REPORT DOCUMENTATION PAGE e

and mainlaining the dats nesded, and reviewing the ..isdtion of information. Send comments i '&WMGwdﬂvmduMdm‘n.'
22202-4302. anc 10 the Offics of information and Reguiatory Afiairs, O of Management end Budget. Weshington, DG 20503

[FTAGENCYUSE (Teave Z. REPORT

Public reporting burden (o this collection of information is sstimated 10 Sverage 1 hour Per respanes, including the tme K Feviewing INSinLCLIONS, Searching Sxisting data S0UrGes gethering
suggestions for.g using fiie burden, 10 Washingion Headauarters Servios, Dirediorale for information and Reports, 1215 Jetersan Dias Highway, Sulte 1204, Adlington, VA

T

DACS Sun SPARC/Sun0S to 80386 PM bare Ada Cross Compiler Sydtem,
Version 4.6.4, Host: Sun SPARCstation 1+ running under Sun(p,
Release 4.1.1, Target: Bare Board iSBC 386/116, 931119S1.11831
Ie ARUtRors: 4

National Institute of Standards and Technology
Gaithersburg, Maryland

' TITLEAND S, FUNDING U

S PERFORMING ORGANIZATION NAME(S) AND 8. PERFORMING

HSHSQ%; %ggt’nﬁggg x;sgtandards and Technology

Gaithersburg, Maryland 20899 ELECTE
USA FEB23 |
[SPONSORING/MONITORING AGENCY NAME (S, AND 0. SPONSORING/MONITORIN
Ada Joint Program Office

GENCYA s
e

.,.1.
e

The Pentagon, Rm 3E118
Washington, DC 20301-3080

b AD-A276 28 '
TR

[o Ty Y T VTR T T Y
12a. DISTRIBUTIONAVAILABILITY 12b. DISTRIBUTION

Approved for Public Release; - distribution unlimited

13- pRRS xSRI EN
DACS Sun SPARC/Sun0S to 80386 PM bare Ada Cross Compiler System, Version
4.6.4 , Host: Sun SPARCstation 1 + running under Sun0S, Release 4.1.1

Target: Bare Board iSBC 336/116, 93111951.11331

94"‘057 47 DTIC QUALITY IXG:5CTED &
ARSI " !

] ———
7k £ 6) 9 _.a ,5/*) .’?

14. SUBJECT 15. NUMBER OF
Ada programming ldnguage, Ada Compler Validation Summary Report, A*‘s?m_sf
cility

18. SECURITY 19. SECURITY 20, LIMITATION OF
CLASSIFICATION < CLASSIFICATION
UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED
5 ndard X
NSN

Prescribed by ANS! S.

iler ¥al. Capapbility Val. Testing, Ada Val. Office, Ada Val.
- sﬁgszmﬁl $L-¥80: 1 63BRPPAIASY a Va

T~

]

Best
Available

Copy

AVF Control Number: NIST92DDI510_4_ 1.11
DATE COMPLETED

BEFORE ON-SITE: 93-11-12

AFTER ON-SITE: 93-11-19

REVISIONS: 93-12-10

Ada COMPILER
VALIDATION SUMMARY REPORT:
Certificate Number: 931119S1.11331
DDC-I, Inc.
DACS Sun SPARC/SunOS to 80386 PM bare Ada
Cross Compiler System, Version 4.6.4
Sun SPARCstation 1+ => Bare Board iSBC 386/116

Prepared By:
Software Standards Validation Group
Computer Systems Laboratory
National Institute of Standards and Technology
Building 225, Room A266
Gaithersburg, Maryland 20899

U.S.a. Accesion far d “_‘l
NTIS CRA&! Y
DTIC TAS i
Unaancu ouxd N

Justitrcation

BY e d
Dist:ibution]

P—.’—"" R »——¢---T»~~~_—a-— ey
Fushaintity Lodes
T/wéd a.":iy‘o-‘

Dist | specaal

Al

AVF Control Number: NIST92DDI510 4 1.11

Certificate Information

The following Ada implementation was tested and determined to pass
ACVC 1.11. Testing was completed on November 19, 1993.

Compiler Name and Version: DACS Sun SPARC/SunOS to 80386 PM
bare Ada Cross Compiler Systen,
Version 4.6.4

Host Computer System: Sun SPARCstation 1+ running under
Suno0S, Release 4.1.1

Target Computer System: Bare Board iSBC 386/116

See section 3.1 for any additional information about the testing
environment.

As a result of this validation effort, Validation Certificate
931119S1.11331 is awarded to DDC-I, Inc. This certificate expires
2 years after ANSI/MIL-STD-1815B is approved by ANSI.

This report has been reviewed and is approved.

DY, S d
p— 7\ 22z o st

/ P2 [& ¢

Ada‘ValidationZac&lnty Ada Valddation Facility

Dr. David K. fersdn Mr. L. Arnold Jghnson

Chief, Information Systems Manager, Software Standards
Engineering Division (ISED) Validation Group

Computer Systems Laboratory (CSL)
National Institute of Standards and Technology
Building 225, Room A266
Gaithersburg, Maryland 20899

U - S - A L
- s
on Organization ~,Ada Joint Program Office
mputer & Software M. Dirk Rogers, Major, USAF
ng Division Acting Director
Institute for Defense Analyses Ada Joint Program Office
Alexandria VA 22311 Washington DC 20301

U.S.A. U.S.A.

NIST92DDIS510_4_1.11
DECLARATION OF CONFORMANCE

The following declaration of conformance was supplied by the
customer.

Custonmer: DDC-I, Inc.
Certificate Awardee: DDC-1I, Inc.

Ada Validation Facility: National Institute of Standards and
Technology
Computer Systems Laboratory (CSL)
Software Standards Validation Group
Building 225, Room A266
Gaithersburg, Maryland 20899
U.S.A.

ACVC Version: 1.11

Ada Implementation:

Compiler Name and Version: DACS Sun SPARC/SunOS to 80386 PM
bare Ada Cross Compiler Systen,
Version 4.6.4

Host Computer System: Sun SPARCstation 1+ running under
sSunOS, Release 4.1.1
Target Computer System: Bare Board iSBC 386/116
Declaration:

I the undersigned, declare that I have no knowledge of deliberate
deviations from the Ada Language Standard ANSI/MIL-STD-1815A I&LO
8652-1987 in the implementation listed above.

| Y/ 5%
Customer Signature Date
Company DDC-I, Inc.

