Deuterium NMR relaxation measurements have been used to probe the dynamics of specifically labelled poly(styrene-co-vinylpyridine) in solution and on silica. Of particular interest in this study was the comparison of the dynamics of the adsorbed polymers on silica with those of the block copolymer and homopolymer in solution. We found that in toluene, the styrene segments on the surface-bound polymer had enhanced mobility over that in toluene solution. This enhanced mobility does not extend to the other solvent systems tested (CCl₄ and CCl₄/CH₃OH). For the latter systems, the styrene mobility on the surface bound-polymer was lower than those of the corresponding solutions, as expected. Thus we conclude that this enhanced mobility probably occurs only in the presence of thermodynamically good solvents for styrene. A comparison of lower molecular weight (10 kg/mol) block copolymer and styrene homopolymer were also made in toluene. These results were interpreted through the use of the Hall-Helfand model for chain dynamics as indicating limited aggregation of the block copolymer in solution.
Dynamics of Block Poly(styrene-co-vinylpyridine) (SVP) in Solution and on Silica

by

Frank D. Blum, M. Xie, B.R. Sinha, and F.C. Schwab*

Department of Chemistry and Materials Research Center
University of Missouri-Rolla
Rolla, MO 65401

(314) 341-4451

* Mobil Chemical Co.
PO Box 240
Edison, NJ 08818

Prepared for Publication in
Polymer Preprints

March 1, 1994

Reproduction in whole, or in part, is permitted for any purpose of the United States Government.

This document has been approved for public release and sale: its distribution is unlimited.
Dynamics of Block Poly(styrene-co-vinyl pyridine) (SVP) in Solution and on Silica

Frank D. Blum1, Ming Xie, Brijnaresh Sinha1-2, and Fred C. Schwab3

1. Department of Chemistry, University of Missouri-Rolla, Rolla, MO 65401.
2. current address: Union Carbide Corporation, South Charleston, WV 25303.
3. Mobil Chemical Co., P.O. Box 240, Edison, NJ 08818.

Introduction

We are continuing our studies of the dynamics of block copolymers on surfaces and in solution using NMR spectroscopy. Of special interest to us has been the behavior of copolymers (or terpolymers) made from styrene and vinyl pyridine. We have previously shown that in toluene, poly(styrene-co-vinyl pyridine) adsorbs to silica via the vinyl pyridine group.1 Furthermore, in toluene, the styrene segments are extended into the solution at about 4x their normal radius of gyration in agreement with previous surface forces measurements.2 The density profile was also in agreement with the parabolic presentation by Milner, et al.3 This work was based on the use of deuterium NMR on the VPDS and VPDSS block (ter)polymers shown below. These polymers have deuterium labels on the backbone of the styrene segments.

\[
\text{(CH}_2\text{-CH)}_x-(\text{CH}_2\text{-CD})_y-(\text{CH}_2\text{-CH)}_z
\]

More recently we have extended these studies to different solvent systems where the thermodynamic quality of the solvent is poorer for styrene. Specifically, we have probed the NMR behavior in carbon tetrachloride and carbon tetrachloride/methanol mixture.4 While the presence of methanol gives additional motional freedom to the bound - VP segments, both solvent systems were found to significantly limit the motional freedom of the styrene segments, as compared to their behavior in toluene.

In the present paper, we focus on the motional dynamics of the polymers as measured through deuterium NMR spectroscopy. Specifically, we compare the dynamics of the adsorbed polymers on silica with the behavior of block copolymers and homopolymers in solution. Both higher and lower molecular weight homopolymers have been probed.

Experimental

The synthesis of the VPDS and VPDSS terpolymers have already been described.1 The monomers, a-deuteriostyrene and B-deuteriostyrene were prepared from a-bromostyrene or B-bromostyrene by adding MgCl₂ to a Grignard product with Mg metal. The yields of the products were 70-80%. The level of deuteration was typically 80-90% as determined by deuterium and proton NMR.

Both a-deuteriostylopolyxylene(a-DS) and B-deuteriopolystyrene-co-2-vinylpyridine (β-DSVP) were prepared by anionic polymerization. Synthesis of α-deuteriostylopolyxylene was conducted in a solution of cyclohexane using sec-butyllithium as initiator with 30 wt% monomers at 0°C for 1hr. β-deuteriopolystyrene-co-2-vinylpyridine) was made in THF instead of cyclohexane because of the insolubility of 2-vinylpyridine in cyclohexane. The reaction was initiated at room temperature then cooled down to -78°C. B-deuteriostyrene was added first followed by 2-vinylpyridine. The resulting polymers are shown along with their designation. We note that the VPDS is labelled in the methylene position.

\[
\text{(CH}_2\text{-CD)}_x-(\text{CH}_2\text{-CH})_y-(\text{CDH}-\text{CH)}_y
\]

The molecular weights of polymers as determined by GPC are given in Table I and are based on polystyrene standards.

