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SUMMARY OF FINDINGS

The objective of this project was to demonstrate the Benthic Flux Sampling Device
(BFSD) on site to determine the mobility of contaminants in sediments off the Puget
Sound Naval Shipyard (PSNS) in Sinclair Inlet, WA. Quantification of toxicant flux from
the sediments will support ongoing assessment studies and facilitate the design of appro-
priate remediation strategies, if required.

The sampling in Sinclair Inlet focused on identifying contaminant fluxes from the
sediments around the PSNS. From 30 June 1991 to 29 July 1991, we performed 10
deployments of the BFSD to characterize flux rates of contaminants from seven sites near
the shipyard and three reference sites in Sinclair Inlet. Target contaminants included the
trace metals arsenic (As), cadmium (Cd), chromium (Cr), copper (Cu), mercury (Hg),
nickel (Ni), lead (Pb), and zinc (Zn). Two sites were also sampled for organic contami-
nant release, including polynuclear aromatic hydrocarbons (PAHs) and polychlorinated

biphenyls (PCBs).

Several ancillary measurements were also performed to support the flux-rate measure-
ments. Bulk-sediment chemical analyses were performed at each of the 10 sites to provide
a baseline for interpreting flux data. To document the geochemical processes responsible
for contaminant migration from the sediment, scientists from Scripps Institute of Ocean-
ography (SIO) performed in situ microprofile measurements of oxygen, pH, sulfide, CO,,
and resistivity through the sediment-water interface. Time-series samples were also ana-
lyzed for silica as a check on BFSD performance. We performed analytical chemical
analysis to determine Acid Volatile Sulfides (AVS) in sediments, which is believed to be a
determining factor in mobility and bioavailability of trace metals. Hydrographic and
water-quality surveys were performed in the inlet to document receiving water conditions
during the BFSD deployments.

Trace metal flux rates were characterized as release rates, if the flux was positive, or
as uptake rates, if the flux was negative, based on an 80-percent confidence interval of the
slope from a linear regression of concentration vs. time. Levels of Cr and Hg fell below
detection limits in all water samples, and, thus, no results could be obtained for these
trace metals. The most consistent release rates were measured for Ni, Zn, and As.
Release of Ni was observed at sites 2B, 3B, 4B, and 5A (see figure 5 for site locations),
while uptake was not measured at any site; and the remaining six sites had no distinguish-
able flux (1A,1B,2A,3A,4A,5B). The maximum release rate of Ni was 565 ug/m?/day at
shipyard site 5A. Release of Zn was measured at five sites (1B,2A,3A,5A,5B) with a
maximum release of 837 ug/m?/day, again at site SA. Uptake of Zn was observed at site
1A, and four sites (2B,4A,4B,5B) showed no consistent Zn flux. Release was measured at
four sites (1B,2B,3A,4B), while uptake was not found at any site; and the remaining sites
(1A,2A,3B,4A,5A,5B) showed no flux. The maximum As release was 292 ug/m?/day at
site 2B.

For Cu, Cd, and Pb, flux rates were not as consistently positive; and at several sites
we observed sediment uptake of these metals. Cu release was measured only at site 3A
(346 ug/m?/day), while uptake was observed at four sites (1A,2A,2B,3B), and no flux was




measured at the remaining five sites (1B,4A,4B,5A,5B). Similarly, release of Cd was
found at only 2 of the 10 sites (1A,5B), with uptake at 2 sites (2A,2B) and no detectable
flux at 6 sites (1B,3A,3B,4A,4B,5A). The maximum Cd release rate was 68 ug/m?/day
at site SB. Measurement of flux rates for Pb was hampered by the low levels present in
many samples. Insufficient data were available to calculate a flux for six sites
(1A,1B,2B,3A,4A,5A). Of the remaining sites, none showed a release of Pb, while two
showed uptake (2A,3B) and two showed no flux (4B,5B).

Results for the PAH and PCB fluxes were obtained at sites 3B and 5B. At site 3B,
release of several PAH compounds was observed and in particular for the more soluble,
lower molecular weight PAHs such as naphthalene, acenaphthene, fluorene, and
phenanthrene. Of the 24 PAH compounds measured, 11 showed a significant (80-percent
CI) release, while the remainder had no detectable flux. The release rates for the com-
pounds with detectable fluxes ranged from 28 ng/m?/day for Dibenzo[a,h]anthracene to
a maximum of 6600 ng/m?/day for C1-Naphthalene. At site 5B, PAH release was ob-
served for eight compounds predominantly of medium molecular weight (phenanthrene,
fluoranthene, pyrene, and chrysene), while a small but statistically significant uptake was
found for Benzo-b-fluoranthene. No detectable flux was found for the remaining 15 com-
pounds. Small sample -volumes and low ambient-water concentrations limited our ability
to measure flux rates of PCB congeners. Only PCB-110 could be quantified, and these
values can only be interpreted as upper limits, since all but one of them lacked second-ion
confirmation from the GC/MS analysis. No detectable flux was observed at either site,
and PCB concentrations based on the Aroclor 1254 equivalents were generally below 1
ng/l.

These results suggest that for most of the measured compounds, no release is taking
place. For the trace metals, this may be related to the strongly reducing characteristics of
the sediments adjacent to the shipyard as reflected in the shallow oxygen penetration, and
the relatively high AVS and organic content. For Zn, Ni, and As, where measurable
release was found, only Zn appeared to be strongly tied to shipyard sources, while Ni and
As also exhibited release at sites removed from the shipyard. Bulk sediment results for
the trace metals suggest that Zn and Hg at some sites are elevated relative to published
criteria (State of WA, 1991). Together with the flux measurements, this suggests that Zn
loading may represent a significant environmental issue and that Hg probably warrants
further investigation. For PAHs and PCBs, the limited release is probably attributable to
low-bulk levels, high-organic loading, and the high-particle affinity of many of these com-
pounds. The release of lower molecular-weight PAHs at shipyard site 3B may have been
mediated by bioturbation. The source of these compounds is attributed to recent input,
since they are generally weathered or volatilized quickly in the marine environment. At
site 5B, where the more moderate weight PAHs were released, the fluxes appeared to be
more strongly coupled to the bulk sediment levels.

In general, where release of contaminants was found, the measured rates do not repre-
sent a significant source relative to other major inputs such as sewer discharges, nonpoint
source runoff, and marinas. They may, however, represent an exposure pathway for ben-
thic biota with a subsequent potential for toxicological effects and/or bioaccumulation.
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INTRODUCTION

OBJECTIVE

The objective of this project was to demonstrate the Benthic Flux Sampling Device
(BFSD) on site to determine the mobility of contaminants in sediments off the Puget
Sound Naval Shipyard in Sinclair Inlet, WA. Quantification of the flux of toxicants from
the sediments will support ongoing assessment studies and, if necessary, the design of
appropriate remediation strategies. (Refer to the last chapter in this document for a list of
acronyms and abbreviations used in this study.)

BACKGROUND

Preliminary assessment and Site Investigation (SI) studies indicate that sediments adja-
cent to the Puget Sound Naval Shipyard (PSNS) in Sinclair Inlet may contain elevated
levels of trace metals and organic compounds (GeoEngineers, 1989). Representatives
from the Engineering Field Activity, NW, are currently conducting an extensive assess-
ment of the area. Plans now call for chemical analyses and biological assessment of
sediment samples collected at the site. However, these analyses do not address the poten-
tial for release of contaminants back into the water column from the sediment; nor do
they address the natural factors that control toxicant migration and bioavailability. The
bulk concentration of a toxic substance in sediment is not necessarily a valid measure for
predicting biological risk (Di Toro, 1989). Bioassay methods may also represent an unre-
alistic departure from natural conditions, that is, where indicator species are exposed to
sediment removed from the site and placed in a laboratory environment.

Previous studies indicate that biological uptake, accumulation, and toxicity result pri-
marily from the fraction of the toxicant pool that is readily solubilized (Anderson and
Morel, 1982). In surface sediments, production of this soluble fraction will in most cases
cause it to migrate through the pore water and across the sediment-water interface. For
these reasons, benthic toxicant fluxes can provide important supplemental information
when trying to determine the environmental significance of contaminants in marine sedi-
ments. This approach provides a direct measure of the contribution of contaminated sedi-
ment to water-column loadings and also provides a unique in situ indicator of bio-
availability and, hence, an estimate of the potential for environmental harm.

The Marine Environment Branch of the Naval Command, Control and Ocean Surveil-
lance Center, Research, Development, Test and Evaluation Division (NRaD) has recently
developed an instrument for in situ measurement of contaminant release rates from
in-place sediments (Reimers et al., 1991; Chadwick et al., 1992). The device consists of a
chamber and associated “landing gear” that can be lowered from a small craft to the
bottom and released, isolating a volume of water in contact with the sediment. At prepro-
grammed times, generally over a period of 2 to 3 days, a microprocessor-based control
system onboard the BFSD is then used to control collection of samples from the trapped
volume within the chamber. Next, the chamber and samples are retrieved using a




standard acoustic-release inechanism. The flux is then calculated from the laboratory
analysis of the change—over time—in concentration of the toxicant within the chamber.
The microprocessor is also used to record data from a suite of sensors (temperature,
salinity, oxygen, and pH) that monitor (and control if necessary) conditions within the
dome during the flux rate measurement.

STUDY SITE

Sinclair Inlet is one of several bays located in the western-central Puget Sound basin
(figure 1). The inlet is bordered by two population centers, Bremerton on the north, and
Port Orchard on the south. The Bremerton shoreline is dominated by the piers and ship-
yard facilities of the PSNS, while the Port Orchard shoreline is characterized by several
small marinas, and light commercial and residential development. A sewage outfall pro-
jects roughly 200 m into the inlet from the northwest shoreline.

Bremerton

Sewer: A
Reteiy iU
R

' Y."Port Orchard

Gorar

Figure 1. Study site in Sinclair Inlet. The Puget Sound Naval Shipyard is located
along the southern shore of the City of Bremerton.




SELECTION OF ANALYTICAL PARAMETERS

The survey in Sinclair Inlet focused on identifying contaminant fluxes from the sediments
around the PSNS. From 30 June 1991 to 29 July 1991, we deployed the BFSD 10 times to char-
acterize flux rates of contaminants from seven sites near the shipyard and three reference sites
in Sinclair Inlet. Target contaminants for which the BFSD had been tested prior to the inves-
tigation included the trace metals Cd, Cr, Cu, Ni, Pb, and Zn, and several polynuclear aromatic
hydrocarbons (PAHs). Methods for As, Hg, and selected PCB congeners were under develop-
ment during the study. Bulk-sediment data from the Site Investigation (SI) showed elevated
levels of As, Cd, Cu, Hg, Pb, and Zn at some sites near the shipyard. Although the SI data
showed no significant levels of PAHs or PCBs, previous studies indicated that PAHs and PCBs
were present at elevated levels in at least some areas off the shipyard (GeoEngineers, 1989;
Weston, 1990). Based on this information, our measurements were focused on flux rates for the
trace metals listed in table 1. In addition, two deployments incorporated split samples for
selected PAH compounds and PCB congeners (table 1).

Table 1. Target analytes for flux-rate measurements.

Trace Metals PAHSs PCB Congeners*

018

Cd Acernaphthylene (AC) 028+031
Cr Acenaphthene (AE) 052
Cu Anthracene (A) 049
Hg* Fluorene (F) 044
Ni Phenanthrene (P) 074

Pb Fluoranthene (FL) 070+076
Zn Pyrene (PY) 066
Benzo (a) Anthracene (BA) 095
Chrysene (C) 101
Benzo (b) Fluroanthene (BB) 099
Benzo (k) Fluroanthene (BK) 110
Benzo (a) Pyrene (BAP) 118
Indeno (1,2,3,-cd) Pyrene (IP) 105
Dibenzo (a,h) Anthracene (DA) 136
Benzo (g,h,i) Perylene (BP) 149
153
141
138
176
183
174
180

170+190

* Indicates measurements techniques still under development.




SUPPORTING MEASUREMENTS

Several ancillary measurements were also performed in addition to the flux rate meas-
urements in their support. Bulk sediment chemical analyses were performed at each of
the 10 sites to provide a baseline for interpretating flux data. Scientists from Scripps
Institute of Oceanography (SIO) performed in situ microprofile measurements (Reimers,
1987) of oxygen, pH, sulfide, CO,, and resistivity through the sediment-water interface.
These data were collected to provide a basis for understanding the geochemical processes
responsible for contaminant migration from the sediment. Scripps also analyzed time-
series samples for silica, a well-characterized nutrient (Berelson et al., 1987), as a check
on BFSD performance.

Under an existing memorandum of agreement, the Environmental Protection Agency,
Environmental Research Laboratory at Newport, OR (EPA—ERLN), performed detailed
sediment and water chemistry for PAHs and PCBs. These data were used to assess release rates
for these organic contaminants and to build on previous studies aimed at increasing knowledge
of sediment/pore-water interactions.

Researchers from the University of Rhode Island (URI) also performed analytical
chemical analyses to determine Acid Volatile Sulfides (AVS) in sediments. Sulfide con-
tent in marine sediments is a determining factor in mobility and bioavailability of trace
metals (Di Toro et al., 1990). These measurements, in conjunction with sediment flux rate
measurements, were designed to help explain the nature of contaminant release rates in
the presence of sulfide and to provide a link between chemical measurements and biologi-
cal measurements performed at the site.

Hydrographic and water quality surveys were also performed in the inlet using a real-
time monitoring system aboard the survey boat (Chadwick and Salazar, 1991). This
included surface-water mapping throughout the inlet as well as creating vertical profiles at
each of the 10 BFSD sites. Measured parameters included temperature, salinity, pH, dis-
solved oxygen, transmittance, chlorophyll-a, oil fluorescence, and bathymetry. These data
were compiled into areal maps and profiles to characterize conditions at the site during
the BFSD survey.

SELECTION OF SAMPLING SITES

A series of 10 sites was selected based on chemical data from the ongoing Site Investi-
gation (SI) and information from previous studies. Figures 2 and 3 show preliminary bulk
sediment concentrations for trace metals from the SI surveys. Because BFSD deployments
take approximately 3 days each, all the sites included in the SI could not be sampled.
Instead, a series of 10 representative sites was selected within the shipyard and reference
areas. The sites were chosen as representative areas with similar contaminant levels in the
sediment. Ranking values were assigned for each of the eight target metals based on
individual concentration. A cumulative ranking sum was then calculated for each site, and
the sites were separated into five groups using a K-means clustering (figure 4). Two sites
were then selected (1A,B-5A,B) from each cluster. These sites (figure S) represent a




gradient in general metal-contamination levels, although individual metals may not follow
this trend in all cases (e.g., As). Summary statistics for individual and cumulative sum
metals are included in Appendix 1. Flux rate measurements were performed along this
gradient to understand the relationship better between bulk sediment concentrations and
toxicant mobility.

Sampling for PAHs and PCBs was performed at 2 of the 10 sites. At the shipyard,
data from a previous study (Weston, 1990) indicate total PAH levels of approximately 5
ppm in the sediment to the west of pier 4. The first sampling was performed in this area,
which corresponds with our station 5B. The second PAH/PCB sampling was done at our
station 3B. Microprofile measurements were performed at S of the 10 sites, one from
each of the cluster groups. Sites 1B, 2B, 3B, 4A, and 5B were selected as representative of
these areas. Sample sites for silica analysis were identical to the 10 BFSD sites, as these
measurements serve to confirm flux measurements taken by the BFSD. Sediment AVS
measurements were performed on cores taken at each of the 10 sites. Bulk sediment
samples were collected at each of the 10 sites for analysis of metals, PAHs, and PCBs.




e
- As
-
- "m0
: ]
L
Srauvies '
Cadmium
. J
o ce
: ng/xg
]
L]
;'o'.i
1
]
Chromium
]
L]
- Cr
mg/kg
s ]
»

Cu
ng/kg




ag/ky

Nickel

ng/he

Figure 3. Preliminary SI bulk sediment data for Hg, Ni, Pb, and Zn.

In
ng/kg




ANN\\N S IIIS S,
AN\ SIS
NNNNNY FLS S,
NN\ 77774

NN\ SIS,
W W S A AT 2 AN TS
oS TX]
W - V.V

s
] (el
R ATAY AN S LSS

yuey

As, Cd, Cr, Cu,
Inlet.

ir

incla

S

0ns In

ir spatial locat

Figure 4. Cumulative rank sum clusters for eight metals
, and Zn, and the

Hg, Ni,

Bremerton ;j

o

g

“Port Orchard

Gorst

Figure 5. Sampling sites selected for the flux rate study.



INSTRUMENTATION AND METHODS

BFSD SYSTEM DESCRIPTION

The BFSD is an instrument for in situ measurement of toxicant flux rates from sedi-
ments. A flux out of—or into—the sediment is measured by isolating a volume of water
above the sediment, drawing off samples from this volume over time, and analyzing these
samples for increase or decrease in toxicant concentration. Increasing concentrations indi-
cate that the toxicant is fluxing out of the sediment. Decreasing concentrations indicate
that the toxicant is fluxing into the sediment. Initial tests carried out in conjunction with
SIO and EPA-ERLN have shown that the system can be useful for measuring a variety of
contaminant and nutrient flux rates.

The prototype BFSD system developed for this purpose is shown in figure 6. The
system consists of an open-bottomed chamber mounted in a tripod-shaped framework
with associated sampling gear, sensors, control system, power supply, and deployment/
retrieval equipment. The entire device is approximately 1.2 by 1.2 m wide from leg to
leg. The lower part of the framework contains the chamber, sampling valves, sampling
bottles, and batteries. The chamber is box-shaped approximately 40-cm square by 25-cm
tall and is constructed of polycarbonate. The top of the chamber is hinged at one edge so
it may be left open during deployment to minimize sediment disturbance. The bottom of
the chamber forms a knife edge with a flange 5 cm above the base, providing a positive
seal between the box and the sediment.

