
REPORT DOCUMENTATION PAGE
Piuftioewfoa, aw0i n of w•lmls.anuhimm" w am to I .iqe _lw w -i m. •wukvdl to w" iw l UflhaS. b .WSil4 " nl"a MUratoww
6- IIfaww&f =the di mvd. S *a4 tow -. bNan of wdmar"*. leow mma pwadeq tl huudm~ iSuOO"r WWV OV-1I #Aed Of ofU WmwwA 01 tef~i,~~S

eg tlehe unt..bueden. lo WwhNrqtonN4edqwWtu Secm DarsdoiWeb h. WwinOibto. 1 Rg . 1215 .Itoftme M*iS S4,U*V Suit* IM,' Ddk'qWn. VA
222024202. m to the O, of Informatin e.i Paquiw Maim 00m of naeq~mei &1 INK. Wahnoai. DC MO.

1. AGENCY USE (L/,,rve 2. REPORT 3. REPORT TYPE AND DATES

4. TITLE AND 5. FUNDING

DACS Sun SPARC/SunOS to 80386 PM bare Ada Cross Compiler Sy em,
Version 4.6.4, Host: Sun SPARCstation 1+ running under Sun
Release 4.1.1, Target: Bare Board iSBC 386/116, 931119S1.1 31

6. AUEnors:

National Institute of Standards and Technology
Gaithersburg, Maryland

-. PERFORMING ORGANIZATION NAME(S) AND 8. PERFORMING

gatisoal I iute g 6tandards and Technology D 11oi ng Zbb, R160

Gaithersburg, Maryland 20899 FEBE 19,
USAFE2q qA

9. SPONSORING/MONITORING AGENCY NAME(S, ANDPONSORING/MONITORING

Ada Joint Program Office
The Pentagon, Rm 3E118 ..
Washington, DC 20301-3080 If

11. SUPPLEMENTARY AD-A276 283

12a. DISTRIBUTION/AVAILABILITY 12b. DISTRIBUTION

Approved for Public Release; .. distribution unlimited

13.

DACS Sun SPARC/SunOS to 80386 PM bare Ada Cross Compiler System, Version
4.6.4 , Host: Sun SPARCstation 1 + running under SunOS, Release 4.1.1

Target: Bare Board iSBC 336/116, 931119S1.11331

94-05747 ...C QUATy m .0C) z

14. SUBJECT 15. NUM-ER OF

Ada programming linguage, Ada Compler Validation Summary Report, A 6p

. ,,-Pb•3 Val. Testing, Ada Val. Office, Ada Va]. ,c,,.1y
17.S CURITY 18. SECURITY 19. SECURITY 20, LIMITATION OF
CLASSIFICATION CLASSIFICATION
UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED

N
Standard Form 298, (Rev. 2.9)
PreNwNd by ANSI SW.

Best
Available

Copy

AVF Control Number: NIST92DDI510_4_1.11
DATE COMPLETED

BEFORE ON-SITE: 93-11-12
AFTER ON-SITE: 93-11-19
REVISIONS: 93-12-10

Ada COMPILER
VALIDATION SUMMARY REPORT:

Certificate Number: 93111951. 11331
DDC-I, Inc.

DACS Sun SPARC/SunOS to 80386 PM bare Ada
Cross Compiler System, Version 4.6.4

Sun SPARCstation 1+ => Bare Board iSBC 386/116

Prepared By:
Software Standards Validation Group

Computer Systems Laboratory
National Institute of Standards and Technology

Building 225, Room A266
Gaithersburg, Maryland 20899

U.S.A. Accesion For

NTIS GRA&I
DT1_` TA.:i --•

Undinr, ._.:d J

By

Di~t: ib~.tiof, I j

Dist

tI

AVF Control Number: NIST92DDI51041.11

Certificate Information

The following Ada implementation was tested and determined to pass
ACVC 1.11. Testing was completed on November 19, 1993.

Compiler Name and Version: DACS Sun SPARC/SunOS to 80386 PM
bare Ada Cross Compiler System,
Version 4.6.4

Host Computer System: Sun SPARCstation 1+ running under

SunOS, Release 4.1.1

Target Computer System: Bare Board iSBC 386/116

See section 3.1 for any additional information about the testing
environment.

As a result of this validation effort, Validation Certificate
931119S1.11331 is awarded to DDC-I, Inc. This certificate expires
2 years after ANSI/MIL-STD-1815B is approved by ANSI.

This report has been reviewed and is approved.

da ýValidatio a- 1ty Ada Validation Facility
Dr. David K. Sekfe s n Mr. L. Arnold Jphnson
Chief, Information Systems Manager, Software Standards

Engineering Division (ISED) Validation Group
Computer Systems Laboratory (CSL)

National Institute of Standards and Technology
Building 225, Room A266

Gaithersburg, Maryland 20899
U.S.A.

/ Ada vI • n organization ,-Ada Joint Program Office
Dire Ptor mputer & Software 4-M. Dirk Rogers, Major, USAF

0 DActing Director
Institute for Defense Analyses Ada Joint Program Office
Alexandria VA 22311 Washington DC 20301
U.S.A. U.S.A.

NIST92DDI5l04_1.11

DECLARATION OF CONFORMANCE

The following declaration of conformance was supplied by the
customer.

Customer: DDC-I, Inc.

Certificate Awardee: DDC-I, Inc.

Ada Validation Facility: National Institute of Standards and
Technology

Computer Systems Laboratory (CSL)
Software Standards Validation Group
Building 225, Room A266
Gaithersburg, Maryland 20899
U.S.A.

ACVC Version: 1.11

Ada Implementation:

Compiler Name and Version: DACS Sun SPARC/SunOS to 80386 PM
bare Ada Cross Compiler System,
Version 4.6.4

Host Computer System: Sun SPARCstation 1+ running under

SunOS, Release 4.1.1

Target Computer System: Bare Board iSBC 386/116

Declaration:

I the undersigned, declare that I have no knowledge of deliberate
deviations from the Ada Language Standard ANSI/MIL-STD-1815A ISO
8652-1987 in the implementation listed above.

Customer Signature Date
Company DC-I, Inc.
Tit

Certificate Awardee Signature Date
Company/DDC-I, Inc.
Title/'6

TABLE OF CONTENTS

CHAPTER 1 .. I-I
INTRODUCTION.. 1-1

1.1 USE OF THIS VALIDATION SUMMARY REPORT........... 1-i
1.2 REFERENCES 1-2
1.3 A:CVC TEST CLASSES 1-2
1.4 DEFINITION OF TERMS 1-3

CHAPTER 2 2-1
IMPLEMENTATION DEPENDENCIES 2-1

2.1 WITHDRAWN TESTS 2-1
2.2 INAPPLICABLE TESTS 2-1
2.3 TEST MODIFICATIONS 2-3

CHAPTER 3 .. 3-1
PROCESSING INFORMATION 3-1

3.1 TESTING ENVIRONMENT 3-1
3.2 SUMMARY OF TEST RESULTS 3-1
3.3 TEST EXECUTION 3-2

APPENDIX A A-i
MACRO PARAMETERS .. A-I

APPENDIX B B-i
COMPILATION SYSTEM OPTIONS..............................B-I
LINKER OPTIONS .. B-2

APPENDIX C ... C-I
APPENDIX F OF THE Ada STANDARD C-i

CHAPTER 1

INTRODUCTION

The Ada implementation described above was tested according to the
Ada Validation Procedures [Pro92] against the Ada Standard [Ada83]
using the current Ada Compiler Validation Capability (ACVC). This
Validation Summary Report (VSR) gives an account of the testing of
this Ada implementation. For any technical terms used in this
report, the reader is referred to [Pro92]. A detailed description
of the ACVC may be found in the current ACVC User's Guide [UG89).

1.1 USE OF THIS VALIDATION SUMMARY REPORT

Consistent with the national laws of the originating country, the
Ada Certification Body may make full and free public disclosure of
this report. In the United States, this is provided in accordance
with the "Freedom of Information Act" (5 U.S.C. #552). The results
of this validation apply only to the computers, operating systems,
and compiler versions identified in this report.

The organizations represented on the signature page of this report
do not represent or warrant that all statements set forth in this
report are accurate and complete, or that the subject
implementation has no nonconformities to the Ada Standard other
than those presented. Copies of this report are available to the
public from the AVF which performed this validation or from:

National Technical Information Service
5285 Port Royal Road
Springfield, Virginia 22161
U.S.A.

Questions regarding this report or the validation test results
should be directed to the AVF which performed this validation or
to:

Ada Validation Organization
Computer and Software Engineering Division
Institute for Defense Analyses
1801 North Beauregard Street
Alexandria, Virginia 22311-1772
U.S.A.

1-1

1.2 REFERENCES

[Ada83] Reference Manual for the Ada Programming Language,
ANSI/MIL-STD-1815A, February 1983 and ISO 8652-1987.

[Pro92] Ada Compiler Validation Procedures, Version 3.1, Ada Joint
Program Office, August 1992.

lUG89] Ada Compiler Validation Capability User's Guide, 21 June
1989.

1.3 ACVC TEST CLASSES

Compliance of Ada implementations is tested by means of the ACVC.
The ACVC contains a collection of test programs structured into six
test classes: A, B, C, D, E, and L. The first letter of a test
name identifies the class to which it belongs. Class A, C, D, and
E tests are executable. Class B and class L tests are expected to
produce errors at compile time and link time, respectively.

The executable tests are written in a self-checking manner and
produce a PASSED, FAILED, or NOT APPLICABLE message indicating the
result when they are executed. Three Ada library units, the
packages REPORT and SPPRT13, and the procedure CHECK FILE are used
for this purpose. The package REPORT also provides a set of
identity functions used to defeat some compiler optimizations
allowed by the Ada Standard that would circumvent a test objective.
The package SPPRT13 is used by many tests for Chapter 13 of the Ada
Standard. The procedure CHECK FILE is used to check the contents
of text files written by some of the Class C tests for Chapter 14
of the Ada Standard. The operation of REPORT and CHECK FILE is
checked by a set of executable tests. If these units are not
operating correctly, validation testing is discontinued.

Class B tests check that a compiler detects illegal language usage.
Class B tests are not executable. Each test in this class is
compiled and the resulting compilation listing is examined to
verify that all violations of the Ada Standard are detected. Some
of the class B tests contain legal Ada code which must not be
flagged illegal by the compiler. This behavior is also verified.

Class L tests check that an Ada implementation correctly detects
violation of the Ada Standard involving multiple, separately
compiled units. Errors are expected at link time, and execution is
attempted.

In some tests of the ACVC, certain macro strings have to be
replaced by implementation-specific values--for example, the

1-2

largest integer. A list of the values used for this implementation
is provided in Appendix A. In addition to these anticipated test
modifications, additional changes may be required to remove
unforeseen conflicts between the tests and implementation-dependent
characteristics. The modifications required for this
implementation are described in section 2.3.

For each Ada implementation, a customized test suite is produced by
the AVF. This customization consists of making the modifications
described in the preceding paragraph, removing withdrawn tests (see
section 2.1) and, possibly some inapplicable tests (see Section 3.2
and [UG89]).

In order to pass an ACVC an Ada implementation must process each
test of the customized test suite according to the Ada Standard.

1.4 DEFINITION OF TERMS

Ada Compiler The software and any needed hardware that
have to be added to a given host and target
computer system to allow transformation of
Ada programs into executable form and
execution thereof.

Ada Compiler The means for testing compliance of Ada
Validation implementations, Validation consisting of
Capability (ACVC) the test suite, the support programs, the

ACVC Capability User's Guide and the
template for the validation summary (ACVC)
report.

Ada Implementation An Ada compiler with its host computer
system and its target computer system.

Ada Joint Program The part of the certification body which
Office (AJPO) provides policy and guidance for the Ada

certification office system.

Ada Validation The part of the certification body which
Facility (AVF) carries out the procedures required to

establish the compliance of an Ada
implementation.

Ada Validation The part of the certification body that
Organization (AVO) provides technical guidance for operations

of the Ada certification system.

Compliance of an The ability of the implementation to pass an
Ada Implementation ACVC version.

1-3

Computer System A functional unit, consisting of one or more
computers and associated software, that uses
common storage for all or part of a program
and also for all or part of the data
necessary for the execution of the program;
executes user- written or user-designated
programs; performs user-designated data
manipulation, including arithmetic
operations and logic operations; and that
can execute programs that modify themselves
during execution. A computer system may be a
stand-alone unit or may consist of several
inter-connected units.

Conformity Fulfillment by a product, process, or
service of all requirements specified.

Customer An individual or corporate entity who enters
into an agreement with an AVF which
specifies the terms and conditions for AVF
services (of any kind) to be performed.

Declaration of A formal statement from a customer assuring
Conformance that conformity is realized or attainable on

the Ada implementation for which validation
status is realized.

Host Computer A computer system where Ada source programs
System are transformed into executable form.

Inapplicable Test A test that contains one or more test
objectives found to be irrelevant for the
given Ada implementation.

ISO International Organization for
Standardization.

LRM The Ada standard, or Language Reference
Manual, published as ANSI/MIL-STD-1815A
-1983 and ISO 8652-1987. Citations from the
LRM take the form "<section>.<subsection>:
<paragraph>."

Operating System Software that controls the execution of
programs and that provides services such as
resource allocation, scheduling,
input/output control, and data management.
Usually, operating systems are predominantly
software, but partial or complete hardware
implementations are possible.

Target Computer A computer system where the executable form
System of Ada programs are executed.

1-4

Validated Ada The compiler of a validated Ada
Compiler implementation.

Validated Ada An Ada implementation that has been
Implementation validated successfully either by AVF testing

or by registration [Pro92].

Validation The process of checking the conformity of an
Ada compiler to the Ada programming language
and of issuing a certificate for this
implementation.

Withdrawn Test A test found to be incorrect and not used in
conformity testing. A test may be incorrect
because it has an invalid test objective,
fails to meet its test objective, or
contains erroneous or illegal use of the Ada
programming language.

1-5

CHAPTER 2

IMPLEMENTATION DEPENDENCIES

2.1 WITHDRAWN TESTS

Some tests are withdrawn by the AVO from the ACVC because they do
not conform to the Ada Standard. The following 95 tests had been
withdrawn by the Ada Validation Organization (AVO) at the time of
validation testing. The rationale for withdrawing each test is
available from either the AVO or the AVF. The publication date for
this list of withdrawn tests is 91-08-02.

E28005C B28006C C32203A C34006D C35508I C35508J
C35508M C35508N C35702A C35702B B41308B C43004A
C45114A C45346A C45612A C45612B C45612C C45651A
C46022A B49008A B49008B A74006A C74308A B83022B
B83022H B83025B B83025D B83026B C83026A C83041A
B85001L C86001F C94021A C97116A C98003B BA2011A
CB7001A CB7001B CB7004A CC1223A BC1226A CC1226B
BC3009B BD1B02B BD1B06A ADIB08A BD2AO2A CD2A21E
CD2A23E CD2A32A CD2A41A CD2A41E CD2A87A CD2B15C
BD3006A BD4008A CD4022A CD4022D CD4024B CD4024C
CD4024D CD4031A CD4051D CD5111A CD7004C ED7005D
CD7005E AD7006A CD7006E AD7201A AD7201E CD7204B
AD7206A BD8002A BD8004C CD9005A CD9005B CDA201E
CE2107I CE2117A CE2117B CE2119B CE2205B CE2405A
CE3111C CE3116A CE3118A CE3411B CE3412B CE3607B
CE3607C CE3607D CE3812A CE3814A CE3902B

2.2 INAPPLICABLE TESTS

A test is inapplicable if it contains test objectives which are
irrelevant for a given Ada implementation. The inapplicability
criteria for some tests are explained in documents issued by ISO
and the AJPO known as Ada Commentaries and commonly referenced in
the format AI-ddddd. For this implementation, the following tests
were determined to be inapplicable for the reasons indicated;
references to Ada Commentaries are included as appropriate.

The following 201 tests have floating-point type declarations
requiring more digits than SYSTEM.MAXDIGITS:

C24113L..Y (14 tests) C35705L..Y (14 tests)
C35706L..Y (14 tests) C35707L..Y (14 tests)
C35708L..Y (14 tests) C35802L..Z (15 tests)

2-1

C45241L..Y (14 tests) C45321L..Y (14 tests)
C45421L..Y (14 tests) C45521L..Z (15 tests)
C45524L..Z (15 tests) C45621L..Z (15 tests)
C45641L..Y (14 tests) C46012L..Z (15 tests)

C24113I..K (3 tests) use a line length in the input file which
exceeds 126 characters.

C35404D, C45231D, B86001X, C86006E, and CD7101G check for a
predefined integer type with a name other than INTEGER,
LONG INTEGER, or SHORTINTEGER; for this implementation, there is
no such type.

C35713B, C45423B, B86001T, and C860Q.6H check for the predefined
type SHORTFLOAT; for this implementation, there is no such type.

C35713D and B8600lZ check for a predefined floating-point type with
a name other than FLOAT, LONG FLOAT, or SHORTFLOAT; for this
implementation, there is no such type.

C4AO13B contains a static universal real expression that exceeds
the range of this implementation's largest floating-point type;
this expression is rejected by the compiler.

C45531M..P and C45532M..P (8 tests) check fixed-point operations
for types that require a SYSTEM.MAXMANTISSA of 47 or greater; for
this implementation, MAXMANTISSA is less than 47.

C45624A..B (2 tests) check that the proper exception is raised if
MACHINE OVERFLOWS is FALSE for floating point types and the results
of various floating-point operations lie outside the range of the
base type; for this implementation, MACHINEOVERFLOWS is TRUE.

D56001B uses 65 levels of block nesting; this level of block
nesting exceeds the capacity of the compiler.

B86001Y uses the name of a predefined fixed-point type other than
type DURATION; for this implementation, there is no such type.

C96005B uses values of type DURATION's base type that are outside
the range of type DURATION; for this implementation, the ranges are
the same.

CA2009C and CA2009F check whether a generic unit can be
instantiated before its body (and any of its subunits) is compiled;
this implementation creates a dependence on generic units as
allowed by AI-00408 and AI-00506 such that the compilation of the
generic unit bodies makes the instantiating units obsolete. (See
section 2.3.)

CD1009C checks whether a length clause can specify a non-default

2-2

size for a floating-point type; this implementation does not
support such sizes.

CD2A84A, CD2A84E, CD2A84I..J (2 tests), and CD2A840 use length
clauses to specify non-default sizes for access types; this
implementation does not support such sizes.