Tit

i ; &

17 7%
Certlflcate Awardee Signature Date
Company ,DDC-I, Inc.

i
Title ///’?f/d”//

TABLE OF CONTENTS

CHAPTER 1....¢cctteeeeeeeccecceaccecsocacsoscsccnconssocncns S |
INTRODUCTION. ¢ ccveeaceeeecccecsoncasacoscsoscssscsscassasal=l
1.1 USE OF THIS VALIDATION SUMMARY REPORT...........1l-1

1.2 REFERENCES...¢.ctceecrecncccsasessscsssassasassal=2

1.3 ACVC TEST CLASSES.:ccteccecccacocssccacassasaasal=2

1.4 DEFINITION OF TERMS. . tcccccececccsccscscssnsscsnasal=3

CHAPTER 2. cccececccccscocscccccoscecsssancasssocncossssocscnsssl=]l
IMPLEMENTATION DEPENDENCIES..¢ccccceeccoceccsccsocsasacaseal=l
2.1 WITHDRAWN TESTS..ccccececcccscccccccssccsccsssscesal=l

2.2 INAPPLICABLE TESTS.c.cccccecoeccccoccscccnsnssscca=l

2.3 TEST MODIFICATIONS..ctcecececsccccccscccosnsanacal=3

CHAPTER 3 ..t cccceceeccocencscscosscoscsccssccscsseosncsssasssascsssld—l
PROCESSING INFORMATION. ...ccceeecscscecoccscscccsascaceseld=1
3.1 TESTING ENVIRONMENT...ccccceeoococcscscssssoseesald=1

3.2 SUMMARY OF TEST RESULTS..ccecesecccccscoscacsseeeald=l

3.3 TEST EXECUTION..:.ccccececcoscscocccccsoccoscnnans «e3-2

APPENDIX Aooono.-o'c'o-.ooo-o.o.'oooo.o-o'o.o.oo.cnon.o.-ooA‘-l
MACRO PARAMETERS......Q.‘.....'.l.'...‘..'..'.....Q.QIOCA-].

APPENDIX B..‘...Q....."..OIl.‘.0........‘..O......Q....Q..B-l
COMPILATION SYSTEM OPTIONS..ccecccccccccccccsscssscasacessB=1
LINKER OPTIONS. ® S @ @ 0 SO T GG OO0 O TS OO BES LSS eSO e eSO GOCESIEESTE QB-2

APPENDIX C...'.......C.Q.Q.......'.....‘......‘.........'..C—l
APPENDIX F OF THE Ada STANDARD. .ccccceessssccssccsasees.C-1

CHAPTER 1

INTRODUCTION

The Ada implementation described above was tested according to the
Ada Validation Procedures [Pro92] against the Ada Standard [Ada83)
using the current Ada Compiler Validation Capability (ACVC). This
Validation Summary Report (VSR) gives an account of the testing of
this Ada implementation. For any technical terms used in this
report, the reader is referred to [Pro92)]. A detailed description
of the ACVC may be found in the current ACVC User's Guide [UG89].

1.1 USE OF THIS VALIDATION SUMMARY REPORT

Consistent with the national laws of the originating country, the
Ada Certification Body may make full and free public disclosure of
this report. 1In the United States, this is provided in accordance
with the "Freedom of Information Act" (5 U.S.C. #552). The results
of this validation apply only to the computers, operating systems,
and compiler versions identified in this report.

The organizations represented on the signature page of this report
do not represent or warrant that all statements set forth in this
report are accurate and complete, or that the subject
implementation has no nonconformities to the Ada Standard other
than those presented. Copies of this report are available to the
public from the AVF which performed this validation or from:

National Technical Information Service
5285 Port Royal Road

Springfield, Virginia 22161

U.S.A.

Questions regarding this report or the validation test results
should be directed to the AVF which performed this validation or
to:

Ada Validation Organization

Computer and Software Engineering Division
Institute for Defense Analyses

1801 North Beauregard Street

Alexandria, Virginia 22311-1772

U.S.A.

1.2 REFERENCES

[Ada83] Reference_Manua or the Ada Programmin Lanquage,
ANSI/MIL-STD-1815A, February 1983 and ISO 8652-1987.

[Pro92] Ada Compiler Validation Procedures, Version 3.1, Ada Joint
Program Office, August 1992.

[UG89] a_ Compi Vali jon Capability User's Guide, 21 June
1989.

1.3 ACVC TEST CLASSES

Compliance of Ada implementations is tested by means of the AcCVC.
The ACVC contains a collection of test programs structured into six
test classes: A, B, C, D, E, and L. The first letter of a test
name identifies the class to which it belongs. Class A, C, D, and
E tests are executable. Class B and class L tests are expected to
produce errors at compile time and link time, respectively.

The executable tests are written in a self-checking manner and
produce a PASSED, FAILED, or NOT APPLICABLE message indicating the
result when they are executed. Three Ada 1library units, the
packages REPORT and SPPRT13, and the procedure CHECK_FILE are used
for this purpose. The package REPORT also provides a set of
identity functions used to defeat some compiler optimizations
allowed by the Ada Standard that would circumvent a test objective.
The package SPPRT13 is used by many tests for Chapter 13 of the Ada
Standard. The procedure CHECK FILE is used to check the contents
of text files written by some of the Class C tests for Chapter 14
of the Ada Standard. The operation of REPORT and CHECK _FILE is
checked by a set of executable tests. If these units are not
operating correctly, validation testing is discontinued.

Class B tests check that a compiler detects illegal language usage.
Class B tests are not executable. Each test in this class is
compiled and the resulting compilation 1listing is examined to
verify that all violations of the Ada Standard are detected. Some
of the class B tests contain legal Ada code which must not be
flagged illegal by the compiler. This behavior is also verified.

Class L tests check that an Ada implementation correctly detects
violation of the Ada Standard involving multiple, separately
compiled units. Errors are expected at link time, and execution is
attempted.

In some tests of the ACVC, certain macro strings have to be
replaced by implementation-specific values--for example, the

1-2

largest integer. A list of the values used for this implementation
is provided in Appendix A. In addition to these anticipated test
modifications, additional changes may be required to remove
unforeseen conflicts between the tests and implementation-dependent
characteristics. The modifications required for this
implementation are described in section 2.3.

For each Ada implementation, a customized test suite is produced by
the AVF. This customization consists of making the modifications
described in the preceding paragraph, removing withdrawn tests (see
section 2.1) and, possibly some inapplicable tests (see Section 3.2
and [UG89}).

In order to pass an ACVC an Ada implementation must process each

test of the customized test suite according tc the Ada Standard.

1.4 DEFINITION OF TERMS

Ada Compiler

Ada Compiler
Validation
Capability (ACVC)

Ada Implementation

Ada Joint Program
Office (AJPO)

Ada Validation
Facility (AVF)

Ada Validation
Organization (AVO)

Compliance of an
Ada Implementation

The software and any needed hardware that
have to be added to a given host and target
computer system to allow transformation of
Ada programs into executable form and
execution thereof.

The means for testing compliance of Ada

implementations, Validation consisting of
the test suite, the support programs, the
ACVC Capability User's Guide and the

template for the validation summary (ACVC)
report.

An Ada compiler with its host computer
system and its target computer system.

The part of the certification body which
provides policy and guidance for the Ada
certification Office system.

The part of the certification body which

carries out the procedures required to
establish the compliance of an Ada
implementation.

The part of the certification body that
provides technical guidance for operations
of the Ada certification system.

The ability of the implementation to pass an
ACVC version.

Computer System

Conformity

Customer

Declaration of
Conformance

Host Computer
Systenm

Inapplicable Test

Iso

Operating System

Target Computer
Systenm

A functional unit, consisting of one or more
computers and associated software, that uses
common storage for all or part of a program
and also for all or part of the data
necessary for the execution of the program;
executes user- written or user-designated
prograns; performs user-designated data
manipulation, including arithmetic
operations and logic operations; and that
can execute programs that modify themselves
during execution. A computer system may be a
stand-alone unit or may consist of several
inter-connected units.

Fulfillment by a product, process, or
service of all requirements specified.

An individual or corporate entity who enters
into an agreement with an AVF which
specifies the terms and conditions for AVF
services (of any kind) to be performed.

A formal statement from a customer assuring
that conformity is realized or attainable on
the Ada implementation for which validation
status is realized.

A computer system where Ada source programs
are transformed into executable form.

