. The hoist loads included two 250-lb manikins, each loaded into a Stokes or Skedco litter. No live entities were hoisted in accordance with a limitation of the airworthiness release...
for the aircraft. The hoist operations were completed over an open field, in daylight, with the aircraft hovering at 50 feet above ground level. The aircraft was configured with external stores including a 230-gallon auxiliary fuel cell on each side at the outboard station. Each type of litter was lifted twice, by two different crew combinations, and loaded onto the litter lift system. The plan for the hoist performance demonstration included repeating the hoist operations with a different manufacturer hoist at night. Several days after the daylight hoist operations, a problem identified by the aircraft squib test for the hoist release system prevented night hoist operations.

**Cargo hook loadmeter**

The cargo hook weighing system (CHWS) is designed to monitor external loads carried on the helicopter cargo hook. The system consists of a load sensor integral to the cargo hook and a cockpit-mounted, NVG compatible, digital display. The system displays the weight of the load on the cargo hook to the pilot and copilot.

Typical cargo load operations were accomplished by instructors from the U.S. Army School of Aviation Medicine acting as aircraft guides and Pathfinders from A Co., 511th
acting as ground guide and loadmaster. The cargo load operations were completed in daylight, over an open field, and with a 1200-lb load.

Results

The hoist operations were completed using personnel representing a typical MEDEVAC Black Hawk crew. The external cargo loading operations were completed with a similar crew configuration.

Discussion

The hoist operations in the prototype aircraft could be completed with the current crew configuration. The hoist operator attempted to operate the hoist from the crew seat, but was not able to observe the hoist cable as it was lowered to the ground without wearing a safety harness and sitting at the edge of the door. The ground procedures for hoist operations were unchanged with this aircraft. The hoist operators and flight crew said that the digital readout of the hoist cable assisted them in following the progress of the hoist operation (improved situational awareness). A typical hoist is shown with a Skedco litter in Figure 2.

The hoisted litter bumps the tire as it approaches the landing gear. The hoist operators had to use their feet to push the load outward from the aircraft. When the litter reached the doorway, the "foot" of the litter would not clear the forward edge of the cargo door (loading feet first). The hoist operator has to pull the load toward the tail of the aircraft to clear the doorway and external stores support system. The litter drags on the forward bulkhead where the controls for the medical interior are located. One of the test lights was broken during hoist operations by the litter striking this panel. This problem may be reduced if the control panel is guarded. Hoist operations also would be simplified if the hoist was located several inches aft. Hands-on training may be required for hoist operators to become comfortable with operation of the pendant. The hoist operators found that they had to raise and lower the hoist in small increments to bring the litter into the aircraft and slide it onto the litter lifts. The presence of litter lifts eased operations by providing a flat surface (litter pan), near the floor, to place the hoisted load. Placing the hoisted litter onto an immovable upper litter tray would be very difficult. The VOX circuit in the intercom was unusable for hands-off hoist operations. The loud ambient noise, with the open aircraft door, constantly opens the VOX circuit.

The cargo loading procedures are essentially unchanged by the presence of the cargo loadmeter. The aircraft crew stated that the loadmeter provided valuable information on the status of the external load. They found the digital load reading was within 10 pounds of the weight of the test block. A photograph of the prototype aircraft performing a cargo lift is shown in Figure 3.
Figure 2  Prototype aircraft hoisting a Skedco litter.
Figure 3. Prototype aircraft lifting an external cargo load.
Summary

External hoist and cargo load operations can be completed in the prototype aircraft with a typical MEDEVAC Black Hawk crew. The hoist operator is not able to operate the hoist from the crew seat. He had to push the litter clear of the aircraft tire and pull the weight of the litter art to load it into the aircraft.

The external cargo loading procedures essentially are unchanged with the addition of the cargo loadmeter. The aircraft crew stated that the loadmeter provided valuable information on the status of the external load.
References

Department of the Army. 1992. Appendix 1, UH-60A Black Hawk materiel need, production, dated 1979, (MN) (P) for Dustoff Black Hawk (UH-60Q).

Department of the Army. 1979. UH-60A Black Hawk Materiel Need, Production, dated 1979 (MN) (P)
Appendix A.
Mission profile summaries.

A. AEROMEDICAL EVACUATION (SOUTHWEST ASIA). The UH-60Q, collocated with a forward support medical company in direct support to a maneuver brigade, receives a mission to transport a trauma treatment team from the forward support medical company forward to a battalion aid station and then evacuate six litter patients and one ambulatory patient from the battalion aid station to the division clearing station located in the brigade support area (BSA). The UH-60Q departs the BSA with the trauma treatment team and flies at an airspeed of 120 knots using contour flight technique for 67 nautical miles (nm) and then slows to an airspeed of 30 knots using NOE flight technique for the last 3 nm to the battalion aid station. The trauma treatment team is off-loaded and the patients are loaded into the aircraft. (20 minutes allocated for loading and unloading) The UH-60Q departs the battalion aid station using NOE for the first 3 nm and then transitions to contour flight for the remaining 67 nm to the BSA. The patients are off-loaded at division clearing station (10 minutes allocated) at which time the aircraft is ready for the next mission. Total time for the mission, to include patient loading and unloading times, is approximately 118 minutes.