The following 264 tests check operations on sequential, text, and
direct access files; this implementation does not support external
files:

CE2102A..C (3) CE2102G..H (2) CE2102K CE2102N..Y (12)
CE2103C..D (2) CE2104A..D (4) CE2105A..B (2) CE2106A..B (2)
CE2107A..H (8) CE2107L CE2108A..H (8) CE2109A..C (3)
CE2110A..D (4) CE2111A..I (9) CE2115A..B (2) CE2120A..B (2)
CE2201A..C (3) EE2201D..E (2) CE2201F..N (9) CE2203A
CE2204A..D (4) CE2205A CE2206A CE2208B
CE2401A..C (3) EE2401D CE2401E..F (2) EE2401G
CE2401H..L (5) CE2403A CE2404A..B (2) CE2405B
CE2406A CE2407A..B (2) CE2408A..B (2) CE2409A..B (2)
CE2410A..B (2) CE2411A CE3102A..C (3) CE3102F..H (3)
CE3102J..K (2) CE3103A CE3104A..C (3) CE3106A..B (2)
CE3107B CE3108A..B (2) CE3109A CE3110A
CE3111A..B (2) CE3111D..E (2) CE3112A..D (4) CE3114A..B (2)
CE3115A CE3119A EE3203A EE3204A
CE3207A CE3208A CE3301A EE3301B
CE3302A CE3304A CE3305A CE3401A
CE3402A EE3402B CE3402C..D (2) CE3403A..C (3)
CE3403E..F (2) CE3404B..D (3) CE3405A EE3405B
CE3405C..D (2) CE3406A..D (4) CE3407A..C (3) CE3408A..C (3)
CE3409A CE3409C..E (3) EE3409F CE3410A
CE3410C..E (3) EE341OF CE3411A CE3411C
CE3412A EE3412C CE3413A..C (3) CE3414A
CE3602A..D (4) CE3603A CE3604A..B (2) CE3605A..E (5)
CE3606A..B (CE3704A..F (6) CE3704M..O (3) CE3705A..E (5)
CE3706D CE3706F..G (2) CE3804A..P (16) CE3805A..B (2)
CE3806A..B (2) CE3806D..E (2) CE3806G..H (2) CE3904A..B (2)
CE3905A..C (3) CE3905L CE3906A..C (3) CE3906E..F (2)

CE2103A, CE2103B, and CE3107A use an illegal file name in an
attempt to create a file and expect NAMEERROR to be raised; this
implementation does not support external files and so raises
USEERROR. (See section 2.3.)

2.3 TEST MODIFICATIONS

Modifications (see section 1.3) were required for 71 tests.

The following tests were split into two or more tests because this
implementation did not report the violations of the Ada Standard in
the way expected by the original tests.

2-3

B22003A B26001A B26002A B26005A B28003A B29001A B33301B
B35101A B37106A B37301B B37302A B38003A B38003B B38009A
B38009B B55AO1A B61001C B61001F B61001H B61001I B61001M
B61001R B610O1W B67001H B83A07A B83A07B B83A07C B83EO0C
B83EOlD B83EOlE B85001D B85008D B91001A B91002A B91002B
B91002C B91002D B91002E B91002F B91002G B91002H B91002I
B91002J B91002K B91002L B95030A B95061A B95061F B95061G
B95077A B97103E B97104G BA1001A BA1I01B BC11O9A BC1109C
BC1l09D BC1202A BC1202F BC1202G BE2210A BE2413A

C83030C and C86007A were graded passed by Test Modification as
directed by the AVO. These tests were modified by inserting
"PRAGMA ELABORATE (REPORT);" before the package declarations at
lines 13 and 11, respectively. Without the pragma, the packages
may be elaborated prior to package Report's body, and thus the
packages' calls to function REPORT.IDENTINT at lines 14 and 13,
respectively, will raise PROGRAMERROR.

CA2009C and CA2009F were graded inapplicable by Evaluation
Modification as directed by the AVO. These tests contain
instantiations of a generic unit prior to the compilation of that
unit's body; as allowed by AI-00408 and AI-00506, the compilation
of the generic unit bodies makes the compilation unit that contains
the instantiations obsolete.

BC3204C and BC3205D were graded passed by Processing Modification
as directed by the AVO. These tests check that instantiations of
generic units with unconstrained types as generic actual parameters
are illegal if the generic bodies contain uses of the types that
require a constraint. However, the generic bodies are compiled
after the units that contain the instantiations, and this
implementation creates a dependence of the instantiating units on
the generic units as allowed by AI-00408 and AI-00506 such that the
compilation of the generic bodies makes the instantiating units
obsolete--no errors are detected. The processing of these tests
was modified by re-compiling the obsolete units; all intended
errors were then detected by the compiler.

CE2103A, CE2103B, and CE3107A were graded inapplicable by
Evaluation Modification as directed by the AVO. The tests abort
with an unhandled exception when USE ERROR is raised on the attempt
to create an external file. This is acceptable behavior because
this implementation does not support external files (cf. AI-00332).

2-4

CHAPTER 3

PROCESSING INFORMATION

3.1 TESTING ENVIRONMENT

The Ada implementation tested in this validation effort is
described adequately by the information given in the initial pages
of this report.

For technical information about this Ada implementation, contact:

Forrest Holemon
410 North 44th Street, Suite 320
Phoenix, Arizona 85008 (U.S.A.)

Telephone: 602-275-7172
Telefax: 602-275-7502

For sales information about this Ada implementation, contact:

Mike Halpin
410 North 44th Street, Suite 320
Phoenix, Arizona 85008 (U.S.A.)

Telephone: 602-275-7172
Telefax: 602-275-7502

Testing of this Ada implementation was conducted at the customer's

site by a validation team from the AVF.

3.2 SUMMARY OF TEST RESULTS

An Ada Implementation passes a given ACVC version if it processes
each test of the customized test suite in accordance with the Ada
Programming Language Standard, whether the test is applicable or
inapplicable; otherwise, the Ada Implementation fails the ACVC
[Pro92].

For all processed tests (inapplicable and applicable), a result was
obtained that conforms to the Ada Programming Language Standard.

The list of items below gives the number of ACVC tests in various
categories. All tests were processed, except those that were
withdrawn because of test errors (item b; see section 2.1), those
that require a floating-point precision that exceeds the
implementation's maximum precision (item e; see section 2.2), and
those that depend on the support of a file system--if none is
supported (item d). All tests passed, except those that are listed
in sections 2.1 and 2.2 (counted in items b and f, below).

3-1

a) Total Number of Applicable Tests 3571

b) Total Number of Withdrawn Tests 95
c) Processed Inapplicable Tests 504
d) Non-Processed I/O Tests 0
e) Non-Processed Floating-Point

Precision Tests 0

f) Total Number of Inapplicable Tests 504 (c+d+e)
g) Total Number of Tests for ACVC 1.11 4170 (a+b+f)

3.3 TEST EXECUTION

A magnetic tape containing the customized test suite (see section
1.3) was taken on-site by the validation team for processing. The
contents of the magnetic tape were loaded directly onto the host
computer.

The DDC-I Ada Symbolic Debugger runs on the Sun SPARCstation 1+ and
is used for downloading the executable images to the target Bare
Board iSBC 386/116. The DDC-I Debug Monitor runs on the target
Bare Board iSBC 386/116 and provides communication interface
between the host debugger and the executing target Bare Board iSBC
386/116. The two processes communicate via ethernet.

After the test files were loaded onto the host computer, the full
set of tests was processed by the Ada implementation.

The tests were compiled and linked on the host computer system, as
appropriate. The executable images were transferred to the target
computer system by the communications link described above, and
run. The results were captured on the host computer system.

Testing was performed using command scripts provided by the
customer and reviewed by the validation team. See Appendix B for
a complete listing of the processing options for this
implementation. It also indicates the default options. The
options invoked explicitly for validation testing during this test
were:

-nosave -list

Test output, compiler and linker listings, and job logs were
captured on magnetic tape and archived at the AVF. The listings
examined on-site by the validation team were also archived.

3-2

APPENDIX A

MACRO PARAMETERS

This appendix contains the macro parameters used for customizing
the ACVC. The meaning and purpose of these parameters are
explained in (UG89]. The parameter values are presented in two
tables. The first table lists the values that are defined in terms
of the maximum input-line length, which is the value for
SMAX IN LEN--also listed here. These values are expressed here as
Ada string aggregates, where "V'" represents the maximum input-line
length.

Macro Parameter Macro Value

$MAXINLEN 126 -- Value of V

SBIGID1 (1..V-1 => 'A', V => 'I')

SBIGID2 (1..V-1 => 'A', V => '2')

$BIGID3 (1..V/2 => 'A') & '3' & (1..V-I-V/2 => 'A')

SBIGID4 (1..V/2 => 'A') & '4' & (l..V-l-V/2 => 'A')

SBIGINTLIT (l..V-3 => '0') & "298"

SBIGREALLIT (1..V-5 => '0') & "690.0"

SBIGSTRINGI t""' & (1..V/2 => 'A') & ""'

$BIGSTRING2 f""' & (l..V-1-V/2 => 'A') & 'f' & '""'

$BLANKS (l..V-20 => '

$MAXLENINTBASEDLITERAL
"2:-" & (l..V-5 => '0') & "11:"

SMAXLENREALBASEDLITERAL
"16:" & (1..V-7 => '0') & "F.E:"

SMAXSTRINGLITERAL '""' & (I..V-2 => 'A') & ""''

A-1

The following table contains the values for the remaining
macro parameters.

Macro Parameter Macro Value

ACC SIZE : 48
ALIGNMENT : 2
COUNT LAST : 2 147 483 647
DEFAULT MEM SIZE : 16#lO0000_0000t
DEFAULT -STOR UNIT : 16
DEFAULT SYS NAME : IAPX386 PM
DELTA DOC : 2#1.0#E-31
ENTRY ADDRESS : (140,0)
ENTRY ADDRESS1 : (141,0)
ENTRY ADDRESS2 : (142,0)
FIELDLAST : 35
FILE TERMINATOR : ASCII.SUB
FIXED NAME : NO SUCH FIXED TYPE
FLOAT NAME : SHORTSHORTFLOAT
FORM STRING : "l
FORMSTRING2

"CANNOT RESTRICTFILECAPACITY"
GREATERTHANDURATION : 75000.0
GREATER THAN DURATION BASE LAST : 131_073.0
GREATER--THAN-FLOAT BASE LAST : 16#1.0#E+32
GREATER THAN FLOAT SAFE LARGE : 16#5.FFFF_FO#E+31
GREATER THAN SHORTFLOATSAFELARGE: 1.0E308
HIGH PRIORITY : 31
ILLEGAL EXTERNAL FILE NAMEl : \NODIRECTORY\FILENAME
ILLEGALEXTERNALFILE NAME2

THIS-FILE-NAME-IS-TOO-LONG-FOR-MY-SYSTEM
INAPPROPRIATELINE LENGTH : -1
INAPPROPRIATE PAGELENGTH * -1
INCLUDEPRAGMAl

PRAGMA INCLUDE ("A28006D1.TST")
INCLUDEPRAGMA2

PRAGMA INCLUDE ("B28006E1.TST")
INTEGER FIRST : -2147483648
INTEGER-LAST : 2147483647
INTEGERLAST PLUS_1 :2147483_648
INTERFACELANGUAGE : ASM86
LESS THAN DURATION : -75 000.0
LESS THAN DURATION BASEFIRST : -131 073.0
LINE TERMINATOR : ASCII.CR
LOW PRIORITY : 0
MACHINECODESTATEMENT

MACHINE INSTRUCTION'(NONE,mNOP);
MACHINECODETYPE : REGISTERTYPE
MANTISSA DOC : 31

A-2

MAXDIGITS : 15
MAXINT :9223372036854775807
MAX -INT -PLUS_1 : 9223372036854775808
MIN INT : -9223372036854775808
NAME : $HORT SHORTINTEGER
NAME_-LIST : IAPX38i6_PM
NAMESPECIFICATIONi

DISKSAWC_2: [CROCKETTL.ACVC11. DEVELOPMENT]X2120A.; 1
NAMESPECIFICATION2

DISK$AWC-2: (CROCKETTL. ACVC11 .DEVEL-OPMENT) X2 120B.; 1
NAMESPECIFICATION3

DISK$AWC-2: (CROCKETTL. ACVC11 .DEVELOPMENT] X2120C.; 1
NEGBASEDINT : 16fFFFFFFFFFFFFFFFF#
NEW HEM -SIZE : 16#1_QOOO600-ooo
NEW STOR UNIT : 16
NEW7 SYS NAME : IAPX386_PM
PAGE TERMIINATOR : ASCII.F-F
RECORDDEFINITION : RECORD NULL;END RECORD;
RECORD -NAME : NOSUCHMACHINECODETYPE
TASK SIZE : 32-
TASK_-STORAGESIZE : 1024
TICk- : 0.000 000_062_5
VARIABLE-ADDRESS : (16f01,16#j44#)
VARIABLE-ADDRESS1 : (16#4#,16#44#)
VARIABLEADDRESS2 : (16#8#,16#J44#)
YOURPRAGMA : EXPORTOBJECT

A-3

APPENDIX B

COMPILATION SYSTEM OPTIONS

The compiler options of this Ada implementation, as described in this
Appendix, are provided by the customer. Unless specifically noted
otherwise, references in this appendix are to compiler documentation and
not to this report.

B-I

DDC-I Ada Compiler System

DACS Sun SPARC/SunOS to 80x86 Bare

Ada Cross Compiler System

User's Guide

COMPILER AND LINKER OPTIONS

5 THE ADA COMPILER

The Ada Compiler compiles all program units within the specificd source file and insens the
generatcd objects into the current program library. Compiler options arc providcd to allow the
user control of optimization, run-timc checks, and compiler input and output options such as list
files, configuration files, the program library used, ctc.

The input to the compiler consists of the sourcc file, the configuration rile (which controls the
format of the list filc), and the compiler options. Section 5.1 provides a list of all compiler
options, and Section 5.2 describes the source and configuration files.

If any diagnostic mcssagcs arc produced during the compilation, they arc output on the diagnostic
file and on the current output File. The diagnostic filc and the diagnoslic mcssagcs arc described
in Section 5.3.2.

Output consists of an object placed in the program library, diagnostic messages, and optional
listings. The configuration filc and the compiler options specify the format and contents of the
list information. Output is described in Section 5.3.

Thc compiler uses a program library during the compilation. The compilation unit may refer to
units from the program library, and an internal rcpnescntation of the compilation unit will be
included in the program library as a result of a successful compilation. The program library is
described in Chapter 3. Section 5.4 briefly describes how the Ada compiler uses the library.

5.1 Invoking the Ada Compiler

Invoke the Ada compiler with the following command to the SunOS shell:

$ ada (<option>) <source-file-name>

where the options and parameters are:

35

DACS-8[xX6 U.cr's Guide
Ada Compiler

<s ,t 1 rc e -file-na Ine>

T1b. ,\,d.i. compiler has one mandalory paramctcr that shoul¢i specify ihc Ada source file.
[hi-., juraincter specifics 1he tcxt file containing the source text to bc compilcd. If the lilc type

m.&ilcd in the source file specification, the file type ".ada" is assumed by default.

The allowed format of the source text is described in Section 5.2.1.

Below follows a description of each of the available options to the invocation of the Ada
co,;pilcr.

S.I -]nolat•mtoinline

-auto -oinline local I global
-roauto inline (default)

is ,..!ion specifies whether subprograms should be inline expanded. The irdine expansion only
occurs if the subprogram has less than 4 object declarations and less than 6 statements, and if the
subprogram fulfills the requirements defined for pragma INLINE (see Section C.2.3). LOCAL
specifies that only inline expansion of locally defined subprograms should be done, while
GLOBAL will cause inline expansion of all subprograms, including subprograms from other units.

5.1._ -check

-check [<keyword> = ON I OFF { ,<keyword> = ON I OFF)]
-check ALL=ON (default)

-che'cl. ,pecifies which run-time checks should be performed. Setting a run-time check to ON
enablcs the check, while setting it to OFF disables the check. All run-time checks are enabled by
default. The following explicit checks will be disabled/enabled by using the name as <keyword>:

ACCESS Check for access values being non NULL.
ALL All checks.
DISCRIMINANT Checks for discriminated fields.
EL.ABORATION Checks for subprograms bcing elaborated.
1 N' EX Index check.
LENGTH Array length check.
OVERFLOW Explicit overflow checks.
RANGE Checks for values being in range.
STORAGE Checks for sufficient storage available.

37

DACS-SOW6 User's Guide
Ada Compiler

5.1.7 -library

-libr:ary <file-spec>
-library $adailibrary (de fault)

This option specifics the current sublibrary that will be used in the compilation and will receive
the objecL when the compilation is complete. By specifying a currcnt sublibrary, the current
program library (current sublibrary and ancestors up to root) is also implicitly specified.

If this option is omitted, the sublibrary designated by the environmental variable ada-library is
used as the current sublibrary. Section 5.4 describes how the Ada compiler uses the library.

5.1.8 -[nollist

-list
-nolist (default)

-list specifies that a source listing will be produced. The source listing is written to the list file,
which has the name of the source file with the extension .is. Section 5.3.1.1 contains a description
of the source listing.

If -nolist is active, no source listing is produced, regardless of LIST pragmas in the program or
diagnostic messages produced.

5.1.9 -optimize

-optimize [<keyword> = on I off { ,<keyword> = on I off)]
-optimize all=off

This option specifies which optimizations will be performed during code generation. The possible
keywords arc: (casing is irrelevant)

all All possible optimizations are invoked.
check Eliminates superfluous checks.
cse Performs common subexpression elimination including common

address expressions.
fct2proc Change function calls returning objects of constrained array types

or objects of record types to procedure calls.
reordering Transforms named aggregates to positional aggregates and named

parameter associations to positional associations.
stackheight Performs stack height reductions (also called Aho Ullman

reordering).
block Optimize block and call frames.

Setting an optimization to on enables the optimization, while setting an optimization to off disables
the optimization. All optimizations are disabled by default. In addition to the optional
optimizations, the compiler always performs the following optimizations: constant folding, dead
code elimination, and selection of optimal jumps.

39

I)ACS-80x86 User's Guide
Ada Compilcr

5.l.14 -unit

• init = <unit number>

414c spccificd unit number will be assigned to thc compilation unit if it is frec and it is a legal

uni. number for the library.

°l .1 • -recompile

The hi:• name (source) is interprctcd as a compilation unit name which has its source savcd from
.1 fcvious compilation. If -specification is not specified, it is assumed to be body which must be
rccompiled.

... i .16 -specification

-specification

Works only together with -recompile, see Section 5.1.15.

3.1 Compiler Input

Input to the compiler consists of the command line options, a source text file and, optionally, a
configuration file.

5.2.1 Source Text

*'he u-,:r submits one file containing a source text in each compilation. The source text may
c:onsist of one or more compilation units (see ARM Section 10.1).

fhe "on.aat of the source text must be in ISO-FORMAT ASCII. This format requires that the
solrct, text is a sequence of ISO characters (ISO standard 646). where each line is terminated by
cithei one of the following termination sequences (CR means carriage return, VT means vertical
tabulation, LF means line feed, and FF means form feed):

"* A sequence of one or more CRs, where the sequence is neither immediately preceded nor
immediately followed by any of the characters VT, LF. or FF.

"* Any of the characters VT, LF, or FF, immediately preceded and followed by a sequence of zero
or more CRs.

Jo general, ISO control characters are not permitted in the source text with the following
cv., .4ptions:

41

DACS-S(Wh6 User's Guide
Ada Cornpilcr

type CONFIGURATIONRECORD is
record

IN FORMAT: INFORMATTING;
OUT FOkMAT: OUTFORMATTING;
ERROR LIMIT: INTEGER;

end record;

type INPUTFORMATS is (ASCII);

type INFORMATTING is
record

INPUT FORMAT: INPUT FORMATS;
INPUT LINELENGTH: INTEGER range 70..250;

end record;

type OUTFORMATTING is
record

LINES PER PAGE : INTEGER range 30..100;
TOP MARGIN : INTEGER range 4.. 90;
BOTTOM MARGIN : INTEGER range 0.. 90;
OUT LINELENGTH : INTEGER range 80..132;
SUPPRESS ERRORNO : BOOLEAN;

end record;

The ouuformauing parameters have the following meaning:

1) LINESPERPAGE: specifies the makimum number of lines written on each page
(including top and bottom margin).

2) TOPMARGIN: specifies the number of lines on top of each page used for a standard
heading and blank lines. The heading is placed in the middle lines of the top margin.

3) BOTTOM_- MARGIN: specifies the minimum number of lines left blank in the bottom of
the page. The number of lines available for the listing of the program is LINES
PERPAGE - TOPMARGIN - BOTTOMMARGIN.

