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1 Introduction

Alternative approaches to displacement-based element formulations began with the pioneering work of Pian
(1] who developed the stress-based approach for computing element stiffness matrices based on the principle
of minimum complementary energy. The developmert of the hybrid stress technique followed using the
Hellinger-Reissner functional [2] wherein both stresses and displacements are assumed as independent quan-
tities and from which the purely stress-based approach can be formally derived. Current variational bases for
finite element formulations range from single field functionals to the most general Hu-Washizu functional in
which displacements, strains and stresses are all assumed as independent quantities [3,4]. The use of multiple
independent field variables in element formulations has created a rich arena of theoretical approaches with
which to maximize finite element performance and has yielded elements with improved convergence behavior
and stress prediction, avoidance of locking in constrained media problems, and the inherent capability to
represent traction-free edge conditions and singular stress fields. However, this has resulted in additional the-
oretical requirements in the formulation of robust elements which have been addressed by various researchers.
These include the requirement of element invariance under coordinate transformation {5,6], suppression of
spurious zero energy modes [7], minimum expansions for the independent field variables[7,8], and optimal
sampling points for stress recovery [5]. A major detraction of element formulations based on multi-field func-
tionals over displacement-based elements has been the computational cost associated with matrix inversions
and additional numerical manipulations required in generating element stiffness matrices. As used herein,
computational cost or efficiency is meant to refer to the minimum number of sequential operations formally
required in mathematical statements and not to the efficiency of specific algorithmic implementations. The
present work focuses on the hybrid stress method in which the structure of the element matrices is defined by
the Hellinger-Reissner functionai. A novel procedure is detailed herein for minimizing the numerical cost by
making full use of the freedom in selecting and manipulating assumed stress fields which enable explicit forms
of element stiffness matrices to be derived. The developed procedure is based on a detailed examination of
the complementary energy matrix inherent to the hybrid technique and leads to stress field transformations
which include an orthonormalization approach hitherto not attempted. The application of the technique is
demonstrated with 2-D quadrilateral and 3-D hexahedral elements incorporating incompatible displacement
fields. By simplifying the constituent matrices involved in forming element stiffness coefficients such that
an explicit evaluation can be accomplished, the hybrid stress method is shown to offer a computational
advantage over similar displacement-based element formulations.

2 Variational Basis for the Hybrid Stress Model

The extended Hellinger-Reissner functional may be stated as
lig = /[(-1/2)aTsa + 0T (Luy) + o7 (Luy)]dv - /uftds (1)
v s

where o is the assumed stress field, Sis the material compliance matrix, ug and u are the assumed compatible
and incompatible displacement fields, L is the differential operator relating strains to displacements, and ¢
are applied surface tractions over a portion of the element boundary, s.
The assumed stresses may be represented by

oc=Pj3 (2)
where P is a matrix of polynomial terms and 3 is a vector of undetermined expansion coefficients. Each
independent stress mode is, therefore, represented by a column in P. The displacement field is assumed over
the element domain as .
u=u,+ur=Nqg+ M) (3)
where N and M are compatible and incompatible displacement shape functions, respectively, ¢ are nodal
displacements, and A are Lagrange multipliers which enforce internal constraints. In the form of (1), the
incompatible displacements act to variationally enforce the orthogonality of the stresses to the incompatible
strain modes in a weak sense. Neglecting applied tractions and substituting (2) and (3) into (1) yields

Mp= /[(—1/'2)ﬁT PTSP3 + 8T PT(LN)q+ BT PT(LM)A]dv (4)




" Mg E(-1/2)8THB + AT Gq+ BT RA (5)
where ;
H = [ PTSPdv (6)
G = [, PT(LN)dv= [ PTBdv (7)
R = [ PT(LM)dv= [ PTBdv (8)
Seeking a stationary value of the functional by taking the first variation with respect to 3 and A | .elds
B=H"'(Gq- R\ (9)
and
RTg=0 "(10)

By eliminating A and substituting the resulting exptession for 4 into-(5), the variation with respect to ¢
yields the element stiffness matrix as ) )
K=G"H"'G (11)

where
G=[I-RRTH'R'RTH-'|G (12)

3 Computational Minimization in the Hybrid Technique

Since the introduction of the hybrid stress method, minimizing the computational cost associated with equa-
tion (11) has been an ongoing concern. Counterbalanced with the ostensibly greater computational cost and
demonstrated improvement in element behavior afforded by the two-field hybrid stress technique has been
the computational simplicity of displacement-based elements. Thus, the selection of element formulations
has been a form of Occam’s Razor in what minimum degree of computational cost is required to implement
a useful, convergent element to obtain accurate solutions to practical problems. To make hybrid element
formulations competitive, various approaches have been applied to minimize the cost in evaluating equation
(11). In formulations involving only compatible displacements, it has been noted that H-! is not required
separately but the product H=!G can be obtained via equation solver techniques using equation (9) by
treating the columns of G as multiple right hand sides which leads to a significant reduction in computation
[5]. Other simplifications have been achieved by the use of functionals such as (1) in which incompatible
displacement modes are used to variationally enforce equilibrium or orthogonality constraints [2,8,9]. This
permits the use of unconstrained and, therefore, uncoupled stress expansions which lead to block diagonal
representations of the H-matrix in which the calculation of H-! can be limited to inversions of the submatrix
blocks. Recently, a theoretical basis has been developed for making admissible variations of terms in the
complementary energy matrix which permit simplifying approximations to be made based on stability and
convergence considerations to minimize the cost of computing #~! [10]. Nevertheless, the various treat-
ments of equation (11) still represent a significant computational cost in terms of numerical integrations and
manipulations. The aim of the present effort is to strictly adhere to the variational constraint expressed by
equation (11) by simplifying the fundamental mathematical statements through formal procedures without
introducing additional assumptions or approximations.

4 Assumed Stress Expansions

The conventional procedure in the hybrid stress method is to define stress expansions in the natural or
mapped coordinate system. This definition has been used to develop rational procedures for eliminating
_ spurious kinematic modes and maintaining element invariance while keeping the number of independent stress
modes to a minimum. However, one drawback of this approach has been the contravariant transformation
required to express stresses in physical coordinates. This transformation will, in gemneral, cause coupling
between the constant and higher-order stress terms and the element will subsequently fail the patch test.




A solution to this problem has involved the use of an approximation to the Jacobian by using its constant
value at the element centroid. This approximation - or ’variational crime’ - is reasonably accurate for
constant strain elements with linear interpolation functions but should be expected to demonstrate increasing
inaccuracy with general element distortion and element order and be a limiting factor in coarse mesh accuracy.
In the present development stresses will be assumed in both physical and natural coordinates to demonstrate
a procedure for minimizing computational cost in all basic formulations using the hybrid technique. In using
stresses defined in physical coordinates all ad hoc simplifications will be avoided and ’exact’ expressions
will be derived within the formal approximation framework based on the order of element interpolants
and variational constraints. This is done in anticipation of future study in developing explicit higher-
order element matrices where the degradation in accuracy of simplified transformations between natural
and physical coordinate systems may become unacceptable. With stresscs assumed in physical coordinates,
the present study does not consider minimum expansions of assumed stress modes and the expansions are
assumed complete to the highest order present in the strain field. Although this will, in cases, result in
significantly greater number of stress terms than the minimum required to suppress zero energy modes, the
completeness property of the assumed stresses preserves invariance and avoids spurious kinematic modes as
the vector space formed by the assumed stresses is guaranteed to span the strain space. In the use of the
Hellinger-Reissner functional, stress constraints need not be enforced a priori, however, they can be applied to
satisfy field equilibrium and compatibility conditions pointwise in order to reduce the number of independent
stress modes. In physical coordinates, element invariance will be preserved under field operations of elasticity
if complete expansions for the stresses are used. Stress expansions assumed in natural coordinates permit
greater freedom in the selection of expansions for specific stress components. This flexibility allows a degree of
tailoring of element strain energy mode representation while maintaining invariance and a reduced sensitivity
to mesh distortion.

5 Determination of Explicit Forms

A procedure for simplifying the expressions involved in (11) by utilizing permissible transformations of
assumed stress fields is now detailed. A two-step transformation of the assumed stresses is suggested by an
examination of the flexibility matrix given in equation (6) written out fully as

H= [ 11 / ’l / : [11PT SP)dgdndc (13)

An initial observation is that the structure of the integrand in (13) can be simplified through an apportioning
transformation of the material compliance matrix, S, to the stress modes in P thereby allowing further
simplifications in the flexibility matrix to be achieved. Towards this aim, the assumed stresses are first
transformed through the introduction of a symmetric ’distributing’ matrix, D, which acts to subsume the §
matrix into P via an identity operator as

P=IP=(DD Y =D(D"'P)=DP (14)
where the distributing matrix is defined as
D=S§"1? (15)

Although formally permissible, this operation transforms the initially assumed stress modes into a set of
vector polynomials, P, which do not have a direct physical interpretation. Instead of introducing new
terminology, however, the transformed stresses in P will simply be referred to as stress modes. The inverse
square root of the compliance matrix is obtained via a standard spectral decomposition as

S =QAQT (16)
in which Qis a column matrix of the normalized eigenvectors, ®;, of S given by
Q = [q’lld’gl lq’n]

which is a unitary matrix with the property that

QT — Q—l




and A is a diagonal matrix formed by the eigenvalues, ¢;, of S given by

A = diag[p1, 92, -, @)
where n = dim(S). With the above definitions, the D matrix is given by
D= S—l/? = QA—I/IQT (17)

where V1 -2
A2 = diaglp7!? 07 1%, o o1

The symmetry and positive definiteness of the material property matrix guarantees the existence of the
decomposition and explicit expressions for Q and A for both 2-D and 3-D orthotropic compliance matrices
are presented in Appendix L.

