Daily Profile of the Extracellular Concentration of Glutamate in the Suprachiasmatic Region of the Siberian Hamster

M.A. Rea; S. Ferreira; W. Randolph; J.D. Glass

Armstrong Laboratory
Crew Systems Directorate
Brooks Air Force Base, TX 78235-5000

Diurnal patterns of variation in the extracellular concentrations of aspartate, glutamate, and glutamine in the suprachiasmatic nuclei (SCN) of Djungarian hamsters were determined by in vivo microdialysis. In all hamsters with dialysis probes located in or near the SCN (n=5), pronounced diurnal fluctuations in the extracellular concentration of glutamate were observed. Glutamate levels rose gradually during the latter half of the subjective day and through the night to reach peak values at about lights-on. The extracellular concentration of glutamate was significantly elevated (p < 0.05) during the latter half of the dark phase relative to the level at midday. Diurnal fluctuations were not consistently observed in the concentrations of aspartate and glutamine in SCN dialysates, nor were significant variations observed for any of the three amino acids in dialysates from probes located outside the SCN (n=3). The nocturnal rise in extracellular glutamate in the SCN was not attenuated by perfusion with 10 μM tetrodotoxin (TTX), although this concentration of TTX completely blocked increases in extracellular glutamate caused by simultaneous perfusion with 30 μM veratridine.
Best Available Copy
Daily Profile of the Extracellular Concentration of Glutamate in the Suprachiasmatic Region of the Siberian Hamster (43641)

M. A. Rea,* S. Ferriera, W. Randolph, and J. D. Glass
Circadian Neurobiology Research Group,* Armstrong Laboratory, Brooks AFB, Texas 78235 and Department of Biological Sciences,† Kent State University, Kent, Ohio 44242

Abstract. Daily profiles of the extracellular concentrations of glutamate (GLU), aspartate, and glutamine in the region of the suprachiasmatic nuclei (SCN) of the Djungarian hamster were examined by in vivo microdialysis. Hamsters with a dialysis probe located in or near the SCN exhibited a diurnal variation in the extracellular concentration of GLU. Glutamate levels rose gradually during the latter half of the subjective day and through the night to reach peak levels near the time of lights-on. The extracellular concentration of GLU was significantly elevated (P < 0.05) during the latter half of the dark phase relative to the level at midday. The average peak in extracellular GLU was 217% of the midday value (P < 0.05; n = 5). Diurnal fluctuations were not consistently observed in the concentrations of aspartate in SCN dialysates. The nocturnal rise in extracellular GLU in the SCN was not attenuated by perfusion with 10 μM tetrodotoxin, although this concentration of tetrodotoxin completely blocked increases in extracellular GLU caused by simultaneous perfusion with 30 μM veratridine. Collectively, these results point to a diurnal rhythm in extracellular concentration of GLU in the SCN region which may not reflect diurnal variations in synaptic activity.

There is substantial evidence that a light-entraining oscillator located in the suprachiasmatic nuclei (SCN) is responsible for the generation of circadian physiologic and behavioral rhythms in mammals (1, 2). In rodents, bilateral destruction or surgical isolation of the SCN abolishes circadian rhythmicity (3, 4), which is restored after transplantation of fetal SCN tissue into the third ventricle of SCN-lesioned hosts (5–7). These results, together with the observation that rhythmicity is present in cultured SCN explants for several days (8–12), indicate that rhythm generation is intrinsic to the SCN.

Circadian rhythms, which persist under constant environmental conditions, are normally entrained to the external light:dark cycle. The SCN receive poten-tially entraining photic information by at least two pathways; a monosynaptic projection from retinal ganglion cells (13–15), the retinohypothalamic tract (RHT), and an indirect retinal projection through the ventral lateral geniculate nucleus/intergeniculate leaflet (16, 17), the geniculohypothalamic tract. The RHT projection alone is both necessary and sufficient to support photic entrainment of the circadian oscillator (18, 19).

Excitatory amino acid (EAA) neurotransmission is thought to play an important role in mediating photic entrainment of the SCN oscillator. In the hypothalamic slice preparation, treatment with EAA antagonists blocks the neurophysiologic response of SCN neurons to optic nerve stimulation (20–22). Furthermore, intra-cerebral administration of EAA antagonists attenuates the phase-shifting effects of light (23, 24), as well as light-induced expression of immediate early genes in the SCN (24–26). However, little is known regarding the regulation of EAA neurotransmission in the SCN. In this regard, information on the temporal dynamics of EAA release in the SCN may contribute significantly to our understanding of the role of EAA neurotrans-

1 To whom requests for reprints should be addressed at Circadian Neurobiology Research Group, Armstrong Laboratory (CFTO), Brooks AFB, TX 78235.

