The High-Frequency Benchmark Propagation Program

J. A. Ferguson
C. H. Shellman

Approved for public release; distribution is unlimited.
Best Available Copy
ADMINISTRATIVE INFORMATION

Work for this report was performed by members of the Ionospheric Branch, Code 541, in the Ocean and Atmospheric Sciences Division of the Naval Command, Control and Ocean Surveillance Center, RDT&E Division, San Diego, California.

Released by
J. A. Ferguson, Head
Ionospheric Branch

Under authority of
J. H. Richter, Head
Ocean and Atmospheric Sciences Division
CONTENTS

INTRODUCTION ............................................................ 1
SPATIAL SMOOTHING ................................................... 1
IONOSPHERIC MODEL .................................................. 2
RAY TRACING ............................................................. 3
SAMPLE PROBLEM ....................................................... 4
IONOSPHERIC DISPLAYS ............................................... 9
FUTURE PLANS .......................................................... 11
REFERENCES ............................................................ 13

FIGURES

1. Parameters added to the ray trace input array to support the HF Benchmark .................................................... 4
2. Inputs for sample problem ............................................ 5
3. Plots of contours of constant values of the logarithm of the plasma frequency in the vertical plane along the great circle path passing through the transmitter and receiver in the horizontal plane at 200 km .......................... 6
4. Plots of the ray paths for the extraordinary ray at 4 MHz in the vertical plane passing through the transmitter and the receiver (top panel) and in the horizontal plane (bottom panel) ....................................................... 7
5. Contents of color band initialization file ............................................ 9
6. Plot of global contours of plasma frequency in a constant meridian. The vertical scale is exaggerated to show the contours .......................... 10
7. Plot of contours of plasma frequency in a plane defined by a plane passing through a transmitter and a receiver .......................... 10
INTRODUCTION

The goal of this work is the development of techniques that permit timely and efficient evaluation of different propagation models. The resulting program is to be as sophisticated as possible with concerns for computer run time to be subordinate to the use of realistic models of the environment. Employed with new databases of high-latitude propagation measurements, this model will be used to evaluate and improve the faster-running models and point to deficiencies in the ionospheric models and the high-frequency (HF) prediction models. In addition, the development of new graphical displays will enhance understanding of the propagation environment. The emphasis of this development is on the personal computer for portability and ease of access. The current operating system is OS/2, Version 2.1. One of the modes of graphical output is specific to this operating system.

SPATIAL SMOOTHING

The first step in the development of the HF Benchmark is the development of a generalized spatial smoothing routine that will accept arbitrary ionospheric profiles. A candidate spatial smoothing algorithm was developed by Paul [1991, 1993] who demonstrated, with satisfying results, a general function that permitted fitting a set of irregularly spaced discrete data. Ferguson and Shellman [1991] and Ferguson [1993] applied this algorithm to a three-dimensional array of ionospheric profiles of electron density with altitude distributed in a regular grid of latitude and longitude. The fundamental problem with this technique, when applied to large data sets, is the large amount of time required to obtain a set of interpolation coefficients. This limits the flexibility of the resulting program because even small changes in the propagation path require repetition of the whole iterative process. We now have a new, more flexible, and faster running technique employing a three-dimensional cubic spline interpolation.

The new procedure is quite straightforward. The basic input to the program requires definition of a reference path, usually between a transmitter and receiver. The program automatically sets up a uniform grid of locations relative to this reference path. These locations are uniformly spaced along the reference path and along great circles perpendicular to it. The current configuration is for points along the path to be 200 km apart and for the points perpendicular to the path to be at ±400 and ±200 km from it. The electron densities are computed at regular intervals of 10 km in height. Following standard practice, it is actually the logarithm of the electron densities that is interpolated.