Substitution of (14) into (13) yields

1 1 1
- pT pT 5
H -/-l/_l/_l[um DT SDP)dgdnd( (18)

where, from the definition of D and the symmetry of both S and D, we obtain
DTSD = §-'?g5-12 =85! = | (19)

and the flexibility matrix reduces to

H=[ 11 / lx / ll[IJIPTP]dfdndC (20)

A second field transformation is motivated by the form of equation (20) which suggests its use to define an
inner product space where a Gram-Schmidt procedure can be employed to generate an orthonormal spanning
set of stress modes, P*, which are a special linear combination of the modes present in P. The weighted
inner product is therefore defined as

1 1 1
D. P. ~e pT B, = i
< PP, >= / | / 1 / 1P Pdgdndc = 8; (21)

where §;; is the Kronecker delta function. The linear combination yielding a sequence of orthogonal stress
modes is defined by
i-1
Vi=sP-Y <P .P>P (22)
j=1
which are normalized to form basis vectors, Py, as

P =< Vi, Vi > (23)

Substitution of P* into equation (20) yields by definition

= ll / : i ‘, (191P°T P*|dgdndc = 1 (24)

. Hence, by fully exploiting permissible operations on the assumed stress modes, the transformations due to
the application of a distributing matrix and the generation of a weighted orthonormalized basis yield the
element stress field as

P=pp (25)

and the flexibility or complementary energy matrix 'H’ is eliminated by formally reducing it to a matrix
identity. The expression for the element stiffness matrix is now given by

K=G"G . (26)




where ) .
G=(I-RRTR)'RTIG (27)
Separating out the Jacobian determinant from the compatible and incompatible strains as
1
B=(LN)= mB'(E.n.C) (28)
_ 1 -
B= (LM)~=|7|B'(€,0.C) (29)

and substituting into (7) and (8), the constituent matrices become

G= /_ ll /_ : /_ ll[P‘TDB‘]dfdnd( (30)

k= /_11 /_11 /_IJP'TDB‘]dEdndC (31)

With the removal of the flexibility matrix, the element stiffness matrix is fully determined by the two
constituent matrices in (30) and (31) which represent the elastic strain energy contributions of the assumed
stresses and the compatible and incompatible strain modes. The absence of the Jacobian determinant in
the denominator allows a direct computation of linear algebraic forms for the G and R matrices based on
the regular structure of the strain modes and the transformed stress fields. Explicit expressions for various
element matrices will be developed in subsequent sections. In the computation and manipulation of element
matrices, however, not all operations are most efficiently obtained explicitly and numerical procedures will be
prescribed for certain procedures when computationally advantageous. For example, equation (27) requires
the inversion of an inner matrix product in the definition of G given by

A=2Z"'=(RTR)! (32)

However, because the columns in R are equal to the number of incompatible modes, the dimension of A is
given by
dim(A) = dim()\) x dim(A) (33)

which is usually small. In addition, because A is symmetric, the inversion effectively reduces to the com-
putational effort of inverting a matrix of triangular form which can be computed explicitly in general but,
with increasing matrix order, a numerical scheme is preferred. A second example is the Gram-Schmidt
procedure which quickly leads to cumbersome expressions for the coefficients of the orthogonal stress modes
when performed symbolically. However, with an initial evaluation of the basic scalar integrals required in the
weighted inner product involving the Jacobian determinant and powers of the assumed stress polynomials, a
simple numerical procedure may be used for efficiently computing the linear combination of modes present
in P to generate the orthonormalized basis set P*. Symbolic representations will, however, be generated for
selected elements used in the present study.

The explicit form of the element stiffuess matrix, decomposed into contributions due to compatible and
incompatible displacements, is given by

Kij = Koi; + K»,; = gnidnj = 9niTns@smTemd; + Kji = Kij (34)

where the components of G and R, g;; and r;;, are obtained by integrating (30) and (31) and a,; are the
components of the A matrix given in equation (32). The various indices range from

i=1,23.,N; j=1,23, ... nk=123.,Ns; s,m=1,23.. Ny

where N, denotes the number of element degrees of freedom, N3 number of independent assumed stress
modes, and N, the number of incompatible displacement modes.

The above method for determining explicit forms of element stiffness matrices will be demonstrated with
4-node quadrilateral plane and 8-node hexahedral solid element formulations. The explicit integration of
(26) offers a significant decrease in computational cost over a purely numerical evaluation of (11).




6 4-Node Plane Quadrilateral Elements

(xp¥p)

X (xby,)
Figure 1. Quadrilateral element.

The stiffness matrices of several different 4-node plane elements will be explicitly derived in this section.
Element configuration and node numbering is shown in Figure 1. Two complatable elements are presented
to highlight features of both the developed procedure and the hybrid stress method followed by two ele-
ment formulations incorporating incompatible displacement modes to optimize element performance. Stress
expansions are assumed in both physical and natural coordinates to demonstrate the generality of the de-
veloped methodology. The correspondence to existing element formulations will be identified.

The displacement functions u, are given by

4
u, = ( y ) ='};%(l+€.~€)(l+nm)( w ) = Nig (35)

The mapping from local physical coordinates to natural coordinates is given by

T = a€+a+azy (36)
y = b€ +ban+ bién
where
ao bo 1 1 1 1 T 0
ap b | _1] -1 1 -1 1 2 ¥
a b2 | 4| -1 -1 11 I3 U 0
a3 b3 | 1 -1 -1 1 T4 Ya

The compatible Element E{PQ

A 4-node plane element, designated E4PQ, is explicitly derived using stresses assumed in physical coordi-
nates. The stress field is selected as complete linear expansions with the constraint LT ¢ = 0 applied resulting
in the following seven equilibrating stress modes

1 00 =z y O 0
P=1010 00z y (38)
0 01 -y 0 0 -z

The derivation of weighted orthonormalized stress modes are obtained in the form

Pi1 + pi2T + piay
P} ={ pis + pisz + picy (39)
Pi7 + pisZ + pisy

and are given by

P.

0 p O 0 0 Pe4 + Pesy P74 + P75T + Prey

a0 0  pay+pasy  psi+ps2Z +psay  Per + PeaZ + ey pr1 + praT + pray
(40)
0 0 P37 par+pasT ps7+ pssT +psoy  per + PesT + Pesy  prr + praT + proy




The coefficients of the stress modes, p;j, are presented in Appendix II. Because the stress modes in (38) are
self equilibrating, equilibrium is unaflected through the linear combination of modes leading to (40).
The integration of equation (26) is obtained in a straightforward fashion. Using the following ccnstants

k|27 |23 | 23
1y = bng - blzg €4k = alzf - ang 1 -1 -
e = bazf —byzf  esi = ayzf —aj2t where 21 1] -1} -1 (41)
ear = bgzk - bazs eek = azzk - ag:i 31 -1 1] -1

4] 1} 1] 1

the components g, of (30) are given by

In@2k-1) = e1e(dipn1 + d12Pna) + d3aparear + 3{(Pn2d11 + Pnsdiz)(are2e + azesr)+
(Pnadi1 + predi2)(brear + baear) + dazpns(arese + azeer )+
da3pno(biesk + baesi)}
(42)
Gnak) = ear(dizpny + d2apna) + daapaerr + §{(Pn2di2 + Pnsd2z)(arest + azesr)+
(Pnad12 + preda2)(bresi + baesi) + daapns(arear + azear)+
d33pns(brear + boear)}
where d;; are elements of the distributing matrix. The stiffness matrix is then given explicitly as
Kij =gnign; 3 1=1,2,3,...8 j=1,23,.,i n=123,..,7 (43)

and
[\"j,- = K,'j
The stiffness matrix given above is equivalent to the 7-3 hybrid element using the assumed field in (38)

and is closely related to the standard minimum 5-3 hybrid element of Pian which incorporates equilibrating
stress expansions given by

0 v O
0 0 =z (44)
1 0 0

A validation of the procedure is presented in Table 1 by showing the equivalence of eigenvalues obtained
from the explicit element stiffness matrix given by (43) and the numerical computation using equation (11).
For generating the results in Table 1, a general quadrilateral configuration was arbitrarily selected as shown
in Figure 2. A 2 x 2 Gaussian integration rule was used for the numerical stiffness matrix.

Table 1. Equivalence of eigenvalues obtained from
0.2,1.0) the explicit and numerically integrated
form of the element stiffness matrix.

(09, 0.8)
A Numerical K matrix | Explicit K matrix
) 3.0 0.0
2 0.0 0.0
3 0.0 0.0
4 500.69450 500.69450
00,03 5 585.41852 585.41852
6 1190.1325 1190.1325
e 7 1297.3502 1297.3502
0.0,0.0) 8 2172.8470 2172.8470

Fiqure 2. General quadrilateral element.




The compatible Element E4PR

The E4PR element is formulated using tinconstrained stress expansions resulting in the following nine inde-
pendent stress modes

1 zy 00 000 O
P=100 012z y 0 00 (45)
0000001 =z y
In performing the initial apportioning transformation of the assumed stress ficld as given by
P=D"'pP (46)

the stress modes become coupled due to the action of the distributing matrix which complicates the subse-
quent orthonormalization procedure. However, a simplification can be made through a linear combination
of the modes in (46) with constant terms being absorbed into the vector of unknown expansion coefficients,
B. With stresses expressed by

o =PB=DPp (47)
the modes may be rearranged and the P matrix decomposed to give
1 0 0 x 0 0 y 00
-D“a:D“[O 1 0]5,+D-'[0 r 0:|ﬂ-_»+D"|:0 y o]ﬁr3 (48)
0 0 1 0 0 =z 0 0 y
where §; are subvectors of 3. Rewriting the above as
D 'e=D"'18 +zD 18, +yD'18; (49)
suggests a linear combination of the stress modes for each partition defined by
Bi = DB (50)
which leads to the simplification
D '¢ = D-'IDB, +zD-'IDB++yD"'IDBs = IB)+zIf+ylBs (51)
and equation (47) becomes )
o=DPg (52)

Although for arbitrary stress expansions equation (14) is strictly valid, because the stress expansions defined
in (45) are balanced for all components, the inverse distributing matrix, D~!, can be completely removed
and the form of P is made identical to P. With 8 defined by equations (9) and (10), the linear operations on
P are automatically accounted for and the distinction between 3 and 8 may be neglected. Orthogonalizing
the assumed stress is thus reduced to determining an orthonormal sequence of scalar functions using the
weighted inner product defined in (21) and the basis functions given by [1,z, y].

The weighted orthonormalized stress modes are obtained as

Piopsps O 0 0 0 0 0
PP=]10 0 0 p} ps »3 0 0 O (53)
0 0 0 0 0 0 p} p5 p3

where
PI = P
P2 = pau+pT (54)
P3 = pa1+p3z + pasy

The coefficients, p;;, are presented in Appendix II.

The integration of (30) yields the components g;; withi=1,2,3 and j =1,2,3,4 as

daas;
daadij

gix2i-1) dn¢-‘j Ji+3)25-1) d12¢ij 9 +6)(2i-1)

9G)(25) = dpdi; 9Gi+3)02%) = daatij 9(i+6)(25) (55)




where

$ij = pireyj + [piz(aiea; + azes;) + pia(breaj + baes;)]/3 (56)
Yij = Dpireaj + [pi2(aresj + azes;) + pia(bres; + baes;)]/3

and where d;; are elements of the distributing matrix and e;; are defined in (41).

The stiffness matrix is explicitly given by

Kij = gmigmj ; 1=1,2,3,...8; j=123,..,i; m=1,23,..9

The interest in this hybrid formulation lies in the limitation principle of [11] which states that, in the limit
of the order of unconstrained stress expansions, the hybrid stress method converges to the stiffness matrix
obtained from a purely displacement-based formulation. For a parallelogram, the hybrid E4PR element
exactly duplicates the displacement-based stiffness matrix. It is of interest to quantify how well the explicit
hybrid element formulation can be subsiituted for the displacement-based element which does not permit
a simple integrated representation under general element distortion. Figure 3 shows an initial unit element
geometry and its change as a funtion of a distortion parameter, e. Table 2 presents ratios of traces of the
element stiffness matrices of increasingly distorted element configurations as a function of the distortion pa-
rameter comparing the hybrid element with the corresponding displacement-based element. A 2 x 2 gaussian
quadrature rule was used in computing the displacement - based matrix. It is shown that the explicit hy-
brid s.ress formulation yields a consistently more flexible element and offers a clear computational advantage.