Samples are drawn off through a 4-mm Teflon tube connected to a manifold of valves
and into air-filled Teflon sampling bottles (500 ml). Sampling is initiated by the control
system that opens the valves at preprogrammed intervals. The bottles then fill by hydro-
static pressure while venting through a check valve mounted at the top of the frame.
Sensors for monitoring conditions within the chamber, including temperature, salinity,
pH, and dissolved oxygen, are mounted on the chamber lid. A small pump maintains
circulation in the flow-through system to the sensors and also is used to mix the chamber
volume via a helical diffuser mounted vertically on the central axis of the box. The acqui-
sition and control unit, oxygen-supply bottle, video camera, and retrieval-line canister are
mounted on the vertical members of the frame. The oxygen system is used to maintain
oxic conditions within the chamber by diffusing oxygen at a constant rate through a coil
of thin-walled Teflon tubing. The upper frame houses an acoustically activated retrieval
buoy that can be signaled from the surface to initiate retrieval. The BFSD is designed for
use in coastal and inland waters to depths of 50 m. Typical deployment periods during the
Sinclair study were approximately 2 days.




Figure 6. The Benthic Flux Sampling Device showing the polycarbonate
chamber with the lid open (A), valve manifold (B), battery case (C),
retrieval gear (D), and control/acquisition unit (E).

IN SITU SEDIMENT MICROPROFILER

The microprofiler consists of a series of vertically mounted electrodes attached to the
bottom of a pressure case containing the system electronics. Using an electric motor
connected to a threaded drive rod, the electrodes are slowly driven down through the
sediment-water interface and then several centimeters into the sediment column. For
deployment in shallow water, the profiler is mounted in a small tripod framework similar
to the one used for the BFSD. The design and calibration of the sensors are described in
detail in Revsbech et al. (1983), Revsbech and Jorgensen (1986), Reimers (1987), and
Archer et al. (1989). The profiling system is described by Reimers (1987). For this pro-
ject, the microprofiler was fitted with sensors for measuring mm-scale profiles of dis-
solved O, pH, ZH,S, pCO,, and resistivity. The ZH,S and pCO, sensors are still in
development, while the other electrodes have been used extensively in the deep ocean and
in San Diego Bay.
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SAMPLE COLLECTION AND HANDLING

Sample collection and handling procedures were performed according to Puget Sound
Estuary Program (PSEP) protocol (Tetra Tech, 1986) wherever possible. Occasionally,
special instrumentation, collection techniques, and analysis methods required deviations
from PSEP protocols. A summary of the samples collected is shown in table 2, and collec-
tion and handling procedures are described as follows.

Table 2. Sample collection matrix for the 10 sites in Sinclair Inlet.

Site BFSD BFSD Sediment Sediment Sediment
Time to Bulk Grab Core AVS Core Pore
Series Water
1A 6 1 1 1 0
1B 6 1 1 1 0
2A 6 1 1 1 0
2B 6 1 1 1 0
3A 6 1 1 1 0
3B 6 4 2 1 1
4A 6 1 1 1 0
4B 6 1 1 1 0
S5A 6 1 1 1 0
5B 6 4 2 1 1
Total 60 16 12 10 2

METAL FLUX SAMPLES

Time-series water samples were collected using the BFSD sampling system at each
site. These samples filled into acid-washed, 500-mil Teflon (TFE) sampling bottles aboard
the BFSD. After each deployment, blank ferrules were fitted in place of the sampling
lines, and the samples were shipped (via overnight mail) on ice to NRaD for processing.
Samples were filtered and acidified at NRaD immediately upon receipt. Initial (t;) water
samples were collected from outside the BFSD into precleaned 500-ml polyethylene bot-
tles using the Teflon pumping system aboard the survey vessel. Next, these samples were
refrigerated until the BFSD deployment was completed and then shipped to NRaD with
the corresponding time-series samples. Split samples for silica analysis were taken from
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time-series and t, samples prior to processing. Detailed procedures for BFSD prepara-
tion, deployment, and sample collection are given in Chadwick and Stanley, 1992.

PAH/PCB FLUX SAMPLES

Time-series water samples were collected for PAH/PCB analysis using the BFSD sam-
pling system at sites 3B and 5B. These samples filled into precleaned, 500-ml borosilicate
glass sampling bottles aboard the BFSD. After each deployment, blank ferrules were
fitted in place of the sampling lines, and the samples were brought ashore for initial
processing (split sample for metals, filtration, and preservation) by EPA-ERLN on-site
personnel. Triplicate t, water samples were collected from outside the BFSD into
precleaned 500-mi glass bottles using the Teflon pumping system aboard the survey boat.
These samples were handled similarly as the time-series samples. The split samples for
metals were transferred into precleaned, 250-ml polyethylene bottles and shipped on ice
to NRaD.

BULK SEDIMENT SAMPLES

A bulk sediment grab was acquired at each site using a modified Van Veen grab.
Sediment samples were transferred from the grab into precleaned, 500-ml wide-mouth
polyethylene jars using a precleaned plastic scoop. The samples were shipped on ice to
NRaD with the other BFSD samples. Split samples for PAH/PCB analysis were collected
by dipping a precleaned, stainless steel scoop into precleaned 500-ml, wide-mouth glass
jars.

SEDIMENT CORES

Sediment cores were collected at each site using a modified Wildco hand corer. Core
samples were stored in the plastic collection liners until processed ashore. The cores were
used for AVS analysis on site. Solids remaining from the AVS analysis were shipped to
NRaD for further analysis of metals. Duplicate cores were collected for pore-water analy-
sis of PAH/PCB at sites 3B and 5B.

HYDROGRAPHIC SURVEYS

Hydrographic data for surface waters were collected at a depth of 1 meter along three
transects encompassing the length of the inlet. One transect ran along the northern shore,
one roughly down the middle, and the last along the southern shore. Sampling in the
western extent of the inlet was limited by shallow water. (The map contours generated in
the region west of about 120° 40’ 40” may be distorted by extrapolation.) Vertical pro-
files were performed at each of the BFSD sampling sites, except for site 5A, where only
bottom-water conditions were measured. Surface-water and vertical profile parameters
included temperature, salinity, pH, dissolved oxygen, transmittance, chlorophyll-a, oil
fluorescence, and bathymetery.
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SAMPLE PROCESSING, STORAGE, AND ANALYSIS

Sample processing, storage, and analysis was under Puget Sound Estuary Program
(PSEP) protocol wherever possible. Occasionally, special instrumentation, collection tech-
niques, and analysis methods required deviations from PSEP protocols. A summary sam-
ple analysis matrix is shown in table 3, and the procedures are described as follows.

Table 3. Sample analysis matrix.

Samples Metals Metals Silica AVS PAH/PCB
by AA by ASV
BFSD Time Series 60 20 60 0 12
BFSD t, 10 0 10 0 6
Sediment Bulk Grab 10 0 0 0 10
Sed. Core AVS/SEM 70 0 0 70 0
Sed. Pore Water 0 0 0 0 6
Total -, 150 20 70 70 34

TRACE METAL SAMPLES

The BFSD produced batches of six samples per deployment. After recovery and ship-
ment, the samples were immediately filtered through precleaned 0.45-p cellulose nitrate
membrane-filter units and acidified to pH 2 with high-purity nitric acid. Constituent met-
als of interest were separated from the seawater matrix and concentrated by APDC chela-
tion/MIBK extraction. The extracts were then analyzed by Graphite Furnace Atomic
Absorption (GFAA) using the method of standard additions to develop a standard curve.
Additional water samples, including replicates and t, samples, were analyzed in a similar
fashion. A detailed description of these procedures is included in Appendix 2. The first
and last time-series samples from each deployment were also analyzed by Anodic Strip-
ping Voltammetry (Zirino and Lieberman, 1975) as an indicator of speciation for Cu, Cd,
Zn, and Pb. Bulk sediment samples were acid digested by a standard microwave-assisted
digestion technique (EPA Method 3051). Following digestion, the digestate was analyzed
by GFAA following the procedures described above for all elements of interest, except As
and Hg. Sample aliquots were digested separately and analyzed for As and Hg by a
cold-vapor technique (EPA 7471A). A detailed description of these procedures may be
found in the standard methods cited.

PAH/PCB SAMPLES

Water samples from the BFSD were liquid-liquid extracted immediately after collec-
tion. Sediment samples from surficial sediments were extracted by sonication with
acetonitrile and cleaned using C-18 solid-phase sorbent. Interstitial water from the core
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samples was obtained by centrifugation and liquid-liquid extraction. The concentrations of
selected PAH compounds and PCB congeners in these three matrices were then deter-
mined using high-performance gas chromatography and mass spectrometry. Total PCB
concentrations were then estimated from an Aroclor 1254 standard based on PCB conge-
ner 110. A detailed description of these protocols may be found in Young, et al., 1991.

AVS SAMPLES

Analysis of acid-volatile sulfides (AVS) followed the standard protocols developed by
EPA-ERL, Narragansett (Boothman, 1991). In the method used here, the AVS concentra-
tion was determined by sediment sulfides reacting with HCI to form gaseous H,S and
purging the evolved H,S with nitrogen gas. The purged H,S was then trapped in a sulfide
antioxidant buffer, diluted to volume, and the S* concentration was measured with a
sulfide ion-selective electrode. A detailed description of this procedure can be found in
Johnston, 1992. Simultaneously extracted metals (SEM) were analyzed by GFAA for se-
lected elements.

SILICA SAMPLES

Silica samples were split into 50-ml plastic vials from the BFSD time-series samples
and t, samples following filtration and prior to acidification. Samples were refrigerated
until analyzed.

The analysis followed the standard colorimetric method for determining reactive sili-
cate in seawater (Strickland and Parsons, 1968). A detailed description of this procedure
is included in Appendix 2.

CALCULATION OF FLUX RATES

Flux rates from BFSD time-series samples were estimated using a linear-regression
model. Prior to running the regression, sample concentrations were corrected for dilution
effects caused by the intake of outside water, as sample water was removed from the
chamber. The concentration of the diluting water was based on the t, sample. Some
samples were dropped from the regression based on performance criteria for dissolved
silica and oxygen outlined in the Results chapter that follows. Following the regression of
the time-series concentrations, the flux was calculated from the equation,

Flux Rate = (slope of regression)X(chamber volume)/(chamber area)

An 80-percent confidence interval (80-percent CI) was then assigned to the flux rate
based on a two-sided T-test (t9.0s(2),n-2) and the standard error of the regression coeffi-
cient. If the mean flux was positive and the lower limit of the 80-percent CI was greater
than zero, then the flux was designated a release rate with magnitude of mean +80-percent
Cl. Similarly, if the flux rate was negative with an upper limit of the 80-percent CI less
than zero, then the flux was designated an uptake. The 80-percent CI was chosen to be
conservative in the sense that we would not eliminate potential release rates (as an indica-
tor of environmental impact) unless our confidence in them was quite low.
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QA/QC PROCEDURES

QA/QC procedures were under Puget Sound Estuary Program (PSEP) protocol wher-
ever possible. Occasionally, special instrumentation, collection techniques, and analysis
methods required deviations from PSEP protocols. Analytical QA/QC procedures are
described in the references cited in the preceding Analysis chapter. A copy of the PSEP
sample collection QA/QC procedures is included as Appendix 3. Standard log sheets and
custody sheets are also included in Appendix 3. Detailed descriptions of analytical QA/
QC procedures are described in Appendix 2 for trace metals, Appendix 4 for PAH/PCB,
and in Johnston 1992 for AVS. A brief description of the trace-metal analytical QA/QC
follows.

METHOD BLANKS

Throughout the analyses, method blanks were employed for verifying contamination-
free preparation and reagents. Each batch of extracted and digested samples was accom-
panied by a blank that was analyzed in parallel with the rest of the samples being carried
through the entire preparation and analysis procedure.

INSTRUMENT CALIBRATION

Instruments were calibrated at the start of each analytical batch. With water samples
and extracted water samples, the method of standard additions was used to generate each
calibration curve. Successive dilution of a standard was used to-generate standard curves
for analyzing the digestates. Initial calibration was verified by subsequent measurement
of an independently prepared standard. The calibration was confirmed at regular intervals
during an analytical batch.

METHOD ACCURACY AND PRECISION

Standard reference sediments were digested and analyzed periodically as a check on
general method accuracy. Additionally, spiked replicates of field samples were processed
with each analytical batch to validate method accuracy within the context of varying
matrices. With water and extracted water samples that were analyzed by the method of
standard additions, spiked samples were not used. Analytical precision and method-detec-
tion limits were determined by replicate storage, preparation, and analysis of standard
seawater. Further verification of precision was achieved by splitting 1 in 20 field samples.
The limited volume available from each field sample restricted the number of split dupli-
cates available to analyze. Based on these spilts, the relative standard deviations for indi-
vidual trace metals were approximately 21 percent for Cu, 10 percent for Cd, 6 percent
for Ni, 4 percent for Pb, and 10 percent for Zn. Cr and Hg precision data were not
available, because sample concentrations were below detection limits and As precision
was not tested.
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RESULTS

HYDROGRAPHIC SURVEYS

Hydrographic and water quality surveys were performed in the inlet using the realtime
monitoring system aboard the survey boat. This included surface-water mapping (1-meter
deep) throughout the inlet on 4 July 1991, as well as creating vertical profiles at each of
the 10 BFSD sites. Measured parameters included temperature, salinity, pH, dissolved
oxygen, transmittance, chlorophyll-a, oil fluorescence, and bathymetry. These data were
compiled into areal maps and profiles to characterize conditions at the site during the
BFSD survey.

The surface-water conditions are shown in figures 7-13. In general, we found tempera-
tures ranging from about 14-18°C with the colder water entering the inlet at its northeast-
ern extent via Port Orchard, the warmest water mid-inlet and near the southern shoreline,
and a slight cooling in the western extent of the inlet. The salinity ranged from about
28.4-28.9 ppt. Its distribution was similar to the temperature with higher salinity being
associated with the cooler water in the outer- and inner-most extent of the inlet, and lower
salinity water mid-inlet and along the southern shore. Dissolved oxygen in the surface
waters was highest in the western extent (8.2 ml/l) and followed a decreasing trend
toward the east and north with lowest levels (6.2 ml/l) associated with the low-tempera-
ture, high-salinity plume at the northeastern extent of the inlet. Surface-oxygen levels
appeared to be dominated by photosynthesis rather than water temperature, based on
similarity to the chlorophyll-a distribution. The distribution of pH was similar to that of
oxygen with a maximum of about 8.5 at the southwestern extent and a minimum of about
8.2 for the mouth of the inlet. Turbidity was measured as percent transmission with high-
est turbidity in the western inlet and lowest in the northeast. Chlorophyll-a was measured
on a relative-fluorescence basis and showed a similar distribution to that of pH and oxy-
gen. Relative oil fluorescence showed highest levels along the southern shoreline with
small plumes coinciding with each marina. Lowest oil fluorescence was found along the
northern/northeastern extent of the inlet following a similar trend as other measured
parameters.

Vertical profiles of hydrographic parameters at the BFSD sampling sites are shown in
figures 14-16. Temperature decreased with depth with a difference of about 1-2°C from
surface to bottom. Strongest thermoclines were observed in the eastern inlet (sites
1A,1B), while most other sites showed a more gradual decrease with depth. Salinity was
generally lowest at the surface and typically tracked temperature as a function of depth,
with highest salinity extending from the bottom of the thermocline to the bottom of the
inlet. Dissolved oxygen and pH had similar profiles with a maximum occurring at or near
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the surface in most cases, then decreasing toward the bottom. Oxygen was present at all -
stations through the entire water column with no indication of anoxic conditions at any of
the sites. Turbidity at most sites was highest (lowest percent transmittance) near the sur-
face, although several sites did not show this distribution. Chlorophyll-a fluorescence
often showed a subsurface maxima with decreasing concentrations at the bottom and
surface, while the oil-fluorescence maximum was generally at the surface with levels
decreasing toward the bottom.
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BFSD PERFORMANCE INDICATORS

A series of 10 BFSD deployments was perforn:ed from 30 June 92 to 27 July 1991. At
each of the 10 sites, release rates of silica were measured as a check on BFSD perfor-
mance. The results of these measurements are presented first (figures 17—18) because
they are essential in interpreting the release rates for other compounds. A steady
increase in dissolved silica over the time of each experiment was used as the primary indi-
cator of a “problem-free” deployment. Based on this criteria, the chamber results from
sites 1A, 2A, 2B, 3B, 4A, 4B, and 5A appear problem-free, while the results from 1B, 3A,
and 5B are unusual. The silica concentrations for 1B do show an increasing trend for the
first 24 hours (samples 1-3) and samples from 3A and 5B increase steadily for the first 32
hours (samples 1—4). Release rates for other compounds were interpreted based on these
reduced sample sets.

During each deployment, sensors on the BFSD monitored temperature, salinity, pH,
and dissolved oxygen. Results from these measurements are shown in figures 19—-28 for
Oxygen, pH, and temperature. Oxygen was supplied to the chamber during each deploy-
ment to prevent anoxic conditions from developing and disrupting the experiment. The
oxygen results show that levels were maintained above zero at all sites except 3B. At 3B,
the chamber became anoxic at about hour 29 indicating that samples after this time
(samples 5 and 6) may have been influenced by these conditions. At site 1B, oxygen and
pH decreased steadily for the first 20 hours but then increased for about 5 hours, indicat-
ing a probable disturbance of the chamber seal during this period. This is consistent with
the results from the silica measurements. Results from site 3A shows no major devi-
ations in pH or oxygen that could account for the nonuniformity of the silica data at this
site. This suggested that the problem at this site may have been related to bottle leakage
or some other sampling problem rather than the chamber being poorly sealed. At site 4B,
the oxygen level initially decreased for about 6 hours and then increased steadily for the
remainder of the experiment. The initial decrease could be related to disturbing the sedi-
ment during deployment. The sediment at this most western site was very fine and may
have taken longer than usual to resettle. This could also have influenced the concentra-
tion of other constituents in the chamber during the first one or two samples.