Received January 27, 1993. (P.S.E.B.M. 1993, Vol 204)

Accepted June 7, 1993.

0037-9727/93/2044-0104$3.00/0

Copyright © 1993 by the Society for Experimental Biology and Medicine

104 GLUTAMATE IN THE SUPRACHIASMATIC NUCLEI
mission in SCN function. Therefore, the present report describes the daily pattern of fluctuation in the concentrations of two candidate EAA neurotransmitters, GLU and ASP, in the region of the SCN of Djungarian hamsters maintained under an oscillatory light:dark cycle.

Materials and Methods

Animals. A total of 22 adult male Djungarian hamsters (Phodopus sungorus) of approximately 90 days of age were used in the present study. The animals were reared in the Department of Biological Sciences vivarium at Kent State University and maintained under a 16:8-hr light:dark cycle. Food and water were available ad libitum.

Microdialysis. Microdialysis probes were of a concentric design and were constructed as described previously (27-29) from a 26-gauge stainless steel outer cannula into which was inserted a 36-gauge fused silica inner cannula (Polymicro Technologies Inc., Phoenix, AZ). A 3.0-mm length of nitrocellulose hollow fiber dialysis membrane (Spectrapore; Fisher Scientific, Pittsburgh, PA [o.d. = 0.23 mm; molecular mass cutoff = 6 kDa]) was inserted approximately 2.0 mm into the outer cannula and attached with epoxy resin (Devcon Corp., Danvers, MA). The distal end of the dialysis tubing was sealed with epoxy resin. The length of the dialysis tubing in contact with brain tissue was approximately 0.5 mm. Probe efficiency was determined by immersing dialysis probes in a standard solution of amino acids (Pierce, Rockford, IL) during flow of artificial cerebrospinal fluid (ACSF; 127 mM NaCl, 27.5 mM NaHCO₃, 2.4 mM KCl, 0.5 mM KH₂PO₄, 1.1 mM CaCl₂, 0.85 mM MgCl₂, 0.5 mM NaSO₄, and 5.9 mM glucose; pH 7.5) at a rate of 1-2 μl/min. Probe efficiencies for glutamate (GLU), aspartate (ASP), and glutamine were 5.0 ± 0.4%, 5.3 ± 0.2%, and 5.7 ± 0.1%, respectively. In two initial experiments, commercially available microdialysis probes were employed (Bioanalytical Systems [BAS], West Lafayette, IN; tip size, 0.5 mm x 1.0 mm).

Implantation of the microdialysis probes was performed under Nembutal anesthesia and the animals were treated with Combiotic (7500 units/hamster) after surgery. Probes were permanently affixed to the top of the skull using stainless steel screws and dental acrylic. The brain coordinates for placement of the probe tip in the SCN were (relative to bregma) as follows: AP = −0.015 cm, L = −0.03 cm, H = −0.74 cm. A section of dialysis tubing attached to the distal end of the probe permitted the continuous collection of ACSF perfusate. After surgery, the animal was placed in a deep-welled, circular cage and allowed to recover for at least 2 days. Samples were collected 24 hr after connecting the probe to a liquid swivel (Instech, Plymouth Meeting, PA) that allowed unrestricted movement of the animal. When specified, perfusate solutions were changed using a liquid switch (CMA 110; BAS). Perfusate was delivered to the probe using a calibrated syringe pump (CMA 100; BAS). Animals were perfused for a 2-hr period at the start of each experiment to obtain stable baseline levels of transmitter release. All collections were made under a photoperiod of LD 16:8 hr with lights-on at 0800 hr, and during the dark period, samples were collected under dim red light (<0.4 lux). Throughout the sampling experiments, visual inspection verified that the animals exhibited normal behavior, including eating, drinking, grooming, and a normal pattern of locomotor activity occurring predominantly during the dark period.