Table 2. Ratios of stiffness matrix traces comparing explicit

s hybrid method, K}, with numerical displacement-based
3 : method, K; under increasing element distortion.
e | Trace(Ks)/Trace(Ka)

0.0 1.000000

0.1 0.998322

0.2 0.993153

0.3 0.984084

. 1 04 0.970401
0.5 0.951032

=4 0.6 0.924311

Figure 3. Definition of distortion parameter e.
The Incompatible Element E{PL

The E4PL element incorporates the unconstrained stress modes given by equation (45) with the addition of
incompatible displacement modes. The incompatible displacement functions are selected as [£2, #?] which are
then modified according to Reference 12 to identically satisfy the strong form of the convergence requirement
on incompatible modes given by

Lupdv =0 (57)
which yields
A
ul _[M 0 My 0 ]) x
{v},\‘[o My 0 Mg] X3 (38)
Ay
where .
M = 6; - i(flf + f!”) (59)
My = 9°+3(H€+ fan)
By integrating (31), the elements of the R matrix with n = 1,2,3 are given by
a1 = dn®) 2 = d120} a3 = duO}) g = d20}
fa43l = d130)  Tayaz = dpOl  ray33 = d120) rayas = dn6) (60)
rne61 = d330  raie2 = daO3  rapes = daa®  ropea = daa6f




where

Ol = 4(pa1h1 + pnzha +Pa3h3)/3  OF = 4(pnihr + pr2hs — pn3he)/3
©2 = 4(pniha + Pa2hs + Pa3hs)/3 O3 = 4(paihe + pn2hio — Pashe)/3 (61)
0} = 4(parh7 +pazha +pa3ha)/3  OF = 4(paih7 + pa2hs — pnshs)/3

where the constant terms f; and h; are presented in Appendix III. The elements of the Z matrix defined in
(32) are computed as
Zij T TpiTnj & Zji = Zij (62)

where
i=1,234; j=12,.,i n=123,..9

The components a;; of the inner product defined in (32) are obtained through a closed-form inversion of the
symmetric 4 x 4 Z matrix. The element stiffness matrix, K, is given by the sum of contributions due to
compatible and incompatible displacements

Kij = Kq,, + Ka,, = gnignj = 9niTns@amTemg; ; Kji = Kij

where
1=1,23,..8; 7=123,...,i; nk=123,..9; sm=12314

The Incompatible Element E{NL

The E4NL element is formulated using unconstrained stress expansions assumed in natural coordinates
resulting in the following nine independent stress modes '

B
En 000 O0O0O Ba
001 &n o000 . =Ip (63)
0 0 066 01 € 9 :

By
In order to preserve the constant stress terms, the natural stresses are mapped to physical space through a
contravariant transformation using Jacobians computed at the element centroid

ot = (Jo)E ()i (64)
or '
P=T,T (65)
The initial stresses are transformed as ) -
P=D'T,r =TT (66)
where
_ ay g4 ay
T= gy a5 Qg (67)
az Qg a9
and the constants, a;, are given by
a = d:uaf + d:125¥ ag = @1103 + élzbg ar = 2(@110102 + d:xzblb‘.z)
a; = dpaf+dpbl a5 = dppai+dnbl as = 2(diza1a; + daobiby) (68)
a3 = d33¢182 ag = d33b162 ag = d33(a1b2 + azbl)

in which d;; are elements of the inverse distributing matrix. By introducing a linear combination of stress
modes defined by

- T ‘
0:[ r _]13 o
T




the coupling of the transformed stresses can be eliminated resulting in

(70)

and the orthonormalization is effectively reduced to determining an orthonormal sequence of scalar functions
using the basis set [1,£, 7).
The weighted orthonormalized stress modes are obtained as

7Py P3 0 0 0 0 0 0
PP=}10 0 0 p; p2 P3 0 0 O (71)
0 0 0 0 0 0 pi p> pP3
where .
Pi = pn
Py = pu+pn (72)
p3 = P31 +pa€ +paan
and the coefficients, p;;, are presented in Appendix III.
The integration of (30) yields the components gm, with m=1,2,3 and n =1,2,3,4 as
g(m)(2n-1) = d116mn 9(m+3)(2n-1) = d126mn 9(m+6)(2n-1) = d33¥mn (73)
Im)2n) = d12¥mn Im+3)2n) = da2¥ma Im+6)2n) = d33bmn
where
Omn = pmleln+[Pnl232n+pm333n]/3 (74)
Ymn = Pmi€an+ [Pm'.’eSn + Pmaesn]/3

and where d;; are elements of the distributing matrix and e;; are defined in (41).
The incompatible displacement modes are the same as those used in E4PL and yield the components rm,
of (31) with m = 1,2,3 as

Tm.1 = dy®), rma2 = d120% rp3z = duOi  rma = dy,6},
rmes1 = d120)  rmys2 = d220?,  rtmiasz = d120}  rmiza = d26d, (75)
rme61 = d3302  rmys2 = d1303  rmyes = da3O)  rmysa = das6f,

where

= pmihi +Pmahs + pmshs O}, Pmi1hr + pmahs — pmaha
©2 = pmihs+ pmahs + pmahe O, Pmihe + Pmahio — Pm3ha (76)

Pmih7 + Pmah2 + pmaks  OF, Pmih7 + Pmaks — pmahy

The constant terms f; and k; are contained in Appendix IIl. The elements of the symmetric Z matrix are
computed as

Zij = TniTnj 3 Zji = Zij

where .
i=1,23,4 j=12.. n=123..9

The components a;; are then obtained through the inversion of the symmetric 4 x 4 Z matrix. The element
stiffness matrix, K, is given by
Kij = Kq,; + Kx,; = gnignj — 9niTns@smTem9kj ; Kji = Kij

where
i=123,...,8; j=1,23,....i; nk=123,.9;, sm=1234
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The E4PL and E4NL elements are related to the Pian-Sumihara element {13} which has demonstrated excep-
tional performance in plane stress/plane strain problems. An elegant derivation of an explicit form for the
Pian-Sumihara element is presented in Reference [14] utilizing a scaling procedure and stabilization matrices
to obtain stiffness coefficients. The present method avoids the need for numerical stabilization and provides
a generic approach for obtaining explicit element stiffness matrices in hybrid element formulations.

7 8-Node Hexahedral Continuum Elements

W

X

Figure 4. Hexahedral element configuration.

Two 8-node hexahedral continuum elements incorporating incompatible displacements will be considered

in this section. Element geometry and node numbering convention is shown in Figure 4. The first element,
designated E8PL, is based on unconstrained stress expansions assumed in physical coordinates. The second
element, designated ESNL, is based on stresses assumed in natural coordinates. The selection of incompati-
ble modes are identical to those used in [12].

The displacement functions u, are given by

w;

U, 8 1 ' Uug
Uy =4 v ¢ = §(1 +&€)(1 + nin)(1 + Gi€) { v; } =N; (77)
1

The isoparametric mapping between local physical and natural coordinates is given by

z = a1+ aan+ a3+ asn + asé + agn( + az€n(
Yy = h&+ban +bsC +bs&n + bs€C + benC + bréng (78)
z = af+en +ea +cafn + cs€C + cend + crn
where ) - N - . -
ao bo Co 1 1 1 1 1 1 1 1 T N1
a1 bl C1 -1 1 1 -1 -1 1 1 -1 Z2 Y2 22
as b c2 -1 -1 1 1 -1 -1 1 1 T3 y3 23
as b3 c3 - l -1 -1 -1 -1 1 1 1 1 T4 Y4 24 (79)
ag by ¢4 8 1 -1 | S | 1 -1 1 -1 s Ys 25
as b5 Cs 1 -1 -1 I -1 11 -1 Ze Ye¢ 36
ag bg cg ' 1 1 -1 -1 -1 -1 1 1 7 Y71 27
| a7 b7 7 ] | -1 1 -1 1 I -1 1 -1 ]| 2s yo 28 |
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The ESPL Element

For an 8-node isoparametric continuum element with trilinear displacement interpolants, the number of
independent strain modes is 18. A detailed study of strain modes in Reference [9] has determined that a
linear expansion field is insufficient and will give rise to spurious zero energy modes unless selected quadratic
terms are added. In physical coordinates, using the completeness property to guarantee element invariance,
the number of assumed stréss modes is 60. Equilibrium and compatibility constraints can be appled to reduce
the independent modes to 42 but is not performed in the present analysis. Several versions of the ESPL
element are formulated using different assumed stress fields to assess the effect on element performance. In
ESPL,, stresses are assumed as complete linear expansions for all stress components. This selection yields
an element containing 2 zero energy modes which would have to be removed through stabilization to yield a
useful element. Stress expansions including quadratic cross terms are incorporated into the ESPL, element.
This element possesses the requisite number of rigid body modes but is not invariant under coordinate trans-
formation. A third element, E8PLs, incorporates complete quadratic expansions which precludes spurious
kinematic modes and ensures invariance. This element, however, is shown to suffer from significant sensi-
tivity to distortion. The three versions of the ES8PL element are compared to a 3-D element formulated in
natural coordinates which demonstrates optimal behavior.

To encompass the various stress fields assumed in the ES8PL element, the initial stress field is selected as

(A1)

P= (A (80)

which are complete quadratic expansions given by
[Pl] = [lvzvy'z)xyy zvzzyzz'yz!zzl : (81)
Orthonormalizing yields
[Pi] = [P, p3. P3, P4, P5. P5. P7. PR, P35, Pio) (82)
where, for i = 1,2, 3, ..., 10, the general form of each mode is given by '
Pi = Ph+phz+phy+ Pz + PisTy + Pieyz + Pir2z + pisz® + oy’ + Plroz’ (83)
and
pir=0 for k>i
A procedure for generating the constant coefficients in the expressions for p} is presented in Appendix II.
The stress fields are selected in the following expressions by setting N, equal to 4,7 and 10 for the ES8PL,,
ES8PL; and E8PLj3 elements respectively. Integrating equation (30), the components g,,, where m =

1,2,3,..,N. and n = 1,2,3,...,8 result in lengthy linear algebraic expressions which are, however, highly
structured and allow a compact notation to be used. The expressions for g, are given by

I(m)(3n-2) = duOLn  Imi2N@En-2) = d2OL.  gm+aN Ea-2) = dssO3,
I(m)(3n-1) = d130%,  gmsN@n-1) = d320%,  gmtan)am-1) = O

9(m)(3n) = d130%,  gm+ano@En) = d33O%,  gmeava@e) = dssOh, (84)
Im+N)Bn-2) = d21Oh,  GmaaNy@En-2) = 0 I(m+35N)(3n-2) = deeO%,
ImeN)@En-1) = d220%.  Gimpanyan-1) = du4O%,  msn@n-1) = deeOl,,
9(m+N.)(3n) = d303,  Im+3N.)3n) = duOl,  Gim+sN.)3n) =0

1

(2]




where

Omn = Zm:p:...ﬁ.. (85)
=1
Form=1
1 = —wyi/3 (86)
Form =2,3,4
oni = —(3atw}; + 3afus; + 3a3ul; + afuwl; + afuki + afuwk; + 207 wh;)/27 (87)
Form =5,6,7,8,9,10

o = —la} (loﬂ""’s; +83 wg. + 67 '”12: + ﬂ"wna. + ﬁ""’zo- + 535"”6. + 5/3"“’5.
a,(lOﬂ"w,, + ﬂ"wm, + Sﬂ“w-,, + ﬂ"wm + BPwiy + Sﬂ"ws, + B whe+
a,(lOﬂ"w,,-}-Sﬂ"w,, ﬂ"wm +ﬂ"“’m+5ﬂ"‘"m +5"'”24. +ﬂ"w2&+
a,(lOﬁ:','w&+ﬁ"wm +ﬁ"w12:+ﬂ"'"m+5"wm +,3"w23.+ﬂ"w25.+ (88)
af (1085 wg; +ﬂ"w9, +,3"w,,, + BRuwty, + frwky +ﬁ"w,4, +ﬁ"w,6,+
a,(lOﬂ"w& +ﬁ"'”w. +ﬂsw1& + 3wy +ﬂ""’za- +fwiy 'H’""’m
of (Bfwiy +Brwiy + BPuwly + BRwsy + BPwiy + BRwiy, + Bpwiy,)/135