4) OUTLINELENGTH: specifies the maximum number of characters written on each line.

Lines longer than OUTLINELENGTH are separated into two lines.

5) SUPPRESSERRORNO: specifics the format of error messages (sce Section 5.3.5.1).

The name of a uscr-supplicd configuration file can be passed to the compiler through the
configuration.file option. DDC-I supplies a default configuration file (config) with the following
content:

43

DACS-8()xK6 Uscr's Guide
Ada Compiler

5.3.1 The List File

The name of the list file is idcntical to the name of the source file except that it has the file type
".lis". The file is located in the current (dcfault) directory. If any such file cxists prior to thc
compilation, thc newcst vcrsion of the file is dcleted. If the uscr requests any listings by
specifying the options -list or -xref, a new list file is crcatcd.

The list file may include onc or more of the following parts: a source listing, a cross-rcfercnce
listing, and a compilation summary.

The parts of the list file arc separated by page ejects. The contents of each part arc described in
thc following sections.

The format of the output on the list file is controlled by the configuration file (see Section 5.2.2)
and may therefore be controlled by the user.

5.3.1.1 Source Listing

A source listing is an unmodified copy of the source text. Thc listing is divided into pages and
each line is supplied with a line number.

The number of lines output in the source listing is governed by the occurrence of LIST pragmas

and the number of objectionable lines.

* Parts of the listing can be suppressed by the use of the LIST pragma.

"* A line containing a construct that caused a diagnostic message to be produced is printed even
if it occurs at a point where listing has been suppressed by a LIST pragma.

5.3.1.2 Compilation Summary

At the end of a compilation, the compiler produces a summary that is output on the list file if the
option -list is active.

The summary contains information about:

1) The type and name of the compilation unit, and whether it has been compiled successfully
or not.

2) The number of diagnostic messages produced for each class of severity (see Section
5.3.2.1).

3) Which options were active.

4) The full name of the source file.

5) The full name of the current sublibrary.

6) The number of source text lines.

45

I)ACS-80xS6 Uscr's Guide
Ada Compilcr

5.3.2 The Diagnostic File

The name of the diagnostic file is identical to the name of the source file cxcept that it has thc
file type ".err". It is located in the current (default) directory. If any such file cxists prior to the
compilation, the newest vcrsion of the file is delcted. If any diagnostic mcssagcs are produced
during the compilation a new diagnostic file is crcatcd.

The diagnostic file is a text file containing a list of diagnostic messages, each followed by a line
showing the number of the line in the source text causing the message, and a blank line. Thcre
is no separation into pages and no hcadings. The file may be used by an inter.activc editor to
show the diagnostic messages together with the erroneous source text.

5.3.2.1 Diagnostic Messages

The Ada compiler issues diagnostic messages on the diagnostic rile. Diagnostics other than
warnings also appear on the current output file. If a source text listing is required, the diagnostics
are also found embedded in the list file (see Section 5.3.1). 0

In a source listing, a diagnostic message is placed immediately after the source line causing the
message. Messages not relatcd to any particular line arc placed at the top of the listing. Evcry
diagnostic message in the diagnostic file is followed by a line stating the linc number of the
objectional line. The lines arc ordered by increasing source line numbers. Line number 0 is
assigned to messages not related to any particular line. On the current output file the messages
appear in the order in which they arc generated by the compiler.

The diagnostic messages arc classified according to their severity and the compiler action taken:

Warning: Reports a questionable construct or an error that does not influence the meaning of the
program. Warnings do not hinder the generation of object code.

Example: A warning will be issued for constructs for which the compiler detects will
raise CONSTRAINT_ERROR at run time.

Error: Rcports an illegal construct in the source program. Compilation continues, but no object
codc will be generated.

Examples: most syntax crrors; most static semantic errors.

Severe Reports an error which causes the compilation to be terminated immediately.
error: No object code is generated.

Example: A severe error message will be issued if a library unit mentioned by a
WITH clause is not present in the current program library.

47

D)ACS-8•OX6 Uscr's Guide

Ada Compiler

1508S-0: Specification for this package body not present in the library

5.4 The Program Library

This section briefly describes how the Ada compiler changes the program library. For a more
general description of the program library, the user is referred to Chapter 3.

The compiler is allowed to read from all sublibrarics constituting the current program library, but
only the cusrcnt sublibrary may be changed.

5.4.1 Correct Compilations

In the following examples it is assumed that the compilation unit% are correctly compiled, i.e., that
no errors are detected by the compiler.

Compilation of a library unit which is a declaration

If a declaration unit of the same name exists in the current sublibrary, it is deleted together with
its body unit and possible subunits. A new declaration unit is inserted in the sublibrary, together
with an empty body unit.

Compilation of a library unit which is a subprogram body

A subprogram body in a compilation unit is treated as a secondary unit if the current sublibrary
contains a subprogram declaration or a generic subprogram declaration of the same name and this
declaration unit is not invalid. In all other cases it will be treated as a library unit, i.e.:

- when there is no library unit of that name

. when there is an invalid declaration unit of that name

- when there is a package declaration, generic package declaration, an instantiatcd package, or
subprogram of that name

Compilation of a library unit which is an instantiation

A possible existing declaration unit of that name in the current sublibrary is deleted together with
its body unit and possible subunits. A new declaration unit is inserted.

Compilation of a secondary unit which is a library unit body

The existing body is deleted from the sublibrary together with its possible subunits. A new body
unit is inserted.

49

IJACS-8(MX6 Uscr's Guide
Ada Compilcr

3) The instantiation appears in an earlier compilation unit than the first constraint-requiring
construction of the generic unit, which in that casc-will appcar in the gcncric body or a
subunit. if the instantiation has been accepted. the inslantiation will correspond to the
generic declaration only, and not include the body. Nevertheless, if the generic unit and
the instantiation arc located in the same sublibrary, then the compiler will consider it an
error. An error message will be issued with the constraint-requiring construct and will rcfcr
to the illegal instantiation. The unit containing the instantiation is not changed. howcver,
and will not be marked as invalid.

5.6 Unini•alized Variables

Use or uninitialized variables is not flagged by the compiler. The effect of a program that refers
to the value of an uninitialized variable is undefined. A cross-reference listing may help to find
uninitialized variables.

5.7 Program Structure and Compilation Issues

The following limitations apply to the DACS-80x86 Ada Compiler Systems for the Real Address
Mode and 286 protected mode only:

"The Ada compiler supports a "modified large" memory model for data references. The
"modified large" memory model associates one data segment for each hierarchical sublibrary in
the Ada program library. All package data declared within a sublibrary is efficiently referenced
from Ada code compiled into the same sublibrary. A slight increase in code size results from
referencing package data compiled into a different hierarchical level. Intel's medium memory
model can thus be obtained by utilizing only one level of Ada program library, the root
sublibrary.

" The Ada compiler supports a large memory model for executable code. Although the size of
a single compilation unit is restricted to 32K words, the total size of the code portion of a
program is not restricted.

"* The space available for the static data of a compilation unit is 64K - 20 bytes.

"* The space available for the code generated for a compilation unit is limited to 32K words.

"* Any single object cannot exceed 64K - 20 bytes.

The following limitations apply to all DACS-80x86 products:

"* Each source file can contain, at most, 32,767 lines of code.

"* The name of compilation units and identifiers may not exceed the number of characters given
in the INPUTLINELENGTH parameter of the configuration file.

"* An integer literal may not exceed the range of LONGINTEGER, a real literal may not exceed
the range of LONGFLOAT.

51

6 THE ADA LINKER

The DACS linker must be executed to create an executable program in the target environment.
Linking is a two stage process that includes an Ada link using the compilation units in the Ada
program library, and a target link to integrate the application code, run-time code, and any
additional configuration code developed by the user. The linker performs these two stages with a
single command, providing options for controlling both the Ada and target link processes.

This chapter describes the link process, except for those options that configure the Run-Time
System, which is described in detail in Chapter 7.

6.1 Invoking the Linker

Enter the following command at the shell to invoke the linker:

$ ada.link {<option>) <unit-name>

where the options and parameters arc:

Ada Linker Options

OPTION DESCRIPTION REFERENCE

-[no]debug Links an application for use with the 6.5.11
DACS-80x86 Symbolic Cross Debugger.

-enable task trace Enables tract when a task terminates in 6.5.28
unhandled •xce-tion.

-exception space Defines area 'or exception handling in task stack. 6.5.29
-[nolextract Extracts Ada Object modules 6.5.14
-interruptentrytable Range of interrupt entries. 6.5.27
-library The library used in the link. 6.5.7
-[no]log Specifies creation of a log file. 6.5.9
-It segmentsize Library task default segment size. 6.5.23
-It.stacksize Library task default stack size. 6.5.22
-mp_segment size Main program segment size. 6.5.25
-mp_ stacksize Main program stack size. 6.5.24
-[no]npx Use of the 80x87 numeric coprocessor. 6.5.16
-options Specifies target link options. 6.5.6
-priority Default task priority. 6.5.18
-reserve-stack Size of reserve stack. 6.5.21
-rms Select Rate Monotonic Scheduling Run-Time 6.5.13

Kernel (optional).
-[noiroot extract Using non-DDC-I units in the root library. 6.5.10

53

DACS-8Ox86 User's Guide
The Ada Linker

The first process constitutes tihe Ada link process and the second constitutcs the target link

process.

\itJ ,a link process

"* retrieves the required Ada object modules from the program library,

"* determines an elaboration order for all Ada units,

•:reatcs a module containing the User Configurable Data (UCD) from the specified configuration
options to the linker and

crcatcs a shcll script that carries out the target link process (i.e., dlnkbldx86). The locate/build
phase is an integral part of the target link.

If the option -stop -before-link is NOT specified (default), the above script is executed
o,.cnuatically. Otherwise the linking process is halted at this point.

.-il -stop.before-link is specified, all temporary files arc retrieved for inspection or
modification. The target linker is invoked by executing the shell script.

6.2.1 Temporary Files

Yh., following temporary files are in use during the link phase:

<wa,,jprogram>_link.com The shell script which invokes the target linker.

<main _program>_elabcode.o The object code for the calling sequence of the elaboration
code.

<mainprogram>_ucd.o The object code generated from the RTS configuration
options (see Section 7.2).

<maiiaprogram>_uxxxxx.o The Ada object modules which have been extracted from the
program library. xxxxx is the unit number of the Ada uniL

55

I)ACS-XOxN6 Iser's (;uide
The Ada Linker

The outpu! of the linker step is an absolute executable object file with the extensiont ".dat" and
a map file with the cxlcnsion ".rpS".

6.2.2 Environmental Variables

When a link is cxecuted, a number of files arc referred to and most are accesscd through
environmental variables. The locate/build phase uses the control file Sada_ucc_dir/config.bldddci,
the remaining variables are:

VARIABLE PURPOSE

ada-systcmjlibrary Idcntifics the root library where the system compilation units reside.

adalibrary Identifics the default library used by all DACS-80x86 tools. It is the
lowest level sublibrary in the program library hierarchy.

ada._root lib Identifics the OMF library where the ;ystcm library units have been
extracted from the system library. By having a separate Library for the
root compilation units, the link process is much faster than otherwise
having to extract each unit from the system library for each link.

ada rl I1lib Identifies the OMF library for the Permanent Part of the non-tasking
version of the Run-Time System.

adarl2_lib Identifies the OMF library for the Permanent Part of the tasking version
of the Run-Time System.

adarl 3jib Identifies the OMF library for the Permanent Part of the optional Rate
Monotonic scheduling Run-Time System.

adauccjib Identifies the OMF library for the User Configurable Code portion of
the Run-Time System.

ada-template Identifies the template file for the Linker.

ada.ucc-dir Identifies the directory of the current UCC.

With each of these environmental variables, the name will differ depending on how the system
was installed (ada86, adaI86 etc). Throughout this document ada is assumed. For example, the
environmental variables for the root library for the 80186 version of the compiler would be
adaI86_rootlib, and the RTS UCC library environmental variables for the 8086 version would
be ada86 ucc lib.

57

l)ACS-S(xX6 User's Guide
The Ada Linker

• Run-Timc Library Routines

* Package CALENDAR support routines

The run-lime system (RTS) can be configured by the user through Ada Linkcr command options.
The Ada Linker will gcncratc appropriate data structures to represent the configured characteristics
(UCD).

Two versions of the RTS are supplicd, one including tasking and one excluding tasking. Tei
linker selects the RTS. version including tasking only if the option -tasks is present or -tasks n
is present and n > 0. Odterwise, the linker sclects the RTS version excluding tasking.

6.4 Linker Elaboration Order

The elaboration order is primarily given by the unit dependencies, but this leavcs some freedom
here and there to arbitrarily choose between two or more altcmantivcs. This arbitrary is in the
DACS-80x86 linker controlled by the spelling of the involved library units, in order for "free"
units to become alphabetically sorted.

Recompiling from scratch, an entire system may thus affect the allocation of unit numbers, but the
elaboration order remains the same.

It is also attempted to elaborate "body after body", so that a body having a with to a specification,
will be attempted elaborated after the body of this specification.

Also elaboration of units from different library levels is attempted to complete elaboration of a
father-level prior to the son-level.

This strategy should in many cases reduce the need for resetting pragma ELABORATE.

6.5 Ada Linker Options

This section describes in detail the Ada linker option and parameters.

6.5.1 The Parameter <unit-name>

<unit-name>

The <unitname> must be a library unit in the current program library, but not necessarily of the
current sublibrary.

Note that a main program must be a procedure without parameters, and that <unit-name> is the
identifier of the procedure, not a file specification. The main procedure is not checked for
parameters, but the execution of a program with a main procedure with parameters is undefined.

59

DACS-80x86 User's Guide
Thc Ada Linker

Examples:

$ ada-link -,ear.'lib interface lib p

Links the subprogram p. resolving refercnced symbols first with dte target library intcrfacclib
and thcn with the standard RTS targc library.

6.5.5 -stop.bel'oreilink

-stopbefore link

Thc -stopbefore link option allows the uscr to introduce assemblers and linkers from third
panics or to othcrwisc configurc thc link to suit the application. The link is halted with die
following conditions:

"* The user configurable data file, <main>_ucd.o, is produced with the default or user specified

linker option values included.

"* The elaboration code is contained in the <jmain>_elabcode.o file.

"* The shell script file that contains the link command is present and has not been cxecuted. The
file's name is <main>_link.com.

"* The temporary Ada object file(s) used by the target linker are produced. These objects are
linked and deleted when <main>_]ink.com is executed.

"* With -selective link the object files comprise all Ada units including those from the root
library. At this point it is possible to disassemble the "cut" object files using -object with the
disasscmbler.

To complete the link, the <main>_link.com script must be executed. To use third party tools, this
file may have to be modified.

6.5.6 -options

-options <parameter>

-options allow the user to pass options onto the target linker.

61

I)ACS-X0xS 6 Uscr's Guidc
"Ilic Ada Linker

"* Ilie number of each type of diagnostic message.

"* A termination message, stating if the linking was tcmlinatcd successfully or unsuccessfully or
if a consequcncc examination was lermin:atcd.

* Diagnostic messages and warnings arc written on the log file.

If recompilations arc required (as a result of the consistency check) a text file is produced
containing excerpts of the log file. The name of this text file is written in die log file Iine 8.

The log file consists or:

"* Header consisting of the linker name, the linker version number, and the link time.

"* The elaboration order of the compilation units. The units are displayed in the order elaborated
with the unit number, compilation time, unit type, dependencies, and any linking errors.

"* If recompilations are required, the units that must be recompiled are listed along with its unit
type and sublibrary level.

"* The linking summary that includes the main unit name, the program library, any recompilations
that are required, and if any errors or warnings occurred.

6.5.10 -[noiroot-extract

-root-extract
-noroot extract (default)

The units contained in the Ada system library supplied by DDC-I have been extracted and inserted
into the $adaroot_lib OMF Library, thus eliminating extractions from the system library at link
time and improving link performance.

The user should normally not modify or compile into the Ada system library supplied by DDC-I.
If however, a unit is compiled into the Ada system library, the Sadarootlib will no longer
match the Ada system library and -root extract must be specified in order to link from the Ada
system library.

6.5.11 -trno]debug

-debug
-nodebug (default)

The -debug option specifies that debug information is generated. The debug information is
required to enable symbolic debugging. If -nodebug is specified, the Ada linker will skip the
generation of debug information, thus saving link time, and will not insert the debug information

63

DACS-N(x86 User's Guide
Thc Ada Linkcr

6.5.15 -template

-template <filc-namc>
-template $ada-tcmplatc (default)

The tcmplatc file is known to the linker via the cnvironmental variable adcaiemplate. DDC-I
supplies a default template file as part of the standard rcleasc system. Plcasc rcfcr to appendix H
for detailed information.

6.5.16 -npx

-npx (dcfault)
-nonpx

Thc -npx option specifics that thc 80x87 (8087, 80287, or 80387) numcric coprocessor is used
by the Ada program. When -npx is specified, the 80x87 is initialized by the task initialization
routine, the floating point stack is reset during cxception conditions, and the 80x87 context is
saved during a task switch.

Configurable Data

A 16 bit boolean constant is gencrated by the Ada Linker:

_CD_NPXUSED

= 0 - 80x87 is not used
= I - 80x87 is used

6.5.17 -tasks

-tasks [n]
(default is no tasking)

This option specifies the maximum number of tasks allowed by the RTS. If specified, n must be
greater than zero. If -tasks is specified without a value for n, n defaults to 10. If -tasks is not
specified, the RTS used will not include support for tasking. If -tasks is specified, the RTS used
will include support for tasking.

Ada Interrupt tasks identified with pragma INTERRUPT._HANDLER need not be included in the
count of maximum number of tasks. The main program must be counted in the maximum number
of tasks. Note that the main program, which may implicitly be considered a task, will not run
undcr control of the tasking kernel when -notasks is specificd. See also -rms option.

Configurable Data

For -tasks, the linker generates the following configurable data:

65

l)ACS-XNxM86 tJscr's (uidc
"Tlhe Ada Linker

6.3.19 -lime-slice

-time_ slice jrl (default no time slicing is active)

The -time slice options specifics whether or not lime slicing will be used for tasks. If specified.
R is a decimal number of seconds representing the default time slice to be used. If R is not
specified, the default time sýý,x will be 1/32 of a second. R must be in the range Duration'Small
_< R :- 2.0 and must be greater than or equal to the -tinier linker option value. Timc slicing only

applies to tasks running at equal priority. Because the RTS is a preemptive priority scheduler, the
highest priority task will always run before any lower priority task. Only when two or more tasks
are running at the same priority is time slicing applied to each task.

rime slicing can be specified on a per task basis dynamically at run-time. See Section E.1
(Package RTS_EntryPoints) for more details.

Time slicing is not applicahle unless tasking is being used. This means that the -tasks option
must be used for -time slice to be effective.

Configurable Data

The Ada Linker generates the following data:

CD__TIMESLICEUSED BOOLEAN

- 0 - No time slicing
- 1 - Time slicing

_CD_TIMESLICE absclute inteoer

representing the number Y that satisfies Y * DURATION'SMALL = R

Example:

S ada-link -time-slice 0.125 -tasks p

* Specifics tasks of equal priority to be time sliced each eighth of a second.

6.520 -timer

-timer R
-timer 0.001 (default)

The -timer option specifics the resolution of calls to the Run-Time System routine TIMER (see
the Run-Time System Configuration Guide for DACS-80x86 for more information). The number,
R, specifies a decimal number of seconds which have elapsed for every call to TIMER. The
default TIMER resolution is one millisecond. R must be in the range DURATION'SMALL< R
<2.

