PERFORMANCE STATISTICS BULLETIN
HIGH LATITUDE METEOR SCATTER PROPAGATION
NOVEMBER, DECEMBER 1989; JANUARY 1990

Alan D. Bailey
Jens C. Ostergaard
Regina M. Burton, MSgt, USAF
Carlton H. Curtis, SSgt, USAF
Wayne I. Klemetti
John E. Rasmussen

22 November 1993

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
Best Available Copy
"This technical report has been reviewed and is approved for publication"

Edward J. Berghorn
Branch Chief

FOR THE COMMANDER

Paul A. Kossey
Deputy Division Director

This report has been reviewed by the ESC Public Affairs Office (PA) and is releasable to the National Technical Information Service (NTIS).

Qualified requestors may obtain additional copies from the Defense Technical Information Center. All others should apply to the National Technical Information Service.

If your address has changed, or if you wish to be removed from the mailing list, or if the addressee is no longer employed by your organization, please notify OLAA PL/TSI, Hanscom AFB, MA 01731-3010. This will assist us in maintaining a current mailing list.

Do not return copies of this report unless contractual obligations or notices on a specific document require that it be returned.
A representative sampling of meteor scatter propagation performance statistics is presented from the PL/GP High Latitude Meteor Scatter Test Bed. The data address questions of meteor scatter propagation under disturbed ionospheric conditions, as well as normal meteor scatter propagation in the polar region. The time and frequency variations of the propagation transfer function are characterized over the 35 to 147 MHz range, including the availability of useful meteor trails, the potential communication capacity associated with those trails, the occurrence and persistence of ionospheric scatter and sporadic E-layers, variations in the signal-to-noise ratios of each scatter return and the effects of auroral and polar cap absorption (PCA) events on meteor scatter propagation and communications. Statistics covering Arrival Rate, Duration, Duty Cycle, and Noise Temperature are presented. This bulletin is one of a series of polar meteor scatter data bulletins.
# Contents

1. **INTRODUCTION** ................................................. 1
2. **HLMSTB SITE AND PATH DESCRIPTION** ......................... 1
3. **HLMSTB SYSTEM DESCRIPTION** .................................. 2
4. **DATA ACQUISITION** ........................................... 4
5. **DATA PROCESSING** ............................................. 4
6. **CLASSIFICATION** ............................................... 4
   6.1 Returns from Underdense Meteor Trails .................... 5
   6.2 Returns from Overdense Meteor Trails ...................... 7
   6.3 Returns from Sporadic E-Layers ............................ 8
   6.4 Unidentified Propagation ................................. 8
7. **ANALYSIS OPTIONS** ............................................ 9
   7.1 Propagation Analysis ...................................... 9
   7.2 Communication Analysis .................................. 9
8. **STATISTICAL DATA BASE** ..................................... 9
   8.1 Meteor Arrivals Data Base ................................. 9
   8.2 Distribution of Signal Durations Data Base ............... 10
   8.3 Underdense Time Constants Data Base ....................... 10
   8.4 Duty-cycle Data Base ....................................... 10
   8.5 Fading Data Base ........................................ 11
   8.6 Link History Data Base .................................... 11
9. **DATA PRESENTATION AND FORMAT** ............................. 11
10. **SUPPLEMENTARY INFORMATION** ................................. 13
   10.1 Ionospheric Disturbances .................................. 13
   10.2 Disturbance Events During this Reporting Period ....... 15
REFERENCES ........................................................ 21
BIBLIOGRAPHY ...................................................... 23
APPENDIX A: Statistics for November 1989 ......................... 25
APPENDIX B: Statistics for December 1989 ......................... 87
APPENDIX C: Statistics for January 1990 ......................... 149
Illustrations

Figure 1. The Geographical Location of the HLMSTB, Showing Typical Relationship to the Auroral Oval. ................................................... 2
Figure 2. Block Diagrams of HLMSTB Instrumentation for the Sondrestrom AB-Thule AB Link. ................................................... 3
Figure 3. Procedure for Analysis of Data from PL/GP High Latitude Meteor Scatter Test Bed. . . 4
Figure 4. Examples of Returns from Underdense Meteor Trails. ........................................ 6
Figure 5. Examples of Returns from Underdense Trails with Fading from "Wind Distortion". . . 6
Figure 6. Examples of Returns from Overdense Trails. ........................................ 7
Figure 7. Examples of Returns from Overdense Trails with Fading. .............................. 7
Figure 8. Examples of Returns from Sporadic E-layers. ........................................ 8

Tables

Table 1. Geographical Parameters for the Sondrestrom AB to Thule AB path. ................ 1
Table 2. Main Menu; Statistical Analysis Options. .............................................. 5
Table 3. Outline of plot groups by Plot No., Showing Ordinate and Ascissa Data and the Group Screening Parameters. ........................................ 17
Preface

The acquisition and processing of the data represented in this bulletin was a substantial and complex task, and the authors are indebted to the tireless and dedicated efforts of many people. Special appreciation is due Don DeHart for his highly ordered and competent management of the data processing operations and Sergeants Anthony Coriaty, David Mura and Douglas Carter for their spirited first quality workmanship, willingness to risk freezing in the Greenland field facilities and their skilled work in the laboratory. Also, Eric Li, who was a key player and problem solver in the development of field and data processing software as well as a first quality workman at the frozen Greenland field facilities. Others include Dr. Jay Weitzen and Ms. Patricia Bench who developed the autoclassification and statistical analysis programs used herein.

The meteor scatter performance statistics plots presented herein were selected as a representative sampling of the options available from the Phillips Laboratory (PL/GP) High Latitude Meteor Scatter Test Bed (HLMSTB) data processing and analysis resource. In addition to the performance information they present, they illustrate the sort of capabilities at PL/GP which can be made available to qualified researchers and system designers.

A minor weakness in the HLMSTB system was imprecise control of the transmitter power. However, transmissions were generally maintained within a variance of less than 1 dB. Equipment fatigue, vulnerability to unreliable power and intermittent non-availability of trained operators, were sources of difficulty. Maintenance and calibration visits by PL personnel were semiannual but irregularly scheduled, constrained by seasonal weather and remoteness of access. Power was automatically logged by the controlling computer and added to the database for reference.

This issue employs a revision of the format and content of Plots 115 and 116, introduced with the August-October 1989 issue, which more clearly separates data according to link frequency, and documents system performance and malfunctions. The revisions, introduced in the August-October 1989 issue, are discussed in Section 9.

During the period July 1989 through October 1990, PL/GP also operated an additional, trans-auroral Meteor Scatter Test Link between Sondrestrom Air Base and the Danish Meteorological Observatory in Narsarsuaq, Greenland. This link is indicated in Figure 1. of this bulletin. A data base created by that link is also available at PL/GP, Hanscom AFB; however bulletins will not be published for that link.

Monthly average statistics for 35 MHz in the month of November is based on a severely limited data set. The 35 MHz transmitter was out of normal service for all but three days of that month.

Qualified agencies may request additional data analyses or obtain limited access to the PL/GP resource. Please address your comments or requests to:

PL/GPIA, Attention: J.M.Quinn
29 Randolph Rd.
Hanscom AFB, MA 01731-3010.
or TeleFAX (617) 377-3550.
High Latitude Meteor Scatter Performance Statistics

1. INTRODUCTION

This bulletin presents a summary of results obtained from the Phillips Laboratory, Directorate of Geophysics (PL/GP) High Latitude Meteor Scatter Test Bed (HLMSTB) for the reporting period specified. The prime link, from which these data were derived, is approximately 1210 km long and located entirely within the polar cap in northern Greenland, between Sondrestrom and Thule Air Bases. See Figure 1 and Table 1. This link is an enhancement of the Rome Air Development Center (RADC) link described by Ostergaard et al.1

The PL/GP HLMSTB meteor scatter research links in Greenland are providing data to address a number of questions concerning meteor scatter propagation under normal and severely disturbed conditions as well as the potential performance of meteor burst communication systems in the polar region. The efforts under this measurement program are concentrated on characterizing the time and frequency variations of the transfer function, including:

- The availability of useful meteor trails,
- The potential communication capacity associated with those trails,
- The occurrence, persistence and effects of ionoscatet and sporadic E-layers,
- Variations in the instantaneous polarization and signal-to-noise ratios of each return from a meteor trail, and
- The effects of aurora and polar cap absorption (PCA) events on meteor scatter propagation parameters and on the potential capacity of 35 to 147 MHz meteor scatter communication systems.

Significant disturbance events and anomalies which occurred in this reporting period are identified and their effects discussed under section 10. "Supplementary Information," sub-section 10.2 "Disturbance Events During This Reporting Period."

2. HLMSTB SITE AND PATH DESCRIPTION

The PL/GP meteor scatter test-bed main path is located entirely within the Polar Cap region with the transmitter at Sondrestrom Air Base (SAB) and the receiver at Thule Air Base (TAB), Greenland. Figure 1 shows the geographical location of the HLMSTB. Table 1 gives information on the geographical parameters of the sites and path features that influence the properties of the test-bed propagation path.

Table 1. Geographical Parameters for the Sondrestrom AB to Thule AB path.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Receiver @ TAB</th>
<th>Transmitter @ SAB</th>
</tr>
</thead>
<tbody>
<tr>
<td>LONGITUDE</td>
<td>68° 40'</td>
<td>50° 39'</td>
</tr>
<tr>
<td>LATITUDE</td>
<td>76° 33'</td>
<td>66° 59'</td>
</tr>
<tr>
<td>AZIMUTH</td>
<td>141.8°</td>
<td>337.8°</td>
</tr>
<tr>
<td>TERMINAL ELEVATION</td>
<td>240m</td>
<td>330m</td>
</tr>
<tr>
<td>HORIZON ELEVATION</td>
<td>1.1-1.7°</td>
<td>1.8-2.2°</td>
</tr>
<tr>
<td>MIDPATH ELEVATION for 100 km ALTITUDE</td>
<td>6.5°</td>
<td></td>
</tr>
<tr>
<td>GREAT CIRCLE DISTANCE</td>
<td>1210 km</td>
<td></td>
</tr>
</tbody>
</table>

(Received for publication 17 November 1993)
3. HLMSTB SYSTEM DESCRIPTION

This Test Bed is designed to measure signal strength, polarization, and system noise at six frequencies, from 35 to 147 MHz. The frequency coverage is chosen to examine absorption and depolarization from the very low end of the VHF frequency band, where meteor scatter links have maximum yield during undisturbed ionospheric conditions, to mid VHF where very little meteor scatter activity takes place but where absorption and depolarization are much less severe than at lower frequencies.

The transmitter at Sondrestrom Air Base and the receiver at Thule Air Base (Figure 2) are not conventional communication system components. Rather, they were developed to investigate features of meteor scatter from a propagation point of view, as well as from a communication viewpoint. The transmitter sequentially transmits a 400 Hz FM tone at 35, 45, 65, 85, 104, and 147 MHz. The receiver at Thule measures the characteristics of the meteor scatter returns as well as signals carried by other modes of propagation, originating from the Test Bed transmitter at Sondrestrom AB.
Figure 2. Block Diagrams of HLMSTB Instrumentation for the Sondrestrom AB-Thule AB Link.

The horizontally polarized transmitting antennas are 5-element Yagis for 35 MHz to 104 MHz, positioned for optimal pattern illumination and gain consistency. A 12 element Yagi is used for 147 MHz. Matching receiver antennas are each composed of orthogonal, linearly polarized (Yagi) antenna pairs for measurement of the horizontal and vertical polarization components. The receiver Yagis are mounted on a common boom with separate lines feeding a dual channel, six frequency receiver with two identical channels at each frequency. Thus the amplitude for each polarization and phase difference between the signals received by the orthogonal antennas can be acquired and used to determine the polarization of the incident wave. The effective noise bandwidth of the receiver is 100 Hz.
4. **DATA ACQUISITION**

The horizontally and vertically polarized channels are sampled every 10 msec (100 samples/sec) and formatted into sequential 5-second records that include signal power of the polarized channels, the phase difference between the vertical and horizontal channels, and a flag indicating lock-on to a 400 Hz FM signature. Examples record displays are shown in Figures 4 through 8. Those records in which the 400 Hz signature is detected are transferred to a magnetic tape data storage unit and data tape cartridges are returned to the Phillips Laboratory for processing.

![Diagram of data processing procedure](image)

Figure 3. Procedure for Analysis of Data from PL/GP High Latitude Meteor Scatter Test Bed.

5. **DATA PROCESSING**

The data processing procedure is shown in Figure 3. Data are transferred to the PL/GP VAX computer and the date, time, noise level, frequency, and other information are attached to each data record. The next step is classification where the dominant propagation mechanism in each data record or sequence of records is identified. The final step of the processing procedure is statistical analysis of data in the data bases. These classified data bases can be processed in a number of different ways. The main menu of optional categories appears as Table 2. The principal purpose of this bulletin is to present a representative sample of analyzed data for the specified three month period.

6. **CLASSIFICATION**

Several different propagation mechanisms are observed on the high latitude test bed. These different propagation mechanisms have different communication and propagation characteristics. In addition to underdense and overdense meteor trails, sporadic-E and low level ionospheric scatter propagation occur frequently. Auroral scatter is not generally observed on the Thule test link, since it is well north of the auroral zone.
<table>
<thead>
<tr>
<th></th>
<th>Table 2. Main Menu; Statistical Analysis Options.</th>
</tr>
</thead>
<tbody>
<tr>
<td>101</td>
<td>Number of arrivals exceeding a RSL threshold</td>
</tr>
<tr>
<td>102</td>
<td>Number of arrivals exceeding a SNR threshold</td>
</tr>
<tr>
<td>103</td>
<td>Distribution of time above a RSL threshold</td>
</tr>
<tr>
<td>104</td>
<td>Distribution of time above a SNR threshold</td>
</tr>
<tr>
<td>105</td>
<td>Noise level and link-up time history</td>
</tr>
<tr>
<td>106</td>
<td>Distribution of durations above RSL threshold</td>
</tr>
<tr>
<td>107</td>
<td>Distribution of durations above SNR threshold</td>
</tr>
<tr>
<td>108</td>
<td>Time constants</td>
</tr>
<tr>
<td>109</td>
<td>Fading Statistics</td>
</tr>
<tr>
<td>201</td>
<td>Throughput for idealized adaptive system (for all events)</td>
</tr>
<tr>
<td>202</td>
<td>Throughput for idealized adaptive system (for all frequencies)</td>
</tr>
<tr>
<td>203</td>
<td>Throughput for realistic adaptive rate system (all frequencies)</td>
</tr>
<tr>
<td>204</td>
<td>Throughput for realistic adaptive rate system (all events)</td>
</tr>
<tr>
<td>205</td>
<td>Throughput for realistic fixed rate system (for all frequencies)</td>
</tr>
<tr>
<td>206</td>
<td>Throughput for realistic fixed rate system (for all events)</td>
</tr>
<tr>
<td>207</td>
<td>Time required to transmit a message (for fixed rate system)</td>
</tr>
</tbody>
</table>

The classification system includes four categories of return: underdense meteor trails, overdense meteor trails, sporadic E-layers and unidentified propagation. Some of these classes contain waveforms that agree closely with the classical theory of meteor burst scattering as presented by Eshlemann and McKinley; however, most of the trails are distorted and often difficult to classify. The sporadic E-layer signals are distinctive as they are generally stronger and much longer lasting with slow fades. The remaining low level, fast fading signals are classified as unidentified propagation as they cannot be attached unambiguously to a specific physical propagation mechanism. Presently, unidentified signals are excluded from these bulletins.

6.1 Returns from Underdense Meteor Trails

The returns from underdense trails are characterized by a fast rising leading edge and a slower exponential decay. They account for by far the largest percentage of signals observed. Figure 4 shows a number of returns from underdense trails. The maximum amplitudes of the waveforms vary over a range of 40-45 dB and the durations vary from less than 0.1 second to several seconds. The occurrence of long duration trails is not well correlated with large maximum amplitudes as both returns with a long duration and a small maximum amplitude, and returns with a short duration and large amplitude are frequently observed.

Many underdense returns exhibit fading during their exponential decay phase. This phenomenon is observed on nearly all long lasting trails, and it is attributed to wind moving different portions of the trail to positions and attitudes that fulfill the geometric conditions for scattering between the transmitter and the receiver. These fades can be deep, occasionally reaching down to the receiver noise level; that is, a complete cancellation of the total received power by destructive interference between components of the received signal originating from different parts of the trail (Figure 5.)
Figure 4. Examples of Returns from Underdense Meteor Trails.

Figure 5. Examples of Returns from Underdense Trails with Fading from "Wind Distortion".

The time between the occurrence of successive meteor trails ranges from as little as a few milliseconds to several minutes. Trails often occur with separations in the order of one second or less. The multiple meteor trail returns can either be of approximately the same amplitude or of substantially different amplitudes, and it cannot at present be determined if the two signals came from portions of a fractured micrometeoroid, that is, have the same path through the scattering geometry, or if they are caused by two independent meteorites with entirely different paths.
6.2 Returns from Overdense Meteor Trails

The returns from overdense trails are characterized by a fast rising edge, often followed by an amplitude oscillation originating from the meteorite's movement through the scattering geometry during the formation of the trail. Unlike the returns from underdense meteor trails, however, the amplitude continues to increase after the trail is fully formed, and reaches a shallow maximum before decaying exponentially. Examples of returns from overdense meteor trails are shown in Figures 6 and 7.
The maximum amplitudes are frequently larger and the durations generally longer than those from underdense trails. The majority of the waveforms that last longer than 1 sec can be classified as returns from overdense trails. There are, however, a number of returns from overdense trails for which the maximum amplitude is comparable to the average maximum amplitude for returns from underdense trails, and which last considerably less than a second.

As the overdense trails and some underdense trails last longer than average, they are prone to wind distortion. This creates multipath propagation and large fluctuations in the received power. Some of the returns from these trails could be interpreted as either a return from a wind distorted trail, or as a return from a trail that did not originally fulfill the required scattering geometry, but has been repositioned by the wind after the trail was fully formed.

![Figure 8. Examples of Returns from Sporadic E-layers.](image)

6.3 Returns from Sporadic E-Layers (Es)

This classification is used to account for the occurrences of very strong (up to -75 dBm), enduring signal events, lasting from a few minutes to more than 25 minutes. The signals are observed primarily at the lower frequencies (35 and 45 MHz), but will appear above 100 MHz in extraordinary events. Examples of signals reflected from sporadic E-layers are shown in Figure 8.

These signals obviously do not originate from meteor trails, nor can they originate from the ionosphere's F-layer, as this does not reflect obliquely at VHF frequencies on a path as short as the Sondrestrom AB - Thule AB path. The logical explanation is that the signals originate from sporadic E-layers. These layers are known to occasionally have electron densities large enough to permit oblique reflections at frequencies in the lower VHF spectrum. The main characteristics of the signals, apart from their long duration, are the large amplitudes and the slow, deep fades. The fades generally exhibit a periodicity of 0.1 sec to 2 sec.

6.4 Unidentified Propagation

Occasionally, relatively weak, long lasting signals are received, characterized by rapid fading. These superficially fit the description of scattering from field aligned irregularities as
reported by Dyce. However, such scattering as a mode of propagation is not plausible for irregularities at F-layer heights and it is very unlikely, even for irregularities at E-layer heights, due to the geographical position of Sondrestrom AB and Thule AB relative to the nearly vertical inclination of the geomagnetic field. These signals often precede sporadic E events and they may in the future be reclassified as returns from weak sporadic E-layers. Unidentified signals are presently excluded from standard analysis options.

7. ANALYSIS OPTIONS

Information in the monthly data bases can be retrieved and processed using a menu-driven front end program that calls a subset of processing routines. The main menu is shown in Table 2. Each of the main options offers approximately ten sub-options, not listed, that allow the user to analyze the propagation and communication properties of the channel. Statistical analysis is divided into two general categories; propagation analysis (101-109) and communication analysis (201-207).

7.1 Propagation Analysis

Propagation statistics allow analysis of the arrival rate of trails, their duration, duty cycle and fading characteristics as a function of trail type, signal level, day, time of day, and frequency. These statistics can be used to examine the effect of disturbances, such as polar cap absorption or solar noise storms, as well as to calibrate physically based prediction models such as METPRED* or METEORLINK**.

7.2 Communication Analysis

Communications statistics are available, but are not included in this bulletin series. Communication statistics allow a user to define a system and infer its performance over the test link from actual data. Parameters that can be defined by the user are the data rate, modulation, error rate, packet structure, and signaling protocol. Users can specify either a fixed or an adaptive data rate system. Available statistics include time to deliver a message and throughput as a function of time of day, event type (underdense, overdense or sporadic-E), frequency, data rate, packet duration, error rate and packet structure. Output of the analysis program is presented in either table form or in files that can be plotted using a number of optional routines.

8. STATISTICAL DATA BASE

The following data base descriptions are included to provide the reader with introductory background to aid interpretation of the presentations of this report. Available data bases are:

- Meteor arrivals data
- Distribution of signal durations data
- Underdense time constants data
- Duty-cycle data
- Fading data
- Link history data

8.1 Meteor Arrivals Data Base

The number of meteors that exceed a signal threshold is determined for each time period as a function of signal threshold, frequency, time of day, trail type and polarization. Information in this data base can be used to observe the fluctuation in arrival rate during ionospheric disturbances.

---

* METPRED is a proprietary Meteor Burst prediction model owned by Signatron Corporation.

** METEORLINK is a proprietary Meteor Burst prediction model owned by Scientific Applications International Corporation.
such as polar cap absorption (PCA) events, to determine the frequency dependence of the arrival rate as a function of time of day or season, to observe the relationship between received signal and number of trails, to observe and analyze the cross polarization dependence as a function of time of day and season, or to determine the percentage of trails that are underdense or overdense as a function of received signal level and frequency. Arrival rates of meteor trails (meteors per minute) that satisfy the user specified signal requirements are computed by dividing the number of meteors that satisfy the signal criteria by the time that the link was available to observe meteor trails. Available time takes into account the time the link was not observing meteors due to sporadic-E or ionospheric propagation, as well as link down time.

Data analysis routines can combine the received signal information in the arrival data base with noise level information in the link history data base to compute the arrival rate of meteors as a function of signal-to-noise ratio (SNR). This information can be used to predict the arrival rate of meteors useful for communication. In this and all other data bases, statistics are computed as a function of received signal level in increments of 2 dBm from -140 dBm to -90 dBm, covering the range of signals observed on the link.

8.2 Distribution of Signal Durations Data Base

The signal durations data base contains information on the durations of meteor and ionospheric signals above various received signal thresholds. Duration statistics are required to determine the average throughput and message delivery time of the channel, especially for realistic systems that transmit data in fixed length packets. For each signal event within a record or sequence of records, the times relative to the start of the record that the signal either exceeds or drops below the threshold is noted in a table. Since communication systems have some inherent capability to combat fades, the processing routines merge fades that are less than 40 ms in duration. Duration statistics are computed as a function of duration, received signal level, day, time of day, frequency, and propagation type (underdense trails, overdense trails or ionospheric).

Information stored in this data base as a function of received signal level can be transformed by the analysis routines to a function of signal to noise ratio by combining received signal information in this data base and noise information in the link history data base. Data in this data base can be used to optimize the design of communication protocols based upon the duration of meteor trails and to add to the understanding of the contribution of overdense and underdense trails to the performance of a channel.

8.3 Underdense Time Constants Data Base

Underdense meteor trails are observed to decay exponentially with a time constant that is a function of trail height, link distance, trail orientation, and frequency. In most work, the time constant of decay is assumed fixed for a given link, but in reality it is a random variable. Statistics of the duration and time constants are required for the generation of accurate meteor burst communication simulations. For each trail identified by the trail classifier as underdense, a minimum mean square error exponential fit to the trail is performed beginning at the maximum signal point to determine the decay constant. The statistics of the time constant are determined as a function of time of day and frequency, averaged over each month.

8.4 Duty-cycle Data Base

Duty cycle is the time the signal exists above a threshold divided by the total number of seconds the link was active (removing time that sporadic-E was dominant when analyzing meteor trails). This statistic is computed as a function of time of day, frequency, polarization, signal level and propagation mechanism (underdense trails, overdense trails, and ionospheric propagation). The relative contribution of the various mechanisms to the capacity of the channel can be evaluated.
For each meteor in a data record or sequence of data records, identified by the trail classifier, the number of seconds that the received signal level exceeds the threshold is computed and the appropriate duty cycle data slot is incremented. For records identified as ionospheric, the total duty cycle for the 5 second data record is computed and the appropriate data slot is incremented.

Information in this data base is combined with the noise information in the link history data base to determine the duty cycle as a function of signal-to-noise ratio, which is used to determine the capacity of the channel at a fixed bit error rate.