The constants w}‘i are given by

k
wy;

wg;
)
ok
)
wi;
wioi =
whi =
w{‘a.
w! 3

Wm
wisi
wie; =
vy =
wiai
win;
wloi
Wi
Wi
i
Wi
wisi
e

u’:‘h’

= (854 +355:)3) + (862 + 673 )23 + (6% +65,)25 + (850 + 3653)23 + (853 + 834) x5 + (885 + 3653}

= 3(83s + 833)71 + (672 + 36%3)23 + (857 + 363))25 + (853 + 830 )zi + (8% + 36%3)25 + (8% + 36%) 2}

= (874 + 3b62)xi + (3633 + 817) 23 + (83 + 841) 24 + 3(84s + bYs)2d + (8% + 3631) 26 + (887 + 385,25

= (57 +3635)2) + (363, + 571)25 + (87 + 613)24 + (B3 + 3685)23 + (3633 + 837) 25 + 3(861 + 85s) 24

= 3(872 + 850 )71 + 3(62; + Ble)z3 + (867 + 3654 )25 + (835 + 3631 )2{ + 3(88s-+ 817)2d + (655 + 364 )2

= 3(837 + 836)21 + (B7e + 3623)23 + 3(634 + 861)23 + (3633 + 86)24 + (81 + 38%5) 26 + 3(8% + 631)2)

= (857 + 3838)35 + (674 + 3682)25 + (3633 + 64s) 24 + 3(88s + 8%s)28 + 3(88s + 835) 24 + 3(68 + 637)3}

= O3s25 + Bgazs + 8024 .

= (9857 + 15636 )21 + (9671 + 15632)25 + (5853 + 9615 )24 + 5(6% + 36%3)28 + 5(8%; + 36% )26 + 15(661 + 835) 2

= 5(857 + 3836)21 + 5(6%1 + 3653)23 + (988 + 5655 )24 + (96% + 156%,)28 + (965 + 15553 )25 + 15(66) + 63)27
(3857 + 583 )21 + (367, + 5637)23 + 3(Bgs + b1 )24 + (365 + 568)28 + (3857 + 56%3) 2 + 5(58) + 65:)z}
(3837 + 563 )22 + (367, + 5862)z3 + (368 + 56%2)24 + 5(65 + 6%3) 24 + 5(6% + 835)26 + 5(b64 + 8572 (89)

= 3[(9654 + 1583;)2} + (5862 + 9675) 25 + (56% + 9651)25 + 5(6%s + 36%) 25 + 5(8% + 65,)28 + 5(6% + 365, )z7)

= 3[S(854 + 3632)31 + (9863 + 56%5)z3 + 5(8% + 68125 + (9655 + 15655)23 + (565 + 965, )z + 5(6% + 365, )z7)

= 3[5(834 + 3832)21 + 5(863 + 65) 25 + (983 + 5681)z5 + 5(6%s + 36%)2h + (965 + 5834 )26 + (98e5 + 1563 )23)
(965 + 15632)21 + 9663 + 815)23 + (5636 + 9641)25 + (9885 + 158%3)2} + (568 + 963,)28 + 5(68s + 36%,)2}
(9854 +1563)a] + (5863 + 96%5)z3 + 9(B%s + 681)23 + 5(85s + 36%) 25 + (965, + 565,)z¢ + (964 + 1565, )2y

= 5(83 + 3832)21 + (587 + 9882)23 + (983 + 5681)23 + (9856 + 156%) 2 + 9(8%; + 65,)28 + (965 + 156%, )2}

= (3824 +5632)21 + 3(88z + 815)23 + 3(8% + 611)23 + (363 + 5613)24 + 3(8%3 + 65,) 24 + (368, + 565,)2}

= (9574 + 15862)2] + (9677 + 1563,)25 + (583 + 96{1)21 + 15(885 + 8%6) 25 + 5(8% + 3651 )28 + 5(68; + 365)2}

= 5(874 + 3662)3) + 5(817 + 3852)23 + (9635 + 5681 )24 + 15(883 + 8%e)2} + (965 + 1565, )23 + (964, + 156%,)23

= (3674 +5622)21 + (3617 + 5633)2; + 3(63s + 631 )24 + 5(bds + 815)25 + (38T + 56%1)25 + (364 + 565,)z}

= 5(837 + 636)21 + (367 + 5833)23 + 5(83, + 851)23 + (368, + 58%3)2) + (3647 + 56%5) 25 + 5(6k + 6%,) 2

= 5(8g4 + 872)21 + 5(8%s + 852)25 + (3067 + 5650023 + (365 + 565 )24 + 5(6%r + 655 )zi + (36% + 5641)28

15(83¢ + 632)21 + (987, + 156%3) 25 + 5(6% + 365,)z3 + (568, + 9634)z¢ + (9887 + 15635 )24 + 5(5% + 3641)2

15(83 + 852) 21 + 5(8%; + 3653)23 + (9657 + 1565, )28 + (95%; + 56%,)24 + 5(6%; + 36k, )2} + (965 + 156%,)2}

= 5(63 + 852)21 + (367 + 56%3) 2% + (365, + 5521)23 4 3(85 + 650) 24 + (3687 + 56%5)z% + (36* + 565) 2
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and the geometric constants a¥,, 8%, and 6%, are given by

al = an
3
ay, = b
N m = Gm
A = Cm ﬁ6 = b
a?n = am "? = Cm 6},‘" = bnc'n - bmc"
al = b B's" - 62, = CnGm — Cm@n (90)
al, = cm S o 63, = Gubm —amb,
8 — m = m
Cp = Om ﬁxo = ¢
ad = bm m ™
al® = ¢
The values for z;: for i = 1,2,3,...,8 are given by
2y 2 2y 2y 2 2§ 2%
T 1 - :

4 -1 1 -1 1 A
1 -1 -1 1 -1 -1
4 1 1 1 -1 -1 (91)
1 -1 1 -1 1 1
401 1 a1 -l
1 1 1 1 1 1
-1 -1 -1 1 1

Q0 =3 OO U b G2 N =]
1]
— et bt b e

[P

The stiffness coefficients due to compatible displacements are then given explicitly as
Ko, =gkigej 5 1=1,2,3,...,24; j=123,...,4, £=1,23,..,6N, (92)

In computing the stiffness contributions of the incompatible displacements, the selected nonconforming
displacement modes are identical to those presented in [12] and are given by.

A
{u} M, My My 0 0 0 0 0 01|\
v 3=l 0 0 0 M Ma My 0 0 0 , (93)
w ), 0 0 0 0 0 0 M M; M '
9
where
M, = £~ fi§- fan- f¢
My = n*— fof - fsn - f&C (94)
Mz = (%- 26— fan— foC

The derivation of the incompatible modes and all constants are contained in Appendix III.

The components of equation (31), r;j, where i =1,2,3,..., N. and j = 1,2,3 are given by

rij = d 19.;,- riganN,j = dm 9.;,- ri¢an,j = dss©
Tij+3 = dlzey Ti42N,j43 = dazey Ti¢aN.j+43 = 0
Tij+6 = d130j; risan.j+e = 4330}  rigan,j+e = dsse.;- (95)
Pi4N,,j = 4219.;- Pi43N,,j = 0 FigSN,.j = d“e'ij
PigN.j+3 = dzzeg,' Tit3N. j43 = 4«9;- Ti4sN.j+3 = dee6;;
risN.j+6 = d230};  rigan,jee = du©j  rigsn,j4e = 0
where ‘
1
o4 =Y _pi.é}; (96)
s=1
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Fori=1
oh = 8[f1(65, + 3654 + f2(65s + 36f5) + f3(5§s +383,) + 2(835 + 6§3)1/3
ok = 8[fa(6F, + 3653) + fs(85s + 36%3) + fo(8&s + 383,) + 2(8g, + 654))/3 (97)
ofs = B[f1(6%, + 365) + fa(6%s + 3653) + fo(6&s + 36%,) + 2(65; + 6%4)]/3

Fori=23,4
¢€1 = [16wf + 40(wi /1 + wif2 + wi f2))/45
ﬂz = (16w} + 40(wi fa + wisfs + wk; f6)])/45 (98)
¢l = (16wl +40(wf f2 + wisfs + wi f5))/45

Fori=5,6,7,8,9,10
oh = —[h+hvi+ f‘."/’fs - f3¢§6]/135
o = —[h+ fvk+ f5'/1.s fevis)/135 A (99)
oty = —[vh + favi, + fsvls — fevls)/135

The constants 11) and w are given by

'p{l = 48"‘1"’.‘7 + 16(02“’-“10 - aaw.ku + “4"’-:12 asw.:u athklc 0’7'”.17)

Yia = 480‘2'”-3 + 16(0‘7'”.24 06'”7:: 05“’;27 + 0‘4“’219 - 03"’:*26 +ajw za)

¢i§3 = 4803“’ 9 + 16(0511) {28 — asw 30 + (!7“).32 + al i — sz as - a4w'“) (100)
'1’? = 24‘-‘1“’-1 + 8(0‘7“’-16 - "4"’.10 + 05"’:11) + 40(0‘6“’.1& + 03"’213 abwfys)

'f’s;s = 240‘2“’-2 - 8("7'”.27 - ajwhy + “6"’:-»6) - 40(03"’.22 + aswnhzs alw.zo)

¥ = 24ajuwh + 8(afuwh, - afuwhy — ahwh) + 40(01“’.29 - abwfy; — afwiy)