A test that contains one or more test
objectives found to be irrelevant for the
given aAda implementation.

International Organization for
Standardization.

The Ada standard, or Language Reference
Manual, published as ANSI/MIL-STD-1815A
-1983 and ISO 8652-1987. Citations from the
LRM take the form "<section>.<subsection>:
<paragraph>."

Software that controls the execution of
programs and that provides services such as
resource allocation, scheduling,
input/output control, and data management.
Usually, operating systems are predominantly
software, but partial or complete hardware
implementations are possible.

A computer system where the executable form
of Ada programs are executed.

1-4

Validated Ada
Compiler

Validated Ada
Implenentation

Validation

Wwithdrawn Test

The compiier of a validated Ada
implementation.

An Ada implementation that has been
validated successfully either by AVF testing
or by registration [Pro92).

The process of checking the conformity of an
Ada compiler to the Ada programming language
and of issuing a certificate for this
implementation.

A test found to be incorrect and not used in
conformity testing. A test may be incorrect
because it has an invalid test objective,
fails to meet its test objective, or
contains erroneous or illegal use of the Ada
programming language.

CHAPTER 2

IMPLEMENTATION DEPENDENCIES

2.1 WITHDRAWN TESTS

Some tests are withdrawn by the AVO from the ACVC because they do
not conform to the Ada Standard. The following 95 tests had been
withdrawn by the Ada Validation Organization (AVO) at the time of
validation testing. The rationale for withdrawing each test is
available from either the AVO or the AVF. The publication date for
this list of withdrawn tests is 91-08-02.

E28005C B28006C C32203A C34006D C355081 C35508J
C35508M C35508N C35702A C35702B B41308B C43004A
C45114A C45346A C45612A C45612B C45612C C45651A
C46022A B49008A B49008B A74006A C74308A B83022B
B83022H B83025B B83025D B83026B C83026A C83041A
B85001L C86001F C94021A C97116A C98003B BA2011A
CB7001A CB7001B CB7004A CCl223A BCl1226A CCl226B
BC3009B BD1B02B BD1BO6A AD1BOSA BD2A02A CD2A21E
CD2A23E CD2A32A CD2A41A CD2A41E CD2A87A CD2B1S5C
BD3006A BD400BA CD4022A CD4022D CD4024B CD4024C
CD4024D CD4031A CD4051D CD5111A CD7004C ED7005D
CD7005E AD7006A CD7006E AD7201A AD7201E CD7204B
AD7206A BD8002A BD8004C CD9005A CD9005B CDA201E
CE21071 CE2117A CE2117B CE2119B CE2205B CE2405A
CE3111C CE3116A CE3118A CE3411B CE3412B CE3607B
CE3607C CE3607D CE3812A CE3814A CE3902B

2.2 INAPPLICABLE TESTS

A test is inapplicable if it contains test objectives which are
irrelevant for a given Ada implementation. The inapplicability
criteria for some tests are explained in documents issued by IS0
and the AJPO known as Ada Commentaries and cemmonly referenced in
the format AI-ddddd. For this implementation, the following tests
were determined to be inapplicable for the reasons indicated;
references to Ada Commentaries are included as appropriate.

The following 201 tests have floating-point type declarations
requiring more digits than SYSTEM.MAX DIGITS:

C24113L..Y (14 tests)
C35706L..Y (14 tests)
C35708L..Y (14 tests)

C35705L..Y (14 tests)
~ C35707L..Y (14 tests)
C35802L..Z (15 tests)

2-1

C45241L..Y (14 tests) C45321L..Y (14 tests)

C45421L..Y (14 tests) C45521L..2 (15 tests)
C45524L..2 (15 tests) C45621L..2Z (15 tests)
C45641L..Y (14 tests) C46012L..2 (15 tests)

C24113I..K (3 tests) use a line length in the input file which
exceeds 126 characters.

C35404D, C€45231D, B86001X, C86006E, and CD7101G check for a
predefined integer type with a name other than INTEGER,
LONG_INTEGER, or SHORT_INTEGER; for this implementation, there is
no such type.

C35713B, C45423B, B86001T, and C86006H check for the predefined
type SHORT_FLOAT; for this implementation, there is no such type.

C35713D and B860012Z check for a predefined floating-point type with
a name other than FLOAT, LONG_FLOAT, or SHORT_FLOAT; for this
implementation, there is no such type.

C4A013B contains a static universal real expression that exceeds
the range of this implementation's largest floating-point type;
this expression is rejected by the compiler.

C45531M..P and C45532M..P (8 tests) check fixed-point operations
for types that require a SYSTEM.MAX MANTISSA of 47 or greater; for
this implementation, MAX_MANTISSA is less than 47.

C45624A..B (2 tests) check that the proper exception is raised if
MACHINE OVERFLOWS is FALSE for floating point types and the results
of various floating-point operations lie outside the range of the
base type; for this implementation, MACHINE OVERFLOWS is TRUE.

D56001B uses 65 levels of block nesting; this level of block
nesting exceeds the capacity of the compiler.

B86001Y uses the name of a predefined fixed-point type other than
type DURATION; for this implementation, there is no such type.

C96005B uses values of type DURATION's base type that are outside
the range of type DURATION; for this implementation, the ranges are
the same.

CA2009C and CA2009F check whether a generic unit can be
instantiated before its body (and any of its subunits) is compiled;
this implementation creates a dependence on generic units as
allowed by AI-00408 and AI-00506 such that the compilation of the
generic unit bodies makes the instantiating units obsolete. (See
section 2.3.)

CD1009C checks whether a length clause can specify a non-default

2-2

size for a floating-point type; this implementation does not
support such sizes.

CD2A84A, CD2AB4E, CD2A8B4I..J (2 tests), and CD2A840 use length
clauses to specify non-default sizes for access types: this
implementation does not support such sizes.

The following 264 tests check operations on sequential, text, and
direct access files; this implementation does not support external
files:

CE2102A..C (3) CE2102G..H (2) CE2102K CE2102N..Y (12)
CE2103C..D (2) CE2104A..D (4) CE2105A..B (2) CE2106A..B (2)
CE2107A..H (8) CE2107L CE2108A..H (8) CE2109A..C (3)

CE2110A..D (4) CE2111A..I (9) CE2115A..B (2) CE2120A..B (2)
CE2201A..C (3) EE2201D..E (2) CE2201F..N (9) CE2203A

CE2204A..D (4) CE2205A CE2206A CE2208B
CE2401A..C (3) EE2401D CE2401E..F (2) EE2401G
CE2401H..L (5) CE2403A CE2404A..B (2) CE2405B
CE2406A CE2407A..B (2) CE2408A..B (2) CE2409A..B (2)
CE2410A..B (2) CE2411A CE3102A..C (3) CE3102F..H (3)
CE3102J..K (2) CE3103A CE3104A..C (3) CE3106A..B (2)
CE3107B CE3108A..B (2) CE3109A CE3110A
CE3111A..B (2) CE3111D..E (2) CE3112A..D (4) CE3114A..B (2)
CE3115A CE3119A EE3203A EE3204A
CE3207A CE3208A CE3301A EE3301B
CE3302A CE3304A CE3305A CE3401Aa
CE3402A EE3402B CE3402C..D (2) CE3403A..C (3)
CE3403E..F (2) CE3404B..D (3) CE3405A EE3405B
CE3405C..D (2) CE3406A..D (4) CE3407A..C (3) CE3408A..C (3)
CE3409Aa CE3409C..E (3) EE3409F CE3410A
CE3410C..E (3) EE3410F CE3411A CE3411C
CE3412A EE3412C CE3413A..C (3) CE3414A
CE3602A..D (4) CE3603A CE3604A..B (2) CE3605A..E (5)
CE3606A..B (CE3704A..F (6) CE3704M..0 (3) CE3705A..E (5)
CE3706D CE3706F..G (2) CE3804A..P (16) CE3805A..B (2)
CE3806A..B (2) CE3806D..E (2) CE3806G..H (2) CE3904A..B (2)
CE3905A..C (3) CE3905L CE3906A..C (3) CE3906E..F (2)

CE2103A, CE2103B, and CE3107A use an illegal file name in an
attempt to create a file and expect NAME_ERROR to be raised; this
implementation does not support external files and so raises
USE_ERROR. (See section 2.3.)