8.5 Fading Data Base
This data base provides information about the fading of the envelope of meteor trails and ionospheric propagation events. A fade is said to occur when the signal to noise ratio drops farther than 3 dB below 10 dB signal-to-noise ratio, relative to the specified bandwidth, and then goes back above the threshold during the life of a trail. The thresholds considered are 10 dB SNR relative to 100, 300, 600, 1200, 1600, 2400, 4800, 8000, 9600, 19200, 32000, 64000, and 128000 Hz bandwidth.

Threshold above noise(dB) = 10 log(10^{10 \cdot \frac{10 \log(Bw/1000Hz)}{10}} + 1).

(The 1 takes into consideration \(\frac{S+N}{N}\).)

Fades per second are computed as the number of fades per event divided by the duration of the event. If the duration of the fade is greater than one second, we assume the beginning of a new event. For meteor trails, three statistics are computed; 1. fades per trail, 2. fades per second of event duration and 3. distribution of fade durations. For Sporadic-E, only the latter two statistics are available and meaningful.

8.6 Link History Data Base
The link history data base archives miscellaneous information about the link from each frequency period during the day. The data base contains information on the received noise level measured during the one minute preceding each frequency interval, the number of seconds during which ionospheric propagation (for example, Es) was the dominant mechanism, transmitter power recorded at the beginning of each frequency interval, and a flag indicating if no returns are received during the interval.

The noise information is combined with absolute signal level information in the other data bases to transform received signal level to signal-to-noise ratio (SNR) for communication analysis. The other information is used by the analysis program to determine meteor arrival rates accurately by evaluating the the amount of time during each frequency interval that the system was actually available to observe meteors.

The transmitter power log database, although sometimes erratic or incomplete, is edited and then used to remove questionable intervals of data from the calculation of monthly average statistics. Editing is based on a review of the signal database, and verification that power deviates from the months norm by less than 1 dB. Intervals where power or reception is clearly and persistently below the monthly norm are rejected.

9. DATA PRESENTATION AND FORMAT
The appendices of statistics plots presented in this bulletin are only a sampling of the available propagation statistics options outlined in Table 2. Each appendix covers one month. The plots presented, in Appendices A through C, have been limited to those categorized as propagation
statistics, with attention focused on the "arrival rate" and "duty cycle" as functions of signal level, signal propagation mode and link frequency. Although communication statistics may be as readily obtained, they are omitted here because such data are highly system dependent, so that even a small "typical" sampling might overwhelm the function of this bulletin.

Table 3 is an outline of appendix plots, identified by plot number and arranged in groups that include a range of screening parameters, such as Time-of-Day, RSL-threshold, propagation-mode, or link-frequency. The ordinate and abscissa data are indicated as well as the compared parameters and the range of incremented screening parameters for each group. Table 3 is applicable to each monthly Appendix, A through C.

Those statistics plots presented as monthly averages are calculated excluding periods of sub-standard link performance and extraordinary events such as PCA's, and link outages. These periods are indicated in plots 115. Power information in plots 115, is edited to remove intervals of questionable performance and PCA events. Calculations of system throughput are based on an assumption of a 30 dBW transmitter feeding specific antennas as described in Section 3. However, average true power deviated from this by as much as 1 dB, depending on frequency and operating conditions, and in rare cases varied up to as much as 1 dB under stressed conditions. Intervals of high absorption (PCA's) are also removed from calculation of monthly averages, and are not displayed in plots 115. However, where valid, propagation data AR, DC, etc. are displayed against day-of-month (DOM) and time-of-day (TOD).

The format of plots 115 (Link Availability/Power) and 116 (Noise Temperature) are revisions of the congested displays presented in earlier Bulletin issues. Plots 115 now display separate records of transmitter power for each frequency, during those data intervals which are included in the calculation of monthly average statistics. Disturbance (PCA's) and outage intervals are also removed from the calculation of monthly averages, and from the power display, plot 115. Plots 116 now display separate records of noise temperature for each frequency, with a scale of the logarithm of noise temperature in degrees Kelvin.

Arrival Rate (AR) has been defined as the number of classifiable meteor trail returns per minute exceeding a specified received signal (RSL) or signal-to-noise ratio (SNR). Duty cycle has been defined as the ratio of the accumulated time in which classifiable meteor trail returns exceed the specified RSL (or SNR) threshold, divided by the valid listening or acquisition window. Arrival Rates and Duty Cycle (DC) are presented in Plots vs Time, RSL and SNR. These plots are presented so as to compare either mode-classification or link-frequency. The majority of plots are presented vs Time-of-Day (TOD) as averaged over the month. Other plots showing distributions as a function of RSL or SNR are presented as 24 hour-whole month averages. However, selected hour intervals averaged over the month can be obtained.

Trail return "Duration" is also available as a function of all the parameters illustrated here. A small sampling of "Duration" data is included as Normal Distributions of Numbers of Returns vs Duration of Return.

---

*Earlier practice included no transmitter power information, but instead plotted link-up time for all frequencies as daily percentages, and on a common scale.

**Earlier practice displayed noise at all frequencies on a common linear scale, resulting in occasional confusion from overlapping records.
The plots presented here were generated by an automated batch process. Most plots are presented two-to-a-page. A notation at the lower right of each plot includes a menu identification and a batch plot number. The plot number is referred to by Table 3. The menu I.D. may be related to Table 2, but also includes submenu selections that are not treated here.

A "polarization = horizontal" notation appears with plots no. 1-66. All data presented in this bulletin are based on signals received on horizontally polarized receiving antennas. The PL/GP database and analysis software includes the option to present either horizontally or vertically polarized reception from the horizontally polarized transmissions.

A "maximum downtime due to sporadic-E = 240 secs." notation appears with plots no. 1-30. This refers to the default convention to delete from analysis that data acquired in any bi-hourly acquisition window which included more than 240 seconds of returns classified as sporadic-E. The reader may notice a significant impact on plots presenting data at 35 and 45 MHz. since $E_s$ propagation may frequently dominate at polar cap latitudes, resulting in gaps in the data that are plotted versus Time of Day (TOD).

A "based on observed noise measurements = vertical" notation appears with plots 1-99 and 116. Several sources of noise measurement data are available. Noise measurements are made at each transmitting frequency transition from both horizontally and vertically polarized receiving antennas and, in addition, each trail record is processed to extract an apparent noise level which is averaged over the acquisition window. The default noise reference is measured from the vertically polarized receiving antennas.

A "effective system bandwidth = 100 Hz." notation appears with plots 28-30, 61-66, and 94-97. This is a trivial reference to the system effective noise bandwidth.

Plots 67-87, 94, 95, 100-106, and 108-114 are normalized distributions of trail return durations, or decay time-constants. The "normalizing factors" indicate the extent of data available for each mode.

10. SUPPLEMENTARY INFORMATION

To aid interpretation, selected supplementary data are included in plots 117 through 123. These data are indicators of ionospheric disturbances that can significantly degrade radio propagation. The magnitude of the polar magnetic field, as recorded on a three-axis fluxgate magnetometer, and riometer data from two 30 MHz units, are recorded at one-minute intervals by instruments located near the Test Bed receiver operated by Phillips Laboratory at Thule Air Base in Greenland. The riometer measures the signal level of cosmic noise through the ionosphere. A decrease in received noise level results from increased absorption caused by enhanced ionization from energetic particles. The magnetometer responds to polar ionospheric current systems that may be related to disturbances.

10.1 Ionospheric Disturbances

The polar ionosphere is a turbulent region, subject to a range of disturbances primarily related to solar activity. When such disturbances occur they may distort the monthly average statistics, depending on the duration and severity of the events. Such disturbance events may appear as extraordinary absorption, noise, or non-meteoric propagation. Monthly average statistics presented here do not include identifiable propagation disturbances. However, data presented versus day-of-month (DOM) do include these events. Typical disturbance events are discussed below.
In the discussions to follow, a shorthand reference to plot content is used where Y(p) vs. X is employed. Ordinate data Y are usually arrival rate (AR) or duty cycle (DC), the parameter (p) may be received signal level (RSL) or signal to noise ratio (SNR), and abscissa data X may be day of month (DOM), or time of day (TOD). References to NOAA/USAF numbered sunspot events and GOES-7 proton data are obtained from the NOAA/USAF Solar Geophysical Data reports.

10.1.1 Absorption Events
The effects of energetic solar-particle events are usually seen on a riometer (figures 117 - 120) as an abrupt increase in the signal absorption level followed by a gradual recovery to normal levels over a period of hours or days. Diurnal variations in the level of absorption are caused by variations in the amount of solar illumination of the ionosphere. During absorption events two propagation effects can occur. One is the attenuation of the signal traversing the absorbing region; the other is depolarization. However, although polarization data are collected by the HLMSTB, depolarization analysis is not included in this bulletin series.

Two types of absorption can be encountered: Polar Cap Absorption (PCA), affecting signals penetrating the D-region inside the polar cap, and auroral absorption, mainly confined to paths penetrating the upper D- and lower E-regions of the ionosphere in the auroral oval. PCA events cover the entire polar cap with a blanket of additional D-region absorption. The magnitude of this absorption as measured by a 30 MHz riometer at zenith, can exceed 20 dB. PCA’s can last days, or even weeks in severe cases.

Auroral absorption events tend to be patchy, last for a few hours, and produce 30 MHz riometer absorption values of up to 2-3 dB as measured towards zenith. These absorption events will affect the received signals and the system noise differently. The magnitude of the absorption decreases with an increase in the elevation angle of the propagation path, and with an increase in the frequency of operation. Whereas received meteor signals traverse the absorbing region twice, generally at low elevation angles, noise of galactic origin traverses the absorption region only once, and at a range of elevation angles dependent on the extent of the antenna radiation pattern. As a consequence, the noise is absorbed significantly less than the meteor signal. A comprehensive treatment of absorption effects on meteor scatter propagation, with examples from the PL/HLMSTB links during events of March and August 1989, can be found in Östergaard et.al. 10 11 12

10.1.2 Noise Events
Noise events are not as common as absorption events. The effects of absorption events are a function of frequency, whereas solar noise tends to be broadband and may affect any or all frequencies across the VHF spectrum. These events can result in an increase in received noise of ten’s of dB; however, solar noise effects are seen only when the sun is visible to the antenna. Such noise events can last for several days. Occasionally, non-solar noise may appear, which will be difficult or impossible to identify as to cause or source. No noise events were observed this period.

10.1.3 Non-Meteoric Propagation
Although not a disturbance in the disruptive sense, this extraordinary mod of propagation has a very significant impact on the performance and analysis of a meteor scatter propagation link. This classification, introduced in sections 6.3 and 6.4., includes long enduring signal events that can last from a few to many minutes. These signals are observed primarily at the lower frequencies (35 and 45 MHz). Most of these returns are attributed to sporadic E-layer (Es).

*Solar-Geophysical Data reports obtainable from; NOAA/NESDIS, E/GC2, 325 Broadway, Boulder CO 80303.
reflection. These layers, with electron densities large enough to permit oblique reflections at frequencies in the lower VHF spectrum, produce signals with long duration, large amplitudes and slow, deep fades. Consequently, when present they can dominate the propagation link. This is especially true in the polar region, and overwhelmingly so at the lower frequencies during the summer months.

10.2 Disturbance Events During this Reporting Period

During this report period the riometers at Thule displayed one brief significant absorption event in November-December, and meteor showers appear in December and January. Also, the Test-Bed systems experienced numerous transmitter outages, a consequence of extraordinary environmental stresses of polar winter. November shows a 27 day disruption of 35 MHz transmissions, consequently monthly averages for November based on only three days of data. Refer to plots 115, 116, and 119 or 120 for each month. Non meteoric or sporadic E-layer (Es) propagation was low throughout this report period. Es lower frequency effects (35, 45, and 65 MHz), are observable in the DC(RSL)vs.TOD plots 37-39 and 43-45 as afternoon enhancements, especially in November. No noise events were observed this period.

Disturbance summary:

<table>
<thead>
<tr>
<th>Date Range</th>
<th>Event Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>28 November - 2 December</td>
<td>Absorption event, 5 dB max.</td>
</tr>
<tr>
<td>11-14 December</td>
<td>Geminid meteor shower.</td>
</tr>
<tr>
<td>3 January</td>
<td>Quadrancid meteor shower.</td>
</tr>
<tr>
<td>4 November - 6 December</td>
<td>System outage, 35 MHz</td>
</tr>
<tr>
<td>9 November</td>
<td>System outage, all frequencies.</td>
</tr>
<tr>
<td>18-20 November</td>
<td>System outages, 35, 45, and 85 MHz.</td>
</tr>
<tr>
<td>24-27 November</td>
<td>System outages, 65, 104, and 147 MHz.</td>
</tr>
<tr>
<td>1-6, 10-13, 14, 15, 26, 27 December</td>
<td>System outages, see plot 115.</td>
</tr>
<tr>
<td>25-31 January</td>
<td>System outage, all frequencies.</td>
</tr>
</tbody>
</table>

10.2.1 System Outages

The repercussions of the numerous system outages are apparent in AR(RSL)vs.DOM plots 25-27, AR(SNR)vs.DOM plot 30, DC(RSL)vs.DOM plots 55-57, and DC(SNR)vs.DOM plots 65-66, appearing as gaps in data. Plots 115 for each month indicate the listed principal outages, in addition to the 28 November - 2 December PCA, which has also been excluded. Actually, 45 and 85 MHz were functional through 2000 UT, 1 December, and 45 MHz data are observable in plots 25-27, 30, and 55-57, as well as 30, 58-60, 65, and 66. Consequences are discussed further below. Absorption plots 118 and 120 are omitted for November because of an instability in riometer instrument #2. This unit was replaced on 4 December and calibrated on 5 December.

10.2.2 Absorption Events

Absorption reference data from the riometers are presented in plots 117 through 120. Although the riometers displayed one 5 dB absorption event on 1 December, most impact on meteor scatter propagation was obscured by the 1-6 December system outage. The single 5 dB absorption event is believed to be the consequence of a X2.6 flare of NOAA/USAF region 5800 at 1145 UT on 30 November. GOES-7 protons >8.7 MeV measurements registered approximately 500 particles/cm²sec.sr MeV. Absorption events less than 2 dB rarely impact statistics significantly. Interestingly, at 45 MHz plots 25, 30, 55, 65, and 66 show no absorption on 1 December. However, plots 26, 27, 56, and 57 clearly show depressions in AR and DC at higher RSL thresholds. Further, plot 58 shows a significant throughput classified as sporadic E-layer (Es). High AR and DC at low thresholds are probably a mix of subdued trail returns and strong coincidental Es events, some of which may have been misclassified.
10.2.3 Meteor Showers

The Geminid meteor shower, which appears in the second week of December, is mostly obscured by the system outages of 10-15 December, but is detectable during the brief operational period on 13-14 December at 104 MHz in AR(RSL) vs. DOM plots 25-27, AR(SNR) vs. DOM plot 30, DC(RSL) vs. DOM plots 55-57, and DC(SNR) vs. DOM plots 65-66. It is interesting to note that meteor shower impact appears most prominently at the higher frequencies and with high discrimination thresholds. The effects of the Quadrancid meteor shower show clearly in AR(RSLorSNR) vs. DOM, and DC(RSLorSNR) vs. DOM plots for January, also most noticeable at higher frequencies and with high discrimination thresholds. The apparent double peak on 3 January suggests an interesting relationship between the shower radiants and the high latitude of the link. There is no detectable shower impact in whole-monthly average statistics.
Table 3. Outline of plot groups by Plot No., Showing Ordinate and Ascissa Data and the Group Screening Parameters.

**PLOTS # 1-18**
ARRIVAL RATE (M/min) vs. Time-Of-Day (UT)
Comparing propagation modes; Underdense, Overdense, and All Trails.
Screening parameters; RSL threshold -126, -116, -106 dBm and Link frequencies 35, 45, 65, 85, 104, and 147 MHz.

**PLOTS # 19-24**
ARRIVAL RATE (M/min) vs. Threshold RSL in dBm
Comparing propagation modes; Underdense, Overdense, and All Trails.
Screening parameters; Link frequencies 35, 45, 65, 85, 104, and 147 MHz. averaged over 24 hours.

**PLOTS # 25-27**
ARRIVAL RATE (M/min) vs. DAY/Time-Of-Day (UT)
Comparing link Frequencies; 45 and 104 MHz.
Screening parameters; RSL threshold -126, -116, -106 dBm

**PLOT # 28**
ARRIVAL RATE (M/min) vs. Time Of Day (UT)
Comparing link Frequencies; 35, 45, 65, 85, 104, and 147 MHz.
Screening parameters; All trails, 19 dB SNR threshold.

**PLOT # 29**
ARRIVAL RATE (M/min) vs. Threshold SNR in dB
Comparing link Frequencies; 35, 45, 65, 85, 104, and 147 MHz.
Screening parameters; All trails, 24 hour average.

**PLOT # 30**
ARRIVAL RATE (M/min) vs. DAY/Time Of Day (UT)
Comparing link Frequencies; 45 and 104 MHz.
Screening parameters; All trails, 19 dB SNR threshold.

**PLOTS # 31-36**
DUTY CYCLE ABOVE RSL (percent) vs. Threshold RSL in dBm
Comparing propagation modes; Underdense, Overdense, and All Trails, also Sporadic E and All Events.
Screening parameters; Link frequencies 35, 45, 65, 85, 104, and 147 MHz. averaged over 24 hours.

**PLOTS # 37-54**
DUTY CYCLE ABOVE RSL (percent) vs. Time-Of-Day (UT)
Comparing propagation modes; Underdense, Overdense, and All Trails, also Sporadic E and All Events.
Screening parameters; RSL threshold -126, -116, -106 dBm, and Link frequencies 35, 45, 65, 85, 104, and 147 MHz.
Table 3. Outline of plot groups; continued.

<table>
<thead>
<tr>
<th>PLOTS</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td># 55-57</td>
<td>DUTY CYCLE ABOVE RSL (percent) vs. DAY/Time-Of-Day (UT)</td>
</tr>
<tr>
<td></td>
<td>Comparing link Frequencies; 45 and 104 MHz.</td>
</tr>
<tr>
<td></td>
<td>Screening parameters; RSL threshold -126, -116, -106 dBm, for All Trails.</td>
</tr>
<tr>
<td># 58-60</td>
<td>DUTY CYCLE ABOVE RSL (percent) vs. DAY/Time-Of-Day (UT)</td>
</tr>
<tr>
<td></td>
<td>Comparing link Frequencies; 45 and 104 MHz.</td>
</tr>
<tr>
<td></td>
<td>Screening parameters; RSL threshold -126, -116, -106 dBm, for Sporadic E-layers only.</td>
</tr>
<tr>
<td># 61,62</td>
<td>DUTY CYCLE ABOVE SNR (percent) vs. SNR (dB)</td>
</tr>
<tr>
<td></td>
<td>Comparing link Frequencies; 35, 45, 65, 85, 104, and 147 MHz.</td>
</tr>
<tr>
<td></td>
<td>Screening parameters; All Trails and All-Events including Sporadic E-layers, 24 hour average.</td>
</tr>
<tr>
<td># 63,64</td>
<td>DUTY CYCLE ABOVE SNR (percent) vs. Time-Of-Day (UT)</td>
</tr>
<tr>
<td></td>
<td>Comparing link Frequencies; 35, 45, 65, 85, 104, and 147 MHz.</td>
</tr>
<tr>
<td></td>
<td>Screening parameters; All Trails and All-Events including Sporadic E-layers, 19 dB SNR threshold.</td>
</tr>
<tr>
<td># 65,66</td>
<td>DUTY CYCLE ABOVE SNR (percent) vs. DAY/Time-Of-Day (UT)</td>
</tr>
<tr>
<td></td>
<td>Comparing link Frequencies; 45 and 104 MHz.</td>
</tr>
<tr>
<td></td>
<td>Screening parameters; All Trails and All-Events including Sporadic E-layers, 19 dB SNR threshold.</td>
</tr>
<tr>
<td># 67-84</td>
<td>NORMAL DISTRIBUTION vs. DURATION</td>
</tr>
<tr>
<td></td>
<td>Comparing propagation modes; Underdense, Overdense, and All Trails, also sporadic-E and All-Events.</td>
</tr>
<tr>
<td></td>
<td>Screening parameters; RSL threshold -126, -116, -106 dBm, and Link frequencies 35, 45, 65, 85, 104, and 147 MHz.</td>
</tr>
<tr>
<td># 85-87</td>
<td>NORMAL DISTRIBUTION vs. DURATION</td>
</tr>
<tr>
<td></td>
<td>Comparing link Frequencies; 35, 45, 65, 85, 104, and 147 MHz.</td>
</tr>
<tr>
<td></td>
<td>Screening parameters; RSL threshold -126, -116, -106 dBm, for All Trails.</td>
</tr>
<tr>
<td># 88-93</td>
<td>AVERAGE TRAIL DURATION vs. RSL</td>
</tr>
<tr>
<td></td>
<td>Comparing propagation modes; Underdense, Overdense, and All Trails, also Sporadic E and All Events.</td>
</tr>
<tr>
<td></td>
<td>Screening parameters; Link frequencies 35, 45, 65, 85, 104, and 147 MHz. averaged over 24 hours.</td>
</tr>
</tbody>
</table>
Table 3. Outline of plot groups; continued.

PLOTS # 94,95
NORMAL DISTRIBUTION vs. DURATION
Comparing link Frequencies; 35, 45, 65, 85, 104, and 147 MHz.
Screening parameters; 24 hour average, 19 dB SNR threshold, for All-Trails and All-Events including Sporadic E-layers.

PLOTS # 96,97
AVERAGE TRAIL DURATION vs. SNR
Comparing link Frequencies; 35, 45, 65, 85, 104, and 147 MHz.
Screening parameters; All trails, 24 hour average.

PLOT # 98
NORMAL DISTRIBUTION, UNDERDENSE DECAY CONSTANTS
Comparing link Frequencies; 35, 45, 65, 85, 104, and 147 MHz.
24 hour average.

PLOT # 99
AVERAGE UNDERDENSE DECAY CONSTANT vs. Time-Of-Day (UT)
Comparing link Frequencies; 35, 45, 65, 85, 104, and 147 MHz.

PLOT # 100
NORMAL DISTRIBUTION, FADES/SEC
Comparing link Frequencies; 35, 45, 65, 85, 104, and 147 MHz.
Screening parameters; All trails, 24 hour average.

PLOTS # 101-106
NORMAL DISTRIBUTION, FADES/SEC
Comparing propagation modes; Underdense, Overdense, and All Trails, also Sporadic E and All Events.
Screening parameters; Link frequencies 35, 45, 65, 85, 104, and 147 MHz. averaged over 24 hours.

PLOT # 107
AVERAGE FADES/SEC. vs. Time-Of-Day (UT)
Comparing link Frequencies; 35, 45, 65, 85, 104, and 147 MHz.
All trails.

PLOT # 108
NORMAL DISTRIBUTION, FADE DURATIONS
Comparing link Frequencies; 35, 45, 65, 85, 104, and 147 MHz.
Screening parameters; All trails, 24 hour average.
Table 3. Outline of plot groups; continued.

PLOTS # 109-114
NORMAL DISTRIBUTION, FADE DURATIONS
Comparing propagation modes; Underdense, Overdense, and All Trails, also Sporadic E and All Events.
Screening parameters; Link frequencies 35, 45, 65, 85, 104, and 147 MHz. averaged over 24 hours.

PLOT # 115
LINK-AVAILABILITY/POWER vs. DAY/Time-Of-Day (UT)
Indicating transmitter power during valid, benign, data periods.
Comparing link Frequencies; 35, 45, 65, 85, 104, and 147 MHz.
Periods of extraordinary disturbance (PCA’s) are also blanked out.

PLOT # 116
NOISE-TEMPERATURE (Log of Kelvin Degrees) vs. DAY/Time-Of-Day (UT)
Comparing link Frequencies; 35, 45, 65, 85, 104, and 147 MHz.

PLOTS # 117-120
30 MHz RIOMETER DATA vs. DAY/Time-Of-Day
Two riometers are maintained at Thule AB. Direct riometer receiver outputs in volts, 117 and 119, show the diurnal variation in absorption throughout the month. Plots 118 and 120 display riometer absorption data in dB with the quiet day diurnal variation removed.