Let us designate the matrix of ionospheric parameters as \( f(i,j,k) \), where \( i, j, \) and \( k \) represent values along the path, perpendicular to the path, and in height, respectively. Since the number of points along the path is usually much greater than the number of points perpendicular to the path or the number of heights, coefficients for the cubic spline interpolation along the reference path (parametric in \( j \) and \( k \)) are computed and stored only one time for each run. At an arbitrary point \((x,y,z)\), we use these coefficients to compute a set of interpolated values, \( f_x(j,k) \), representing the original function in the \( y-z \) plane at \( x \). Then, by using these \( f_x(j,k) \) values, we compute a set of
coefficients for cubic spline interpolation (parametric in $k$) along each of the short paths perpendicular to the reference path. These coefficients are used to interpolate a set of interpolated values, $f_{xy}(k)$, representing the function along the $z$ axis at $(x,y)$. Finally, we use the $f_{xy}(k)$ along the $z$ axis to compute a set of coefficients for the cubic spline interpolation along the $z$ axis, which in turn, are used to get an interpolated value, $f_{xyz}$ at the desired point. Since we are using cubic spline interpolation, we also get continuous derivatives in all three directions (necessary for the ray tracing). We achieve a lot of computational efficiency in solving for the coefficients because the set of equations which must be solved are tri-diagonal, and the coefficients of the set of simultaneous equations to be solved for each set of spline coefficients are the same in all three spatial directions.

Four subroutines are used to implement the interpolation. The routine named `GRD_Model` takes the parameters of the reference path and sets up the matrix of ionospheric data. This routine also sets up the interpolation and calls the interpolation routine. The routine named `GRD_Coeff` does the cubic spline interpolation for the ionospheric density and its derivatives. The routine `XYThPh` does coordinate conversion between geographic coordinates and the quasi-Cartesian coordinate system used in the interpolation routine. This routine also calculates the partial derivatives of geographic coordinates with respect to the quasi-Cartesian coordinates. The routine named `PGeoPMag` computes partial derivatives of geographic coordinates with respect to geomagnetic coordinates.

**IONOSPHERIC MODEL**

The ionospheric model used in the program has been updated to the Parameterized Ionospheric Model (PIM), Version 1.05. (PIM is available from Computational Physics Inc., 385 Elliot St., Newton, MA 02164.) The realtime version of this program is described by Daniels [1991]. A driver routine, named `Get_Profile`, has been developed for this model. It uses solar parameters such as 10.7 cm flux and sunspot number, supplied by the user, to prepare inputs for the PIM. These user inputs are described later in this report. The driver routine replaces a number of routines supplied as part of the PIM. No changes other than those required for the current operating system have been made to the subroutines of the PIM to allow quick replacement or update of the ionospheric model in the future.

The PIM has a few known shortcomings. These include a discontinuity in the E-layer at the boundary between middle and high latitudes. There can be unusually steep density gradients and bumps in the top and bottom sides of the ionospheric profile. These problems are being addressed by the developers of the model.
RAY TRACING

As in Ferguson and Shellman [1991] and Ferguson [1993], the HF Benchmark continues to use the Jones and Stephenson [1975] ray tracing model. This is a versatile program with full allowance for externally specified models of the electron density, collision frequency, and geomagnetic field. Every effort has been made to retain this flexibility in its implementation in the HF Benchmark. In particular, the input requirements are nearly identical to the original Jones and Stephenson version with the spatial smoothing algorithm being specified as an ionospheric model named GRDMODEL. When the program sees GRDMODEL as the ionospheric model, the next input record is read as a case identification consisting of one word, call this word the CASE-ID, which forms the root of the file name for all subsequent outputs. For example, the parameters of the ray paths are stored in a file with a name of the form CASE-ID.RAY and the execution log is written to a file names CASE-ID.LOG. During execution of the program, a summary of progress is written to the screen, but all of the detailed output is written to this log file. In the present implementation of the HF Benchmark program, the calculations of the spatial derivatives of the ionospheric electron densities require that the magnetic field model used in the ray tracing be that of a dipole ("DIPOLY" in the Jones and Stephenson input specification).

In addition to the original program inputs, a number of additional parameters, summarized in figure 1, have been introduced. The change to the new interpolation algorithm results in removing a number of parameters previously added by Ferguson and Shellman [1991]. The value of parameter 100 indicates whether to compute the ionospheric profiles (a value of 1) or to use an existing file of ionospheric profiles (a value of 9). If the value of parameter 100 is 1, then the program computes the required matrix of ionospheric profiles and writes them to a file named CASE-ID.GRD. The meanings of parameters 111 through 116 are self evident. Parameter 117 is a flag to indicate the direction of the solar magnetic field, B_y. Parameters 118 and 119 set lower and upper limits, respectively, on the heights of the ionosphere. If the value of parameter 100 is 9, the values of the parameters 118 and 119 may be different from those used to compute the ionospheric profiles found in the file. This allows the user to experiment with implicit removal of E layer effects or to lower the effective top of the ionosphere.