67

DACS-80x86 U.sr's Guide
"11hc Ada Linker

For cach library task, the rcprescnilalion spcc:

FOR Taskobjcct'STORAGE_SIZE USE N;

can be used to specify the library task stack sizc. However. if the representation spec is not used,
the default library task size spccificd by -Itstack-size will bc used.

For efficiency reasons, all tasks creatcd within library tasks will have stacks allocated within the
same scgmcnt as the library task stack. Normally, thc segment which contains the library task
stack is allocated just large enough to hold thc default library task stack. Thcreforc, one must use
thc option -Ilt..s(ack-option or the pragma LT_SEGMENT1SIZE to rescrvc more space within the
scgmcnt that may be used for nestcd tasks' stacks. (See the implementation dependent pragma
LTSEGMENTSIZE in Section F.A for morc information).

The rangc of this parameter is limited by physical memory size, task stack sizc allocated during
the build phase of thc link, and the maximum scgrnent size (64K for all cxcept the 386/486
protected mode, which is 4 GB).

Configurable Data

The Ada Linker gencrates the following integer constant:

CD _,L_STACK_SIZE INTEGER I

Example:

$ ada-link -It stack size 2048 -tasks p

0 Link the subprogram P using a 2K words default library stack size.

6.5.23 -It.stack-size

-it.segment size n
-It1segment-size (It-stack-size + 20 + exception-stack-space) (default)

This parameter defines in words the size of a library task segment. The library task segment
contains the task stack and the stacks of all its nested tasks.

The default value is only large enough to hold one default task stack. If -It stack size is used and
specifics a value other than the default value, -It_segment size should also be specified to be the
size of <taskstack.size> +

<total-of_.ncstcd_tasks-sizes> +
<20 wordsoverhead> +
exception stack-space.

Note that the task stack size specified by the 'STORAGE-size can be representation spec or by
the option -It-stack.size.

Dynamically allocated tasks receive their own segment equal in size to the mp-segmrent-size.

69

DJACS-0xSW6 Uscr's Guidc

"iTlc Ada Linkcr

Examplc:

$ ada-link -nip_slack size 1000 p

- Link tie subprogram 1) with a stack of 1000 words.

6.525 -rap.segientLsize

-mp segment size n
-nip..gnentsize 8100 (Dcfault)

The -mp segment _size option specifics the size, in words, of the scgmcnt in which thc main
program slack is allocatcd. The default sciuing can bc calculated from the formula:

mp segmentsize = mp-stack sizc +
ovcrhcad + (tasks - 1) *
(overhead + task_sloragc._sizc)

Normally, the main program segment size can bc set to the size of the main program stack.
However, whcn the main program contains nested tasks, the stacks for the nestcd tasks will be
allocatcd from the data segment which contains the main program stack. Thcrcfore, when the
main program contains nestcd tasks, the main program stack segment must be extended via the
-mpjsegment size option.

The range of this parameter is limitcd by physical memory size, task stack size allocated during
the build phase (in tasking programs only), and the maximum segment size (64K for all except
the 386/486 protected mode, which is 4 GB).

Note: Dynamically allocated tasks receive their own segment equal in size to mp-segment_size.

Configurable Data

The Ada Linker allocates the _CD_MPSTACK (see the -mp stack size option) within a data
scgmcnt called CDMPSTACKSEGMENT:

cDHP STACK--SE1GXNT IP STACK

I I T
1-_STACKSTART M•,STACKSIZE PSEGNT_S-IZE

Examplc:

$ ada-link -tasks -mpjsegment-size 32000 program_a

Links the subprogram PROGRAM_A, which contains tasks ncsted in the main program
allocating 32,000 words for the main program stack segment.

71

DACS-80x86 User's Guide
"ilic Ada Linker

the Ada program contains standard interrupt tasks fo)r which the RTS rcquircs the abv\e data

structure. You must relink the Ada program specifying dhc -iilerruptentry table option.

Example:

$ ada-link -tasks -interruptentry table 5,20 p

Links the subprogram P, which has standard Ada interrupt entries numbered 5
through 20.

6.5.28 -1 no Jena ble-lask -1race

-enable (ask trace
-nocnallc task trace (default)

This option instructs the exception handler to produce a stack trace when a task terminates because
of an unhandled exception.

Configurable Data

_CDý_TRACE_ENABLED [OOLEAN

- 0 - task trace disabled
- 1 - task trace enabled

6.5.29 -exception-space

-exception-space n
-exception.-space OaOh (default)

Each stack will have set its top area aside for exception space. When an exception occurs, the
exception handler may switch stack to this area to avoid accidental overwrite below the stack
bottom (which may lead to protection exceptions) if the size of the remaining part of the stack
is smaller than the N value. Spccifying a value =0 will never cause stack switching. Othcrwise an
N value below the default value is not recommended.

Configurable Data

_CDý_EXCEPTION_STACX_SPACE_SIZEINER

Note that this value is added to all requests for task stack space, thus requiring an increase in the
requirements of the appropriate segment's size

73

APPENDIX C

APPENDIX F OF THE Ada STANDARD

The only allowed implementation dependencies correspond to
implementation-dependent pragmas, to certain machine-dependent
conventions as mentioned in Chapter 13 of the Ada Standard, and to
certain allowed restrictions on representation clauses. The
implementation-dependent characteristics of this Ada implementation,
as described in this Appendix, are provided by the customer. Unless
specifically noted otherwise, references in this Appendix are to
compiler documentation and not to this report.
Implementation-specific portions of the package STANDARD, which are
not a part of Appendix F, are:

package STANDARD is

type SHORTINTEGER is range -32_768 .. 32_767;

type INTEGER is range -2_147_483_648 .. 2_147_483_647;

type LONGINTEGER is range -2**63 .. 2**63-1;

type FLOAT is digits 6
range -16#0.FFFFFF#E32 .. 16#0.FFFFFF#E32;

type LONG FLOAT is digits 15
range -16#0.FFFFFFFFFFFF_F8#E256 .. 16#0.FFFFFFFFFFFF_FS#E256;

type DURATION is delta 2#1.0#E-14 range -131_072.0 .. 131 071.0;

end STANDARD;

C-1

DDC-I Ada Compiler System

DACS Sun SPARC/SunOS to 80x86 Bare

Ada Cross Compiler System

User's Guide

APPENDIX F

APPENDIX F - IMPLEMENTATION-DEPENDENT CHARACTERISTICS

This appendix describes the implcmcntation-dcpendcnt characteristics of DACS-80X86Tm as required
in Appendix F of the Ada Reference Manual (ANSI/MIL-STD-1815A).

F.1 Implementation-Dependent Pragmas

This section describes all implementation defined pragmas.

F.1.1 Pragma INTERFACE-SPELLING

This pragma allows an Ada program to call a non-Ada program whose name contains characters
that are invalid in Ada subprogram identifiers. This pragma must be used in conjunction with
pragma INTERFACE, i.e., pragma INTERFACE must be specified for the Ada subprogram name
prior to using pragma INTERFACE-SPELLING.

The pragma has the format:

pragma INTERFACESPELLING (subprogram name, string literal);

where the subprogram name is that of one previously given in pragma INTERFACE and the string
literal is the exact spelling of the interfaced subprogram in its native language. This pragma is
only required when the subprogram name contains invalid characters for Ada identifiers.

Example:

function RTS_GetDataSegment return Integer;

pragma INTERFACE (ASM86, RTSGetDataSegment);
pragma INTERFACESPELLING (RTSGetDataSegment, "R1SMGS?GetDataSegment");

The string literal may be appended 'NEAR (or 'FAR) to specify a particular method of call. The
default is 'FAR. This suffix should only be used, when the called routines require a near call
(writing 'FAR is however harmless). If 'NEAR is added, the routine must be in the same segment
as the caller.

F.1.2 Pragma LTSEGMENTSIZE

This pragma sets the size of a library task stack segment.
The pragmna has the format:

pragrma LTSEGMENTSIZE (T. N);

where T denotes either a task object or task type and N designates the size of the library task

193

DACS-8OxS6 User's Guide
lmpicmentalion-Dcpondcnt Char-cteristics

stack segment in words.

The library task's stack segment defaults to the size of the library task stack. The size of the
library task stack is normally specified via the represcntation clause (note that T must be a task
type)

for T'STORAGESIZE use N;

The size of the library task stack segnment determines how many tasks can be created which arc
ncstcd within the library task. All tasks created within a library task will have their stacks
allocated from the same segment as the library task stack. Thus, pragma LTSEGMENT_SIZE
must be specified to reserve space within the library task stack segment so that nested tasks'
stacks may be allocated (see section 7.1).

The following restrictions are places on the use of LT_SEGMENTSIZE:

1) It must be used only for library tasks.

2) It must be placed immediately after the task object or type name declaration.

3) The library task stack segment size (N) must be greater than or equal to the library task
stack size.

F.1.3 Pragma EXTERNAL-NAME

F.1.3.1 Function

The pragma EXTERNALNAME is designed to make permanent Ada objects and subprograms
externally available using names supplied by the user.

F.1.3.2 Format

The format of the pragma is:

pragma EXTERNAL_NAME(<ada-entity>,<extemal name>)

where <adaentity> should be the name of:

" a permanent object, i.e. an object placed in the permanent pool of the compilation unit - such
objects originate from package specifications and bodies only,

" a constant object, i.e. an object placed in the constant pool of the compilation unit - please
note that scalar constants are embedded in the code, and composite constants are not always
placed in the constant pool, because the constant is not considered constant by the compiler,

194

DACS-80x6 User's Guide
Implemcntation-Depcndcnt Characteristics

a subprogram name, i.e. a name of a subprogram defined in this compilation unit - please
notice that separate subprogram specifications cannot be used, the code for the subprogram
must be present in the compilation unit code, and where the <external name> is a string
specifying the external name associated the <adaentity>. The <external names> should be
unique. Specifying identical spellings for different <ada-entities> will generate errors at compile
and/or link time, and the responsibility for this is left to -the user. Also the user should avoid
spellings similar to the spellings generated by the compiler, e.g. Exxxxxyyyyy, P.xxxxx,
C-xxxxx and other internal idcntifications. The target debug type information associated with
such external names is the null type.

F.1-3.3 Restrictions

Objects that are local variables to subprograms or blocks cannot have external names associated.
The entity being made external ("public") must be defined in the compilation unit itself. Attempts
to name entities from other compilation units will be rejected with a warning.

When an entity is an object the value associated with the symbol will be the relocatable address
of the first byte assigned to the object.

F.1.3.4 Example

Consider the following package body fragment:

package body example is

subtype stringlO is string(l..10);

type s is
record

len : integer;
val : stringlO;

end record;

global s : s;
consts : constant stringlO := "1234567890";

pragma EXTERNALNAME(global_s, "GLOBALS_OBJECT");

pragma EXTERNALNAME(consts, "CONSTS");

procedure handle(...) is

end handle;

pragma EXTERNALNAME(handle, "HANDLEPROC");

end example;

The objects GLOBALS and CONSTS will have associated the names "GLOBAL_S_OBJECT"
and "CONSTS". The procedure HANDLE is now also known as "HANDLEPROC". It is

195

DACS-80x86 User's Guide
Implementation-Dcpcndcnt Characteristics

allowable to assign more than one external name to an Ada entity.

F.I.3.5 Object Layouts

Scalar objects arc laid out as described in Chapter 9. For arrays the object is described by the
address of the first element; the array constraint(s) are NOT passed, and therefore it is
recommended only to use arrays with known constraints. Non- discriminated records take a
consecutive number of bytes, whereas discriminated records may contain pointers to the heap. Such
complex objects should be made externally visible, only if the user has thorough knowledge about
the layout.

F.1.3.6 Parameter Passing

The following section describes briefly the fundamentals regarding parameter passing in connection
with Ada subprograms. For more detail, refer to Chapter 9.

Scalar objects are always passed by value. For OUT or IN OUT scalars, code is generated to
move the modified scalar to its destination. In this case the stack space for parameters is not
removed by the procedure itself, but by '•e caller.

Composite objects are passed by reference. Records are passed via the address of the first byte
of the record. Constrained arrays are passed via the address of the first byte (plus a bitoffset when
a packed array). Unconstrained arrays are passed as constrained arrays plus a pointer to the
constraints for each index in the array. These constraints consist of lower and upper bounds, plus
the size in words or bits of each element depending if the value is positive or negative
respectively. The user should study an appropriate disassembler listing to thoroughly understand
the compiler calling conventions.

A function (which can only have IN parameters) returns its result in register(s). Scalar results are
registers!float registers only; composite results leave an address in some registers and the rest, if
any, are placed on the stack top. The stack still contains the parameters in this case (since the
function result is likely to be on the stack), so the caller must restore the stack pointer to a
suitable value, when the function call is dealt with. Again, disassemblies may guide the user to
see how a particular function call is to be handled.

F.1.4 Pragma INTERRUPT-HANDLER

This prag-ma will cause the compiler to generate fast interrupt handler entries instead of the normal
task calls for the entries in the task in which it is specified. It has the format:

pragma L\TERRUPT_HANDLER;

The pragma must appear as the first thing in the specification of the task object. The task must
be specified in a package and not a procedure. See Section F.6.2.3 for more details and restrictions
on specifying address clauses for task entries.

196

DACS-80x86 Uscr's Guide
ImplemCntLtion-Dcpcndcnt Charactcristics

F.l.5 Pragma MONITORTASK

F.1.S.1 Function

The pragma MONITORTASK is uscd to specify that a task with a certain structure can be
handled in a special way by the Run-Time System, enabling a very efficient context switch
operation.

F.1.5.2 Format

The format of the pragma is

pragma MONITORTASK;

The pragma must be givcn in a task specification before any entry declarations.

F.1-.3 Restrictions

The following restrictions apply on tasks containing a pragma MONITOR_TASK

"* Only single anonymous tasks can be "monitor tasks".

"* Entries in "monitor tasks" must be single entries (i.e. not family entries).

"* The task and entry attributes are not allowed for "monitor tasks" and "monito, task" entries.

"* The <declarative part> shou7ld only contain declaration of objects; no types or nested sturctures
must be used.

"* The structure of the task body must be one of the following:
1.

task body MON TASK Is
<declarative part>

begin
<statement list>
loop

select
accept ENTRY l<parameter_list> (do
end];

or
accept ENTRY_2<parameter_list> (do

<statement list>
end];

or
terminate

end select;
end loop;

end;

where each entry declared in the specification must be accepted unconditionally exactly once.

197

DACS-80x86 User's Guide
implcmentation-1Dcpcndcni Characteristics

2.
task body MONý_TASK Is

<declarative part>
begin

<statement list>
loop

accept MONENTRY<parameter list> [do
<statement list>

end);
end loop;

end;

where the task only has one entry.

In both cases the declarative parts, the statement lists and the paramctcr lists may be empty.
The statement list can be arbitrarily complex, but no nested select or accept statements are
allowed.

No exception handicr in the monitor task body can be given.

The user must guarantee that no exceptions are propagated out of the accepts.

F.1.5.4 Example

The following tasks can be defined

task LIST HANDLER is
praga MONITOR TASK;
entry INSERT(ELLEM-ELEM TYPE);
entry REMOVE (ELZM:out ELEM-TYPE);
entry ISPRESENT (ELEM: ELEM TYPE;

RESULT:out BOOLEAN);
end LIST-HANDLER;

task body LIST HANDLER is
"define list"

begin
"initialize list"
select
accept INSERT(ELEX:ELEMTYPE) do

"insert in list"
end INSERT;

or
accept REMOVE (ELEM: out ELEMTYPE) do

"find in list and remove from list"
end REMOVE

or
accept ISPRESENT(ELE.4:ELEM TYPE

RES: out BOOLEAN)do
"scan list"

end !S.PRESENT;
or

terminate,
end select

end MON TASK;

The task can be used

task type-LISTUSER is

end LISTUSER;

task body LIST-USER is

198

N., LACS-SUNSO bLscr S kUudci

W n!Almplemcntation-Dcpcndcnt Characteristics

begin
select

LISTUANDLER.INSERT(FIRSTELEI);
else

raise INSERT-ERROR;
end select;
loop

LIST BANDLER. INSERT (NEXT ELEM);
end loop;

end LIST USER;

F.I.6 Pragma TASKSTORAGESIZE (T, N)

This pragma may be used as an alternative to the attribute 'TASKSTORAGESIZE to designate
the storage size (N) of a particular task object (T) (see section 7.1).

F.2 Implementation-Dependent Attributes

No implemcntation-dcpendcnt attributes are defined.

F.3 Package SYSTEM

The specifications of package SYSTEM for all DACS-80J86 in Real Address Mode and
DACS-80286PM systems are identical except that type Name and constant SystemName vary:

Compiler System System Name

DACS-8086 iAPX86
DACS-80186 iAPX186
DACS-80286 Real Mode iAPX286
DACS-80286 Protected Mode iAPX286_PM

Below is package system for DACS-8086.

package System is

type Word is new Integer;
type DWord is now Long-integer;

type UnsignedWord is range 0..65535;
for UnslgnedWord'SIZE use 16;

type byte is range 0..255;
for byte'SIZE use 8;

subtype Segmentld is UnsignedWord;

type Address is
record

offset Unsignedrord;
segment Segmentld;

end record;

subtype Priority is Integer range 0..31;

199

DACS-8Ox86 User's Guide

0mplcmcntation-Dcpcndcnj Charactcnstics

type Name Is (LAlX86);

SYSTEM. NAME constant Name :- iAPX86;
STORAGEZ UNIT constant 16;
M-4ORY SIZE constant :- 1 048_576;
IM1N :N? constant -2 147 483 647-1;

MAX ZNT constant 2 147 483 647;
MAX DIGITS constant :- 15;
MAX MANTISSA :'constant 31;
FINE DELTA constant 211.0#E-31;
TICIC constant : 0.000_000_125;

type Interfacelanguage is
(ASM86, P1M86, C86, C86 REVERSE,
ASHACF, PLI4ACF, CACF. CREVERSEACF,
ASHNOACF. PLHeOACT. CNOACF, C REVERSENOACF);

type Exceptionld is record
unit number : OnsignedWord;
unique number : UnsignedWord;

end record;

type TaskValue is new Integer;
type AccTaskValue is access TaskValue;
type SemaphoreValue is new Integer;

type Semaphore is record
counter Integer;
first TaskValue;
last TaskValue;
SoNext SemaphoreValue;

-- only used in HDS.
end record;

InitSemaphore : constant Semaphore :- Semaphore'(1,0,0,0);

end System;

The package SYSTEM specification for DACS-80386PM package system is:

package System is

type Word is new Short Integer;
type DWord Is new Integer;
type OWord is new LongIntager;

type OnsignedWord is range 0..65535;
for OnsignedWord'SIZE use 16;
type UnsignedDWord is range 0..164FFTFFFFF@;
for UnsignedDWord'SIZE use 32;
type Byte is range 0..255;
for Byte'SIZE use 8;

subtype SegmentId is OnsignedWord;

type Address is
record

offset Uns3gnedDWord;
segment Segmentld;

end record;

for Address use
record

offset at 0 range 0..31;
segment at 2 range 0..15;

end record;

subtype Priority is Integer range 0..31;

200

W C-0 lmplcmcni:tion-Dcpcndcnt Charactcristics

type Name Is (IAPX386_PM);

SYSTEM -NAME : constant Name iAPX386 PM;
STORAGE UNIT : cnstant 16;
)MrHORY SIZE : constant 16#1 0000 00000;
HIM INIT : constant -16#8000 0_000 0000 00000;
MAX INT : constant -160FFF_.FFFF_FFF_TFFrF;
MAX DIGITS : constant 15;
HAX HMTISSA constant 31;

FINE DELTA constant : 2#1.OE-31;
TICK constant :- 0.000000062_5;

type Interface-language is

(ASM86, PLM86, C86, C86 REVERSE,
AS ACVr, PLM AcT, C.AC", C REVERSE ACt,
ASH_NOACF, PLiNOACF, CNOACF. CREVERSE7_NOACF);

type Exceptionld 1s record
unit number : unsignedDword;
unique_number : OnsignedDword;

end record;

type TaskValue is new Integer;
type AccTaskvalue is access TaskValue;
type SemaphoreValue is new Integer;

type Semaphore is record
counter Integer;
first, last TaskValue;
SQNext SemaphoreValue;

-- only used In HDS.
end record;

InitSemaphore : constant Semaphore :-Semaphore' (1,0,0,0);

end System;

F.4 Representation Clauses

The DACS-80x86TM fully supports the 'SIZE representation for derived types. The representation
clauses that are accepted for non-derived types are described in the following subsections.