For assessment of the daily pattern in extracellular amino acid concentrations, hourly samples were collected continuously over 24 hr at a flow rate of 1 μl/min. In experiments involving the administration of pharmacologic agents, 20-min samples were collected at a perfusion rate of 2 μl/min. Each collection tube contained 0.05 M perchloric acid. Immediately after collection, samples were frozen on dry ice and stored under N₂ at −80°C until analyzed. Probe location was verified histologically from 10-μm thick, mounted frozen sections stained with cresyl violet.

Effect of Chemical Depolarization on the Extracellular Concentration of GLU and ASP. To determine whether changes in the concentration of EAA in SCN microdialysates might reflect local changes in EAA neurotransmitter release, we investigated the effect of chemical depolarization on the concentrations of EAA in SCN microdialysates. Chemical depolarization experiments were conducted during the light phase, beginning between 2 and 6 hr after lights-on. Hamsters were perfused with ACSF for 2 hr before sample collection. A constant flow rate of 2 μl/min was maintained throughout the experiment. Consecutive 20-min dialysate samples were collected into microfuge tubes containing 10 μl of 0.05 M perchloric acid, frozen immediately on dry ice and stored at −80°C until analysis. After the collection of at least five baseline samples, groups of hamsters (n = 3) were subjected to one of the following perfusion protocols: perfusion for 1 hr with ACSF followed by 1 hr with 150 mM KCl in ACSF (KCl substituted for NaCl); perfusion for 1 hr in calcium-free ACSF containing a mixture of calcium channel blockers; perfusion for 1 hr with ACSF followed by 1 hr with ACSF containing 30 μM veratridine; or perfusion for 1 hr with ACSF containing 10 μM tetrodotoxin, followed by 1 hr in ACSF containing 30 μM veratridine + 10 μM tetrodotoxin. After drug infusion, each animal was perfused with ACSF for an additional 1-2 hr. The effects of the

GLUTAMATE IN THE SUPRACHIASMATIC NUCLEI
drug treatments on the extracellular concentrations of GLU and ASP were ascertained by comparing the average concentrations of GLU and ASP during the 1-hr period before chemical depolarization with the average concentrations during the 1-hr period during chemical depolarization (Fig. 2).

Effect of Tetrodotoxin on Nocturnal Levels of EAA in SCN Microdialysates. To investigate the possibility that the apparent nocturnal rise in extracellular GLU was due to an acute increase in neuronal activity, the concentration of GLU was measured in the SCN region during chemical depolarization (Fig. 2). The extracellular concentrations of GLU and ASP during the 24-hr period beginning at 1200 hr were 0.62 ± 0.12 and 0.17 ± 0.05 nmol/ml, respectively (n = 5). GLU levels were as much as 217% higher during the latter half of the dark phase in comparison to values observed at midday (0.87 ± 0.15 nmol/ml vs 0.40 ± 0.16 nmol/ml, respectively; P < 0.05 [Fig. 1B]). The extracellular concentrations of ASP (and glutamine; data not shown) in the SCN did not fluctuate significantly.

Chemical depolarization of neurons in the vicinity of the dialysis probe using ACSF perfusate containing 150 mM KCl (KCl substituted for NaCl) significantly increased (P < 0.05; n = 3) the concentrations of GLU.

High-Performance Liquid Chromatography Determination of Amino Acids. Amino acids were determined as their o-phthalaldehyde derivatives by reverse-phase high-performance liquid chromatography (Waters amino acid analysis system) with fluorometric detection (30, 31). The stationary phase was a 5-μm C18 column (Waters Associates). The mobile phase consisted of a nonlinear gradient of methanol (0–65%) against 0.1 M sodium phosphate buffer (pH = 7.2) containing 0.2% methanol and 0.2% tetrahydrofuran. Samples were reacted with an equal volume of 0.5% o-phthaldialdehyde and 10% methanol in 0.4 M sodium borate buffer (pH 10.4) for 60 sec at room temperature before injection. Amino acid content was evaluated by comparison of peak areas with those for standards obtained under identical conditions.

Drugs and Reagents. Tetrodotoxin, veratridine, calcium channel blockers, amino acid standards, o-phthaldialdehyde, and all salts were obtained from Sigma Chemical Co. (St. Louis, MO). Methanol and tetrahydrofuran were obtained as high-performance liquid chromatography grade from Fisher Scientific.

Statistical Analysis. Drug effects were verified statistically using the two-tailed Student’s t test for paired observations. Data used to construct diurnal patterns of amino acid release were subjected to analysis of variance with repeated measures and differences between 3-hr means were tested post hoc for significance using the Duncan’s multiple range test.