Parameters 130, 131 and 132 set up the parameters of the ionospheric display for the reference path. The first parameter 130 simply initiates the block of input. Parameter 131 defines the quantity to be plotted. Two views of this quantity are produced: the first view is in a vertical plane passing through the endpoints of the reference path; the second is in the horizontal plane at a height defined by parameter 132. The original intention was to have the HF Benchmark program generate this display, but it is much easier to have a separate program, named GridPlot, do this for now.

Because the ionosphere is defined over a limited area, the ray tracing routines have been modified to test for the ray path moving outside of the defined area. An appropriate message is printed into the log file when this occurs. Occasionally, if the index of refraction becomes negative and the problem cannot be circumvented, we terminate the calculations for the current ray and print an appropriate message into the log file. A number of other minor procedural modifications have been made to the ray tracing program to facilitate running it on a PC.
Electron profile file specification: 1. = calculate; 9. = read
Input for Parameterized Ionospheric Model
number of the month
day of the month
year
UT in hmmm format
10 cm flux
kp
index for sign of By: = 1 for '+'; = -1 for '-'
h minum
ht maximum
Plot of ionospheric parameters
= 0. no output
= 1. LOG10(Ne)
= 2. plasma frequency
= 3. X= 1, X+Y=1, X-Y=1
height at which to do horizontal contours

Figure 1. Parameters added to the ray trace input array to support the HF Benchmark.

SAMPLE PROBLEM

A sample program is presented here to illustrate the unification of the individual models. The input parameters for the program are shown in figure 2. The path is defined in geographic coordinates from 68.5°N, 32.5°E to 55.5°N, 117.1°W (parameters 4, 5, 19, and 20). The computed geographic bearing angle from the transmitter to the receiver is 339.3° and the path length is 6000 km; therefore, the initial azimuth of the rays is set to 340° clockwise from North (parameter 11). Ordinary rays will be launched at this azimuth at elevation angles from 0° to 15° (parameters 15 and 16) in steps of 3° (parameter 17). The ionospheric profiles are generated for 15 December 1991 at 1500 UT (parameters 11 through 114). The 10 cm flux is 70, the kp is 2, and the direction of the sun's magnetic field, By, is positive (parameters 115 through 117). Electron densities are computed from 90 to 400 km (parameters 118 and 119). If so requested, plots of the ionospheric parameters will give plasma frequency in the vertical plane and in a horizontal plane at 200 km (parameters 131 and 132). Plots of the ionospheric parameter and of the ray paths will be made in the plane of the reference path (parameters 82 through 85) and the horizontal displays will have an extent of 300 km (parameter 87).

Contour plots of the plasma frequency in the vertical plane along the path are shown in the top panel of figure 3, and contours of the plasma frequency in the horizontal plane at an altitude of 200 km are shown in the bottom panel. This display is generated by an auxiliary program named GridPlot. This program uses the same input as the HF Benchmark and calculates the selected ionospheric parameter by using the file containing the ionospheric profiles. It is clear that the ionosphere is changing in all three dimensions. A new feature of the graphical output is the use of filled contour plots instead of the contour lines used in the past. In this gray shade version, there is not enough resolution to visualize the complexity of the ionospheric variation; however, this complexity is evident when the displays are viewed in color.
<table>
<thead>
<tr>
<th>gridmodel</th>
<th>Ionospheric model name</th>
</tr>
</thead>
<tbody>
<tr>
<td>sample</td>
<td>Coefficients file name; GRD extension</td>
</tr>
<tr>
<td></td>
<td>Ionospheric perturbation name (none)</td>
</tr>
<tr>
<td>dipoly</td>
<td>Geomagnetic field model name</td>
</tr>
<tr>
<td>expz</td>
<td>Collision frequency model name</td>
</tr>
</tbody>
</table>