F.4.1 Length Clause

Some remarks on implementation dependent behavior of length clauses are necessary:

"* When using the SIZE attribute for discrete types, the maximum value that can be specified is
16 bits. For DACS-80386PM/80486PM the maximum is 32 bits.

"* SIZE is only obeyed for discrete types when the type is a part of a composite object, e.g.
arrays or records, for example:

type byte is range 0..255;
for byte'size use 8;

sixteen bitsallocated : byte; -- one word allocated

201

Implcmcntation-Dcpcndent Charactcristics

eight .bitperelement : array(O..7) of byte; -- four words allocated
type rec is

record
cl,c2 : byte; -- eight bits per component
end record;

" Using the STORAGESIZE attribute for a collection will set an upper limit on the total size
of objects allocated in this collection. If further allocation is attempted, the exception
STORAGEERROR is raised.

" When STORAGESIZE is specified in a length clause for a task type, the process stack area
will be of the specified size. The process stack area will be allocated inside the "standard" stack
segment. Note that STORAGESIZE may not be specified for a task object.

F.4.2 Enumeration Representation Clauses

Enumeration representation clauses may specify representations in the range of -32767..+32766 (or
-16#7FFF.. 16#7FFE).

F.4.3 Record Representation Clauses

When representation clauses are applied to records the following restrictions are imposed:

"* if the component is a record or an unpacked array, it must start on a storage unit boundary
(16 bits)

"* a record occupies an integral number of storage units (words) (even though a record may have
fields that only define an odd number of bytes)

"* a record may take up a maximum of 32K bits

"* a component must be specified with its proper size (in bits), regardless of whether the
component is an array or not (Please note that record and unpacked array components take up
a number of bits divisible by 16 (=word size))

"* if a non-array component has a size which equals or exceeds one storage unit (16 bits) the
component must start on a storage unit boundary, i.e. the component must be specified a.:

component at N range 0..16 * M - 1;

where N specifies the relative storage unit number (0,1) from the beginning of the record, and
M the required number of storage units (1,2,...)

"* the elements in an array component should always be wholly contained in one storage unit

"* if a component has a size which is less than one storage unit, it must be wholly contained
within a single storage unit:

202

component at N range X .. Y;

where N is as in previous paragraph, and 0 <= X <= Y <= 15. Note that for this restricton
a component is not required to start in an integral number of storage units from the beginning
of the record.

If the record type contains components which arc not covcred by a component clause, they are
allocated consecutively after thc component with the value. Allocation of a record component
without a componcnt clause is always aligned on a storage unit boundary. Holes created because
of component clauses arc not otherwise utilized by the compiler.

Pragma pack on a record type wiU attempt to pack the components not already covered by a
representation clause (perhaps none). This packing will begin with the smaU scalar components and
larger components will follow in the order specified in the record. The packing begins at the first
storage unit after the components with representation clauses.

F.43.1 Alignment Clauses

Alignment clauses for records are implemented with the following characteristics:

"* If the declaration of the record type is done at the outermost level in a library package, any
alignment is accepted.

"* If the record declaration is done at a given static level higher than the outermost library level,
i.e., the permanent area), only word alignments are accepted.

"* Any record object declared at the outermost level in a library package will be aligned according
to the alignment clause specified for the type. Record objects declared elsewhere can orly be
aligned on a word boundary. If the record type is associated with a different alignment, an
error message will be issued.

"• If a record type with an associated alignment clause is used in a composite type, the alignment
is required to be one word: an error message is issued if this is not the case.

F.5 Implementation-Dependent Names for Implementation Dependent Components

None defined by the compiler.

F.6 Address Clauses

This section describes the implementation of address clauses and what types of entities may have
their address specified by the user.

203

P aDACS-80x86 User's Guide
implcmcntation- E-,-cndcnt Characteristics

F.6.1 Objects

Address clauses are supported for scalar and composite objects whose size can be determined at
compile time. The addrcss clause may denote a dynamic value.

F.6.2 Task Entries

The implementation supports two methods to equate a task entry to a hardware interrupt through
an address clause:

1) Direct transfer of control to a task accept statement when an interrupt occurs. This form
requires the use of pragma INTERRUPT_HANDLER.

2) Mapping of an interrupt onto a normal conditional entry call. This form allows the interrupt
entry to be called from other tasks (without special actions), as well as being called when
an interrupt occurs.

F.6.2.1 Fast Interrupt Tasks

Directly transferring control to an accept statement when an interrupt occurs requires the
implementation dependent pragma INTERRUPTHANDLER to tell the compiler that the task is
an interrupt handler.

F.6.2.2 Features

Fast interrupt tasks provide the following features:

"• Provide the fastest possible response time to an interrupt.

"* Allow entry calls to other tasks during interrupt servicing.

"* Allow procedure and function calls during interrupt servicing.

"* Does not require its own stack to be allocated.

- Can be coded in packages with other declarations so that desired visiblity to appropriate parts
of the program can be achieved.

* May have multiple accept statements in a single fast interrupt task, each mapped to a different
interrupt. If more than one interrupt is to be serviced by a single fast interrupt task, the accept
statements should simply be coded consecutively. See example 2 how this is done. Note that
no code outside the accept statements will ever be executed.

204

DACS-S0x86 User's Guide
Implmcniation-Dcpcndcnt Characteristics

F.6.2-3 Limitations

By using the fast interrupt feature, the user is agreeing to place certain restrictions on the task in
order to speed up the software response to the interrupt. Consequently. use of this method to
capture interrupts is much faster than the normal method.

The following limitations are placed on a fast interrupt task:

* It must be a task object, not a task type.

- The pragmna must appear first in the specification of the task object.

- All entries of the task object must be single entries (no families) with no parameters.

- The entries must not be called from any task.

. The body of the task must not contain any statements outside the accept statement(s). A loop
statement may be used to enclose the accept(s), but this is meaningless because no code outside
the accept statements will be executed.

- The task may make one entry call to another task for every handled interrupt, but the call must
be single and parameterless and must be made to a normal tasks, not another fast interrupt
task.

. The task may only reference global variables; no data local to the task may be defined.

. The task must be declared in a library package, i.e., at the outermost level of some package.

- Explicit saving of NPX state must be performed by the user within the accept statement if such
state saving is required.

F.6.2.4 Making Entry Calls to Other Tasks

Fast interrupt tasks can make entry calls to other normal tasks as long as the entries are single (no
indexes) and paramcterless.

If such an entry call is made and there is a possibility of the normal task not being ready to
accept the call, the entry call can be queued to the normal task's entry queue. This can be forced
by using the normal Ada conditional entry call construct shown below:

accept E do
select

T.E;
else

null;
end select;

end E;

Normally, this code sequence means make the call and if the task is not waiting to accept it
immediately, cancel the call and continue. In the context of a fast interrupt task, however, the
semantics of this construct are modified slightly to force the queuing of the entry call.

205

tWO-' DACS-80x86 User's Guide
I mplcmentation-Dcpcndent Characteristics

If an unconditional entry call is made and the called task is not waiting at the corresponding
accept statement, then the interrupt task will wait at the entry call. Alternatively. if a timed cntry
call is made and the called task does not accept the call before the delay expires, thcn the call
will be dropped. The conditional entry call is the preferred method of making task entry calls
from fast inierrupt handlers because it allows the interrupt service routine to complete straight
through and it guarantees queueing of the entry call if the called task is not waiting.

When using this method, make sure that the interrupt is included in the -interruptentry table
specificd at link time. See Section 7.2.15 for more details.

F.6.2.5 Implementation of Fast Interrupts

Fast interrupt tasks are not actually implemented as true Ada tasks. Rather, they can be viewed
as procedures that consist of code simply waiting to be executed when an interrupt occurs. They
do not have a state, priority, or a task control block associated with them, and are not scheduled
to "run" by the run-time system.

Since a fast interrupt handler is not really a task, to code it in a loop of somekind is meaningless
because the task will never loop; it will simply execute the body of the accept statement whenever
the interrupt occurs. However, a loop construct could make the source code more easily understood
and has no side effects except for the generation of the executable code to implement to loop
construct.

F.6.2.6 Flow of Control

When an interrupt occurs, control of the CPU is transferred directly to the accept statement of the
task. This means that the appropriate slot in the interrupt vector table is modified to contain the
address of the corresponding fast interrupt accept statement.

Associated with the code for the accept statement is

at the very beginning:
code that saves registers and sets (E)BP to look like a frame where the interrupt return
address works as return address,

at the very end:
code that restores registers followed by an IRET instruction.

Note that if the interrupt handler makes an entry call to another task, the interrupt handler is
completed through the MRET before the rendezvous is actually completed. After the rendezvous
completes, normal Ada task priority rules will be obeyed, and a task context switch may occur.

Normally, the interrupting device must be reenabled by receiving End-Of-Interrupt messages. These
can be sent from machine code insertion statements as demonstrated in Example 7.

206

0%=t DCS-80x86 Uscr's Guidc
Implncentation-1Dcpendent Characteristics

F.6.2.7 Saving NPX State

If the interrupt handler will perform floating point calculations and the state of the NPX must be
saved because other tasks also use the numeric coproccssor, calls to the appropriate savc/rcstore
routines must be made in the statement list of the accept statement. Thcse routines arc located
in package RTSEntryPoints and are called RTSStorcNPX-Statc and RTS_RcstorcNPXState.
See example 6 for more information.

F.6.2.8 Storage Used

This section details the storage rcquircments of fast interrupt handlers.

F.6.2.9 Stack Space

A fast interrupt handler executes off the stack of the task executing at the time of the interrupt-
Since a fast interrupt handler is not a task it does not have its own stack.

Since no local data or parameters are permitted, use of stack space is limited to procedure and
function calls from within the interrupt handler.

F.6.2.10 Run-Time System Data

No task control block (TCB) is created for a fast interrupt handler.

If the fast interrupt handler makes a task entry call, an entry in the CD_INTERRUPTVECTOR
must be made to allocate storage for the queuing mechanism. This table is a run-time system data
structure used for queuing interrupts to normal tasks. Each entry is only 10 words for 80386/80486
protected mode compilers and 5 words for all other compiler systems. This table is created by
the linker and is constrained by the user through the linker option -interrupt entry table. For
more information, see Section F.6.2.1 on linking an application with fast interrupts.

If the state of the NPX is saved by user code (see Section F.6.2.7), it is done so in the NPX save
area of the TCB of the task executing at the time of the interrupt. This is appropriate because it
is that task whose NPX state is being saved.

F.6.3 Building an Application with Fast Interrupt Tasks

This section describes certain steps that must be followed to build an application using one or
more fast interrupt handlers.

207

DACS-S0x,6 Us.r's Guide
implemcntation- Dcpcndcnt Characteristics

F.6-1.1 Source Code

The pragma INTERRUPTIHANDLER which indicates that the interrupt handler is the fast form
of interrupt handling and not the normal type, must be placcd in the task specification as the first
statement.

When specifying an address clause for a fast interrupt handler, the offset should be the interrupt
number, not the offset of the interrupt in the interrupt vector. The segment is not applicable
(although a zero value must be specified) as it is not used by the compiler for interrupt addresses.
The compiler will place the intcrrupt vector into the INTERRUPTVECrORTABLE segment. For
real address mode programs, the interrupt vector must always be in segment 0 at execution time.
For protected mode programs, the user specifies the interrupt vector location at build time.

Calls to RTSStore_NPXState and RTS_Restore_NPX_State must be included if the state of the
numeric coprocessor muss be saved when the fast interrupt occrus. These routines arc located in
package RTSEntryPoints in the root library. See example 6 for more information.

F.6.3.2 Compiling the Program

No special compilation options are required.

F.6.3.3 Linking the Program

Since fast interrupt tasks are not real tasks, they do not have to be accounted for when using the
-tasks option at link time. In fact, if there are no normal tasks in the application, the program
can be linked without -tasks.

This also means that the linker options -It_stack size, -It_segmentsize, -mp_segment size, and
-task storage-size do not apply to fast interrupt tasks, except to note that a fast interrupt task will
execute off the stack of the task running at the time of the interrupt.

If an entry call is made by a fast interrupt handler the interrupt number must be included in the
-interruptentrytable option at link time. This option builds a table in the run-time system data
segmnent to handle entry calls of interrupt handlers. The table is indexed by the interrupt number,
which is bounded by the low and high interrupt numbers specified at link time.

F.6.3.4 Locating/Building the Program

For real-address mode programs, no special actions need be performed at link time; the compiler
creates the appropriate entry in the INTERRUPTVECTORTABLE segment. This segment must be
at seazrnent 0 before the first interrupt can occur.

For protecteA mode programs no special actions need be performed. The Ada Link automatically
recognizes Aaa interrupt handlers and adds them to the IDT.

208

UALN-WUxS0 User's Guide

implemcntation- Dcpcndcnt Characteristics

F.6.4 Examples

These examples illustrate how to write fast interrupt tasks and thcn how to build the application

using the fast interrupt tasks.

F.6.4.1 Example 1

This example shows how to code a fast interrupt handler that does not make any task entry calls,
but simply performs somc interrupt handling code in the accept body.

Ada source:

with System; -

package P is

<potentially other declarations>

task FastinterruptHandler is
pragma INTERRUPTHANDLER;
entry E;
for E use at (segment => 0, offset -> 10);

end;

<potentially other declarations>

end P;

package body P is

<potentially other declarations>

task body FastInterruptHandler is
begin

accept E do
<handle interrupt>

end E;
end;

<potentially other declarations>

end P;

with P;
procedure Example!l is
begin

<main program>
end Example-];

Compilation and Linking:

209

&W DACS-80x86 User's Guide

Implementation- Dcpcndent Charactcristics

$ ada Example 1
$ ada-link Example l ! Note: no other tasks in the system in this example.

F.6.4.2 Example 2

This example shows how to write a fast interrupt handler that services more than one interrupL

Ada source:

with System;
package P is

task Fast-lntcrrupt-Handler is
pragma INTERRUPTHANDLER;

entry El;
entry E2;
entry E3;

for El use at (segment => 0, offset => 5);
for E2 use at (segment => 0, offset => 9);
for E3 use at (segment => 0, offset => 11);

end;

end P;

package body P is

task body FastInterrupLHandler is
begin

accept El do
<service interrupt 5>

end El;

accept E2 do
<service interrupt 9>

end E2;

accept E3 do
<service interrupt 11>

end E3;
end;

end P;

Compilation and Linking:

210

lmplcmcntation-Dcpcndcnt Chanicteristics

$ ada Example_2
$ ada.Jink -tasks - Example_2 # assumes application also has normal tasks (not shown)

F.6.4.3 Example 3

This example shows how to access global data and make a procedure call from within a fast

interrupt handler.

Ada source:

with System;
package P is

A : Integer,

task Fast_Intcrruptjlandlcr is
pragma INTERRUPTLHANDLER;
entry E;
for E use at (segment => 0. offset => 16#127#);

end;

end P;

package body P is

B Integer.

procedure P (X in out Integer) is
begin

X :=X+ 1;
end;

task body Fast_InterrupLHandler is
begin

accept E do
A := A + B;
P (A);

end E;
end;

end P;

Compilation and Linking:

$ ada Example 3
$ ada-Jink Example_3

211

DAC•-SUx86 User's Guide
lmplcmcntation-Depcndcnt Characteristics

F.6.4.4 Example 4

This example shows how to make a task entry call and force it to be queued if the called task

is not waiting at the accept at the time of the call.

Note that the application is linked with -tasks=2, where the tasks arc T and the main program.

Since the fast interrupt handler is making an entry call to T. the techniques uscd guarantee that

it will be queued, if necessary. This is accomplished by using the conditional call construct in

the acccpt body of the fast interrupt handler and by including the interrupt in the --

interrupt entrytable at link time.

Ada source:

with System;
package P is

task FastIntcrrupt_Handler is
pragma INTERRUPT_HANDLER;
entry E;
for E use at (segment => 0, offset => 8);

end;

task T is
entry E;

end;

end P;

package body P is

task body Fast_InterruptHandler is
begin

accept E do
select

T.E;
else

null;
end select;

end E;
end;
task body T is
begin

loop
select

accept E;
or

delay 3.0;
end select;

end loop;
end;

end P;

212

Ik'• Implcmcntation-Dcpcndcnt Charactcristics

Compilation Ind Linking:

$ ada Example 4
$ ada-link -tasks 2 -interrupt entryjtable 8,8 Example 4

F.6.4.5 Example 5

This example shows how to build an application for 80386/80486 protectcd mode programs using
fast interrupt handlers.

Ada source:

with System;
package P is

task FastntcrruptHandler is
pragma lNTERRUPT_HANDLER;
entry E;
for E use at (segment => 0, offsct => 17);

end;

end P;

package body P is

task body FastInterrupLHandler is
begin

accept E do
null;

end E;
end;

end P;

Compilation and Linking:

S ada Example 5
$ ada-link -tasks - Example 5

213

000 lmplcmcntation-Dcpcndent Characteristics

F.6.4.6 Example 6

This cxamplc shuws how to save and restore thc statc of the numeric coprocessor from within a
fast interrupt handlcr. This would be required if other tasks arc using the coproccssor to perform
floadng point calculadons and thc fast intcrrupt handlcr also will use the coproccssor.

Note that the state of the NPX is savcd in the task control block of the task cxecuting at the time

of the interrupL

Ada source:

with System;
package P is

task FastlntcrruptHandler is
pragma INTERRUPT-HANDLER;
entry E;
for E use at (segment => 0, offset => 25);

end;

end P;

with RTSEntryPoints;
package body P is

task body FastInterrupt.Handler is
beein

accept E do
RTS_EntryPoints.StoreNPXState;

<user code>

RTSEntryPoints.Restore..NPXState;
end E;

end;

end P;

Compilation and Linking:

$ ada Example 6
$ ada-link -npx -tasks - Example_6

F.6.4.7 Example 7

This example shows how to send an End-Of-Interrupt message as the last step in servicing the
interrupt.

Ada source:

214

with Systcm;
package P is

task Fast_Intcrrupt-Handlcr is
pragma INTERRUPTHANDLER;
entry E;
for E use at (scgmcnt => 0. offset => 5);

end;

end P;

with MachineCodc; use MachineCode;
package body P is

procedure Send_EOI is
begin

machincfinstruction'
(rcgister_immediatc, m.MOV, AL, 16#66#);

machinejinstruction'
(immediate~registcr, mOUT, 16#Oe0#, AL);

end;
pragma inline (SendEOI);

task body FastInterruptHandler is
begin

accept E do
<user code>
SendEOI;

end E;
end;

end P;

Compilation and Linking:

$ ada Example 7
$ ada-link -tasks - Example.7

F.6.5 Normal Interrupt Tasks

"Normal" interrupt tasks are the standard method of servicing interrupts. In this case the interrupt
causes a conditional entry call to be made to a normal task.