<table>
<thead>
<tr>
<th>Event</th>
<th>Distance (nm)</th>
<th>Speed (kts)</th>
<th>Flight mode</th>
<th>Time (min)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 - 2</td>
<td>70</td>
<td>120/30</td>
<td>LL/NOE</td>
<td>44</td>
</tr>
<tr>
<td>Load patients</td>
<td></td>
<td></td>
<td>Landed</td>
<td>20</td>
</tr>
<tr>
<td>2-3</td>
<td>70</td>
<td>30/120</td>
<td>NOE/LL</td>
<td>44</td>
</tr>
<tr>
<td>Unload patients</td>
<td></td>
<td></td>
<td>Landed</td>
<td>10</td>
</tr>
<tr>
<td>TOTAL</td>
<td>140</td>
<td></td>
<td></td>
<td>118 (1.9 hr)</td>
</tr>
</tbody>
</table>

B. AEROMEDICAL EVACUATION (MAST). A UH-60Q located at a military installation receives a night MAST mission to transfer two patients involved in a traffic accident from a small community hospital to a medical center capable of providing life saving (definitive) medical treatment. The gaining hospital requests the mission and provides two nurses and a critical care physician to assist in the enroute care of the patients. The weather is marginal but acceptable. The small community does not have an airport or weather reporting capability and is not situated along the FAA enroute and terminal flight system. After premission planning, the crew flies to the medical center (8 nm, 125 kts, low level) to pick up additional health care providers (5 minutes for loading). The crew uses onboard navigational equipment to locate and fly to the community hospital (80 nm, 120 to 145 kts, contour or low level). Unforecast weather was encountered at the pickup site. After landing, the health care team goes into the hospital to obtain patient briefings and execute transfer of patient responsibility (10 minutes for loading). The physician and the medic attend the adult patient while the nurses attend the baby.
Once loaded, the crew departs for the medical center. The patients require constant enroute treatment and monitoring on the return flight. The health care providers must use white light to provide appropriate care and must talk back and forth constantly. The female patient’s condition deteriorates requiring the physician to contact the medical center to alert the operating room personnel of the requirement for immediate surgery upon arrival. Upon landing at the hospital helipad, the patients are off loaded and moved into the hospital. The flight crew returns to the military installation (8 nm) and mission is complete. Total mission time is 2 hours.

<table>
<thead>
<tr>
<th>Event</th>
<th>Distance (nm)</th>
<th>Speed (kts)</th>
<th>Flight mode</th>
<th>Time (min)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 - 2</td>
<td>8</td>
<td>125</td>
<td>LL</td>
<td>5</td>
</tr>
<tr>
<td>Load personnel</td>
<td></td>
<td></td>
<td>Landed</td>
<td>5</td>
</tr>
<tr>
<td>2-3</td>
<td>80</td>
<td>120-145</td>
<td>LL</td>
<td>40</td>
</tr>
<tr>
<td>Load patients</td>
<td></td>
<td></td>
<td>Landed</td>
<td>10</td>
</tr>
<tr>
<td>3-4</td>
<td>80</td>
<td>145</td>
<td>LL</td>
<td>35</td>
</tr>
<tr>
<td>Offload patients</td>
<td></td>
<td></td>
<td>Landed</td>
<td>10</td>
</tr>
<tr>
<td>4-5</td>
<td>8</td>
<td>125</td>
<td>LL</td>
<td>5</td>
</tr>
<tr>
<td>TOTAL</td>
<td>176</td>
<td></td>
<td></td>
<td>120 (2 hr)</td>
</tr>
</tbody>
</table>

C. AEROMEDICAL EVACUATION (PERSIAN GULF). Low level flight for a distance of 200 nm with an airspeed of 110 to 120 kts. Hoist rescue from a hover of less than 70 feet (25 minutes allowed) followed by 170 nm low level flight at 110 to 120 nm. At this point, the patients are offloaded and the aircraft flies 50 nm (low level) at an airspeed of 110 to 120 kts.

<table>
<thead>
<tr>
<th>Event</th>
<th>Distance (nm)</th>
<th>Speed (kts)</th>
<th>Flight mode</th>
<th>Time (min)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 - 2</td>
<td>200</td>
<td>110-120</td>
<td>LL</td>
<td>120</td>
</tr>
<tr>
<td>Rescue</td>
<td></td>
<td></td>
<td>Hover</td>
<td>25</td>
</tr>
<tr>
<td>2-3</td>
<td>170</td>
<td>110-120</td>
<td>LL</td>
<td>105</td>
</tr>
<tr>
<td>Unload patients</td>
<td></td>
<td></td>
<td>Landed</td>
<td></td>
</tr>
<tr>
<td>3-4</td>
<td>50</td>
<td>110-120</td>
<td>LL</td>
<td>25</td>
</tr>
<tr>
<td>Offload patients</td>
<td></td>
<td></td>
<td>Landed</td>
<td>10</td>
</tr>
<tr>
<td>TOTAL</td>
<td>420+</td>
<td></td>
<td></td>
<td>275-305 (5.1 hr)</td>
</tr>
</tbody>
</table>