TRACE-METAL FLUX RATES

Based on the supporting analysis above, results for trace-metal release rates were
determined using an abbreviated set of samples. For specific samples, additional outliers
were dropped based on a critical-value outlier test in cases where the concentration of a
particular sample lies far from the mean of the sample set, indicating probable contami-
nation during collection or processing. In addition, one sample was lost, one was not ana-
lyzed for Zn, and some fell below detection. Table 4 shows the samples used to calculate
the flux rate at each site. Results for Cu, Cd, Pb, Ni, Zn, and As are shown in figures
29-38. Levels of Cr and Hg fell below detection limits for all water samples, and thus no
results could be obtained for these compounds. Calculated release rates, confidence
intervals, and r2 values are summarized in table 5.
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Figure 19. Time-series dissolved oxygen, pH, and temperature inside the flux
chamber for the deployment at site 1A.
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Figure 20. Time-series dissolved oxygen, pH, and temperature inside the flux
chamber for the deployment at site 1B.
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Figure 21. Time-series dissolved oxygen, pH, and temperature inside the
flux chamber for the deployment at site 2A.
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Figure 22. Time-series dissolved oxygen, pH, and temperature inside the
flux chamber for the deployment at site 2B.
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Figure 23. Time-series dissolved oxygen, pH. and temperature inside the
flux chamber for the deployment at site 3A.
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Figure 24. Time-series dissolved oxygen, pH, and temperature inside the flux
chamber for the deployinent at site 3B.
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Figure 25. Time-series dissolved oxygen, pH, and temperature inside the flux
chamber for the deployment at site 4A.
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Figure 26. Time-series dissolved oxygen, pH, and temperature inside the flux
chamber for the deployment at site 4B.
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Figure 27. Time-series dissolved oxygen, pH, and temperature inside the
flux chamber for the deployment at site SA.
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Figure 28. Time-series dissolved oxygen, pH, and temperature inside the
flux chamber for the deployment at site 5B.
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Table 4. Sample set and performance criterion for calculating metal flux rates.

Performance Criterion

Site  Sample Set Based on Samples Dropped Other Samples Dropped

O; and Si Based on Outlier Test

1A 1-6 S/Ni -

1B 1-3 - -

2A 1-6 - -

2B 1-6 - -

3A 1-4/5 - -

3B 1-6 - -

4A 1-6 - 3/all elements - sample lost
4B 1-6 2/As -—

SA 1-6 1/As 2/Zn - sample not run
SB 1-4 - —

Trace metal flux rates were characterized as release rates, if the flux was positive, or
as uptake rates, if the flux was negative, based on an 80-percent confidence interval of the
slope from a linear regression. The conservative confidence interval of 80 percent was
chosen to preclude eliminating even moderately probable fluxes. The most consistent
release rates were measured for Ni, Zn, and As. Release of Ni was observed at four sites
(2B,3B,4B,5A), while uptake was not measured at any site, and the remaining six sites
had no distinguishable flux (1A,1B,2A,3A,4A,5B). The maximum release rate of Ni was
565 ng/me/day at site SA. Release of Zn was measured at five sites (1B,2A,3A,5A,5B)
with a maximum release of 837 pg/m2/day at site SA. Uptake of Zn was observed at site
1A, and four sites (2B,4A,4B,5B) showed no consistent Zn flux. Release was measured
at four sites (1B,2B,3A,4B), while uptake was not found at any site; and the remaining
sites (1A,2A,3B,4A,5A,5B) showed no flux. The maximum As release was 292 pg/m2/day
at site 2B. For Cu, Cd, and Pb, flux rates were not as consistently positive; and at several
sites, we observed uptake of these metals. Cu release was measured only at site 3A (346
ug/mz/day), while uptake was observed at four sites (1A,2A,2B,3B); and no flux was
measured at the remaining five sites (1B,4A,4B,5A,5B). Similarly, release of Cd was
found at only 2 of the 10 sites (1A,5B), with uptake at 2 sites (2A,2B); and no detectable
flux at 6 sites (1B,3A,3B,4A,4B,5A). The maximum Cd release rate was 68 ug/m2/day at
site SB. Measurement of flux rates for Pb was hampered by the low levels present in
many samples. Insufficient data were available to calculate a flux for six sites
(1A,1B,2B,3A,4A,5A). Of the remaining sites, none showed a release of Pb, while two
showed uptake (2A,3B), and two showed nc flux (4B,5B).
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Figure 31. Time-series chamber samples and flux rates at site 2A based on a

linear regression over the sampling period. Data not used in the regression are
indicated by a (see table 4).
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Figure 33. Time-series chamber samples and flux rates at site 3A based on a
linear regression over the sampling period. Data not used in the regression are
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Figure 36. Time-series chamber samples and flux rates at site 4B based on a
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Table §. Flux rates + 80% CI, and r2 values for Cu, Cd, Pb, Ni, Zn, and
As (ug/me/day). Missing values indicate insufficient data to calculate flux
rate. Shaded cells indicate statistically significant release.

Site Cu Ni Zn As
flux o flux e flux t‘ flux

1A | -176:88  0.70 '_ -21£28  0.33 | -223£100  0.36 | 72193 0.00

1B | 140:826 0.21] 10:88 o0.11 | -- - | 24294 0.37 |762e1151  o0.81]

2A | -117:89  0.50| -10:8 0.48 [-21210  0.80

2B | -121249 0.79| <1524 0.84 | — -- -50£254

3a | 300kt - - | - -~ | -772208 0.20

3B | -1572159 0.46| -7t5  0.62 | -1915 843143 0.23| 9841995 0.18

M | s o - - | - -- | -32¢82  0.12 | 2402390  0.25|-312106 0.07

4B | -36114 0.06| 10£13 0.23 | 2116 oor | 123£167

sa | 872386 - - | - -- -53:178  0.07

s | 0.98 |-22e52  0.24 91£319  0.13

BULK SEDIMENT TRACE METALS

Bulk sediment concentrations of trace metals measured during the BFSD study are
summarized in figure 39, along with the original Site Investigation (SI) data. Our data and
the SI data are fairly consistent in magnitude except for Ni for which our concentrations
were consistently higher (37-165 percent), and As for which our data were generally
lower (200-3700 percent). These apparent biases may be attributed to differences in ana-
lytical methods (microwave digestion vs. acid digestion, GFAA analysis vs. ICP), while
the more general variability is most likely related to spatial heterogeneity in the sediment
distribution and sample collection for these elements.
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Figure 39. Bulk sediment trace metal concentrations at the 10 BFSD sites in
Sinclair Inlet. The B indicates NRaD data and O indicates SI data.
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For Cu, Ni, Hg, Cd, Pb, and Zn, we generally found lowest bulk-sediment concentra-
tions at the outer-inlet reference sites 1A and 1B, while the shipyard sites
(2A,2B,3A,3B,4A,5A,5B) and the back inlet site (4B) were significantly higher. For Cr
and As, this trend was weaker, and distributions appeared to be more uniform throughout
the inlet. Cu concentrations ranged from a minimum of 4.9 ug/g at the reference site (1A)
to a maximum of 358 ug/g at shipyard site 3B. Cr levels were more uniform through the
inlet, with a low concentration of 46 ug/g at site 1B near the ferry landing and a high of
98 ug/g at shipyard site 2A. Ni was lowest at site 1A, with 28.9 pg/g; and highest at
shipyard site 3A, with 101 pg/g. Hg levels ranged from 0.09 pg/g at site 1A to a maxi-
mum of 2.7 ug/g at shipyard site SA. Reference site 1A was also lowest for Cd 0.08 ng/g,
while the highest Cd concentration was found at shipyard site 2B (5.0 pg/g). Pb varied
from a low of 10.9 ug/g at site 1A to a maximum of 382 pg/g at site SA. Concentrations
of Zn ranged from 26.1 (site 1A) to 2794 ug/g (site 2A). The level at site 2A was consid-
erably higher than any other site (factor of 2) and could have been associated with cable
debris (galvanized steel) observed in the sediment at this site during BFSD deployments.
Concentrations were more uniform through the inlet with lowest levels at shipyard site SA
and highest levels at shipyard site 3B. Bulk sediment concentrations are compared to
recently published sediment-quality criteria (State of WA) in table 6.

Table 6. Bulk sediment concentrations and Washington State Criteria for trace
metals at the 10 BFSD sites in Sinclair Inlet. All concentrations are in p :/g.

Site Cu Cd Cr Pb Ni Zn Hg As
1A 4.9 0.08 53 11 29 26 0.09 3.1
1B 38 0.22 46 38 44 124 0.29 4.5
2A 192 1.13 98 332 81 2794  0.81 -—
2B 135 4.96 48 59 55 43 0.44 3.9
3A 358 0.82 85 338 101 353 1.93 34
3B 127 0.43 68 76 99 126 1.44 21.2
4A 235 1.12 78 279 85 668 0.80 3.3
4B 127 1.16 71 83 84 111 0.90 3.3
5A 257 3. 61 382 66 916 2.1 2.7
5B 254 0.68 73 166 93 274 0.76 2.8
WA State Criteria 390 5.1 260 450 N/A 410 0.41 57




PAH/PCB FLUX RATES

Time-series BFSD samples were analyzed for a number of PAH compounds and PCB
congeners (table 1) at 2 of the 10 sites (3B,5B). These results were evaluated using the
same performance criteria as the trace-metals data, except that all six samples at site 3B
were included in the calculations. This was based on the assumption (and observation)
that anoxic conditions would not significantly affect the flux of these compounds. At site
5B, the same reduced sample set (1-4) was used as with the trace metals.

Results for the PAH fluxes are shown in figures 40-42 for site 3B and figures 43-45
for site SB. At site 3B, release of several PAH compounds was observed, in particular for
the more soluble, lower molecular weight PAHs such as naphthalene, acenaphthene,
fluorene, and phenanthrene. Of the 24 PAH compounds measured, 11 showed a signifi-
cant (80-percent CI) release, while the remainder had no detectable flux. The release
rates for the compounds with detectable fluxes ranged from 28 ng/m2/day for
Dibenzo[a,h]anthracene, to a maximum of 6600 ng/m2/day for C1-Naphthalene. At site
5B, PAH release was observed for 8 compounds predominantly of medium molecular
weight (phenanthrene, fluoranthene, pyrene, and chrysene), while a small but statistically
significant uptake was found for Benzo-b-fluoranthene, and no detectable flux was found
for the remaining 15 compounds. Table 7 summarizes calculated release rates, 80-percent
confidence intervals, and r2 values from the regression for each of the PAH compounds at
sites 3B and SB.

Small sample volumes and low ambient-water concentrations limited our ability to
measure flux rates of PCB congeners. Only PCB-110 could be quantified, and these val-
ues can only be interpreted as upper limits, since all but one of them lacked second-ion
confirmation from the GC/MS analysis. Results for PCB-110 are shown in figure 46 for
sites 3B and 5B. Equivalent concentrations of Aroclor 1254 from the PCB-110 data are
given on a second y-scale based on comparison with a standard. No detectable flux was
observed at either site, and PCB concentrations based on the Aroclor 1254 equivalents
were generally below 1 ng/l.

BULK SEDIMENT PAH/PCB

A bulk sediment grab was collected, and a sample from the top 2 cm was analyzed for
PAH/PCB at each of the 10 BFSD sites. Results for individual PAH compounds are shown
in figures 47-48. Lowest levels were found at site 1A. Sites 1B, 2A, and 4B had moderate
PAH concentrations, generally an order of magnitude higher than site 1A. Sites 2B, 3A,
3B, 4A, 5A, and 5B all had significantly higher concentrations with maximum levels at
site 2B and SA. The compositional distribution for PAHs was similar at most sites and
generally showed maxima for fluoranthene, pyrene, and chrysene, except for reference
site 1A. This site had proportionally higher levels of naphthalene than the other sites.
PAH concentrations for individual and summed compounds normalized to total organic
carbon (TOC) are summarized in table 8 and compared to Washington State Criteria.
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Figure 40. Time-series chamber samples and flux rates at site 3B based on a
linear regression over the sampling period. a indicates data not used in
regression (table 4), and o indicates sample lacked second-ion confirmation.
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Figure 41. Time-series chamber samples and flux rates at site 3B based on a
linear regression over the sampling period. a indicates data not used in
regression (table 4), and o indicates sample lacked second-ion confirmation.
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Figure 42. Time-series chamber samples and flux rates at site 3B based on a
linear regression over the sampling period. a indicates data not used in
regression (table 4), and O indicates sample lacked second-ion confirmation.
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Figure 43. Time-series chamber samples and flux rates at site SB based on a

linear regression over the sampling period. a indicates data not used in

regression (table 4), and O indicates sample lacked second-ion confirmation.
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Figure 44. Time-series chamber samples and flux rates at site 5B based on a
linear regression over the sampling period. a indicates data not used in
regression (table 4), and O indicates sample lacked second-ion confirmation.
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Figure 45. Time-series chamber samples and flux rates at site 5B based on a
linear regression over the sampling period. a indicates data not used in
regression (table 4), and © indicates sample lacked second-ion confirmation.
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Table 7. Flux + 80% confidence interval, and r2 values for PAH compounds
at the 10 sites in Sinclair Inlet. All flux rates in ng/m?/day.

PAH Compound Site 3B Site 5B
flux r2 flux r

Naphthalene 440141083 0.91 -2024260 0.52
C1-Naphthalene 661141745 0.89 13437 0.00
C2-Naphthalene 11794437 0.81 81+130 0.40
C3-Naphthalene 4294164 0.80 54438 0.78
Biphenyl 686+238 0.83 118450 0.91
Acenaphthylene 30435 0.30 -4+0 1.00
Acenaphthene 28214223 0.99 56175 0.50
Anthracene -44+29 0.01 25450 0.32
Fluorene 21864672 0.86 -20+170 0.02
Phenanthrene 15944661 0.77 260+149 0.97
C1-Phenanthrene -6+76 0.00 39493 0.23
C2-Phenanthrene 159445 0.88 248425 0.99
Fluoranthene 1154444 0.04 5684149 0.96
Pyrene -1431356 0.09 534166 0.99
Benzo (a) Anthracene 78+77 0.36 -5+0 1.00
Chrysene 103+140 0.24 61131 0.82
Benzo (b) Fluoranthene 1644217 0.25 -29+25 0.71
Benzo (k) Fluoranthene 894115 0.26 11441 0.12
Benzo (e) Pyrene 1281157 0.28 18425 0.47
Benzo (a) Pyrene 19+65 0.05 -3+0 1.00
Perylene 56143 0.49 22425 0.58
Indeno (123-cd) Pyrene 18347 0.07 -310 1.00
Dibenzo (ah) Anthracene 28426 0.48 — —
Benzo (g,h,i) Perylene -5+58 0.00 -3+46 0.01
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Figure 46. Time-series samples and flux rates for PCB-110 at sites 3B and SB
based on a linear regression. & indicates data not used in regression (table 4),
and O indicates sample lacked second-ion confirmation.
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Table 8. TOC normalized bulk sediment concentrations and WA State Criteria
for individual and summed PAHs in mg/(kg organic carbon).
are the summed concentrations of compounds listed above each sum in the table.

ZLPAH and ZHPAH

Chemical 1A 1B 2A 2B 3A 3B 4A 4B SA 5B Criteria
TOC(%) 03 1.1 16 3.7 31 22 37 56 51 24
Naphthalene 145 19 1.7 40 7.7 15 40 07 14 19 99
2-Methylnaphthalene 2.3 14 16 29 39 17 23 27 24 49 38
Acenaphthylene ND 14 17 35 24 28 15 04 27 17 66
Acenaphthene 1.5 20 0.6 22 1.7 09 09 02 0.7 0.6 16
Fluorene 1.1 1.0 12 26 19 15 1.2 02 28 12 23
Phenanthrene 30 68 5.0 21 68 11 93 13 91 7.7 100
Anthracene 15 50 44 65 3.7 57 49 07 10 42 220
ILPAH 24 20 16 43 28 25 24 6.2 29 22 370
Fluoranthene 91 45 99 43 19 39 28 43 26 23 160
Pyrene 99 41 14 41 25 S53 36 58 31 32 1000
Benz(a)Anthracene 6.1 16 84 16 14 16 18 15 19 9.6 110
Chrysene 6.5 21 17 30 19 29 27 21 52 18 110
YBenzofluoranthenes 11 32 24 46 30 45 47 50 42 27 230
Benzo(a)Pyrene 69 14 11 17 17 19 21 14 19 11 99
Indeno(1,2,3-C,D) 57 11 94 14 17 15 17 22 14 95 34
Pyrene

Dibenzo(a,h) ND 22 25 33 43 23 39 04 38 14 12
Anthracene

Benzo(g,h,i)Perylene 5.7 9.1 7.6 11 13 13 14 27 10 74 31
THPAH 61 191 104 221 158 231 212 25 217 139 960
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Results for bulk sediment analysis of individual PCB congeners and estimated total
PCB as Aroclor 1254 are given in table 9. Of the 24 congeners measured, up to 22 were
present at detectable levels at specific sites. No PCBs were found at site 1A, and only
trace levels were present at sites 1B and 4B. The shipyard sites (2A,2B,3A,3B,4A,5A,5B)
were generally higher, with sites 4A and 5B showing the highest levels. Estimated concen-
tration of Aroclor 1254 ranged from below detection at site 1A to 965 ng/g at site SB.
Bulk and TOC normalized PCB concentrations are presented and compared to Washing-
ton State Criteria in figure 49.

SEDIMENT PORE-WATER MICROPROFILES

In situ microprofiles of O,, pH, and resistivity were measured successfully at four
sites, 2B (replicate), 3B, 4A, and 5B. Sulfide and pCO? profiles were measured at site 2B
only. Results from these measurements are shown in figures 50-53, and the complete
report prepared by C. Reimers of Scripps Institution of Oceanography is included as
Appendix 5. Based on visual inspection and the resistivity measurements, the sediments
at the Sinclair Inlet sites were found to be primarily muddy sands, although some sites
were littered with shell and/or shipyard debris (e.g., cables, welding rods). Resistivity
measurements yielded formation factor (F = Rsegiment/Rwarer) Profiles that increased to F
values of 2 to 2.5 in the first 6 cm, indicating a mixture of sand (typical F=2) and mud
(typical F=2.5 to 3). At sites 4A and 2B, high-resistivity layers were encountered within
the sediment profile suggesting sand deposition at a depth of about 2 cm.

Oxygen microprofiles for the four stations are shown in figure 51. The oxygen profiles
illustrate that in Sinclair Inlet the sediments are a sink for dissolved oxygen. Oxygen was
generally observed to be completely consumed in the first 0.5 cm of the sediment column
and of the four sites, site SB showed the steepest O2 gradient with the anoxic boundary at
a depth of about 0.1 cm.