F.6.5.1 Features

Normal interrupt tasks provide the following features:

1) Local data may be defined and used by the interrupt task.

215

2) May be callcd by other tasks with no restrictions.

3) Can call other normal tasks with no restrictions.

4) May be dcclared anywhcrc in the Ada program where a normal task dcclaration is allowcd.

F.6.5.2 Limitations

Mapping of an interrupt onto a normal conditional entry call puts the following constraints on the

involved entries and tasks:

1) Thc affected entries must be defincd in a task object only, not a task type.

2) The entries must be single and parameterlcss.

F.6.5.3 Implementation or Normal Interrupt Tasks

Normal interrupt tasks are standard Ada tasks. The task is given a priority and runs as any other
task, obeying the normal priority rules and any time-slice as configured by the user.

F.6.5A Flow of Control

When an interrupt occurs, control of the CPU is transferred to an interrupt service routine
generated by the specification of the interrupt task. This routine preserves the registers and calls
the run-time system, where the appropriate interrupt task and entry are determined from the
information in the _CD_INTERRUPTVECTOR table and a conditional entry call is made.

If the interrupt task is waiting at the accept statement that corresponds to the interrupt, then the
interrupt task is scheduled for execution upon return from the interrupt service routine and the call
to the run-time system is completed. The interrupt service routine will execute an IRET, which
reenables interrupts, and execution will continue with the interrupt task.

If the interrupt task is not waiting at the accept statement that corresponds to the interrupt, and
the interrupt task is not in the body of the accept statement that corresponds to the interrupt, then
the entry call is automatically queued to the task, and the call to the run-time system is
completed.

If the interrupt task is not waiting at the accept statement that corresponds to the interrupt, and
the interrupt task is executing in the body of the accept statement that corresponds to the interrupt,
then the interrupt service routine will NOT complete until the interrupt task has exited the body
of the accept statement. During this period, the interrupt will not be serviced, and execution in
the accept body will continue with interrupts disabled. Users are cautioned that if from within
the body of the accept statement corresponding to an interrupt, an unconditional entry call is made,
a delay statement is executed, or some other non-deterministic action is invoked, the result will
be erratic and will cause non-deterministic interrupt response.

Example 4 shows how End-Of-Interrupt messages may be sent to the interrupting device.

216

F.6.5.5 Saving NPX State

Because normal inte.rrupt tasks are standard tasks, the state of the NPX numeric coproccssor is
saved automatically by the run-timc system when the task executes. Therefore. no special actions
are necessary by the user to save the state.

F.6.5.6 Storage Used

This section describes the storage requirements of standard intcrupt tasks.

F.6.5.7 Stack Space

A normal interrupt task is allocated its own stack and executes off that stack while servicing an
interrupt. See the appropriate sections of this User's Guide on how to set task stack sizes.

F.6.5.8 Run-Time System Data

A task control block is allocated for each normal interrupt task via the -tasks option at link time.

During task elaboration, an entry is made in the run-time system .CDINTERRUPTVECTOR
table to "define" the standard interrupt. This mechanism is used by the run-time system to make
the conditional entry call when the interrupt occurs. This means that the user is responsible to
include all interrupts serviced by interrupt tasks in the -interruptentrytable option at link time.

F.6.6 Building an Application with Normal Interrupt Tasks

This section describes how to build an application that uses standard Ada tasks to service
interrupts.

F.6.6.1 Source Code

No special prag-mas or other such directives are required to specify that a task is a normal interrupt
task. If it contains interrupt entries, then it is a normal interrupt task by default.

When specifying an address clause for a normal interrupt handler, the offset should be the
interrupt number, not the offset of the interrupt in the interrupt vector. The segment is not
applicable (although some value must be specified)- because it is not used by the compiler for
interrupt addresses. The compiler will place the interrupt vector into the
INTERRUPTVECTORTABLE segment. For real address mode programs, the interrupt vector
must always be in segment 0 at execution time. This placement can be accomplished by specifying

217

DACS-80x86 User's Guidc
lmplemcntation-Dcpcndcnt Characteristics

the address to locate the INTERRUPTVECTORTABLE segment with the 1oc86 command, or at
run time, by having the startup code routine of the UCC copy down the
INTERRUPTVECTORTABLE segment to segment 0 and the compiler will put it there
automatically. For protected modc programs, the user specifics the interrupt vector location at
build time.

F.6.6.2 Compiling the Program

No special compilation options are required.

F.6.6.3 Linking the Program

The interrupt task must be included in the -tasks option. The link options -It stack-size,
It segment size, -mpsegment size, and -task.storagesize apply to normal interrupt tasks and
must be set to appropriate values for your application.

Every interrupt task must be accounted for in the -interrupt entry. table option. This option
causes a table to be built in the run-time system data segment to handle interrupt entries. In the
case of standard interrupt tasks, this table is used to map the interrupt onto a normal conditional
entry call to another task.

F.6.7 Examples

These examples illustrate how to write normal interrupt tasks and then how to build the application
using them.

F.6.7.1 Example I

This example shows how to code a simple normal interrupt handler.

Ada source:

with System;
package P is

task Normaljnterrupt_Handler is
entry E;
for E use at (segment => 0, offset => 10);

end;

end P;

package body P is

task body NormalInterruptHandler is

218

DACS-80x86 User's Guide
Implcmcniation-Dcpcndcnt Charactcristics

begin
accept E do

<handle interrupt>
end E;

end;

end P;

with P;
procedurc Example-l is
begin

<main program>
cnd Examplel;

Compilation and Linking:

$ ada Example 1
$ ada-link -tasks 2 -interruptentry table 10,10 Example1l

F.6.7.2 Example 2

This example shows how to write a normal interrupt handler that services more than one interrupt

and has other standard task entries.

Ada source:

with System;
package P is

task Normal-Task is

entry El;
entry E2; -- standard entry
entry E3;

for El use at (segment => 0, offset => 7);
for E3 use at (segment => 0, offset => 9);

end;

end P;

package body P is

task body NormalTask is
begin

loop
select

accept El do
<service interrupt 7>

219

DACS-g0x86 User's Guide
lmplcmcntation-Dcpcndcnt Characteristics

end El;
or

accept E2 do
<standard rendezvous>

end E2;
or

accept E3 do
<service interrupt 9>

end E3;
end select;

cnd loop;
end NormalTask;

end P;

Compilation and Linking:

$ ada Example_2
$ ada-link -tasks -interrupt_entrytable 7,9 Example_2

F.6.7.3 Example 3

This example shows how to build an application for 80386 protected mode programs using normal
interrupt handlers.

Ada source:

with System;
package P is

task NormalInterruptHandler is
entry E;
for E use at (segment => 0, offset => 20);

end;

end P;

package body P is

task body NormalInterrupt-Handler is
begin

accept E do
null;

end E;
end;

end P;

220

L~di~-~~OOUscI S I.jujUC
Implcmcntation-Dcpcndcni Charactcristics

Compilation and Linking:

$ ada Example 3
$ ada-link -tasks -interrupt entryTable 20,20 Example_3

F.6.7.4 Example 4

This example shows how an End-Of-Intcrrupt message may be scnt to the interrupting dcvicc.

Ada source:

with System;
package P is

task NormalInterruptHandler is
entry E;
for E use at (segment -> 0, offset -> 7);

end;

end P;

with Machine Code; use Machine Code;
package body P is

procedure SendEOI is
begin

machine instruction'
(registerimmediate, mMOV, AL, 16#66#);

machine-instruction'
(immediateregister, mOUT, 16#OeO#, AL);

end;
pragma inline (Send_EOI);

task body NormalInterruptHandler is
begin

accept E do
<user code>
SendEOI;

end E;
end;

end P;

Compilation and Linking:

S ada Example 4
S ada-link -tasks -interruptentrytable 7,7 Example 4

221

tsj'I$" DACS-8Ox86 User's Guide
lmplemcntation-Depcndcni CharactCristics

F.6.8 Interrupt Queuing

DDC-I provides a useful feature that allows task entry calls made by intcrrupt handlers (fast and
normal variant) to be queued if the called task is not waiting to accept thc call, enabling the
interrupt handler to complete to the IRET. What may not be clear is that the same interrupt may
be queued only once at any given time in DDC-I's implementation. We have made this choice
for two reasons:

a) Queuing does not come for free, and queuing an interrupt more than once is considerably
more expensive than queuing just one. DDC-I feels that most customers prefer their
interrupt handlers to be as fast as possible and that we have chosen an implementation that
balances performance with functionality.

b) In most applications, if the servicing of an interrupt is not performed in a relatively short
period of time, there is an unacceptable and potentially dangerous situation. Queuing the
same interrupt more than once represents this situation.

Note that this note refers to queuing of the same interrupt more than once at the same time.
Different interrupts may be queued at the same time as well as the same interrupt may be queued
in a sequential manner as long as there is never a situation where the queuing overlaps in time.

If it is acceptable for your application to queue the same interrupt more than once, it is a
relatively simple procedure to implement the mechanism yourself. Simply implement a high
priority agent task that is called from the interrupt handler. The agent task accepts calls from the
interrupt task and makes the call on behalf of the interrupt handler to the originally called task.
By careful design, the agent task can be made to accept all calls from the interrupt task when they
are made, but at the very least, must guarantee that at most one will be queued at a time.

F.6.9 Recurrence of Interrupts

DDC-I recommends the following techniques to ensure that an interrupt is completely handled
before the same interrupt recurs. There are two cases to consider, i.e. the case of fast interrupt
handlers and the case of normal interrupt handlers.

F.6.9.1 Fast Interrupt Handler

If the fast interrupt handler makes an entry call to a normal task, then place the code that
reenables the interrupt at the end of the accept body of the called task. When this is done, the
interrupt will not be reenabled before the rendezvous is actually completed between the fast
interrupt handler and the called task even if the call was queued. Note that the interrupt task
executes all the way through the IRET before the rendezvous is completed if the entry call was
queued.

Normally, end-of-interrupt code using LowLevel_10 will be present in the accept body of the fast
interrupt handler. This implies that the end-of-interrupt code will be executed before the
rendezvous is completed, possibly allowing the interrupt to come in again before the application
is ready to handle it.

If the fast interrupt handler does not make an entry call to anotuher task, then placing the

222

end-of-interrupt code in tie accept body of the fast interrupt task will guarantcc that the interrupt
is completely serviced bcforv another interrupt happens.

F.6.9.2 Normal Interrupt Handler

Place the code that teenablcs the interrupt at the end of the accept body of the normal interrupt
task. When this is done, the interrupt will not be recnabled before the rendezvous is actually
completed between the normal interrupt handler and the called task even if the call was queued.
Even though the interrupt "completes" in the sense that the IRET is executed, the interrupt is not
yet reenabled because the rendezvous with the normal task's interrupt entry has not been made.

If these techniques are used for either variant of interrupt handlers, caution must be taken that
other tasks do not call the task entry which reenablcs interrupts if this can cause adverse side
effects.

F.7 Unchecked Conversion

Unchecked conversion is only allowed between objects of the same "size". However, if scalar type
has different sizes (packed and unpacked), unchecked conversion between such a type and another
type is accepted if either the packed or the unpacked size fits the other type.

F.8 Input/Output Packages

In many embedded systems, there is no need for a traditional I/O system, but in order to support
testing and validation, DDC-I has developed a small terminal oriented I/O system. This 1/O system
consists essentially of TEXTIO adapted with respect to handling only a terminal and not file I/O
(file I/O will cause a USE error to be raised) and a low level package called
TERMINAL.-DRIVER. A BASICTO package has been provided for convenience purposes,
forming an interface between TEXT_1O and TERMINALDRIVER as illustrated in the following
figure.

TEXT 10
BASIC 10

TERMINAL DRIVER
(H/W interface)

The TERMINALDRIVER package is the only package that is target dependent, i.e., it is the only

223

WIM-P, Implcmcntation-Dcpcndent Charactcristics

package that nccd be changcd when changing communications controllers. The actual body of the
TERMINALDRIVER is writtcn in assembly language and is part of the UCC modulcs DIIPUT
and DIIGET. The user can also call the terminal drivcr routines directly, i.e. from an asscmbiy
language routine. TEXT_10 and BASIC_10 are writtcn complctcly in Ada and need not be
changed.

BASICI0 provides a mapping between TEXT_10 control characters and ASCII as follows:

TEXT-1O ASCII Character

LINE_TERMINATOR ASCII.CR
PAGE_TERMINATOR ASCII.FF
FILETERMINATOR ASCII.SUB (CTRL/Z)
NEWLINE ASCII.LF

The services provided by the terminal driver arc:

1) Reading a character from the communications port. GetCharacter.

2) Writing a character to the communications port, Put_Character.

F.8.1 Package TEXT-1O

The specification of package TEXT_10:

pragma page;
with BASICIO;

with 10 EXCEPTIONS;
package TEXTIO is

type FILE-TYPE is limited private;

type FILEMODE is (INFILE, OUTFILE);

type COUNT is range 0 .. INTEGER'LAST;
subtype POSITIVECOUNT is COUNT range 1 .. COUNT' LAST;
UNBOUNDED: constant COUNT:- 0; -- line and page length

-- max. size of an integer output field 2# #
subtype FIELD is INTEGER range 0 .. 35;

subtype NUMBERBASE is INTEGER range 2 .. 16;

type TYPE-SET is (LOWERCASE, UPPERCASE);

pragma PAGE;
-- File Management

procedure CREATE (FILE : in out FILE TYPE;
MODE : in FILE MODE :-OUTFILE;
NAE : in STRING -•
FORM : in STRING

procedure OPEN (FILE : in out FILETYPE;
MODE : in FILE MODE;
NAME in STRING;

224

FORM: in STRING

procedure CLOSE (FILE In out FILE TYPE);
procedure DELETE (FILE in out FILETYPE);
procedure RLSET (FILE In out FILETYPE;

MODE in FILE MODE);
procedure RESET (FILE in out FILETYPE);

function MODE .(FILE in FILETYPE) return FILEMODE;
function NAME (FILE in FILE TYPE) return STRING;
function FORM (FILE in FILE TYPE) return STRING;

function IS OPEN(FILE in FILE TYPE return BOOLEAN;

pragma PAGE;
-- control of default input and output files

procedure SET INPUT (FILE in FILETYPE);
procedure SET.OUTPUT (FILE in FILETYPE);

function STANDARD INPUT return FILETYPE;
function STANDARD OUTPUT return FILE TYPE;

function CURRENT INPUT return FILETYPE;
function CURRENT-OUTPUT return FILETYPE;

pragma PACE;
-- specification of line and page lengths

procedure SET.LINELENGTH (FILE : In FILETYPE;
TO : In COUNT);

procedure SET-LINE LENGTH (TO : in COUNT);

procedure SETPAGELENGTH (FILE : in FILETYPE;
TO : In COUNT);

procedure SETPAGELENGTH (TO : in COUNT);

function LINELENGTH (FILE : in FILETYPE)
return COUNT;

function LINELENGTH return COUNT;

function PAGE-LENGTH (FILE : in FILE-TYPE)
return COUNT;

function PAGE-LENGTH return COUNT;

pragma PAGE;
-- Column, Line, and Page Control

procedure NEW_LINE (FILE : in FILE TYPE;
SPACING in POSITIVE COUNT 1);

procedure NEWLINE (SPACING in POSITIVECOUNT :- 1);

procedure SKIPLINE (FILE : in FILE TYPE;
SPACING : in POSITIVE_ COUNT :- 1);

procedure SKIP LINE (SPACING : in POSITIVECOUNT 1);

function ENDD_OFLINE (FILE in FILE-TYPE) return BOOLEAN;
function ENDOFLINE return BOOLEAN;

procedure NEWPAGE (FILE in FILE TYPE);
procedure NEW_.PAGE;

procedure SKIP PAGE (F:-LE in FILETYPE);
procedure SKIPPAGE;

function END _OFPAGE (FILE in FILE-TYPE) return BOOLEAN;
function ENDOFPAGE return BOOLEAN;

function ENn OF FILE (FILE in FILE TYPE) return BOOLEAN;
function LND6OF7FILE return BOOLEAN;

225

"Iýw Implemcniation-Dcpcndcnt Characteristics

procedure SETCOL (FILE in FILETYPE;
TO in POSITIVECOUNT);

procedure SrT.COL (TO : in POSITIVECOUNT';

procedure SETLINE (FILE : In FILETYPE;
TO in POSITIVECOUNT);

procedure SET_LZ4E (TO In POSITIVE COUNT);

function COL (FILE in FILE TYPE)
return POSITIVE COUNT;

function COL return POSITIVE_COUNT;

function LINE (FILE in FILETYPE)
return POSITIVECOUNT;

function LINE return POSITIVECOUNT;

function PAGE (FILE in FILE TYPE)
return POSITIVECOUNT;

function PAGE return POSITIVECOUNT;

pragma PAGE;
-- Character Input-Output

procedure GET (FILE in FILETYPE; ITEM : out CHARACTER);
procedure GET (ITEM : out CHARACTER);
procedure PUT (FILE in FILE-TYPE; ITEM : in CHARACTER);
procedure PUT (ITEM : in CHARACTER);

-- String Input-Output

procedure GET (FILE in FILE TYPE; ITEM : out CHARACTER);
procedure GET (ITEM : out CHARACTER);
procedure PUT (FILE in FILE TYPE; ITEM in CHARACTER);
procedure PUT (ITEM in CHARACTER);

procedure GETLINE (FILE : in FILETYPE;
ITEM : out STRING;
LAST : out NATURAL);

procedure GETLINE (ITEM : out STRING;
LAST : out NATURAL);

procedure PUT-LINE (FILE : in FILETYPE;
ITEM : in STRING);

procedure PUTLINE (ITEM : in STRING);

pragma PAGE;
-- Generic Package for Input-Output of Integer Types

generic
type K•U is range <>;

package INTEGERIO is

DEFAULTWIDTH FIELD :- NUM'WIDTH;
DEFAULT BASE NUMBER.BASE :- 10;

procedure GET (FILE in FILE TYPE;
ITEM out NUN;
WIDTH in FIELD : 0);

procedure GET (ITEM out NUM;
WIDTH in FIELD 0);

procedure PUT (FILE in FILE TYPE;
ITEM in NUM;
WIDTH in FIELD :- DEFAULTWIDTH;
BASE in NUMBERBASE :- DEFAULTBASE);

procedure PUT *(ITEM in NUM;
WIDTH in FIELD :- DEFAULTWIDTH;
BASE in NWUbER_BASE DEFAULT-BASE);

procedure GET (FROM in STRING;
ITEM out NUM;

226

LAST out POSITIVE);

procedure PUT (TO out STRING;
ITEM in NUN;
BASE in NUMBERBASE :- DEFAULTBASE);

end INTEGER10;

pragma PAGE;