2.3 TEST MODIFICATIONS

Modifications (see section 1.3) were required for 71 tests.

The following tests were split into two or more tests because this
implementation did not report the violations of the Ada Standard in
the way expected by the original tests.

2-3

B22003A B26001A B26002A B26005A B28003A B29001A B33301B
B35101A B37106A B37301B B37302A B38003A B38003B B38009A
B38009B B55A01A B61001C B61001F B61001H B61001I B61001M
B61001R B61001W B67001H B83A07A B83A07B B83A07C BS83EQ1C
B83EQ1D BS83EO1E B85001D B85008D . B91001A B91002A BS9S1002B
B91002C B91002D B91002E B91002F B91002G B91002H B910021
B91002J B91002K B91002L B9S5030A B95061A B95061F B95061G
B95077A B97103E B97104G BAl1001A BAl1101B BC1109A BC1l1i09C
BC1109D BC1202A BC1202F BC1202G BE2210A BE2413A

C83030C and C86007A were graded passed by Test Modification as
directed by the AVO. These tests were modified by inserting
"PRAGMA ELABORATE (REPORT) ;" before the package declarations at
lines 13 and 11, respectlvely. Without the pragma, the packages
may be elaborated prior to package Report's body, and thus the
packages' calls to function REPORT.IDENT_ INT at lines 14 and 13,
respectively, will raise PROGRAM_ ERROR.

CA2009C and CA2009F were graded inapplicable by Evaluation
Modification as directed by the AvoO. These tests contain
instantiations of a generic unit prior to the compilation of that
unit's body; as allowed by AI-00408 and AI-00506, the compilation
of the generic unit bodies makes the compllatlon un1t that contains
the instantiations obsolete.

BC3204C and BC3205D were graded passed by Processing Modification
as directed by the AVO. These tests check that instantiations of
generic units with unconstrained types as generic actual parameters
are 111ega1 if the generic bodies contain uses of the types that
require a constraint. However, the generic bodies are compiled
after the units that contain the instantlatlons, and this
1mp1ementatlon creates a dependence of the instantiating units on
the generic units as allowed by AI-00408 and AI-00506 such that the
compilation of the generic bodies makes the instantiating units
obsolete--no errors are detected. The processing of these tests
was modified by re-compiling the obsolete units; all intended
errors were then detected by the compiler.

CE2103A, CE2103B, and CE3107A were graded inapplicable by
Evaluation Modification as directed by the AVO. The tests abort
with an unhandled exception when USE_ERROR is raised on the attempt
to create an external file. This is acceptable behavior because
this implementation does not support external files (cf. AI-00332).

CHAPTER 3

PROCESSING INFORMATION

3.1 TESTING ENVIRONMENT

The Ada implementation tested in this validation effort is
described adequately by the information given in the initial pages
of this report.

For technical information about this Ada implementation, contact:

Forrest Holemon
410 North 44th Street, Suite 320
Phoenix, Arizona 85008 (U.S.A.)
Telephone: 602-275-7172
Telefax: 602-275-7502

For sales information about this Ada implementation, contact:

Mike Halpin
410 North 44th Street, Suite 320
Phoenix, Arizona 85008 (U.S.A.)
Telephone: 602-275-7172
Telefax: 602-275-7502

Testing of this Ada implementation was conducted at the customer's
site by a validation team from the AVF.

3.2 SUMMARY OF TEST RESULTS

An Ada Implementation passes a given ACVC version if it processes
each test of the customized test suite in accordance with the Ada
Programming Language Standard, whether the test is applicable or
inapplicable; otherwise, the Ada Implementation fails the ACVC
[Pros2j.

For all processed tests (inapplicable and applicable), a result was
obtained that conforms to the Ada Programming Language Standard.

~The list of items below gives the number of ACVC tests in various

categories. All tests were processed, except those that were
withdrawn because of test errors (item b; see section 2.1), those
that require a floating-point precision that exceeds the
implementation's maximum precision (item e; see section 2.2), and
those that depend on the support of a file system--if none is
supported (item d). All tests passed, except those that are listed
in sections 2.1 and 2.2 (counted in items b and f, below).

3-1

a) Total Number of Applicable Tests 3571
b) Total Number of Withdrawn Tests 95
c) Processed Inapplicable Tests 504
d) Non-Processed I/0 Tests . 0
e) Non-Processed Floating-Point

Precision Tests 0

f) Total Number of Inapplicable Tests 504 (c+d+e)
g) Total Number of Tests for ACVC 1.11 4170 (a+b+f)

3.3 TEST EXECUTION

A magnetic tape containing the customized test suite (see section
1.3) was taken on-site by the validation team for processing. The
contents of the magnetic tape were loaded directly onto the host
computer.

The DDC-I Ada Symbolic Debugger runs on the Sun SPARCstation 1+ and
is used for downloading the executable images to the target Bare
Board iSBC 386/116. The DDC-I Debug Monitor runs on the target
Bare Board iSBC 386/116 and provides communication interface
between the host debugger and the executing target Bare Board iSBC
386/116. The two processes communicate via ethernet.

After the test files were loaded onto the host computer, the full
set of tests was processed by the Ada implementation.

The tests were compiled and linked on the host computer system, as
appropriate. The executable images were transferred to the target
computer system by the communications link described above, and
run. The results were captured on the host computer system.

Testing was performed using command scripts provided by the
customer and reviewed by the validation team. See Appendix B for
a complete 1listing of the processing options for this
implementation. It also indicates the default options. The
options invoked explicitly for validation testing during this test
were:

-nosave -list

Test output, compiler and linker 1listings, and job logs were
captured on magnetic tape and archived at the AVF. The listings
examined on-site by the validation team were also archived.

APPENDIX A

MACRO PARAMETERS

This appendix contains the macro parameters used for customizing
the ACVC. The meaning and purpose of these parameters are
explained in [UG89). The parameter values are presented in two
tables. The first table lists the values that are defined in terms
of the maximum input-line 1length, which is the value for
S$MAX IN LEN--also listed here. These values are expressed here as
Ada string aggregates, where "V" represents the maximum input-line
length.