PLOTS # 121-123
3-AXIS MAGNETOMETER vs. DAY/Time-Of-Day. Data from a 3-axis fluxgate magnetometer at Thule AB. The X axis is aligned with magnetic-North pole.
References


Bibliography


GEOPHYSICS LAB METEOR SCATTER PROGRAM

ARRIVAL RATE (M/MIN) VS TOD(UT) NOVEMBER 1989

THULE

UNDERDENSE ○
OVERDENSE △
ALL TRAILS +

EXCEEDING -126.0 DBM RSL
FREQUENCY - 35 MHZ
POLARIZATION - HORIZONTAL
MAXIMUM DOWN TIME DUE TO SPORADIC-E = 240 SECONDS
BASED ON OBSERVED NOISE MEASUREMENTS - VERTICAL

EXCEEDING -126.0 DBM RSL
FREQUENCY - 45 MHZ
POLARIZATION - HORIZONTAL
MAXIMUM DOWN TIME DUE TO SPORADIC-E = 240 SECONDS
BASED ON OBSERVED NOISE MEASUREMENTS - VERTICAL
ARRIVAL RATE (M/MIN) VS TOD(UT) NOVEMBER 1989

THULE

UNDERDENSE ○
OVERDENSE △
ALL TRAILS +

EXCEEDING -126.0 DBM RSL
FREQUENCY = 65 MHZ
POLARIZATION = HORIZONTAL
MAXIMUM DOWN TIME DUE TO SPORADIC-E = 240 SECONDS
BASED ON OBSERVED NOISE MEASUREMENTS - VERTICAL

ARRIVAL RATE (M/MIN) VS TOD(UT) NOVEMBER 1989

UNDERDENSE ○
OVERDENSE △
ALL TRAILS +

EXCEEDING -126.0 DBM RSL
FREQUENCY = 85 MHZ
POLARIZATION = HORIZONTAL
MAXIMUM DOWN TIME DUE TO SPORADIC-E = 240 SECONDS
BASED ON OBSERVED NOISE MEASUREMENTS - VERTICAL

MENU=101,05-2
13-JUL-93
PLOT= 3.00

MENU=101,05-2
13-JUL-93
PLOT= 4.00
GEOPHYSICS LAB METEOR SCATTER PROGRAM

ARRIVAL RATE (M/MIN) VS TOD(UT) NOVEMBER 1989

THULE

UNDERDENSE ○
OVERDENSE △
ALL TRAILS +

EXCEEDING -116.0 DBM RSL
FREQUENCY - 35 MHZ
POLARIZATION - HORIZONTAL
MAXIMUM DOWN TIME DUE TO SPORADIC-E - 240 SECONDS
BASED ON OBSERVED NOISE MEASUREMENTS - VERTICAL

MENU=101.05-2
13-JUL-93
PLOT= 7.00

ARRIVAL RATE (M/MIN) VS TOD(UT) NOVEMBER 1989

UNDERDENSE ○
OVERDENSE △
ALL TRAILS +

EXCEEDING -116.0 DBM RSL
FREQUENCY - 45 MHZ
POLARIZATION - HORIZONTAL
MAXIMUM DOWN TIME DUE TO SPORADIC-E - 240 SECONDS
BASED ON OBSERVED NOISE MEASUREMENTS - VERTICAL

MENU=101.05-2
13-JUL-93
PLOT= 8.00
EXCEEDING -116.0 DBM RSL
FREQUENCY - 65 MHZ
POLARIZATION - HORIZONTAL
MAXIMUM DOWN TIME DUE TO SPORADIC-E = 240 SECONDS
BASED ON OBSERVED NOISE MEASUREMENTS - VERTICAL

EXCEEDING -116.0 DBM RSL
FREQUENCY - 85 MHZ
POLARIZATION - HORIZONTAL
MAXIMUM DOWN TIME DUE TO SPORADIC-E = 240 SECONDS
BASED ON OBSERVED NOISE MEASUREMENTS - VERTICAL
GEOPHYSICS LAB METEOR SCATTER PROGRAM

ARRIVAL RATE (M/MIN) VS TOD(UT) NOVEMBER 1989

THULE

UNDERDENSE ○
OVERDENSE △
ALL TRAILS +

EXCEEDING -116.0 DBM RSL
FREQUENCY - 104 MHZ
POLARIZATION - HORIZONTAL
MAXIMUM DOWN TIME DUE TO SPORADIC-E - 240 SECONDS
BASED ON OBSERVED NOISE MEASUREMENTS - VERTICAL

EXCEEDING -116.0 DBM RSL
FREQUENCY - 147 MHZ
POLARIZATION - HORIZONTAL
MAXIMUM DOWN TIME DUE TO SPORADIC-E - 240 SECONDS
BASED ON OBSERVED NOISE MEASUREMENTS - VERTICAL
GEOPHYSICS LAB METEOR SCATTER PROGRAM

ARRIVAL RATE (M/MIN) VS TOD(UT) NOVEMBER 1989

THULE

UNDERDENSE ○
OVERDENSE △
ALL TRAILS +

EXCEEDING -106.0 DBM RSL
FREQUENCY - 35 MHZ
POLARIZATION - HORIZONTAL
MAXIMUM DOWN TIME DUE TO SPORADIC-E = 240 SECONDS
BASED ON OBSERVED NOISE MEASUREMENTS - VERTICAL

ARRIVAL RATE (M/MIN) VS TOD(UT) NOVEMBER 1989

EXCEEDING -106.0 DBM RSL
FREQUENCY - 45 MHZ
POLARIZATION - HORIZONTAL
MAXIMUM DOWN TIME DUE TO SPORADIC-E = 240 SECONDS
BASED ON OBSERVED NOISE MEASUREMENTS - VERTICAL

MENU=101.05-2
13-JUL-93
PLOT= 13.00

MENU=101.05-2
13-JUL-93
PLOT= 14.00

32
EXCEEDING -106.0 DBM RSL
FREQUENCY - 65 MHZ
POLARIZATION - HORIZONTAL
MAXIMUM DOWN TIME DUE TO SPORADIC-E = 240 SECONDS
BASED ON OBSERVED NOISE MEASUREMENTS - VERTICAL

EXCEEDING -106.0 DBM RSL
FREQUENCY - 85 MHZ
POLARIZATION - HORIZONTAL
MAXIMUM DOWN TIME DUE TO SPORADIC-E = 240 SECONDS
BASED ON OBSERVED NOISE MEASUREMENTS - VERTICAL
GEOPHYSICS LAB METEOR SCATTER PROGRAM

ARRIVAL RATE (M/MIN) VS TOD(UT) NOVEMBER 1989

THULE

UNDERDENSE ○
OVERDENSE △
ALL TRAILS +

EXCEEDING -106.0 DBM RSL
FREQUENCY - 104 MHz
POLARIZATION - HORIZONTAL
MAXIMUM DOWN TIME DUE TO SPORADIC-E = 240 SECONDS
BASED ON OBSERVED NOISE MEASUREMENTS - VERTICAL

MENU=101,05-2
13-JUL-93
PLOT= 17.00

EXCEEDING -106.0 DBM RSL
FREQUENCY - 147 MHz
POLARIZATION - HORIZONTAL
MAXIMUM DOWN TIME DUE TO SPORADIC-E = 240 SECONDS
BASED ON OBSERVED NOISE MEASUREMENTS - VERTICAL

MENU=101,05-2
13-JUL-93
PLOT= 18.00

34
GEOPHYSICS LAB METEOR SCATTER PROGRAM

ARRIVAL RATE (M/MIN) VS THRESH DBM

THRESH DBM

THE TIME OF DAY IS 0 - 24 HOURS U.T.
FREQUENCY = 35 MHZ
POLARIZATION = HORIZONTAL
MAXIMUM DOWN TIME DUE TO SPORADIC-E = 240 SECONDS
BASED ON OBSERVED NOISE MEASUREMENTS - VERTICAL

100

95

10 -1 -2

-135-130-125-120-115-110-105-100 -95

THRESH DBM

THE TIME OF DAY IS 0 - 24 HOURS U.T.
FREQUENCY = 45 MHZ
POLARIZATION = HORIZONTAL
MAXIMUM DOWN TIME DUE TO SPORADIC-E = 240 SECONDS
BASED ON OBSERVED NOISE MEASUREMENTS - VERTICAL

100

95

10 -1 -2

-135-130-125-120-115-110-105-100 -95

THRESH DBM
GEOPHYSICS LAB METEOR SCATTER PROGRAM

ARRIVAL RATE (M/MIN) VS THRESH DBM NOVEMBER 1989

THULE

UNDERDENSE ○
OVERDENSE △
ALL TRAILS +

THE TIME OF DAY IS 0 - 24 HOURS U.T.
FREQUENCY - 65 MHZ
POLARIZATION - HORIZONTAL
MAXIMUM DOWN TIME DUE TO SPORADIC-E = 240 SECONDS
BASED ON OBSERVED NOISE MEASUREMENTS - VERTICAL

MENÜ=101.06-2
13-JUL-93
PL07= 21.00

ARRIVAL RATE (M/MIN) VS THRESH DBM NOVEMBER 1989

UNDERDENSE ○
OVERDENSE △
ALL TRAILS +

THE TIME OF DAY IS 0 - 24 HOURS U.T.
FREQUENCY - 85 MHZ
POLARIZATION - HORIZONTAL
MAXIMUM DOWN TIME DUE TO SPORADIC-E = 240 SECONDS
BASED ON OBSERVED NOISE MEASUREMENTS - VERTICAL

MENÜ=101.06-2
13-JUL-93
PL07= 22.00
GEOPHYSICS LAB METEOR SCATTER PROGRAM

ARRIVAL RATE (M/MIN) VS THRESH DBM NOVEMBER 1989

THULE

UNDERDENSE ○
OVERDENSE △
ALL TRAILS +

THE TIME OF DAY IS 0 - 24 HOURS U.T.
FREQUENCY - 104 MHZ
POLARIZATION - HORIZONTAL
MAXIMUM DOWN TIME DUE TO SPORADIC-E = 240 SECONDS
BASED ON OBSERVED NOISE MEASUREMENTS - VERTICAL

MENU=101.06-2
13-JUL-95
PLOT= 23.00

ARRIVAL RATE (M/MIN) VS THRESH DBM NOVEMBER 1989

UNDERDENSE ○
OVERDENSE △
ALL TRAILS +

THE TIME OF DAY IS 0 - 24 HOURS U.T.
FREQUENCY - 147 MHZ
POLARIZATION - HORIZONTAL
MAXIMUM DOWN TIME DUE TO SPORADIC-E = 240 SECONDS
BASED ON OBSERVED NOISE MEASUREMENTS - VERTICAL

MENU=101.06-2
13-JUL-95
PLOT= 24.00
GEOPHYSICS LAB METEOR SCATTER PROGRAM

ARRIVAL RATE (M/MIN) VS DAY.TOD

NOVEMBER 1989

THULE

101N ~ A ~ W ~ 145

104 MHZ

EXCEEDING -126.0 DBM RSL
TYPE OF METEOR TRAIL - UNDERDENSE AND OVERDENSE
POLARIZATION - HORIZONTAL
MAXIMUM DOWN TIME DUE TO SPORADIC-E = 240 SECONDS
BASED ON OBSERVED NOISE MEASUREMENTS - VERTICAL

10
1
0
-1
-2
1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31
DAY.TOD

EXCEEDING -116.0 DBM RSL
TYPE OF METEOR TRAIL - UNDERDENSE AND OVERDENSE
POLARIZATION - HORIZONTAL
MAXIMUM DOWN TIME DUE TO SPORADIC-E = 240 SECONDS
BASED ON OBSERVED NOISE MEASUREMENTS - VERTICAL

MEN U= 101.03-2
13-JUL-93
PLOT= 25.00

MEN U= 101.03-2
13-JUL-93
PLOT= 26.00

38
GEOPHYSICS LAB METEOR SCATTER PROGRAM

ARRIVAL RATE (M/MIN) VS DAY.TOD NOVEMBER 1989

THULE

45 MHZ △
104 MHZ ◊

EXCEEDING -106.0 DBM RSL
TYPE OF METEOR TRAIL - UNDERDENSE AND OVERDENSE
POLARIZATION - HORIZONTAL
MAXIMUM DOWN TIME DUE TO SPORADIC-E - 240 SECONDS
BASED ON OBSERVED NOISE MEASUREMENTS - VERTICAL

ARRIVAL RATE (M/MIN) VS TOD(UT) NOVEMBER 1989

EXCEEDING 19.0 DB SNR
TYPE OF METEOR TRAIL - UNDERDENSE AND OVERDENSE
EFFECTIVE SYSTEM BANDWIDTH - 100.0 HZ
POLARIZATION - HORIZONTAL
MAXIMUM DOWN TIME DUE TO SPORADIC-E - 240 SECONDS
BASED ON OBSERVED NOISE MEASUREMENTS - VERTICAL
GEOPHYSICS LAB METEOR SCATTER PROGRAM

ARRIVAL RATE (M/MIN) VS SNR (DB) NOVEMBER 1989

THULE

35 MHz ○
45 MHz △
65 MHz +
85 MHz ×
104 MHz ○
147 MHz ▲

THE TIME OF DAY IS 0 - 24 HOURS U.T.
TYPE OF METEOR TRAIL - UNDERDENSE AND OVERDENSE
EFFECTIVE SYSTEM BANDWIDTH - 100.0 Hz
POLARIZATION = HORIZONTAL
MAXIMUM DOWN TIME DUE TO SPORADIC-E - 240 SECONDS
BASED ON OBSERVED NOISE MEASUREMENTS - VERTICAL

EXCEEDING 19.0 DB SNR
TYPE OF METEOR TRAIL - UNDERDENSE AND OVERDENSE
EFFECTIVE SYSTEM BANDWIDTH - 100.0 Hz
POLARIZATION = HORIZONTAL
MAXIMUM DOWN TIME DUE TO SPORADIC-E - 240 SECONDS
BASED ON OBSERVED NOISE MEASUREMENTS - VERTICAL
The time of day is 0 - 24 hours U.T.
Frequency = 35 MHz
Polarization = Horizontal
Based on observed noise measurements - Vertical

The time of day is 0 - 24 hours U.T.
Frequency = 45 MHz
Polarization = Horizontal
Based on observed noise measurements - Vertical
THE TIME OF DAY IS 0 - 24 HOURS U.T.
FREQUENCY = 65 MHZ
POLARIZATION = HORIZONTAL
BASED ON OBSERVED NOISE MEASUREMENTS - VERTICAL
GEOPHYSICS LAB METEOR SCATTER PROGRAM

DUTY CYCLE ABOVE RSL (%) VS THRESH DBM NOVEMBER 1989

THULE

UNDERDENSE ○
OVERDENSE △
SPORADIC-E +
ALL-TRAILS ×
ALL-EVENTS ♦

THE TIME OF DAY IS 0 - 24 HOURS U.T.
FREQUENCY = 104 MHZ
POLARIZATION = HORIZONTAL
BASED ON OBSERVED NOISE MEASUREMENTS - VERTICAL

MENU=103.06-2
13-JUL-93
PLOT= 35.00

THE TIME OF DAY IS 0 - 24 HOURS U.T.
FREQUENCY = 147 MHZ
POLARIZATION = HORIZONTAL
BASED ON OBSERVED NOISE MEASUREMENTS - VERTICAL

MENU=103.06-2
13-JUL-93
PLOT= 36.00
THRESHOLD - -126.0 dBm RSL
FREQUENCY - 35 MHz
POLARIZATION - HORIZONTAL
BASED ON OBSERVED NOISE MEASUREMENTS - VERTICAL

THRESHOLD - -126.0 dBm RSL
FREQUENCY - 45 MHz
POLARIZATION - HORIZONTAL
BASED ON OBSERVED NOISE MEASUREMENTS - VERTICAL
GEOPHYSICS LAB METEOR SCATTER PROGRAM

DUTY CYCLE ABOVE RSL (%) VS TOD(UT) NOVEMBER 1989

THULE

UNDERDENSE ○
OVERDENSE △
SPORADIC-E +
ALL-TRAILS X
ALL-EVENTS ○

THRESHOLD = -126.0 DBM RSL
FREQUENCY = 65 MHZ
POLARIZATION = HORIZONTAL
BASED ON OBSERVED NOISE MEASUREMENTS - VERTICAL

THRESHOLD = -126.0 DBM RSL
FREQUENCY = 85 MHZ
POLARIZATION = HORIZONTAL
BASED ON OBSERVED NOISE MEASUREMENTS - VERTICAL
GEOPHYSICS LAB METEOR SCATTER PROGRAM

THULE

UNDERDENSE ○
OVERDENSE △
SPORADIC-E +
ALL-TRAITS X
ALL-EVENTS ♦

THRESHOLD - -126.0 DBM RSL
FREQUENCY - 104 MHZ
POLARIZATION - HORIZONTAL
BASED ON OBSERVED NOISE MEASUREMENTS - VERTICAL

MENU = 103,07-2
13-JUL-93
PLOT = 41.00

THRESHOLD - -126.0 DBM RSL
FREQUENCY - 147 MHZ
POLARIZATION - HORIZONTAL
BASED ON OBSERVED NOISE MEASUREMENTS - VERTICAL

MENU = 103,07-2
13-JUL-93
PLOT = 42.00
GEOPHYSICS LAB METEOR SCATTER PROGRAM

DUTY CYCLE ABOVE RSL (%) VS TOD(UT) NOVEMBER 1989

THRESHOLD - -116.0 DBM RSL
FREQUENCY - 35 MHZ
POLARIZATION - HORIZONTAL
BASED ON OBSERVED NOISE MEASUREMENTS - VERTICAL

UNDERDENSE ○
OVERDENSE △
SPORADIC-E +
ALL-TRAILS X
ALL-EVENTS ♦

THRESHOLD - -116.0 DBM RSL
FREQUENCY - 45 MHZ
POLARIZATION - HORIZONTAL
BASED ON OBSERVED NOISE MEASUREMENTS - VERTICAL

MENU=103.07-2
13-JUL-93
PLOT= 43.00

MENU=103.07-2
13-JUL-93
PLOT= 44.00

47
GEOPHYSICS LAB METEOR SCATTER PROGRAM

DUTY CYCLE ABOVE RSL (%) VS TOD(UT) NOVEMBER 1989

THULE

UNDERDENSE ○
OVERDENSE △
SPORADIC-E +
ALL-TRAILS ×
ALL-EVENTS ♦

Threshold - -116.0 DBM RSL
Frequency - 65 MHz
Polarization - Horizontal
Based on observed noise measurements - Vertical

13-JUL-93
PLOT* 45.00

MENU*103.07-2

DUTY CYCLE ABOVE RSL (%) VS TOD(UT) NOVEMBER 1989

UNDERDENSE ○
OVERDENSE △
SPORADIC-E +
ALL-TRAILS ×
ALL-EVENTS ♦

Threshold - -116.0 DBM RSL
Frequency - 85 MHz
Polarization - Horizontal
Based on observed noise measurements - Vertical

13-JUL-93
PLOT* 45.00

MENU*103.07-2
GEOPHYSICS LAB METEOR SCATTER PROGRAM

THULE

UNDERDENSE ○
OVERDENSE △
SPORADIC-E +
ALL-TRAILS ×
ALL-EVENTS ◊

THRESHOLD - -116.0 DBM RSL
FREQUENCY - 104 MHZ
POLARIZATION - HORIZONTAL
BASED ON OBSERVED NOISE MEASUREMENTS - VERTICAL

DUTY CYCLE ABOVE RSL (%) VS TOD(UT) NOVEMBER 1989

---

THRESHOLD - -116.0 DBM RSL
FREQUENCY - 147 MHZ
POLARIZATION - HORIZONTAL
BASED ON OBSERVED NOISE MEASUREMENTS - VERTICAL

---
GEOPHYSICS LAB METEOR SCATTER PROGRAM

DUTY CYCLE ABOVE RSL (%) VS TOD(UT) NOVEMBER 1989

THRESHOLD = -106.0 DBM RSL
FREQUENCY = 35 MHZ
POLARIZATION = HORIZONTAL
BASED ON OBSERVED NOISE MEASUREMENTS - VERTICAL

MENU=103.07-2
13-JUL-93
PLOT= 49.00

DUTY CYCLE ABOVE RSL (%) VS TOD(UT) NOVEMBER 1989

THRESHOLD = -106.0 DBM RSL
FREQUENCY = 45 MHZ
POLARIZATION = HORIZONTAL
BASED ON OBSERVED NOISE MEASUREMENTS - VERTICAL

MENU=103.07-2
13-JUL-93
PLOT= 50.00
GEOPHYSICS LAB METEOR SCATTER PROGRAM

DUTY CYCLE ABOVE RSL (%) VS TOD(UT) NOVEMBER 1989

THULE

UNDERDENSE ○
OVERDENSE △
SPORADIC-E +
ALL-TRAILS X
ALL-EVENTS ◆

THRESHOLD - -106.0 DBM RSL
FREQUENCY - 65 MHZ
POLARIZATION - HORIZONTAL
BASED ON OBSERVED NOISE MEASUREMENTS - VERTICAL

MENU=103.07-2
13-JUL-93
PLOT= 51.00

DUTY CYCLE ABOVE RSL (%) VS TOD(UT) NOVEMBER 1989

UNDERDENSE ○
OVERDENSE △
SPORADIC-E +
ALL-TRAILS X
ALL-EVENTS ◆

THRESHOLD - -106.0 DBM RSL
FREQUENCY - 85 MHZ
POLARIZATION - HORIZONTAL
BASED ON OBSERVED NOISE MEASUREMENTS - VERTICAL

MENU=103.07-2
13-JUL-93
PLOT= 52.00

51
DUTY CYCLE ABOVE RSL (%) VS TOD(UT) NOVEMBER 1989

THULE

UNDERDENSE ○
OVERDENSE △
SPORADIC-E +
ALL-TRAILS X
ALL-EVENTS ♦

THRESHOLD - -106.0 DBM RSL
FREQUENCY - 104 MHZ
POLARIZATION - HORIZONTAL
BASED ON OBSERVED NOISE MEASUREMENTS - VERTICAL

DUTY CYCLE ABOVE RSL (%) VS TOD(UT) NOVEMBER 1989

UNDERDENSE ○
OVERDENSE △
SPORADIC-E +
ALL-TRAILS X
ALL-EVENTS ♦

THRESHOLD - -106.0 DBM RSL
FREQUENCY - 147 MHZ
POLARIZATION - HORIZONTAL
BASED ON OBSERVED NOISE MEASUREMENTS - VERTICAL

MENU#103,07-2
13-JUL-93
PLOT= 53.00

MENU#103,07-2
13-JUL-93
PLOT= 54.00
GEOPHYSICS LAB METEOR SCATTER PROGRAM

DUTY CYCLE ABOVE RSL (%) VS DAY.TOD

NOVEMBER 1989

THULE

45 MHZ △
104 MHZ ○

THRESHOLD - -126.0 DBM RSL
THE EVENT CLASS IS UNDERDENSE AND OVERDENSE TRAILS
POLARIZATION - HORIZONTAL
BASED ON OBSERVED NOISE MEASUREMENTS - VERTICAL

MENU=103.09-2
13-JUL-93
PLOT= 55.00

DUTY CYCLE ABOVE RSL (%) VS DAY.TOD

NOVEMBER 1989

45 MHZ △
104 MHZ ○

THRESHOLD - -116.0 DBM RSL
THE EVENT CLASS IS UNDERDENSE AND OVERDENSE TRAILS
POLARIZATION - HORIZONTAL
BASED ON OBSERVED NOISE MEASUREMENTS - VERTICAL

MENU=103.09-2
13-JUL-93
PLOT= 56.00
GEOPHYSICS LAB METEOR SCATTER PROGRAM

DUTY CYCLE ABOVE RSL (%) VS DAY.TOD NOVEMBER 1989

THULE

45 MHZ  △
104 MHZ  ○

THRESHOLD = -106.0 DBM RSL
THE EVENT CLASS IS UNDERDENSE AND OVERDENSE TRAILS
POLARIZATION = HORIZONTAL
BASED ON OBSERVED NOISE MEASUREMENTS - VERTICAL

DUTY CYCLE ABOVE RSL (%) VS DAY.TOD NOVEMBER 1989

THRESHOLD = -126.0 DBM RSL
THE EVENT CLASS IS SPORADIC-E
POLARIZATION = HORIZONTAL
BASED ON OBSERVED NOISE MEASUREMENTS - VERTICAL

MENU=103,09-2
13-JUL-93
PLOT= 57.00

MENU=103,09-2
13-JUL-93
PLOT= 58.00
GEOPHYSICS LAB METEOR SCATTER PROGRAM

2 DUTY CYCLE ABOVE RSL (%) VS DAY.TOD NOVEMBER 1989

THULE

45 MHZ ▲
104 MHZ ◆

THRESHOLD - -116.0 DBM RSL
THE EVENT CLASS IS SPORADIC-E
POLARIZATION - HORIZONTAL
BASED ON OBSERVED NOISE MEASUREMENTS - VERTICAL

MENU 103.09-2
13-JUL-93
PLOT 59.00

DUTY CYCLE ABOVE RSL (%) VS DAY.TOD NOVEMBER 1989

THRESHOLD - -106.0 DBM RSL
THE EVENT CLASS IS SPORADIC-E
POLARIZATION - HORIZONTAL
BASED ON OBSERVED NOISE MEASUREMENTS - VERTICAL

MENU 103.09-2
13-JUL-93
PLOT 60.00

55
THE TIME OF DAY IS 0 - 24 HOURS U.T.
THE EVENT CLASS IS SPORADIC-E AND METEOR TRAILS
EFFECTIVE SYSTEM BANDWIDTH - 100 HZ
POLARIZATION - HORIZONTAL
BASED ON OBSERVED NOISE MEASUREMENTS - VERTICAL
SIGNAL-TO-NOISE RATIO - 19.0 DB
THE EVENT CLASS IS UNDERDENSE AND OVERDENSE TRAILS
EFFECTIVE SYSTEM BANDWIDTH - 100.0 HZ
POLARIZATION - HORIZONTAL
BASED ON OBSERVED NOISE MEASUREMENTS - VERTICAL
GEOPHYSICS LAB METEOR SCATTER PROGRAM

DUTY CYCLE ABOVE SNR (%) VS DAY.TOD NOVEMBER 1989

THULE

45 MHZ △
104 MHZ ◊

SIGNAL-TO-NOISE RATIO - 19.0 DB
THE EVENT CLASS IS UNDERDENSE AND OVERDENSE TRAILS
EFFECTIVE SYSTEM BANDWIDTH - 100.HZ
POLARIZATION - HORIZONTAL
BASED ON OBSERVED NOISE MEASUREMENTS - VERTICAL

MENU=104,09-2
13-JUL-93
PLOT= 65.00

SIGNAL-TO-NOISE RATIO - 19.0 DB
THE EVENT CLASS IS SPORADIC-E AND METEOR TRAILS
EFFECTIVE SYSTEM BANDWIDTH - 100.HZ
POLARIZATION - HORIZONTAL
BASED ON OBSERVED NOISE MEASUREMENTS - VERTICAL

MENU=104,09-2
13-JUL-93
PLOT= 66.00

58
GEOPHYSICS LAB METEOR SCATTER PROGRAM

NORM. DISTRIBUTION VS DURATION NOVEMBER 1989

THULE

UNDERDENSE ○
OVERDENSE △
SPORADIC-E +
ALL-TRAILS X
ALL-EVENTS ♦

EXCEEDING -126.0 DBM RSL
THE TIME OF DAY IS 0 - 24 HOURS U.T.
FREQUENCY = 35 MHZ
BASED ON OBSERVED NOISE MEASUREMENTS - VERTICAL
NORMALIZING FACTORS:
UNDER - 4855. OVER - 5039. SPOR-E - 12957.
TRAILS - 9894. EVENTS - 22851.