-- Generic Packages for Input-Output of Real Types

generic
type NUM is digits <>;

package FLOAT_10 is

DEFAULT FORE FIELD 2;
DEFAULT AFT FIELD NUM'DIGITS - 1;
DEFAULT._EXP FIELD :M 3;

procedure GET (FILE : in FILE TYPE;
ITEM : out NUM;
WIDTH : in FIELD :- 0);

procedure GET (ITEM : out NUN;
WIDTH : in FIELD 0);

procedure PUT (FILE in FILE TYPE;
ITEM in NUN;
FORE in FIELD : DEFAULT FORE;
AFT in FIELD :- DEFAULT AFT;
EXP in FIELD :- DEFAULTEXP);

procedure PUT (ITEM in NUN;
FORE in FIELD :-DEFAULTFORE;
AFT in FIELD DEFAULTAFT;
EXP in FIELD : DEFAULTEXP);

procedure GET (FROM in STRING;
ITEM out NUM;
LAST out POSITIVE);

procedure PUT (TO out STRING;
ITEM in NUM;
AFT in FIELD : DEFAULTAFT;
EXP in FIELD DEFAULTEXP);

end FLOAT_10;

pragma PAGE;

generic
type NUM is delta <>;

package FIXEDO1 is

DEFAULTFORE FIELD :-NUMWFORE;
DEFAULTAFT FIELD :-NUM'AFT;
DEFAULT EXP FIELD :-0;

procedure GET (FILE in FILETYPE;
ITEM out NUN;
WIDTH in FIELD : 0);

procedure GET (ITEM out NUO;
WIDTH in FIELD :- 0);

procedure PUT (FILE in FILETYPE;
ITEM in NUM;
FORE in FIELD :-DEFAULTFORE;
AFT in FIELD : DEFAULTAFT;
EXP in FIELD : DEFAULT.EXP);

procedure PUT (ITEM In NUM;
FORE in FIELD DEFAULT_FORE;
AFT in FIELD DEFAULT-AFT;

227

EXP In FIELD :- DEFAULTEXP);

procedure GET (FROM In STRING;
ITEM out NUM;
LAST out POSITIVE);

procedure POT (TO out STRING;
ITEM In NUM;
AFT in FIELD DEFAULTAFT;
EXP in FIELD DEFAULT EXP);

end FIXED_IO;

pragmae PAGE;
-- Generic Package for Input-Output of Enumeration Types

generic
type ENUM is (<>);

package ENUMERATION_10 is

DEFAULTWIDTH FIELD :- 0;
DEFAULTSETTING TYPE SET UPPER CASE;

procedure GET (FILE In FILE TYPE; ITEM out ENUM);
procedure GET (ITEM out ENUM);

procedure PUT (FILE FILE TYPE;
ITEM In ENUM;
WIDTH in FIELD DEFAULTWIDTH;
SET in TYPESET :- DEFAULTSETTING);

procedure PUT (ITEM in ENUM;
WIDTH in FIELD DEFAULTWIDTH;
SET in TYPESET :- DEFAULTSETTING);

procedure GET (FROM in STRING;
ITEM : out ENUM;
LAST out POSITIVE);

procedure PUT (TO out STRING;
ITEM in ENUM;
SET in TYPESET :- DEFAULTSETTING);

end ENUMRATIONIO;

pragma PAGE;

-- Exceptions

STATUS ERROR exception renames IOEXCEPTIONS.STATUSERROR;
MODEERROR exception renames 10 EXCEPTIONS.MODE_.ERROR;
NAME ERROR exception renames IO EXCEPTIONS.NAME ERROR;
USE ERROR exception renames 10-EXCEPTIONS.USEERROR;
DEVICE ERROR exception renames I0 EXCEPTIONS.DEVICEERROR;
END ERROR exception renames 1OEXCEPTIONS.ENDERROR;
DATA ERROR exception renames IO. EXCEPTIONS.DATAERROR;
LAYOUTERROR exception renames IOEXCEPTIONS.LAYOUTERROR;

pragma page;
private

type FILE TyPE is
record

FT : INTEGER :-1;
end record;

end TEXT_10;

228

F.8.2 Package IOEXCEPTIONS

The specification of thc packagc IOEXCEPTIONS:

package 10_EXCEPTIOS is

STATUS ERROR exception;
MOOE ERROR exception;
NAMEERROR exception;
uSt ERROR exception;
DEV1CE ERROR exception;
END ERiOR exception;
DATA ERROR exception;
LAYOUTERROR exception;

end TOEXCEPTIONS;

F.8.3 Package BASICIO

The spccification of package BASIC_10:

with 10EXCEPTIONS;

package BASIC_10 is

type count is range 0 .. integer'last;

subtype positive-count is count range 1 .. count'last;

function get integer return string;

-- Skips any leading blanks, line terminators or page
-- terminators. Then reads a plus or a minus sign if
-- present, then reads according to the syntax of an
-- integer literal, which may be based. Stores in item
-- a string containing an optional sign and an integer
-- literal.

-- The exception DATA_.ERROR is raised if the sequence
-- of characters does not correspond to the syntax
-- described above.

-- The exception ENDERROR is raised if the file terminator
-- is read. This means that the starting sequence of an
-- integer has not been met.

-- Note that the character terminating the operation 3ust
-- be available for the next get operation.

function get-real return string;

-- Corresponds to getinteger except that it reads according
-- to the syntax of a real literal, which may be based.

function get enumeration return string;

-- Cor:esponds to get integer except that it reads according
-- to the syntax of an identifier, where upper and lower
-- case letters are equivalent to a character literal
-- includIng the apostrophes.

229

function get item (length : In integer) return string;

00 Reads a string from the current line and stores it in
-- Ite. If the remaining numbor of characters on the
-- current line is less than length then only these

-- characters are returned. The line ter7,inator is not
-- skipped.

procedure putitem (item: in string);

-- if the length of the string is greater than the current
-- maximum line (linelength), the exception LAYOT..£RROR
-- is raised.

-- If the string does not fit on the current line a line
-- terminator is output, then the item is output.

-- Line and page lengths - ARH 14.3.3.

procedure set_line_length (to in count);

procedure set_pagelength (to in count);

function line_length return count;

function page_length return count;

-- Operations on columns, lines and pages - ARM 14.3.4.

procedure new_line;

procedure skip_line;

function end of line return boolean;

procedure new_page;

procedure skippage;

function end ofjpage return boolean;

function end of file return boolean;

procedure set_col (to in positive-count);

procedure setline (to in positive-count);

function col return p0sitive_count;

function line return positivecount;

function page return positive-count;

-- Character and string procedures.
-- Corresponds to the procedures defined in ARM 14.3.6.

procedure getcharacter (item out character);

procedure getstring (item out string);

procedure get_line (item. out string;
last out natural);

procedure putcharacter (item : in character);

procedure putstring (Item : in string);

230

prncedure put_line (item : In string);

-- exceptions:

USE ERROR t exception renames 10 EXCEPTIONS.USE-ERROR;
DEVICE ERROR exception renames 10 EXCEPTIONS.DEVICE ERROR;
END ERiOR : exception renames 1OEXCEPTIONS.END ERROR;
DATA ERROR ex6eption renames I10EXCEPTIONS.DATAERROR;
LAYOUT.ERROR exception renames 10EXCEPTIONS.LAYOUTERROR;

end BASICIO;

F.8.4 Package TERMINALDRIVER

The specification of package TERMINALDRIVER:

package TERMINAL DRIVER Is

procedure put character (ch in character);

procedure get character (ch out character);

private

pragma interface (ASM86, putcharacter);
pragma interface spelling (putcharacter, "DlIPUTputcharacter");

pragma interface (ASM86, get character);
pragma interface spelling(get character, "DlIGETget character");

end TERMINALDRIVER;

F.8.5 Packages SEQUENTIAL-1O and DIRECT-1O

The specifications of SEQUENTIAL_10 and DIRECT_10 are spccified in the ARM:

Since files are not supported the subprograms in these units reaise USEERROR or
STATUSERROR.

231

DACS-80x86 Uscr's Guide
Implcmcniation-Dcpcndcnt Charactcuistics

F.8.6 Package LOWVLEVEL-1O

The specification of LOWLEVEL_10 (16 bits) is:

with System;

package LOWLEVEL__O is

subtype portaddress is System.OnsignedWord;

type 11_io 8 is new integer range -128..127;
type 11_io_16 is new integer;

procedure sendcontrol(device in portaddress;
data in System.Byte);

-- unsigned 8 bit entity

procedure sendcontrol(device in portaddress;
data in System.Uns37nedWord);

-- unsigned 16 bit entity

procedure send control(device in port address;
data in 1,_1io_8);

-- signed 8 bit entity

procedure sendcontrol(device in port-address;
data in 11_io_16);

-- signed 16 bit entity

procedure receive control(device in portaddress;
data out System.Byte);

-- unsigned 8 bit entity

procedure receivecontrol(device in portaddress;
data out System.UnsignedWord);

-- unsigned 16 bit entity

procedure receivecontrol(device in portaddress;
data out 11 io 8);

-- signed 8 bit entity

procedure receivecontrol(device in port_address;
data out 11_io 16);

-- signed 16 bit entity

private

pragma inline(send control, receivecontrol);

end LOWLEVEL_10;

The specification of LOWLEVEL_10 (32 bits) is:

with SYSTEM;

package LOW LEVELIO is

subtype port_address is System.UnsignedWord;

type 110 o 8 is new shortinteger range -128..127;
type 11_io_16 Is new shortinteger;
type i1_io_32 is new integer;

procedure sendcontrol(device in portaddress;
data in Systern.Syte);

-- unsigned 8 bit entity

procedure sendcontro!(device in portaddress;
data in Systern.UnsignedWord);

232

DACS-80x86 Uscr's Guide
lmplcrentation-Dcpcndcnt Charactcristics

-- unsigned 16 bit entity

procoduxe sendcontrol(device in port address;
data in System.UnsignedlOWord);

-- unsigned 32 bit entity

procedure send control(device in port address;
data in 11_1o_8);

-- signed 8 bit-entity

procedure sendcontrol(device in port address;
data in 11_1o_16);

-- signed 16 bit entity

procedure sendcontrol(device In portaddress;
data in 11_io_32);

-- signed 32 bit entity

procedure receive.control(device in portaddress;
data out System.Byte);

-- unsigned B bit entity

procedure receivecontrol(device in portaddress;
data out System.Onsignedword);

-- unsigned 16 bit entity

procedure receivecontrol(device in portaddress;
data out System.Uns3gnedDWord);

-- unsigned 32 bit entity

procedure receivecontrol(device in portaddress;
data out 11_io_8);

-- signed 1 bit entity

procedure receive.control(device : in portaddress;
data : out 11_io016);

-- signed 16 bit entity

procedure receive..control(device :in port_address;
data out 11 io__32);

-- signed 32 bit entity

private

pragma inline(sendcontrol, receivecontrol);

end LOWLEVELIO;

F.9 Machine Code Insertions

The reader should be familiar with the code generation strategy and the 80x86 instruction set to
fully bcncfit from this section.

As described in chapter 13.8 of the ARM [DoD 83] it is possible to write procedures containing
only code statements using the predefined package MACHINECODE. The package
MACHINECODE defines the type MACHINEINSTRUCTION which, used as a record aggregate,
defines a machine code insertion. The following sections list the type MACHINE INSTRUCTION
and types on which it depends, give the restrictions, and show an example of how to use the
package MACHINECODE.

233

DACS-80x86 User's Guide
MO O lmplcmcntation-Depcndent Charactcri stics

F.9.1 Predefined Types for Machine Code Insertions

Thc following types ame dcfincd for usc when making machinc code insertions (their type
dcclarutions ame given on the following pages):

type opcode type
type operandjtype
type registcr,.type
type segment..registcr
type machinejinstruction

The type REGISTER_-TYPE defines registers. Thc registers STi describe registers on the floating
stack. (ST is the top of the floating stack).

The type MACH[NEjNSTRUCTION is a discriminant record type with which every kind of
instruction can be described. Symbolic names may be used in the form

name'AD RS

Restrictions as to symbolic names can be found in section F.9.2.
It should be mentioned that addresses are specified as 80386/80486 addresses. In case of othcr
targ,.ets, the scale factor should be set to "scale 1".

type opcode type is(

-- 8086 instructions:
mAAA, in_AAD, nAMM. mnMS, inADC. inADD, in AND, mCALL.

in CALLN,
in CBW, inCLC, mnCLO, inCLI, inCXC. inCM, M-CtXS, inCWD, MiNU
inDAS, inD-EC, inDIV. in7ilLT, inIDIy, iIMUL, mnIN, in INC. im=.

in INTO, inIRET, inJA, m JAE, mnE in_3m JE, mnJC. inJCXZ, mn .1.
m JG, inJGE, inJL, inJLE, inJA, inJAE, in3YNB, inJNBE, m =(
in JIE, rxJNG, inJNGE, inJNL. =mONLE, inJNO, in-JNP. m JNS. in.2~

in JO, minp, in-JPE, m JPO, mnJS, in-JZ, mýJMP, rinLAHF,in11-

in LES, inLEA, inLOCK, inLODS, in LOOP. in_LOOPE,

inLOOPNE, inLOO4PNZ,
iLOOPZ' inMOV, in_?OVS, mnMUL, miNEG, inNOP, in NOT. inOR. maxZ
mn POP, inPOPF, irPUSH, inPUSHF, inRCL, rnRCR. inROL, inROR,
in rEP, inRZPE, inrEPW-PE, inRET, m RETP. inRETN, inRETNP, m SW'
in SAL,. inSAR, inSHL, inSHR, inSBB, inSCAS, m-STC, mnSTD, mn~

in-STOS, inStB, in_-TEST, 1nWAIT, inXCHG. inXLAT, mnXOR,

-- S087/80187/80287 Floating Point Processor instructions:

m FABS, in--ADD, mnFADDO, mnFADDP, mnFELD, inFBSTP, mnFCHS,
in FNCLZX, minFCOM, in_-FCOMD, m -FCOMP, m -FCOMPD, minFCOts, minFDECSTP,

mfýFDIV, inFDIVD, M _ FDIVP, WnFDIVR, inFDIVRD, inFDIVRP, inFFRZE,
inFIADO, inFzADDD, inFicom, inFIcoMD, mICM, FICO.MD, inFIDIV,

a;nFIDIVD, inFIDIVR, mnFIDIVRD, inFILD, inFILDD,inFILOL, inFIMUL,

in FI.MULD, in FINCSTP, m. FNINIT, inFIST, in FISýD~i FIST?, inFISTPD,
inFISTL, mnFISUB. in FISUBD, mnFISUBR, inFISU3RD-, in FLO, inFLOD.
in; FLDCW, rLDENV, inF LDLG2, inFLDLN2, inFLDL2E, minFLDL2T, inFLOPI,

in-FLDZ, in_ FLD1, inFMUL, inFMULD,inFMOLP, inFNOP, inFPATAN,
in FREXM, inFPTAN, mnFRNDINT, inFRSTOR, mnFSAVE~inFSCALE, inFSETPM,

mjSW inSTWX minFSTD, inFSTCW, inFS7TEN`V. inFSTP, minFSPD,
mSTW m-FTAX mFSLIB, in FSUBD, m FSUBP, inFSOBR, m FSUBRD,
m FSUBRP, m FTST, mnFWAIT, in_-FXAiI, - mFXCH, - n FXTRACi, mnFYL2X,

-- 80186/80286/80386 Instructions:
-- Notice that somne immiediate versions of the 8086
-- instrzecions only exist on these targets
-- (shifts, rotates,push,±inul,...)

inBOUND, m CLTS, in ENTER, inINS, mnLAIR, inLEAVE, inLGDT,

inLID?, inýLSL, in OUTS, inPOPA. mn PUS=A'i mSGDT, inSIDT,

234

q IVLWOImplcmcntafion-Dcpcndcnt Chairjccristics

mýARPLI inLLDT, in_LMSW, mLTR,

-- 16 bit always ...

s_SLDT, inSMSW. inSTR, in VERR, m_VERW,

-- the 80386 specific instructions:

inSETA, mSETAE, mSETS. an SETBE, anSETC, on-SETE,
mn_SETG, mnSETUE, inSETL, mnSETLE, inSETHA, mSETNAE,
inSETNE, a;SETNBE, anSETNC, in_SETN'E, mnSETNG,
in_SETNGE# m SETNL, m-SETNLE, wnSETNO, mýSETt4P, mSETNS,
in_SETNZ, in_SETO, iný_SETP, mn SETPE mý_SETPO, *- SETS,
inkSETZi an 9SF, inESR, inBT. m-BTC, a_5Th,
mnOTS, mLFs, inýLGS, m LSS, anMOVZX~inMOVSX,

in_MOVCR, u-MOVD8. inNOVTR, in SHLO. m-SHRD,

-- the 80387 specific Instructions:

0n FUCOM. inUCOMP, anFUCOMPP, mnFPREM1, maFSIN, inFCOS,
anFSINCOS,

-- byte/w ord/dword variants (to be used, when
-- not deductible from context):

"anACB I n_-ADCW, inADCD, anADDS, anADOW, anADDD,
mnANDB, anANOW, mANDD, mnETW, m BTV, m BTCW,
mn_BTCD, m BTRW, mn_BTRD, mn_ETSW, manBTSD, anCBWW,
anCV.E, inCWDW, ?nCDQ, an C)U', a;nC"PW, inCMPD,
ffn CMPSB, anCMPSW, in_CMPSD, in _DECB, m-DECW, in_DECO,
in DIVE, anDIVW, inDIVO, an_IDIVB, anIDIVW, maIDIVD,
anIMULE, in_IMULW. an_IKULD, in INCS, m-INCW, anI1CD,
mn INSB, m INSW, anINSO, an LODSB, anLODSW, anLOOSD,
anMOVE, UrMOVW, anMOVD, in_NOV58, MnMOVSW, m-MOVSD,
m7 MOVSXE, mn_t4OVSXW, mn k4OVZXB, Ma MOVZXW, mnNULS, m-NULW,
mn NULl, mnNEGE, anNEGW, an NEGO. in; OTE, an_NOTW,
an_NOTD, aný_ORE, mnORW, an ORD, anODTSB,m-nOUTSW,
aný_OUTSO, anPOPW, anPOPD, ma_PUSHW, MnPUSHO, m-RCLB,
mnRcLW, mnRCLD, anRCRB, an RCRIJ, m-RCRD, anROLS,

iii_ROLW, ;nROLD, m -_RORB, anRORW, anRORD, anSALE,
mn SALW, mnSALD, anSARB, inSARW, m-SARD, anSHLB,
anSHLW, an_SHLDW,, inSHRB, in SHRW, inSHRDW,inSEES,
an_SEER, mn SEED, inSCASE, aný_SCASW, inSCASD, inSTOSE,
mn_STOSW, mnSTOSO, mnSUBS, mnSUER, in SUED. in_TESTS,
mi_TESTW, m_-TESTE, an_XORB, inXOW, iXORD, anDATAE,
mn_DATAWP anDATAD,

-- special 'instructions': an-label, an-reset,

-- 8097 temp real load/store-and-yep: m-iFLDT, anFSTPT);

pragina page;
type operand-type is (none, -- no operands

immaediate, -- one immuediate operand
register, -- one register operand
address, -- one address operand
system- address, - one 'address operand
name, -- CALL name

register_±rmnediate, -- two operands
-- destination is
-- register
-- source is immiediate

register -register, -- two register operands
register address, -- two operands

-- destination is
-- register
-- source is address

addre~ssregister, -- two operands

235

U^%_3Ou5O uCr S UUuac
ImpIcmcn:t ion- Dcpcndcnt Charactcristics

-- destination is
-- address
-- source is register

register-systemaddress, -- two operands :
-- destination is
-- register
-- source is.'address

system address register, -- two operands :
-- destination Is
-- 'address
-- source is register

address_immediate, -- two operands :
-- destination is
-- address

-- source is immediate
system address immediate, -- two operands

-- destination is
-- 'address

-- source is immediate
immediate register, only allowed for OUT

-- port is Immediate
-- source is register

immediateinmediate, -- only allowed for
-- ENTER

register register immediate, -- allowed for INULimm,
-- SHRDimm, SHLOimm

registeraddressimmediate. -- allowed for ItULitm
reglstersystem..address immediate, -- allowed for IMULimm

address registerimmediate, -- allowed for SORDimm,
-- SHLDimm

systemaddress register immedlate -- allowed for SHRDImm,
-- SHLDimn

type register type is (AX. CX, DX, BX, SP, BP, SI, DI, -- word regs
AL, CL, DL, BL, AH, CH, DH, BH, -- byte regs
EAX,ECX,EDX,EBX,ESP,EBP,ESI,EDI,-- dword regs
ES, CS, SS, DS, FS, GS, -- selectors