Adapted from Annex B, Appendix 1, UH-60A Black Hawk Materiel Need, Production, dated 1979 (MN) (P)
Commander, U.S. Army Test and Evaluation Command
ATTN: AMSTE-AD-H
Aberdeen Proving Ground, MD 21005

Naval Air Systems Command
Technical Air Library 950D
Room 278, Jefferson Plaza II
Department of the Navy
Washington, DC 20361

Director
U.S. Army Ballistic Research Laboratory
ATTN: DRXBR-OD-ST Tech Reports
Aberdeen Proving Ground, MD 21005

Commander
U.S. Army Medical Research Institute of Chemical Defense
ATTN: SGRD-UV-AO
Aberdeen Proving Ground, MD 21010-5425

Commander, U.S. Army Medical Research and Development Command
ATTN: SGRD-RMS (Ms. Madigan)
Fort Detrick, Frederick, MD 21702-5012

Director
Walter Reed Army Institute of Research
Washington, DC 20307-5100

HQ DA (DASG-PSP-O)
5109 Leesburg Pike
Falls Church, VA 22041-3258

Harry Diamond Laboratories
ATTN: Technical Information Branch
2800 Powder Mill Road
Adelphi, MD 20783-1197

U.S. Army Materiel Systems Analysis Agency
ATTN: AMXSY-PA (Reports Processing)
Aberdeen Proving Ground
MD 21005-5071

U.S. Army Ordnance Center and School Library
Simpson Hall, Building 3071
Aberdeen Proving Ground, MD 21005

U.S. Army Environmental Hygiene Agency
ATTN: HSHB-MO-A
Aberdeen Proving Ground, MD 21010

Technical Library Chemical Research and Development Center
Aberdeen Proving Ground, MD 21010-5423

Commander
U.S. Army Medical Research Institute of Infectious Disease
SGRD-UIZ-C
Fort Detrick, Frederick, MD 21702

Director, Biological Sciences Division
Office of Naval Research
600 North Quincy Street
Arlington, VA 22217

Commander
U.S. Army Materiel Command
ATTN: AMCDE-XS
5001 Eisenhower Avenue
Alexandria, VA 22333

Commandant
U.S. Army Aviation Logistics School
ATTN: ATSQ-TDN
Fort Eustis, VA 23604
Commander and Director
USAE Waterways Experiment Station
ATTN: CEWES-IM-MI-R
Alfrieda S. Clark, CD Department
3909 Halls Ferry Road
Vicksburg, MS 39180-6199

Commanding Officer
Naval Biodynamics Laboratory
P.O. Box 24907
New Orleans, LA 70189-0407

Assistant Commandant
U.S. Army Field Artillery School
ATTN: Morris Swott Technical Library
Fort Sill, OK 73503-0312

Mr. Peter Seib
Human Engineering Crew Station
Box 266
Westland Helicopters Limited
Yeovil, Somerset BA20 2YB UK

U.S. Army Dugway Proving Ground
Technical Library, Building 5330
Dugway, UT 84022

U.S. Army Yuma Proving Ground
Technical Library
Yuma, AZ 85364

Aeromechanics Laboratory
U.S. Army Research and Technical Labs
Ames Research Center, M/S 215-1
Moffett Field, CA 94035

Sixth U.S. Army
ATTN: SMA
Presidio of San Francisco, CA 94129

Commander
U.S. Army Aeromedical Center
Fort Rucker, AL 36362

Strughold Aeromedical Library
Document Service Section
2511 Kennedy Circle
Brooks Air Force Base, TX 78235-5122

Dr. Diane Damos
Department of Human Factors
ISSM, USC
Los Angeles, CA 90089-0021

U.S. Army White Sands
Missile Range
ATTN: STEWS-IM-ST
White Sands Missile Range, NM 88002

U.S. Army Aviation Engineering
Flight Activity
ATTN: SAVTE-M (Tech Lib) Stop 217
Edwards Air Force Base, CA 93523-5000

Ms. Sandra G. Hart
Ames Research Center
MS 262-3
Moffett Field, CA 94035

Commander, Letterman Army Institute of Research
ATTN: Medical Research Library
Presidio of San Francisco, CA 94129
CA Av Med
HQ DAAC
Middle Wallop
Stockbridge, Hants S020 8DY UK

Dr. Christine Schlichting
Behavioral Sciences Department
Box 900, NAVUBASE NLON
Groton, CT 06349-5900

Commander, HQ AAC/SGPA
Aerospace Medicine Branch
ATTN: CPT Joseph R. Smith
162 Dodd Boulevard, Suite 100
Langley Air Force Base,
VA 23665-1995

COL C. Fred Tyner
U.S. Army Medical Research
& Development Command
SGRD-ZB
Fort Detrick, Frederick, MD 21702-5012

Director
Directorate of Combat Developments
ATZQ-CD
Building 515
Fort Rucker, AL 36362