Some problems were encountered with the pH microprofile measurements; these are
discussed in detail in Appendix 5. In spite of these qualifications, the pH profiles (figure
52) do indicate that pore-water pH decreases abruptly in the first 0.5 cm of sediment. As
with oxygen, the pH decrease is greatest at site 5B, and the level value reached at a depth
of 6.2 is unusually low for marine systems.

Sulfide and pCO2 electrodes are currently being tested on the microprofiler. A silver-
silver sulfide electrode was successfully deployed at site 2B (figure 53). The electrode
potential is ideally a direct function of the logarithm of the sulfide ion activity, however,
some question remains about the calibration of the electrode (Appendix S). Nonetheless,
the profile at site 2B does give a relative indication of the sulfide distribution in the
sediment. It shows a strong increase in the upper 0.5-1 cm, followed by a more gradual
increase to a depth of 4 cm (note that lower EMF indicates higher sulfide activity). Below
4 cm, the electrode potential exceeded the input range of the instrument.
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Table 9. Bulk sediment concentrations for PCB congeners, ZPCB congeners,
and Aroclor 1254. (All concentrations are in ng/g dry weight.) An * indi-
cates data lacked second-ion confirmation.

PCB Site
Congener | 1A 1B 2A 2B 3A 3B 4A 4B SA SB
018 ND ND ND ND ND ND ND ND ND ND
0284031 [ ND ND ND ND ND ND ND ND ND ND
052 ND ND ND ND ND 49* 19.0° ND 109 28.0
0.49 ND ND ND ND 93* 74* 208 ND 122 11.3°
044 ND ND ND ND 28*171* ND ND 55 109
074 ND ND ND 15° ND ND 11.7° ND 5.0° 6.3°
0704076 | ND ND ND ND ND 3.8° 339 3.0° 11.8 20.7
066 ND ND ND ND ND 18° 157° 20° 5.0° 4.3°
095 ND ND 5.0 10.0° 102 82* 282 2.7° 253 47.6
101 ND ND 81 156° 17.8 12.4* 675 7.7° 49.5 90.1
099 ND ND 45 95* 9.6* 68 275 ND 181 428
110 ND ND 53 85 124 92* 442 39° 266 57.0
118 ND ND 5.8 106* 11.6 8.0° 586 49° 30.5 74.2
105 ND ND 3.7° 9.4° 11.9* 54* 452 ND 21.1 479
136 ND ND 3.1°* 48* 60* 58 142° ND 150 125
149 ND ND 4.0 69° 142 92 297 S54* 374 288
132+4153 | ND 3.3* 129 253 556 337 110 221 154 110
141 ND ND 26° ND 66° 36° 163* ND 148 9.5
138 ND ND 59 99 186 132 371 73 499 522
176 ND ND 38 78 135 68 ND ND 29 10.1
183 ND ND ND ND 80° 46 ND ND 157 49
174 ND ND ND ND 102 4.6* 119 ND 226 5.9
180 ND ND 26 40 98 56 149 25 328 9.7
170+190 | ND ND ND ND 98* 50° ND 1.7° 229 5.1
PCB ND 3 67 124 235 163 624 63 617 690
Aroc.1254] ND ND 89 144 211 214 749 66 450 965
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Figure 49. Bulk sediment PCB concentration as Aroclor 1254 at the 10 sites
in Sinclair Inlet. Solid bars are bulk concentration, and open bars are organic-
carbon normalized concentration.

Two pCO, profiles were measured during separate deployments at site 2B (figure 53).
Combined with pH, these measurements form the basis for calculating concentrations for
all the inorganic carbon species. The profiles measured indicated a similar gradient for
pCO; in the upper layers from which a diffusive flux for £CO, of 0.3 pmol/cm?/day was
estimated. This value was considerably lower than the 10.6 pumol/cm#/day flux determined
from the BFSD pH and alkalinity measurements. This discrepancy could be due to cali-
bration considerations for the pCO, electrode (Appendix 5), or inaccuracy of the BFSD
pH electrode records used in calculating the BFSD flux.

ACID-VOLATILE SULFIDE

A sediment composite sample (0-10 cm) and three to five profile samples were
analyzed for AVS at each of the 10 sites in Sinclair Inlet. A grab sample from Station 5A
was also analyzed. Most cores had moderate AVS concentrations near the surface (> 20
umol/g), increased AVS at intermediate depth (4-6 cm), and decreased AVS toward the
bottom of the core (figure 55). These profiles are comparable to AVS core profiles
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commonly measured from a variety of environments (W. Boothman, 1991, EPA ERLN)*
and agree reasonably with the sulfide microprofile data at site 2B. Sites 2A, 5A, and 5B
had the highest AVS measured (figure 54), and sites 1A and 1B had the lowest AVS. The
low AVS at station 1A and 1B may be explained by the sandy and what appeared to be
well-oxygenated sediments sampled at those locations. Those stations were located closer
to the mouth of the inlet and were subject to more mixing (see hydrographic data). The
high AVS measured at the other stations located around the shipyard showed that the
majority of the sediment column was anoxic and that the formation of sulfides was
favored at those stations. Station 3B was an anomaly. The low AVS measured from the
cores collected at 3B could be attributed to increased bioturbation as reflected in the
deeper oxygen penetration (figure 51) into the sediment column. A detailed account of
this study can be found in Johnston, 1992.

* Personal communication via R. Johnston at the University of Rhode Island: *Acid-Volatile Sulfide Determination in
Sediments using Sulfide-Specific Electrode Detection.”
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Figure 50. Formation-factor profiles from four sites (2B,3B,4A,5B) in Sinclair
Inlet. Sites 2B and 4A show evidence of sand layering at about 20 mm.
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Figure 51. Oxygen microprofiles from four sites (2B,3B,4A,5B) in Sinclair
Inlet. Many profiles do not extend very far into the sediment because the

electrodes were broken by coarse sand and debris.
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Figure 52. Profiles of pore-water pH at four sites (2B,3B,4A,5B) in Sinclair
Inlet. Profiles indicate a sharp decrease in the first 0.5 cm of the sediment
column.
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Figure 53. Microelectrode profiles of sulfide (EMF) and pCO:; at site 2B.
Calibration of these sensors was uncertain and requires further verification.
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DISCUSSION

TRACE METAL FLUXES

In assessing the flux rate measurements performed in Sinclair Inlet, the key issue we
hoped to address was whether or not specific contaminants were being released from the
sediments at significant rates. For the trace metals, we found that Ni, Zn, and As showed
release at several sites, while Cu, Cd, and Pb showed little release; and Cr and Hg were
generally below detection limits. Zn release was always associated with shipyard sites.
However, Ni release was also found at site 4B in the western inlet, and As release was
found at sites 4B and 1B, both of which are removed from the shipyard (1B to a lesser
extent). While Zn is clearly a contaminant that would be associated with shipyard opera-
tions (anodes, paints, etc.), As and Ni are not as strongly linked and may have other
significant sources in the inlet. This is reflected in the bulk sediment data for Ni (figures 3
and 39) and to some degree for As (figures 2 and 39). The highest release rates for Ni
and Zn were measured at site SA (565 and 837 ug/m2/day respectively), and for As, was
found at site 2B (292 pg/m?/day). For Ni and Zn, this site also showed elevated bottom-
water concentrations based on the initial BFSD sample, while bottom-water concentrations
of As were fairly uniform from site to site. Although sediment release could be driving
this bottom-water elevation for Ni and Zn, in no case did the bottom-water concentrations
exceed the EPA water-quality criterion of 7.1 ug/l and 58 ug/l respectively (EPA, 1986).
For Cd and Pb, bottom-water concentrations were also well below EPA criteria. Although
Cu release was only detected at one site (3A), bottom-water concentrations at most sites
approached the EPA criterion of 2.9 pg/l. This may reflect the continued input of Cu to
the inlet coming from antifouling coatings on Navy, commercial, and pleasure craft in the
area, as well as other potential inputs from the shipyard, sewer outfall, and nonpoint
sources.

Comparative data on trace metal fluxes are limited. Westerlund et al. (1986) per-
formed benthic flux measurements in a fjord in western Sweden. They reported release
rates for Cd, Cu, Ni, and Zn during a fail experiment as 0.6, 3.4, 5.8, and 42 pg/m?/day
respectively, with no apparent release of Pb. These are roughly an order of magnitude
lower than the rates we found in Sinclair Inlet and presumably are typical of background
levels for a coastal environment. The short-term measurements we performed and the
limitations of our analytical methods did not allow us to confidently detect flux rates at
such low levels; however, such rates would probably have limited significance relative to
other natural and anthropogenic sources. Hunt and Smith (1983) estimated release rates
of Cu and Pb from contaminated sediment using a microcosm system and found rates of
67 ug/m2/day and 5 ug/m?/day respectively. These values are of similar magnitude as
those reported here. Cu, Zn, Cd, and Pb flux rates were characterized at a marina site
(Shelter Island) during the prototype testing of the BFSD. Flux rates for Cu and Zn (460
and 1860 pg/m2/day) at this site were higher than the highest rates measured in Sinclair
Inlet, while Pb and Cd showed little flux at either location. To our knowledge, no direct
measurements of As fluxes have been made in the marine environment, aithough Bryan
and Langston (1991) suggest that As mobility is favored by reducing conditions typical of
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those present in Sinclair Inlet sediments. This, combined with the ubiquitous sources of
As from inputs such as rock weathering, smelting, and metal-refining processes, may help
to explain the more uniform nature of both the bulk sediment loadings and the observed
release rates of As.

Several factors may be important in controlling or mediating the flux of contaminants
from marine sediments. Westerlund et al. (1986) found that trace metal release was gen-
erally associated with oxidation phases as opposed to reduction as with manganese and
iron. In laboratory studies, Lu and Chen (1977) found similar results with most trace
metals being released under oxidizing conditions, while manganese and iron showed
uptake, and the direction of the fluxes reversed under reducing conditions. The water- and
sediment-oxygen data that we collected indicate that oxygen was present at all sites
throughout the water column and typically penetrated from 1 to 5 mm into the sediment
column. The sediment penetration of oxygen agrees well with data reported by Wester-
lund (1989) at the Swedish site and is thought to be typical of near-shore sediments. This
means that the potential exists for the release of trace metals through oxidative reactions
in the upper few millimeters of the sediment column. If the contamination is historical, it
may be buried significantly below this depth. In this case, release could only occur
through physical disturbance of the sediment (e.g., prop wash, dredging) or bioturbation
by burrowing benthic organisms. Previous studies (Rutgers van der Loeff et al., 1984)
demonstrated that, for nutrient fluxes, when anoxic conditions develop in the flux cham-
ber, the biological component of the flux is lost, and only the diffusive component
remains. At site 5B, the chamber went anoxic at hour 29, and a reversal in silica flux was
observed (figure 18). This would indicate that bioturbation was of primary importance at
that site.

Under reducing conditions, sulfide is thought to play a major role in immobilizing
trace metals and mitigating bioavailablity. In their analysis of geochemical partitioning of
trace metals at the sediment surface, Lu and Chen (1977) found strong evidence that,
under reducing conditions, metallic sulfide solids are the predominant species for Cd, Cu,
Ni, Pb, and Zn. In more recent studies, Di Toro et al. (1990) found that toxicity of trace
metals in marine sediment could be predicted well when the bulk-sediment concentration
of the metal was normalized to the AVS content. The high AVS levels in the sediments
around the shipyard suggest that the deeper sediments provide an effective sink for trace
metals in Sinclair Inlet. Di toro et al. (1990) demonstrated that Cd would form a metal-
sulfide complex at the expense of iron and manganese monosulfides. Table 10 (from Di
Toro et al., 1990) shows metal-sulfide solubility and activity ratios for several trace metals
compared to manganese and iron. They predicted that metals below the dotted line would
form solid sulfides at the expense of MnS and FeS. It is interesting to note that NiS and
ZnS follow FeS based on solubility product logK,,. We speculate that since the release
rates we observed were primarily for Ni and Zn, they may be dissolving during the forma-
tion of metallic sulfides of trace metals with smaller (more negative) solubility constants,
especially if MnS and FeS have been exhausted. Although we were unable to detect Hg
flux rates due to limited analytical sensitivity, this type of analysis would suggest that Hg
would be preferentially bound as HgS and unlikely to flux. However, previous studies
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(Jahnke et al., 1979) indicate that Hg release is not controlled by the low solubility of HgS
and that release is generally favored by anoxic conditions. A detailed review of factors
affecting sediment trace metal mobility and bioavailability is presented by Bryan and
Langston (1991).

Table 10. Metal-sulfide solubilities (after DiToro, et al., 1990). Increasing
solubility is indicated by less negative values of log K,,.

Metal kg Ksp.2 log K,, loga log(aK,p)
Sulfide pH = 7.6 pH = 8.2 Average
MnS -0.40 ~-19.15 0.13 0.13 -19.02
FeS(am) -30.5 -21.80 0.10 0.12 -21.69
FeS -3.64 -22.39 0.10 0.12 -22.28
le ............ - 923 .............. -2798011017 ............. -2784 .......
ZnS -9.64 -28.39 0.12 0.14 -28.26
Cds -14.10 -32.85 1.50 1.50 -31.35
PbS -14.67 -33.42 1.12 1.32 -32.20
CuS -22.19 -40.94 0.50 0.92 -40.23
Hg$S -38.50 -57.25 15.10 15.10 -42.15

We were also interested in the relationship between trace metal flux rates and bulk
sediment loadings. To address this, we calculated correlation coefficients for flux rate
versus sediment concentration at the 10 sites (figure 56). For Cu, Zn, and As, we found
significant (p<0.05) positive correlation, while Cd, Ni, and Pb showed little or no relation-
ship. Although the results for some metals suggest that bulk sediment concentration is
one determining factor for mobility, the observed variability from site to site and the lack
of correlation for several metals indicate that it is certainly not the only factor. Some
portion of the variability observed could be attributed to differences in the sediment com-
position from which the flux was measured and those from which the bulk data were
acquired.
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PAH/PCB FLUXES

Measurable release rates of several PAHs were detected at sites 3B and SB. At 3B,
release was most pronounced for the lower molecular weight PAHs, while at 5B, release
was limited to a few of the more moderate weight PAHs. Very little information is avail-
able in the literature regarding flux rates of PAH compounds in the marine environment.
Studies in freshwater sediments (Di Toro, 1989) suggest that dissolution and bioavailabil-
ity of organic contaminants is controlled primarily by the mass fraction of organic carbon
present and the hydrophobicity of the chemical. However, relating our measured flux
rates to the bulk sediment concentrations is difficult. The organic carbon content was
virtually the same at the two sites (2.2-2.4 percent), and the bulk sediment PAH concen-
trations were quite similar. High oxygen consumption, a steep oxygen gradient, and low
pH in the sediment at site SB are all indicators of active decomposition of organic matter.
After the chamber became anoxic, the consistent reversal in flux rates of silica and sev-
eral PAH compounds at site 5B suggest that the flux rates measured for these compounds
may be primarily controlled by bioturbation.

In general, the bottom-water concentrations of PAH were quite low. To protect human
health from potential carcinogenic effects of PAHs, the EPA has established a criterion of
31 ng/l for ambient seawater. The bottom-water concentrations at sites 3B and SB of 22
and 12 ng/l total PAH did not exceed these levels. They were considerably lower than the
150 ng/l that we have typically measured off Naval Station, San Diego. When normalized
for organic carbon, bulk sediment concentrations of PAH were well below criteria recently
established by the State of Washington (State of WA, 1991). Thus, in spite of the release
rates measured—in particular the relatively high rates at site 3B—bottom-water levels of
PAH in the inlet do not appear to be significantly elevated. In addition, the oil-fluores-
cence mapping performed throughout the inlet indicated primary sources of PAHs along
the souiiern shoreline, most likely associated with pleasure-boat operations and refueling.
Although the PAH release does not represent a major source to the inlet, it may indicate a
potential exposure source for benthic organisms.

No flux of PCB congeners was detected from the sediment at sites 3B and 5B. Bottom-
water concentrations were very low at both sites, 0.6 and 0.1 ng/l respectively. The EPA
criterion based on protection of human health is 0.079 ng/l based on a 107° risk level via
consumption of aquatic organisms. Although the bottom-water levels appear to be exceed-
ing this criterion at both sites, quantitation at these low levels is subject to considerable
interpretation, and we found no evidence that these levels are being driven by release
from sediments at the shipyard. Bulk sediment concentrations were generally low except
at sites 4A and 5B, which, when quantified as Arocior 1254 and normalized to organic
carbon, yield values of 20 mg/kgOC and 41 mg/kgOC respectively. This is greater than
the 12-mg/kgOC standard published by the State of Washington.

COMPARISON OF SEDIMENT FLUXES TO OTHER SOURCES

Remobilization of metals from the sediments of Sinclair Inlet represents a potential
source that can be compared to other documented inputs in the region. To provide this
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comparison, we gathered source data and estimated discharges from Navy ships, PSNS-
permitted outfalls, the City of Bremerton municipal sewage outfall, and pleasure craft.
Inputs from sediments were separated into fluxes from sediments associated with the
shipyard and those remote from the shipyard. A mass loading from these two regions was
calculated by averaging the statistically significant flux rates for the region and applying
this average flux rate to the estimated sediment surface area in the region. Estimated
inputs from Navy ships and pleasure boats were calculated for zinc and copper only. The
input of zinc due to Navy ships was calculated by determining which ships at PSNS were
using zinc cathodic protection, and the individual input from each of these ships, based
on historical replacement rates. Zinc input from pleasure boats was estimated similarly
from the total number of pleasure boats in the Inlet and an approximate anode replace-
ment rate. Copper inputs from Navy ships and pleasure boats were calculated by estimat-
ing the total antifoulant surface area for each class and applying documented leach rates
for typical copper antifouling coatings. Source loading from PSNS-permitted outfalls and
the City of Bremerton municipal sewage outfall was determined from National Pollutant
Discharge Elimination System (NPDES) monitoring data on concentration and flow rates.
A detailed description of these calculations is included as Appendix 6.