BX_SI, BX DI, BP SI, BPDI, -- 8086/80186/80286 combinations
ST, s$l, ST2, ST3, -- floating registers (stack)
ST4, ST5, ST6, STT,
nil);

-- the extended registers (MAX .. EDI) plus FS and GS are only
-- allowed in 80386 targets

type scale type is (scale-1, scale_2, scale_4, scale_8);

subtype machine-string is string(l..100);

pragna page;
type machineinstruction (operand-kind : operand-type) is

record
opcode : opcodetype;

case operand_kind is
when immediate ->

inmediatel integer; -- immediate

when register ->
r_register registertype; -- source and/or destination

when address ->
a_segment registertype; -- source and/or destination

a_address base register type;
a_address index register type;
a._address scale scaletype;
a_address offset integer;

when system address =>
sa address : system.address; -- destination

236

noOWimfpicmcnt[ZUion- LxpcnCfoefl flt-aCI~nstics

when name ->
n_3trIng machine -string; -- CALL destination

when register -immiediate ->
r_i_regIster_to registor type; -- destination
rI-immediato Integer; -- source

when register -register -

r_r-registerý-to register-type; -- destination
r~r_register-from register-type; -- source

when register Iaddress -

"r_registeir -to :reg1ster type; -- destination
"r :qen register -type; -- source
r-a-addre3ss-base register-type;
r-a address -Index register type;
r a~address scale sCAle type;
r_a_addzess_offset integer;

when address register -

a~rsegment register -type; -- destination
a -r -address -base register type;
a_rý_address-index register type;
a r addr0ss scale scale type;
a-r-address-offset :integer;
a~rregister from :register -type; -- source

when register-system-address ->
rsa register._to register-type; -- destination
r-sa-address 3 ysteM.addre3s; -- source

When system address -register ->
sa r_addfress system.address; -- destination
sa_r_req~from register- type; -- source

when address-immediate -

a_±_-segment :register type; -- destination
a I address -base register type;
a_±_address,_index :register -type;
a -i -address scale scale-type;
a_±_address cffset integer;
a-i-immediate integer; -- source

when system address- immediate ->
sa I address system.addreSs; -- destination
sa~i-immediate integer; - source

w.hen immnediate_register .>
i-r-immediate integer; -- destination
i_r-register register-type; -- source

w~hen immediate immediate -

i I immediatel :integer; immediatel
ii-immediate2 integer; -- immediate2

when register register_immediate ->
r_ri~registeri register type; -- destination
rr iregiste register~type; -- ourcel

_---ipieit integer; -- ource2

when register-address-im.mediate ->
r-a-i_register register type; -- destination

,a~i_,eginent register-type; 3- sUrcel
r aI address base register type;
r a-i addessIndex register Type;
r a iaddress scale: scale-type;
rai-address-offset: Integer;

r_a_i_immnediate, : integer; -- scurce2

when recister_system address_im-mediate ->
rsa_i_registEer :register type; -- destination
addrIO :systen.a-ddress; -- sourcel
r sa-± immediate integer; -- source2

237

"Implcmcntation- Dependent Characteristics

when address register w.*ediate ->
a r I-segment : register type; -- destination
z r i address base register_type;
a r I address_index register type;
a•r_± address scale : scale type;
a_r_I address offset: integer;
& r _iregister registertype; -- sourcel
a•r ilimmediate integer; -- source2

when system address_register_immediate ->
sa-r i address : system.address; -- destination
sar i_register : register-type; -- sourcel
sar i iummediate : Integer; -- source2

when others ->

null;
end case;

end record;

end machine-code;

F.9.2 Restrictions

Only procedures, and not functions, may contain machine code insertions.

Symbolic names in the form x'ADDRESS can only be used in the following cases:

1) x is an object of scalar type or access type declared as an object, a formal parameter, or
by static renaming.

2) x is an array with static constraints declared as an object (not as a formal parameter or by
renaming).

3) x is a record declared as an object (not a formal parameter or by renaming).

The mCALL can be used with "name" to call (for) a routine.

Two opcodes to handle labels have been defined:

m_label: defines a label. The label number must be in the range I <= x <= 999 and is put
in the offset field in the first operand of the MACHINEINSTRUCTION.

m-reset: used to enable use of more than 999 labcls. The label number after a mrRESET
must be in the range 1<= x <= 999. To avoid errors you must make sure that all
used labels have been defined before a reset, since the reset operation clears all used
labels.

All floating instructions have at most one operand which can be any of the following:

"* a memory address
"* a register or an immediate value
"* an entry in the floating stack

238

F.9.3 Examples

Thc following section contains examples of how to use the machine code insertions and lists the
generated code.

F.9.4 Example Using Labels

The following assembler code can be described by machine code insertions as shown:

MOV AX,7
MOV CX,4
C) AX, CX
JG I
JE 2
MOV CX.AX

1: ADD AX,CX
2: MOV SS: (BP+DIJ, AX

package example MC is

procedure testlabels;
pragma inline (testlabels);

end example MC;

with MACHINECODE; use MACHINE CODE;
package body exampleMC is

procedure test labels is

begin

MACHINEINSTRUCTION' (register immediate, mMOV, AX, 7);
MACHINEINSTRUCTION' (register_immediate, mMOV, CX, 4);
MACHINEINSTRUCTION' (register_register, mCMP, AX, CX);
MACHINE INSTRUCTION' (immediate, mJC, 1);
MACHINEINSTRUCTION' (immediate, m_JE, 2);
MACHINE_INSTRUCTION' (registerregister, mMOV, CX, AX);
MACHINE INSTRUCTION' (immediate, m_.label, 1);
MACHINE_INSTROCTION' (register register, mADD, AX, CX);
MACHINE INSTRUCTION' (immediate, m label, 2);
MACHINE_INSTRDCTICN' (addressregister, m MOV, SS, BP,

DI, scale_1, 0, AX);

end testlabels;

end exampleMC;

F.9.5 Advanced Topics

This section describes some of the more intricate details of the workings of the machine
code insertion facility. Special attention is paid to the way the Ada objects are referenced in
the machine code body, and various alternatives are shown.

239

F.9.5.1 Address Specifications

Package MACHINECODE provides two altemative ways of specifying an address for an
instruction. The first way is referred to as SYSTEMADDRESS and the parameter associated
this one must be specified via OBJECT'ADDRESS in the actual MACI-lNECODE 'nscrtion. The
second way closely relates to the addressing which the 80x86 machines employ: an address has
the general form

segment: [basc+indcx*scalc+offsctj

The ADDRESS type expects the machine insertion to contain values for ALL these fields. Thc
default value NIL for segment, base, and index may be selected (however, if base is NIL, so
should index be). Scale MUST always be specified as scale_I, scale_2, scale_4, or scale_8. For
16 bit targets, scaleI is the only legal scale choice. The offset value must be in the range of
-32768 .. 32767.

F.9.5.2 Referencing Procedure Parameters

The parameters of the procedure that consists of machine code insertions may be
referenced by the machine insertions using the SYSTEMADDRESS or ADDRESS formats
explained above. However, there is a great difference in the way in which they may be specified;
whether the procedure is specified as INLINE or not.

INLINE machine insertions can deal with the parameters (and other visible variables) using the
SYSTEMADDRESS form. This will be dealt with correctly even if the actual values are
constants. Using the ADDRESS form in this context will be the user's responsibility since the
user obviously attempts to address using register values obtained via other machine insertions. It
is in general not possible to load the address of a parameter because an 'address' is a two
component structure (selector and offset), and the only instruction to load an immediate address
is the LEA, which will only give the offset. If coding requires access to addresses like this, one
cannot INLINE expand the machine insertions. Care should be taken with references to objects
outside the current block since the code generator in order to calculate the proper frame value
(using the display in each frame) will apply extra registers. The parameter addresses will,
however, be calculated at the entry to the INLINE expanded routine to minimize this problem.
INLINE expanded routines should NOT employ any RET instructions.

Pure procedure machine insertions need to know the layout of the parameters presented to, in this
case, the called procedure. In particular, careful knowledge about the way parameters are passed
is required to achieve a succesful machine procedure. When not INLINE a block is created around
the call which allows addressing of parameters, and code for exiting the procedure is also
automatic.

The user takes over the responsibility for correct parameter addressing. The rules of Ada
procedure calls must be followed. The calling conventions are summarized below.

240

F.9.5.3 Parameter Transfer

It may be a problem to figure out the correct number of words which the paramctcrs take up on
the stack (the x value). The following is a short description of the transfer method:

INTEGER types take up at least I storage unit. 32 bit integer types take up 2 words, and 64 bit
integer types take up. 4 words. In 32 bit targets, 16 bit integer types take up 2 words the low
word being the value and the high word being an alignment word. TASKs arc transferred as
INTEGER.

ENUMERATION types take up as 16 bit INTEGER types (see above).

FLOAT types take up 2 words for 32 bit floats and 4 words for 64 bit floats.

ACCESS types are considered scalar values and consist of a 16 bit segment value and a 16 or
32 bit offset value. When 32 bit offset value, the segment value takes up 2 words the high word
being the aligmcnt word. The offset word(s) are the lowest, and the segment word(s) are the
highest.

RECORD types are always transferred by address. A record is never a scalar value (so no
post-procedure action is carried out when the record parameter is OUT or IN OUT). The
representation is as for ACCESS types.

ARRAY values arc transferred as one or two ACCESS values. If the array is constrained, only
the array data address is transferred in the same manner as an ACCESS value. If the array is
unconstrained below, the data address will be pushed by the address of the constraint. In this
case, the two ACCESS values will NOT have any alignment words in 32 bit targets.

Packed ARRAY values (e.g. STRING types) are transferred as ARRAY values with the addition
of an INTEGER bit offset as the highest word(s):

+H: BITOFFSET
+L: DATAADDRESS
+0: CONSTRAINTADDRESS -- may be missing

,he values L and H depend on the presence/absence of the constraint address and the sizes of
constraint and data addresses.

In the two latter cases, the form parameter'address will always yield the address of the data. If
access is required to constraint or bit offset, the instructions must use the ADDRESS form.

F.9.5.4 Example

A small example is shown below (16 bit target):

procedure unsignedadd

(opl :in integer;
op2 in integer;
res o out integer);

241

Noticc that machine subprograms cannot be functions.

The pararncters take up:

opl integer I word
op2 integer I 1 word
res "integer I word

Total : 3 words

The body of the procedure might then be the following assuming that the procedure is
defined at outermost package level:

procedure unsignedadd
(opi in integer;
op2 in integer;
res out integer) is

begin
pragma abstractacode_insertions(true);

aasinstr' (aaCreateBlock03.1,0,0,0); -- x - 3, y - 1
aasinstr' (aa End of declpart,0,0,0,0,0);

pragma abstractacode insertions(false);

machineinstruction' (register system address, mmOV0
AX, opl'address);

machine instruction' (register system-address, mADD,
AX, op2'address);

machine instruction' (immediate, miJNC, 1);
machine instruction' (immediate, mINT, 5);
machine-instruction' (immediate, melabel,1);
machine instruction' (systemaddress_register, m_NOV,

res'address, AX);

pragma abstract acode insertions(true);
aa instr' (aaExit_subprgrm,0,0,0,nilargnilarg);-- (2)
aa instr'(aa_Set blocklevel,0,0,0,0,O); -- y-1 - 0

pragma abstract_acode insertions (false);
end unsignedadd;

A routine of this complexity is a candidate for INLINE expansion. In this case, no changes to the
above 'machineinstruction' statements are required. Please notice that there is a difference between
addressing record fields when the routine is INLINE and when it is not:

type rec is
record

low : integer,
high : integer,

end record;

procedure add_32 is
(opi : in integer;,
op2 : in integer.
res : out rec);

The parameters take up I + I + 2 words = 4 words. The RES parameter will be
addressed direcdy when INLINE expanded, i.e. it is possible to write:

242

machine_instruction'(systcm_addrcssjrtgistcr, mMOV,
res addrcss, AX);

This would, in the not INLINED version, be the same as updating that place on the stack whcre
the address of RES is placed. In this case, the inscrtion must read:

machineinstruction'(rcgister-system-address, mLES,
SI, rcs'address);

-- LES SI,[BP+...]
machine_instruction'(address_rcgister, mMOV,

ES, SI, nil, scale)i, 0, AX);
-- MOV ES:[SI+0],AX

As may be seen, great care must be taken to ensure correct machTne code insertions. A help
could be to first write the routine in Ada, then disassemble to see the involved addressings, and
finally write the machine procedure using the collctCed knowledge.

Please notice that INLINED machine insertions also generate code for the procedure itself. This
code will be removed when the -nocheck option is applied to the compilation. Also not
INLINED procedures using the AAINSTR insertion, which is explained above, will automatically
get a storagescheck call (as do all Ada subprograms). On top of that, 8 bytes are set aside in the
created frame, which may freely be used by the routine as temporary space. The 8 bytes are
located just below the display vector of the frame (from SP and up). The storagecheck call will
not be generated when the compiler is invoked with -nocheck.

The user also has the option NOT to create any blocks at all, but then he should be certain that
the return from the routine is made in the proper way (use the RETP instruction (return and pop)
or the RET). Again it will help first to do an Ada version ana see what the compiler expects to
be done.

Symbolic fixups are possible in certain instructions. With these you may build 'symbolic'
instructions byte for byte. The instructions involved all require the operand type NAME (like used
with CALL), and the interpretation is the following:

(name, mDATAD, "MYNAME") a full virtual address (offset and selector) of the
symbol MYNAME (no additional offset is possible).

(name, mDATAW, "MYNAME") the offset part of the symbol MYNAME (no additional
offset is possible).

(name, mDATAB, "MYNAME") the selector value of symbol MYNAME

In inlined machine instructions it may be a problem to obtain the address of a parameter (rather
than the value). The LEA instruction may be used to get the offset part, but now the following
form allows a way to load a selector value as well:

(system_address, LES, param'address) ES is loaded with the selector of PARAM. If this
selector was e.g. SS, it would be pushed and popped
into ES. LES may be substituted for LFS and LGS
for 80386.

243

F.10 Package Tasktypes

The TaskTypcs packages defines the TaskConirolBlock type. This data structure could be useful
in debugging a tasking program. The following package Tasktypes is for all DACS-80x86 except
for DACS-80386PM/DACS-80486PM.

with System;

package TaskTypes is

subtype Offset is System.unsignedword;
subtype Blockld is System.UnsignedWord;

type TaskEntry Is new System.UnsignedWord;
type EntryIndex is new System.tUnsignedword;
type Alternativeld is new System.UnslgnedWord;
type Ticks is new Systim.DWord;
type Bool Is new Boolean;
for Bool'size use 8;
type tIntg is new System.OnsignedWord;

type TaskState is (Initial,
-- The task i:s created, but activation
-- has not started yet.

Engaged,
-- The task has called an entry, and the
-- call is now accepted, ie. the rendezvous
-- is in progress.

Running,
-- Covers all other states.

Delayed,
-- The task awaits a timeout to expire.

EntryCallingTimed,
-- The task has called an entry which
-- is not yet accapted.

EntryCallingUnconditional,
-- The task has called an entry unconditionally,
-- which is not yet accepted.

SelectingTimed,
-- The task is waiting in a select statement
-- with an open delay alternative.

SelectingUnconditional,
-- The task waits in a select statement
-- entirely with accept statements.

SelectingTerminable,
-- The task waits in a select statement
-- with an open terminate alternative.

Accepting,
-- The task waits in an accept statement.

Synchronizing,
-- The task waits in an accept statement
-- with no statement list.

Completed,
-- The task has completed the execution of
-- its statement list, but not all dependent

tasks are terminated.

Terminated);
-- The task and all its descendants
-- are terminated.

244

for TaskState U3e (Initial 16 i00oo
Engaged 16 i081s
Running -16#10#
Delayed ->16018#
Entr-yCaillngTimed ->16#204

EntryCalling~nccnditional -> 16028#
SelectingTimed -> 16#31# ,
Selectingoncondltlonal -> 16#39#
SelectingTerminable ->166411

Accepting -> 1614A#
Synchronizing -> 166536
Completed -> 1615c#
Terminated -> 166640);

for Task~tate'3iZe Use 8;

type TaskrypeDescriptor is
record

priority System.Priority;
entry .count 01ntg;
block id Blockld;
first own address System.Address;
module-num;ber Ulntg;
entry number Vlntg;
code address Systenz.Address;
3tack-size SysteM.DWord;
dummy Integer;
stack_segment-size: Ulntg;

end record;

type AccTaskTypeDescriptor is access TaskTypeoescriptor;

type NPXSaveArea is array(l. .49) Of System.Unsignedword;

type FlagsType is
record

NPXFlag Bool;
InterruptFlaq Bool;

end record;
pragma pack (FlagsType);

type StatesType is
record

state TaskState;
is abnormal Bool;
is activated :Bool;
failure :Bool;

end record;
pragma pack(StatesType);*

type ACF type is
record

bp offset;
addr System.Address;

end record;
pragma. pack (ACF type);

pragma page;
type TaskControlBlock Is

record
s e"11 System.Sernaphore;
isMonitor integer;

-- Delay queue handling

dnext :System.-TaskValue;
dprev :System.TaskValue;
ddelay :Ticks

-- Saved registers

ss Systen.-aUnsignedWord

245

DACS-80x86 User's Guide
lmplcmcznation-Dcpcndcnt Charactenstics

-- Auxiliary fields

ttd AccTaakTyp*Descriptor;
FlrstCaller :System.TaskValue;

-- Run-Time Systom fields

ACF : CF type; -- Cf. User's guide 9.4.2
SQFIrst Integer; -- Only used in RM1
SemFirst : Integer; -- Only used in RMS
TBlockingTask System.TaskValue; -- Only used in RMS
PBlockingTask : System.TaskValue; -- Only used in RMS
collection : System.Address;

partition : Integer;

TaskCheckLimit Offset; -- to assure inline storage check
LastException System.DWord; -- 2 * 16 bits
SavedAdaAddr Offset; -- to improve rendezvous's

-- NPX save area

-- When the application is linked with -npx, a special
-- save area for the NPX is allocated at the very end
-- of every TCB.
-- Le:

-- case NPX Present is
-- when TRUE -> NPXsave : NPXSaveArea;
-- when FALSE -> null;
-- end case;

end record;

-- The following is to assure that the TCB has the expected size:

TCBsize : constant INTEGER :- TaskControlBlock'size / 8;

subtype TCBok value is INTEGER range 136 .. 136;
TCBok : constant TCB ok value :- TaskControlBlock'size / 8;

end TaskTypes;

F.11 RMS Tasking (OPTIONAL)

The DACS-80x86 systems may run tasking applications by means of Rate Monotonic Scheduling
(RMS). RMS capability is purchased optionally, and is thus not included by default. Please contact
DDC-I for more information regarding RMS and your system. RIMS allows the programmer to
guarantee properties of a tasking system, i.e. that tasks will meet their hard deadlines. The RMS
tasking is selected by specifying -rms to the Ada link command.

247

248

