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SUMMARY

This report is on a pilot study to demonstrate some of the capabilities of remote sensing in00
intelligence gathering. A wide variety of issues, both quantitative and qualitative ,are
addressed. SPOT satellite images were used for object classification using statistical and
neural net techniques, object height determination and image resolution enhancement. A
new procedure was developed for detecting small and man-made objects in multispectral
or colour images.The procedure will be presented in a separate report.
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I INTRODUCTION AND OBJECTIVES
4'

Surveillance and intelligence collection have been given the highest priority, particularly

at a time of reduced likelihood of hostility (White Paper ,1987). Traditionally the

intelligence organisations have heavily relied on high resolution images, mostly from
restricted sources. Most of the high resolution images are black and white images, taken in a

wide spectral band. Processing of high resolution images is very time-intensive and
expensive. The ground resolution of commercial images are coarser than that of the military

satellite images. However, this disadvantage can be often offset by the availability of data

in more than one spectral band and for a wider area. It is important to weigh the pros-cons of
using any type of image data.

In the past, since the launching of the first commercial imaging satellite 21 years ago, the

importance of commercial images in surveillance has been greatly ignored. Most of the
capability studies in the past (Joye,1991; Richelson,1990) have concluded that the
applications of commercial satellite images in surveillance are very limited. Table 1.1 in

Appendix I summarises this pessimistic view.

However, towards the latter part of 1980s many independent investigators found SPOT * *
pictures very useful in investigating military targets. In order to find out what can be seen

from commercial satellites in space, the Camegie Endowment initiated a series of studies in
which SPOT and Soyuzkarta KFA-1000 images were analysed by the professionals in the

field. Their results were quite surprisingly different from the earlier pessimistic results.
Table 1.2 in Appendix I summarises their results (Zimmerman, 1990). The Carnegie 0 0

Endowment study revealed that what images reveal very much depends on the expertise of
the analyser. As such, the processing of the images is a crucial step in deciding whether a set

of images is useful or not.

In addition, during the 1991 Gulf war both Landsat and SPOT images were extensively and 0 0
effectively used (Shettigara V.K.,1992). These aspects prompted us to have a fresh look at
the capabilities of commercial satellite images. A comprehensive discussion on the

potential of commercial satellite images in wide area surveillance is available in Gale
(1992). In this report we present both quantitative and qualitative image processing results to

demonstrate that the commercial satellite images are capable of providing much more 0 •

information than previously believed.

The task ' Intelligence and commercial satellite images ' was a pilot study to evaluate and
demonstrate some of the capabilities of commercial satellite images for intelligence

gathering purposes. The task was to investigate the capabilities and limitations of the 0
commercially available multi-sensor and multi-band images in detecting and identifying

civilian and engineering objects. The task was expected to provide the basis for comparing the

performances of some of the traditional and alternate sources of intelligence and mapping in

the future.

SS
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As listed in the contents, the images were used for feature extraction using statistical and
neural net techniques, tree height determination and image resolution enhancement. A 0
seperate report is available on a new procedure to detect man-made and small objects in 0

multispectral colour images.

2 ROLE OF REMOTE SENSING IN DEFENCE

The term' Remote Sensing' is used in this report to indicate the study of images from civilian
satellites. No regular use is made of remote sensing data in defence, particularly in Australia,

for the following reasons: 1. From the defence point view the civilian satellites lack the

spatial resolution of military satellites. The best resolution available is 10m. in SPOT 0

digital images and 15 in in synthetic aperture radar images from Almaz satellite. A
resolution of 5-7 m is claimed for scanned images produced from the Russian KFA1000 camera.

2. The control of data rests in outside civilian agencies and its availability may not be relied

upon at the time of need 3. the revisit time is too far apart for effective reconnaissance and

surveillance efforts.

It is reasonable to accept that at present commercial satellite images do not meet some

defence needs, particularly at the high resolution end. However, it is reported recently
(EOM,1992) that Russian digital images with a resolution of 2-3 in are now available in the

open market. As such there is no si :igle source of imagery that could satisfy all the needs of 0 0
defence. Many issues in, for example, terrain intelligence collection require -%eitk..er very high

resolution nor frequent revisit. To detect activities such as road construction, site clearance for

building construction and runway construction the remote sensing data are adequate and

probably better because of the multispectral nature. Another major application of remote
sensing is in change detection facilitated by the availability of multiple data sources with a

good frequency of coverage. The moderate spatial resolution of civilian satellites are

advantageous in some terrain analysis applications due to the wide area that a single image

can cover. The processing time increases as the inverse square of resolution. It will be wasteful
to use higher resolution data when the problem can be solved with lower resolution images.

Another attraction of remote sensing is the multispectral character of the data providing

spectral resolution in addition to the spatial resolution. The disadvantages of lower spatial
resolution can be offset to some extent by the higher spectral resolution. Finally the

availability of ever improving, sophisticated but cheap data processing capabilities in micro

computers and work stations make the remote sensing technology very attractive. 0 •

The 1991 Gulf war clearly demonstrated the role of remote sensing, in conjunction with other

sources of information, at both the tactical and the strategic levels. SPOT and Landsat-TM
images were extensively used for three mjor purposes during the Gulf war: 1. to prepare up to

date maps of the area, 2. as input to 'automated mission planning systems' (Bernard,1991). 0
and 3. for strategic reconnaissance, particularly using SPOT images. The Gulf war narrowed

the technological gap between the military and the civilian technology. (Anson and

Cummings, 1991). The work presented in this report will further illustrate the capabilities
that are relevant to defence.

2 UNCLASSIFIED
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3 THE STUDY AREA AND THE DATA BASE -

3.1 The study area

The Defence Science and Technology Organisation (DSTO) area in Salisbury, about 23 km
north of Adelaide, was selected for the study. The site is located around 138"37' E 34"43' S.
The area was chosen for the following reasons:

1. Two sets of SPOT satellite images, an airborne SAR image and digital map data were
available for the area.

2. The area has a mixture of defence infrastructures, an industrial complex and civilian
suburbs. The study area is mainly the DSTO premises and Edinburgh RAAF base,
surrounded by the residential suburbs of Salisbury and Elizabeth, and GMH Holden
industrial estate. The area has an extensive network of roads of various kinds,
railway tracks, and numerous buildings of different types and dimensions.
Construction activities are fairly frequent in the area.

3. The northern half of the area is bound by open fields and farm lands.
4. One of the important requirements of remote sensing studies is the need to collect

ground truth data. From this point of view the area was readily accessible for
research purposes.

The terrain is flat. The eastern portion of the area has been planted with rows of trees that 0 0
run roughly north-east and north-west. The rows consist of either aleppo pines or sugar gums.
At places both types of rows are seen side by side, with usually the aleppo pine rows in the
south and the sugar gum rows in the north. The rows of trees surround open fields and factory
like buildings. Most buildings have asbestos saw-tooth roof with south lighting. A few have
tin roofs.

The Edinburgh Air base on the north western part of the area has a sealed runway in the N-S
direction, taxi ways and apron areas for aircraft parking. There is a disused unsealed runway
in the NE direction. The major buildings are near the hangars adjoining the apron, to the east
of the main runway. The administrative buildings of the air base and the residential quarters
are situated to the east of the airfield. An ammunition storage facility exists near the
runway.

3.2 The data base •

One multispectral and two SPOT panchromatic images were utilised in this study along with
two aerial photographs. No image processing has been done on the photographs as they were
used only for reference. The first panchromatic image and the multispectral image were taken
on 21st April 1987 where as the second panchromatic image was taken on 25 April 1987. The •
panchromatic images are off nadir looking and form a stereo pair. The image parameters are
summarised in Table 3.1.

UNCLASSIFIED 3
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The first aerial photograph was taken on 5th January 1987 and the second was taken on
3rd October 1990. The scanned aerial photo of 5th January is shown in Figure 3.1, with a pixel
resolution of 1.6 m. This aerial photograph was taken 109 days before the satellite images •

were acquired. The terrain conditions as seen in the photograph, particularly with regard to
vegetation, may not be the ambient condition when the satellite images were collected.