**Sample problem**

- **Ray type**
  - 1 = 1. ordinary ray
  - 0. = 0. no field case
  - -1. = -1. extraordinary ray
- **Initial frequency, MHz**
- **final frequency**
- **step in frequency**
- **deg Initial azimuth angle, degs clockwise from north**
- **deg final azimuth angle**
- **deg step in azimuth angle**
- **deg Initial elevation angle, deg**
- **deg final elevation angle**
- **deg step in elevation angle**
- **Transmitter height, km**
- **deg transmitter latitude, deg north**
- **deg transmitter longitude, deg east**
- **Receiver height above the earth, km**
- **deg receiver latitude, deg**
- **deg receiver longitude, deg**
- **Number of hops**
- **Debug printout**
  - =1 basic diagnostic printout
  - =2 also print r,drdt,hamiltonian and ionospheric terms
- **deg left latitude of plot, deg north**
- **deg left longitude of plot, deg east**
- **deg right latitude of plot, deg north**
- **deg right longitude of plot, deg east**
- **horizontal projection ymax, km**
- **plt_device: O.=os2; 1.=pjl; 2.=lj3; 3.=file**
- **Electron profile file specification: 1.=calculate; 9.=read**
- **Input for ionospheric model**
  - number of the month
  - day of the month
  - 13 1991. year
  - 14 1500. UT in hhmm format
  - 15 70. 10 cm flux
  - 16 2. kp
  - 17 1. index for sign of By: =1 for ‘+’; =-1 for ‘-’
  - 18 90. ht minimum
  - 19 400. ht maximum
- **Plot of ionospheric parameters**
  - =0. no output
  - =1. LOG10(He)
  - =2. plasma frequency
  - =1. LOG10(He)
- **height for horizontal contours**
- **A blank in columns 1-3 ends the current input**

**Figure 2. Inputs for sample problem.**

Stop
Figure 3. Plots of contours of constant values of the logarithm of the plasma frequency in the vertical plane along the great circle path passing through the transmitter and receiver in the horizontal plane at 200 km.
Ray paths for the extraordinary ray at 4 MHz are shown in figure 4. The top panel shows the projection of the ray paths onto the vertical plane passing through the transmitter and the receiver. The bottom panel of figure 4 shows the projection of the ray paths onto the ground with locations above the horizontal axis being to the west of the propagation path. We see that the off-path variation of the ionosphere causes some deflection of the ray paths.

Figure 4. Plots of the ray paths for the extraordinary ray at 4 MHz in the vertical plane passing through the transmitter and the receiver (top panel) and in the horizontal plane (bottom panel).
One of the displays is a global view showing contours of the ionospheric profile in a fixed meridian, and the other is a view along short paths (a subset of the global view). In each display, contours of the electron density taken directly from the ionospheric model are shown. An example of the global display is shown in figure 6. The map projection is orthographic with the observation point in the center of the display. The location of this point is specified by the user. Superimposed on the circle representing the earth are a series of lines indicating land masses. There are a series of lines, ranging from solid, through dashes of various lengths, to dotted. These lines indicate the position of solar zenith angles, ranging from 90 degrees (solid) to 99 degrees (dotted), to show where the day-night transition is located. If it is visible from the observation side of the globe, the sub-solar point is also shown. The vertical scale for points above the earth’s surface is specified by the user setting the number of inches between the earth’s surface and the top of the model ionosphere. The auroral bulges are visible and the differences between the daytime and nighttime ionospheres are evident. The data set required to make this display is generated by a program named Globe, and the plots are generated by a program named GlobePlot.

The second display is a modification of the first, a sample of which is shown in figure 7. The primary difference from the global display is the shorter path length which allows scaling of the vertical dimension closer to the horizontal dimension. Consistent with the names used above, the data set required to make this display is generated by a program named Cntr, and the plots are generated by a program named CntrPlot. This display is similar to the one generated by the HF Benchmark program, lacking the horizontal display; furthermore, the Benchmark display is the result of the spline interpolation used in the ray tracing, while the display shown in figure 7 is the result of computing ionospheric profiles closely spaced in distance.