NORM. DISTRIBUTION VS DURATION NOVEMBER 1989

UNDERDENSE ○
OVERDENSE △
SPORADIC-E +
ALL-TRAILS X
ALL-EVENTS ♦

EXCEEDING -126.0 DBM RSL
THE TIME OF DAY IS 0 - 24 HOURS U.T.
FREQUENCY = 45 MHZ
BASED ON OBSERVED NOISE MEASUREMENTS - VERTICAL
NORMALIZING FACTORS:
UNDER - 23072. OVER - 21209. SPOR-E - 4802.
TRAILS - 44281. EVENTS - 49083.

MENU=106.02-4
13-JUL-93
PLOT# 67.00

MENU=106.02-4
13-JUL-93
PLOT# 68.00
GEOPHYSICS LAB METEOR SCATTER PROGRAM

November 1989

THULE

UNDERDENSE ○
OVERDENSE △
SPORADIC-E +
ALL-TRAILS X
ALL-EVENTS ♦

EXCEEDING -126.0 DBM RSL
THE TIME OF DAY IS 0 - 24 HOURS U.T.
FREQUENCY - 65 MHZ
BASED ON OBSERVED NOISE MEASUREMENTS - VERTICAL
NORMALIZING FACTORS:
UNDER - 7365. OVER - 3418. SPOR-E - 1051.
TRAILS - 10783. EVENTS - 11834.

EXCEEDING -126.0 DBM RSL
THE TIME OF DAY IS 0 - 24 HOURS U.T.
FREQUENCY - 85 MHZ
BASED ON OBSERVED NOISE MEASUREMENTS - VERTICAL
NORMALIZING FACTORS:
UNDER - 4607. OVER - 1911. SPOR-E - 1321.
TRAILS - 6518. EVENTS - 7839.
GEOPHYSICS LAB METEOR SCATTER PROGRAM

THULE

NORM. DISTRIBUTION VS DURATION NOVEMBER 1989

EXCEEDING -126.0 DBM RSL
THE TIME OF DAY IS 0 - 24 HOURS U.T.
FREQUENCY - 104 MHZ
BASED ON OBSERVED NOISE MEASUREMENTS - VERTICAL
NORMALIZING FACTORS:
UNDER - 4823. OVER - 1931. SPOR-E - 128.
TRAILS - 6754. EVENTS - 6882.

EXCEEDING -126.0 DBM RSL
THE TIME OF DAY IS 0 - 24 HOURS U.T.
FREQUENCY - 147 MHZ
BASED ON OBSERVED NOISE MEASUREMENTS - VERTICAL
NORMALIZING FACTORS:
UNDER - 1371. OVER - 461. SPOR-E - 0.
TRAILS - 1832. EVENTS - 1832.
GEOPHYSICS LAB METEOR SCATTER PROGRAM

NOVEMBER 1989

THULE

UNDERDENSE ○
OVERDENSE △
SPORADIC-E ++
ALL-TRAILS X
ALL-EVENTS ♦

EXCEEDING -116.0 DBM RSL
THE TIME OF DAY IS 0 - 24 HOURS U.T.
FREQUENCY = 35 MHZ
BASED ON OBSERVED NOISE MEASUREMENTS - VERTICAL
NORMALIZING FACTORS:
UNDER - 1522. OVER - 2788. SPOR-E - 6907.
TRAILS - 4310. EVENTS - 11217.

MENU 106.02-4
13-JUL-93
PLOT# 73.00

EXCEEDING -116.0 DBM RSL
THE TIME OF DAY IS 0 - 24 HOURS U.T.
FREQUENCY = 45 MHZ
BASED ON OBSERVED NOISE MEASUREMENTS - VERTICAL
NORMALIZING FACTORS:
UNDER - 7606. OVER - 10064. SPOR-E - 3617.
TRAILS - 17870. EVENTS - 21487.

MENU 106.02-4
13-JUL-93
PLOT# 74.00
Geophysics Lab Meteor Scatter Program

November 1989

Thule

Underdense (○)
Overdense (△)
Sporadic-E (+)
All-trails (×)
All-events (♦)

Exceeding -116.0 dBm RSL
The time of day is 0 - 24 hours U.T.
Frequency - 65 MHz
Based on observed noise measurements - vertical
Normalizing factors:
Trails - 4198. Events - 5292.

Exceeding -116.0 dBm RSL
The time of day is 0 - 24 hours U.T.
Frequency - 85 MHz
Based on observed noise measurements - vertical
Normalizing factors:
Trails - 2264. Events - 3449.
GEOPHYSICS LAB METEOR SCATTER PROGRAM

NORM. DISTRIBUTION VS DURATION NOVEMBER 1989

THULE

UNDERDENSE ⊙
OVERDENSE △
SPORADIC-E +
ALL-TRAIRS X
ALL-EVENTS ◊

EXCEEDING -116.0 DBM RSL
THE TIME OF DAY IS 0 - 24 HOURS U.T.
FREQUENCY - 104 MHz
BASED ON OBSERVED NOISE MEASUREMENTS - VERTICAL
NORMALIZING FACTORS:
UNDER - 1314. OVER - 1081. SPOR-E - 96.
TRAIRS - 2395. EVENTS - 2491.

MENU=106,02-4
13-JUL-93
PLOT= 77.00

EXCEEDING -116.0 DBM RSL
THE TIME OF DAY IS 0 - 24 HOURS U.T.
FREQUENCY - 147 MHz
BASED ON OBSERVED NOISE MEASUREMENTS - VERTICAL
NORMALIZING FACTORS:
UNDER - 376. OVER - 241. SPOR-E - 0.
TRAIRS - 617. EVENTS - 617.

MENU=106,02-4
13-JUL-93
PLOT= 78.00

64
GEOPHYSICS LAB METEOR SCATTER PROGRAM

NORM. DISTRIBUTION VS DURATION NOVEMBER 1989

THULE

UNDERDENSE ○
OVERDENSE △
SPORADIC-E +
ALL-TRAILS X
ALL-EVENTS ◇

DURATION

EXCEEDING -106.0 DBM RSL
THE TIME OF DAY IS 0 - 24 HOURS U.T.
FREQUENCY - 35 MHZ
BASED ON OBSERVED NOISE MEASUREMENTS - VERTICAL
NORMALIZING FACTORS:
UNDER - 270. OVER - 635. SPOR-E - 1491.
TRAILS - 905. EVENTS - 2396.

EXCEEDING -106.0 DBM RSL
THE TIME OF DAY IS 0 - 24 HOURS U.T.
FREQUENCY - 45 MHZ
BASED ON OBSERVED NOISE MEASUREMENTS - VERTICAL
NORMALIZING FACTORS:
UNDER - 1492. OVER - 2867. SPOR-E - 2139.
TRAILS - 4359. EVENTS - 6498.
GEOPHYSICS LAB METEOR SCATTER PROGRAM

NORM. DISTRIBUTION VS DURATION NOVEMBER 1989

THULE

UNDERDENSE ○ OVERDENSE △ SPORADIC-E + ALL-TRAILS X ALL-EVENTS ◇

EXCEEDING -106.0 DBM RSL
THE TIME OF DAY IS 0 - 24 HOURS U.T.
FREQUENCY - 65 MHZ
BASED ON OBSERVED NOISE MEASUREMENTS - VERTICAL
NORMALIZING FACTORS:
UNDER - 311. OVER - 586. SPOR-E - 696.
TRAILS - 897. EVENTS - 1593.

MENU=108.02-4 13-JUL-93 PLOT= 81.00

EXCEEDING -106.0 DBM RSL
THE TIME OF DAY IS 0 - 24 HOURS U.T.
FREQUENCY - 85 MHZ
BASED ON OBSERVED NOISE MEASUREMENTS - VERTICAL
NORMALIZING FACTORS:
UNDER - 136. OVER - 281. SPOR-E - 938.
TRAILS - 417. EVENTS - 1355.

MENU=108.02-4 13-JUL-93 PLOT= 82.00

66
EXCEEDING -106.0 DBM RSL
THE TIME OF DAY IS 0 - 24 HOURS U.T.
FREQUENCY - 104 MHZ
BASED ON OBSERVED NOISE MEASUREMENTS - VERTICAL
NORMALIZING FACTORS:
UNDER - 143. OVER - 305. SPOR-E - 93.
TRAILS - 448. EVENTS - 541.

EXCEEDING -106.0 DBM RSL
THE TIME OF DAY IS 0 - 24 HOURS U.T.
FREQUENCY - 147 MHZ
BASED ON OBSERVED NOISE MEASUREMENTS - VERTICAL
NORMALIZING FACTORS:
UNDER - 31. OVER - 79. SPOR-E - 0.
TRAILS - 110. EVENTS - 110.
GEOPHYSICS LAB METEOR SCATTER PROGRAM

NORM. DISTRIBUTION VS DURATION NOVEMBER 1989

THULE

35 MHZ ⭑ 45 MHZ △ 65 MHZ + 85 MHZ X 104 MHZ ◇ 147 MHZ ✿

EXCEEDING -126.0 DBM RSL
THE TIME OF DAY IS 0 - 24 HOURS U.T.
THE EVENT CLASS IS UNDERDENSE AND OVERDENSE TRAILS
BASED ON OBSERVED NOISE MEASUREMENTS - VERTICAL
NORMALIZING FACTORS:
35MHZ - 9894. 45MHZ - 44281. 65MHZ - 10783.
85MHZ - 6518. 104MHZ - 6754. 147MHZ - 1832.

EXCEEDING -116.0 DBM RSL
THE TIME OF DAY IS 0 - 24 HOURS U.T.
THE EVENT CLASS IS UNDERDENSE AND OVERDENSE TRAILS
BASED ON OBSERVED NOISE MEASUREMENTS - VERTICAL
NORMALIZING FACTORS:
35MHZ - 4310. 45MHZ - 17870. 65MHZ - 4198.
85MHZ - 2264. 104MHZ - 2395. 147MHZ - 617.

MENU=106.01-4 13-JUL-93
PLOT=86.00

68
GEOPHYSICS LAB METEOR SCATTER PROGRAM

NORM. DISTRIBUTION VS DURATION NOVEMBER 1989

THULE

35 MHZ ○
45 MHZ △
65 MHZ ＋
85 MHZ ×
104 MHZ ◇
147 MHZ ▲

EXCEEDING -106.0 DBM RSL
THE TIME OF DAY IS 0 - 24 HOURS U.T.
THE EVENT CLASS IS UNDERDENSE AND OVERDENSE TRAILS
BASED ON OBSERVED NOISE MEASUREMENTS - VERTICAL
NORMALIZING FACTORS:
35MHZ - 905. 45MHZ - 4359. 65MHZ - 897.
85MHZ - 417. 104MHZ - 448. 147MHZ - 110.

AVER. DURATION (SEC.) VS RSL NOVEMBER 1989

UNDERDENSE ○
OVERDENSE △
SPORADIC-E ＋
ALL-TRAITS X
ALL-EVENTS ◇

THE TIME OF DAY IS 0 - 24 HOURS U.T.
FREQUENCY - 35 MHZ
BASED ON OBSERVED NOISE MEASUREMENTS - VERTICAL
GEOPHYSICS LAB METEOR SCATTER PROGRAM

AVER. DURATION (SEC.) VS RSL NOVEMBER 1989

THULE

UNDERDENSE ○
OVERDENSE △
SPORADIC-E +
ALL-TRAILS ×
ALL-EVENTS ♦

THE TIME OF DAY IS 0 - 24 HOURS U.T.
FREQUENCY = 45 MHZ
BASED ON OBSERVED NOISE MEASUREMENTS - VERTICAL

MENU=106.06-1
13-JUL-93
PLOT= 89.00

AVER. DURATION (SEC.) VS RSL NOVEMBER 1989

UNDERDENSE ○
OVERDENSE △
SPORADIC-E +
ALL-TRAILS ×
ALL-EVENTS ♦

THE TIME OF DAY IS 0 - 24 HOURS U.T.
FREQUENCY = 65 MHZ
BASED ON OBSERVED NOISE MEASUREMENTS - VERTICAL

MENU=106.06-1
13-JUL-93
PLOT= 90.00
GEOPHYSICS LAB METEOR SCATTER PROGRAM

THE TIME OF DAY IS 0 - 24 HOURS U.T.
FREQUENCY - 85 MHZ
BASED ON OBSERVED NOISE MEASUREMENTS - VERTICAL

THE TIME OF DAY IS 0 - 24 HOURS U.T.
FREQUENCY - 104 MHZ
BASED ON OBSERVED NOISE MEASUREMENTS - VERTICAL
GEOPHYSICS LAB METEOR SCATTER PROGRAM

THULE

UNDERDENSE ☯
OVERDENSE △
SPORADIC-E +
ALL-TRAILS X
ALL-EVENTS ◊

THE TIME OF DAY IS 0 - 24 HOURS U.T.
FREQUENCY = 147 MHZ
BASED ON OBSERVED NOISE MEASUREMENTS - VERTICAL

EXCEEDING 19.0 DB SNR
THE TIME OF DAY IS 0 - 24 HOURS U.T.
THE EVENT CLASS IS UNDERDENSE AND OVERDENSE TRAILS
EFFECTIVE SYSTEM BANDWIDTH = 100 HZ
BASED ON OBSERVED NOISE MEASUREMENTS - VERTICAL
NORMALIZING FACTORS:
35 MHZ = 7783. 45 MHZ = 36566. 65 MHZ = 10537.
85 MHZ = 7538. 104 MHZ = 8280. 147 MHZ = 2296.
EXCEEDING 19.0 DB SNR
THE TIME OF DAY IS 0 - 24 HOURS U.T.
THE EVENT CLASS IS SPORADIC-E AND METEOR TRAILS
EFFECTIVE SYSTEM BANDWIDTH - 100.HZ
BASED ON OBSERVED NOISE MEASUREMENTS - VERTICAL
NORMALIZING FACTORS:
35 MHZ - 18205.
45 MHZ - 41514.
65 MHZ - 11578.
85 MHZ - 8762.
104 MHZ - 8397.
147 MHZ - 2296.
13-JUL-93

THE TIME OF DAY IS 0 - 24 HOURS U.T.
THE EVENT CLASS IS UNDERDENSE AND OVERDENSE TRAILS
EFFECTIVE SYSTEM BANDWIDTH - 100.HZ
BASED ON OBSERVED NOISE MEASUREMENTS - VERTICAL

73
GEOPHYSICS LAB METEOR SCATTER PROGRAM

AVER. DURATION (SEC.) VS SNR (DB) NOVEMBER 1989

THULE

35 MHZ ○
45 MHZ △
65 MHZ +
85 MHZ ×
104 MHZ ◊
147 MHZ ▲

0 5 10 15 20 25 30 35 40
SNR (DB)

0 10 20 30 40

THE TIME OF DAY IS 0 - 24 HOURS U.T.
THE EVENT CLASS IS SPORADIC-E AND METEOR TRAILS
EFFECTIVE SYSTEM BANDWIDTH - 100.HZ
BASED ON OBSERVED NOISE MEASUREMENTS - VERTICAL

NORMALIZED DISTRIBUTION OF UNDERDENSE METEOR DECAY CONSTANTS

35 MHZ ○
45 MHZ △
65 MHZ +
85 MHZ ×
104 MHZ ◊
147 MHZ ▲

0.0 0.5 1.0 1.5 2.0 2.5 3.0
TIME (SEC)

NOVEMBER 1989
THE TIME OF DAY IS 0 : 24 HOURS U.T.
BASED ON OBSERVED NOISE MEASUREMENTS - VERTICAL
NORMALIZING FACTORS:
35 MHZ : 2227. 45 MHZ : 16079. 65 MHZ : 8333.
GEOPHYSICS LAB METEOR SCATTER PROGRAM

AVERAGE UNDERDENSE TIME CONSTANT VS TIME FOR NOVEMBER 1989

THULE

35 MHZ ○
45 MHZ △
65 MHZ +
85 MHZ ×
104 MHZ ⊙
147 MHZ ▲

BASED ON OBSERVED NOISE MEASUREMENTS - VERTICAL
THE 24 HOUR AVERAGE TIME CONSTANTS ARE
0.265 0.192 0.110 0.084 0.065 0.047

NORMALIZED DISTRIBUTION OF FADES/SECOND FOR NOVEMBER 1989

THE TIME OF DAY IS 0:24 HOURS U.T.
THE EVENT CLASS IS UNDERDENSE AND OVERDENSE TRAILS
NORMALIZING FACTORS:
35 MHZ : 2532. 45 MHZ : 14393. 65 MHZ : 2986.
THE TIME OF DAY IS 0:24 HOURS U.T.
FREQUENCY = 35 MHz
NORMALIZING FACTORS:
TRAILS: 2532. EVENTS: 3146.

THE TIME OF DAY IS 0:24 HOURS U.T.
FREQUENCY = 45 MHz
NORMALIZING FACTORS:
TRAILS: 14393. EVENTS: 14778.
NORMALIZED DISTRIBUTION OF FADES/SECOND FOR NOVEMBER 1989

THULE

UNDERDENSE ○ OVERDENSE △ SPORADIC-E + ALL TRAILS X ALL EVENTS ♦

FADE/SEC

THE TIME OF DAY IS 0:24 HOURS U.T.
FREQUENCY - 65 MHZ
NORMALIZING FACTORS:
TRAILS : 2986. EVENTS : 2994.

MENU=109.02-4
13-JUL-93
PLOT= 103.00

NORMALIZED DISTRIBUTION OF FADES/SECOND FOR NOVEMBER 1989

UNDERDENSE ○ OVERDENSE △ SPORADIC-E + ALL TRAILS X ALL EVENTS ♦

FADE/SEC

THE TIME OF DAY IS 0:24 HOURS U.T.
FREQUENCY - 85 MHZ
NORMALIZING FACTORS:
TRAILS : 1627. EVENTS : 1639.

MENU=109.02-4
13-JUL-93
PLOT= 104.00
NORMALIZED DISTRIBUTION OF FADES/SECOND FOR NOVEMBER 1989

THULE

UNDERDENSE ⊙
OVERDENSE △
SPORADIC-E +
ALL TRAILS ×
ALL EVENTS ◊

THE TIME OF DAY IS 0:24 HOURS U.T.

FREQUENCY = 104 MHZ
NORMALIZING FACTORS:
TRAILS: 1101. EVENTS: 1102.

MENU=109.02-4
13-JUL-93
PLOT= 105.00

NORMALIZED DISTRIBUTION OF FADES/SECOND FOR NOVEMBER 1989

THE TIME OF DAY IS 0:24 HOURS U.T.

FREQUENCY = 147 MHZ
NORMALIZING FACTORS:
UNDER: 95. OVER: 90. SPOR-E: 1.

MENU=109.02-4
13-JUL-93
PLOT= 106.00
AVERAGE FADES/SECOND VS TIME FOR NOVEMBER 1989

THULE

35 MHZ
45 MHZ
65 MHZ
85 MHZ
104 MHZ
147 MHZ

THE EVENT CLASS IS UNDERDENSE AND OVERDENSE TRAILS

THE 24 HOUR FADES/SECOND AVERAGES ARE:
5.400 5.356 4.975 5.008 4.744 4.512

NORMALIZED DISTRIBUTION OF FADE DURATIONS FOR NOVEMBER 1989

THE TIME OF DAY IS 0: 24 HOURS U.T.

THE EVENT CLASS IS UNDERDENSE AND OVERDENSE TRAILS

NORMALIZING FACTORS:
35 MHZ: 12300. 45 MHZ: 62151. 65 MHZ: 10620.
85 MHZ: 5813. 104 MHZ: 3914. 147 MHZ: 791.
NORMALIZED DISTRIBUTION OF FADE DURATIONS FOR NOVEMBER 1989

THE TIME OF DAY IS 0:24 HOURS U.T.
FREQUENCY = 35 MHZ
NORMALIZING FACTORS:
TRAILS : 12300. EVENTS : 60941.

NORMALIZED DISTRIBUTION OF FADE DURATIONS FOR NOVEMBER 1989

THE TIME OF DAY IS 0:24 HOURS U.T.
FREQUENCY = 45 MHZ
NORMALIZING FACTORS:
TRAILS : 62151. EVENTS : 114405.
GEOPHYSICS LAB METEOR SCATTER PROGRAM

NORMALIZED DISTRIBUTION OF FADE DURATIONS FOR NOVEMBER 1989

THULE

THE TIME OF DAY IS 0:24 HOURS U.T.
FREQUENCY = 65 MHZ
NORMALIZING FACTORS:
UNDER : 4382. OVER : 6238. SPOR-E : 7050.
TRAILS : 10620. EVENTS : 17670.

NORMALIZED DISTRIBUTION OF FADE DURATIONS FOR NOVEMBER 1989

THE TIME OF DAY IS 0:24 HOURS U.T.
FREQUENCY = 85 MHZ
NORMALIZING FACTORS:
TRAILS : 5813. EVENTS : 12167.
GEOPHYSICS LAB METEOR SCATTER PROGRAM

NORMA LIZED DISTRIBUTION OF FADE DURATIONS FOR NOVEMBER 1989

THULE

UNDERDENSE  ○
OVERDENSE  △
SPORADIC-E +
ALL TRAILS  ×
ALL EVENTS   ◊

THE TIME OF DAY IS 0:24 HOURS U.T.
FREQUENCY = 104 MHZ
NORMALIZING FACTORS:
UNDER :  1076.
OVER :  2838.
SPOR-E :  905.
TRAILS :  3914.
EVENTS :  4819.

MENU=109.06-4
13-JUL-93
PLOT= 113.00

NORMA LIZED DISTRIBUTION OF FADE DURATIONS FOR NOVEMBER 1989

UNDERDENSE  ○
OVERDENSE  △
SPORADIC-E +
ALL TRAILS  ×
ALL EVENTS   ◊

THE TIME OF DAY IS 0:24 HOURS U.T.
FREQUENCY = 147 MHZ
NORMALIZING FACTORS:
UNDER :  134.
OVER :  657.
SPOR-E :  1.
TRAILS :  791.
EVENTS :  791.