The results of the budget analysis are shown in figure 57. Comparative data for all
sources are only available for copper and zinc. The results indicate that the primary
source of copper is from antifouling coatings on ships and pleasure boats in the Inlet. The
average copper flux from sediments was negative in both the shipyard and Inlet-wide
regions, and so no input is reported. Results for zinc indicate that ships, pleasure boats,
and the PSNS-permitted outfalls all contribute significantly to the overall loading of the
Inlet. Input of zinc from sediments is typically an order of magnitude less than those other
sources. Sediment fluxes of nickel and arsenic may contribute a substantial fraction of the
overall loading, however, insufficient data are available to compare these inputs to other
potential sources. This analysis does not include several of the following potential
sources: nonpoint source runoff, input from Gorst and Black Jack Creeks, uncontrolied
shoreside and shipboard discharges, tidal transport into the Inlet, aerial fallout, and
exchange from resuspended sediments.
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CONCLUSIONS

The objective of this project was to perform an on-site demonstration of the Benthic
Flux Sampling Device (BFSD) to determine the mobility of contaminants in sediments off
the Puget Sound Naval Shipyard in Sinclair Inlet, WA. Conclusions from the study fell
into two categories: those relating to the results of the measurements performed ana those
related to the methods themselves. The measurement results suggest that for most of the
contaminants we analyzed, little or no release is taking place. For the trace metals, this
may be related to the strongly reducing characteristics of the sediments adjacent to the
shipyard, as reflected in the shallow oxygen penetration, and the relatively high AVS and
organic content. For Zn, Ni, and As, where measurable release was found, only Zn
appeared to be strongly tied to shipyard sources, while Ni and As also exhibited release at
sites removed from the shipyard. Bulk sediment results for the trace metals suggest that
Zn and Hg at some sites are at elevated levels relative to published criteria, and release
rates of Zn are positively correlated with the bulk levels.

These findings suggest that Zn loading may be a significant issue and that Hg prob-
ably warrants further investigation, especially for organic species. For PAHs and PCBs,
the limited-release rates observed are probably attributable to low bulk levels, high
organic loading, and the high particle affinity of many of these compounds. We attribute
the release of lower molecular weight PAHs at shipyard site 3B to recent input, since
these compounds are generally weathered or volatilized quickly in the marine environ-
ment. At site 5B, where the more moderate weight PAHs were released, the released
compounds were more closely coupled with the bulk sediment loadings, and we believe
bioturbation may have played a more active role. Where release of contaminants was
found, the measured rates do not represent a significant source relative to other major
inputs such as sewer discharges, nonpoint source runoff, and marinas. However, these
contaminants may represent an exposure pathway for benthic biota with the potential for
toxicological effects and/or bioaccumulation.

Regarding the sampling methodology, we concluded that on site, in situ measurements
of contaminant release rates could be performed. We believe that these measurements
could be enhanced by increasing the sampling period and collecting more samples to
improve confidence levels for the flux rates. In-place filtration and preservation of sam-
ples should be incorporated to minimize the potential for adsorption, desorption, and
degradation prior to retrieving the BFSD. We also have to improve sample collection and
analytical methods for specific compounds such as Hg and Cr in order to detect the
mobility of these contaminants. Analysis of PCB flux rates may require larger sample
volumes. Future studies would be extremely useful that perform parallel, in situ biological
studies such as shellfish bioaccumulation or amphipod bioassays to determine if a direct
link exists between contaminant mobility and biological effects.
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AVS
BFSD
Cd
CI
Cu
EFA

EPA-ERLN

GCMS
GFAA
Hg

Ni
PAH

PSEP
PSNS
QA/QC
SI

SIO
TOC

Zn

LIST OF ACRONYMS AND ABBREVIATIONS

Arsenic

Acid-Volatile Sulfides

Benthic Flux Sampling Device

Cadmium

Confidence Interval

Copper

Engineering Field Activity (Naval Facilities Engineering Command)
Electromotive force

Environmental Protection Agency, Environmental Research Laboratory at
Newport

Gas Chromatography/Mass Spectrometry
Graphite Furnace Atomic Absorption
Mercury

Nickel

Polynuclear Aromatic Hydrocarbons
Lead

Polychlorinated Biphenyls

Puget Sound Estuary Program

Puget Sound Naval Shipyard

Quality Assurance/Quality Control
Site Investigation

Scripps Institute of Oceanography
Total Organic Carbon

University of Rhode Island

Zinc
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Appendix 1. Data Analysis

1. Statistical Analysis of Bulk Sediment Metal Concentrations to Determine Sampling
Locations for the BFSD.

2. Flux Rate Calculations for Silica, Trace Metals, PAHs, and PCBs.
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Initial Seeds
cumsum
71.000
141.000
212.000
283.000
353.000

Cluster Statistics
Count
8
7
19
9
13

Variable Statistics
Variable Total Std
cumsum 105.789
over-all 105.789

Cluster Means
cumsum
43.750
154.143
224.579
270.667
370.615

cumsum
24.141
16.334
17.417
20.037
30.239

Cluster Mean Distances
1
0.000
110.392
180.829
226.917
326.865
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24.141
16.334
17.417
20.037
30.239

Withip Std

22.284
22.284

Cluster Standard Deviations

R

959
959

2

110.393
3.04e+59
70.436
5.55e+29
216.472

Ratio
23.304
23.304

3
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0.000
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146.036

4
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0.000
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ANALYTICAL METHODS FOR TRACE METALS

SAMPLE STORAGE
Sea Water

Water samples to be analyzed for dissolved metals are
initially filtered through a 0.45 um nitrocellulose membrane
filter in disposable polystyrene filter units. Before use
the filter units are cleaned with 4 N nitric acid followed
by copious rinsing with 18 mega-ohm deionized water until
the rinses are pH neutral.

The samples are then transferred to precleaned I-Chem
polyethylene bottles and acidified with an amount of high
purity (Ultrex) nitric acid equivalent to 0.2% of the sample
volume. This brings the pH level down to below 2. The
filtered and acidified samples are stored in a refrigerator
at 4 degrees C until they are removed for analysis.

Sediments

Short term sediment sample storage is in the same
precleaned I-Chem polyethylene jars used for field
collection. The samples are stored refrigerated at 4
degrees C. For storage beyond 30 days, the samples are
frozen.

WATER ANALYSIS

APDC Chelation - MIBK Extraction
or ¢d, Cu, Cr(v Pb, Ni d Zn

Matrix separation and analyte preconcentration is
achieved by chelation with ammonium pyrrolidine
dithiocarbamate (APDC) followed by metal chelate extraction
with methyl isobutyl ketone (MIBK). The extent of
preconcentration is determined by the ratio of sample to
MIBK. Any amount of sample not exceeding a ratio of 30:1
may be used.

Generally, 40 ml of sample is pipetted into a stoppered
graduated cylinder. To this is added 250 ul of sodium
citrate - citric acid buffer along with 1.0 ml of 1% APDC in
18 mega-ohm water. The buffer is added to maintain a pH
level between 3 and 4. The sample is then extracted with
2.0 ml of MIBK. All work is performed within a class 100
laminar flow clean hood. The sample extract is analyzed by
graphite furnace atomic absorption spectroscopy (GFAA).

A calibration curve is generated by spiking a series of
replicates (prior to extraction) from one or more samples
per batch with small volumes of successively increasing
concentrations of a mixed standard. The response curve to
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these standard additions is then used to determine analyte
concentrations in other samples within the batch.

senic

Arsenic analysis is performed by direct injection of
sea water into the Zeeman corrected GFAA spectrometer. To
isolate the atomic absorption signal from light scattering
background interferences, five ul of each of the following
matrix modifiers are employed: 0.3% PA(NO3)2 in 2% Ultrex
nitric acid, 1% Mg(NO3)2, and 50% NH4NO3.

Mercury

Mercury analysis is by cold-vapor atomic absorption.
Sn(II)Cl2 in 10% HCL is used as the reducing agent. Sample
solutions are stabilized by addition of one drop of % KMno4.
Note that the samples are not digested prior to analysis.

SEDIMENT ANALYSIS

Acid digestion for total metals

Sediment samples are first dried then digested in
nitric acid by heating with microwave energy. 0.5 grams of
each of the dried samples is weighed into an acid cleaned
Teflon lined digestion vessel. To this is added 10.0 ml of
50% Ultrex nitric acid. The vessel is sealed and again
weighed. The sample is then subjected to microwave heating
sufficient to maintain an internal pressure of 165 psi
within the reaction vessel for approximately one hour.

After the digestion process, the sample vessels are
again weighed to ensure that no material was lost during
heating. The samples are then diluted to a volume of 40 mls
and transferred to precleaned polyethylene bottles for
refrigerated storage at 4 degrees C.

Digested sediment analysis
for As, Cd, Cr, Cu, Ni, Pb, and Zn

The digested sediment samples are analyzed by Zeeman
background corrected GFAA. 0.3% Pd(NO3)2 and 1% Mg(NO03)2
were employed as matrix modifiers. Certified standard
solutions are used to create calibration curves.

Digested sample analysis for Hg
Sediment digestates are diluted 50% with ultrapure

water then analyzed for mercury by cold-vapor AA. The
method is essentially the same as that for water samples.
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DETERMINATION OF REACTIVE SILICATE

To determine reactive silicate, refer to the following
handbook: *"Determination of Reactive Silicate" In: A Practical
Handbook of Seawater Analysis, Bulletin 167, pp. 65-70. 1968. Fish-
eries Research Board of Canada, Ottawa.




Acid volatile sulfide determination in sediments using sulfide-
specific electrode detection

Warren S. Boothman

U.S. Environmental Protection Agency
Environmental Research Laboratory
Narragansett, R.I.

I. Introduction

Acid volatile sulfides (AVS) are amorphous or moderately
crystalline metal monosulfides, primarily FeS. They have been
hypothesized as the single most important factor controlling the
availability of heavy metals to benthic organisms in anoxic
sediments (1). The molar ratio of extractable métal to AVS is
postulated as an indicator of metal availability. However,
methods used to determine AVS have been quite varied in both
reagents and conditions. In order to insure that data used by
different investigators to test the AVS hypothesis be comparable,
a common protocol for the sampling and analysis of AVS needs to
be established. The method described follows the findings of
Cornwell and Morse (2). Comparisons of this method with a
gravimetric method used at Manhattan College have reportedly
given equivalent results (D. Hansen, personal communication).

II. Sample collection and storage

The accurate determination of acid volatile sulfides in
sediments places a number of rather stringent requirements on the
handling of samples after collection. Sulfide ion is
thermodynamically unstable in the presence of dissolved oxygen,
and so sediments from anoxic environments must be preserved in
such a way as to protect any sulfides present from reaction with
air. Storage containers must exclude or minimize air space above
the sediments; if possible, purging of container headspace with
dry, oxygen-free nitrogen gas would be helpful. Sediments should
be kept cold or frozen during storage and transportation. Wet
sediments may be stored at 4°C fora short time, but anoxic
sediments stored at 4°C for 20 days show significant changes in
metals' partitioning, suggestive of oxidation of the sediment
(3). Freezing of sediments seems to cause the least change in the
speciation of metals (and by implication sulfides) in anoxic
sediments; comparison of metals' extractability in fresh
sediments and sediments stored for 20 days at -30°C showed
essentially no significant differences. Drying of sediments,
either in air or by freeze-drying, has been shown to reduce the
concentration of AVS measured in anoxic sediments and should be
avoided. The loss of AVS may be due to oxidation or formation of
more crystalline (and non-acid volatile) sulfides.
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III. Determination of Acid Volatile Sulfides

The classification of sulfides as "acid volatile'" is an

operational definition, that is, the extent to which mineral
sulfide phases are volatilized by the analysis will depend on the
analytical conditions employed, e.g. acid concentration, time,
etc. For AVS data obtained by different investigators to be
comparable, the reaction conditions utilized to volatilize
sediment sulfides must be similar; the methods used to isolate
and quantify the volatilized sulfides, on the other hand, may
vary according to instrumental or laboratory availability. In the
method presented here, acid volatile sulfides are determined by

reaction of sediment sulfides with 1M HCl to form gaseous H,S and
purging the evolved H,S with nitrogen. The purged H,S is then

trapped in sulfide anti-oxidant buffer (SAOB) (4), diluted to
volume and the S® concentration measured with a sulfide ion-
specific electrode (Orion 94-16A). Overall sulfide recovery is
determined by analysis of aliquots of a working sulfide standard
solution and sediments which have been previously well
characterized.

A. Volatilization and trapping of sediment sulfides

T Sad

Figure 1. Apparatus for AVS determination: 1.N, cylinder; 2.Gas
washing bottles: (a) oxygen scrubbing solution, (b) deionized
water; 3.Three-way stopcock; 4.Purge flow controller; S.Reaction
flask; 6.Magnetic stirrer; 7.Sulfide traps.

The apparatus used for the volatilization and trapping of
acid volatile sulfides in sediments, illustrated in Figure 1,
is an adaptation of the system developed by Allen and co-
workers at the University of Deleware (5) and DiToro et
al.(1). This configuration of the glassware allows the
acidification of the sediment while minimizing the entrainment
of laboratory air intothe reaction vessel. It also allows the use
of more than one analytical setup at a time while providing
purge gas control for each individual analysis.

To prevent oxidation of sulfides due to oxygen in the
analytical train, the apparatus should be purged with oxygen-
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free nitrogen for at least 30 minutes prior to initliating
analyses.

1.

2.

6.

Wet sediment (ca. 10 g) is weighed into a 250-ml
standard taper round bottom flask.

Fifty milliliters (50 ml) of deaerated deionized water
(DDIW) is added to cover the sediment, a magnetic stir
bar placed in the flask and the flask is placed into the
sampling apparatus. Impinger (trap) bottles should be
filled with 50 ml of SAOB and 30 ml of DDIW.

Initiate purge gas flow at 100 ml min' to remove any
entrained air from the headspace and purge for 10
minutes. Reduce flow to 40 ml min’'.

Halt purge gas flow and slowly inject 10 ml of 6M HCl
(over approximately 15 sec.) through the septum sidearm,
resulting in a concentration of 1.0 M HCl (neglecting
the water content of the sediment).

Resume purge gas flow of 40 ml min'and stir sediments
vigorously. Purge and trap generated H,S for desired
time (usually 30 minutes).

Stop purge flow, rinse impingers with DDIW into bottles
and remove bottles from apparatus.

B. Measurement of sulfides by ion-specific electrode
Note: Sulfide electrode and meter should be calibrated
prior to performing sediment analyses using sulfide
standards prepared in SAOB diluted 1:1 with DDIW.

1.

2.

Pour bottle contents into 100-ml volumetric flask. Rinse
bottle with DDIW, adding rinse to the vol. flask. Dilute
to volume with DDIW.

Pour contents of volumetric flask into 150-ml beaker,
add magnetic stirring bar and place on stirrer. Begin
stirring with minimum agitation to avoid entrainment of
air into solution and minimize oxidation of sample
during the measurement.

Rinse sulfide and reference electrodes into waste
container and blot dry with absorbent tissue. Immerse
electrodes in sample solution.

Allow electrode response to stabilize (8- 10 minutes),
then take measurement of sulfide concentration (Cs2-).
Reading may be directly in concentration units, if the
meter is in concentration mode and a 2-point calibration
has been performed, or in millivolts. If the millivolt
reading is used, convert millivolts to concentration
using the calibration curve obtained from standard
solutions.

Calculation of AVS concentration in sediments

1.

The sediment dry weight/wet weight ratio (R) must be
determined separately. Acid volatile sulfides can be
oxidized or altered to non-acid volatile forms during
various drying processes.
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2. AVS concentration in a sample is calculated using the
formula:

(CSZ-) X Vuup
AVS (umol/g dry sediment)

g wet sediment x R

0.1 x C42-

g wet sediment x R

when Cg2- = pmole liter' (uM) and V,, = 100 ml.

D. Calibration of sulfide-specific electrode
1. Direct concentration (2-point calibration)

a. select CONC mode on meter.

b. press the CAL button on the meter. The CAL1 light
should come on.

c. immerse electrodes in first calibration standard as
for sample (III.B.3-4) and allow response to
stabilize. Adjust the concentration displayed to
match the standard concentration, using the t and ¢
keys. Press the ENTER key.

d. After a few seconds, the CALl1 light should go off and
the CAL2 light should come on. Repeat step c¢ for the
second calibration standard. After pressing ENTER,
the SAMPLE light should come back on, indicating
calibration is complete and providing direct readout
of concentration.

e. Press SLOPE and verify that a value near the
theoretical slope (-29.6 mV/decade) is displayed. If
the value is far off, repeat the calibration or
prepare new standards.

2. multipoint calibration

a. select MV mode on meter.

b. immerse electrodes in first calibration standard as
for sample (III.B.3-4) and allow response to
stabilize. Record the electrode response. Repeat Lor
other standards.

c. The calibration curve is obtained by linear
regression of millivolts against log concentration.

3. Sulfide calibration standards

Calibration standards are prepared from the primary

sulfide stock solution (IV.D.). The primary stock

concentration must be Standardized by iodometric titration

(IV.D.2) before preparing standards.

a. Prepare 700 ml of diluent by mixing 350 ml of SAOB
(IV.B) with an equal volume of deaerated deionized
water (IV.A).

b. Prepare a working stock solution (approx. 1500 uM).
Pour S50 ml of the 1:1 SAOB diluent in a 100-ml
volumetric flask. Pipette an appropriate volume of
the primary stock and an equal volume of SAOB into
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the flask. Dilute to volume with the diluent.
c. Prepare calibration standard solutions by dilution of
the working stock solution. An example of the
calculation of standard concentrations is 1llustrated

below.
Primary Stock Concentration 55.07 umol/ml
1766 ug/ml
Working stock preparation
Primary stock aliquot 2.750 ml
Working stock volume 100
Working stock concentration 1514 uM
48.6 ug/ml
Working Stock Calibration Standard
Volume Volume Concentration
ml ml uM ug/ml
0.200 100 3.03 0.097
0.500 100 7.57 0.243
2.00 100 30.3 0.97
5.00 100 75.7 2.43
20.00 100 303 9.7
50.00 100 757 24.3

IV. Preparation of reagents and stock solutions

A. Deaerated Deionized Water (DDIW)

Dissolved oxygen-free water for preparation of standards,
reagents, etc. should be prepared daily by bubbling
nitrogen gas (N2) vigorously through 2.5 1 of deionized
water for a minimum of 1 hour. The nitrogen gas should be
stripped of traces of oxygen by passing through a gas
washing bottle filled with vanadous chloride solution
(IV.C.).

Bulfide Anti-oxidant Buffer Reagent (SAOB)

(2M NaOH, 0.2M EDTA, 0.2M ascorbic acid)

1.
2.