The Panchromatic image of the 25th April (not shown) and the Multispectral image
(Figure 3.2) of the 21st April were registered on to the Panchromatic image of the 21st April
(Figure 3.3) utilising nearest neighbour sampling and first order polynomial transformation.
This involved resampling the Multispectral image from twenty metre pixels to ten metre
pixels. All the processing was done on this set of images.

Table 3.1 Imaging Parameters

Satellite: SPOT 1 SPOT 1

Date: 21/4/87 25/4/87 0

Local Time 10.06.05. 10. 29. 18.

Latitude: S 340 53'39V S 340 53'39"

Longitude: E 1380 33' 32" E 1380 35' 13"

Orientation: 12.90 9.20 * * *
Incidence: R 23.40 L15.50

Azimuth: 39.20 32.10

Elevation 34.50 36.20

In Figure 3.4 is a part of the existing GIS vector data base imported from the Australian
Surveying and Land Information Group (AUSLIG). The accuracy of the data is about 1 m. This
vector based data can be overlain on the raster images and information extracted from the
images can be added to the vector data base. The information collected and stored in the
vector data base can annotated and displayed with ease.

The data processing in this task was done on an Intergraph workstation using ISI-2 image
processing software and locally developed computer programs.

4 UNCLASSIFIED
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Figure 3.1 Scanned colour aerial photograph of the study areataken on 5 Jan 1987.
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Figure 3.2 Multispectral SPOT image of the areataken on 21 April 1987. Pixel resolution 20 m
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Figure 3.3 Pancromatic SPOT image of the areataken on 21 April 1987. Pixel resolution 10 m
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Figure 3.4 Digital map of the area (source AUSLIG). Resolution im approximate.
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4 PATTERN RECOGNITION 0 0

The term pattern recognition is used to mean various aspects in image processing literature.
Pattern recognition is a classification problem, including clustering and supervised
classification (Young and Calvert, 1974). Prior to classification, however, a detection stage 0
may be involved depending on the technique used. Sometimes the term 'pattern recognition' is
stretched to include image enhancement. Some authors constrain it to mean 'image
understanding' that is mainly concerned with representing real world objects and managing
them in a computational environment (Sleigh,1983). Feature extraction is another term
frequently used to mean pattern recognition. However, the use of the term 'feature extraction'
will be avoided in this report as the term 'feature' is some times used to mean the bands in the
image and feature extraction in such a context refers to the selection of features (bands) or the
reduction of the dimensionality of the data set without significantly losing the information

content. In this report, 'Pattern recognition' is used to mean the classification of the images to
objects of known physical description.

4.1 Pattern recognition - a brief review

There are three main approaches to pattern recognition:
(a) statistical pattern recognition,
(b) optical and digital pattern correlation (template matching), and
(c) model-based vision. A good review of these techniques is available in Mundy (1991).

Statistical pattern recognition can be implemented using Bayesian classifiers, clustering
procedures or more recently neural-net classifiers. The strength of statistical pattern
recognition lies in its ability to process multi-dimensional data in a multi-dimensional space
without knowing the spatial structure of the data. However, with some difficulty the
spatial structure of the data may be incorporated in the statistical procedures for a better
result. Other techniques described below process variates of the multivariate data

separately.

In the technique of pattern correlation, an instance of the object is taken as a template and its
correlation with different parts of the input image is determined. The targets are determined
based on maximum correlation achieved. Correlation techniques can be made translation,
rotation and scale invariant. However, correlation is not intensity invariant. Variation in
shadows can give false results (Mundy,1991).

In model based pattern recognition procedures the image is initially processed to extract a 2D
description of the objects. Then, using a 3D model, a 2D representation is predicted. The
classification is achieved based on the prediction accuracy. The advantage of this technique
is that it is intensity invariant. However, the technique suffers as the pixel resolution
becomes coarser. This limits its application in pattern recognition in civilian satellite images.

UNCLASSIFIED 13
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From the above discussion it is clear why the statistical pattern recognition is still the )
favoured approach in remote sensing applications. 0

4.2 Statistical pattern recognition - which technique to use ?

In the image classification context two terms are commonly encountered: feature class and
information class. Feature classes refer to data clusters having similar statistical properties
and they may or may not have any bearing on objects that we recognise. On the other hand
information classes refer to classes of objects that we identify as types of land cover.

The discrimination processes used for extracting feature classes are commonly called
'clustering'. Clustering is mainly used for studying the data structures in terms of separable
groups of data points. As this process requires no supervision whilst training the process to 0

identify objects it is called 'unsupervised classification'. This process is not generally used in
remote sensing investigations as the clusters are hard to relate to the terrain objects that the
user intends to investigate.

Information classes are extracted from the images by training a statistical process to recognise 0

objects from their spectral properties. The processes are trained to discriminate between
information classes by providing a sufficiently large number of samples, usually more than
100, of each information class. As the user supervises the process during training, the
technique is called 'supervised classification'. In this report only supervised classification
techniques are used. 0 O

4.3 Digital Pattern recognition versus aerial photo-interpretation

Digital classification of satellite images can produce a greater variation within information
classes than visual interpretation of aerial photographs or ground truthing can produce, 0
particularly regions of uniform texture (Sali and Wolfson, 1991, Hyland et al, 1988). This
issue is explained in Klemas et al (1975) with examples. The finer resolving power of the
classifiers can often be disadvantageous as it causes graininess or 'salt and pepper effect' in
classification results.

To overcome the graininess of the classification a post-classification, line preserving
smoothing filter was passed over many of the classified images in this report. The filter is a
part of the ISI-2 image processing software. The effect of this is to remove any single or
isolated small groups of pixels that represent the finer classification not perceived by the
human eye. It does however preserve groups of pixels of a prescribed length or greater that 0
could represent linear features in the classified image. All GMLC classified results shown in
this report are post-processed.

4.4 Robustness of common classifiers

* 0
In developing classification procedures one may encounter following three possibilities
(Lachenbruch and Goldstein,1979):

I. the probability distribution of data is completely known,

0 0

14 UNCLASSIFIED
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2. the probability distribution of data is known or assumed but the parameters are

3. nothing whatever is known and a distribution is not assumed •
4r

In remote sensing applications the first case is very rare. If the distribution is completely
known the posterior probability may be easily computed and the pixel can be assigned to the
class with the highest probability. The second case is very common and usually a
multivariate normal distribution is assumed. The unknown parameters are obtained from the -
maximum likelihood estimates of training areas. Class membership is assigned according to
the maximum likelihood rule.

In the second case, nothing is assumed about the underlying multivariate distribution and the
procedures are called non-parametric; that is, they are distribution free. In principle non- 0 0

parametric procedures should provide better results if the samples are large, as in remote
sensing applications, and when the distributions are not normal (Lachenbruch and
Goldstein,1979).

Two classifiers are well known in classification or discriminant analysis literature: Fisher's 0 0
linear discriminant classifier (LDC) and Gaussian maximum likelihood classifier (GMLC).
Both of these techniques provide optimal results when the data have a Gaussian or Normal
distribution.

GMLC is by far the most widely used classifier in remote sensing studies. By definition, the 0 0

classifier assumes multivariate normal distribution for data points. Although this
assumption is violated by most of the data set we encounter, the technique works very well.
The technique is fairly robust to violation of Gaussian model (Richards,1986).

LDC is not commonly used in remote sensing investigations. However it has certain qualities, 0
apart from the simplicity of its implementation, which merit brief consideration here.
Shettigara (1991a) has compared the performance of LDC and GMLC. His study showed that
LDC is more robust than GMLC. LDC is widely and quite erroneously associated with
multivariate distribution. It is true that LDC gives optimal results for multivariate normal
data. However, it is not restricted to any particular distribution. The technique maximises • 0
distance, in spectral data space, between class means (Anderson,1982). LDC is a legitimate

non-parametric technique.