MENU=109.06-4
13-JUL-93
PLOT= 114.00
GEOPHYSICS LAB METEOR SCATTER PROGRAM

AVAILABILITY x POWER VS DAY.TOD NOVEMBER 1989

147 MHZ ▲
104 MHZ ◊
85 MHZ X
65 MHZ △
45 MHZ ▲
35 MHZ ○

THULE

MENU=105,10-1
13-JUL-93
PLOT= 115.00

83
GEOPHYSICS LAB METEOR SCATTER PROGRAM

TEMP LOG-OF-KELVIN VS DAY.TOD

NOVEMBER 1989

THULE

147 MHZ ♦
104 MHZ ♣
85 MHZ ✠
65 MHZ +
45 MHZ △
35 MHZ ○

BASED ON OBSERVED NOISE MEASUREMENTS - VERTICAL

MENU=105.06-1
13-JUL-93
PLOT= 116.00
PLOT 117

PLOT 118  RIOMETER 2 DATA UNAVAILABLE

PLOT 119  dB RIOMETER 1

PLOT 120  RIOMETER 2 DATA UNAVAILABLE
APPENDIX B

STATISTICS FOR DECEMBER 1989
**GEOPHYSICS LAB METEOR SCATTER PROGRAM**

**ARRIVAL RATE (M/MIN) VS TOD(UT) DECEMBER 1989**

**THULE**

- UNDERDENSE ○
- OVERDENSE △
- ALL TRAILS +

EXCEEDING -126.0 DBM RSL
FREQUENCY = 35 MHZ
POLARIZATION = HORIZONTAL
MAXIMUM DOWN TIME DUE TO SPORADIC-E = 240 SECONDS
BASED ON OBSERVED NOISE MEASUREMENTS - VERTICAL

MENUS 101.05-2
13-JUL-93
PLOT = 1.00

**ARRIVAL RATE (M/MIN) VS TOD(UT) DECEMBER 1989**

EXCEEDING -126.0 DBM RSL
FREQUENCY = 45 MHZ
POLARIZATION = HORIZONTAL
MAXIMUM DOWN TIME DUE TO SPORADIC-E = 240 SECONDS
BASED ON OBSERVED NOISE MEASUREMENTS - VERTICAL

MENUS 101.05-2
13-JUL-93
PLOT = 2.00
GEOPHYSICS LAB METEOR SCATTER PROGRAM

ARRIVAL RATE (M/MIN) VS TOD(UT) DECEMBER 1989

THULE

UNDERDENSE ⊗
OVERDENSE △
ALL TRAILS +

EXCEEDING -126.0 DBM RSL
FREQUENCY = 65 MHZ
POLARIZATION = HORIZONTAL
MAXIMUM DOWN TIME DUE TO SPORADIC-E = 240 SECONDS
BASED ON OBSERVED NOISE MEASUREMENTS - VERTICAL

EXCEEDING -126.0 DBM RSL
FREQUENCY = 85 MHZ
POLARIZATION = HORIZONTAL
MAXIMUM DOWN TIME DUE TO SPORADIC-E = 240 SECONDS
BASED ON OBSERVED NOISE MEASUREMENTS - VERTICAL
GEOPHYSICS LAB METEOR SCATTER PROGRAM

ARRIVAL RATE (M/MIN) VS TOD(UT)  DECEMBER 1989

THULE

UNDERDENSE ○
OVERDENSE △
ALL TRAILS +

EXCEEDING -126.0 DBM RSL
FREQUENCY = 104 MHZ
POLARIZATION = HORIZONTAL
MAXIMUM DOWN TIME DUE TO SPORADIC-E = 240 SECONDS
BASED ON OBSERVED NOISE MEASUREMENTS - VERTICAL

Ô 0 2 4 6 8 10 12 14 16 18 20 22 24
TOD(UT)

EXCEEDING -126.0 DBM RSL
FREQUENCY = 147 MHZ
POLARIZATION = HORIZONTAL
MAXIMUM DOWN TIME DUE TO SPORADIC-E = 240 SECONDS
BASED ON OBSERVED NOISE MEASUREMENTS - VERTICAL

Ô 0 2 4 6 8 10 12 14 16 18 20 22 24
TOD(UT)
EXCEEDING -116.0 DBM RSL
FREQUENCY - 35 MHz
POLARIZATION - HORIZONTAL
MAXIMUM DOWN TIME DUE TO SPORADIC-E = 240 SECONDS
BASED ON OBSERVED NOISE MEASUREMENTS - VERTICAL

EXCEEDING -116.0 DBM RSL
FREQUENCY - 45 MHz
POLARIZATION - HORIZONTAL
MAXIMUM DOWN TIME DUE TO SPORADIC-E = 240 SECONDS
BASED ON OBSERVED NOISE MEASUREMENTS - VERTICAL
GEOPHYSICS LAB METEOR SCATTER PROGRAM

ARRIVAL RATE (M/MIN) VS TOD(UT) DECEMBER 1989

THULE

UNDERDENSE ○
OVERDENSE △
ALL TRAILS +

EXCEEDING -116.0 DBM RSL
FREQUENCY - 65 MHZ
POLARIZATION - HORIZONTAL
MAXIMUM DOWN TIME DUE TO SPORADIC-E = 240 SECONDS
BASED ON OBSERVED NOISE MEASUREMENTS - VERTICAL

EXCEEDING -116.0 DBM RSL
FREQUENCY - 85 MHZ
POLARIZATION - HORIZONTAL
MAXIMUM DOWN TIME DUE TO SPORADIC-E = 240 SECONDS
BASED ON OBSERVED NOISE MEASUREMENTS - VERTICAL

92
EXCEEDING -116.0 DBM RSL
FREQUENCY - 104 MHZ
POLARIZATION - HORIZONTAL
MAXIMUM DOWN TIME DUE TO SPORADIC-E = 240 SECONDS
BASED ON OBSERVED NOISE MEASUREMENTS - VERTICAL

EXCEEDING -116.0 DBM RSL
FREQUENCY - 147 MHZ
POLARIZATION - HORIZONTAL
MAXIMUM DOWN TIME DUE TO SPORADIC-E = 240 SECONDS
BASED ON OBSERVED NOISE MEASUREMENTS - VERTICAL
GEOPHYSICS LAB METEOR SCATTER PROGRAM

ARRIVAL RATE (M/MIN) VS TOD(UT) DECEMBER 1989

THULE

UNDERDENSE ○
OVERDENSE △
ALL TRAILS +

EXCEEDING -106.0 DBM RSL
FREQUENCY = 35 MHZ
POLARIZATION = HORIZONTAL
MAXIMUM DOWN TIME DUE TO SPORADIC-E = 240 SECONDS
BASED ON OBSERVED NOISE MEASUREMENTS - VERTICAL

EXCEEDING -106.0 DBM RSL
FREQUENCY = 45 MHZ
POLARIZATION = HORIZONTAL
MAXIMUM DOWN TIME DUE TO SPORADIC-E = 240 SECONDS
BASED ON OBSERVED NOISE MEASUREMENTS - VERTICAL
GEOPHYSICS LAB METEOR SCATTER PROGRAM

ARRIVAL RATE (M/MIN) VS TOD(UT) DECEMBER 1989

THULE

UNDERDENSE ○
OVERDENSE △
ALL TRAILS +

EXCEEDING -106.0 DBM RSL
FREQUENCY - 65 MHZ
POLARIZATION - HORIZONTAL
MAXIMUM DOWN TIME DUE TO SPORADIC-E - 240 SECONDS
BASED ON OBSERVED NOISE MEASUREMENTS - VERTICAL

MENUS101,05-2
13-JUL-93
PLOT* 15.00

EXCEEDING -106.0 DBM RSL
FREQUENCY - 85 MHZ
POLARIZATION - HORIZONTAL
MAXIMUM DOWN TIME DUE TO SPORADIC-E - 240 SECONDS
BASED ON OBSERVED NOISE MEASUREMENTS - VERTICAL

MENUS101,05-2
13-JUL-93
PLOT* 16.00
GEOPHYSICS LAB METEOR SCATTER PROGRAM

ARRIVAL RATE (M/MIN) VS TOD(UT) DECEMBER 1989

THULE

UNDERDENSE ○
OVERDENSE △
ALL TRAILS +

EXCEEDING -106.0 DBM RSL
FREQUENCY - 104 MHZ
POLARIZATION - HORIZONTAL
MAXIMUM DOWN TIME DUE TO SPORADIC-E = 240 SECONDS
BASED ON OBSERVED NOISE MEASUREMENTS - VERTICAL

MENU=101.05-2
13-JUL-93
PLOT= 17.00

EXCEEDING -106.0 DBM RSL
FREQUENCY - 147 MHZ
POLARIZATION - HORIZONTAL
MAXIMUM DOWN TIME DUE TO SPORADIC-E = 240 SECONDS
BASED ON OBSERVED NOISE MEASUREMENTS - VERTICAL

MENU=101.05-2
13-JUL-93
PLOT= 18.00

96
ARRIVAL RATE (M/MIN) VS THRESH DBM DECEMBER 1989

THULE

UNDERDENSE ○
OVERDENSE △
ALL TRAILS +

THE TIME OF DAY IS 0 - 24 HOURS U.T.
FREQUENCY - 35 MHZ
POLARIZATION - HORIZONTAL
MAXIMUM DOWN TIME DUE TO SPORADIC-E = 240 SECONDS
BASED ON OBSERVED NOISE MEASUREMENTS - VERTICAL

ARRIVAL RATE (M/MIN) VS THRESH DBM DECEMBER 1989

UNDERDENSE ○
OVERDENSE △
ALL TRAILS +

THE TIME OF DAY IS 0 - 24 HOURS U.T.
FREQUENCY - 45 MHZ
POLARIZATION - HORIZONTAL
MAXIMUM DOWN TIME DUE TO SPORADIC-E = 240 SECONDS
BASED ON OBSERVED NOISE MEASUREMENTS - VERTICAL
GEOPHYSICS LAB METEOR SCATTER PROGRAM

ARRIVAL RATE (M/MIN) VS THRESH DBM DECEMBER 1989

THULE

UNDERDENSE ○
OVERDENSE △
ALL TRAILS +

THE TIME OF DAY IS 0 - 24 HOURS U.T.
FREQUENCY = 65 MHZ
POLARIZATION = HORIZONTAL
MAXIMUM DOWN TIME DUE TO SPORADIC-E = 240 SECONDS
BASED ON OBSERVED NOISE MEASUREMENTS - VERTICAL

MENU=101.06-2
13-JUL-93
PLOT= 21.00

ARRIVAL RATE (M/MIN) VS THRESH DBM DECEMBER 1989

UNDERDENSE ○
OVERDENSE △
ALL TRAILS +

THE TIME OF DAY IS 0 - 24 HOURS U.T.
FREQUENCY = 85 MHZ
POLARIZATION = HORIZONTAL
MAXIMUM DOWN TIME DUE TO SPORADIC-E = 240 SECONDS
BASED ON OBSERVED NOISE MEASUREMENTS - VERTICAL

MENU=101.06-2
13-JUL-93
PLOT= 22.00
THE TIME OF DAY IS 0 - 24 HOURS U.T.
FREQUENCY - 104 MHZ
POLARIZATION - HORIZONTAL
MAXIMUM DOWN TIME DUE TO SPORADIC-E = 240 SECONDS
BASED ON OBSERVED NOISE MEASUREMENTS - VERTICAL

THE TIME OF DAY IS 0 - 24 HOURS U.T.
FREQUENCY - 147 MHZ
POLARIZATION - HORIZONTAL
MAXIMUM DOWN TIME DUE TO SPORADIC-E = 240 SECONDS
BASED ON OBSERVED NOISE MEASUREMENTS - VERTICAL
EXCEEDING -126.0 DBM RSL
TYPE OF METEOR TRAIL - UNDERDENSE AND OVERDENSE
POLARIZATION - HORIZONTAL
MAXIMUM DOWN TIME DUE TO SPORADIC-E - 240 SECONDS
BASED ON OBSERVED NOISE MEASUREMENTS - VERTICAL

EXCEEDING -116.0 DBM RSL
TYPE OF METEOR TRAIL - UNDERDENSE AND OVERDENSE
POLARIZATION - HORIZONTAL
MAXIMUM DOWN TIME DUE TO SPORADIC-E - 240 SECONDS
BASED ON OBSERVED NOISE MEASUREMENTS - VERTICAL
EXCEEDING -106.0 DBM RSL
TYPE OF METEOR TRAIL - UNDERDENSE AND OVERDENSE
POLARIZATION - HORIZONTAL
MAXIMUM DOWN TIME DUE TO SPORADIC-E - 240 SECONDS
BASED ON OBSERVED NOISE MEASUREMENTS - VERTICAL

EXCEEDING 19.0 DB SNR
TYPE OF METEOR TRAIL - UNDERDENSE AND OVERDENSE
EFFECTIVE SYSTEM BANDWIDTH - 100.0 HZ
POLARIZATION - HORIZONTAL
MAXIMUM DOWN TIME DUE TO SPORADIC-E - 240 SECONDS
BASED ON OBSERVED NOISE MEASUREMENTS - VERTICAL
GEOPHYSICS LAB METEOR SCATTER PROGRAM

ARRIVAL RATE (M/MIN) VS SNR (DB) DECEMBER 1989

THULE

35 MHZ ○
45 MHZ △
65 MHZ +
85 MHZ ×
104 MHZ ◆
147 MHZ ♦

THE TIME OF DAY IS 0 - 24 HOURS U.T.
TYPE OF METEOR TRAIL - UNDERDENSE AND OVERDENSE
EFFECTIVE SYSTEM BANDWIDTH - 100.HZ
POLARIZATION - HORIZONTAL
MAXIMUM DOWN TIME DUE TO SPORADIC-E - 240 SECONDS
BASED ON OBSERVED NOISE MEASUREMENTS - VERTICAL

EXCEEDING 19.0 DB SNR
TYPE OF METEOR TRAIL - UNDERDENSE AND OVERDENSE
EFFECTIVE SYSTEM BANDWIDTH - 100.HZ
POLARIZATION - HORIZONTAL
MAXIMUM DOWN TIME DUE TO SPORADIC-E - 240 SECONDS
BASED ON OBSERVED NOISE MEASUREMENTS - VERTICAL

13-JUL-93
PLOT# 30.00
GEOPHYSICS LAB METEOR SCATTER PROGRAM

DUTY CYCLE ABOVE RSL (%) VS THRESH DBM

THRESH DBM

THE TIME OF DAY IS 0 - 24 HOURS U.T.
FREQUENCY - 35 MHZ
POLARIZATION - HORIZONTAL
BASED ON OBSERVED NOISE MEASUREMENTS - VERTICAL

THULE
UNDERDENSE ○
OVERDENSE △
SPORADIC-E +
ALL-TRAILS X
ALL-EVENTS ♦

MENU=103,06-2
13-JUL-93
PLOT= 31.00

DUTY CYCLE ABOVE RSL (%) VS THRESH DBM

THRESH DBM

THE TIME OF DAY IS 0 - 24 HOURS U.T.
FREQUENCY - 45 MHZ
POLARIZATION - HORIZONTAL
BASED ON OBSERVED NOISE MEASUREMENTS - VERTICAL

MENU=103,06-2
13-JUL-93
PLOT= 32.00
The time of day is 0 - 24 hours U.T.
Frequency = 65 MHz
Polarization = horizontal
Based on observed noise measurements - vertical
THE TIME OF DAY IS 0 - 24 HOURS U.T.
FREQUENCY = 104 MHZ
POLARIZATION = HORIZONTAL
BASED ON OBSERVED NOISE MEASUREMENTS - VERTICAL
THULE

UNDERDENSE ○
OVERDENSE △
SPORADIC-E +
ALL-TRAILS ×
ALL-EVENTS ◇

GEOPHYSICS LAB METEOR SCATTER PROGRAM

THRESHOLD - -126.0 DBM RSL
FREQUENCY - 35 MHZ
POLARIZATION - HORIZONTAL
BASED ON OBSERVED NOISE MEASUREMENTS - VERTICAL

THRESHOLD - -126.0 DBM RSL
FREQUENCY - 45 MHZ
POLARIZATION - HORIZONTAL
BASED ON OBSERVED NOISE MEASUREMENTS - VERTICAL
GEOPHYSICS LAB METEOR SCATTER PROGRAM

DUTY CYCLE ABOVE RSL (%) VS TOD(UT) DECEMBER 1989

THULE

UNDERDENSE ○
OVERDENSE △
SPORADIC-E +
ALL-TRAILS X
ALL-EVENTS ◇

THRESHOLD = -126.0 DBM RSL
FREQUENCY = 65 MHz
POLARIZATION = HORIZONTAL
BASED ON OBSERVED NOISE MEASUREMENTS - VERTICAL

13-JUL-93
PLOT# 39.00

DUTY CYCLE ABOVE RSL (%) VS TOD(UT) DECEMBER 1989

UNDERDENSE ○
OVERDENSE △
SPORADIC-E +
ALL-TRAILS X
ALL-EVENTS ◇

THRESHOLD = -126.0 DBM RSL
FREQUENCY = 85 MHz
POLARIZATION = HORIZONTAL
BASED ON OBSERVED NOISE MEASUREMENTS - VERTICAL

13-JUL-93
PLOT# 40.00
GEOPHYSICS LAB METEOR SCATTER PROGRAM

DUTY CYCLE ABOVE RSL (%) VS TOD(UT) DECEMBER 1989

THULE

UNDERDENSE ○
OVERDENSE △
SPORADIC-E +
ALL-TRAITS X
ALL-EVENTS ◊

THRESHOLD = -126.0 DBM RSL
FREQUENCY = 104 MHZ
POLARIZATION = HORIZONTAL
BASED ON OBSERVED NOISE MEASUREMENTS - VERTICAL

MENU=103.07-2
13-JUL-93
PLOT=41.00

DUTY CYCLE ABOVE RSL (%) VS TOD(UT) DECEMBER 1989

UNDERDENSE ○
OVERDENSE △
SPORADIC-E +
ALL-TRAITS X
ALL-EVENTS ◊

THRESHOLD = -126.0 DBM RSL
FREQUENCY = 147 MHZ
POLARIZATION = HORIZONTAL
BASED ON OBSERVED NOISE MEASUREMENTS - VERTICAL

MENU=103.07-2
13-JUL-93
PLOT=42.00
GEOPHYSICS LAB METEOR SCATTER PROGRAM

THULE

UNDERDENSE ○
OVERDENSE △
SPORADIC-E +
ALL-TRAILS X
ALL-EVENTS ♦

THRESHOLD - -116.0 DBM RSL
FREQUENCY - 35 MHZ
POLARIZATION - HORIZONTAL
BASED ON OBSERVED NOISE MEASUREMENTS - VERTICAL

THRESHOLD - -116.0 DBM RSL
FREQUENCY - 45 MHZ
POLARIZATION - HORIZONTAL
BASED ON OBSERVED NOISE MEASUREMENTS - VERTICAL
GEOPHYSICS LAB METEOR SCATTER PROGRAM

DUTY CYCLE ABOVE RSL (%) VS TOD(UT)  DECEMBER 1989

THULE

UNDERDENSE ○
OVERDENSE △
SPORADIC-E +
ALL-TRAILS ×
ALL-EVENTS ◆

THRESHOLD - -116.0 DBM RSL
FREQUENCY - 65 MHZ
POLARIZATION - HORIZONTAL
BASED ON OBSERVED NOISE MEASUREMENTS - VERTICAL

MENU#103.07-2
13-JUL-93
PLOT# 45.00

DUTY CYCLE ABOVE RSL (%) VS TOD(UT)  DECEMBER 1989

UNDERDENSE ○
OVERDENSE △
SPORADIC-E +
ALL-TRAILS ×
ALL-EVENTS ◆

THRESHOLD - -116.0 DBM RSL
FREQUENCY - 85 MHZ
POLARIZATION - HORIZONTAL
BASED ON OBSERVED NOISE MEASUREMENTS - VERTICAL

MENU#103.07-2
13-JUL-93
PLOT# 46.00
GEOPHYSICS LAB METEOR SCATTER PROGRAM

THULE

DUTY CYCLE ABOVE RSL (%) VS TOD(UT) DECEMBER 1989

THRESHOLD - -116.0 DBM RSL
FREQUENCY - 104 MHZ
POLARIZATION - HORIZONTAL
BASED ON OBSERVED NOISE MEASUREMENTS - VERTICAL

UNDERDENSE ○
OVERDENSE △
SPORADIC-E +
ALL-TRAILS X
ALL-EVENTS ♦

MENU=103.07-2
13-JUL-95
PLOT= 47.00

DUTY CYCLE ABOVE RSL (%) VS TOD(UT) DECEMBER 1989

THRESHOLD - -116.0 DBM RSL
FREQUENCY - 147 MHZ
POLARIZATION - HORIZONTAL
BASED ON OBSERVED NOISE MEASUREMENTS - VERTICAL

UNDERDENSE ○
OVERDENSE △
SPORADIC-E +
ALL-TRAILS X
ALL-EVENTS ♦

MENU=103.07-2
13-JUL-95
PLOT= 48.00
GEOPHYSICS LAB METEOR SCATTER PROGRAM

THRESHOLD - -106.0 DBM RSL
FREQUENCY - 35 MHZ
POLARIZATION - HORIZONTAL
BASED ON OBSERVED NOISE MEASUREMENTS - VERTICAL

THRESHOLD - -106.0 DBM RSL
FREQUENCY - 45 MHZ
POLARIZATION - HORIZONTAL
BASED ON OBSERVED NOISE MEASUREMENTS - VERTICAL

MENU#103,07-2
13-JUL-93
PLOT# 49.00

MENU#103,07-2
13-JUL-93
PLOT# 50.00

112
GEOPHYSICS LAB METEOR SCATTER PROGRAM

THULE

DUTY CYCLE ABOVE RSL (%) VS TOD(UT) DECEMBER 1989

THRESHOLD - -106.0 DBM RSL
FREQUENCY - 65 MHZ
POLARIZATION - HORIZONTAL
BASED ON OBSERVED NOISE MEASUREMENTS - VERTICAL

MENU=103.07-2
13-JUL-93
PLOT= 51.00

DUTY CYCLE ABOVE RSL (%) VS TOD(UT) DECEMBER 1989

THRESHOLD - -106.0 DBM RSL
FREQUENCY - 85 MHZ
POLARIZATION - HORIZONTAL
BASED ON OBSERVED NOISE MEASUREMENTS - VERTICAL

MENU=103.07-2
13-JUL-93
PLOT= 52.00
GEOPHYSICS LAB METEOR SCATTER PROGRAM

THULE

DUTY CYCLE ABOVE RSL (%) VS TOD(UT) DECEMBER 1989

UNDERDENSE ○
OVERDENSE △
SPORADIC-E +
ALL-TRAILS ×
ALL-EVENTS ♦

THRESHOLD - -106.0 DBM RSL
FREQUENCY - 104 MHZ
POLARIZATION - HORIZONTAL
BASED ON OBSERVED NOISE MEASUREMENTS - VERTICAL

MENU=103.07-2
13-JUL-93
PLOT= 53.00

DUTY CYCLE ABOVE RSL (%) VS TOD(UT) DECEMBER 1989

UNDERDENSE ○
OVERDENSE △
SPORADIC-E +
ALL-TRAILS ×
ALL-EVENTS ♦

THRESHOLD - -106.0 DBM RSL
FREQUENCY - 147 MHZ
POLARIZATION - HORIZONTAL
BASED ON OBSERVED NOISE MEASUREMENTS - VERTICAL

MENU=103.07-2
13-JUL-93
PLOT= 54.00
GEOPHYSICS LAB METEOR SCATTER PROGRAM

DUTY CYCLE ABOVE RSL (%) VS DAY.TOD

DECEMBER 1989

THULE

45 MHZ △
104 MHZ ○

THRESHOLD - -126.0 DBM RSL
THE EVENT CLASS IS UNDERDENSE AND OVERDENSE TRAILS
POLARIZATION - HORIZONTAL
BASED ON OBSERVED NOISE MEASUREMENTS - VERTICAL

DUTY CYCLE ABOVE RSL (%) VS DAY.TOD

DECEMBER 1989

45 MHZ △
104 MHZ ○

THRESHOLD - -116.0 DBM RSL
THE EVENT CLASS IS UNDERDENSE AND OVERDENSE TRAILS
POLARIZATION - HORIZONTAL
BASED ON OBSERVED NOISE MEASUREMENTS - VERTICAL
THRESHOLD - -106.0 DBM RSL
THE EVENT CLASS IS UNDERDENSE AND OVERDENSE TRAILS
POLARIZATION - HORIZONTAL
BASED ON OBSERVED NOISE MEASUREMENTS - VERTICAL

THRESHOLD - -126.0 DBM RSL
THE EVENT CLASS IS SPORADIC-E
POLARIZATION - HORIZONTAL
BASED ON OBSERVED NOISE MEASUREMENTS - VERTICAL
GEOPHYSICS LAB METEOR SCATTER PROGRAM

THRESHOLD - -116.0 DBM RSL
THE EVENT CLASS IS SPORADIC-E
POLARIZATION - HORIZONTAL
BASED ON OBSERVED NOISE MEASUREMENTS - VERTICAL

THRESHOLD - -106.0 DBM RSL
THE EVENT CLASS IS SPORADIC-E
POLARIZATION - HORIZONTAL
BASED ON OBSERVED NOISE MEASUREMENTS - VERTICAL
GEOPHYSICS LAB METEOR SCATTER PROGRAM

DUTY CYCLE ABOVE SNR (%) VS SNR (DB) DECEMBER 1989

THE TIME OF DAY IS 0 - 24 HOURS U.T.
THE EVENT CLASS IS UNDERDENSE AND OVERDENSE TRAILS
EFFECTIVE SYSTEM BANDWIDTH - 100 HZ
POLARIZATION - HORIZONTAL
BASED ON OBSERVED NOISE MEASUREMENTS - VERTICAL

MENU=104,02-2
13-JUL-93
PLOT= 61.00

DUTY CYCLE ABOVE SNR (%) VS SNR (DB) DECEMBER 1989

THE TIME OF DAY IS 0 - 24 HOURS U.T.
THE EVENT CLASS IS SPORADIC-E AND METEOR TRAILS
EFFECTIVE SYSTEM BANDWIDTH - 100 HZ
POLARIZATION - HORIZONTAL
BASED ON OBSERVED NOISE MEASUREMENTS - VERTICAL

MENU=104,02-2
13-JUL-93
PLOT= 62.00

118
GEOPHYSICS LAB METEOR SCATTER PROGRAM

DUTY CYCLE ABOVE SNR (%) VS TOD(UT) DECEMBER 1989

THULE

35 MHz ○
45 MHz △
65 MHz +
85 MHz ×
104 MHz ◊
147 MHz ⊙

SIGNAL-TO-NOISE RATIO - 19.0 DB
THE EVENT CLASS IS UNDERDENSE AND OVERDENSE TRAILS
EFFECTIVE SYSTEM BANDWIDTH - 100 Hz
POLARIZATION - HORIZONTAL
BASED ON OBSERVED NOISE MEASUREMENTS - VERTICAL

DUTY CYCLE ABOVE SNR (%) VS TOD(UT) DECEMBER 1989

35 MHz ○
45 MHz △
65 MHz +
85 MHz ×
104 MHz ◊
147 MHz ⊙

SIGNAL-TO-NOISE RATIO - 19.0 DB
THE EVENT CLASS IS SPORADIC-E AND METEOR TRAILS
EFFECTIVE SYSTEM BANDWIDTH - 100 Hz
POLARIZATION - HORIZONTAL
BASED ON OBSERVED NOISE MEASUREMENTS - VERTICAL
SIGNAL-TO-NOISE RATIO - 19.0 DB
THE EVENT CLASS IS UNDERDENSE AND OVERDENSE TRAILS
EFFECTIVE SYSTEM BANDWIDTH - 100.HZ
POLARIZATION - HORIZONTAL
BASED ON OBSERVED NOISE MEASUREMENTS - VERTICAL
EXCEEDING -126.0 DBM RSL
THE TIME OF DAY IS 0 - 24 HOURS U.T.
FREQUENCY - 35 MHZ
BASED ON OBSERVED NOISE MEASUREMENTS - VERTICAL
NORMALIZING FACTORS:
UNDER - 30244, OVER - 32821, SPOR-E - 48171.
TRAILS - 63065. EVENTS - 111236.