FUTURE PLANS

Our primary goal in the next year is to exercise the program over propagation paths we have measured so that we can make comparisons. We can then begin to sort out what is important in the ionospheric model and what is not relative to HF propagation. There are known shortcomings in the ionospheric model, but we must wait for its developers to solve them. A minor problem in the ray tracing must be fixed, namely, the ray path is often extrapolated during the calculation. Sometimes this extrapolation puts a calculation point outside of the defined ionosphere and we get a negative index of refraction. Currently, we simply stop tracing that particular ray and continue with the next one. We have to expand the checks on the ray being out of bounds to solve this problem. The current problem is quite simple to use and the computational throughput is acceptable for small scale studies of HF propagation.
REFERENCES


# The High-Frequency Benchmark Propagation Program

**Authors:** J. A. Ferguson, C. H. Shellman

**Performing Organization Name(s) and Address(es):**
Naval Command, Control and Ocean Surveillance Center (NCCOSC)
RDT&E Division
San Diego, CA 92152 - 5000

**Sponsoring/Monitoring Agency Name(s) and Address(es):**
Naval Research Laboratory Detachment
Code 435300
Stennis Space Center, Mississippi 39529 - 5000

**Abstract:**
The High-Frequency Benchmark is a computer code being developed to employ a sophisticated ray tracing program coupled with a state-of-the-art ionospheric model chosen by the user. The merging of these two major components depends critically on the development of a spatial smoothing routine that accepts arbitrary ionospheric models as inputs. A significant improvement in the spatial interpolation has been made which enhances the flexibility of the model. The latest version of the Parameterized Ionospheric Model has been incorporated. This report describes these improvements and enhancements.

**Distribution/Availability Statement:**
Approved for public release; distribution is unlimited.

**Security Classification:**
Unclassified

**Number of Pages:**
19
<table>
<thead>
<tr>
<th>21a. NAME OF RESPONSIBLE INDIVIDUAL</th>
<th>21b. TELEPHONE (Include Area Code)</th>
<th>21c. OFFICE SYMBOL</th>
</tr>
</thead>
<tbody>
<tr>
<td>J. A. Ferguson</td>
<td>(619) 553-3062</td>
<td>Code 542</td>
</tr>
</tbody>
</table>
INITIAL DISTRIBUTION

Code 0012  Patent Counsel  (1)
Code 02712  Archive/Stock  (6)
Code 0274B  Library  (2)
Code 50  H. O. Porter  (1)
Code 54  J. H. Richter  (5)
Code 542  J. A. Ferguson  (10)
Code 542  D. B. Sailors  (20)
Code 542  W. K. Moision  (1)
Code 542  R. Rose  (1)
Code 542  R. A. Sprague  (20)
Code 772  J. A. Audia  (1)
Code 772  W. S. Bratt  (1)
Code 772  B. J. Satterlee  (1)
Code 833  G. Crane  (2)

Defense Technical Information Center
Alexandria, VA 22304-6145  (4)

Electromagnetic Compatibility Analysis Center
Annapolis, MD 21402-1187  (3)

NCCOSC Washington Liaison Office
Washington, DC 20363-5100

Naval Postgraduate School
Monterey, CA 93943-5100

Center for Naval Analyses
Alexandria, VA 22302-0268

CECOM
Fort Monmouth, NJ 07703

Navy Acquisition, Research and Development
Information Center (NARDIC)
Arlington, VA 22244-5114

U.S. Army Electronic Proving Ground
Fort Huachuca, AZ 85613-7110

GIDEP Operations Center
Corona, CA 91718-8000

Los Alamos National Laboratory
Los Alamos, NM 87545

NCCOSC Division Detachment
Warminster, PA 18974-5000

National Telecommunications and
Information Administration
Annapolis, MD 21401

Chief of Naval Operations
Washington, DC 20350-2000

Institute for Telecommunication Sciences
Boulder, CO 80303-3328

Naval Research Laboratory
Washington, DC 20375-5320

Voice of America
Washington, DC 20003

Naval Security Agency
Ft. Meade, MD 20755  (3)

Hunsucker Consulting
Fairbanks, AK 99709

Naval Security Group Command
Washington, DC 20393-5100  (3)

Lucas Consulting
Boulder, CO 80301

Naval Computer and Telecommunications
Command
Washington, DC 20390

Southwest Research Institute
San Antonio, TX 78284  (2)

SRI International
Arlington, VA 22209