Another family of non-parametric techniques that have become popular recently is based on
Artificial Neural Networks (ANNs). A particuldr kind of ANN, the multi-layer perceptron
(MLP) can be used for supervised classification. The MLP does not use any data distribution
model and in principle should be able to fit the best possible decision surface between two
classes, giving 100% accuracy for separable classes. In practice such accuracy is not achieved
for a variety of reasons; e.g. training is a long process and is often curtailed. Some researchers
claim that ANNs perform better if they are trained on properly pre-processed data sets
(lisaka and Russell,1991). However, most cases documented in the literature do not share this
view. In general, accuracy has been found to be comparable with standard GMLC techniques
(Benediktsson and Swain, 1990; Hepner et al., 1990; Sheldon, 1990; Kanellopoulous et al.,

U 0
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1991; Heermann and Khazenie, 1992). The results of using ANNs for classification are

presented later in the section.

4.5 Choice of classes and training areas

To classify an image using supervised classification, areas need to be selected that are

representative of classes chosen. These areas, known as training areas, are the key to a

successful classification. When selecting training areas for supervised classification three 0

important factors should be considered (loka and Koda,1986). The training areas should

(a) fully reflect categorised theme information which is visually interpreted and

recognised,
(b) contain all possible multispectral features inherent in each category, and
(c) satisfy the a priori statistical assumptions/conditions of the classification

procedures.

As stated, training data have to represent as much spectral variation within the class as

possible. This is particularly highlighted by Wright and Harris (1988). They found that the 0

accuracy of classification improved when more than one training area represented a class. In

this study, initially 51 known training areas were chosen using the knowledge gained from

analysing aerial photographs and extensive ground truthing of the study area. All the 51

training areas are identified in a theme file by giving a unique number to pixels in each
training area (Table 4.1). All the training areas represent a recognisable land cover (class)

and care was taken not to overlap boundaries into other classes.

The 51 training areas were then reduced to 11 super-training areas (classes) initially, by

merging training sets as shown in Table 4.1. Later, one of the classes, dull metal, was further

divided into two classes, namely dull metal and specular metal. The reason for this will be 0

explained later in this section. The merging of training areas was necessary because many

training areas represented a single meaningful physical class.

To decide how to merge smaller training sets into super-training sets, graphical and

statistical techniques were used apart from considering the physical appearance. The S

multispectral data for each training area were plotted as scattergrams and their distributions

relative to other classes were used as a guide to pool some of the training areas. The Jeffries-

Matusita (J-M) distance measure was also used as a guide to merge different training areas.
J-M distance is a statistical measure for determining the separability of 2 classes. As the

separability increases, the J-M distance asymptotically approaches a value of 2.0. The

distance measure has the advantage of varying the measure scale by stretching the smaller

class separations and contracting larger class separations.
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Table 4.1 Summary of all the initial 51 training areas

Class name description Theme No of pixels

Sugar Gums

Aerodynamics area 11 104

Aerodynamics area 12 126

Aerodynamics area 13 96

Boundary Aerodynamics and RAAF 14 120

East contactors area 15 129

Aleppo Pines 0

NW of army logistics base 21 84

NW of army logistics base 22 84

Between DSTO and RAAF 23 54

along disused railway line

2 km south of above site 24 47 •

Open fields and Grassland

250 m NW of Angle Vale Rd 30 1374

and rail crossing

150 m E of Angle Vale Rd 't 1692 * 0
and rail crossing

Between dirt and bitumen runway 32 240

1000 m south of old train circle 33 143

500 m east of near civil construction 34 266

100 m west of Elizabeth South 35 395 0 5

train station

North field of DSTO area 36 987

200 m south of runway 37 967

Between Labs and Contractors area 38 535

Top NW corner of the image 39 520 •

Lawns

RAAF oval - north 41 108

RAAF oval - south 42 96

DSTO north golf oval 43 72

Elizabeth Oval 44 156

Dull metallic surface

Metallic hanger-RAAF base 52 21

87 labs 53 15

Maintenance and workshops 54 37

U 1
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Bright Metallic Surface ')
stores north building 61 83 0 •

Asbestos Surface
77 Labs 71 36
40 Labs (library) 72 16
102 Contactors 73 39
275 Aerodynamics area 74 16
71 Labs 75 32

Dark Apron - Edinburgh airbase
west compass swing 81 40
south compass swing 82 54
east compass swing 83 36 0
visiting aircraft apron 84 63

Light Apron - Edinburgh airbase
North of hangers 91 90
North of hangers 92 21 0 0
Between hangers 93 56
North of hangers 94 33

South end of runway 95 185
North end of runway 96 237

Specular Metallic Surface 0 * *
GMH 101 591
dull hanger - Edinburgh airbase 102 20

Concrete Surface - Edinburgh airbase
compass swing 111 38 0
engine test bay 112 47
North piano keys 113 28

Barren Soil Surface
east of horse track and 500 m 0 0

west of runway 121 57
south of horse track and 5W0 m

west of runway 122 89
Road 150 m south of runway 123 64
horse track 500 m west of runway 124 68
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Figure 4.1 Mean spectral responses for 11 super classes with the standard deviations

marked •

4.6 Classifications using Maximum Likelihood

4.6.1 Classification accuracy 0 0
The confusion matrix in Table 4.2 shows the initial classification results from using

GMLC. The overall accuracy of the classification in the test areas is 82% that is not

entirely satisfactory. It is felt that an error of about 10% is tolerable, in a subjective
sense. Most errors are in three classes: open fields, dull metallic roof and dark bitumen.

The misclassification is particularly predominant amongst artificial objects. However, 0 0

very few natural objects are misclassified as artificial objects, indicating that the
commonly occurring artificial objects are quite distinguishable from natural objects in

spectral domain.

The misclassification in open fields is due mainly to the inhomogeneity in the class. 0 0
This can be seen from the individual training areas within the class, as shown in

Table 4.1. The class might have included, as a part of the open fields, some sparsely

vegetated soil covers which are classified as barren soil covers. As no aerial

* 0
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photographs contemporaneous with the SPOT images are available, it is difficult to

ascertain if the confused areas were low in vegetation.

The confusion matrix reveals few other interesting properties. Amongst artificial

objects most of the misclassification occurs between objects of similar nature For

example, a significant amount o0 pixels in dull metallic roof is classified as bright

metallic roof. Similarly quite a big number of dark bitumen pixels is misclassified as

light bitumen. This misclassification can be generally tolerated as they represent

similar materials and their differenti,,ion may r.ot be necessary for most of the
applications.

4.6.2 Classification blunders •
The confusion matrix does not reflect the true cost of classification or mis-classification.

In some cases, although the percentage error in misclassification is small, from the

defence point of view the misclassification can be considered serious. Such errors are

grouped as blunders. Blunder detection should become an important part of any

classifier. 0

For GMLC, there are a couple of misclassifications of serious nature. 12.8% of dark

bitumen pixels are misclassified as bright metallic surfaces. Spectrally these two

classes are quite different as shown in Figure 4.1. The metallic surfaces are highly

reflective in all the bands while the dark apron is highly absorptive in all vands. The * 0 *
J-M distance between the classes is 1.99, which indicates that the two classes are quite

separable. This suggests that the misclassification is not due to the overlapping of

classes. A closer examination of the dark bitumen test area revea!ed that there were

aircraft parked on the bitumen that were barely visible in the original multispectral

image. The features in the test area are in fact stationary aircraft on the bitumen. 0 0

Aircraft are metallic and so show a similar spectral response to the metallic class. As

such, the pixels have been correctly classified as metallic surface on the dark bitumen

surface. This demonstrates the capability of a simple classifier to detect small objects
of distinct spectral signature in relation to their background. The object may not be

visible due to their small size in relation to the pixel size and/or due to mixing of two or 0 0

more signatures.

Another serious misclassification has occurred in light bitumen class. 3% for the

bitumen area (Table 4.2), which may be normally considered insignificant, has been

misclassified as asbestos. These errors occur along the boundary between the open field

and light bitumen classes. The reason for this error is suspected to be due to mixing of

open field and light bitumen classes. In Figure 4.2 spectral profiles for light bitumen,

open fields and asbestos surfaces are shown. A profile for the mixed class with equal

parts of open fields and light bitumen classes is presented. As can be seen the spectral 0 0
profiles, open fields and light bitumen classes are distinct particularly in the infrared

band. However, when these two spectral classes are combined in various proportions it

is easy to see that the resulting pixel will have a profile similar to that of asbestos
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surfaces. This illustrates that it is easy to confuse mixed pixels for a totally different
object

0
55

50

45

JI

Z 40 /J#

z #

C35 , '

-4s-- open filad
30 --- light ttumen

,.,,.-,.. asbestos roof
- open field plus lght bittwmen

25'
green red infrared pani pan2

SPOT BANDS

Figure 4.2 An illustration of the effect of mixing of two classes - light bitumen surface, •
such as runways, and open fields, such as crop an4 pastures.