EXCEEDING -126.0 DBM RSL
THE TIME OF DAY IS 0 - 24 HOURS U.T.
FREQUENCY - 45 MHZ
BASED ON OBSERVED NOISE MEASUREMENTS - VERTICAL
NORMALIZING FACTORS:
UNDER - 18803, OVER - 19563, SPOR-E - 7229.
TRAILS - 38366. EVENTS - 45595.
GEOPHYSICS LAB METEOR SCATTER PROGRAM

EXCEEDING -126.0 DBM RSL
THE TIME OF DAY IS 0 - 24 HOURS U.T.
FREQUENCY = 65 MHZ
BASED ON OBSERVED NOISE MEASUREMENTS - VERTICAL
NORMALIZING FACTORS:
UNDER = 6539. OVER = 3748. SPOR-E = 2682.
TRAILS = 10287. EVENTS = 12969.

EXCEEDING -126.0 DBM RSL
THE TIME OF DAY IS 0 - 24 HOURS U.T.
FREQUENCY = 85 MHZ
BASED ON OBSERVED NOISE MEASUREMENTS - VERTICAL
NORMALIZING FACTORS:
UNDER = 3040. OVER = 1821. SPOR-E = 125.
TRAILS = 4861. EVENTS = 4986.

0.00 1.00 2.00 3.00 4.00
DURATION

0 10
NORM. DISTRIBUTION VS DURATION DECEMBER 1989

THULE
UNDERDENSE ○
OVERDENSE △
SPORADIC-E +
ALL-TRAILS X
ALL-EVENTS ♦

0 1.00 2.00 3.00 4.00
DURATION

0 10
NORM. DISTRIBUTION VS DURATION DECEMBER 1989

UNDERDENSE ○
OVERDENSE △
SPORADIC-E +
ALL-TRAILS X
ALL-EVENTS ♦

MENU=106,02-4
13-JUL-93
PLOT= 69.00

MENU=106,02-4
13-JUL-93
PLOT= 70.00
GEOPHYSICS LAB METEOR SCATTER PROGRAM

NORM. DISTRIBUTION VS DURATION DECEMBER 1989

THULE

UNDERDENSE ○
OVERDENSE △
SPORADIC-E +
ALL-TRAILS ×
ALL-EVENTS ♦

EXCEEDING -126.0 DBM RSL
THE TIME OF DAY IS 0 - 24 HOURS U.T.
FREQUENCY - 104 MHZ
BASED ON OBSERVED NOISE MEASUREMENTS - VERTICAL
NORMALIZING FACTORS:
UNDER - 4406.
SPOR-E - 590.
TRAILS - 6398.
EVENTS - 6988.

EXCEEDING -126.0 DBM RSL
THE TIME OF DAY IS 0 - 24 HOURS U.T.
FREQUENCY - 147 MHZ
BASED ON OBSERVED NOISE MEASUREMENTS - VERTICAL
NORMALIZING FACTORS:
UNDER - 1242.
OVER - 598.
SPOR-E - 32.
TRAILS - 1840.
EVENTS - 1872.
GEOPHYSICS LAB METEOR SCATTER PROGRAM

EXCEEDING 116.0 DBM RSL
THE TIME OF DAY IS 0 - 24 HOURS U.T.
FREQUENCY - 35 MHZ
BASED ON OBSERVED NOISE MEASUREMENTS - VERTICAL
NORMALIZING FACTORS:
UNDER - 9766. OVER - 17190. SPOR-E - 34738.
TRAILS - 26956. EVENTS - 61694.

EXCEEDING 116.0 DBM RSL
THE TIME OF DAY IS 0 - 24 HOURS U.T.
FREQUENCY - 45 MHZ
BASED ON OBSERVED NOISE MEASUREMENTS - VERTICAL
NORMALIZING FACTORS:
UNDER - 6559. OVER - 9481. SPOR-E - 6454.
TRAILS - 16040. EVENTS - 22494.
GEOPHYSICS LAB METEOR SCATTER PROGRAM

THULE

UNDERDENSE ○
OVERDENSE △
SPORADIC-E +
ALL-TRAILS ✗
ALL-EVENTS ◇

NORM. DISTRIBUTION VS DURATION DECEMBER 1989

EXCEEDING -116.0 DBM RSL
THE TIME OF DAY IS 0 - 24 HOURS U.T.
FREQUENCY - 65 MHZ
BASED ON OBSERVED NOISE MEASUREMENTS - VERTICAL
NORMALIZING FACTORS:
UNDER - 2228. OVER - 1795. SPOR-E - 1482.
TRAILS - 4023. EVENTS - 5505.

MENU=106,02-4
13-JUL-93
PLOT= 75.00

125
EXCEEDING -116.0 DBM RSL
THE TIME OF DAY IS 0 - 24 HOURS U.T.
FREQUENCY - 104 MHZ
BASED ON OBSERVED NOISE MEASUREMENTS - VERTICAL
NORMALIZING FACTORS:
UNDER - 1250. OVER - 984. SPOR-E - 354.
TRAILS - 2234. EVENTS - 2588.

EXCEEDING -116.0 DBM RSL
THE TIME OF DAY IS 0 - 24 HOURS U.T.
FREQUENCY - 147 MHZ
BASED ON OBSERVED NOISE MEASUREMENTS - VERTICAL
NORMALIZING FACTORS:
TRAILS - 667. EVENTS - 733.
Average Noise Distribution vs Duration December 1989

EXCEEDING -106.0 DBM RSL
THE TIME OF DAY IS 0 - 24 HOURS U.T.
FREQUENCY - 35 MHZ
BASED ON OBSERVED NOISE MEASUREMENTS - VERTICAL
NORMALIZING FACTORS:
UNDER - 1894. OVER - 4361. SPOR-E - 14226.
TRAILS - 6255. EVENTS - 20481.

MEN#U106.02-4
13-JUL-93
PLOT= 79.00

Average Noise Distribution vs Duration December 1989

EXCEEDING -106.0 DBM RSL
THE TIME OF DAY IS 0 - 24 HOURS U.T.
FREQUENCY - 45 MHZ
BASED ON OBSERVED NOISE MEASUREMENTS - VERTICAL
NORMALIZING FACTORS:
UNDER - 1353. OVER - 2809. SPOR-E - 3499.
TRAILS - 4162. EVENTS - 7661.

MEN#U106.02-4
13-JUL-93
PLOT= 80.00
GEOPHYSICS LAB METEOR SCATTER PROGRAM

NORM. DISTRIBUTION VS DURATION DECEMBER 1989

THULE

UNDERDENSE ○ OVERDENSE △ SPORADIC-E + ALL-TRAILS × ALL-EVENTS ◊

0 1.00 2.00 3.00 4.00 DURATION

EXCEEDING -106.0 DBM RSL
THE TIME OF DAY IS 0 - 24 HOURS U.T.
FREQUENCY - 65 MHZ
BASED ON OBSERVED NOISE MEASUREMENTS - VERTICAL NORMALIZING FACTORS:
UNDER - 286. OVER - 504. SPOR-E - 691.
TRAILS - 792. EVENTS - 1483.

10 9.00 8.00 7.00 6.00 DURATION

EXCEEDING -106.0 DBM RSL
THE TIME OF DAY IS 0 - 24 HOURS U.T.
FREQUENCY - 85 MHZ
BASED ON OBSERVED NOISE MEASUREMENTS - VERTICAL NORMALIZING FACTORS:
UNDER - 104. OVER - 223. SPOR-E - 41.
TRAILS - 327. EVENTS - 368.

MENU=106.02-4 13-JUL-93 PLOT= 81.00

128
EXCEEDING -106.0 DBM RSL
THE TIME OF DAY IS 0 - 24 HOURS U.T.
FREQUENCY - 104 MHZ
BASED ON OBSERVED NOISE MEASUREMENTS - VERTICAL
NORMALIZING FACTORS:
UNDER - 142. OVER - 314. SPOR-E - 102.
TRAILS - 456. EVENTS - 558.

EXCEEDING -106.0 DBM RSL
THE TIME OF DAY IS 0 - 24 HOURS U.T.
FREQUENCY - 147 MHZ
BASED ON OBSERVED NOISE MEASUREMENTS - VERTICAL
NORMALIZING FACTORS:
UNDER - 25. OVER - 54. SPOR-E - 1.
TRAILS - 79. EVENTS - 80.
EXCEEDING -126.0 DBM RSL
THE TIME OF DAY IS 0 - 24 HOURS U.T.
THE EVENT CLASS IS UNDERDENSE AND OVERDENSE TRAILS
BASED ON OBSERVED NOISE MEASUREMENTS - VERTICAL
NORMALIZING FACTORS:
35MHZ - 63065. 45MHZ - 38366. 65MHZ - 10287.
85MHZ - 4861. 104MHZ - 6398. 147MHZ - 1840.

EXCEEDING -116.0 DBM RSL
THE TIME OF DAY IS 0 - 24 HOURS U.T.
THE EVENT CLASS IS UNDERDENSE AND OVERDENSE TRAILS
BASED ON OBSERVED NOISE MEASUREMENTS - VERTICAL
NORMALIZING FACTORS:
35MHZ - 26956. 45MHZ - 16040. 65MHZ - 4023.
85MHZ - 1636. 104MHZ - 2234. 147MHZ - 667.
GEOPHYSICS LAB METEOR SCATTER PROGRAM

NORM. DISTRIBUTION VS DURATION DECEMBER 1989

THULE

EXCEEDING -106.0 DBM RSL
THE TIME OF DAY IS 0 - 24 HOURS U.T.
THE EVENT CLASS IS UNDERDENSE AND OVERDENSE TRAILS
BASED ON OBSERVED NOISE MEASUREMENTS - VERTICAL
NORMALIZING FACTORS:
35 MHZ - 6255, 45 MHZ - 4162, 65 MHZ - 792,
85 MHZ - 327, 104 MHZ - 456, 147 MHZ - 79.

AVG. DURATION (SEC.) VS RSL DECEMBER 1989

UNDERDENSE ○
OVERDENSE △
SPORADIC-E +
ALL-TRAILS ×
ALL-EVENTS ◊

THE TIME OF DAY IS 0 - 24 HOURS U.T.
FREQUENCY - 35 MHZ
BASED ON OBSERVED NOISE MEASUREMENTS - VERTICAL
GEOPHYSICS LAB METEOR SCATTER PROGRAM

**AVG. DURATION (SEC.) VS RSL**

**DECEMBER 1989**

**THULE**

UNDERDENSE ○
OVERDENSE △
SPORADIC-E +
ALL-TRAILS X
ALL-EVENTS ♦

**THE TIME OF DAY IS 0 - 24 HOURS U.T.**
**FREQUENCY - 45 MHZ**
**BASED ON OBSERVED NOISE MEASUREMENTS - VERTICAL**

---

**AVG. DURATION (SEC.) VS RSL**

**DECEMBER 1989**

**UNDERDENSE ○**
**OVERDENSE △**
**SPORADIC-E +**
**ALL-TRAILS X**
**ALL-EVENTS ♦**

**THE TIME OF DAY IS 0 - 24 HOURS U.T.**
**FREQUENCY - 65 MHZ**
**BASED ON OBSERVED NOISE MEASUREMENTS - VERTICAL**

---

**MENU=106.06-1**
**13-JUL-93**
**PLOT= 89.00**

---

**MENU=106.06-1**
**13-JUL-93**
**PLOT= 90.00**
GEOPHYSICS LAB METEOR SCATTER PROGRAM

AVER. DURATION (SEC.) VS RSL DECEMBER 1989

THULE

UNDERDENSE ○
OVERDENSE △
SPORADIC-E +
ALL-TRAILS X
ALL-EVENTS ♦

RSL

THE TIME OF DAY IS 0 - 24 HOURS U.T.
FREQUENCY = 85 MHZ
BASED ON OBSERVED NOISE MEASUREMENTS - VERTICAL

THE TIME OF DAY IS 0 - 24 HOURS U.T.
FREQUENCY = 104 MHZ
BASED ON OBSERVED NOISE MEASUREMENTS - VERTICAL

MENU=106.06-1
13-JUL-93
PLOT= 91.00

MENU=106.06-1
13-JUL-93
PLOT= 92.00
GEOPHYSICS LAB METEOR SCATTER PROGRAM

AVER. DURATION (SEC.) VS RSL DECEMBER 1989

THULE

UNDERDENSE ○
OVERDENSE △
SPORADIC-E +
ALL-TRAILS ×
ALL-EVENTS ♦

THE TIME OF DAY IS 0 - 24 HOURS U.T.
FREQUENCY = 147 MHZ
BASED ON OBSERVED NOISE MEASUREMENTS - VERTICAL

NORM. DISTRIBUTION VS DURATION DECEMBER 1989

EXCEEDING 19.0 DB SNR
THE TIME OF DAY IS 0 - 24 HOURS U.T.
THE EVENT CLASS IS UNDERDENSE AND OVERDENSE TRAILS
EFFECTIVE SYSTEM BANDWIDTH = 100 HZ
BASED ON OBSERVED NOISE MEASUREMENTS - VERTICAL
NORMALIZING FACTORS:
35 MHZ - 48903
45 MHZ - 31337
65 MHZ - 10109
85 MHZ - 5618
104 MHZ - 7906
147 MHZ - 2257

MENU=107,01-4
13-JUL-93
PLOT= 94.00

134
GEOPHYSICS LAB METEOR SCATTER PROGRAM

NORM. DISTRIBUTION VS DURATION DECEMBER 1989

THULE

-2-
35 MHZ o
45 MHZ △
65 MHZ +
85 MHZ x
104 MHZ ◆
147 MHZ ↘

EXCEEDING 19.0 DB SNR
THE TIME OF DAY IS 0 - 24 HOURS U.T.
THE EVENT CLASS IS SPORADIC-E AND METEOR TRAILS
EFFECTIVE SYSTEM BANDWIDTH = 100.00 HZ
BASED ON OBSERVED NOISE MEASUREMENTS - VERTICAL
NORMALIZING FACTORS:
35 MHZ - 94487.4
45 MHZ - 38711.
65 MHZ - 12615.
85 MHZ - 5724.
104 MHZ - 8479.
147 MHZ - 2297.

AVER. DURATION (SEC.) VS SNR (DB) DECEMBER 1989

THE TIME OF DAY IS 0 - 24 HOURS U.T.
THE EVENT CLASS IS UNDERDENSE AND OVERDENSE TRAILS
EFFECTIVE SYSTEM BANDWIDTH = 100.00 HZ
BASED ON OBSERVED NOISE MEASUREMENTS - VERTICAL
GEOPHYSICS LAB METEOR SCATTER PROGRAM

AVER. DURATION (SEC.) VS SNR (DB) DECEMBER 1989

THULE

35 MHZ ○
45 MHZ △
65 MHZ +
85 MHZ ×
104 MHZ ◆
147 MHZ ▲

THE TIME OF DAY IS 0-24 HOURS U.T.
THE EVENT CLASS IS SPORADIC-E AND METEOR TRAILS
EFFECTIVE SYSTEM BANDWIDTH = 100 HZ
BASED ON OBSERVED NOISE MEASUREMENTS - VERTICAL

NORMALIZED DISTRIBUTION OF UNDERDENSE METEOR DECAY CONSTANTS

35 MHZ ○
45 MHZ △
65 MHZ +
85 MHZ ×
104 MHZ ◆
147 MHZ ▲

THE TIME OF DAY IS 0-24 HOURS U.T.
BASED ON OBSERVED NOISE MEASUREMENTS - VERTICAL
NORMALIZING FACTORS:
35 MHZ: 14856
45 MHZ: 13243
65 MHZ: 7305
85 MHZ: 3921
104 MHZ: 6049
147 MHZ: 1525

136
GEOPHYSICS LAB METEOR SCATTER PROGRAM

AVERAGE UNDERDENSE TIME CONSTANT VS TIME FOR DECEMBER 1989

THULE

35 MHZ ⊙
45 MHZ △
65 MHZ 
85 MHZ 
104 MHZ 
147 MHZ 

BASED ON OBSERVED NOISE MEASUREMENTS - VERTICAL
THE 24 HOUR AVERAGE TIME CONSTANTS ARE
0.260 0.196 0.121 0.081 0.071 0.052

NORMALIZED DISTRIBUTION OF FADES/SECOND FOR DECEMBER 1989

THE TIME OF DAY IS 0: 24 HOURS U.T.
THE EVENT CLASS IS UNDERDENSE AND OVERDENSE TRAILS
NORMALIZING FACTORS:
35MHZ : 16417. 45MHZ : 11168. 65MHZ : 2999.
85MHZ : 1188. 104MHZ : 1216. 147MHZ : 197.
NORMALIZED DISTRIBUTION OF FADES/SECOND FOR DECEMBER 1989

THE TIME OF DAY IS 0:24 HOURS U.T.
FREQUENCY = 35 MHZ
NORMALIZING FACTORS:
TRAILS : 16417. EVENTS : 18674.

NORMALIZED DISTRIBUTION OF FADES/SECOND FOR DECEMBER 1989

THE TIME OF DAY IS 0:24 HOURS U.T.
FREQUENCY = 45 MHZ
NORMALIZING FACTORS:
TRAILS : 11168. EVENTS : 11540.
NORMALIZED DISTRIBUTION OF FADES/SECOND FOR DECEMBER 1989

THE TIME OF DAY IS 0:24 HOURS U.T.
FREQUENCY - 65 MHz
NORMALIZING FACTORS:
TRAILS : 2999. EVENTS : 3007.

NORMALIZED DISTRIBUTION OF FADES/SECOND FOR DECEMBER 1989

THE TIME OF DAY IS 0:24 HOURS U.T.
FREQUENCY - 85 MHz
NORMALIZING FACTORS:
TRAILS : 1188. EVENTS : 1188.
NORMALIZED DISTRIBUTION OF FADES/SECOND FOR DECEMBER 1989

THULE

UNDERDENSE ⊙
OVERDENSE △
SPORADIC-E +
ALL TRAILS ×
ALL EVENTS ◇

THE TIME OF DAY IS 0 : 24 HOURS U.T.
FREQUENCY - 104 MHZ
NORMALIZING FACTORS:
UNDER : 699.
OVER : 517.
SPOR-E : 4.
TRAILS : 1216.
EVENTS : 1220.

NORMALIZED DISTRIBUTION OF FADES/SECOND FOR DECEMBER 1989

THE TIME OF DAY IS 0 : 24 HOURS U.T.
FREQUENCY - 147 MHZ
NORMALIZING FACTORS:
UNDER : 82.
OVER : 115.
SPOR-E : 1.
TRAILS : 197.
EVENTS : 197.
GEOPHYSICS LAB METEOR SCATTER PROGRAM

AVERAGE FADES/SECOND VS TIME FOR DECEMBER 1989

THULE

35 MHZ
45 MHZ
65 MHZ
85 MHZ
104 MHZ
147 MHZ

THE EVENT CLASS IS UNDERDENSE AND OVERDENSE TRAILS
THE 24 HOUR FADES/SECOND AVERAGES ARE:
5.328 5.271 5.042 4.822 4.636 4.349

NORMALIZED DISTRIBUTION OF FADE DURATIONS FOR DECEMBER 1989

THE TIME OF DAY IS 0:24 HOURS U.T.
THE EVENT CLASS IS UNDERDENSE AND OVERDENSE TRAILS
NORMALIZING FACTORS:
85MHZ : 5252. 104MHZ : 4731. 147MHZ : 1049.
NORMALIZED DISTRIBUTION OF FADE DURATIONS FOR DECEMBER 1989

THE TIME OF DAY IS 0:24 HOURS U.T.
FREQUENCY = 35 MHz
NORMALIZING FACTORS:
TRAILS: 79410. EVENTS: 294775.

NORMALIZED DISTRIBUTION OF FADE DURATIONS FOR DECEMBER 1989

THE TIME OF DAY IS 0:24 HOURS U.T.
FREQUENCY = 45 MHz
NORMALIZING FACTORS:
TRAILS: 51678. EVENTS: 98145.
NORMALIZED DISTRIBUTION OF FADE DURATIONS FOR DECEMBER 1989

THE TIME OF DAY IS 0:24 HOURS U.T.
FREQUENCY = 65 MHZ
NORMALIZING FACTORS:
TRAILS : 12268. EVENTS : 29544.

NORMALIZED DISTRIBUTION OF FADE DURATIONS FOR DECEMBER 1989

THE TIME OF DAY IS 0:24 HOURS U.T.
FREQUENCY = 85 MHZ
NORMALIZING FACTORS:
TRAILS : 5252. EVENTS : 5958.
NORMALIZED DISTRIBUTION OF FADE DURATIONS FOR DECEMBER 1989

THULE

UNDERDENSE ○
OVERDENSE △
SPORADIC-E +
ALL TRAILS X
ALL EVENTS ◇

THE TIME OF DAY IS 0: 24 HOURS U.T.
FREQUENCY = 104 MHZ
NORMALIZING FACTORS:
TRAILS : 4731. EVENTS : 7768.