Results

Representative diurnal profiles of the extracellular concentrations of GLU and ASP in the SCN region are shown in Figure 1. The average concentrations of GLU and ASP in SCN microdialysates during the 24-hr period beginning at 1200 hr were 0.62 ± 0.12 and 0.17 ± 0.05 nmol/ml, respectively (n = 5). GLU levels were as much as 217% higher during the latter half of the dark phase in comparison to values observed at midday (0.87 ± 0.15 nmol/ml vs 0.40 ± 0.16 nmol/ml, respectively; P < 0.05 [Fig. 1B]). The extracellular concentrations of ASP (and glutamine; data not shown) in the SCN did not fluctuate significantly.

Chemical depolarization of neurons in the vicinity of the dialysis probe using ACSF perfusate containing 150 mM KCl (KCl substituted for NaCl) significantly increased (P < 0.05; n = 3) the concentrations of GLU.

Figure 1. (A) Representative daily profile of the extracellular concentrations of GLU and ASP measured in microdialysates from the SCN region. Data are expressed as nmol/ml of dialysate. Stippling denotes the period of darkness during the 16:8-hr light:dark cycle. (B) Average daily profile of amino acid release from the SCN region. Data represent mean ± SE (n = 5) of the average value for the 3-hr intervals centered at the times indicated. The last time point represents the average value for the last 2 hr of perfusion. Asterisks indicate values that differ significantly (P < 0.05).
and ASP (127 ± 36%) in SCN microdialysates (Fig. 2). This effect was significantly attenuated by perfusion with calcium-free ACSF containing a mixture of specific calcium channel blockers (cinnarizine, flunarizine, verapamil, and diltiazem, all 0.4 mM). Similarly, depolarization with the sodium channel activator, veratridine (30 μM), significantly stimulated the release of GLU (82 ± 18%; P < 0.01; n = 3), and this effect was blocked by 10 μM TTX (Fig. 2).

Figure 3 shows the effect of local administration of 10 μM TTX to the SCN region during the dark phase (starting at 0400 hr). Perfusion with TTX appeared to cause a transient reduction in the concentration of GLU in SCN dialysates. However, a statistical comparison of the average concentration of GLU during the 1-hr period before TTX treatment and the concentration of GLU during TTX treatment showed that TTX failed to significantly reduce extracellular GLU (P < 0.5; n = 4).

Discussion
Excitatory amino acids appear to play an important role in the regulation of the SCN circadian oscillator, and may participate in the photic entrainment process, possibly as RHT neurotransmitters. Intrahypothalamic injection of GLU or ASP results in stable phase alterations of SCN-driven behavioral rhythms, indicating that the circadian oscillator is responsive to these compounds (32, 33). Furthermore, iontophoretically applied GLU has been shown to alter the excitability of SCN neurons, including a population that is photically responsive (34). In the hypothalamic slice preparation, EAA antagonists have been shown to dose-dependently attenuate both optic nerve stimulation-induced field potentials (20, 22), and excitatory postsynaptic potential recorded in the SCN (21), implicating EAA in RHT neurotransmission. Consistent with this suggestion are several reports showing that local administration of EAA antagonists dose-dependently attenuates light-induced phase alterations of the SCN oscillator and light-induced expression of immediate early genes in the SCN (23–26). However, it is important to point out that the evidence provided by these studies is largely pharmacologic in nature. While substantial evidence indicates that GLU functions as a classical excitatory...
neurotransmitter at many synapses in brain, the
physiologic release of GLU from retinofugal synapses,
including RHT terminals, has not been conclusively
demonstrated (35, 36; M. A. Rea, unpublished obser-
vations). Although EAA antagonists are effective in
blocking the effects of light on the SCN oscillator, EAA
agonists fail to mimic photic stimulation (24, 32, 33).
In view of available data, it is apparent that the identity
of the neurotransmitter(s) responsible for conveying
photic information to the SCN oscillator remains un-
known.

In the present study, we report temporal patterns
in the extracellular concentrations of two EAA neuro-
transmitter candidates, GLU and ASP, within the SCN
region of the Siberian hamster. Extracellular GLU
showed a pronounced diurnal pattern, with the lowest
levels occurring during the light phase and peak levels
occurring during the latter half of the dark phase. Levels
appear to fall gradually after lights-on. The concentra-
tion of ASP (and glutamine [data not shown]) did not
show diurnal fluctuations.