Another significant misclassification has occurred between dull metallic surface and
concrete surface. A high percentage of dull metallic surface class has been labelled as
concrete surface. From Figure 43 it can be seen that the spread of the concrete surface
training areas is relatively small and as such this class splits the dull metallic class
into two distinct classes. This indicated a need for the dull metallic surface theme class
to be split into two classes.
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Figure 4.3 Detailed spectral profile of metallic surface and concrete theme classes

The J-M distance between the dull metallic and concrete classes is only 1.2059. Using the
relationship between the J-M distance and the probability of error (Swain and
Davis,1978) the maximum error in classifitation is estimated to be of the order of 0

13.6%, given equal prior probability for the two classes. This indicates that the two
classes are fairly separable. However, the actual error observed is very high. One of
the possible reasons for this is that the probability distribution function (pdf) assumed
for one or both the classes may be wrong. A look at the scattergrams of the dull metallic
class revealed that it is bimodal, which seriously violates the assumption that data •
have normal distribution.

As a result of this finding a further classification was performed, where the dull
metallic class was split into two classes, dull metallic and specular metallic surface.
Table 4.3 is the confusion matrix for the new classification. Note that the overall
accuracy of the image classification has improved from 87.38% in the first S
classification to 90.49% in the second classification if the accuracy test is done on the
training area. However, if the accuracy is computed on a number of test areas the over
all accuracy drops slightly, from 82 % to 81.2%. Bulk of the error is in the open field
class. If we consider only the artificial objects the over all accuracy has improved from
81.2 % to 87.3 % in the second classification. This level of accuracy is closer to the target •
accuracy of 90% set in the beginning of the study. The open field class probably needs to
be further sub-divided into two or more sub-classes in order to improve the over all
accuracy. The new classified image is seen in Figure 4.4
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Maximum Likelihood classification

man-made Accuracy % natural Accuracy %

barren soil surface 98.47 gums 85.78

O dull metallic surface 77.08 O pines 88,82

* specular metallic surface 87.58 CD open fields and grassland 69-28

* bright metallic surface 96.67 3 lawn 99.38

asbestos surface 97.44

* dark bitumen surface 100 •

light bitumen surface 78.52

0) concrete surface 84.78

overall classification accuracy 84.41 %

Figure 4.4 Result of maximum ýketiiho),d classification after sub-dividing dull metal
class. The accuracy figures are with res,:,.ct to test areas. The overall accuracy of artificial

objects is 87.3%
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4.7 Classifications using Multi-Layer Perceptron

4.7.1 Some notes on the application of MLPs to classification 0

The classification power of the multilayer perceptron has been recognised for a number
of decades, but only since the work of Rummeihart et al (1986) has it been possible to
train the MLP from example data. A detailed definition of the MLP and a description
of the method of training for this application is given by Whitbread (1992). Since the •
application of MLPs to classification of remotely sensed data is relatively new
technology, some comments on its limitations and difficulties of implementation are
included here.

The MLP is attractive as a classifier because it is essentially model free, and during

training learns not only the parameters of a class but also the data's probability
distributions. In situations where there are naturally occurring non-normal distributions
(which challenge GMLC) it is possible to produce an optimal classifier. A particular
case of non-normally distributed data is auxiliary data such as digital elevation data, •
which could improve classification accuracy when combined with remotely sensed
data. The MLP is also of interest because of the potential to realise it in hardware as a
fast parallel classifier. However, results presented in this report are based solely on

simulation.

The MLP has not been embraced by the bulk of users of classification processes because of
some limitations in implementation. Firstly, the MLP is slow to learn; whereas the
GMLC measures its required parameters by a single inspection of the training data, an
MLP learns its parameters by continued re-inspection of the training examples.
Commonly 20,000 inspections can be required to achieve 1% accuracy, and currently most 0
MLP classification is done by simulation that multiplies overheads. The second
problem is that there is no current theoretically based method for choosing the size of
the MLP necessary for a particular classification task, but it is clear that size is
important. The current approach is to choose the size using heuristics combined with
trial and error. Heuristics for choosing the MLP size for the task of classifying 0
remotely sensed data were developed by Whitbread (1992). The third problem is
reliability. Internally, the MLP is a non-linear system, which makes it hard to predict
its behaviour as data quality becomes pcor. In model based systems (such as GMLC) we
expect "graceful degradation" of behaviour.

Despite these limitations, the MLP promises potentially better classification accuracy
than conventional classifiers, and as well promises greater ease of use, since it is not
necessary to choose training sets that satisfy the a priori statistical assumptions of the
conventional procedures (see paragraph 4.5 (c) above). *
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Neural Network classification 0

man-made Accuracy % natural Accuracy O/

(• barren soil surface 98.47 gums 73.33

•!dull metallic surface 50.00 pines 93.42 0

O specular metallic surface 97.39 C) open fields and grassland 64.84

O bright metallic surface 90.00 •llawn 99.38
OD asbestos surface 83.33

dark bitumen surface 75.23 0

•)light bitumen surface 74.16

0) concrete surface 52.17

overall classification accuracy 78.68 % 9

Figure 4.5 Results of ANN classification using classes selected for GMLC classifier.
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4.7.2 Classification Accuracy 0

The purpose of the results presented here is to show the utility of the MLP

classification method. 11w results are based on the same training areas as the results
from GMLC presented above and they do not take advantage of the possibility of

relaxing the requirement paragraph 4.5(c) in the choice of training areas.

The MLP used for classifying the multispectral data had three (active) layers

comprising 50, 6 and 12 nodes in the first, second and third layers respectively. The
MLP was trained by adjusting its internal weights using the back propagation procedure
of Rumelhart, et al. (1986). (The learning rate was 0.01 and momentum 0.0.) Training

was limited to 20,000 iterations, representing approximately 1600 presentations of 0
examples per class. Samples are selected at random for each training iteration.

Table 4.5 Comparison of percentage of comect dassifications by MLP and GMLC.

Theme MLP GMLC

Sugar Guns 73.33 85.78

Aleppo Pines 93.42 88.82

Open Fields 64.84 69.28 * •

Lawns 99.38 99.38

Dirt Roeds 98.47 98.47

Dull Metallic Roof 50.00 77.08

Specular Metallic roof 97.39 87.58

Bright Metallic Roof 90.00 96.67

Asbestos Roof 83.33 97.44

Dark Bitumen 75.23 100.00

Light Bitumen 74.16 78.52 0

Concrete 52.17 84.78

AVERAGE 79.31 88.65

Table 4.4 shows the confusion matrix for MLP classification using the same training

areas as previous experiments and. Table 4.5 shows the relative accuracy of MLP and

GMLC using the same training areas. The MLP has not been able to better the accuracy 0
of GMLC in this test. Confusion is of the same kind as GMLC with Gums being

misclassified as Pines, barren soil classified as open field and light bitumen being

classified as dark bitumen. Other more troubling confusions occur between concrete and

metallic reflectors. This is caused mostly by a very strong reflection from these
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surfaces. Asbestos is also a problem, with some open fields being confused with
Asbestos moves. A major contributor to the good average performance in the GMLC case
is the 100% accuracy for dark bitumen, for which the MLP only gets 75% correct. •

Because the MLP can handle an arbitrary number of inputs, it is possible to reconfigure
it to use texture in the training areas. In this demonstration of classification that was
impractical because the training areas were selected for GMLC and as such were chosen

not to have texture where possible, and many training areas were too small to make an
estimate of texture. The potential for the use of the MLP in this way is discussed
further in the reference by Whitbread (1992).

4.8 Conclusions

This section has described a number of pattern recognition aids for interpreting satellite
images and has shown how classification can be used to extract man-made objects. The
standard GMLC has performed better than MLP in this study.