3.
4.

Dissolve 80.00 g NaOH slowly in 700 ml DDIW.

When cool, add 74.45 g EDTA (disodium form) and stir
until dissolved.

Add 35.23 g ascorbic acid and stir until dissolved.
Pour solution into a 1.00-1 volumetric flask and dilute
to volume with DDIW.

Vanadous Chloride Oxygen-stripping Solution

1‘

Weigh 4 g of ammonium metavanadate (NH,VO,) in a 100-ml
beaker. Add 50 ml concentrated HCl and heat to near
boiling. Cool and dilute to 500 ml with deionized water.
Pour the solution into a 500-ml gas washing bottle.
Prepare amalgamated zinc by covering 15 g of zinc metal
with deionized water, adding 3 drops (150 ul) of
concentrated HCL, and adding a small amount of mercury.
Stir slightly to mix in the mercury.

Add the amalgamated zinc to the vanadous chloride
solution in the gas washing bottle. The s>lution should




be green or blue. Bubble nitrogen through the solution
until the color becomes purple. When the solution
returns to a blue or green color, the oxygen stripping
capacity has been exhausted; it may be replenished by
the addition of more amalgamated zinc or a slight amount
of conc. HC1.
D. sulfide stock solution
A sulfide stock solution should be prepared and
maintained for use in quality assurance and calibration. An
aqueous solution of Na,S-9H,0 of sufficient concentration
may be used as a stock for secondary stocks for spiking
sediments, calibrating, etc. The concentration of this
stock should be determined before each use by iodometric
titration or other standardization techniques.
1. Preparation

a. Wash crystals of Na,S-9H,0 with deionized water and
blot dry.

b. Weigh approximately 12 g of Na,5:-9H,0 and dissolve in
900 ml DDIW.

c. Pour into a 1.00-1 volumetric flask and dilute to
volume with DDIW.

2. Standardization

a. Pipette 10.00 ml of standard iodine solution into
each of two 125-ml Erlenmeyer flasks.

b. Pipette 2.000 ml of sulfide stock into one flask.

. Pipette 2.000 ml of DDIW as a blank into the other
flask.

C. Add 5.00 ml of 6M HCl into each flask, swirl
slightly, then cover and place in the dark for S
minutes.

d. Titrate each with 0.025N thiosulfate solution, adding
soluble starch indicator when the yellow iodine color
fades. The end point is reached when the blue color
disappears.

e. The sulfide concentration may be calculated from:

(Touat = Tuampre) X Ngyo32- 1 mole S* 1000 umoles
Sulfide = X X
(kmol/ml) \ 2 equiv S* 1 mmole
where T = volume of titrant used for the blank and sample (ml)

N = concentration of S,0,2- titrant
V = volume of sample used (2.00 ml)

E. 8tandard Iodine solution (0.025N): Dissolve 20-25 g KI in
100 ml deionized water. Weigh 3.2 g I, and dissolve in KI
solution. Dilute to 1.00-1 with deionized water. This
solution may be standardized against the thiosulfate
solution.

F. Thiosulfate titrant (0.025N) may be purchased commercially
or prepared in the laboratory. If prepared in the lab, it
should be standardized against potassium dichromate.
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1. Preparation: Weigh approx. 6.2 g of Na,5,0,-5H,0 into 500-
ml beaker. Add 0.1 g Na,CO, and dissolve in 400 ml DDIW.

Pour into 1.00-1 vol. flask and dilute to volume with
DDIW.

2. Standardization
a. Weigh 0.2 g dry K,CrO, into a 500-ml Erlenmeyer flask
and dissolve in 50 ml deionized water.
b. Dissolve 3 g of KI in 50 ml of deionized water, add S
ml of 6M HCl, and add to KI solution. Swirl, cover
and store in dark for 5 minutes. Add 200 ml deionized
water and titrate with the thiosulfate solution,
adding starch indicator when the yellow iodine color
fades, until the blue color fades to pale green.
3. Calculate the thiosulfate concentration as follows:

g K,Cro, 1 mole K,Cro, 6 equiv K,Cro, 1000 ml

N(Szof’) = X - X X

V.

VI.

(1)

(2)

(3)
@)

ml S,0, 294.19 g K,Cru, 1 mole K,Cro, 11

G. 8oluble starch indicator is prepared by dissolving 1.0 g
starch in 100 ml boiling deionized water.

Preparation of sulfide electrode and meter

The sulfide and reference electrodes and meter should be
used and maintained as per the manufacturer's specifications.
The instructions below give the brief description; see the
meter or electrode operating manuals for detailed
instructions.

1. Clean the inner sleeve of the double junction reference
electrode with deionized water and fill the inner sleeve
with the appropriate filling solution (saturated AgCl).

2. Clean and dry the outer sleeve walls with deionized
water. Moisten the gasket of the outer sleeve with the
outer sleeve filling solution (10% KNO,), slide the
sleeve on over the inner sleeve and screw on the end
cap. Fill the outer sleeve with filling solution.

3. Inspect the surface of the sulfide electrode and polish
if necessary (see electrode operating instructions for
details).

4. Connect the electrodes to the meter.

References
DiToro, D.M., J.D. Mahoney, D.J. Hansen, K.J. Scott, M.B.
Hicks, S.M. Mayr and M.S. Redmond, Toxicity of Cadmium in
Sediments: the Role of Acid Volatile Sulfide, Environmental
Toxicology and Chemistry, 1990, 9, 1487-1502.
Cornwell, J.C. and Morse, J.W., The characteristics of iron
sulfide minerals in anoxic marine sediments, Marine
Chemistry, 1987, 22, 193-206.
Rapin, F., A. Tessier, P.G.C. Campbell and R. Carignan,
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Appendix 3. QA/QC Protocol
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Benthic Flux Sampling Device
Bremerton Survey
Sample Log Sheet

Site # :

Site Description :

Site Coordinates : LAT LONG
GPS
LORAN
description sample # time(date, HH:MM:SS) notes
BFSD Samples
to

time series:
1

2

Sediment Sample

AVS Sample

Pore Water Sample




Benthic Flux Sampling Device
Bremerton Survey

Shipping Custody Sheet

Date Shipped: Date Recieved:
Released by: Recieved by:
Sample # description date collected
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ANALYTICAL QUALITY ASSURANCE

Method Blanks

Throughout the analyses, method blanks are employed as
a means of verifying contamination free preparation and
reagents. Each batch of extracted and digested samples is
accompanied by a blank which is analyzed in parallel with
the rest of the samples being carried through the entire
preparation and analysis procedure.

Instrument calibration

Instruments are calibrated at the start of each
analytical batch. With water samples and extracted water
samples, the method of standard additions is used to
generate each calibration curve. Successive dilution of a
standard is used to generate standard curves for the
analysis of the digestates. 1Initial calibration is verified
by subsequent measurement of an independently prepared
standard. The calibration is confirmed at regular intervals
during an analytical run.

Accuracy

Standard reference sediments are digested and analyzed
periodically as a check on general method accuracy.
Additionally, spiked replicates of field samples are
processed with each analytical batch in order to validate
method accuracy within the context of varying matrices.

With water and extracted water samples, which are
analyzed by the method of standard additions, spiked samples
are not used.

Precision

Analytical precision and method detection limits are
determined by replicate storage, preparation, and analysis
of standard sea water. Further verification of precision is
achieved by splitting one in twenty field samples. The
limited volume available from each field sample restricts
the number of split duplicates available to analyze.
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19 DEC. 91

MEMORANDUM FOR BART
FROM JOHN ANDREWS

SUBJECT: PRECISION OF BREMERTON SEA WATER SAMPLE ANALYSIS

The following precision data is based upon three replicate analyses of a single sample.
The sample was split so that each replicate was independently filtered, acidified, stored,
extracted, and analyzed. The 90% confidence interval is based upon a two sided T-test
with 2 (3-1) degrees of freedom. I feel that these numbers are conservative in that
analyzing a larger number replicates would yield a narrower confidence interval.

Relative 90% Confidence

Standard Deviation Interval
Cu.......... 21% coeiieiininnnen. +/-61%
Cd.......... 10% covnviienininnns +/-29%
Ni.......... 5.7% eenvecininninnnn. +/-17%
Pb.......... 3.7% covevvnininnnen. +/-11%
Zn.......... 9.4% ..cevvnrinninnnnn. +/-27%

Cr(VI) and Hg precision data not available as sample concentrations were below the
method detection limits.

As precision was not tested.

Call me with questions or if you decide that you need to have tighter confidence limits.




Appendix 4. PAH/PCB Report
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Appendix 4. PAH and PCB Data for July 1991 Sinclair Inlet Survey

D. R. Young, R. J. Ozretich, K. A. Sercu, F. A. Roberts
U. S. EPA, ERL-N

2111 S. E. Marine Science Drive

Newport, OR 97365-5260

The PAH and PCB data obtained from the July 1991 survey of Sinclair

Inlet are listed in Tables 4-1 through 4-11. Therein follows a
summary of associated QA/QC data and related tables and figures.
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Table 4-1. Positions (GPS latitude and longitude) of NOSC
stations sampled for sediment and/or overlying water
in Puget Sound - Sinclair Inlet, July 1991.

NOSC STATION LATITUDE (N) LONGITUDE (W)
Degrees Minutes Degrees Minutes
1A 47 33.47 122 36.04
1B 47 33.64 122 37.48
2A 47 33.56 122 37.67
2B 47 33.43 122 38.94
3A 47 33.26 122 39.32
3B 47 33.29 122 38.74
4A 47 33.20 122 39.11
4B 47 32.08 122 40.76
SA 47 33.38 122 38.96
5B 47 33.46 122 38.16




Table 4-2. Concentrations' of Aroclor 12547, P, p'-DDE , and PAhs
(ug/kg dry wt.) in surficial sedlments collected’ from
Station 3B in Sinclair Inlet of Puget Sound, July 1991.
Values for percent water and percent TOC also are listed.

NOSC STA. # 3B-TO 3B-T40 Ave. S.E. TO0+T40
EPA RIBBS # 013 006
GC/MS BF # 310 297
Percent Water 57.9 61.9 59.9 2.0 -
Percent TOC 2.19 2.59 2.39 0.20 -
Aroclor 1254 214 100 157} 57 2.1
p,p'-DDE 3! - 3! - -
naphthalene 33! 42! g’ 5 0.8
2-methylnaphthalene 29 31 30 1 0.9
l1-methylnaphthalene 19 19 19 0 1.0
biphenyl 7 6 6 1 1.2
2,6-dimethylnaphthalene 37 68 52 16 0.5
2,3,5~-trimethylnaphthalene 10 14 12 2 0.7
acenaphthylene 62 44 53 9 1.4
acenaphthene 19 11 15 4 1.7
fluorene 34 22 28 6 1.5
phenanthrene 253 123 188 65 2.1
anthracene 125 91 108 17 1.4
l1-methylphenanthrene 43 20 32 12 2.2
dimethylphenanthrene - - - - -
fluoranthene 858 453 656 203 1.9
pyrene 1160 561 860 300 2.1
benzo[a]anthracene 360 244 302 58 1.5
chrysene 630 416 523 107 1.5
benzo(b]fluoranthene 397 362 380 18 1.1
benzo([k]fluoranthene 596 423 510 87 1.4
benzo[e]pyrene 433 303 368 65 1.4
benzo[a]pyrene 420 300 360 60 1.4
perylene 94 76 85 9 1.2
indeno{1,2,3-cd]pyrene 331 264 298 34 1.3
dibenz[ah]anthracene 50 59 54 5 0.8
benzo[ghi]perylene 291 207 249 42 1.4
AVE:

o
L] L[]
IS

SE:

lFootnoted values lack GC/MS second-ion confirmation; all
values are "blank-corrected" (no blanks detected).

’Estimated from PCB congener IUPAC number 110.
’No detectable p.,p'-DDT or p,p'-DDD.

‘Separate grab samples collected upon deployment (TO) and
retrieval (T40) of the Benthic Flux Sampling Device.
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Table 4-6. Concentrations (ng/liter) of Aroclor 1254' and PAHs
in seawater procedural blank samples from Puget Sound
Sinclair Inlet survey, July 1991.

ID #
GC/MS BF #
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2-methylnaphthalene
l-methylnaphthalene
biphenyl
2,6-dimethylnaphthalene
2,3,5-trimethylnaphthalene
acenaphthylene
acenaphthene

fluorene

phenanthrene
anthracene
l-methylphenanthrene
dimethylphenanthrene
fluoranthene

pyrene
benzo(a]anthracene
chrysene
benzo{b]fluoranthene
benzo{k])fluoranthene
benzo[e]pyrene
benzo{a]pyrene
perylene
indeno[1,2,3~cd]pyrene
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'Estimated from PCB congener number 110.




Table 4-7. Concentrations' of Aroclor 1254° and PAHs (ng/liter)
in TO pumped seawater samples from Sinclair Inlet:
Puget Sound Naval Shipyard NOSC Station 5B (19 July

1991).

ID # Rl R2 R3

EPA R1BBO # 001 002 003

GC/MS BF # 209 210 211 Median Ave. * S.E.
Aroclor 1254 0.0 o0.3' o0.1' o0.1' o0.1' *o0.1
naphthalene 2.9 3.6 5.8 3.6 4.1 * 0.9
2-methylnaphthalene 1.8 1.9 3.8 1.9 2.5 * 0.7
l1-methylnaphthalene 1.4 1.5 2.5 1.5 1.8 * 0.4
biphenyl 0.4 0.3 0.5 0.4 0.4 * 0.1
2,6-dimethylnaphthalene 1.6 1.4 2.5 1.6 1.8 % 0.3
2,3,5-trimethylnaphthalene 0.9 1.3 2.0 1.3 1.4 * 0.3
acenaphthylene 0.3 0.4 0.6 0.4 0.4 * 0.1
acenaphthene 2.5 2.1 3.6 2.5 2.7 * 0.4
fluorene 1.6 1.6 2.5 1.6 1.9 + 0.3
phenanthrene 2.7 1.9 3.5 2.7 2.7 % 0.5
anthracene 0.4 0.4 0.6 0.4 0.5 * 0.1
l1-methylphenanthrene 0.6 0.6 0.9 0.6 0.7 £ 0.1
dimethylphenanthrene - 0.3 - 0.3 0.3
fluoranthene 5.0 4.3 7.2 5.0 5.5 * 0.9
pyrene 2.51 2.2 3.9l 2.5l 2.91 * 0.5
benzo[a]anthracene 0.4 0.4 0.6 0.4 0.5 % 0.1
chrysene 0.6 0.6 0.9 0.6 0.7, %+ 0.1
benzo(b]fluoranthene 0.5 0.6 0.7' o0.6 0.6 + 0.1
benzo[k]fluoranthene 0.4 0.4 o0.4' o0.4' o0.4' + 0.0
benzo[e]pyrene 0.4 0.5 0.6 o0.5' 0.5 to0.1
benzo[a]pyrene 0.2 0.3' 0.3} 0.3' o0.3' % o0.0
perylene 0.1' o0.1' o0.1' o0.1' o.1! % 0.0
indeno(1,2,3-cd]pyrene 0.2 0.3' 0.3' o0.3' o0.3' to.0
dibenz[ah]anthracene - - - - -
benzo[ghi]perylene 0.2 0.3 0.3 0.3 0.3 % 0.0

lFootnoted values lack GC/MS second-ion confirmation; all
values corrected for average blank.

’Estimated from PCB congener number 110.
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Table 4-8. Concentrations' of Toc (mg/liter), and Aroclor 1254°
and PAHs (ng/liter) in T40 pumped seawater samples
from Sinclair Inlet: Puget Sound Naval Shipyarad
NOSC Station 5B (21 July 1991).

ID # R1 R2 R3
EPA R1BBO # 010 011 012
GC/MS BF # 220 221 242 Median

>
<
®
|

7]
™

L]

o
b
L]

o
()}
I+
(=4
o

TOC 0.80 0.81
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naphthalene
2-methylnaphthalene
l-methylnaphthalene
biphenyl
2,6-dimethylnaphthalene
2,3,5-trimethylnaphthalene
acenaphthylene
acenaphthene

fluorene

phenanthrene
anthracene
l-methylphenanthrene
dimethylphenanthrene
fluoranthene

pyrene
benzo[a]anthracene
chrysene
benzo[b]fluoranthene
benzo[k]fluoranthene
benzo[e]pyrene
benzo([a]pyrene
perylene
indeno[1,2,3-cd]pyrene
dibenz[ah)anthracene
benzo[ghi]perylene
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!Footnoted values lack GC/MS second-ion confirmation; all
values corrected for average blank.

‘Estimated from PCB congener number 110.
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Table 4-9. Concentrations' of TOC (mg/liter), and Aroclor 1254°
and PAHs (ng/liter) in TO pumped seawater samples
from Sinclair Inlet: Puget Sound Naval Shipyard NOSC
Station 3B (21 July 1991).

R1BBO # 023
GC/MS # 243

TOC

L]
0
- W

Aroclor 1254
naphthalene
2-methylnaphthalene
l-methylnaphthalene
biphenyl
2,6-dimethylnaphthalene
2,3,5-trimethylnaphthalene
acenaphthylene
acenaphthene

fluorene

phenanthrene
anthracene
l1-methylphenanthrene
dimethylphenanthrene
fluoranthene

pyrene
benzo[a]anthracene
chrysene
benzo([b]fluoranthene
benzo(k]fluoranthene
benzo[e]pyrene
benzo{a]pyrene
perylene
indeno(1,2,3-cd]pyrene
dibenz{ah]anthracene
benzo(ghi)perylene
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'Footnoted values lack GC/MS second-ion confirmation; all
values corrected for average blank.

’Estimated from PCB congener number 110.
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Table 4-10. Concentrations' of TOC (mg/liter), and Aroclor 12542
and PAHs (ng/liter) in Benthic Flux Sampling Device

seawater samples from Sinclair Inlet: Puget Sound
Naval Shipyard NOSC Station 5B (19-21 July 1991).