wh = B3(968 + 1563,) + 503(657 + 8%) + 581 (6% + 86s) + 35(3687 + 5836) + F¢(367s + 56¢3)
wh = 585(5%1 + 65,) + B3(96¢4 + 1565)) + 584(857 + 8¢5 ) + B5(36%, + 585,) + B1(38e7 + 583s)
wh = 5B3(85, + 6%7) + 583(8%2 + 85s) + (9655 + 15813) + B3 (3637 + 5874) + B3 (3876 + 563)
wh = 383(65 + 652) + B3(57, + 3887) + Bi (687 + 36%55) + Bi(672 + bgs) + Be(637 + 636)
wly = Bi(8dr +36%s) + 3P3(8% + 6%) + (6% + 368) + BE (585 + 817) + B3(67s + 86)
wly = B3(6% + 358)) + B3 (867 + 365) + 3BL(68, + 835) + Ba (685 + 87,) + B3 (837 + 8¢4)
wly = 365(85; + 055) + 385(852 + 85y ) + BL(38%7 + 56%5) + B3(36%, + 58¢2) + 983(83, + 652)
o= 35;(651 + 6:5) + 3ﬂ;(6.":4 + 5-‘;1) + ﬂ:(35:1 +56%) + 93:‘;(6;4 + 5:1) + %(55:1 + 35;4)
Yo = 381(8%r + 8gu) + 3P4 (8% + 651) + 965 (855 + 651) + B3(3667 + 563, ) + B3(367s + 5681)
" who = P3(36%r + 5685) - 383(36%, + 5682) + 587 (557 + 65) + 305(3654 + 5633) + 1503 (85 + 634)
why = P3(3687 + 563) + 3P5(36%, + 5063) + 581(637 + 85) + 305(3685 + 5833) + 1564 (835 + 6¢3)
wiia = 363(637 + 83) + B1(38%; + 5635) + 985872 + 8g¢) + 363(36%, + 5632) + 9P5(652 + 634)
wha = Bi(6% + 6%) + Bi(65 + 36%) + 385(6%; + 65.) + 38565, + 36%,) + 385 (6%, + 6%,)
wie = 305(837 +636) + B1(368r + 563) + 9P5(5%5 + Ses) + 966 (635 + 84s) + 364 (3655 + 5633) (101)
whis = B3(63 + 8%s) + B1(8¢r + 3636) + 383(5% + 85 ) + 385(83 + 833) + 384 (645 + 363)
whe = Bi(388s + 565 ) + Bi (365 + 565;) + Be(36%; + 56%5) + 583(85 + 6%3) + 58L(85; + 8%) + 583(83s + 6%3)
why = 365(6% +6%) + B3 (365 + 56%,) + B (3651 + 565 ) + 361 (6% + 68 ) + 365(6%r + 6%) + B3 (365 + 56%)
whe = B3(63s + 6%3) + B3(6%s + 3563) + Bi(6%; + 36%) + B3 (8es + 6%3) + B&(657 + 65s) + BH (6% + 36%)
who = 3B3(837 + 665 ) + P(3687 + 5635) + 9B3(8%) + 6%,) + 305 (3864 + 565,) + 985(554 + 861)
wio = B3(831 + 8s) + Bi(Oer + 3835) + 383(65, + 67,) + 383 (Bey + 385,) + 382 (63, + bey)
why = 365(8%; + 68) + Ba(36%7 + 5615 ) + 9B (8% + 6%) + 95} (8% + 65) + 385 (364 + 56%)
wha = Ba(817 + 64s) + Ba (63 + 3655) + 3B3(6%: + 656) + 387(67s + 653) + 3P1(6% + 36%3)
whs = ﬁ:(35:7 + 55:.'.) + 33;(35;4 + 55:1) + 5/9;(6:’;7 + 5:.'.) + 303(583, + 35:4) + 155;(5;4 + 5:1)
whe = 303(51 + 630) + B3(3687 + 5535 ) + i (588, + 3570) + 30(887 + 655) + 353 (6%, + 65,) + Pa(38¢4 + 56%)
whys = P5(8%s + 633) + Bi(67e + 36%:) + Bi(687 + 36%s) + BL(6%s + 65) + BH(6%: + 65 ) + Be (ks + 36%)

w,
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whe = B4(36er + 563) + 303(387 + 58353) + 5B(817 + 84s) + 387 (368 + 5683) + 1584 (8% + 543)

why = BL(36% + 565 ) + FL(36% + 55%) + (365, + 56%) + 583(8% + 6%) + 585 (6% + 8%,) + 554(8% + 8%)
wis = 363(85r + 8e0) + BL(3687 + 563,) + 961 (6% + 871) + 383 (3865 + 585,) + 95835 + b6¢1)

"’-’.30 = 5‘(6;1 + 6:4) + ﬁ;(5:7 + 36:4) + 35‘(6:5 + 5"1'1) + 33;(5:5 + 36:1) + 35;(5:5 + 5:1)

wio = 304511 + 084) + B3(385r + 5614) + 981 (8ls + 872) + 9B (53 + 652) + 3B3(383¢ + 5612)

whyy = Bi(8%r + 85.) + BL(8%r + 3614) + 381(80s + 872) + 303 (615 + 632) + 383(635 + 367,

wha = 385(6% + 6%) + BL(56%; + 35%) + B3(36%; + 56%.) + 3085k + 652) + 383(6%y + 865,) + B (385 + 56%)
wiis = B3(8%s + 6%;) + Bi(6% + 36%;) + B3 (6% + 361,) + Bs (572 + 856) + B3(8%r + 85,) + Bi (8% + 35%;)

"’i"sl = ﬁ:(35:1 + 55:4) + 33:(55:1 + 35";5) + 55;(6:7 + 6:4) + 35;(36:5 + 55:1) + 1555(5:1 + 5;.'»)

wiys = B3(3857 + 567,) + 38L(3676 + 5852) + 5BL(817 + 65¢) + 3B1(385s + 5672) + 1563 (656 + 652)

whe = Bi(36% +56%) + i (36% +56%,) + B3 (365 + 56%,) + 5B5(6% + 6%3) + 5L(8%; + 85) + 58L(8% + 6%)

and the geometric constants of,, 8, and 6%, are given in (90).

The computation of the inner product given in (32) results in a 9 x 9 Z matrix which must be inverted
to give the coefficients a;;. Although Z is symmetric and specific explicit inversion schemes can be applied
to minimize computations, this matrix order is perhaps at the limit in which closed-form expressions for the
inverse may be succintly expressed and a numerical scheme may be preferred. The stiffness contributions
due to the incompatible contributions, K, are given by

Ky, = —9niTns8smTemGi;j
where
i=123,..,6N.; i=123,..,i; nk=123..,24; sm=123,.9
The complete element stiffness matrix is therefore given by the sum

K= K, + Ky

The ESNL Element

The ES8NL element is formulated using stress expansions defined in natural coordinates. Incompatible modes
are introduced to complete the quadratic bending terms and enforce orthogonality between the stress and
incompatible strain fields variationally. Two versions are presented to demonstrate the effect of different
stress expansions on element behavior. ES8NL, is based on incomplete quadratic expansions for the inplane
stress components with complete linear expansions for the shear stresses which is identical to the FE! ele-
ment presented in Reference [10]. The selected incompatible displacement modes used in ESNL are identical
to those used in the ESPL element.

The assumed stress field is given by

(T1]
e
F.
= 1 (2] (102)
(Ty)
(T2)
here Ty = [1,67,C,€n,n¢,CE]
1 =14 J?»C- nan1C
F'.’ = [l'f' '7'(;] (103)
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The natural stresses are transformed to physical coordinates using a contravariant transformation based on
centroidal Jacobians and premuitiplied by the distributing matrix to yield the transformed stress field as

P=D"'T,T (104)

Without attempting a simplification of the modes in (104) through linear combinations of the unknown
expansion coefficients, the orthonormalizing process yields stress modes of the general form

Pi +P0€ +pisn +Pi +pisn +pienC + pirké
Pis +Pisf + Pi1on + Pl € + P1akn + PhanC + piiaC€
pr = { Pas +Phek + Phirn + PisC + Pliokn + Piao’K + Pin¢é (105)
! Pizz + Piaa + Piaan + PiasC
Piae + Piar€ + Pixen + Piag(
Piso + Piai€ + Piaen + Piss(

where the coefficients are obtained numerically. The components g, with m = 1,2,3,...,33 and n =
1,2,3,...,8 result in the following linear algebraic expressions

7
I(m)(3n-2) = Z(dupfm,k) + 40P 147) + 931P{m 4414))Ons +
k=1
4
D (ds5P{m k425901 + d66Pim 1429)001)
k=1
Imyan-1) = I (d12P{mu) + 220mrsn) + d32D{m k414))O%8 + (106)
k=1
Z(d44p(.m,k+2l)e?lk + d66P(m k+29)Onk)
k=1
= Y (d3P{m ) + d23p] + dasp;, )03, +
9(m)(3n) 13P(m k) 23P(m k+7) 33P(m,k+14))nt
k=1
4
Z(d«P('m,uzne;".k + d55P{m £-425)Ons)
k=1
where X . . . ) ) . X
mt = —(38n; + hs + Shg + Fn10)/3 ns = —(38ns + ¢n20)/27
n2 = ~(36p2 + ¢n13 + 4’n15)/9 ne = —(30he + dhn18)/27 (107)
n3 = —(30h3+ On11 + #h16)/9 nr = —(3dn7 +én19)/27
ha = —(30ha+ Shia + 6414)/9
and
nt = 2] 532 - 25 '513 - 51227 léuo =13 636 + z¢ 653 -2 556
n2 = 2] (6' - 552) + 23 513 - 23 51" + z5 515 — 228}, dn11 = 3] 574 + 2 517 -2 614
n3 = 2783 + 2585, + 23 (843 + i) — 23615 — =7 7642 iz = 21657 — 23817 + 236i5
ne = 2p83 + 23 3652 + 28685 + 2 513 - 27(8i6 + 683) n13 = 2504 — 2084, + 2P 3647
ns = %] (664 + 8 2) + 22(81s + 552) + 28(64s + 617) - nl4 = 24 662 + 25 676 — 2864,
o 2384y — 208, - 236, . nis = 23057 = 2284, + 2363, (108)
ne = 26 (543 - 652) = 23(8%6 + 8%2) + 28(8%3 + 8ig) + nie = 2583 + 28 6%, — 2765
. 2385 + 2365, + 2364, . :_m = 228856 + 23664 + 28 6%s)
nr = 27 (857 + 846) + 25 (854 — 8i6) — =7 (817 + 654) + uls = 23837 + 2580, + 25645+
; 23 5'334 8is + 22645 , pi9 = 2385 + 2384, + 2264,
n8 = 2P84, + 25 6}5 — 2561, P20 = — 25656 + 1764 — 2884,

no = 23 562 — 2 546 ~2¢ 542
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The values for z} are given in (91).

The components rm,, with m =1,2,3,...,33 and n = 1,2,3, are given by

Pmn = duOha +d210) 42 + d318) 03 + dssPhaz + decPrns
Tm.n+3 d1207,,1 +d2202,,, + d3202, .3 + dea B} + decPhans (109)
Tm,n+6 d1303,,1 + d23O% 12 + 433073 + deu B2,y + dss Py

where the following constants are defined

ik =~V + fiYha + fa¥hse + fa¥iner Pk = Vi + fl'l’mmh + fa¥mins + fa¥iiae
har = Vs + S + SsUiss + fo¥hner Pha = -'bmag + fa¥nior + fs¥nine + follmiae  (110)
Ohss =  Vmss + [1¥hna + fa¥hnsi + fo¥hee Pz = Yok + [1¥mios + fa¥iniis + ol

ik = 3P(m.7k-6)As + P(m.7k-2)A22 + P(m.7k-0)A 14 +P(m70) M6+ P(m.7k-3)Nio + P(m.7k-5)Ab
Yk = 3P(m.7k=8)Ms + P(m,7k-2)A23 + P(m,7k—4)Mls + P(m.76=1)A24 + P(m.7k=3)A30 + P(m.7E-5)Al0
m3k = 3P(m.7k-6)A6 +P(m7t-0)Me +P(m.70)As7  + P(m.7k-1)A2s + P(m,7E-3)A21 + P(m.7k-5)A];
ik = 3P(m,7k-5)A% + P(m.7k-3)A\7 + P(m.rk-0)M3 + 2P(m. 7k M4 +2P(m, 76008 +3P(m.7e-6)A%
sk = 3P(m,7k-6)A2 + P(m.7k-5)Ak + P(m,7k-3)Ms + 2P(m 78-1)A20+2P(m 7k -2) Ak 0+ 3P(m. 7k~ ) A}
mek = 30(m.7i-6)A +P(m7e-5)Ar + Pim. - M2 + 2(m.a0A ]y +3P(m,76-3)A6 +2P(m.7e-1) M6
Tk = 3P(m.ak+18)A% + P(m,46+20)M 4+ P(m 4k+21) Mo+ P(m 4k+19) A% (111)
Vgt = 3P(m.ab+18)A% + P(m.4k+20)A 7+ Pm 4k +21) Mo+ P(m ak419)M )
ok = 3P(m 4k+18)A% + P(m 4k+19)M 2+ P(m 4k420) Moa+ P(m.ak+20)A%s
miok = 3P(mak+19)A% + P(m.ak+21) A 7+ Pm ak4+20)Aia+ 3P(m 4k +18)A5
Vint1k = 3P(m.4k+20)A% + Pim 4k 419)08 + P(m 4k 421) M 8+ 3P(m.ak+18)