3 0U* S

* 0
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0
5 OBJECT HEIGHT DETERMINATION 0

4,

In the last two decades enormous gains have been made in processing satellite images.
However, the analyses of the images have remained mostly qualitative in nature, compared
to the field of photogrammetry. This chapter presents an application of remote sensing for •
height determination using SPOT images.

Photogrammetrists have been able to extract the heights of objects from aerial photographs
using parallax in stereo-pair photographs. The lengths of the shadows cast by the objects are
also used to determine the heights. If the sun and sensor geometry is known it is fairly simple S
to establish a relationship between the shadow width and the height of the objects. The
above usages, however, are confined to high resolution photographs or images.

5.1 Shadow - an important part of images

Shadows form a unique part of any image. They are easily detectable as they show a low
intensity in all the multispectral bands. Shadows play a dominant role in image statistics
which affect image enhancement and pattern recognition. Shadows contain 3-D information
of objects and they have been used in object identification, terrain classification and
geological mapping (Curran,1985). * *
Detection of objects by their shadow structures has been performed by many workers in the
photogrammetric community (Venkateswar and Chellappa,1990; Irvin and McKeown,1989;
Huertas and Nevatia,1988). All have utilised the nature of shadows around buildings to
interpret the structure of the building. An edge detection routine has been used by Huertas and 0
Nevatia (1988) that looks for different types of shadows that represent the corners of
buildings in the aerial photographs. One of the problems Huertas and Nevatia (1988)
encountered in their study was in identifying the shadows. Their technique failed to identify
some areas of shadow or included areas that were not in fact shadow. Venkateswar and
Chellappa(1990) have used knowledge based procedures to overcome some of these problems. 0 0

Although photogrammetrists have successfully used shadows in aerial photographs for
height determination and object identification, the use of satellite images for similar
purposes is not seen in the literature. The main reason is that the resolution of the civilian
satellite images is much coarser than the aerial photographs and the shadows are not fully 0

defined for short and commonly occurring objects.

5.2 Sun - satellite geometry and the equations

Figure 5.1 shows the sun-satellite geometry as an end view (2-D display of 3-D geometry for 0 0
simplicity) for the two SPOT images used in this study. As illustrated in the figure the
shadow part seen by the sensor is different for the two images. The width of the shadow,
measured along the normal to the object, depends on the azimuths of the sun, image scan line
and the object. The objects are rows of trees in this study (Figure 5.2).
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In principle the procedure that is presented in this section is suitable for any object that casts
detectable shadows of sufficient length. In the study area rows of trees cast shadows that 0
could be used. Buildings were either not tall enough or long enough to cast a consistent shadow.
For this reason the shadow detection and height analysis were initially performed on rows of
trees. After establishing the relationship between the shadow widths and the measured
heights, the heights of the unknown objects (buildings) were determined.

For relating sha i --v width to the object (tree) height a few basic assumptions were made. 0 •

Firstly, the object is assumed to be vertical, that is the object is perpendicular to the earth's
surface. Secondly, the shadows are assumed to be cast from the top of the object and that the
top of the object is also the last part of the object seen from the sensor before the shadow
begins. This assumption is not entirely satisfactory because there could be parts of object,
between the illuminated part of the object and the ground shadow, not illuminated by the sun
but seen by the sensor due to the scattered light. The computation assumes that the parts of
the object not directly illuminated by the sun as part of the shadow. Thirdly, it is also
assumed that the shadow starts from the tree-trunk line on the ground. Fourthly, as shown in
Figure 5.1, it is assumed that if the sensor and the sun are on opposite sides of the object, then
the sensor is able to see the entire shadow. Lastly, the surface that the shadow falls on is

Image 2 SPOT 1 SPOT 1 Image 1 * * *

band3: panchromatic 25-4-87 21-4-87 bandi: mutispectral-IR

Ssun

actual shadow width 0

ground .as seen by SPOT on 21-4-87

SS.. as seen by SPOT on 25-4-87

shadow tree•

Figure 5.1 End view of the sun-satellite configuration as seen during imaging
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The shadow width along the sun azimuth (Figure 5.1) is given by

ssu = ht/tan(Osu) ............. (5.1)

The shadow width obstructed, along the azimuth of the sensor (Figure 5.1), by the object
(tree) in the sensor's field of view

Ssa = ht/tan(Osa) ............. (5.2)

Shadow of the object along the normal to the tree line (Figure 5.2)

Ssun ssucOs(Osun) ............. (5.3)

Shadow obstructed by the object along the normal to the tree line (Figure 5.1) 0

ssan = ssa.COS(Osan) ............. (5.4)

where #sun = #su + 9o- t ............. (5.5)

and Osn = O + 90 -*t ............. (5.6)

The shadow width that is seen by the satellite is given by

s = sson - Sun ............ (5.7) * * *

Note that Ssan = 0 if the satellite is on the opposite side of object from the sun.

N

Osu / sun azimuth

Ssatellite azimuth
(scan line)

tree line azimuth

1* 0

I

Figure 5.2 Plan view of the sun-satellite configuration as seen during imaging
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For the panchromatic and multispectral image of 21st April 1987 the data are as follows:

Osa = 23.40 and 9su = 55-50

sun = 13.20 and *san =76-50 ............ (5.8)

Using equations (5.1) to (5.4) and (5.8) we get

ht = 0.76s ............ (5.9)

If the tree or shadow line is at an angle to the image scan line, an additional correction needs
to be applied to equation 5.9. This is because of the pixelisation of shadow zones. The issue is
explained in Appendix I. The shadow width in equation 5.9 needs to be divided by •
Cos(Oscan), where #scan is the angle between the scan lines and the tree line. For the rows of

trees considered #scan = 150. The relation used in this study is:

ht = 0.76 s/cos(scan) = 0.79 s

= ks ............ (5.10)

where k is a constant for objects of fixed azimuth in an image.

5.3 Relationship between shadow width, pixel size and intensities * * *

The above relationships assume that the shadow zones are sharply defined and the pixel
size is infinitesimally small. However, in practice neither the shadow zones are well defined
nor the pixel sizes are negligibly small in relation to shadow widths. The following
discussion presents simple relationship between pixel intensities and shadow boundaries.

If the brightness of the shadow (object) is 10 and that of the background is lb, then the
brightness of a pixel may be approximated to:

If = f 0 + (-Olb ............ (5.11)

where p is the area fraction of shadow in the pixel.

If 10 and lb are known from pure shadow and background pixels, then

f = (If - Ib)/(IO-Ib) ............ (5.12)

There will normally be a threshold fmin such that if f>fm;,i then the pixel is classed as
shadow. If not it is classed as background. Clearly, the representation of shudow in the image
depends on the threshold chosen.

5.3.1 The role of pixel dimension

As we are considering the shadows cast by linear objects of length much greater than
that of the pixel dimension, we will not lose any generality if we consider the
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relationships only along a profile, say X axis, orthogonal to the object. If the shadow of

length s of uniform intensity is centred at the origin of the profile and the pixel size p is

smaller than the shadow size the intensity of pixels along the profile for various x is

given by

o for xsý p (pixel outside object)
2

(x+(s+p)/2) for -(s+p) <x- (pixel partially on theobject)
P 2 2

f=' I for"(sP) <_ (pixel wholly within theobject)2 2

(-x+(s+p)/2) for( 2)<x !2 (pixelpartially an theobject)p 2 2

o for x2ýsL) (pixeloutsideobject)
2

(5.13)

If the threshold is fmin then the estimated width w of the shadow of width s will be

w(p,fmin) = s+p(1-2pfmin) ............ (5.14)

or in terms of estimated tree heights hest and actual tree heights ht, using * •

relation equation 5.10

hest = ht + kp(1-2fmin) ............ (5.15)

which is a linear relationship between hest and ht with an intercept

kp(1-2fmin) and a slope 1. If fmin is very small, the intercept is roughly kp and if fmin

is very high (near one), the intercept is roughly -kp. The intercept is zero for fmin = 1/2,

which means that the boundary between the shadow and the background is half way

between their respective intensities. In that case the estimated height is equal to the

actual height. This relation assumes that p<s, object and background intensities are •

uniform, and that the measurement errors are normally distributed. In actual practice

the latter two assumptions may not be true. As such, the above equations may only be

used as a guide to arrive at an optimal fmin, through experiments, such that the

intercept and the slope of the regression line in equation 5.15 are close one and zero

respectively. 0

5.4 Shadow Segmentation

5.4.1 Choosing the threshold for delineating shadow zones

In high resolution images one might find a separate peak in the histogram

corresponding to shadow areas, as described by Otsu (1979). In such cases it is easy to

separate the shadow zones. In lower resolution images it is not common to find a

separate peak for the shadow areas. The current study required a general procedure for
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delineating shadows falling on various types of backgrounds. The backgrounds included
lush grass, barren soil, white concrete and black asphalt covers. Experiments were

conducted by choosing various thresholds by varying a in the equation

fmin = - Qo ............ (5.16)

where ga and a are mean and standard deviation of the image. Note that as a increases

the threshold decreases. The weight ct was varied from 1.6 to 0.8 in steps of 0.1. These

two limits were found adequate as at a threshold of 1.6a most of the shadow areas were

mis-classified as non-shadow areas and when a threshold of 0.8 a is used mobt of the

non-shadow areas were classified as shadow areas.