The apparent diurnal rhythm in the extracellular
concentration of GLU argues in favor of a role for this
neurotransmitter in SCN function; however, this find-
ing reveals little concerning the importance of GLU as
a regulator of clock function. The data clearly do not
support the hypothesis that RHT terminals are the
predominant site of origin of extracellular GLU in the
SCN. If this were the case, one would expect that release
of GLU from RHT terminals would be higher during the
photic phase of the cycle, leading to increased
diurnal levels of this amino acid. Thus, while the pos-
sibility remains that RHT terminals contribute to the
level of extracellular GLU, either during the day or at
night, it seems likely that release from elements other
than the RHT, such as glutamatergic fibers seen
throughout the hypothalamus (37, 38), is primarily
responsible for the nocturnal increase.

The possibility that neuronal elements contribute
to changes in the extracellular concentration of GLU
as detected by microdialysis is supported by the observa-
tion that inclusion of membrane depolarizing agents
in the microdialysis buffer results in increased GLU in
SCN microdialysates (Fig. 3). However, perfusion for 1
hr with 10 \(\mu M \) TTX, a concentration that blocked the
rise in extracellular GLU caused by 30 \(\mu M \) veratridine,
failed to significantly reduce the nocturnal GLU con-
centration, suggesting that the nocturnal rise in GLU is
not acutely dependent upon action potential-mediated
activity. This observation, however, does not eliminate
the possibility that high levels of extracellular GLU
observed during the dark phase are of neuronal origin,
since modulation of neurotransmitter release by TTX-
independent mechanisms has been described (39).

Another possible explanation of the apparent GLU
rhythm is that the nocturnal rise in extracellular GLU
is not due to increased neuronal activity per se but,
rather, is the result of a diurnal variation in GLU uptake
by SCN neuroglia. Immunostaining for glial fibrillary
acid protein is extremely high in the SCN, indicating
the presence of a large population of astrocytes (40).
Paulsen and Fonnum (41) have convincingly shown
that extracellular concentrations of amino acids, as
determined by microdialysis, are directly dependent
upon the integrity of glial uptake systems. Furthermore,
the suggestion that the rhythm in extracellular GLU
may be due to diurnal variations in glial uptake and
metabolism is consistent with the inability of TTX
to reduce the nocturnal level of GLU (Fig. 3). This hy-
pothesis suggests a potential mechanism by which SCN
neuroglia could influence neuronal excitability within
the nucleus in a circadian fashion. In this regard, it is
noteworthy that chronic TTX administration into the
SCN in vivo, which blocks both photic input to the
nucleus and SCN-driven circadian rhythms (output),
does not inhibit the time-keeping function of the nu-
cleus (42).

In conclusion, there is an apparent diurnal varia-
tion in the extracellular concentration of GLU in the
SCN region of the Siberian hamster, with peak levels
occurring 6–8 hr after the nocturnal rise in 5-hydroxy-
indoacetic acid in this species (27). The in vivo brain
microdialysis system described in the present study is
useful for the continuous assessment of neurotrans-
mittter release from discrete brain regions over extended
periods of time. Animals undergoing microdialysis ex-
hbit normal behavioral patterns, indicating that this
procedure has little aversive effect on the functioning
of the SCN or on other neuronal systems that mediate
the expression of overt rhythms.

The authors wish to thank Heather Alexander, Anna Marie
Michel, and Kathryn Hart for technical assistance. This work was
supported by AFOSR Grants 2312W6 (to M. A. R.) and 89-NL-071
(to J. D. G.).

1. Meijer JH, Rietveld WJ. Neurophysiology of the suprachiasmatic
3. Inouye ST, Kawamura H. Persistence of circadian rhythmicity
in a mammalian hypothalamic "island" containing the supra-
chiasmatic nucleus. Proc Natl Acad Sci USA 76:5962–5966,
1979.
4. Moore RY, Eichler VB. Loss of a circadian adrenal corticosterone
rhythm following suprachiasmatic lesions in the rat. Brain Res
5. DeCoursey PJ, Buggy J. Circadian rhythmicity after neural trans-
plant to hamster third ventricle: Specificity of suprachiasmatic
6. Lehman MN, Silver R, Gladstone WR, Kahn RM, Gibson M,
Bittman EL. Circadian rhythmicity restored by neural transplant.
Immunocytochemical characterization of the graft and its inter-