Macro Parameter Macro Value

$MAX IN LEN 126 -- Value of V

$BIG_ID1 (1..V-1 => *'A', V => '1")

$BIG_ID2 (1..V-1 => 'A', V => '21)

$BIG_ID3 (1..V/2 => 'A') & '3' & (1..V=-1-V/2 => 'A')
$BIG_ID4 (1..V/2 => 'A') & '4' & (1..V-1-V/2 => 'A')
$BIG_INT_LIT (1..V-3 => '0') & "298"

$BIG_REAL LIT (L..V=5 => '0') & "690.0"

$BIG_STRING1 Tunt & (1..V/2 => 'A') & tnme
$BIG_STRING2 TNt § (1..V-1-V/2 => 'A') § ']t g rune
$BLANKS (1..V-20 => ' 1)

$MAX LEN_INT BASED_LITERAL
"2T" & (1..V-5 => '0') & "11:"

SMAX LEN REAL BASED_LITERAL
"16:" & (1..V-7 => '0') & "F.E:"

SMAX STRING_LITERAL ‘'""' & (1..V=-2 => 'A') & 'nns

The following table contains the values for the remaining

macro parameters.

Macro Parameter

ACC_SIZE
ALIGNMENT
COUNT_LAST
DEFAULT MEM SIZE
DEFAULT_STOR UNIT
DEFAULT_SYS_ NAME
DELTA_DOC
ENTRY_ADDRESS
ENTRY_ADDRESS1
ENTRY_ADDRESS2
FIELD_ LAST
FILE_TERMINATOR
FIXED_ NAME
FLOAT_NAME
FORM_STRING
FORM_STRING2

GREATER_THAN DURATION

GREATER THAN DURATION_BASE_LAST
GREATER THAN FLOAT _ BASE LAST
GREATER THAN FLOAT SAFE LARGE
GREATER THAN SHORT FLOAT SAFE_LARGE

HIGH PRIORITY

ILLEGAL_EXTERNAL_FILE_NAME1
ILLEGAL EXTERNAL_FILE_NAME2

Macro Value

48

2

2 147_483_647

1641 _0000_0000%

16

IAPX386_PM
2#1.04E-31 -
(140,0)

(141,0)

(142,0)

35

ASCII.SUB
NO_SUCH_FIXED_TYPE
SHORT SHORT FLOAT

"CANNOT_RESTRICT_ FILE_CAPACITY"
75_000.0

131_073.0

1641.04E+32
1645.FFFF_FO#E+31

1.0E308

31

\NODIRECTORY\FILENAME

THIS-FILE-NAME-1S-TOO-LONG-FOR-MY-SYSTEM

INAPPROPRIATE LINE_LENGTH HIRS
INAPPROPRIATE PAGE LENGTH 3 =1
INCLUDE PRAGMA1l :

INCLUDE_PRAGMA2

INTEGER_FIRST
INTEGER_LAST
INTEGER LAST PLUS 1
INTERFACE LANGUAGE
LESS THAN DURATION

LESS THAN DURATION_BASE FIRST

LINE "~ TERMINATOR
LOW_PRIORITY

MACHINE_CODE_STATEMENT

MACHINE_CODE_TYPE
MANTISSA poC

PRAGMA INCLUDE ("A28006D1.TST")

PRAGMA INCLUDE ("B28006El.TST")
-2147483648
2147483647
2_147_483_648
ASM86
-75_000.0
-131_073.0
ASCII.CR
0

40 60 80 05 00 00 00 00 00

MACHINE_INSTRUCTION' (NONE,m_ NOP);
: REGISTER _TYPE
s 31

MAX DIGITS
MAX INT

MAX INT PLUS 1
MIN INT

NAME
NAME_LIST

NAME_SPECIFICATION1

15
9223372036854775807
9223372036854775808
=9223372036854775808
SHORT SHORT_INTEGER
IAPX386_PM

DISKSAWC_ 2:[CROCKETTL. ACVCll DEVELOPMENT]X2120A. ;1

NAME SPECIFICATION2

DISKS$SAWC 2:[CROCKETTL. ACVCll DEVELOPMENT)X2120B. ;1

NAME _ SPECIFICATION3

H

DISKSAWC_2:[CROCKETTL.ACVC11.DEVELOPMENT]X2120C. ;1

NEG_BASED_INT
NEW_MEM_STZE
NEW_STOR_UNIT
NEW_SYS NAME
PAGE_TERMINATOR
RECORD_DEFINITION
RECORD_NAME
TASK_SIZE
TASK_STORAGE_SIZE
TICK
VARIABLE_ADDRESS
VARIABLE ADDRESS1
VARIABLE_ADDRESS2
YOUR_PRAGMA

80 08 00 S0 8¢ 90 00 05 80 0 S0 s e 00

164#FFFF_FFFF_FFFF_FFFF#
16#1_0000_0000#

16

IAPX386_PM

ASCII.FF

RECORD NULL;END RECORD;
NO_SUCH_MACHINE_CODE_TYPE
32

1024

0.000 000 062 S
(16#0¥%,16#%44#)
(16#4#,16#44%)
(16#8#,16#44%)

EXPORT OBJECT

APPENDIX B

COMPILATION SYSTEM OPTIONS

The compiler options of this Ada implementation, as described in this
Appendix, are provided by the customer. Unless specifically noted
otherwise, references in this appendix are to compiler documentation and
not to this report.

DDC-1 Ada Compiler System
DACS Sun SPARC/SunOS to 80x86 Bare
Ada Cross Compiler System
User’s Guide

COMPILER AND LINKER OPTIONS

5 THE ADA COMPILER

The Ada Compiler compiles all program units within the specificd source file and inscns the
generated objects into the current program library. Compiler options arc provided to allow the
uscr control of optimization, run-time checks, and compiler input and oulput options such as list
filcs, configuration files, the program library uscd, cic.

The input to the compiler consists of the source file, the configuration file (which controls the
format of the list filc), and the compiler options. Scction 5.1 provides a list of all compiler
options, and Scction 5.2 describes the source and configuration filcs.

If any diagnostic messages arc produced during the compilation, they arc output on the diagnostic

filc and on the current output file. The diagnostic file and the diagnostic messages arc described
in Scction 5.3.2.

Output consists of an object placed in the program library, diagnostic messages, and optional
listings. The configuration filc and the compilcr options specify the format and contcnts of the
list information. Output is described in Scction 5.3.

The compiler uscs a program library during the compilation. The compilation unit may refer to
units from the program library, and an intemal rcpresentation of the compilation unit will be

included in the program library as a result of a successful compilation. The program library is
described in Chapter 3. Section 5.4 bricfly describes how the Ada compiler uscs the library.

5.1 Invoking the Ada Compiler
Invoke the Ada compiler with the following command to thc SunOS shell:
$ ada {<option>} <source-file-name>

where the options and parameters are:

35

DACS-80x86 Uscr's Guide
Ada Compiler

csource-file-names>

Th: Ada compiler has onc mandatory paramcter that should specify the Ada source file.
Tha: parameter specifics the text file containing the source text 1o be compiled. If the file type
i wanitted in the source file specification, the file type ".ada” is assumcd by default.

The allowed format of the source text is described in Scction 5.2.1.

Bclow follows a description of cach of the available options to the invocation of thc Ada
compiler.

v 4.1 <[nolauto_inline

-auto_inline local | global
-noauto_inline (dcfault)

.S «p+ion specifies whether subprograms should be inlinc expanded. The inline expansion only
occurs if the subprogram has less than 4 object declarations and less than 6 statements, and if the
subprogram fulfills the requircments defined for pragma INLINE (see Scction C.2.3). LOCAL
specifies that only inlinc expansion of locally dcfincd subprograms should bc done, while
GLOBAL will causc inline cxpansion of all subprograms, including subprograms from other units.