5.4.2 Measurement of shadow width 0

From the accuracy point of view it would be better if the shadow width could be

determined from SPOT panchromatic bands which have a resolution of 10 m. However,

in panchromatic bands both the trees and shadows appear equally dark and the

separation of the trees and shadows is not possible. However, in the infrared band of

the multispectral image (Figure 5.3), which has a resolution of 20 m., the trees show a

significantly higher reflectance than the surroundings and the shadow zones. In

principle only the infrared band would suffice to determine the shadow width, but
with a lesser precision due to its coarser resolution. In order to improve the accuracy of * * *
the estimate of the shadow width it was decided to use the panchromatic and infrared

bands together. Another reason for using the combination is for shadow detection

accuracy. A low value in infrared band does not necessarily mean that it is a shadow

zone. For example bitumen surface gives a low reading in infrared, but a relatively

higher value in panchromatic images. A combination of panchromatic and infrared 0

bands would detect shadow zones better.

The image data consisted of an infrared band of a SPOT multispectral image and two

panchromatic bands taken on two different days, as shown in Figure 5.1. The three

bands were co-registered to form a 3-band image using control points at the ground level. 0

Initially, for a chosen threshold, fmin, shadow areas that were common to all the three

bands were delineated. Using the same fnmn shadow areas common to only the infrared

band and the panchromatic band of image 1 (Figure 5.1) were determined. No

significant difference was found between the shadow zones determined in the two

experiments. For this reason only the two bands of image I (Figure 5.1) were used for

further investigation.

Figure 5.4 shows an example of the shadow segments delineated from the images. Using

the segmented shadow areas an average shadow width is measured for each row of

trees. As can be seen from Figure 5A, the edges of the shadow areas are not straight.

This is because of the alignment of the rows of trees at an angle to the scan lines and
also due to the coarse pixel resolution. Due to the jagged nature of the shadow

boundaries the estimation of the width is complicated. The average width was
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estimated by measuring the area covered by each shadow zone and then dividing it by
the length of the zone.

In order to accomplish the above procedures the shadow zones were vectorised using the

program RASVECO available on the Intergraph workstation. The areas bound by the

polygons corresponding to the shadow areas were calculated using the MicroStation

CAD software. Shadows of length less than 50 m were neglected. From the shadow
width estimates of the tree heights were computed using equation 5.10.

U 3
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Figure 5.3 Infrared SPOT image of the study area. The rows of trees used in the study are

marked and the buildings whose heights are estimated using the tree shadows are shown at -

the lower right hand corner.
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5.5 Result and discussion

Most of the shadow zones shown in Figure 5.4 are correctly identifiable as cast by the rows of 0

trees. However, false identification of shadow areas has also occurred. The dark bitumen at

the west of the image and some wet market garden areas in the south western part of the

image (Figure 5.3) were mis-classified as shadows. In this study no automatic procedures
have been developed to isolate 'false shadow' zones.

a row of C;

linear shadow zones

=:Zap

Figure 5.4 Shadow zones, shown as polygons, delineated using the thresholding

procedure on the infrared and the panchromatic bands

There are some rows of trees that are parallel to the principal plane of the sun or the sun
azimuth which do not cast shadow. No height estimation could be made for rows of trees

with such an orientation.

Eight sites were selected for tree height estimation. At these eight sites tree heights were

also measured. Table 5.1 summarises the measured tree heights and the estimated heights
from the shadows.

UNCLASSIFIED 43

/



ERL-XI04-RR UNCLASSIFIED j

Table 5.1 Estimated and actual tree heights

site Shadow length m Estimated tree Measured average Standard deviation
height m tree height m of measuremnt m

2 29.720 21.82 17.90 1.41

1 27.635 20.28 17.45 2.34

3 35.390 25.98 15.00 1.37

4 29.705 21.81 17.% 1.35

5 25.191 18.50 15.82 1.11

7 11.119 8.25 11.76 0.64 0

6 28323 20.80 16.14 1.26

8 25.359 21.55 17.11 0.63

Figures 5.5 shows the regression lines of estimated heights computed from shadow widths
determined by using different thresholds and actual tree heights are shown. For the sake of
clarity, regression lines and data points for only a few thresholds are plotted.

Notice that the correlation between the obserncd heights and the estimated heights
deteriorate drastically when the threshold is increased from 1.2o to 1.1c. The variation of
height estimates are shown for all the sites with these two thresholds. The height estimates
increase systematically, as expected, for all the sites except site 5. The increase in height
estimate for site 5 is dis-proportionately high. This is due to the inclusion of non-shadow
areas in the shadow estimates. Notice that the regression line for any of the cases involving 0
thresholds up to 1.L1 do not pass through the origin as ideally we would have liked to. To
achieve an intercept of zero the threshold has to be varied between 0.9a and 0.8a. However,
as we increase the threshold above 1.2a background areas are increasingly classed as shadow
areas. Thus the increase of threshold beyond 1.2a is not justifiable.

The coefficient of determination (r2 ) for thresholds higher than 1.2a is high (Figure 5.5).
This indicates that the shadow estimates are very well correlated (correlation coefficient of
0.832 for threshold 1.2a) to the measured tree heights. One point worth considering is that
whether the number of points used for the regression is large enough. The probability of
getting a correlation of above 0.8 is less than 6% when the two variables are uncorrelated, and 01

the number of measurements involved is more that 6 (Taylor, 1982). This suggests the results of
regression are reliable.

* 0
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Figure 5.5 Regression lines for different thresholds. Notice that the estimated
heights vary systematically for all the sites except for site 5. Th drastic variation

for site 5Sis attributed to the inclusion of background areas when the threshold is
increased from 1.2 to 1.1c.

* @1

Figure 5.6 shows how estimated heights vary with various thresholds. Each line in the plot
corresponds to a row of trees and a location. The plot reveals that all the estimates vary
sharply between 1.2a and 1.1a, indicating that non-shadow areas are getting incorporated in
the shadow estimates. This point is vividly illustrated by the site 5 estimate. As explained
above the estimate for site 5 jumps drastically between 1.2 and 1.1a. This indicates that the 0
optimum threshold for separating shadows from the background exists between 1.2a to 1.1o.

It is also interesting to note that as the threshold is increased or decreased from 1.2a the
height estimates tend to be asymptotic. As such, the estimates for rows of trees within a range
of heights tend to converge to a common value. These properties are currently being 0
investigated using theoretical models. However, some heuristic explanation for this property
may be given here.
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In Figure 5.7 intensity curves are sketched for shadow zones of sharp boundaries and varying
widths. The curves mimic the smoothing of sharp boundaries due to the point spread functions
of the sensors. As can be seen, at A and B the intensity curves tend to overlap and at 0 they
show maximum separation. Considering the noise inherent in images it may be expected that
the closely spaced intensity curves can be inseparable at thresholds A and B. This explains
the convergence of estimated tree heights at two extreme thresholds.