NORMALIZED DISTRIBUTION OF FADE DURATIONS FOR DECEMBER 1989

UNDERDENSE ○
OVERDENSE △
SPORADIC-E +
ALL TRAILS X
ALL EVENTS ◇

THE TIME OF DAY IS 0: 24 HOURS U.T.
FREQUENCY = 147 MHZ
NORMALIZING FACTORS:
UNDER : 140. OVER : 909. SPOR-E : 238.
TRAILS : 1049. EVENTS : 1287.
GEOPHYSICS LAB METEOR SCATTER PROGRAM

TEMP LOG-OF-KELVIN VS DAY.TOD DECEMBER 1989

THULE

147 MHZ  
104 MHZ  
85 MHZ  
65 MHZ  
45 MHZ  
35 MHZ  

147 MHZ  
104 MHZ  
85 MHZ  
65 MHZ  
45 MHZ  
35 MHZ  

DAY.TOD  

BASED ON OBSERVED NOISE MEASUREMENTS - VERTICAL
PLOT 121

Magnetometer X Gamma

PLOT 122

Magnetometer Y Gamma

PLOT 123

Magnetometer Z Gamma
GEOPHYSICS LAB METEOR SCATTER PROGRAM

ARRIVAL RATE (M/MIN) VS TOD(UT) JANUARY 1990

THULE

UNDERDENSE ○
OVERDENSE △
ALL TRAILS +

EXCEEDING -126.0 DBM RSL
FREQUENCY - 35 MHZ
POLARIZATION - HORIZONTAL
MAXIMUM DOWN TIME DUE TO SPORADIC-E = 240 SECONDS
BASED ON OBSERVED NOISE MEASUREMENTS - VERTICAL

MENU=101.05-2
14-JUL-93
PLOT= 1.00

EXCEEDING -126.0 DBM RSL
FREQUENCY - 45 MHZ
POLARIZATION - HORIZONTAL
MAXIMUM DOWN TIME DUE TO SPORADIC-E = 240 SECONDS
BASED ON OBSERVED NOISE MEASUREMENTS - VERTICAL

MENU=101.05-2
14-JUL-93
PLOT= 2.00
ARRIVAL RATE (M/MIN) VS TOD(UT) JANUARY 1990

EXCEEDING -126.0 DBM RSL
FREQUENCY = 65 MHZ
POLARIZATION = HORIZONTAL
MAXIMUM DOWN TIME DUE TO SPORADIC-E = 240 SECONDS
BASED ON OBSERVED NOISE MEASUREMENTS - VERTICAL

EXCEEDING -126.0 DBM RSL
FREQUENCY = 85 MHZ
POLARIZATION = HORIZONTAL
MAXIMUM DOWN TIME DUE TO SPORADIC-E = 240 SECONDS
BASED ON OBSERVED NOISE MEASUREMENTS - VERTICAL
GEOPHYSICS LAB METEOR SCATTER PROGRAM

ARRIVAL RATE (M/MIN) VS TOD(UT) JANUARY 1990

THULE

UNDERDENSE ○
OVERDENSE △
ALL TRAILS +

EXCEEDING -126.0 DBM RSL
FREQUENCY - 104 MHZ
POLARIZATION - HORIZONTAL
MAXIMUM DOWN TIME DUE TO SPORADIC-E = 240 SECONDS
BASED ON OBSERVED NOISE MEASUREMENTS - VERTICAL

EXCEEDING -126.0 DBM RSL
FREQUENCY - 147 MHZ
POLARIZATION - HORIZONTAL
MAXIMUM DOWN TIME DUE TO SPORADIC-E = 240 SECONDS
BASED ON OBSERVED NOISE MEASUREMENTS - VERTICAL

MENU#101,05-2
14-JUL-93
PLOT= 5.00

152
ARRIVAL RATE (M/MIN) VS TOD(UT) JANUARY 1990

THULE

UNDERDENSE ○
OVERDENSE △
ALL TRAILS +

EXCEEDING -116.0 DBM RSL
FREQUENCY - 35 MHZ
POLARIZATION - HORIZONTAL
MAXIMUM DOWN TIME DUE TO SPORADIC-E = 240 SECONDS
BASED ON OBSERVED NOISE MEASUREMENTS - VERTICAL

ARRIVAL RATE (M/MIN) VS TOD(UT) JANUARY 1990

UNDERDENSE ○
OVERDENSE △
ALL TRAILS +

EXCEEDING -116.0 DBM RSL
FREQUENCY - 45 MHZ
POLARIZATION - HORIZONTAL
MAXIMUM DOWN TIME DUE TO SPORADIC-E = 240 SECONDS
BASED ON OBSERVED NOISE MEASUREMENTS - VERTICAL

MENU=101.05-2
14-JUL-93
PLOT= 7.00

MENU=101.05-2
14-JUL-93
PLOT= 8.00
GEOPHYSICS LAB METEOR SCATTER PROGRAM

ARRIVAL RATE (M/MIN) VS TOD(UT) JANUARY 1990

THULE

UNDERDENSE ○
OVERDENSE △
ALL TRAILS +

EXCEEDING -116.0 DBM RSL
FREQUENCY = 65 MHZ
POLARIZATION = HORIZONTAL
MAXIMUM DOWN TIME DUE TO SPORADIC-E = 240 SECONDS
BASED ON OBSERVED NOISE MEASUREMENTS - VERTICAL

EXCEEDING -116.0 DBM RSL
FREQUENCY = 85 MHZ
POLARIZATION = HORIZONTAL
MAXIMUM DOWN TIME DUE TO SPORADIC-E = 240 SECONDS
BASED ON OBSERVED NOISE MEASUREMENTS - VERTICAL

MENU=101.05-2
14-JUL-93
PLOT= 9.00

MENU=101.05-2
14-JUL-93
PLOT= 10.00
EXCEEDING -116.0 DBM RSL
FREQUENCY = 104 MHz
POLARIZATION = HORIZONTAL
MAXIMUM DOWN TIME DUE TO SPORADIC-E = 240 SECONDS
BASED ON OBSERVED NOISE MEASUREMENTS - VERTICAL

EXCEEDING -116.0 DBM RSL
FREQUENCY = 147 MHz
POLARIZATION = HORIZONTAL
MAXIMUM DOWN TIME DUE TO SPORADIC-E = 240 SECONDS
BASED ON OBSERVED NOISE MEASUREMENTS - VERTICAL
GEOPHYSICS LAB METEOR SCATTER PROGRAM

ARRIVAL RATE (M/MIN) VS TOD(UT) JANUARY 1990

THULE

UNDERDENSE ○
OVERDENSE △
ALL TRAILS +

EXCEEDING -106.0 DBM RSL
FREQUENCY = 35 MHZ
POLARIZATION - HORIZONTAL
MAXIMUM DOWN TIME DUE TO SPORADIC-E = 240 SECONDS
BASED ON OBSERVED NOISE MEASUREMENTS - VERTICAL

MENU101.05-2
14-JUL-93
PLOT# 13.00

ARRIVAL RATE (M/MIN) VS TOD(UT) JANUARY 1990

EXCEEDING -106.0 DBM RSL
FREQUENCY = 45 MHZ
POLARIZATION - HORIZONTAL
MAXIMUM DOWN TIME DUE TO SPORADIC-E = 240 SECONDS
BASED ON OBSERVED NOISE MEASUREMENTS - VERTICAL

MENU101.05-2
14-JUL-93
PLOT# 14.00
GEOPHYSICS LAB METEOR SCATTER PROGRAM

ARRIVAL RATE (M/Min) VS TOD(UT) JANUARY 1990

THULE

UNDERDENSE ○
OVERDENSE △
ALL TRAILS +

EXCEEDING -106.0 DBM RSL
FREQUENCY = 65 MHZ
POLARIZATION = HORIZONTAL
MAXIMUM DOWN TIME DUE TO SPORADIC-E = 240 SECONDS
BASED ON OBSERVED NOISE MEASUREMENTS - VERTICAL

EXCEEDING -106.0 DBM RSL
FREQUENCY = 85 MHZ
POLARIZATION = HORIZONTAL
MAXIMUM DOWN TIME DUE TO SPORADIC-E = 240 SECONDS
BASED ON OBSERVED NOISE MEASUREMENTS - VERTICAL
GEOPHYSICS LAB METEOR SCATTER PROGRAM

ARRIVAL RATE (M/Min) VS TOD(UT) JANUARY 1990

THULE

UNDERDENSE ○
OVERDENSE △
ALL TRAILS +

EXCEEDING -136.0 DBM RSL
FREQUENCY - 104 MHZ
POLARIZATION - HORIZONTAL
MAXIMUM DOWN TIME DUE TO SPORADIC-E - 240 SECONDS
BASED ON OBSERVED NOISE MEASUREMENTS - VERTICAL

EXCEEDING -106.0 DBM RSL
FREQUENCY - 147 MHZ
POLARIZATION - HORIZONTAL
MAXIMUM DOWN TIME DUE TO SPORADIC-E - 240 SECONDS
BASED ON OBSERVED NOISE MEASUREMENTS - VERTICAL

158
GEOPHYSICS LAB METEOR SCATTER PROGRAM

ARRIVAL RATE (M/MIN) VS THRESH DBM
JANUARY 1990

THULE

UNDERDENSE ○
OVERDENSE △
ALL TRAILS +

THE TIME OF DAY IS 0 - 24 HOURS U.T.
FREQUENCY = 35 MHZ
POLARIZATION = HORIZONTAL
MAXIMUM DOWN TIME DUE TO SPORADIC-E = 240 SECONDS
BASED ON OBSERVED NOISE MEASUREMENTS - VERTICAL

ARRIVAL RATE (M/MIN) VS THRESH DBM
JANUARY 1990

UNDERDENSE ○
OVERDENSE △
ALL TRAILS +

THE TIME OF DAY IS 0 - 24 HOURS U.T.
FREQUENCY = 45 MHZ
POLARIZATION = HORIZONTAL
MAXIMUM DOWN TIME DUE TO SPORADIC-E = 240 SECONDS
BASED ON OBSERVED NOISE MEASUREMENTS - VERTICAL
GEOPHYSICS LAB METEOR SCATTER PROGRAM

ARRIVAL RATE (M/MIN) VS THRESH DBM JANUARY 1990

THULE

UNDERDENSE ○
OVERDENSE △
ALL TRAILS +

THE TIME OF DAY IS 0 - 24 HOURS U.T.
FREQUENCY - 65 MHZ
POLARIZATION - HORIZONTAL
MAXIMUM DOWN TIME DUE TO SPORADIC-E - 240 SECONDS
BASED ON OBSERVED NOISE MEASUREMENTS - VERTICAL

ARRIVAL RATE (M/MIN) VS THRESH DBM JANUARY 1990

UNDERDENSE ○
OVERDENSE △
ALL TRAILS +

THE TIME OF DAY IS 0 - 24 HOURS U.T.
FREQUENCY - 85 MHZ
POLARIZATION - HORIZONTAL
MAXIMUM DOWN TIME DUE TO SPORADIC-E - 240 SECONDS
BASED ON OBSERVED NOISE MEASUREMENTS - VERTICAL

MENU=101,06-2
14-JUL-93
PLOT= 21.00

MENU=101,06-2
14-JUL-93
PLOT= 22.00

160
GEOPHYSICS LAB METEOR SCATTER PROGRAM

ARRIVAL RATE (M/MIN) VS THRESH DBM JANUARY 1990

THULE

UNDERDENSE ○ OVERDENSE △ ALL TRAILS +

THE TIME OF DAY IS 0 - 24 HOURS U.T.
FREQUENCY - 104 MHZ
POLARIZATION - HORIZONTAL
MAXIMUM DOWN TIME DUE TO SPORADIC-E = 240 SECONDS
BASED ON OBSERVED NOISE MEASUREMENTS - VERTICAL

ARRIVAL RATE (M/MIN) VS THRESH DBM JANUARY 1990

UNDERDENSE ○ OVERDENSE △ ALL TRAILS +

THE TIME OF DAY IS 0 - 24 HOURS U.T.
FREQUENCY - 147 MHZ
POLARIZATION - HORIZONTAL
MAXIMUM DOWN TIME DUE TO SPORADIC-E = 240 SECONDS
BASED ON OBSERVED NOISE MEASUREMENTS - VERTICAL

161
ARRIVAL RATE (M/MIN) VS DAY.TOD

EXCEEDING -126.0 DBM RSL
TYPE OF METEOR TRAIL - UNDERDENSE AND OVERDENSE
POLARIZATION - HORIZONTAL
MAXIMUM DOWN TIME DUE TO SPORADIC-E - 240 SECONDS
BASED ON OBSERVED NOISE MEASUREMENTS - VERTICAL

EXCEEDING -116.0 DBM RSL
TYPE OF METEOR TRAIL - UNDERDENSE AND OVERDENSE
POLARIZATION - HORIZONTAL
MAXIMUM DOWN TIME DUE TO SPORADIC-E - 240 SECONDS
BASED ON OBSERVED NOISE MEASUREMENTS - VERTICAL
EXCEEDING -106.0 DBM RSL
TYPE OF METEOR TRAIL - UNDERDENSE AND OVERDENSE
POLARIZATION - HORIZONTAL
MAXIMUM DOWN TIME DUE TO SPORADIC-E - 240 SECONDS
BASED ON OBSERVED NOISE MEASUREMENTS - VERTICAL

EXCEEDING 19.0 DB SNR
TYPE OF METEOR TRAIL - UNDERDENSE AND OVERDENSE
EFFECTIVE SYSTEM BANDWIDTH - 100 HZ
POLARIZATION - HORIZONTAL
MAXIMUM DOWN TIME DUE TO SPORADIC-E - 240 SECONDS
BASED ON OBSERVED NOISE MEASUREMENTS - VERTICAL
GEOPHYSICS LAB METEOR SCATTER PROGRAM

ARIVAL RATE (M/MIN) VS SNR (DB) JANUARY 1990

THULE

35 MHZ ⊙
45 MHZ ⊿
65 MHZ +
85 MHZ ×
104 MHZ ◊
147 MHZ ⊤

0 5 10 15 20 25 30 35 40 45 50
SNR (DB)

THE TIME OF DAY IS 0 - 24 HOURS U.T.
TYPE OF METEOR TRAIL - UNDERDENSE AND OVERDENSE
EFFECTIVE SYSTEM BANDWIDTH - 100 HZ
POLARIZATION - HORIZONTAL
MAXIMUM DOWN TIME DUE TO SPORADIC-E - 240 SECONDS
BASED ON OBSERVED NOISE MEASUREMENTS - VERTICAL

EXCEEDING 19.0 DB SNR
TYPE OF METEOR TRAIL - UNDERDENSE AND OVERDENSE
EFFECTIVE SYSTEM BANDWIDTH - 100 HZ
POLARIZATION = HORIZONTAL
MAXIMUM DOWN TIME DUE TO SPORADIC-E = 240 SECONDS
BASED ON OBSERVED NOISE MEASUREMENTS - VERTICAL

164
THE TIME OF DAY IS 0 - 24 HOURS U.T.
FREQUENCY - 35 MHZ
POLARIZATION - HORIZONTAL
BASED ON OBSERVED NOISE MEASUREMENTS - VERTICAL

THE TIME OF DAY IS 0 - 24 HOURS U.T.
FREQUENCY - 45 MHZ
POLARIZATION - HORIZONTAL
BASED ON OBSERVED NOISE MEASUREMENTS - VERTICAL
GEOPHYSICS LAB METEOR SCATTER PROGRAM

THE TIME OF DAY IS 0 - 24 HOURS U.T.
FREQUENCY - 65 MHZ
POLARIZATION - HORIZONTAL
BASED ON OBSERVED NOISE MEASUREMENTS - VERTICAL

DUTY CYCLE ABOVE RSL (%) VS THRESH DBM

JANUARY 1990

THULE

UNDERDENSE ○
OVERDENSE △
SPORADIC-E +
ALL-TRAILS X
ALL-EVENTS ♦

THRESH DBM

-135 -130 -125 -120 -115 -110 -105 -100 -95

THE TIME OF DAY IS 0 - 24 HOURS U.T.
FREQUENCY - 85 MHZ
POLARIZATION - HORIZONTAL
BASED ON OBSERVED NOISE MEASUREMENTS - VERTICAL

DUTY CYCLE ABOVE RSL (%) VS THRESH DBM

JANUARY 1990

THRESH DBM

-135 -130 -125 -120 -115 -110 -105 -100 -95

MENU=103.06-2
14-JUL-93
PLOT= 33.00

MENU=103.06-2
14-JUL-93
PLOT= 34.00
DUTY CYCLE ABOVE RSL (%) VS THRESH DBM
JANUARY 1990

THULE

UNDERDENSE ○
OVERDENSE △
SPORADIC-E +
ALL-TRAILS ×
ALL-EVENTS ♦

THE TIME OF DAY IS 0 - 24 HOURS U.T.
FREQUENCY - 104 MHZ
POLARIZATION - HORIZONTAL
BASED ON OBSERVED NOISE MEASUREMENTS - VERTICAL

DUTY CYCLE ABOVE RSL (%) VS THRESH DBM
JANUARY 1990

UNDERDENSE ○
OVERDENSE △
SPORADIC-E +
ALL-TRAILS ×
ALL-EVENTS ♦

THE TIME OF DAY IS 0 - 24 HOURS U.T.
FREQUENCY - 147 MHZ
POLARIZATION - HORIZONTAL
BASED ON OBSERVED NOISE MEASUREMENTS - VERTICAL
GEOPHYSICS LAB METEOR SCATTER PROGRAM

DUTY CYCLE ABOVE RSL (%) VS TOD(UT) JANUARY 1990

THULE

UNDERDENSE ○
OVERDENSE △
SPORADIC-E +
ALL-TRAILS ×
ALL-EVENTS ♦

THRESHOLD - -126.0 DBM RSL
FREQUENCY - 35 MHZ
POLARIZATION - HORIZONTAL
BASED ON OBSERVED NOISE MEASUREMENTS - VERTICAL

MENU*103,07-2
14-JUL-93
PLOT* 37.00

DUTY CYCLE ABOVE RSL (%) VS TOD(UT) JANUARY 1990

UNDERDENSE ○
OVERDENSE △
SPORADIC-E +
ALL-TRAILS ×
ALL-EVENTS ♦

THRESHOLD - -126.0 DBM RSL
FREQUENCY - 45 MHZ
POLARIZATION - HORIZONTAL
BASED ON OBSERVED NOISE MEASUREMENTS - VERTICAL

MENU*103,07-2
14-JUL-93
PLOT* 38.00

168
DUTY CYCLE ABOVE RSL (%) VS TOD(UT) JANUARY 1990

THULE

UNDERDENSE ⊙
OVERDENSE △
SPORADIC-E +
ALL-TRAILS ✗
ALL-EVENTS ◊

THRESHOLD = -126.0 DBM RSL
FREQUENCY = 65 MHZ
POLARIZATION = HORIZONTAL
BASED ON OBSERVED NOISE MEASUREMENTS - VERTICAL

DUTY CYCLE ABOVE RSL (%) VS TOD(UT) JANUARY 1990

UNDERDENSE ⊙
OVERDENSE △
SPORADIC-E +
ALL-TRAILS ✗
ALL-EVENTS ◊

THRESHOLD = -126.0 DBM RSL
FREQUENCY = 85 MHZ
POLARIZATION = HORIZONTAL
BASED ON OBSERVED NOISE MEASUREMENTS - VERTICAL
GEOPHYSICS LAB METEOR SCATTER PROGRAM

JANUARY 1990

THULE

UNDERDENSE ○
OVERDENSE △
Sporadic-E◆
ALL-TRAILS X
ALL-EVENTS ◇

THRESHOLD - -126.0 DBM RSL
FREQUENCY - 104 MHz
POLARIZATION - HORIZONTAL
BASED ON OBSERVED NOISE MEASUREMENTS - VERTICAL

THRESHOLD - -126.0 DBM RSL
FREQUENCY - 147 MHz
POLARIZATION - HORIZONTAL
BASED ON OBSERVED NOISE MEASUREMENTS - VERTICAL
GEOPHYSICS LAB METEOR SCATTER PROGRAM

JANUARY 1990

THULE

UNDERDENSE ○
OVERDENSE △
SPORADIC-E +
ALL-TRAILS X
ALL-EVENTS ♦

DUTY CYCLE ABOVE RSL (%) VS TOD(UT)

THRESHOLD = -116.0 DBM RSL
FREQUENCY = 35 MHZ
POLARIZATION = HORIZONTAL
BASED ON OBSERVED NOISE MEASUREMENTS - VERTICAL

MENU=103.07-2
14-JUL-93
PLOT= 43.00

DUTY CYCLE ABOVE RSL (%) VS TOD(UT)

THRESHOLD = -116.0 DBM RSL
FREQUENCY = 45 MHZ
POLARIZATION = HORIZONTAL
BASED ON OBSERVED NOISE MEASUREMENTS - VERTICAL

MENU=103.07-2
14-JUL-93
PLOT= 44.00
GEOPHYSICS LAB METEOR SCATTER PROGRAM

DUTY CYCLE ABOVE RSL (%) VS TOD(UT) JANUARY 1990

THULE

UNDERDENSE
OVERDENSE
SPORADIC-E
ALL-TRAILS
ALL EVENTS

THRESHOLD - -116.0 DBM RSL
FREQUENCY - 65 MHZ
POLARIZATION - HORIZONTAL
BASED ON OBSERVED NOISE MEASUREMENTS - VERTICAL

MENU=103,07-2
14-JUL-93
PLOT= 45.00

DUTY CYCLE ABOVE RSL (%) VS TOD(UT) JANUARY 1990

UNDERDENSE
OVERDENSE
SPORADIC-E
ALL-TRAILS
ALL EVENTS

THRESHOLD - -116.0 DBM RSL
FREQUENCY - 85 MHZ
POLARIZATION - HORIZONTAL
BASED ON OBSERVED NOISE MEASUREMENTS - VERTICAL

MENU=103,07-2
14-JUL-93
PLOT= 46.00
GEOPHYSICS LAB METEOR SCATTER PROGRAM

0 DUTY CYCLE ABOVE RSL (%) VS TOD(UT) JANUARY 1990

THULE

UNDERDENSE ○
OVERDENSE △
SPORADIC-E +
ALL-TRAITS X
ALL-EVENTS ♦

THRESHOLD = -116.0 DBM RSL
FREQUENCY = 104 MHZ
POLARIZATION = HORIZONTAL
BASED ON OBSERVED NOISE MEASUREMENTS - VERTICAL

DUTY CYCLE ABOVE RSL (%) VS TOD(UT) JANUARY 1990

UNDERDENSE ○
OVERDENSE △
SPORADIC-E +
ALL-TRAITS X
ALL-EVENTS ♦

THRESHOLD = -116.0 DBM RSL
FREQUENCY = 147 MHZ
POLARIZATION = HORIZONTAL
BASED ON OBSERVED NOISE MEASUREMENTS - VERTICAL

173
GEOPHYSICS LAB METEOR SCATTER PROGRAM

THULE

THRESHOLD - -106.0 DBM RSL
FREQUENCY - 35 MHz
POLARIZATION - HORIZONTAL
BASED ON OBSERVED NOISE MEASUREMENTS - VERTICAL

MENU=103.07-2
14-JUL-93
PLOT# 49.00

100.00

174
GEOPHYSICS LAB METEOR SCATTER PROGRAM

DUTY CYCLE ABOVE RSL (%) VS TOD(UT) JANUARY 1990

THULE

UNDERDENSE ○
OVERDENSE △
SPORADIC-E +
ALL-TRAILS X
ALL-EVENTS ◊

THRESHOLD - -106.0 DBM RSL
FREQUENCY - 65 MHz
POLARIZATION - HORIZONTAL
BASED ON OBSERVED NOISE MEASUREMENTS - VERTICAL

MENU=103,07-2
14-JUL-93
PLOT= 51.00

DUTY CYCLE ABOVE RSL (%) VS TOD(UT) JANUARY 1990

UNDERDENSE ○
OVERDENSE △
SPORADIC-E +
ALL-TRAILS X
ALL-EVENTS ◊

THRESHOLD - -106.0 DBM RSL
FREQUENCY - 85 MHz
POLARIZATION - HORIZONTAL
BASED ON OBSERVED NOISE MEASUREMENTS - VERTICAL

MENU=103,07-2
14-JUL-93
PLOT= 52.00
THRESHOLD = -106.0 DBM RSL
FREQUENCY = 104 MHZ
POLARIZATION = HORIZONTAL
BASED ON OBSERVED NOISE MEASUREMENTS - VERTICAL

THRESHOLD = -106.0 DBM RSL
FREQUENCY = 147 MHZ
POLARIZATION = HORIZONTAL
BASED ON OBSERVED NOISE MEASUREMENTS - VERTICAL
GEOPHYSICS LAB METEOR SCATTER PROGRAM