Ymizk = 3P(m,4k+18)A1 + P(m.ak+19)AT + P(m. 46420)A 12+ 3P(m,ak+21) A6

'i = 8(84+ 36'2)/9 ':10 = 16(517 + 8%s) 19 = 16(857 +636)/9
5 = 8(8+ 3513)/9 M1 = 16(837 + 65y) 20 = 16(656 +673)/9

A?? = 8(6' + 3§=7)/9 ‘12 = 8(5_6 + 3642) ‘21 = (144§'56 + 22_56;2)/45
o= 8(8h, +6i5)/9 ty = 8(8% +36%) by = (4865, +806%,)/45
z; = 8(6;3 + 615)/9 '!4 = 16(5%-,' + 884) ‘ 53 = (486;7 + 806i5)/45 (112)
'9 = 8(6i3 + 6&3)/9 ';5 = (144_6.',6 + _2256;3)/5 /\'34 = (486'?6 + 80653)/45
? = 8(6;7 + 36i4)/9 16 = 16(&5 + 53{2) 2% = (4863(8 + 805.‘_‘2)/45

1\'9 = 8(%%; + 36{5)/Q z\i-, = 8(537 + 3656) Mﬁ = (48637 + 806?_36)/45
y = (14485, + 22563,)/45 18 = 8(8% + 3653) b = (48657 + 806814)/45

and
8ln = bncm —bmen 5 63, = CnGm—Cm@n ; 63, = Gnbm — ambn (113)

The components a;; are then obtained through the inversion of the symmetric 9 x 9 Z matrix. The el-
ement stiffness matrix is given explicitly by

Kl'j = I<q.,- + 1<»\,, = 9nidnj = IniTnsGsmTkmGky I"jl' = Kij

where
i=123,.24; 7=123,..,i; nk=123,..,33; sm=123..,9
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A variation of the above element formulation, designated E8NL,, is presented to show the simplification
poassible if balanced expansions are used for the stress components. The assumed stress field is given by

(T)

r= [r1) (114)

where

I‘l =[L€:’7-C:5ﬂyﬂ(:(£] ' (115)

The natural stresses are transformed to physical coordinates using a contravariant transformation based on
centroidal Jacobians and premultiplied by the distributing matrix to yield the transformed stress field as

P=D"'T,T =1T (116)

Through a linear combination as defined by

B = diag(T,T.T,T,T,T18 (117)

the P matrix can be reduced to the uncoupled form of stress modes given in (114). Performing the orthonor-
malization of the fundamental modes yields

P =[p1,p3,P3, P, P5, P& 7] (118)
where, for i = 1,2,3,...,7, the general form of each mode is given by
pi = P+ Pk + pian + PiC + Pisén + pieTK + PiCE (119)

and
Pie =0 for k>i

Explicit expressions for the coefficients p;, are presented in Appendix III.
The components gmn With m = 1,2,3,...,7 and n = 1,2,3,...,8 result in the following linear algebraic
expressions

7
Imen-2) = D dupmiOhs Imy3n-1) = I _ d12Prs Ok Imyam) = ) _ d13pi O34
k=1 k=1 k=1

-

I(m+7)(3n-2) = Zdlzp:nkeylu 9(m+7)(3n-1) Z 19Pmi O 9(m+7)(3n) =Zd23P:nkeﬁk
k=1 k=1 k=l

7
Imera)an-2) = D d1abheOhs Imirasa-1) = I d23PmiO% Iom+14)(3n) = stapmge £(120)

k=1 k-l k=1
7
I(m+21)3n-2) = 0.0 I(m4+21)(@3n-1) = Zd«P,'nge?.g I(m+21)(3n) = Zd«p,‘,,,‘e,z,,,
. k=1 k=1
I(m428)(3n-2) = Zdﬁp:n,kegk F(m+28)3n-1) = 0.0 I(m+28)(3n) = stsp,',.,,,e,’,,,
k=1 k=1

I(m+38)(3n-2) = step.',,_keﬁg I(m435)(3n-1) = Zdesp:n,;eylu 9(m+3s)3n) = 0.0
- k=1
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where e'i__, ¢: ., and z are defined above in equations (107), (108), and (91), respectively.

The components rp,, with m=1,2,3, ...,

Tm,n
Tm47.n
m+14,n
m+21,n
m+28,n
T'm+38,n

dl ler!nn
d120},,
d1393nn
0.0

dssO3,,
dssO7,n

LI I T T

Pm.n4+3
T'm4+7.n43
Tm+14,n+3
m+21,n+3
Tm+28,n43
Tm435,n+3

where the following constants are defined

ml
$
m2
3
m3
'b:nl =
m3 =
'p:na =
¢:_n4 =
'l’:_ns =
Yme =

wonu

wwnnaun

dl'.’e?nn
d2202,,
d2302,,
dssO3,
0.0

de6Omn

3meA4 + Pms'\zz + Pm3'\14 + Pmﬁzs
3Pm1'\s + Pms'\za + Pms'\xs + Pms'\u
3meAs + Pma'\m + Pm?A'»': + Pms'\'zs

7 and n = 1,2,3, are given by

Tm.n+6
Tm4+7,n46
T'm414,n+46
Tm+21,n4+6
Tm+28,n+6
Tm+35,n+6

—d):m + flwm't + f2¢",5 + f3¢m6
_wm" + f4¢m4 + f5wm5 + fsme
¢m3 + f7¢’m4 + f8¢m5 + f9¢m6

d136%,,
d2363,,
d339,3,m
d44 ev?nn
dss63,,
0.0

+ qu'\ls + sz'\.

+ Prnatrio + Ph2lo
+ va\z; + sz)‘u
3pima)y + PmMn + Pmana + 2Pm5'\14+ 2pm7A 19 +3Pm1AS
3Pm1'\2 + Pm"'\s + va\xs + 2Pms'\"o+ 2Pm5’\10+3pm3A5

3Pin 1 AL + Plady + PlaaMia + 2007 AL 2 30506 +2ph6A%6

and the constants A;: and 6}, are defined above in equations (112) and (113), respectively.

The element stiffness matrix, K, is given by

where

i=123,..,24

I(ij = I{q,, + l\’A., = gnidInj — IniTnsC@amTimGkj Kji = l\’ij

’ J= 112v3,"-1

8 Numerical Demonstrations

i; nk=123,..,42;

ssm=1,23,..

,9

(121)

(122)

(123)

In order to validate the performance of the explicitly derived 4 and 8-node elements, several standard bench-
mark problems are analyzed. Solutions to plane stress problems are presented in Figures 5 and 6 while
Figure 7 depicts solutions to a solid cantilevered beam problem.
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—2 e ol i 4 ol 150
, g B bt Dt It ™ W
- T
B 1000
E = 15“ 2
V=025
150
A
—_— X
k—t‘: »le »le >le »| 1000
1 2 ! 3 ! 3 '
Flements o ey T
Q4 Bilinear 1soparametric 45.7 -1761 50.7 -244%
Q6 (Wilson et al [15]) 98.4 -2427.5 100.4 -3354.6
QM6 (Taylor et al[16]) 96 -2511 97.9 -3388
NQ10 (Wu et al [12]) 96 -2986 97.9 -4021
Pian, Sumihara [13] 96.18 -3014 98.2 -4137
E4PL 96.50 -3013 98.3 -4073
E4NL 96.18 -3014 98.1 -4074
Exact 100 -3000 102.6 -4050

Figure 5. 5-element cantilevered beam subjected to (1) pure bending and (2) end shear.

1
rﬁements v4 OB OzC oD O¢E
Q4 58.32 1773 -840.7 -629 1336
Q6 62.75 1545 -941.8 -694 1400
QM6 82.67 1783 -1320 -991 1643
NQI10 84.66 1781 -1509 -1097 1566
E4PL 85.25 1752 -1484 ~1088 1311
E4NL 85.24 1753 -1485 -1089 1311
Exact 90.41 2214 -1476 -1044 1230

Figure 6. Clamped circular beam under end shear loading.
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Y
Tz 2x 500
/L L A
75 -
A A
ol 10 o 2X 500
Cases Five elements Single element
Elements UA_ OB Uy O:B
Q8 Trilinear isoparametric 45.7 -1761 9 3000
Wilson et al [15] 98.2 -2473 100 3000
NQ10 (Wu et al [12]) 93.7 -2484 100 3000
E8PL, 96.4 -2956 100 3000
E8PL, 92.7 -2805 100 3000
E8PL, 86.3 -1964 100 3000
ESNL, 94.9 -2955 100 3000
ESNL, 94.9 -2955 100 3000
Exact 100 3000 100 3000

Figure 7. Solid cantilevered beam under end moment loading.

9 Conclusion

The aim of introducing special stress field transformations has been to maximize the efficiency of hybrid
element formulations by allowing explicit forms of element stiffness matrices to be derived. By fully ex-
ploiting the freedom in selecting and transforming independent stress fields in the hybrid stress technique,
the computational cost associated with numerical matrix integration can be eliminated and inversions can
be reduced substantially. In the extention to higher-order element formulations such as the 8-node plane
and 20-node solid elements, without introducing incompatible displacement modes, matrix inversions are
eliminated entirely. The approach has been demonstrated by deriving explicit linear algebraic forms for
the stiffness matrices of selected 4-node quadrilateral and 8-node hexahedral elements. The computational
advantage over purely displacement-based element formulations is clearly evident and the method outlined
in this study should be expected to find general application in various hybrid/mixed methods to minimize
computations in determining elerient stiflness coefficents.
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APPENDIX 1
DETERMINATION OF DISTRIBUTING MATRICES

In computing the 2-D distributing matrix, D, the inversion of the material compliance matrix, S, is not
required as the D matrix may be directly related to the material stiffness matrix C as

D= 3—1/2 = Cl/2 : Cl/2 - QA1/2QT
where the C and D matrix are given for an orthotropic material as
cn ¢z 0 dy d2 0
C= Ci2 €22 0 D= dl? d22 0
0 0 oc33 0 0 ds

The eigenvalues are computed as

pro= (—\/cg,_,—2c“cg-_,+4c‘-_,+6’f'l+622+Cu)/2
P2 = | \/67_,-_.—2(.‘“C33+4C'|'_,+C:1',1 +022+Cu)/2
$3 = Ca3

yielding the A!/2 matrix as

A2 = diag[py?, 03/%, p4?

The Q matrix is defined as
Q = [®1]Pa|®3)

where the eigenvectors are given by

_ €12 _ P2~ Ca ) 0
P1=¢ pr—cyy p, Or= 12 , ®3= 0
0 0 C33

and normalized as

The computation of the 3-D distributing matrix using the symmetric C matrix for an orthotropic material
is performed as follows.