40 0

3 5- •ACTUAL TREE
HEIGHTS SITE

30 
0 11.757 7

20 15.817 5

-i-"O" 15.928 6

S20-
181 17.507 1

5 ------ 17.717 8 0

10 0 17.895 2

5- --- ,&-- 18.015 4

0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6

THRESHOLD (STANDARD DEVIATION)

Figure 5.6 Variation of estimated tree height with threshold. Notice that the 0
estimated heights converge at two extreme thresholds. Also the gradient variation is

maximum between 1.2 and 1.la

Figure 5.8 is a three dimensional (3-D) display of the tree heights interpreted from the
shadows in the image. The heights of the rows of trees has been vertically exaggerated by a 0
factor of two. The 3-D display provides additional information apart from highlighting the
tree heights. The gaps between the rows of trees get exaggerated, which otherwise may go un-
noticed. For example, the rows of trees on the extreme left hand side of the image show a gap
which is not evident in the 2-D display in Figure 3.2. The other rows of trees also give the
impression of having numerous gaps. However, those could be artefacts created by the 0 0
pixelisation of shadows.
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Background 123
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00

29
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B
Shadow

Figure 5.7 A sketch of intensity variation across shadow boundaries to demonstrate the 0

variation of separability at various thresholds. The vertical lines 1, 2 and 3 represent

the three sharp boundaries between shadow and background. The three curved lines

represent the intensity variation as seen by the sensor across the three boundaries. The
lines A, B and 0 represent the three thresholds and their thickness represents the

possible noise level. At thresholds A and B the separation of the three curved lines is •

difficult to achieve, particularly considering the noise. At threshold 0 the curves

stand separated.

* 0

Figure 5.8 A three dimensional display of some rows of trees in the DSTO area.
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Figure 5.9 The plot of estimated and actual building heights of some industrial buildings

Based on the above analysis the regression line corresponding to 1.2o was taken as the
optimum calibration line (Figure 55) to relate the estimated height from equation 5.10 to the
actual height. Using the widths of shadows cast by the industrial buildings in the south-east

of the image (Figure 5.3) the apparent heights were estimated using relation (equation 5.10).
The actual heights were then estimated using the calibration line of Figure 5.5. The result is

shown in Figure 5.9. As can be seen the estimated height closely follows the actual heights. A
high sub-pixel accuracy of the order of one third of the pixel size has been achieved in this

experiment.

5.6 Some limitations of the technique

The technique is useful for estimating heights of extended objects. The technique can not be
used if the object does not cast a shadow, for example when the extended side of the object is

parallel to the principal plane of the sun.

Area 3 (Figure 5.3) was not used in this study as it was found out early in the investigation

that the shadow width delineated by the process was exceptionally large compared to the
height of the trees. At site 3 two rows of trees were found. It is possible that the row of trees

casting the first shadow is it self mostly hidden by the second row of trees. This will suppress
the infrared reflectance from the first row of trees and the two shadow zones will appear as

one as cast by the second row of trees. Due to the coarseness of the images it is difficult to
ascertain the actual situation. However, it is important to eliminate such samples from the

regression analysis.

It must be also realised that the data used in this study have been of a limited height range

due to the rows of trees available in the area. A large range of heights would have been more

suitable for the study.
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6 NEW IMAGE ENHANCEMENT TOOLS

Many of the decisions by defence agencies or resource industries are done by visual pattern
recognition as opposed to the numerical tchniques explained in section 5. Image enhancemnt
plays a major role in improving the visual pattern recognition in the images (Woodruff and 0
Newsam, 1992). The background discriminant analysis technique described in section 4 is a
tool in which objects of interest are enhanced in a multispectral image by suppressing the
contribution of background information. In this section 2 other issues in image enhancement are
addressed.

6.1 Smooth image zooming

The commercial satellite images have coarser resolution compared to aerial photographs
which are conventionally used in defence for pattern recognition purposes. While displaying
such images the objects look blocky making the recognition of the objects difficult. The 0
problem becomes more severe as the observer zooms into a small area. While no extra
information can be created in the blocky image once it is created, one can improve the
presentation of the image to assist the human observer in understanding the image. Image
smoothing while zooming (Woodruff and Newsam, 1992) is one way to reduce the blocking. In
his approach, Newsam (1992) used a smooth interpolant to sub-sample an image to higher • 0
apparent resolution. An approximation is then determined to the interpolant using FFTs.

Using a similar approach as that of Newsam (1992), in this study cubic convolution is used for
interpolation while zooming. Cubic convolution is a process originally developed for Landsat
image reconstruction. Cubic convolution is simply another interpolation technique
implemented by convolving the image samples with a smooth, spatially limited one-
parameter functions constructed by joining cubic polynomials in a spline like fashion. It is
generally accepted that this interpolation process gives a good compromise between
complexity of computation and accuracy (Billingsley,1983). The technique is generally
superior to the standard image restoration procedures and it can be adapted to the frequency
content of the image (Park and Schowengerdt,1983).

In the field of remote sensing the cubic convolution interpolation is extensively used for
resampling. The procedure is generally available in commercial software for registering
images of two different pixel resolutions. Due to the increased processing speed and the 0 0
possibility of subsampling the images in the main memory in near real time exists in most
machines.

An existing command line procedure in ISI-2 image processing software on an Intergraph
workstation was adopted for smooth zooming. The existing utility 'image to image' in ISI-2
can be used to subsample an image using cubic convolution procedure. The input parameters for
the utility include the displayed image name, the name of the output (smooth zoomed) image
to be displayed, and a file containing a table of ground control points. In the normal
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application of the utility the ground control points are selected manually by comparing the
image to be resampled and the reference image. In the current work the table of ground control
points was generated automatically based on the zoom required. Table 6.1 demonstrates how
the table is generated. The whole sequence of generating the ground control points table and
smooth zooming of the image can be implemented as a command procedure and assigned to a
function key. Depending on the size of the image and the processor speed the display can be in
near real time.

Table 6.1 Ground control poins for zooming by a factor X

GCP location Input Image Input Image Zoomed Image Zoomed Image •
line pixel line pixel

top left comer 1 1 1 1

top right comer 1 n I n.X 0 •

bottom left m 1 mX 1
comer

bottom right m n mX nX * 0
corner

Figure 6.1 is for demonstrating how an image may be zoomed in to achieve a magnification of
8. Figure 6.1(a) shows a sub-image of the GMH industrial complex adjoining the DSTO area.
The image is shown at its full resolution of 10 m. Figure 6.1 (b) is the same image degraded to
80 m resolution, which is equivalent to a compression factor of 64. Each pixel in Figure 6.1 (b)
is a mean of a 8x8 window. Figure 6.1 (c) is the smooth zoomed image derived from
Figure 6.1(b) using cubic convolution. In Figure 6.1 (d) smooth zooming is achieved by the

procedure of Newsam (1992). As can be seen the reconstructed Figures 6.1 (c) and (d) closely
resemble the original full resolution image of 10 m. resolution in Figure 6.1 (a). • •

At this stage the results of smooth zooming from the two techniques have not been compared
in any quantitative sense. The purpose of this example is simply to demonstrate the use of an
existing remote sensing tool for a fairly complicated mathematical operation. The results

from the two techniques are comparable. 0 0

Figure 6.2 is similar to Figure 6.1. The magnification in this case is 16 which is equivalent to
256 fold data compression Clearly, the smooth zooming has not restored the image in
Figure 6.2 (b) to the quality of Figure 6.2 (a). The zoomed images in Figures 6.2(c) and (d) also
suffer form the distracting contouring effect. The contouring effect can be reduced to some 9 0
extent, if desired, by dithering (Jain,1989).

From the above two examples it may be recommended that up to 8 times magnification can be
achieved using smooth zooming without significantly degrading the image. Near real time
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smooth zooming, using cubic convolution, can be implemented on most remote sensing image
processing systems using vendor provided utilities. A)

4r

(a) (b)

• -

0 .