<table>
<thead>
<tr>
<th>Polym.*</th>
<th>M_w (kg/mol)</th>
<th>PDI</th>
<th>wt. % S</th>
</tr>
</thead>
<tbody>
<tr>
<td>DS-4</td>
<td>265.5</td>
<td>2.5</td>
<td>100</td>
</tr>
<tr>
<td>DS</td>
<td>19.2</td>
<td>37.5D/37.5H</td>
<td>60</td>
</tr>
<tr>
<td>VPDSS</td>
<td>21.3</td>
<td>37.5D/37.5H</td>
<td>70</td>
</tr>
<tr>
<td>VPDS</td>
<td>9.8</td>
<td>37.5D/37.5H</td>
<td>77</td>
</tr>
<tr>
<td>VPDS-B1</td>
<td>8.0</td>
<td>37.5D/37.5H</td>
<td>70</td>
</tr>
</tbody>
</table>

*where the B designation denotes that the deuteron is in the β-position (the others are all α).

NMR Relaxation

Before discussing the NMR data, it is appropriate to note that the deuteron relaxation rates are due to the reorientation of the deuterium nucleus relative to its principal electric field gradient axis. Fortunately, this is along the C-D bond axis so that the relaxation rates give information directly on the C-D reorientation. The general expression for the deuterium quadrupolar relaxation in liquids is well-known [5] and given by:

\[
1/T_1 = (3n^2/20)(e^2qQ/hj(1/X_0 + 4J_2/20))
\]

and

\[
1/T_2 = (3n^2/40)(e^2qQ/hj[3J_0(0) + 5J_1(00) + 2J_2(00)])
\]

where e²qQ/h is the quadrupole coupling constant, 165KHz based on the solid-state deuterium spectrum of bulk polystyrene-d.

In order to interpret the relaxation times in terms of a motional mechanism, the Hall-Helfand (HH) model has been used with some success and the spectral density given by [7]:

\[
J_0 = 2A_0(\omega/2)(L_0(L_0 + 2L_1)-\omega^2)^2
\]

\[
+ (2\omega/L_1+\omega^2)^2 \cdot 0.25
\]

where

\[
A_0(\omega) = \cos(0.5\tan^{-1}((2(L_0+L_1)\omega)/(L_0(L_0+2L_1)-\omega^2)))
\]

(4) where \(L_0\) is the single-bond conformational transition rate, \(L_1\) is the cooperative conformational transition rate which involves several bonds.
Results and Discussion

Surface and Solution States

Carbon-13 NMR spectra of the VPDS and VPDSS polymers on silica show narrow resonances for styrene and broader resonances for the vinyl pyridine groups for the surface-bound material when swollen with toluene. This is indicative of the mobilities in the two different groups in the polymer. Deuterium NMR relaxation times on the surface bound systems provide a way to quantify this phenomena in terms of rates for segmental reorientation through the HH model. However, there is a simpler way to compare the behavior of these polymers. Namely, by taking the ratio of the relaxation times \(T_1 \) and \(T_2 \). For small molecules which move isotropically, the \(T_1/T_2 \) ratio is typically 1. For high molecular weight polymers dominated by local segmental motions, the ratio can be much greater than one.[7] Listed in Table II are these values for the VPSDS and VPDSS polymers on the surface and in solution at 18°C.

<table>
<thead>
<tr>
<th>Polym.</th>
<th>Solv.</th>
<th>(T_1(\text{ms}))</th>
<th>(T_2(\text{ms}))</th>
<th>(T_1/T_2)</th>
<th>State</th>
</tr>
</thead>
<tbody>
<tr>
<td>VPDSS</td>
<td>toluene</td>
<td>3.63</td>
<td>3.38</td>
<td>1.07</td>
<td>surface (a)</td>
</tr>
<tr>
<td></td>
<td>CCl(_4)/CD(_3)OD</td>
<td>2.66</td>
<td>1.83</td>
<td>1.45</td>
<td>surface (b)</td>
</tr>
<tr>
<td></td>
<td>CCl(_4)</td>
<td>3.05</td>
<td>1.78</td>
<td>1.71</td>
<td>surface (b)</td>
</tr>
<tr>
<td>VPSDS</td>
<td>toluene</td>
<td>3.94</td>
<td>3.60</td>
<td>1.09</td>
<td>surface (a)</td>
</tr>
<tr>
<td></td>
<td>CCl(_4)/CD(_3)OD</td>
<td>3.94</td>
<td>3.25</td>
<td>1.21</td>
<td>solution (a)</td>
</tr>
<tr>
<td></td>
<td>CCl(_4)</td>
<td>3.44</td>
<td>2.89</td>
<td>1.19</td>
<td>surface (b)</td>
</tr>
<tr>
<td></td>
<td>CCl(_3)</td>
<td>3.50</td>
<td>2.02</td>
<td>1.63</td>
<td>surface (b)</td>
</tr>
</tbody>
</table>

As is evident from Table II, the lowest ratio is for the surface systems swollen with toluene. In fact the ratio for this system is even higher than in solution. This means that compared to solution, the mobility of the surface-bound styrene segments is greater in toluene. The enhanced mobility on the surface does not extend to the other solvent systems as their ratios on the surface are greater than those in solution.[4]

Homopolymer and Block Copolymer in Solution

The results of deuterium NMR relaxation studies on the DS-4 and VPDS-B1 at 25°C are reported in Table III. To date, only a limited concentration range has been studied. We note that these are low molecular weight species (ca. 10 kg/mol) and that the relaxation time ratios are closer to 1 than for the higher molecular weight polymers previously studied.

