RELIABILITY MANAGEMENT THROUGH SELF-TESTING

DTIC ELECTED
FINAL REPORT
January 1992

SDIO/IST
ONR


PI: Yashwant K. Malaiya
Colorado State University
Fort Collins CO 80523

This document has been approved for public release and sale; its distribution is unlimited.

94-08781
94 3 18 062
409452

DTIC QUALITY INSPECTED
RESEARCH OBJECTIVES

- High degree of readiness in spite of system complexity
- Probability of an undetected fault must be extremely low
- Both testing and redundancy can be very expensive
- Statistical Characterization
- Need to evaluate the effectiveness of approaches
2. PROJECT ACHIEVEMENTS

As discussed in the previous proposal, we have investigated some of the important problems associated with the challenging task of achieving very high readiness. Several significant results have been obtained and some major problems have been identified. We have regarded this as a multi-level problem. For convenience, the results obtained have been grouped into the following subsections:

1. Stuck-open and bridging faults in CMOS
2. Other major VLSI technologies (ECL and BiCMOS)
3. IDDQ based testing
4. Faults in storage elements
5. Fault handling at the register level
6. Design faults

A list of publications and reports since 1989 is included at the end of this section.

2.1 Stuck-Open and Bridging Faults in CMOS [P2,89.6,91.1,89.1,89.3,89.6,89.10]

Many physical failures in CMOS, now the dominant technology, cannot be characterized using the classical fault model. With the shrinking geometrics, bridging faults have now become even more important. Some of the major achievements include:

- A testable design scheme that allows stuck-open fault detection wiring a single test pattern, even in the presence of glitches and skews.
- Identification of the anomalous reverse condition (ARC) phenomenon. Other researchers have now started taking this into account.
Many of the results of CMOS are also applicable for SOI, which is a special implementation of CMOS.

2.2 Other Major VLSI Technologies [P5,P6,91.4,19.12,90.3,90.8]

Recent advances have made it possible to achieve higher densities and lower power consumption in the high performance ECL technology. BiCMOS is expected to emerge as an important technology. Our achievements include:

- Modeling schemes for faults in simple and complex ECL cells.
- Results on how nove margins may be affected by high resistance bridging faults.
- A design-for-testability scheme.
- Examination of testability of BiCMOS.

2.3 IDDQ-Based Testing [91.5]

While IDDQ-based testing has been used for several technologies, it is especially suitable for a low quiescent supply-current technology like CMOS. It has now been recognized that for several failure modes, only IDDQ-based testing is effective. However, some significant problems need to be solved before IDDQ-based testing can be of general use in large VLSI chips in practice. We have presented:

- A simple statistical characterization of the problem of limited resolution.
- An information compression scheme to enhance resolution.

As discussed in the next section, some important problems yet remain to be examined.
2.4 Faults in Storage Elements

Most design-for-testability (DFT) approaches involve the use of additional or more complex storage elements in order to convert the problem of testing sequential circuits into the easier problem of testing combinational circuits. The faults in storage elements are often not explicitly considered. This would be reasonable if faults in the storage elements appear only as output s-a-0/1.

We have examined several frequently used storage elements under stuck-open, stuck-on and bridging faults to identify the situations when complex behavior occurs. We have shown that some cases the storage element can become stuck-transparent causing both logical and timing problems. In some cases it can be shown that coupling between the clock-signal and the cell output can be effectively modeled as stuck-at 0/1.

2.5 Fault Handling at the Register Level

These results are concerned with BIST and PLAs. BIST has emerged as a very powerful and popular technique. BIST uses information compression by an LFSR to obtain a signature. In the past, the aliasing probability has usually been evaluated using the assumption that all error patterns are equally likely. Our contributions in this area include:

- Signature register designs to avoid aliasing due to double faults.
- Optimal BIST scheduling schemes.
- Schemes to evaluate effects of physical faults on the signature.

2.6 Design Faults

Design faults may occur during the design of both hardware and software. The process of finding and fixing design faults is similar in both cases. Significant
numbers of data sets from different software projects are now available. We have focused on accurate measurement and projections of defect-detection-rate.

We have presented measures called Average Error and Average Bias to compare predictive capabilities of different models. We have shown that some models have significantly higher predictive capabilities. Projections based on neural-net approach can sometimes provide better accuracy than existing model-based approaches. We have also developed methods for a priori estimation of parameters.

2.7 SDIO/IST Supported Publications/Reports

Book


Papers