€y 62 3 0 0 O dy dyz d3 0 0 0
€12 €2 ¢c3 0 0 O diz dyy dy3 0 0 0
C= €13 €3 c33 O 0 0 D= diz dyz daz 0 0 0
0 0 0 cqa O 0 - 0 0 0 dy O 0
0 0 0 0 e5 O 0 0 0 0 dss O
0 0 0 0 0 C66 0 0 0 0 0 d66
The eigenvalues are obtained as
$1 = lLi+ta-af3 Pa = Cqq
P2 = (=(ti+1t2) - 22 + V(1) - t2))/2 Ps = cs5
Y3 = = Cg6

(=(t1 +ta) = 32 - VZ3(ty - t2))/2 V6
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where '

v+ VT

(- - VTP

6/3~a*/9 ; r=(ab-3c)/6 - ad3/27

—(caz +caa+cn1)

((ca2 + c11)eas — €33 — ¢33 + cr1caa — €3,)
((cr1¢22 + ¢la)eas + c11¢33 — 2e12¢13633 + ci3e2)

Ll
(2]
wuwnnn

6 o n 0

yielding the A'/? matrix as

AY? = dzag[qpl/', sp;n. <p;l,/2, v:lz. ﬁP;/z, ¢1/2]

The Q matrix is given by
= [@1|D2| D3] ®4| 5| D)

where the eigenvectors are determined by

(ca2 — p1)(cas — 1) — ¢33 [ c13¢23 — c12(c3s — 2)
c13ca3 — c12(¢caz — 1) (€11 — p2)(cas — p2) — ci3
& €12€23 ~ €13(¢C22 — 1) & = c12€13 — caz(c11 — ¢2)
1 0 y 2 - { 0
0 0
0 ‘ 0
c12¢23 — c13(c22 - ¥3) 0 ) 0 0
12613 —~ c23(c11 — ¥3) 0 0 0
z (e11 = @3)(c22 — p3) — ¢34 s _ ) 0 s _}) 0 = _J o
o3 0 ,¢4 = Ca4 ? QS - 0 ) 06 - 0
0 0 Css 0
0 0 ) 0 Ce6

and are normalized to yield
= (7 ®;)"1/2
&, = N;®

In the case of repeated eigenvalues corresponding to a coupled submatrix partition, the eigenvectors asso-
ciated with the degenerate eigenvalues are discarded and are replaced by vectors orthonormalized to the
independent eigenvectors using the Gram-Schmidt procedure.

APPENDIX I1

DETERMINATION OF STRESS MODE COMPONENTS
USING THE GRAM-SCHMIDT PROCEDURE -

An elaboration of (22) yields an automated procedure for the Gram-Schmidt process and is presented to
indicate the numerical simplicity of developing orthonormal stress polynomials. A generic algorithm may
be developed by first defining variables reprwentmg the initial stresses, intermediate combinations and the
final orthonormalized stresses given by p;;x, p,,h and pj;, , respectively, where { indicates the mode number,
Jj denotes the stress component and k represents the coefficient in the polynomial expansion for the j**
component. Next, the basic scalar integrals involving the Jacobian determinant and the polynomial powers
arising from the inner product defined in (21) are computed and assigned to a variable, ¢;;, accounting for
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the order of expansion and the arrangement of terms. For example, in the 2-D case, if the expansion for
each stress component is given by
Pi1 + piaZ + piay
Pi={ pia+pisT+ pisy

pir + pisZ + pisy
where 2 and j are expressed in physical or natural coordinates, the scalar integrals required are given by

1 1 A Az A
“’:/.1/.1“"{ }[Li,ﬂ]didﬁ:[a\z » xi]

A3 Xe As
The computation of scalar integrals is detailed in Appendix IV.
With ¢ defined, the orthonormalizing procedure is given by the following sequence of operations which may
be performed symbolically or numerically

[T

y

-1
i) Pumn = Pemn — 3_(PriiPit;$ij)Prmn
r=1

i) p;mn = pamn(pnkipakj¢ij)-l/2

As shown, the nature of the Gram-Schmidt procedure is such that in developing an orthonormal set, each
mode is computed in an ’evolutionary’ fashion through the process of orthogonalizing the i** mode to the
preceding ¢ — 1 modes. When performed symbolically, this leads to increasingly cumbersome expressions
for coefficients as a function of the number of modes and degree of stress coupling and is most efficiently
implemented as a numerical procedure. Explicit expressions are presented below as examples for select 2-D
elements to indicate the unwieldly nature of symbolic representation.

For the E4PQ element, the coefficients in the orthonormalized stress modes are given by

pmr = M P9 = N4l pss = NsPy pe7 = NeQs pra = Ny
ps = N psn = Nsas pai = Ne@i ps = NeQs prs = NiRy
P = M ps2 = NsP pez = NeQ: pss = NeQs prsé = NiRy
P2 = Ny ps3 = NPy pea = NeQs pn = N:Ri  prr = NiRe
Pz = Nl pst = NsPs Pss = Neas prz = NiR: ps = NqRs
par = —Naaz pss = —Nsaz pes = Nels prs = NtRs prw = NiRs
where

Dy = N3(araz+ad)(Asé —A223/M1) Dy = Niad(Ae— Aars/A1)

Px = -0y Dx Ds = Ngag(02/\5 - Pa/\s - PqAa)

P, = (a1A3D; - a3rz)/\ Ds = —NZaz(Qs)s+ QeAa)

Py = aDy D; = Né’[(alcu - 6304)/\6 + Lzay Ay — De]

Py = axAs-ADh)/\ Rl = -—a3Ds-Q1Dr

Dy = Ni(azde — P3dq = Py)o) R: = -a1Dsy— P Ds~Q2D7

Dy = Ni(A=A3/A) Ry = -L\Dy- P,Ds~Q3D,

Qi = -—aa3D, Ry = -—-a4Dq

Q2 = -ax(aiazD3+ P D)) Rs = —LaD7+ L4

Q = a2ayLsD3~ PyDs) Re = aaDq— P3Ds —Q4D7

Qs = ag(agDa - P3Dy - 1) Rr = ai(Ds-1)-QsD7

Q = aiD; Rs = Ls—LaD4y— PyDs—QsD7

Qs = L3(1-aiDs)—ayPyD,
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Normalizing constants are given by

Ny = '\1_1/2

Nio = [af(ds = A3/ M) + ad(Ae = A3 /)12

Ns = [(a + P} + (2a3P) — 202 P3) A6 + 2(as Py + PsPy) Ao+
(P? + ad)As + 2(Pi Py — az PO)As + (P} + POV

Ne = [(Q+QHA+2(Q1Q2+ QuQs)s + 2(Q1Qs + Q4Qe) A2+

(@3 + a3 +Q3))s + 2(Q:Qs3 + a4Ls + QsQs) s+
(Q3+ L3+ Q)12

Nz = [(R}+a}+ R} +2(RiRy + a1 Ry + ReRr)Ae+
2(R1R3 + a1 Rs + RgRs)A2 + (R2 + R} + R3)As+

2(R2R3 + R4Rs + R1Rs)A3 + (R} + RY + RA,|71/2

and material constants are given by

Ly, = —aid3/h oy = 1/dia
Lz = a-_n\'_:/Al Qs = 1/d33
L3 = —04/\3/A1 az = l/du
L4 = —al/\z//\l ag = l/dzz
Ly = al3/)\

For 'the E4PR and E4PL elements, the coefficients, p;;, of the stress modes are given by

mp = N pa1 = N3R;
pn1 = —Nada/A;y  p32 = N3R
p22 4 Ng paa = N3
where
Ry = (A2 — A3)g)/(AsA) = AD)
Ry = (A2A3 = AA6)/(Agd1 = A3)
N o= AV
No = (Aq=2A3/A)"1/2
N3 = (As+2Rix6 +2RyA3 + R2A + 2R  Ry)g + R3A,)-Y/2

For the EANL element, the stress mode coefficients, p;;, are given by

m = M pn = NaR
p1 = —=Nedao/Ay pa2 = N3R
p2 = N piz = N3
where
R] = /\21\3/(/\5/\1—A§)
Rz = =dads/(Ashy = A2)
N o= A2
Ny = (As-,\g/A,)-W
N3 = (As + 2R A3+ Rf/\s + 2R RaA2 + Rgll)-xlz

For the ESNL; element, the coefficients, p;;, of the stress modes are given by

pmp =M Paz = NqRy pss = Ng P
P = =Nad2/A\y  paia = -N4P» psi = NsRs p72
pa2 = N, Paa = Ny ps2 = NeRy P73
P = N3Ry psi = NsRs pssa = NeRijo  pn
paz2 = N3R; ps2 = NsRg Pea = NeRuy  pms
ps = N3 psa = NsR; pss = —NePo prs
pa = N4R3 Psa = ~NsPs pes = Ns pr7
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[N3A2(AsAy = AsAz) — As)/Ay Py N2(RsAs + ReA1y + RrA17 — PsAys + Azz)

%(/\312”1 ~As) . Rg (PsA2 — A6)/Ay — PrRy, — PgR3 — PyRy
sz('\'r = A2h/Ay) Re —Ps — PRy — PsRy — PyRs
N3(RiAy+ RaAz + X6) Ryo PyPy — Py — PyRy
(Pv\z - A/ - BRy Ry PyPy — P
~P, - PR, Py N3(A6 — Aadz/A)

N3(A14 = A2ds/A1) Py N3(Rid1+ Radie + A1)
N3(AsRy + RaA1a + A12) P2 N2(R3A7 + Rydis = Padyy + Ar3)

N3i(As + ReAra = Padja + A1) Pyi3
(PsA2 = As)/A\ — P4Ry— PsRy Py

N§(RsA7 + Redie + Redyy — Psdys + Ags)
NE(RsA7 + Radis + RioA11 + Ri1d13 — Podas + Azy)

—P3 - P4R; — PsR4 Ry2 (PioAz — A7)/A — PuuR; — Pi2R3 — PiaRs — Pi4Rs
PsPs — Py Ry3 —Pyo— P1uR; -~ PiaRy — Pi13Rg — Pi4Rs

N2(A11 = Aade/ A1) R4 Py2Py — P1y — PiaR7y — Pi4Ryo

N3(RyAe + Rady + Ay7) Rys Py3Ps ~ P32 — Py Ry,

(LR (O | L T A O { | T | A {1 I 1

N}(Ral\s + R4A1y = Padiz+ Ais) Ry Py4Py ~ Py3

A-12

1
[As = A3/M]-12
[R?z\l + Ao + R%/\g 4+ 2(R R2A2 + RyA3 + R'_n\_r,)]'l/""
[Rgl\l + P22/\9 + Rzks 4+ Ao+ 2(RaR4A2 — R3Pad3 + RaAg — RyPoAs + RyA7 — P2A5)1‘1/2
[Rg;\l + Rg/\g + R;/\g + Pg/\m + Mg+ 2(RsRsA2 + RsR7A3 — RsPs)y + (Rs + R6R7)A5—
RePs)A7 + ReA1a — RePsAe + RzAia — PsAyy)]~Y/?
[R3M1 + R3As + R3gho + R, A0 + P3Ais + A1s + 2(RsRo)2 + RgRi0A3 + ReR11Aq—
(RgPa + RoR10)As + (Rs + RioR11)Ae + RoRy11A7 — RoPoAyg + (Ro — R11 Po)A11—
RyoPsA12 + RioA17 + Ridys - Psl\zz)] 12
[Ri2A1 + Rizhs + Ride + Righio + PErs + Righis + Aao + 2(Ry2 Rz + szRuf\:H'
RiaR15A¢ + (R12Ri6 + RisRi14)As + (R14Ris — Pi2R14)As + (R12 + RisRis) M+
Ri3Ri6A14 + (RisRis + Pra — R13P14)A11 + Riadi6 + RiaRigAiz2 — R1aPrady7—
RisPi4d1s + Rishia = RiePladaz + Rishaa — Pradn]™ V2

APPENDIX III

INCOMPATIBLE DISPLACEMENT MODES

The constants computed for the element incompatible displacement modes are based on the approach pre-
sented in [12] for identically satisfying the convergence criterion

/LMdv:O

for any arbitrary element configuration.

