Office of Naval Research
End-of-the-grant-report
for
Grant N00014-89-J-1412
R&T Code 413a005---03

Chemical Structure and Kinetics at Liquid/Solid Interfaces
Joel M. Harris, Principal Investigator
Department of Chemistry
University of Utah
Salt Lake City, UT 84112

June 1, 1989 - March 1, 1993

Reproduction in whole, or in part, is permitted for any purpose of the United States Government.

* This document has been approved for public release and sale: its distribution is unlimited.
DESCRIPTION OF PROJECT

This program of research was to develop spectroscopic and kinetic methods for exploring chemical structure and molecular dynamics at interfaces between dielectric solids and liquids. The research was carried out using fluorescence and vibrational spectroscopy from probe molecules where spectral and temporal differences in emission, absorption, or scattering provide information about the surface onto which they are adsorbed or bound. Studies focused on the interfacial chemistry of insulating surfaces in contact with liquids. The spectral and temporal response of bound or adsorbed molecules were used to observe differences in the chemical environment at the liquid-solid interface. Time-resolution was also valuable in sorting out heterogeneous surface environments from differences in emission rate constants, adsorption rates, and reaction kinetics. The dynamics of transport, adsorption, desorption, and binding of molecules to solid surfaces are being measured using perturbation methods. Fluorescence, infrared, and Raman spectroscopy were adapted to observe perturbations of interfacial chemistry by concentration changes on time-scales of seconds to milliseconds, by temperature-jump perturbations in microseconds, and by laser photoexcitation on time-scales of nanoseconds.

SIGNIFICANT RESULTS

Fluorescence from aluminum ion complexed with silica-immobilized 8-hydroxyquinoline was measured in order to observe double-layer potential effects at insulators on chemical reactivity at liquid-solid interfaces. We also carried out the direct measurements of the rates of siloxane binding reactions to oxide surfaces using vibrational spectroscopy methods, including ATR-FTIR and Raman. These methods have been adapted to conductive interfaces leading to several collaborative studies and one independent investigation of anion adsorption to noble metals in the double layer region.

The structure of pyridine monolayers at silica surfaces was studied by Raman spectroscopy, where the proton transfer to the adsorbate was observed to vary with adsorbate coverage under the control of the surface potential. The spectral methods were adapted in a collaborative study to the structural forms of zirconia, and may be extended to surface site identification.

Solid-surface disorder in pyrogenic silicas was found to be a source of inhomogeneous kinetics in the fluorescence decay of surface-bound excited states. We have also developed analytical procedures for optimal extraction of reaction rates from inhomogeneous environments (typical of interfaces), and applied the method to nanosecond, multicomponent fluorescence lifetime data. We applied these methods to the study of measuring rates of interfacial fluorescence quenching to determine the rates of encounter near a solid surface; evidence for surface diffusion of adsorbates was found and rates of lateral diffusion were determined.
A new form of interfacial kinetic measurement was developed: the Joule-discharge temperature-jump technique, which was applied to the study of adsorption/desorption kinetics at liquid/solid interfaces. Fluorescence thermometry was used to prove feasibility of conductive temperature-jump perturbations of porous silica samples and to investigate the influence of pore structure on connectivity and heating kinetics. The first observations of the effect of adsorption kinetics on equilibria for reversed-phase liquid chromatography were reported.

Perhaps our most significant breakthrough was the discovery of surface diffusion of covalently-bound (chemisorbed) species at insulating surfaces. In particular, we acquired evidence for diffusion of siloxane-bound species on silica surfaces from the appearance of excimer emission from immobilized 3-(1-pyrenyl)-propyl-dimethylmonochlorosilane (3PPS). The negligible excimer emission from sparingly derivatized silica, kept dry following derivatization, was compared with the strong excimer emission from the same sample stored in a humid atmosphere for 20 days. The observation suggested that the low concentration of surface-bound molecules were originally dispersed far apart upon binding (little excimer); exposure to water vapor could generate a small equilibrium concentration of hydrolyzed 3PPS species which could migrate by surface diffusion, rebind to the surface, and produce clustering of the bound ligands. We measured the time evolution of excimer emission following exposure to water, and found kinetic evidence for surface diffusion of chemisorbed 3PPS. The growth of excimer emission follows Smoluchowski kinetics for biomolecular collisions in two dimensions; two surface coverages were tested and could be fit to a single value for the surface diffusion coefficient ($10^{-20} \text{ cm}^2 \text{ sec}^{-1}$) and a reasonable value of the collision radius (10 Å). The temperature dependence of the diffusion rate gave an energy barrier to migration that was consistent with hydrolysis of the surface siloxane bond.

PAPERS PUBLISHED IN REFEREED JOURNALS

PAPERS IN REVIEW AT REFEREED JOURNALS

INVITED PRESENTATIONS AT MEETINGS OF SCIENTIFIC SOCIETIES

CONTRIBUTED PRESENTATIONS AT MEETINGS OF SCIENTIFIC SOCIETIES

GRADUATE STUDENTS AND POSTDOCTORAL FELLOWS SUPPORTED BY GRANT

Graduate Students:

Michael Weaver
Andy Wong
Diane Parry
Scott Waite
William Lacy
Haibo Wang
Lydia Olson

Postdoctoral Associates:

Stan Simpson
Kathy Rowlen