5.1.2 -check

-check [<keyword> = ON | OFF { ,<keyword> = ON | OFF }]
-check ALL=0ON (dcfault)

-chech specifies which run-time checks should be performed. Sctting a run-time check to ON
cnables the check, while setting it to OFF disables the check. All run-time checks are enabled by
dcfault. The following cxplicit checks will be disabled/enabled by using the name as <keyword>:

ACCESS Check for access valucs being non NULL.
AiL All checks.

DISCRIMINANT Checks for discriminated ficlds.
EI.ABORATION Checks for subprograms being claboraied.

INODEX Indcx check.

LENGTH Array length check.

OVERFLOW Explicit overflow checks.

RANGE Checks for values being in range.
STORAGE Checks for sufficicent storage available.

37

DACS-80x86 Uscr's Guide
Ada Compilcr

5.1.7 -library

-library <file-spec>
-library $ada_library (dcfault)

This option specifics the current sublibrary that will be used in the compilation and will reccive
the object when the compilation is complete. By specifying a curment sublibrary, the current
program library (currcnt sublibrary and anccstors up to root) is also implicitly specificd.

I this option is omiticd, the sublibrary designated by the cnvironmental variable ada_library is
uscd as the current sublibrary. Scction 5.4 describes how the Ada compiler uscs the library.

5.1.8 -[nojlist

-list
-nolist {dcfault)

-list specifies that a source listing will be produced. The source listing is written 10 the list filc,
which has the name of the source filc with the extension .lis. Section 5.3.1.1 contains a dcscription
of the source listing.

If -nolist is active, no source listing is produced, rcgardless of LIST pragmas in thc program or
diagnostic messages produced.

5.1.9 -optimize

-optimize [<keyword> = on | off { ,ckeyword> = on | off }]
-optimize all=off

This option specifies which optimizations will be pcrformed during code gencration. The possible
keywords arc: (casing is irrclcvant)

all All possible optimizations are invoked.

check Eliminates superfluous checks.

cse Performs common subexpression elimination including common
address expressions.

fct2proc Change function calls rctuming objects of constrained array types
or objccts of rccord types to procedure calis.

reordering Transforms named aggrcgates to positional aggregatcs and named
parameter associations 1o positional associations.

stack_height Pcrforms stack hcight reductions (also called Aho Uliman
rcordering).

block Optimizc block and call frames.

Setting an optimization to on cnables the optimization, while setting an optimization to off disablcs
the optimization. All optimizations arc disabled by default. In addition 10 the optional
optimizations, the compiler always performs the following optimizations: constant folding, dcad
code elimination, and sclection of optimal jumps.

39

DACS-80x86 Uscr's Guide
Ada Compilcr
5.0.14 -unit
it = <unit_number>

{1, specificd unit number will be assigned to the compilation unit if it is frce and it is a legal
unii number for the library.

5.1.13 -recompile
‘ecompile -
The e name (source) is intcrpreicd as a compilation unit name which has its source saved from

2 pecvious compilation. If -specification is not specificd, it is assumed o be body which must be
rccompiled.

>.1.16 -specification
-specification

Works only together with -recompile, sece Scction 5.1.15.

5.2 Compiler Input

Input to the compiler consists of the command line options, a source text filc and, optionally. a
configuration file.

§.2.1 Source Text

‘The user submits onc file containing a source text in cach compilation. The source text may
consist of onc of morc compilation units (scc ARM Scction 10.1).

ine foraat of the source tcxt must be in 1ISO-FORMAT ASCIL. This format requires that the
sonrce text is a sequence of 1SO characters (ISO standard 646), where cach line is tcrminatcd by
cither one of the following termination scquences (CR mcans carriage rctumn, VT mcans vertical
tabulation, LF mcans linc fced, and FF mcans form feed):

« A scquence of one or more CRs, where the sequence is neither immediately preceded nor
immediately followed by any of the characters VT, LF, or FF.

« Any of the characters VT, LF, or FF, immcdiatcly preceded and followed by a sequence of zcro
or more CRs.

in gencral, ISO control characters are not permitted in the source text with the following
exeplions:

41

DACS-80x86 User's Guide
Ada Compiler

type CONFIGURATION RECORD is
record -
IN_FORHAT: INFORMATTING;
OUT_FORMAT: QUTFORMATTING;
ERROR_LIMIT: INTEGER;
end record;

type INPUT_FORMATS is (ASCII):

type INFORMATTING is
record

INPUT_FORMAT: INPUT_FORMATS;

INPUT_LINELENGTH: INTEGER
end record;

type OUTFORMATTING is

record
LINES_PER_PAGE : INTEGER
TOP_MARGIN : INTEGER
BOTTOM_MARGIN : INTEGER
OUT_LINELENGTH : INTEGER

SUPPRESS_ERRORNO : BOOLEAN;
end record;

range 70..250;

range 30..100;

range 4.. 90;
range O0.. 90;
range 80..132;

The outformatting parameters have the following mcaning:

1) LINES_PER_PAGE: spccifics the maximum number of lines written on cach page

(including top and bottom margin).

2) TOP_MARGIN: spccifies the number of lincs on top of each page used for a standard
hecading and blank lines. The heading is placed in the middle lincs of the top margin.

3) BOTTOM_MARGIN: specifies the minimum number of lincs left blank in the bottom of
the page. The number of lincs available for the listing of the program is LINES
PER_PAGE - TOP_MARGIN - BOTTOM_MARGIN.

4) OUT_LINELENGTH: specifies the maximum number of characters written on each linc.

Lines longer than OUT_LINELENGTH

are separated into two lines.

5) SUPPRESS_ERRORNO: specifies the format of error messages (sce Section 5.3.5.1).

The name of a uscr-supplicd configuration file can be passcd to the compiler through the
configuration_file option. DDC-I supplics a default configuration file (config) with the following

content:

43

DACS-80x806 Uscr's Guide
Ada Compiler

5.3.1 The List File

The name of the list filc is identical to the namc of the source file except that it has the file type
"lis". The filc is located in the current (default) directory. If any such file cxists prior 1o the
compilation, thc ncwest version of the file is deleted. If the user requests any listings by
specifying the options -list or -xref, a new list filc is created.

The list file may include onc or morc of the following parts: a sourcc listing, a cross-reference
listing, and a compilation summary.

The pants of the list file arc scparatcd by page cjects. The contents of cach pant arc described in
the following scctions. -

The format of the output on the list file is controllcd by the configuration file (scc Scction 5.2.2)
and may therefore be controlied by the uscr.

5.3.1.1 Source Listing

A source listing is an unmodificd copy of the source text. The lmmg is divided into pages and
cach line is supplied with a linc number.

The number of lines output in the source listing is governcd by the occurrence of LIST pragmas
and the number of objectionable lines.

« Pars of the listing can be suppressed by the usc of the LIST pragma.

> A linc containing a construct that caused a diagnostic message to be produced is printed even
if it occurs at a point where listing has been suppressed by a LIST pragma.

5.3.1.2 Compilation Summary

At the end of a compilation, the compiler produces a summary that is output on the list file if the
option -list is active.

The summary contains information about:

1) The typc and name of the compilation unit, and whether it has been compiled successfully
or not.

2) The number of diagnostic messages produced for each class of severity (sec Section
5.32.1).

3) Which options were active.
4) The full name of the sourcc filc.
S) The full name of the current sublibrary.

6) The number of source text lincs.