The E{PL and E4{NL elements

For the E4PL element, the various constants used in the definition of the incompatible displacements are

given by

f= aib3 — a1 b, _ azb3 — a3by
1= a;bg -— a;b, 2= albz - azbl
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and

hy = 3arbs+azbs(fa - f1) he = 3(a2fi —a1f2 —a3)

hs = 3b1bs + baba(f2 - fi1) hr = ajbsfi —3azby —azbsfs
ha =, 3(b3 + blfz - bzfl) hg = bgbafx - 36261 - bgbafg
hy = ayasfi —3araz~azaafr hy = 3ay82+ azasfy —ajash
hs = basfr —3bjaz ~basfr hyo = 3baz +byasfz — biasf)

For the EANL element, f, and f; are the same as given above. The constants h; are slightly different and
are given by

hy = 8ba+bfa-b2/1)/3 hse = —8asfs/9
hy = 8(3b2 - b3f1)/9 hy = 8b3fa/9
hy = 8b3f2/9 hg = —8(3b) + b3f2)/9
he = 8(azfi—as—a 1 f2)/9 hy = -8a3f1/9
hs = 8(a3f1 - 302)/9 hlo = 8(3dx + aafz)/g

The ES8PL and ESNL elements

A comment on the approach in [12] of forming incompatible modes has been made in [17] which criti-
cizes the algebraic complexity in the 3-D case. However, with careful manipulation, the procedure is quite
tractable and is presented in full detail below.

The basic incompatible displacements are selected as

uy = [€2,7%,¢7)

and ’virtual parameters’ are taken as
ux =[£,n,(]

The elements p;; of P, are obtained from the integration of

1ot i tiz 3
P, =-/1/ /1 ta1 laz laz | d€dnd(
w1 Ju1 e

t3; 3z tas

where t;; = Adj(J)i; and which yields

Pii = 8(aas+3a23)/3; pa1 = 8(Bas +3023)/3; pa1 = 8(b4s + 3623)/3
P12z = 8(aga+3231)/3; p2 = 8(fea+3031)/3; psz = 8(664 + 3631)/3
P13 = 8(ase+3ay2)/3; ps = 8(Bs6 +3612)/3; pas = 8(dse + 3612)/3
where
a.-,- = b;cj - bjc;
Bij = ciaj —cja;
6," = a,-bj -_ a,-b,-

The inverse of P, is given by

P—l-_-_l.

P | D23p31 — P21P33  P11P33 — P13p31 Pi13P21 — Pi11P23

[ P22P33 — P23P3z  P13P32 — P12P33  P12P23 — P1aP22 1 P2 ha
P21P32 — P22P31  P12P31 — PniPa2  PruPa22 — P12Par

where
|Pal = p11(P22P33 — P23p32) ~ P12(P21p33 — p23par) + Pra(p21Ps2 — P22par)
The elements p:-j of Py are obtained from the integration of
1 1 o | St nhiz (s P:u P:n P:la
P = 2/ / / §tr nlaz (taz | d€dnd( = Pn P Pz
-I=1J-1 ] ft3 niar (tas Pa1 Pa2 Pas
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A,,A
e

which yields
P = 16(cas+an)/3  py
pia = 16(ae1 +am)/3  pxm
Pis = 16(as+asz)/3  pas

16(B2s + Ba3)/3  py;
16(Be1 + B34)/3 P
16(B1s + Bs2)/3  p3s

-

o

The computation of the final form of u, is given by

A
Uy = ([€2v ﬂz»Czl - [é!r'r(]P:lPX) ( ‘\2 )

such that
where
u M]
u) = v = 0
w/, 0
and
M,
M,
M;

ux = [My, Ma, M5]

My, M3 0 3 0 0
0 0 M, M, My O
0 0 0 0 0 M

€2 - 1€ - fan - fC
0% — fa€ - fsn — feC
¢? — f2€ - fan — fol

The constants f; in the definition of the incompatible modes are given by

Hh = Piap;n + PizP:zl + PhP:u; f =
fao = P13P'32 + Pizp?z + Pil?}z; fs =
f1 = Plapaa+Piwrna+ruibe fs =

P§3P§x + P’zzp;l + P:.!lpzu; fa
P§3P§2 + P:.".'P?z + PilPIn; fe
P23Pa3 + P22Paz + P2ipiss o

APPENDIX IV

16(625 + 64s)/3
16(661 + 834)/3
16(816 + 853)/3

Hianu

P53P'31 + P§2P?1 + P51P:u
piap;;z + an?lzz + P:—ilplxz
P33p33 + Pazap23 + P31P1a

COMPUTATION OF BASIC SCALAR INTEGRALS

In the Gram-Schmidt procedure, the inner product defined by (21) requires the evaluation of scalar in-
tegrals in generating the orthonormal basis vectors. For the 2-D elements, using complete linear stress
expansions in physical coordinates, the required integrals consist of polynomial orders up to quadratic order

defined as

1 1
Pudadeddsdel = [ [ 102,02 02, suldgn
-1J-1

In computing the above integrals, the determinant of the Jacobian is expressed as

where

Jo = ajbs—azb, ;

|7 = Jo+ J1€ + Jan

J o=

which under mapping to isoparametric coordinates by

z
y

a1 + azn + azén
b1€ + ban + baén
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yield closed form expressions given by

/\1 = 4.’0 -

A2 = 4(J1ay + Jaa2)/3

Az = A(N1by + J2by)/3

Ay = [4.’0(30? + 30; + Gg) + 8(J1a2a3 + J2a:1a3)]/9

As = [4Jo(362 + 362 +b2) + 8(J1babs + Jabibs)]/9

As = 4[63(]003 + J1az + Jaa;) + 52(30110 +a3Jy) + 51(301.’() + ang)]/g

For complete linear stresses expressed in natural coordinates the basic integrals are

1 1
[ Az, Aay Ady s, Ae] = / | / JIL,€m,€n, €%, 17)dgdn

which yield simply

A o= 4)p Ay = 0
z\g = 4J1/3 /\5 = 4.]0/3
/\3 = 4.]2/3 /\s = 410/3
In the 3-D case, the determinant of the Jacobian is given by
I[JI = r1+ra€+ran+raC+rsné + reC€ + r(n+ ra€® + ron? + r10¢? + ria(n€ + rian€+
r13CE2 + rabn?® + risCn® + r166C% + rianC? + r18Cn€? + r19(EN? + raoné(?
where
rn = ‘sz re = S"§1 + ‘P;l + ‘P§1 m = 2‘P§4 re = <P§s
= o5 +9h T = $a +Patper n2 = Pla. 17 = Va7
r3s = pi3+pis rg = 80_1{4 T3 = 98 Tis = 95,
rqy = ﬁP;l + Vga re = ‘Pgrz riag = ‘sz Ty = S"gs
rs = phtelatel, o = ¢k ' ris = 9% T = g
and

P = ai(ajbe — axbj) + bi(bjcr — bicj) + ci(cjar - cra;)

With assumed stresses of quadratic order, the basic integrals required in computing the orthonormalized
stress modes are defined up to quartic order by

1 1 gl
[Al,Az,As,/\4,)5,/\&/\7,/\3,/\9] =/l/l/l |J|[l,z,y,z,zz,yz,::y,zz,yzldfdr)dC
1,1 gt
[,\lo,/\u-,4\1:,,\13,,\14,/\15,,\16]=/l/l/l|J|[:2,zyz,zy’,:c:’,yz’,yz’,zzz]dqudc
1,1 gl
(M7, Ay '\19,1\20,/\21,/\22,1\23]=/1/ / [l{zy?, 23, y°, 232,43, 223, yz3]dE dnd¢
1/ da
1 1 g1
[’\241’\251’\28)A27a '\281’\291'\30].—-/ / / I‘]":yzavzzavzyasxzyzvyzzz’zzzzvzyzzld{dnd(
-1 Ja

1 1 1
Pat, sz, da, Asar Ass] = [ [ [ Vleraate, ot o0, 4 dgnac
-1J=1J=1

where the isoparametric mapping is given by

z = a1 +an+a3(+aidn+asél + asnC +arén
y = 0 +ban 4 b3C + byl + bs€C + benC + b7énC
z = a +can +ca( +cafn + e + cen + créng
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Closed form expressions for the integrals may be succintly given for lower orders, however, for arbitrary orders,
the integrals of the scalar functions are most expediently evaluated using a standard Gaussian integration

scheme.
Nr No N’

M= Al 6 my, Gl (6 i) Ce)y® (6o Ga) 2 (6, )

i=l j=1 k=1

For stresses assumed in natural coordinates, the basic integrals required in computing orthogonal spanning
modes are of simple form and can be evaluated explicitly for any arbitrary powers in terms of coefficients,
r;, of the Jacobian determinant. For the ESNL element, 23 basic integrals are defined by

1) [ Ar A2 Az A As A A7 ]
£ A2 A A5 A7 Ay A Age
n A3 A5 A As A2 M7 Ap
¢ &0 ¢ EnnC,CE)dldndC = | Ad Az Ae Ao Al Ais A3
&n As Me Az A Ais Az Aas
K

¢€

o= [ L. L

and evaluate to

Ae A A1z Ais A2 A A
A2z Az Az

¥
>
-
b4
[y
-
b
Py
P
Do
-
[ ]

M = B8@3ri+rg+re+r10)/3 M3 ‘= 8(15r2 + 5114 + 9716)/135
Az = 8(3rz+ria+ri6)/9 As = 8(18r3 +9ry5 + 5r7)/135
A3 = 8(3r3+ria+r17)/9 Ais = 8(15r3 +5r12 +9r7)/135
Ay = 8(3rq+riz+ris)/9 e = 8(151‘4 +9r13 + 5r15)/135
As = 8(3rs +ra)/27 Atz = 8(15r4 + 5113 + 9r15)/135
Ae = B8(3r7+r8)/27 Ms = 8(15r) + 9rg + 9r9 + 5r10)/135
/\7 = 8(31‘6 <+ 7‘19)/27 A]g = 8(157‘1 + 51'3 + 91‘9 + 91'[0)/135
Ag = 8(151’1 + 9rg + 5rg + 57‘10)/45 Ay = 8(157’1 4+ 9rg + 5rg + 91‘10)/135
A = 8(157‘1 +5rg + 919 + 51‘10)/45 Ay = 8(51‘5 4+ 3ra0)/135

Ao = 8(15ry +5rg + 5r9 +9710)/45 A = 8(51‘6 + 31‘19)/135

An = 8ry /27 Aoz = 8(5r7 + 3rys)/135

M2 = 8(15r9 4+ 9ry 4 + 5r16)/135
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