DUTY CYCLE ABOVE RSL (%) VS DAY.TOD

JANUARY 1990

THULE

45 MHZ △
104 MHZ ○

THRESHOLD - -126.0 DBM RSL
THE EVENT CLASS IS UNDERDENSE AND OVERDENSE TRAILS
POLARIZATION - HORIZONTAL
BASED ON OBSERVED NOISE MEASUREMENTS - VERTICAL

DUTY CYCLE ABOVE RSL (%) VS DAY.TOD

JANUARY 1990

THRESHOLD - -116.0 DBM RSL
THE EVENT CLASS IS UNDERDENSE AND OVERDENSE TRAILS
POLARIZATION - HORIZONTAL
BASED ON OBSERVED NOISE MEASUREMENTS - VERTICAL
GEOPHYSICS LAB METEOR SCATTER PROGRAM

DUTY CYCLE ABOVE RSL (%) VS DAY.TOD
JANUARY 1990

THRESHOLD - -106.0 DBM RSL
THE EVENT CLASS IS UNDERDENSE AND OVERDENSE TRAILS
POLARIZATION - HORIZONTAL
BASED ON OBSERVED NOISE MEASUREMENTS - VERTICAL

MENU#103,09-2
14-JUL-93
PLOT= 57.00

DUTY CYCLE ABOVE RSL (%) VS DAY.TOD
JANUARY 1990

THRESHOLD - -126.0 DBM RSL
THE EVENT CLASS IS SPORADIC-E
POLARIZATION - HORIZONTAL
BASED ON OBSERVED NOISE MEASUREMENTS - VERTICAL

MENU#103,09-2
14-JUL-93
PLOT= 58.00
THRESHOLD - -116.0 DBM RSL
THE EVENT CLASS IS SPORADIC-E
POLARIZATION - HORIZONTAL
BASED ON OBSERVED NOISE MEASUREMENTS - VERTICAL

THRESHOLD - -106.0 DBM RSL
THE EVENT CLASS IS SPORADIC-E
POLARIZATION - HORIZONTAL
BASED ON OBSERVED NOISE MEASUREMENTS - VERTICAL
GEOPHYSICS LAB METEOR SCATTER PROGRAM

DUTY CYCLE ABOVE SNR (%) VS SNR (DB) JANUARY 1990

THULE

35 MHZ ○
45 MHZ △
65 MHZ +
85 MHZ ×
104 MHZ ◊
147 MHZ †

THE TIME OF DAY IS 0 - 24 HOURS U.T.
THE EVENT CLASS IS UNDERDENSE AND OVERDENSE TRAILS
EFFECTIVE SYSTEM BANDWIDTH - 100.0 Hz
POLARIZATION = HORIZONTAL
BASED ON OBSERVED NOISE MEASUREMENTS - VERTICAL

DUTY CYCLE ABOVE SNR (%) VS SNR (DB) JANUARY 1990

THE TIME OF DAY IS 0 - 24 HOURS U.T.
THE EVENT CLASS IS SPORADIC-E AND METEOR TRAILS
EFFECTIVE SYSTEM BANDWIDTH - 100.0 Hz
POLARIZATION = HORIZONTAL
BASED ON OBSERVED NOISE MEASUREMENTS - VERTICAL
SIGNAL-TO-NOISE RATIO = 19.0 dB
THE EVENT CLASS IS UNDERDENSE AND OVERDENSE TRAILS
EFFECTIVE SYSTEM BANDWIDTH = 100.0 Hz
POLARIZATION = HORIZONTAL
BASED ON OBSERVED NOISE MEASUREMENTS - VERTICAL

MENU=104,03-2
14-JUL-93
PLOT= 63.00

SIGNAL-TO-NOISE RATIO = 19.0 dB
THE EVENT CLASS IS SPORADIC-E AND METEOR TRAILS
EFFECTIVE SYSTEM BANDWIDTH = 100.0 Hz
POLARIZATION = HORIZONTAL
BASED ON OBSERVED NOISE MEASUREMENTS - VERTICAL

MENU=104,03-2
14-JUL-93
PLOT= 64.00
GEOPHYSICS LAB METEOR SCATTER PROGRAM

DUTY CYCLE ABOVE SNR (%) VS DAY.TOD JANUARY 1990

THULE

SIGNAL-TO-NOISE RATIO - 19.0 DB
THE EVENT CLASS IS UNDERDENSE AND OVERDENSE TRAILS
EFFECTIVE SYSTEM BANDWIDTH - 100.HZ
POLARIZATION = HORIZONTAL
BASED ON OBSERVED NOISE MEASUREMENTS - VERTICAL

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31
DAY.TOD

45 MHz ▲
104 MHz ◇

182
Exceeding -126.0 DBM RSL
The time of day is 0 - 24 hours U.T.
Frequency - 35 MHz
Based on observed noise measurements - vertical
Normalizing factors:
Under - 41246, Over - 44304, Spor-E - 44550.
Trails - 85552, Events - 130102.

Exceeding -126.0 DBM RSL
The time of day is 0 - 24 hours U.T.
Frequency - 45 MHz
Based on observed noise measurements - vertical
Normalizing factors:
Under - 21123, Over - 21961, Spor-E - 5699.
Trails - 43084, Events - 48783.
EXCEEDING -126.0 DBM RSL
THE TIME OF DAY IS 0 - 24 HOURS U.T.
FREQUENCY = 65 MHZ
BASED ON OBSERVED NOISE MEASUREMENTS - VERTICAL
NORMALIZING FACTORS:
UNDER - 6952. OVER - 4097. SPOR-E - 936.
TRAILS - 11049. EVENTS - 11985.

EXCEEDING -126.0 DBM RSL
THE TIME OF DAY IS 0 - 24 HOURS U.T.
FREQUENCY = 85 MHZ
BASED ON OBSERVED NOISE MEASUREMENTS - VERTICAL
NORMALIZING FACTORS:
UNDER - 4152. OVER - 2118. SPOR-E - 162.
TRAILS - 6270. EVENTS - 6432.
GEOPHYSICS LAB METEOR SCATTER PROGRAM

THULE

NORM. DISTRIBUTION VS DURATION JANUARY 1990

EXCEEDING -126.0 DBM RSL
THE TIME OF DAY IS 0 - 24 HOURS U.T.
FREQUENCY - 104 MHZ
BASED ON OBSERVED NOISE MEASUREMENTS - VERTICAL
NORMALIZING FACTORS:
UNDER - 4984. OVER - 2016. SPOR-E - 55.
TRAILS - 7000. EVENTS - 7055.

EXCEEDING -126.0 DBM RSL
THE TIME OF DAY IS 0 - 24 HOURS U.T.
FREQUENCY - 147 MHZ
BASED ON OBSERVED NOISE MEASUREMENTS - VERTICAL
NORMALIZING FACTORS:
UNDER - 1290. OVER - 452. SPOR-E - 0.
TRAILS - 1742. EVENTS - 1742.
EXCEEDING -116.0 DBM RSL
THE TIME OF DAY IS 0 - 24 HOURS U.T.
FREQUENCY - 35 MHZ
BASED ON OBSERVED NOISE MEASUREMENTS - VERTICAL
NORMALIZING FACTORS:
UNDER - 13231.  OVER - 23299.  SPOR-E - 30512.
TRAILS - 36530.  EVENTS - 67042.

EXCEEDING -116.0 DBM RSL
THE TIME OF DAY IS 0 - 24 HOURS U.T.
FREQUENCY - 45 MHZ
BASED ON OBSERVED NOISE MEASUREMENTS - VERTICAL
NORMALIZING FACTORS:
UNDER - 7420.  OVER - 10697.  SPOR-E - 5895.
TRAILS - 18117.  EVENTS - 24016.
Exceeding -116.0 dBm RSL.
The time of day is 0 - 24 hours U.T.
Frequency - 65 MHz
Based on observed noise measurements - vertical
Normalizing factors:
Trails - 4416. Events - 5045.

Exceeding -116.0 dBm RSL.
The time of day is 0 - 24 hours U.T.
Frequency - 85 MHz
Based on observed noise measurements - vertical
Normalizing factors:
Trails - 2262. Events - 2431.
EXCEEDING -116.0 DBM RSL
THE TIME OF DAY IS 0 - 24 HOURS U.T.
FREQUENCY = 104 MHZ
BASED ON OBSERVED NOISE MEASUREMENTS - VERTICAL
NORMALIZING FACTORS:
UNDER = 1358.  OVER = 1085.  SPOR-E = 62.
TRAILS = 2443. EVENTS = 2505.

EXCEEDING -116.0 DBM RSL
THE TIME OF DAY IS 0 - 24 HOURS U.T.
FREQUENCY = 147 MHZ
BASED ON OBSERVED NOISE MEASUREMENTS - VERTICAL
NORMALIZING FACTORS:
UNDER = 291.  OVER = 225.  SPOR-E = 0.
TRAILS = 516. EVENTS = 516.
GEOPHYSICS LAB METEOR SCATTER PROGRAM

NORM. DISTRIBUTION VS DURATION JANUARY 1990

THULE

UNDERDENSE ○
OVERDENSE △
SPORADIC-E +
ALL-TRAILS X
ALL-EVENTS ◊

EXCEEDING -106.0 DBM RSL
THE TIME OF DAY IS 0 - 24 HOURS U.T.
FREQUENCY - 35 MHZ
BASED ON OBSERVED NOISE MEASUREMENTS - VERTICAL
NORMALIZING FACTORS:
UNDER - 2526. OVER - 5562. SPOR-E - 11300.
TRAILS - 8088. EVENTS - 19388.

MENμ=106.02-4
14-JUL-93
PLOT= 79.00

EXCEEDING -106.0 DBM RSL
THE TIME OF DAY IS 0 - 24 HOURS U.T.
FREQUENCY - 45 MHZ
BASED ON OBSERVED NOISE MEASUREMENTS - VERTICAL
NORMALIZING FACTORS:
UNDER - 1490. OVER - 2981. SPOR-E - 3385.
TRAILS - 4471. EVENTS - 7856.

MENμ=106.02-4
14-JUL-93
PLOT= 80.00
GEOPHYSICS LAB METEOR SCATTER PROGRAM

NORM. DISTRIBUTION VS DURATION  JANUARY 1990

THULE

UNDERDENSE ○
OVERDENSE △
SPORADIC-E +
ALL-TRAILS X
ALL-EVENTS ♦

EXCEEDING -106.0 DBM RSL
THE TIME OF DAY IS 0 - 24 HOURS U.T.
FREQUENCY - 85 MHZ
BASED ON OBSERVED NOISE MEASUREMENTS - VERTICAL
NORMALIZING FACTORS:
TRAILS - 312.  EVENTS - 370.

100 1.00 2.00 3.00 4.00
DURATION

EXCEEDING -106.0 DBM RSL
THE TIME OF DAY IS 0 - 24 HOURS U.T.
FREQUENCY - 65 MHZ
BASED ON OBSERVED NOISE MEASUREMENTS - VERTICAL
NORMALIZING FACTORS:
UNDER - 264.  OVER - 515.  SPOR-E - 416.
TRAILS - 779.  EVENTS - 1195.
GEOPHYSICS LAB METEOR SCATTER PROGRAM

NORM. DISTRIBUTION VS DURATION JANUARY 1990

THULE

UNDERDENSE ○
OVERDENSE △
SPORADIC-E +
ALL-TRAILS ×
ALL-EVENTS ●

EXCEEDING -106.0 DBM RSL
THE TIME OF DAY IS 0 - 24 HOURS U.T.
FREQUENCY - 104 MHZ
BASED ON OBSERVED NOISE MEASUREMENTS - VERTICAL
NORMALIZING FACTORS:
UNDER - 123. OVER - 286. SPOR-E - 8.
TRAILS - 409. EVENTS - 417.

EXCEEDING -106.0 DBM RSL
THE TIME OF DAY IS 0 - 24 HOURS U.T.
FREQUENCY - 147 MHZ
BASED ON OBSERVED NOISE MEASUREMENTS - VERTICAL
NORMALIZING FACTORS:
UNDER - 16. OVER - 48. SPOR-E - 0.
TRAILS - 64. EVENTS - 64.

191
GEOPHYSICS LAB METEOR SCATTER PROGRAM

NORM. DISTRIBUTION VS DURATION JANUARY 1990

THULE

35 MHz ○
45 MHz △
65 MHz ＋
85 MHz ×
104 MHz ◇
147 MHz ▲

EXCEEDING -126.0 DBM RSL
THE TIME OF DAY IS 0 - 24 HOURS U.T.
THE EVENT CLASS IS UNDERDENSE AND OVERDENSE TRAILS
BASED ON OBSERVED NOISE MEASUREMENTS - VERTICAL
NORMALIZING FACTORS:
35 MHz - 85552.
45 MHz - 43084.
65 MHz - 11049.
85 MHz - 6270.
104 MHz - 7000.
147 MHz - 1742.

EXCEEDING -116.0 DBM RSL
THE TIME OF DAY IS 0 - 24 HOURS U.T.
THE EVENT CLASS IS UNDERDENSE AND OVERDENSE TRAILS
BASED ON OBSERVED NOISE MEASUREMENTS - VERTICAL
NORMALIZING FACTORS:
35 MHz - 36530.
45 MHz - 18117.
65 MHz - 4416.
85 MHz - 2262.
104 MHz - 2443.
147 MHz - 516.
GEOPHYSICS LAB METEOR SCATTER PROGRAM

NORM. DISTRIBUTION VS DURATION JANUARY 1990

THULE

-106.0 DBM RSL
THE TIME OF DAY IS 0 - 24 HOURS U.T.
THE EVENT CLASS IS UNDERDENSE AND OVERDENSE TRAILS
BASED ON OBSERVED NOISE MEASUREMENTS - VERTICAL
NORMALIZING FACTORS:
35 MHZ - 8068
45 MHZ - 4471
65 MHZ - 779
85 MHZ - 312
104 MHZ - 409
147 MHZ - 64

AVER. DURATION (SEC.) VS RSL JANUARY 1990

UNDERDENSE ○
OVERDENSE △
SPORADIC-E +
ALL-TRAITS ×
ALL-EVENTS ◊

THE TIME OF DAY IS 0 - 24 HOURS U.T.
FREQUENCY - 35 MHZ
BASED ON OBSERVED NOISE MEASUREMENTS - VERTICAL
GEOPHYSICS LAB METEOR SCATTER PROGRAM

JANUARY 1990

AVER. DURATION (SEC.) VS RSL

THULE

UNDERDENSE ○
OVERDENSE △
SPORADIC-E +
ALL-TRAILS X
ALL-EVENTS ♦

THE TIME OF DAY IS 0 - 24 HOURS U.T.
FREQUENCY = 45 MHZ
BASED ON OBSERVED NOISE MEASUREMENTS - VERTICAL

MENÜ=106.06-1
14-JUL-93
PLOT= 89.00

AVER. DURATION (SEC.) VS RSL

JANUARY 1990

UNDERDENSE ○
OVERDENSE △
SPORADIC-E +
ALL-TRAILS X
ALL-EVENTS ♦

THE TIME OF DAY IS 0 - 24 HOURS U.T.
FREQUENCY = 65 MHZ
BASED ON OBSERVED NOISE MEASUREMENTS - VERTICAL

MENÜ=106.06-1
14-JUL-93
PLOT= 90.00
GEOPHYSICS LAB METEOR SCATTER PROGRAM

AVER. DURATION (SEC.) VS RSL JANUARY 1990

THULE

UNDERDENSE ○
OVERDENSE △
SPORADIC-E +
ALL-TRAILS X
ALL-EVENTS ◇

THE TIME OF DAY IS 0 - 24 HOURS U.T.
FREQUENCY - 85 MHZ
BASED ON OBSERVED NOISE MEASUREMENTS - VERTICAL

MENU=106,06-1
14-JUL-93
PLOT= 91.00

AVER. DURATION (SEC.) VS RSL JANUARY 1990

UNDERDENSE ○
OVERDENSE △
SPORADIC-E +
ALL-TRAILS X
ALL-EVENTS ◇

THE TIME OF DAY IS 0 - 24 HOURS U.T.
FREQUENCY - 104 MHZ
BASED ON OBSERVED NOISE MEASUREMENTS - VERTICAL

MENU=106,06-1
14-JUL-93
PLOT= 92.00
GEOPHYSICS LAB METEOR SCATTER PROGRAM

THE TIME OF DAY IS 0 - 24 HOURS U.T.
FREQUENCY - 147 MHZ
BASED ON OBSERVED NOISE MEASUREMENTS - VERTICAL

EXCEEDING 19.0 DB SNR
THE TIME OF DAY IS 0 - 24 HOURS U.T.
THE EVENT CLASS IS UNDERDENSE AND OVERDENSE TRAILS
EFFECTIVE SYSTEM BANDWIDTH = 100 HZ
BASED ON OBSERVED NOISE MEASUREMENTS - VERTICAL
NORMALIZING FACTORS:
35 MHZ - 66724. 45 MHZ - 34908. 65 MHZ - 10710.
85 MHZ - 7160. 104 MHZ - 8515. 147 MHZ - 2213.
GEOPHYSICS LAB: METEOR SCATTER PROGRAM

0

NORM. DISTRIBUTION VS DURATION JANUARY 1990

THULE

0

35 MHZ
45 MHZ
65 MHZ
85 MHZ
104 MHZ
147 MHZ

0

35 MHZ
45 MHZ
65 MHZ
85 MHZ
104 MHZ
147 MHZ

EXCEEDING 19.0 DB SNR
THE TIME OF DAY IS 0 - 24 HOURS U.T.
THE EVENT CLASS IS SPORADIC-E AND METEOR TRAILS
EFFECTIVE SYSTEM BANDWIDTH - 100.HZ
BASED ON OBSERVED NOISE MEASUREMENTS - VERTICAL
NORMALIZING FACTORS:
35MHZ - 106163. 45MHZ - 41396. 65MHZ - 11649.
85MHZ - 7309. 104MHZ - 6571. 147MHZ - 2213.

0 AVER. DURATION (SEC.) VS SNR (DB) JANUARY 1990

0

THE TIME OF DAY IS 0 - 24 HOURS U.T.
THE EVENT CLASS IS UNDERDENSE AND OVERDENSE TRAILS
EFFECTIVE SYSTEM BANDWIDTH - 100.HZ
BASED ON OBSERVED NOISE MEASUREMENTS - VERTICAL
GEOPHYSICS LAB METEOR SCATTER PROGRAM

THE TIME OF DAY IS 0 - 24 HOURS U.T.
THE EVENT CLASS IS SPORADIC-E AND METEOR TRAILS
EFFECTIVE SYSTEM BANDWIDTH = 100 HZ
BASED ON OBSERVED NOISE MEASUREMENTS - VERTICAL

NORMALIZED DISTRIBUTION OF UNDERDENSE METEOR DECAY CONSTANTS

JANUARY 1990
THE TIME OF DAY IS 0 : 24 HOURS U.T.
BASED ON OBSERVED NOISE MEASUREMENTS - VERTICAL
NORMALIZING FACTORS:
35 MHZ : 20383. 45 MHZ : 14688. 65 MHZ : 7721.
85 MHZ : 5519. 104 MHZ : 6788. 147 MHZ : 1622.
AVERAGE UNDERDENSE TIME CONSTANT VS TIME FOR JANUARY 1990

The 24 hour average time constants are:

- 35 MHz: 0.272
- 45 MHz: 0.207
- 65 MHz: 0.124
- 85 MHz: 0.087
- 104 MHz: 0.070
- 147 MHz: 0.051

NORMALIZED DISTRIBUTION OF FADES/SECOND FOR JANUARY 1990

The time of day is 0:24 hours U.T.

The event class is underdense and overdense trails.

Normalizing factors:
- 35 MHz: 21925
- 45 MHz: 12048
- 65 MHz: 3017
- 85 MHz: 1514
- 104 MHz: 1228
- 147 MHz: 189
GEOPHYSICS LAB METEOR SCATTER PROGRAM

NORMALIZED DISTRIBUTION OF FADES/SECOND FOR JANUARY 1990

THULE

UNDERDENSE ○
OVERDENSE △
SPORADIC-E +
ALL TRAILS ×
ALL EVENTS ♦

THE TIME OF DAY IS 0:24 HOURS U.T.
FREQUENCY = 35 MHZ
NORMALIZING FACTORS:
TRAILS: 21925. EVENTS: 24021.

MENU=109,02-4
14-JUL-93
PLOT= 101.00

NORMALIZED DISTRIBUTION OF FADES/SECOND FOR JANUARY 1990

UNDERDENSE ○
OVERDENSE △
SPORADIC-E +
ALL TRAILS ×
ALL EVENTS ♦

THE TIME OF DAY IS 0:24 HOURS U.T.
FREQUENCY = 45 MHZ
NORMALIZING FACTORS:
TRAILS: 12048. EVENTS: 12165.

MENU=109,02-4
14-JUL-93
PLOT= 102.00
NORMALIZED DISTRIBUTION OF FADES/SECOND FOR JANUARY 1990

THE TIME OF DAY IS 0:24 HOURS U.T.
FREQUENCY = 65 MHz
NORMALIZING FACTORS:
TRAILS : 3017. EVENTS : 3027.

NORMALIZED DISTRIBUTION OF FADES/SECOND FOR JANUARY 1990

THE TIME OF DAY IS 0:24 HOURS U.T.
FREQUENCY = 85 MHz
NORMALIZING FACTORS:
TRAILS : 1514. EVENTS : 1516.
GEOPHYSICS LAB METEOR SCATTER PROGRAM

NORMALIZED DISTRIBUTION OF FADES/SECOND FOR JANUARY 1990

THE TIME OF DAY IS 0:24 HOURS U.T.
FREQUENCY - 104 MHZ
NORMALIZING FACTORS:
TRAILS : 1228. EVENTS : 1228.

MENU=109.02-4
14- JUL-93
PLOT= 105.00

NORMALIZED DISTRIBUTION OF FADES/SECOND FOR JANUARY 1990

THE TIME OF DAY IS 0:24 HOURS U.T.
FREQUENCY - 147 MHZ
NORMALIZING FACTORS:
TRAILS : 189. EVENTS : 189.

MENU=109.02-4
14- JUL-93
PLOT= 106.00
THE EVENT CLASS IS UNDERDENSE AND OVERDENSE TRAILS

THE 24 HOUR FADES/SECOND AVERAGES ARE:
5.376   5.170   4.980   5.069   4.868   4.964

NORMALIZING FACTORS:
35 MHZ : 107008.  45 MHZ : 56116.  65 MHZ : 11563.
NORMALIZED DISTRIBUTION OF FADE DURATIONS FOR JANUARY 1990

THE TIME OF DAY IS 0:24 HOURS U.T.
FREQUENCY = 45 MHZ
NORMALIZING FACTORS:
TRAILS: 56116.  EVENTS: 84408.
NORMALIZED DISTRIBUTION OF FADE DURATIONS FOR JANUARY 1990

THE TIME OF DAY IS 0:24 HOURS U.T.
FREQUENCY = 65 MHZ
NORMALIZING FACTORS:
TRAILS: 11563. EVENTS: 15594.

THE TIME OF DAY IS 0:24 HOURS U.T.
FREQUENCY = 85 MHZ
NORMALIZING FACTORS:
TRAILS: 5592. EVENTS: 6536.
NORMALIZED DISTRIBUTION OF FADE DURATIONS FOR JANUARY 1990

THULE

UNDERDENSE ○
OVERDENSE △
SPORADIC-E +
ALL TRAILS ×
ALL EVENTS ●

THE TIME OF DAY IS 0:24 HOURS U.T.
FREQUENCY - 104 MHZ
NORMALIZING FACTORS:
TRAILS : 4322. EVENTS : 4547.

NORMALIZED DISTRIBUTION OF FADE DURATIONS FOR JANUARY 1990

UNDERDENSE ○
OVERDENSE △
SPORADIC-E +
ALL TRAILS ×
ALL EVENTS ●

THE TIME OF DAY IS 0:24 HOURS U.T.
FREQUENCY - 147 MHZ
NORMALIZING FACTORS:
TRAILS : 788. EVENTS : 788.
GEOPHYSICS LAB METEOR SCATTER PROGRAM

AVAILABILITY x POWER VS DAY.TOD JANUARY 1990

THULE

147 MHZ
104 MHZ
85 MHZ
65 MHZ
45 MHZ
35 MHZ

MENU: 105, 10-1
14-JUL-93
PLOT: 115.00

207
GEOPHYSICS LAB METEOR SCATTER PROGRAM

TEMP LOG-OF-KELVIN VS DAY.TOD JANUARY 1990

THULE

147 MHZ
104 MHZ
85 MHZ
65 MHZ
45 MHZ
35 MHZ

DAY.TOD

BASED ON OBSERVED NOISE MEASUREMENTS - VERTICAL