ID # TO T8 T16 T24 T32 T40
NOSC # Bl B2 B3 B4 BS B6
EPA R1BBO # 008 029 028 005 025 027
GC/MS BF # 217 233 232 214 208 230
TOC . 3.9 7.0 4.4 7.2 .0
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Aroclor 1254
naphthalene
2-methylnaphthalene
l-methylnaphthalene
biphenyl
2,6-dimethylnaphthalene
2,3,5-trimethylnaphthalene
acenaphthylene
acenaphthene

fluorene

phenanthrene
anthracene
1-methylphenanthrene
dimethylphenanthrene
fluoranthene

pyYrene
benzo[a]anthracene
chrysene
benzo[b]fluoranthene
benzo[k]fluoranthene
benzo[e]pyrene
benzo[a]pyrene
perylene
indeno(1,2,3-cd]pyrene
dibenz{ah)anthracene
benzo[ghi]perylene
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Footnoted values lack GC/MS second-ion confirmation; all
values corrected for average blank.

’Estimated from PCB congener number 110.
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Table 4-11. Concentrations' of TOC (mg/liter), and Aroclor 1254°

and PAHs (ng/liter) in Benthic Flux Sampling Devic
seawvater samples from Sinclair Inlet: Puget Sound
Naval Shipyard NOSC Station 3B (21-23 July 1991).

ID # TO T8 T16 T24 T32 T40
NOSC # Bl B2 B3 B4 BS B6
EPA R1BBO # 024 007 009 004 026 006
GC/MS BF # 244 216 218 207 229 215
TOC 7.3 .0 7. 10.4 8.0 10.9
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-

Aroclor 1254
naphthalene
2-methylnaphthalene
l1-methylnaphthalene
biphenyl
2,6-dimethylnaphthalene
2,3,5-trimethylnaphthalene
acenaphthylene
acenaphthene

fluorene

phenanthrene

anthracene
l-methylphenanthrene
dimethylphenanthrene
fluoranthene

pyrene
benzo[a]anthracene

chrysene

benzo[b]fluoranthene
benzo[k]fluoranthene
benzo[e]pyrene
benzo[a]pyrene
perylene
indeno([1,2,3~-cd]pyrene
dibenz(ah}]anthracene
benzo[ghi]perylene
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lFootnoted values lack GC/MS second-ion confirmation; all
values corrected for average blank.

*Estimated from PCB congener number 110.
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QUALITY ASSURANCE - QUALITY CONTROL

INTRODUCTION. Here we present information related to the
reliability of the chemistry data listed above. Some of this
information is in graphical form. In order to include as many of
the target compounds as possible in the graphs, brief codes
arbitrarily have been selected to represent these analytes (Table
4-12). An outline of the procedures used to identify and quantify
the analytes in overlying water is presented in Table 4-13.

SAMPLING OF OVERLYING WATER. In this survey of Puget Sound's
Sinclair 1Inlet, estuarine water overlying the bottom sediment
outside the Benthic Flux Sampling Device (BFSD) was collected via
a Teflon tubing - submerged pump Seawater Pumping System (SPS)
developed by the Naval Ocean Systems Center (NOSC). The SPS was
cleaned between stations by cycling detergent-containing water
through the tube-pump system overnight, and flushed by pumping
ambient water for a minimum of 5 minutes before sampling. As part
of the development of this system, tests had been conducted in San
Diego Harbor during the summer of 1990. Triplicate samples of
subsurface water were collected from mid-Bay stations both by the
SPS, and by divers who opened pre-cleaned sampling bottles at depth
to collect the water and then tightly sealed them before surfacing.
Mean and standard error (SE) values for blank-corrected water
concentrations of a spectrum of the target PAH compounds are
compared in Figure 4-1 (PCB concentrations were too low to provide
a reliable assessment). This comparison indicates that the use of
the SPS to collect subsurface water samples from active harbor
areas does not significantly bias the resultant PAH concentrations.

SENSITIVITY OF GC/MS ANALYSIS OF OVERLYING WATEKR. The analytical
capability of the Selected Ion Monitoring Gas Chromat.ography - Mass
Spectrometry procedure developed by ERL-N/PEB for identifying and
quantifying trace organic compounds in small-volume (0.5 1liter)
water samples is extremely sensitive. Figures 4-2 and 4-3
illustrate the strong signals obtained in overlying water from
Benthic Flux Station 5B for l-methylnaphthalene at about 2 parts-
per-trillion (ng/L) in both the first or "quantification" ion, and
the second or "confirmation" ion. Further, the ratios of these two
signals agree with that obtained from corresponding standards
within 4 percent, well within the +/- 20 percent agreement
criterion established for second ion confirmation at this GC/MS
laboratory. In contrast, Figure 4-4 illustrates the apparent
signature of PCB congener number 110 at an equivalent Aroclor 1254
concentration of 0.7 ng/L in overlying water from Station 3B.
Clearly, no second-ion confirmation was obtained (Figure 4-5).
However, since PCB - 110 constitutes only about 6 percent of the
Aroclor 1254 mixture, the peak illustrated in Figure 4-4
corresponds to a specific congener concentration of 0.04 ng/L. As
no second-ion confirmation was obtained, this observation is
accepted only as an upper limit value. Nevertheless, upper limit
values for pollutants do constitute valuable information,
especially when such values are below guidelines (here, EPA's Water
Quality Criterion of 1 ng/L for PCB). If enough such results are
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obtained for a given water body, concern over damage to that
ecosystem component by the pollutant lessens. Thus, the analytical
sensitivity demonstrated here is significant from the environmental
management perspective. In addition, the ability to detect a
possible concentration of an individual compound (congener no. 110)
at 0.04 parts-per-trillion in a half-liter water sample provides
for this laboratory an entree to a new arena of environmental
research opportunities.

ACCURACY OF WATER PAH CONCENTRATIONS: A routine component of the
laboratory's QA/QC program for water samples is the spiking of a
relatively clean representative matrix (addition of standards at
levels far above ambient concentrations). In this study, estuarine
water pumped from Yaquina Bay, Oregon, into the flowing seawater
system of the Hatfield Marine Science Center was selected, because
previous studies had shown that the PAH levels were similar to the
low (sub-part-per-trillion) procedural blank values typically
obtained. Thus, uncertainties in the contribution of ambient PAH
concentrations to those measured in the spiked water samples is
negligible. Figure 4-6 illustrates the comparison of measured and
spiked values for the spectrum of target PAH compounds. The median
recovery efficiency is about 90 percent. It should be noted that
the use of internal standards as part of the laboratory's GC/MS
procedures automatically corrects for recovery efficiency, to the
first order. The fact that recoveries are high indicates that
uncertainties in this recovery correction step are relatively
small.

ACCURACY OF SEDIMENT PCB AND PAH CONCENTRATIONS: Reference
sediment (SRM 1941) containing known PCB and PAH concentrations
(the latter class certified) was obtained from the National
Institute for Science and Technology (NIST). Replicate analyses
provided the comparison between values measured by this EPA
laboratory and those reported by NIST, illustrated in Figure 4-7.
In general, very good agreement was obtained, typically within
about 15 percent.

ACCURACY AND PRECISION OF SEDIMENT TOC CONCENTRATIONS: The
sediment Total Organic Carbon (TOC) values listed in this appendix
have been corrected for a very small procedural blank value (n=2),
which averaged 0.015 t 0.001 (SE) percent (g TOC per 100 g sediment
on a dry weight basis). In general this constituted a correction
of less than one percent of a TOC gross value. Two TOC reference
sediments also were analyzed. The mean (t 1 standard deviation)
obtained for the first (Code BCSS-1) was 2.20 t 0.09 percent vs.
the reference value of 2.19 t 0.09 percent. Corresponding values
for the second reference sediment (Code PACS-1l) were 3.61 + 0.04
vs. 3.69 *+ 0.11 percent.

PRECISION OF GC/MS INJECTION STEP: One area of uncertainty in
GC/MS analysis is the precision of the sample solvent injection and
compound measurement step. Therefore, periodically during a run,
a sample is programmed to be injected three times to determine the
- relative standard deviation (%$RSD) values for its target compounds.
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The results obtained from this survey's sediment and overlying
water samples are illustrated in Figures 4-8a and 4 -8b. The median
SRSD values is about 15 percent for each of these matrices.

PRECISION OF SEDIMENT PCB AND PAH ANALYSES: Replicate aliquots
were taken from within one jar of surficial sediment collected from
Site 1A; the resultant GC/MS analyses were used to calculate
"Within Sample"™ 3IRSD values for Aroclor 1254 and the target PAH
compounds. In addition, surficial sediment samples were collected
at Benthic Flux Station 3B upon the deployment of the BFSD, and
again at itsretrieval two days later. Thus, this sample set
includes field variability between the slightly different locations
(uncertainty in meters) of the vessel and sediment grab sampler for
the two grab samples. Analyses of these two samples yielded
"Between Grabs" 3$RSD values. Both types of %RSD values are
illustrated in Figures 4-9a and 4-9b. These results show that, in
this case, much higher variability was obtained within a single
sediment sample jar than between separate jars of sediment
collected two days apart. Median $RSD values for the two cases are
approximately 80 and 25 percent, respectively. We speculate that
this was caused by heterogeneity of the Within Sample sediment,
possible owing to soot particles that were sampled
disproportionately. However, the fact that the Within Sample
aliquots were selected for the sediment sample from Site 1A, the
site of 1lowest contamination, may have contributed to the
relatively high variance observed for the sediment PAH
concentrations there.

PRECISION OF OVERLYING WATER PCB AND PAH CONCENTRATIONS AND
PROCEDURAL BLANKS: Triplicate samples of overlying water were
collected at Benthic Flux Station SB upon deployment of the BFSD.

Duplicate procedural blanks also were analyzed. Mean and one
standard error (SE) values obtained for the target compounds from
these analyses are summarized in Table 4-14. These results

illustrate the high precision obtained even at these very 1low
(generally sub-part-per-trillion) concentrations. The median SE
value for the water samples is 0.1 ng/L; the corresponding value
for the procedural blanks also is 0.1 ng/L.

PRECISION OF MEAN BENTHIC FLUX VALUES FOR PAH COMPOUNDS: The mean
flux values obtained by Bart Chadwick of NOSC, from the Benthic
Flux Station 3B BFSD water concentrations measured by this
laboratory, are illustrated in Figure 4-10. These results were
obtained from 1linear regression of the time-series water
concentrations, corrected for the secondary effect of dilution by
outside water upon withdrawal of the 0.5 liter sample (using either
Outside or TO sample values). Corresponding "r-square" values,
which represent the proportion of variance explained by the linear
regression, also are shown. For the first eight PAH compounds
(naphthalene through phenanthrene), measurable flux rates (i.e.,
greater than zero at the 80 percent confidence 1level) were
obtained; corresponding r-squared values ranged from 0.77 to 0.99,
with a median value of 0.84. This indicates that, for these lower
- molecular weight PAH compounds, a measurable flux from the
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contaminated surficial sediments to the overlying water was
observed, and that the linear regression model explains a
relatively high proportion of the variance obtained in the time-
series sample set.

PRECISION OF BFSD TIME-SERIES SAMPLE CONCENTRATIONS OF PCB:
Although the PCB values in the overlying water (Outside and BFSD)
samples generally were too low to obtain second-ion confirmation,
the set of blank-corrected concentrations (Table 4-15) does suggest
that the level of Aroclor 1254 in the overlying water at Benthic
Flux Stations 3B and 5B generally did not exceed 1 ng/L at the time
of sampling during our Sinclair Inlet survey. This illustrates the
utility of reporting near-detection-limit GC/MS values that lack
second-ion confirmation (thus considered here to be upper 1limit
concentrations). The standard error of the six time series values
for each station is a few tenths of a ng/L, and the SE values for
the triplicate set of Outside water samples collected upon
deployment (TO) and retrieval (T40) of the BFSD at station 5B each
is 0.1 ng/L.
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Table 4-12. Codes used to represent target PCB mixture or PAH
compounds in figures of Appendix 4.

CODE COMPOUND
1254 Aroclor 1254
NA naphthalene
C1NA 1-methylnaphthalene
BIPH biphenyl
C2NA 2,6-dimethylnaphthalene
C3NA 2,3,5-trimethylnaphthalene
ACEY acenaphthylene
ACE acenaphthene
FLEN fluorene
PHE phenanthrene
ANT anthracene
C1PH i1-methylphenanthrene
FLAN fluoranthene
PYR pyrene
BaA benzo[a]anthracene
CRY chrysene
BbF benzo[b]fluoranthene
BKF benzo[k]fluoranthene
BeP benzo[e]pyrene
BaP benzo[a]pyrene
PER perylene
IND indeno(1,2,3-cd]pyrene
B2aA dibenz{ah]anthracene
BgP benzo[ghi]perylene
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Table 4-13.

LIQUID/LIQUID EXTRACTION
OF TOTAL ORGANICS (HYDROPHOBIC)
FROM SEAWATER SAMPLES

Method Summary

1.

20

7.
8.

Collect ~ 500 mL of sample, determine the
exact volume.

Add 25 pL per 500 mL sample of internal
standards in methanol. Concentrations in
samples are S0 pptr of deuterated PAH’s
and 5 pptr of PCB congeners. Equilibrate
for four hours.

Add 12 mL per 500 mL of sample of 10%
Isooctane in Hexane. Extract on shaker table
for 12 to 18 hours.

Remove and discard the water layer.

Concentrate the sample to 50 uL using high
purity N,.

Recovery standard added equivalent to 50 pptr
d"phenanthrene and 5 pptr of
PCB congener 79.

Transfer to GC vial with micro insert.

GC/MS Analysis:
GC: HP 5890 Series 1.

Column: J&W 30 meter *-0.25 mm ID
* 0.25 uM DB-5 coating.

Detector: HP 5970B Mass Selective Detector
Selective Ion Monitoring.

4-19




.

Table 4-14.
SINCLAIR INLET WATER BLANK
FLUX STA. 5B: T-0 Ave + SE Ave + SE
ALOCLOR 1254 0.1*+ 0.1 0.3*+ 0.2
NAPHTHALENE 4.1 + 09 22 + 0.1
2-CH3-NAPTHALENE 25 + 07 1.6 + 0.2
1-CH3-NAPTHALENE 1.8+ 04 09 + 0.0
BIPHENYL 14 + 01 04 + 0.0
2,6-DI-CH3-NAPHTHALENE 1.8 + 03 0.8 + 0.1
2,3,5-TRI-CH3-NAPHTHALENE 14 + 0.3 04 + 0.1
ACENAPHTHYLENE 04 + 0.1 -
ACENAPHTHENE 27 + 04 0.5*+ 0.2
FLUORENE 19 +.03 02 + 0.1
PHENATHRENE 29 + 05 04 + 0.1
ANTHRACENE | 0.5 + 0.1 0.0%
1-CH3-PHENATHRENE 0.7 + 01 -
FLUORANTHENE 55+ 09 0.1*+ 0.0
PYRENE 29 + 05 0.1 + 0.0
BENZO[aJANTHRACENE 0.5*+ 0.1 -
CHRYSENE 0.7 + 0.1 0.0%

BENZO[b]JFLUORANTHENE 06 + 01 -
BENZO[K]JFLUORANTHENE 04*+ 00 -

BENZO[e]PYRENE 0.5+ 01 -
BENZO[a]PYRENE 0.3*+ 00 -
PERYLENE 0.1*+ 0.0 -
INDENO[123cd]JPYRENE 0.3*+ 0.0 -
BENZO[ghi]PERYLENE 03 + 00 -

* Lacks 2nd ion confirmation
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Table 4-15.

AROCLOR 1254 IN WATER (ng/L)

Time (hr)
Ambient (0)
BFSD 0
BFSD 8
BFSD 16
BFSD 24
BFSD 32
BFSD 40
Ambient (40)

Sediment (ug/kg)

*

3B

* % % % % %%

VAHAOMAAAON

160

SB
0.1 *+0.1
0.2
0.2 *

0.2 *
0.2 *
0.1 *
0.4 *
0.3 *+0.1
960

Upper limit (no 2nd ion confirmation)
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Figure4-1.

SAN DIEGO HARBOR PAH (ng/L)

ACEY ACE FLEN ANT 2CPH FLAN PYR CRY BaA BbF BdP
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Figure 4 -6.
Accuracy of Water PAH (ng/L)
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Figure 4-7.

Accuracy of Sediment PAH (ug/kg dry wt)
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Figure 4-8a.

INJECTION VARIABILITY (%RSD)
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Figure 4-8b.

INJECTION VARIABILITY (%RSD)
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Figure 4-9a.

SEDIMENT PAH VARIABILITY (%RSD)
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Figure 4-9b.

SEDIMENT PAH VARIABILITY (%RSD)
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Figure 4-10.
3B PAH FLUX (ng/m?/day)
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FINAL REPORT Award N66001-91-M-L256

TITLE: Pore-Water Chemistry in Sinclair Inlet

PRINCIPAL INVESTIGATOR: Clare E. Reimers

DATE: December 2, 1991




1. SUMMARY OF EFFORT

During July 1991 the Marine Environment Branch at NOSC (Code 522) conducted a study of the flux
rates of contaminants from sediments in Sinclair Inlet, the location of the Puget Sound Naval
Shipyard, using an in situ benthic chamber instrument. Recognizing that the mobility of contaminant
metais and organic compounds may depend in large part on the redox chemistry and pH of the
sediments, this investigator deployed an instrument to measure with microelectrodes in situ high
resolution, pore-water profiles of dissolved O,, pH, electrical resistivity, and at some sites also
hydrogen sulfide and pCO, (the partial pressure of carbon dioxide). The instrument’s design is
described in Reimers (1987). Seven deployments were completed, although only five resulted in
usable data (Table 1). The major causes of lost data were: 1) sensor breakage (apparently by
benthic megafauna), and 2) sensor malfunction.

Benthic chamber time-series samples were analyzed for dissolved silica and in some cases total
alkalinity. The intent of this effort was to provide additional measures which could be used to
assess the benthic chamber’s performance.

2. RESULTS

2a. Microprofiler results

In situ microprotiles of O, pH and resistivity were measured successfully at four sites, 2B (two
deployments), 3B, 4A and 5B (Figures 1-3). Sulfide and pCO, were successfully measured only at
station 28 (Figure 4).

Resistivity- Measurements of the electrical resistivity of sediments are widely used to estimate
sediment porosity and diffusion coefficients. For a wide range of sediments, a simple relation has
been found between the ratio of the resistivity in the sediment and the resistivity of the water (R,/R,,;
a term called the formation factor, F) and porosity. This relation is:

F = ¢

where ¢ is the porosity (cm®,../cm’,.). and n Is typically ~2.5 to 3 for high porosity muds, whereas
n = 2 for unlithified sands (Ullman ang Aller, 1982).