<table>
<thead>
<tr>
<th>Polym.</th>
<th>Conc.(wt%(a))</th>
<th>(T_1(\text{ms}))</th>
<th>(T_2(\text{ms}))</th>
<th>(T_1/T_2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>DS-4</td>
<td>6.59</td>
<td>5.10</td>
<td>4.77</td>
<td>1.07</td>
</tr>
<tr>
<td></td>
<td>14.18</td>
<td>4.63</td>
<td>4.27</td>
<td>1.08</td>
</tr>
<tr>
<td></td>
<td>20.35</td>
<td>4.29</td>
<td>3.90</td>
<td>1.10</td>
</tr>
<tr>
<td></td>
<td>26.07</td>
<td>4.01</td>
<td>3.61</td>
<td>1.11</td>
</tr>
<tr>
<td></td>
<td>34.16</td>
<td>3.57</td>
<td>3.11</td>
<td>1.15</td>
</tr>
<tr>
<td>VPDS-B1</td>
<td>7.74</td>
<td>4.56</td>
<td>4.13</td>
<td>1.10</td>
</tr>
<tr>
<td></td>
<td>14.91</td>
<td>4.21</td>
<td>3.72</td>
<td>1.13</td>
</tr>
</tbody>
</table>

The relaxation data for both homopolymer and block copolymer decrease with increases in concentration. The concentration dependence for \(T_2 \) is greater than that for \(T_1 \). It is interesting to note that the two kinds of polymers have small, but measurable differences with the block copolymer of similar molecular weight and concentration having the shorter relaxation times. In this regime, a shorter relaxation time is indicative of more restricted motion. We believe that this is due to the tendency of the block copolymer to associate, possibly even in micelles. However, for these molecular weights, the effect is small. Aggregation of the VP groups would be consistent with their thermodynamically poorer interaction with toluene.

Table IV. Hall-Helfand Parameters for the Low Molecular Weight Polymers in Toluene.

<table>
<thead>
<tr>
<th>Conc.(wt%)</th>
<th>(\ln(\omega))</th>
<th>(\lambda_1)</th>
<th>(\lambda_2)</th>
<th>(\lambda_3)</th>
<th>(\lambda_4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>DS-4</td>
<td>6.59</td>
<td>10.9</td>
<td>9.5</td>
<td>6.30</td>
<td>23.8</td>
</tr>
<tr>
<td>14.18</td>
<td>12.2</td>
<td>10.7</td>
<td>10.5</td>
<td>5.62</td>
<td>20.9</td>
</tr>
<tr>
<td>20.35</td>
<td>13.5</td>
<td>12.8</td>
<td>11.2</td>
<td>5.07</td>
<td>18.9</td>
</tr>
<tr>
<td>26.07</td>
<td>14.7</td>
<td>13.8</td>
<td>12.0</td>
<td>4.78</td>
<td>16.9</td>
</tr>
<tr>
<td>34.16</td>
<td>17.5</td>
<td>16.1</td>
<td>13.4</td>
<td>3.97</td>
<td>14.5</td>
</tr>
<tr>
<td>VPDS-B1</td>
<td>7.74</td>
<td>12.8</td>
<td>10.6</td>
<td>4.89</td>
<td>22.4</td>
</tr>
<tr>
<td>14.91</td>
<td>14.5</td>
<td>13.4</td>
<td>11.4</td>
<td>4.19</td>
<td>20.6</td>
</tr>
</tbody>
</table>

In order to quantify the dynamics of these species, we have fit the relaxation data to the HH model to describe the motions of the polymers and the results are shown in Table IV. Space does not permit the detailed description of the spectral density results. Instead, we focus on the transitional probabilities given by \(\lambda_0 \) (single-bond conformational transition rate) and \(\lambda_1 \) (cooperative conformational transition rate involving several bonds). The ratio \(\lambda_1/\lambda_0 \) for the block copolymer samples are greater than that for homopolymer samples. We believe that this is indicative of slower long range motions in the block copolymer consistent with the notion that these polymers aggregate. Further studies need to be performed to determine the extent of this aggregation and its dependencies on system variables.

Conclusions

The styrene segments on the block copolymer bound to silica, swollen with toluene, exhibit enhanced mobility over the same material in solution. This unexpected behavior appears to be limited to the thermodynamically good solvent and does not occur in the other solvent system studied. In solution, the NMR relaxation time measurements are consistent with aggregation of the copolymers even at these relatively low molecular weights.

References

Acknowledgements

The authors would like to thank Robert D. O'Connor for writing the computer program to calculate the parameters for the HH model. This work was funded through the Office of Naval Research.