45

DACS-80x86 User's Guide
Ada Compiler

5.3.2 The Diagnostic File

The namc of the diagnostic file is identical 1o the namc of the source filc cxcept that it has the
file type ".err™. It is located in the current (default) dircctory. If any such file exists prior to the
compilation, the ncwest version of the file is deicted. If any diagnostic messages are produced
during the compilation a new diagnostic filc is created.

The diagnostic filc is a text file containing a list of diagnostic messages, cach followed by a line
showing thc numbcr of the linc in the source text causing the message, and a blank linc. There
is no scparation into pages and no hcadings. The file may be uscd by an intcractive cditor 10
show the diagnostic messages together with the crroncous source text.

5.3.2.1 Diagnostic Messages

The Ada compiler issucs diagnostic messages on the diagnostic file. Diagnostics other than
wamings also appcar on the current output file. If a source text listing is required, the diagnostics
are also found cmbedded in the list file (sce Scction 5.3.1). ‘

In a sourcc listing, a diagnostic message is placed immediatcly after the source line causing the
message. Messages not related to any panticular linc arc placed at the top of the listing. Every
diagnostic message in the diagnostic filc is followed by a linc stating the line number of the
objectional linc. The lincs arc ordered by increasing source linc numbers. Line number O is
assigned 10 messages not rclated to any panicular line. On the current output file the messages
appear in the order in which they are gencrated by the compilcr.

The diagnostic messages arc classificd according to their severity and the compiler action taken:

Warning: Rcports a questionable construct or an crror that docs not influcnce the meaning of the
program. Wamings do not hinder the gencration of object code.

Example: A waming will be issucd for constructs for which the compiler detects will
raisc CONSTRAINT_ERROR at run time.
Error; Reports an illegal construct in the source program. Compilation continues, but no obicct
code” will be generaied.
Examplcs: most syntax crrors; most static semantic errors.
Scvere Rceports an crror which causes the compilation to be terminated immediatcly.

CITOr: No object code is gencrated.

Example: A scvere error message will be issucd if a library unit mentioned by a
WITH clausc is not present in the current program library.

47

DACS-80x86 Uscr's Guide
Ada Compiler

%% 15088-0: Specification for tLhis package body not present in the library

5.4 The Program Library

This scction bricfly describcs how the Ada compiler changes the program library. For a morc
gencral description of the program library, the uscr is referred to Chapier 3.

The compiler is allowed to rcad from all sublibrarics constituting the current pro;,mm library, but
only the cusrent sublibrary may be changed.

5.4.1 Correct Compilations
In the following cxamples it is assumcd that the compilation units arc correcly compiled, i.c., that

no crrors arc dciccled by the compilcer.

Compilation of a library unit which is a declaration

«

Il a declaration unit of the samc name cxists in the current sublibrary, it is deleted together with

its body unit and possiblc subunits. A ncw dcclaration unit is inseried in the sublibrary, together

with an empty body unit.

Compilation of a library unit which is a subprogram body

A subprogram body in a compilation unit is trcated as a sccondary unit if the current sublibrary

contains a subprogram dcclaration or a gencric subprogram dcclaration of the samc name and this

declaration unit is not invalid. In all other cases it will be treated as a library unit, i.c.:

= when there is no library unit of that name

< when there is an invalid declaration unit of that name

- when there is a package declaration, generic package declaration, an-instantiated package, or
subprogram of that name

Compilation of a library unit which is an instantiation

A possiblc existing dcclaration unit of that namc in the current sublibrary is delcied together with

its body unit and possible subunits. A new declaration unit is inscricd.

Compilation of a secondary unit which is a library unit body

The existing body is dcleted from the sublibrary together with its possible subunits. A ncw body
unit is inscrted.

49

DACS-80x86 User's Guide
Ada Compiler

3) The instantiation appears in an carlicr compilation unit than the first constraint-requining
construction of the generic unit, which in that case-will appcar in the generic body or a
subunit. If the instantiation has been accepted, the instantiation will correspond 1o ihe
generic declaration only, and not include the body. Nevertheless, if the gencric unit and
the instantiation arc located in the samc sublibrary, then the compiler will consider it an
crror. An crror message will be issucd with the constraint-requiring construct and will refer
1o the illcgal instantiation. The unit containing the instantiation is not changed, however,
and will not bc marked as invalid.

5.6 Uninitialized Variables

Usc of uninitialized variables is not Nagged by the compiler. The effect of a program that rcfers
1o the valuc of an uninitialized variable is undcfined. A cross-reference listing may help to find
uninitialized variables.

5.7 Program Structure and Compilation Issues

The following limitations apply 1o the DACS-80x86 Ada Compilcr Sysiems for thc Rcal Address
Modc and 286 protccted mode only:

« The Ada compiler supports a “modified large” memory modcl for data references. The
"modified large" memory model associates one data scgment for cach hicrarchical sublibrary in
the Ada program library. All package data declarcd within a sublibrary is cfficiendy refcrenced
from Ada code compiled into the same sublibrary. A slight incrcase in code size results from
referencing package data compiled into a different hicrarchical Icvel. Intel’s medium memory
model can thus be obuaincd by utilizing only one level of Ada program library, the root
sublibrary.

» The Ada compilcr supports a large memory modcl for exccutable code. Although the size of
a single compilation unit is restricted to 32K words, the total size of the code portion of a
program is not restricted.

» The space available for the static data of a compilation unit is 64K - 20 bytcs.

« Thc space available for the code gencraied for a compilation unit is limited to 32K words.

< Any single object cannot exceed 64K - 20 bytes.

The following limitations apply 1o all DACS-80x86 products:

« Each source file can contain, at most, 32,767 lines of code.

« The name of compilation units and identifiers may not excced the number of characters given
in the INPUT_LINELENGTH paramecter of the configuration file.

- An integer literal may not exceed the range of LONG_INTEGER, a real literal may not exceed
the range of LONG_FLOAT.

51

-

6 THE ADA LINKER

The DACS linker must be exccuted to create an cxccutable program in the target cnvironment.
Linking is a two stage process that includes an Ada link using the compilation units in thc Ada
program library, and a target link to intcgratc the application code, run-timc code, and any
additinnal configuration code devcloped by the uscr. The linker performs these two stages with a
single command, providing options for controlling both thc Ada and target link processcs.

This chapter describes the link process, except for thosc options that configurc the Run-Time
System, which is described in detail in Chapter 7.

6.1 Invoking the Linker

Enter the following command at the shell to invoke the linker:

$ ada_link {<option>} <unit-name>

where the options and paramcters arc:

Ada Linker Options

OPTION DESCRIPTION REFERENCE
-[no]debug Links an application for use with the 6.5.11
DACS-80x86 Symbolic Cross Debugger.
-enable_task_trace Enables trac: when a task terminates in 6.5.28
unhandled ¢xcention.
-exception_space Dcfines arca [or exception handling in task stack. 6.5.29
-[nojextract Extracts Ada Object modulcs 6.5.14
-interrupt_entry_table Range of intcrrupt entrics. 6.5.27
-library The library used in the link. 6.5.7
-[nojiog Specifies creation of a log file. 6.5.9
-It_segment_size Library task default segment size. 6.5.23
-It_stack_size Library task default stack size. 6.5.22
-mp_segment_size Main program segment size. 6.5.25
-mp_stack_size Main program stack size. 6.5.24
-[no]npx Use of the 80x87 numeric coprocessor. 6.5.16
-options Specifies target link options. 6.5.6
-priority Dcfault task priority. 6.5.18
-reserve_stack Size of rescrve stack. 6.5.21
-rms Select Rate Monotonic Scheduling Run-Time 6.5.13
Kemel (optional).
-[nojroot_extract Using non-DDC-I units in the root library. 6.5.10