(c) (d) 0

Figure 6.1 Smooth zooming by a factor of 4.
(a) the original image of 10 m resolution
(b) degraded image with 40 m resolution
(c) image in (b) is smooth zoomed by a factor 4 using cubic convolution, 0 0
(d) image in (b) smooth zoomed by a factor 4 using the interpolation

technique of Newsam(1992)
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0

00

(a) (b)

i0

(c) (d)

Figure 6.2 Smooth zooming by a factor of 8.
(a) the original image of 10 m resolution
(b) degraded image with 80 m resolution
(c) image in (b) is smooth zoomed by a factor 8 using cubic convolution, *
(d) image in (b) smooth zoomed by a factor 8 using the interpolation technique

of Newsam(1992)
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6.2 Multispectral image enhancement by merging higher resolution 0
panchromatic data

The availability of high resolution data in the form of panchromatic image data or scanned
aerial photograph has given rise to a host of procedures to enhance coarser resolution
multispectral images. By merging, the advantage of having both spectral and spatial S
resolution is gained. This will enhance the target recognition task. Shettigara (1992) has
shown that the merging process can be achieved in one simple step of linear transformation.
Due to this simplification it is possible to achieve merging of data in near real time and
enhance the image on the screen at the location of interest.

To demonstrate the power of merging, the multispectral SPOT image of air base (figure 6.3.a)
was merged with the panchromatic image taken at the same time (figure 6.3.b). As can be
seen, merging has enhanced the parked aircraft on the apron, which is not clearly visible in
the original multispectral image.

0
The merging was achieved in 3 steps:

1. the total intensity component of (a) was computed,
2. the total intensity component was substituted by the panchromatic data and,
3. the higher resolution information content in the new intensity component is re-
distributed to the multispectral bands. The resultant image is shown in Figure 63(b). • 0

Data merging can be achieved in many other ways. For more details the reader may refer to
Shettigara (1992).

• U
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pancxornac
uw~ge

ofigional SPOT multiuspectml enhanred SPOT miutspectml
imae (20m pixels) iMAge (IOm pixels i pplnt)

iigure 6.3 Merging of panchromatic image with the SPOT multispectral image

(a) multispectral image

(b) enhanced image bv merging panchromatic image
(c) Notice the 4 aircraft, below the circular compass swing, near the top right S *

hand corner, enhanced in image (b) above
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7 CONCLUSIONS

0

Some new capabilities of commercial satellite images have been demonstrated in this report. .r)

A particular effort has been made to use the images for quantitative purposes.

* It is shown that heights of extended targets can be determined to sub-pixel accuracy
(2 to 3 m in our case) using SPOT multispectral and panchromatic images of 20 and

10 m pixels respectively. The high accuracy is achieved by developing a procedure

for optimal segmentation of the shadows. The same procedure may be extended to

determine other dimensions of the targets, such as the widths of roads or the lengths

of buildings.

* The conventional statistical pattern recognition techniques and neural net

approaches are used for object classification. An accuracy of the order of 87 %

achieved in classifying artificial objects. 0

# New techniques are demonstrated for image resolution enhancement in computer

displays. It is shown that an image whose resolution is degraded by a magnitude of

up to 8 can be smooth zoomed, using cubic convolution resampling, to achieve a look
similar to the original. Smooth zooming can be of great assistance in target detection.

The report clearly demonstrates the ability of multispectral satellite images in enhancing

and detecting targets of defence significance. Objects such as aircraft can be clearly detected

and different types of buildings can be discriminated. It is also possible to determine heights

or other dimensions of targets, larger than the pixel size, to sub-pixel accuracy. As mentioned 0

in the introduction, the applications of commercial satellite images are very much dependent

on the data analysing expertise. In view of this there is a need to re-assess the capabilities of

civilian satellite images in surveillance and intelligence gathering.

0 0

0 0

0

0 0
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"APPENDIXI 0

TABLE L 1 GROUND RESOLUTION REQUIREMENTS FOR
INTERPRETATION OF IMAGERY

General Precis Tech

Targeta Detectionb IDc IDd Descriptione analysist

Bridges 6 4.5 1.5 1 0.3
Commuunications

Radar 3 1 0.3 0.15 0.015
Radio 3 1.5 0.3 0.15 0.015

Supply dumps 1.5-3 0.6 0.3 0.03 0.03
Troop units (in bivouac or
on road) 6 2 1.2 03 0.15

Airfield facilities 6 4.5 3 0.3 0.15
Rockets and artillery 1 0.6 0.15 0.05 0.045
Aircraft 4.5 1.5 1 0.15 0.045
Command and Control HQ 3 1.5 1 0.15 0.09
Missile sites (SSM/SAM) 3 1.5 0.6 0.3 0.045 * *
Nuclear weapons components 2.5 1.5 0.3 0.03 0.015
Vehicles 0.6 0.3 0.06 0.045
Surface ships 7.5-15 4.5 0.6 0.3 0.045
Land mines 3-9 6 1 0.03 0.09
Ports and harbours 30 15 6 3 0.3
Coasts, landing beaches 15-30 4.5 3 1.5 0.15
Railroad yards and shops 15-30 15 6 1.5 0.4
Roads 6-9 6 1.8 0.6 0.4
Urban areas 60 30 3 3 0.75
Terrain 90 4.5 1.5 0.75
Surfaced submarines 7.5-30 4.5-6 1.5 1 0.03

Notice that only the targets within the box have any possibility of detection using Landsat
TM or SPOT images. Only very large targets can be identified in general.

a Chart indicates minimum resolution in meters at which target can be detected, identified,
described, or analysed. No source specifies which definition of resolution (pixel-size or
white-dot) is used, but the chart is internally consistent.

b Detection: location of a class of units, object, or activity of military unit.
c General identification: determination of general target type.
d Precise identification: discrimination within target type of known types.
e Description: size/dimension, configuration/layout, component construction, equipment 0

count, etc.
f Technical analysis: detailed analysis of specific equipment.

Adapted from Richelson,1990
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TABLE 1. 2 TARGET DETECTION CAPABILITIES OF COMMERCIAL
SATELLITE IMAGES 0

Targeta Djte0 gb General Quantitatived

Identificationc

Bridges MSS/TM TM/XS XS/P
Roads MSS MSS TM/XS
Radars P P
Railroads MSS P
Supply dumps MSS P P
Major headquarters MSS TM/P P
Airfield facilities MSS TM P
Aircraft P P P
Rockets and artillery MSS/T`M XS/P
Missile sites (SAM) MSS MSS/TM P
Surface ships XS XS XS/P
Surfaced submarines TM(?) XS/P P(?)
Vehicles P(?)

Compare this table with Table 1.1
Notice that the capabilities of the sensors are much more than earlier believed.

Abbreviations:

MSS: LANDSAT multi-spectral scanner; 80 meter resolution
TM: LANDSAT thematic mapper; 30 meter resolution
XS: SPOT extended spectrum sensor; 20 meter resolution
P: SPOT panchromatic sensor; 10 meter resolution

a No attempt made to list all targets in original chart.
b A target of the given type is clearly present, but no details are apparent.
c Class of bridge, number of buildings, etc, can be discerned. There is little or no doubt

that the target has been properly classified.
d Quantitative measurements of the target can be made; aircraft classified as to

mission or type. Known types can be recognised using tables, silhouettes, etc.
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APPENDIX II

PIXELISATION EFFECT ON SHADOW WIDTH MEASUREMENT

In analytical terms the determination of width of a linear object can be achieved in many
ways. One simple approach is to divide the area covered by the object by its length. This
approach can not be directly implemented in image processing for computing shadow widths.

In Figure 11.1 shadows are drawn as the area between pairs of lines. Widths are indicated

opposite to the pairs of lines. The surface is divided into 10xlO m grids to simulate SPOTr
image pixels. The black pixels are those in which 50% or more of the pixel area is covered by
shadow. It is assumed that a perfect technique is available to threshold such pixels and label
them as shadows.

Due to the discrete pixel sizes involved in images the shadow zones may appear as continuous
areas or as fragments. Under perfect thresholding conditions, as described above, one can

expect continuous shadow zones only if the shadows have widths equal to or greater than the
pixel dimensions.

* 0 =

From the figure it is also clear that the shadow width computed by dividing the area of

shadow pixels by the length needs to be corrected. For example, the area covered by the 10 m.
wide shadow is 20 pixels or 2000 m 2 . The length of the shadow is 208.8 m. The computed
width of the shadow is 9.58, which is less than 10 m. In order to get the correct estimate the
length must be measured along the scan line or the actual length must be multiplied by the

cosine of the angle between the shadow zone and the scan line.

U 0
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shadow zone may be expected.
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