The bulk sediment diffusion coefficient for dissolved species in the pore waters may be
approximated as: :

b,

0, = of

where D, is the free solution diffusion coefficient of the solute (Uilman and Aller, 1982). Values of D,
are needed to estimate benthic fluxes from pore water gradients and Fick’s law of diffusion.




The sediments in Sinclair iniet were observed to be primarily muddy sands, although some sites
were littered with shell or shipyard debris (e.g. cables). Bioturbation appeared restricted largely to
the uppermost ~1 cm. Our resistivity measurements yielded formation factor profiles that tended to
increase to F values of 2 to 2.5 in the first 6 cm, suggesting porosities decreased to approximately
0.7 by 6 cm depth. At site 4A, a high resistivity layer was encountered between 2 and 3 cm depth.
Since both the resistivity and pH electrodes penetrated this layer, it probably consisted of densely-
packed sand (a storm deposit?). Layering was also suggested by the formation factor profile at site
2B.

Oxygen- Oxygen microprofiles are shown in Figure 2. In the piots representing stations 3B and 4A,
some data points from above the sediment-water interface have been omitted because the records
were unusually noisy (due to an unknown source of signal interference). The oxygen profiles
illustrate that in Sinclair inlet the sediments are a sink for dissolved oxygen. Oxygen was generally
observed to be completely consumed in the first 0.5 cm of the sediment column. Of the four sites
profiled, site 5B had the steepest O, gradient.

pH- There were some problems with the pH measurements. At station 2B there were a number of
noise spikes that occurred at the same time in both profiles. These data points were omitted before
constructing the profiles in Figure 3. At stations 3B and 5B the pH microelectrodes performed well,
but readings right at the sediment-water interface were not recorded because the pH
microelectrodes crossed the interface a few millimeters before the resistivity probe located the
interface. (The microprofiler has a search program based on the resistivity output. in this program
mode, pH and all the other sensors except resistivity are read only every 10 mm until the interface is
detected, see Figure 1). However, the pH profile at station 4A is the one which is the most
questionable. The electrode potential recorded was shifted roughly 200 mV above its normal value
(at pH 8). We have observed this problem before and believe it is caused by a stray low resistance
path that develops across the penetrator that passes the signal through the microprofiler pressure
housing. When this potential shift occurs, the electrode may not exhibit a full response.

In spite of the above qualifications, the pH profiles in Figure 3 illustrate that pore water pH
decreases abruptly in the first 0.5 cm of sediment in Sinclair Iniet. The pH decrease is greatest at
site 5B, and the level value reached at 5B of ~6.2 is unusually low for marine systems.

Sulfide- A silver-silver sulfide microelectrode was successfully deployed at site 2B. The potential of
the microelectrode versus depth in the sediment is illustrated in Figure 4. This potential is ideally a
direct function of the logarithm of the activity of the sulfide ion, ag,. (Berner, 1963). A lowering of
the sulfide electrode’s EMF corresponds to an increase in the activity of sulfide ion. At sediment
depths greater than 39 mm at site 2B the potential of the sulfide electrode was more negative than
-503 mV which was the limit of our instrument’s input range (Figure 4).

Berner (1963) determined the calibration curve for the silver-siiver sulfide electrode versus a calomel
electrode at 25°C to be:

Ege = -890 + 0.0295pS*

where pS* = -logag,..

If this calibration holds for our microelectrodes (laboratory tests still need to be run), we can convert
our measured potentials to values of pS* after correcting the equation above for the potential
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difference between a Ag/AgCl and a calomel reference electrode, since we used the Ag/AgCl
reference. This changes the constant in the above equation from -.890V to -.935V. Thus, we
estimate that the pS* of the bottom water at site 2B ~29, whereas at a depth of 39 mm in the
sediment it = 14.6.

Since the principal sulfide species at the pH of these sediments (7.5-8.0; Figure 3) is HS not S*, the
concentration of total sulfide species (ZH,S) may be estimated from the equilibrium retationships
between H,S, HS', and H*, and HS", S* and H*. The equilibrium constants for these relationships are
K, = 10™% and K, = 107% at 25°C. Thus, we calculate the pore water hydrogen sulfide
concentration at site 2B increases from zero at the sediment water interface to a concentration
which is only ~0.01 uM below 4 cm depth. This latter value seems unrealistically low. Once our
sulfide microelectrodes have been properly calibrated, these calculations will need to be redone.

pCO,- This investigator has been developing pCO, microelectrodes for pore water studies. The
reason for this work is that with this parameter and pH one can calculate the concentrations of all
the inorganic carbon species, i.e. CO,,,. CO,*, and HCO, in pore waters. Two pCO, profiles were
measured during separate deployments at site 2B (Figure 4). Both profiles indicate an increase in
pCO,, but a greater increase was determined at the first 2B deployment site.

The calibration of the pCO, measurements requires an estimation of the pCO, of the bottom water
above the sediment. At site 2B, bottom water alkalinity was measured as 2153.6 ymol kg'; pH as
8.058 (NBS), and 2CO, as 1920 umol kg"' (measured by CO, coulometer). If we use alkalinity and
2CO, to calculate pCO,, the estimate is 283 uatm; if we use pH and alkalinity, it is 561 patm;
whereas if we use pH and XCO,, it is 530 uatm. These estimates should be consistent. They may
differ because 1) one of the measurements is in error (e.g. how good is the pH calibration of the
benthic flux chamber electrode?); or 2) each parameter was measured in a different water parcel,
collected at different times from above the site. In Figure 4, we have used the intermediate value
(530 patm) as the estimate of the pCO, of the bottom water. This was concluded because we
suspect the bottom water pCO, to be > 355 patm, the approximate value of water in equilibrium
with the atmosphere.

2b. Benthic Flux Chamber Analyses

The results of our analyses of the benthic chamber time-series samples are given in Table 2. If we
assume that a steady increase in dissolved silica over the time course of a depioyment is a good
indicator of a problem-free chamber deployment, sites 1A, 2A, 2B, 3B, 4A, 4B and 5A appear
"problem-free". The chamber resuits from sites 1B, 3A and 5B are unusual. Alkalinity determinations
at site 3A were aiso highly variable suggesting a sampling problem (Table 2). For sites 2B and 3B,
2ZCO, concentrations were estimated from alkalinity measurements and the pH records of the
chamber’s pH electrode. These yield fiux rates of 10.7 and 8.75 pmolcm? day’. These fluxes are
about equal to the highest rates of organic carbon oxidation (8.2-9.4 umol cm? day™) given for
shallow marine sediments in a review article by Henrichs and Reeburgh (1987).

3. EURTHER INTERPRETATIONS

The sediments in Sinclair inlet are highly anoxic and their black color indicates iron sulfide
precipitation. The consistently iow pore water pH values, the smell of suifide given off by the muds,
and the suifide electrode profile at station 2B, suggest that excess sulfide is present in solution.
“hus, based on solubility considerations, we would predict that the concentrations of trace metais as
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free ions in these pore solutions are extremely low.

There are inconsistencies between the chamber ZCO, flux estimates and estimates that may be
derived from the pore water profiles that call for follow-up work. At station 2B, the oxygen gradient
at the sediment-water interface suggests a diffusive oxygen flux into the sediment of ~-1.0 umol
cm®day”. if all of the oxygen consumption was due to aerobic respiration (when it is likely that
much of the oxygen flux is driven by the oxidation of sulfides), this could produce a ZCO, fiux of at
most 0.8 umol cm?day™’ (assuming "Redfield" stoichiometry). If we accept the chamber-derived ZCO,
flux of 10.6 umol cm?day as reai, we must conclude that there is a high rate of ZCO, production in
association with one or more other process(es) such as anaerobic sulfate reduction and
methanogenesis. This seems plausible based on the high concentrations of acid-volatile sulfur in the
solids and the smell of sulfide given off by the muds.

The problem is that the pH and pCO, pore water profiles from station 2B do not indicate such a high
ZCO, flux if we assume the fiux is driven primarily by molecular diffusion and not advective
exchange (e.g. via bioturbation or bubble ebullition). Assuming the pore water pH and pCO, at 1 cm
depth in the sediments at station 2B were ~7.56 and 2000 patm (Figures 3 and 4), respectively, the
pore water 2CO, at this horizon is caiculated to equal approximately 2320 umol kg'. The measured
bottom water ZCO, was 1920 umol kg™ Thus, a gradient of ~400 umol kg'cm"' suggests a diffusive
flux of ZCO, out of the sediment of only roughly 0.3 umol cm?day”. This is considerably smalier
than the chamber estimate, but suspicious because it is less than the oxygen fiux alone. In the
future, we need to perfect our methods for calibrating our pCO, and sulfide microelectrodes to
improve the usefulness of these measurements for resolving such discrepancies. We should also
measure the pH of the chamber samples immediately after collection and compare these to the in
situ time-course records. If the chamber pH electrode is not functioning properly, the 2CO, fluxes
derived from pH and alkalinity will be in error.
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Tabie 1. in 3ity Microprofiler Resuits Summary. The microprofiler has 8 available sensor channeis: 1 that may be used for
resistivity, 3 for oxygen, 2 for pH or sulfide, and 2 for pCO,.

Deployment Date Site Sensor
Performance
Resistivity Oxygen pH pCO, Sulfide
1 7-20-91 4A E VG; P; P G P NU: NU NU
2 7-21-91 B E vG: 8 8 VG, G NU: NU NU
3 7-22:91 38 F B; 8.8 8 NU: NU 8
4 7-23-91 38 E GGP VG: VG P; NU NU
5 7-249 28 E G, P8 GG E: NU NU
6 7-25-91 18 F F.F. F F, F F, F NU
7 7-26-91 28 F VG P; B P € NU E

KEY- NU indicates not utilized; B= electrode broken in situ before protiling; F« failed; E= excelient resuits; VG = very good
resuits; G= good resuits (i.e. interpretable, but affected by noise of drift); P=poor resuits (unacceptable noise, interference
or drift levels).
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Table 2.Flux chamber Time-Course Sampie Analyses

SAMPLE SILICA umol kg'! Total Alkalinity umol  pH (NBS) In situ £CO, pmol kg
kg (caiculated)

28 TO1 220 21538 8.058 2027
281 39 22602 8.059 2129
82 91.9 24025 7.942 2307
283 118.4 2581.7 7.736 2553
284 144.7 2672.1 7.555 2708
285 1722 2766.1 7.447 2845
286 204.4 28225 7.389 2937
38 TO1 410 21277 8.009 2020
38| 389 2125.3 7.962 2033
382 71.4 2185.5 7.571 2207
383 898 22351 7.201 2387
384 99.7 22283 7.143 2421
.5 107.5 23189 6.994 2820
386 1193 2388.8 6.914 2769
3ATO 422 21436
3A1 18.5 1597.5
3A2 48.5 2070.3
3A3 50.8 1814.4
3A4 80.6 2087.5
AS 79.5 20837
3A6 725 2110.3
1A TO 217
1A1 22.1
1A2 46.3

" 1A3 59.8
1A 4 70.5
1AS 77.5
1A6 8868
181 295
182 54.5




Table 2.

183
184
18§
186

2ATO
2A1
2A 2
2A3
2A 4
2AS
2A6

4A T0
4A 1
4A 2
4A 3
4A 4
4A S
4A 6

4B TO
481
482
48 3
4B 4
4B S
486

§A TO
5A 1
SA 2
5A3
5A 4
SAS
SA 6

(Contd) .

81.1
60.9
53.7
613

23.1
259
56.1
78.4
820
1018
116.9

23.2
19.7
<26.0
46.1
61.0
§5.2
65.4

40.2
43.8
88.6
17
136.9
161.5
177.4

16.6
209
37.0
425
€5.3
65.4
88.1




Table 2. (Contd).

58 T0 29.0
58 To1 331
58 1 Nns
582 528
583 673
58 4 89.0
58§ 78.7
586 656
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Fig. 1. Formation factor profiles measured in situ in Sinclair Inlet
sediments. Resistivity readings were made every 1 mm until
the sediment-water interface was detected. Below the
interface, readings were taken every 0.25 mm to 30 mm and
then every 1 mm to 60 or 70 mm.
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Fig. 2. Oxygen microprofiles from Sinclair Inlet. Many profiles do not

extend very far into the sediment because the microelectrodes were broken
by the coarse sand or debris.
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Fig. 3. Profiles of pore water pH measured in Sinclair Inlet in July 1991.
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FIGURE 4. Microeiectrode profiles of sulfide (EMF) and pCO, at station 28. The
calibration of these sensors is uncertain and needs venfication.
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Appendix 6. Source Budget Calculations




PUGET SOUND NAVAL SHIPYARD SEDIMENT FLUX

The Puget Sound Naval Shipyard occupies approximately 1.1 by 10® m2. The following flux
values result from averaging contaminant flux rates from the current study for regressions with r2

values greater than 0.5 (from sites 1B, 2A, 2B, 3A, 3B, 4A, 5A, and 5B):

Average Sediment Flux Rate from
Current Study Sediment Flux (dissolved)
Element (ug/m?/day) (kg/day)

As 256 =143 0.28 £ 0.16
Cd 9+8 0.01 = 0.01
Cu 21 =90 0.02 £0.09
Ni 341 =92 041 =0.09
Pb -20 =8 *

Zn 655 +384 0.72 +0.42

* Flux rate < 0.

SINCLAIR INLET SEDIMENT FLUX

The inlet is approximately 4 nautical square miles from the west end to the east edge of the Puget
Sound Naval Shipyard (PSNS). Subtracting out the area of PSNS leaves an area of 1.261 by 107 m2.
The flux rate calculated from site 4B is then applied over this area to obtain the approximate total

sediment discharge of Sinclair Inlet:

Average Sediment Flux Rate from
Site 4B of Current Study Sediment Flux (dissolved)

Element (ug/m?/day) (kg/day)

As 152 =82 19 1.0

Cd L ]

Cu *

Ni 308 =241 39 +3.0

Pb *

Zn .

* No quantifiable flux.

Site 4B (at the west end of Sinclair Inlet) of the current study agrees with sites 3, 4, and 5 (from
the west end of Sinclair Inlet to the east edge of the Puget Sound Naval Shipyard) in Weston, 1990.
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NAVY VESSELS
Zinc

Historically, Navy vessels used zinc anodes for cathodic protection at a rate of approximately
one 23-1b anode per 100 ft2 of vessel. These anodes are 95 percent Zn by weight and when they are
replaced (generally every 3 years) they are anywhere from 50-75 percent spent.!

While conducting this study, the following vessels were at PSNS:

Hull Number Wetted-Surface Area (ft2)
647 27,000
601, 588, 585, 591, 593 24378 x 5
623,616 43,650 x 2
609 42,000
Total 278,190

At the rates mentioned above, these vessels collectively contribute 12.7 kg Zn/day (total).

Copper

The budget for copper includes the vessels mentioned in the above zinc analysis in addition to
the following ships:

Hull Number Wetted-Surface Area (ft2)

Total from above 278,190
CGN 35 40,260
CGN 36 37,755
CVN 70 159,500
AS 12 22,000

AOE1,2 103,520 x 2
Total 744,745

A value of 50,000 pg Cu/m2day was yielded by copper leach-rate tests carried out for many years
here at NCCOSC, NRaD, on panels coated with F121 paint (a common antifouling paint historically
used by the Navy). Currently, less toxic antifouling methods are being employed; however, the ves-
sels listed above were more than likely painted with F121 paint. Using this information, the Navy
vessels collectively discharge approximately 3.5 kg Cu/day (dissolved).

1. Personal communication, Gordon Smith, DTRC.
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NON-NAVY VESSELS
Zinc

Approximately 900 non-Navy vessels are estimated to be moored in the Sinclair Inlet.2 The aver-
age vessel uses approximately 100 Ibs of zinc anode protection (shaft zincs and plate zincs) per year.
(Anodes totaling 10 Ibs are replaced every 6 months and are about 50 percent spent. The total dis-
charge from non-Navy vessels is thus 11.3 kg Zn/day (total).

Copper
If the average submerged surface area is 35 by 10 feet, and antifouling paint leaches copper at

a rate of 50,000 pg Cu/m2day, non-Navy vessels discharge approximately 2.1 kg Cu/day (dis-
solved).

CITY OF BREMERTON EFFLUENT DISCHARGE

According to the 11 August 1993 NPDES permit for the City of Bremerton (permit number
WA-002928-9),4 the 1992 yearly average flow of the Bremerton outfall was 6.0 mgd. The 1990
yearly average effluent concentrations of copper and zinc were 39.8 and 102 pg/l, respectively, for
a final discharge of:

Effluent Discharge
Element (total) (kg/day)
Cu 0.90
Zn 23

PUGET SOUND NAVAL SHIPYARD OUTFALL DISCHARGE

Outfalls 18 and 19 of the PSNS were monitored in December 1992 for copper, lead, and zinc
(Technical Information Fact Sheet in association with NPDES permit WA-000206-2).5 The aver-
age discharge rates for these two outfalls are 2.8 and 5.24 mgd, respectively. Results are given as
total/dissolved.

Outfall 18 Outfall 19 Combined Discharge
Outfall 18 | Outfall 19 Discharge Discharge (total/dissolved)
Element | (ugl) (ug/l) (kg/day) (kg/day) (kg/day)
Cu 35/16 19/7 0.37/0.17 0.38/0.14 0.75/0.31
Pb 28/1 SN 0.28/0.01 0.10/0.02 0.38/0.03
Zn 1176/32 708/10 12.1/0.33 14.2/0.20 26.3/0.53

2. Personal communication, Harbor Master.
Personal communication, Dave Bear, Bear Underwater Services, San Diego, CA.

w

4. Washington State Department of Ecology, 1993. National pollutant discharge elimination system waste
discharge permit #WA—002928-9 for the City of Bremerton, WA, issued 11 August 1993.

5. Washington State Department of Ecology, 1993. National pollutant discharge elimination system waste
discharge permit #WA-000206-2 for the Department of Defense, Department of the Navy, Puget Sound
Naval Shipyard, Bremerton, WA, Technical Information Fact Sheet Public Notice, dated 23 July 1993.
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