53

DACS-80x86 Uscr’s Guide
The Ada Linker

The first process constitutes the Ada link process and the sccond constitutes the target hink
Process.

s uc ada link process

* fctricves the requircd Ada object modules from the program library,

 dctcrmincs an claboration order for all Ada units,

> =icates a module containing the Uscr Configurable Data (UCD) from the specificd configuration
options 1o thc linker and

- creates a shell script that carrics out the target link process (i.c., dinkbidx86). The locaic/build
phasc is an intcgral pant of the target link.
{ the option -stop_before_link is NOT spccificd (dcfault), the above script is cxccuted

astematically. Otherwise the linking process is halted at this point.

wwhacu -stop-before_link is spccified, all temporary files arc retricved for inspection or
modification. The target linker is invoked by cxccuting the shell script. :

6.2.1 Temporary Files

Ttw: following tcmporary files are in use during the link phasc:

<inaui_program>_link.com The shell script which invokes the target linker.

<main_program>_clabcode.o The object code for the calling sequence of the claboration
code.

<main_program>_ucd.o The object code gencrated from the RTS configuration

options (sce Section 7.2).

<Mmain_program>_uxxxxx.0 The Ada object modules which have been extracted from the
program library. xxxxx is the unit number of the Ada unit.

55

DACS-80x86 User’s Guide
The Ada Linker

The output of the linker step is an absolute cxecutable object file with the extension “.dat” and
a map filc with the extension “.mpS*”.

6.2.2 Environmental Variables
When a link is cxeculcd, a number of files arc referred to and most arc accessed through

cnvironmcmal variables. The locatc/build phasc uses the control file $ada_ucc_dir/config.bld_ddci,
the remaining variables are:

VARIABLE PURPOSE
ada_system_library ldentifics the root library where the system compilation units reside.
ada_library ldentifics the dcfault library uscd by all DACS-80x86 100ls. It is the

lowest level sublibrary in the program library hicrarchy.

ada_root_lib Identifics the OMF library where the system library units have been
cxtracicd from the systcm library. By having a scparate Library for the
root compilation units, the link process is much faster than otherwise
having to extract each unit from the system library for cach link.

ada_r11_lib Identifics the OMF library for thc Permancnt Part of the non-tasking
version of the Run-Time Systcm.

ada_r12_lib Identifics the OMF library for thc Pcrmanent Part of the tasking version
of the Run-Time Systcm.

ada_r13_lib Identifics the OMF library for thc Pcrmancnt Part of the optional Rate
Monotonic scheduling Run-Time System.

ada_ucc_lib Identifies the OMF library for the Uscr Configurable Code portion of
the Run-Time System.

ada_tcmplate Identifics the template file for the Linker.

ada_ucc_dir Identifics the directory of the current UCC.

With cach of thesc environmental variables, the name will differ depending on how the system
was installed (ada86, adal86 cic). Throughout this document ada is assumcd. For example, the
cnvironmental variables for the root library for the 80186 version of the compiler would be
adal86_root_lib, and thc RTS UCC library cnvironmental variables for the 8086 version would
bc ada86_ucc_lib.

57

DACS-80x86 Uscer's Guide
The Ada Linker

» Run-Time Library Routincs

+ Package CALENDAR suppon routincs

The run-time sysicm (RTS) can be configured by the user through Ada Linker command options.
The Ada Linker will gencrate appropriate data structurcs 10 represent the configured characteristics
(UCD).

Two versions of the RTS arc supplicd, onc including tasking and onc cxcluding tasking. The

linker sclccts the RTS version including tasking only if the option -tasks is present or -tasks n
is present and n > 0. Otherwisc, the linker sclects the RTS version excluding tasking.

6.4 Linker Elaboration Order

The claboration order is primarily given by the unit dependencics, but this lcaves some freccdom
herc and there to arbitrarily choosc between two or more altcmatives. This arbitrary is in the
DACS-80x86 linker controlicd by the spelling of the involved library units, in order for “free”
units to become alphabetically sorted.

Recompiling from scratch, an entire system may thus affect the allocation of unit numbers, but the
claboration order remains the same.

It is also attempied Lo claboratc "body after body", so that a body having a with to a spccification,
will be attempted claborated after the body of this specification.

Also claboration of units from different library levels is attempted to complete claboration of a
father-level prior to the son-level.

This strategy should in many cases reduce the need for resetting pragma ELABORATE.

6.5 Ada Linker Options

This scction describes in detai] the Ada linker option and parameters.

6.5.1 The Parameter <unit-name>
<unit-names>

The <unit_name> must be a library unit in the current program library, but not necessarily of the
current sublibrary.

Note that a main program must be a procedure without parameters, and that <unit-name> is the

identifier of the procedure, not a file specification. The main procedure is not checked for
parameters, but the execution of a program with a main procedure with parameters is undefined.

59

DACS-80x86 Uscr's Guide
The Ada Linker

Examples:
$ ada_link -scarchlib interface_lib p

Links thc subprogram p, rcsolving referenced symbols first with the target library interface_lib
and then with the standard RTS target library.

6.5.5 -stop_before_link

-stop_before_link

The -stop_before_link option allows the uscr 1o introducc asscmblers and linkers from third
partics or to othcrwise configurc the link 10 suit the application. The link is halicd with the
following conditions:

The uscr configurable data file, <main>_ucd.o, is produccd with the dcfault or user specificd
linker option valucs included.

The elaboration code is contained in the <main>_clabcode.o file,

The shell script file that contains the link command is prescnt and has not been exccuted. The
file’'s name is <main>_link.com.

The temporary Ada object file(s) used by the target linker are produccd. These objects are
linked and delcied when <main>_link.com is exccuted.

With -selective_link the objcct files comprise all Ada units including those from the root
library. At this point it is possible to disassemble the "cut” object files using -object with the
disasscmbler.

To complete the link, the <main>_link.com script must be exccuted. To usc third party tools, this
file may have to be modificd.

6.5.6 -options

-options <parameter>

-options allow the uscr to pass options onto the target linker.

61

DACS-80x86 User's Guide
The Ada Linker
» The numbcer of cach type of diagnostic message.

e A (crmination mcssage, stating if the linking was terminated successfully or unsuccessfully or
if a conscquence cxamination was terminated.

« Diagnostic messages and wamings arc written on the log file.

If rccompilations arc requircd (as a result of the consistency check) a icxt file is produced
containing cxcerpts of the log file. The namc of this text file is writicn in the log file. line 8.

The log file consists of:
» Hcadcr consisting of the linker name, the linker version numbcer, and the link time.

« The claboration order of thc compilation units. The units arc displayed in the order claborated
with the unit number, compilation time, unit type, dependencics, and any linking crrors.

« If rccompilations are required, the units that must be recompiled arc listed along with its unit
type and sublibrary level.

« The linking summary that includes the main unit name, the program library, any rccompilations
that are requircd, and if any crrors or wamings occurred.

6.5.10 -[no)root_extract

-root_extract
-noroot_extract (default)

The units contained in the Ada system library supplicd by DDC-I have been extracted and inseried
into the $ada_root_lib OMF Library, thus eliminaling extractions from the systcm library at link
time and improving link performance.

The user should normally not modify or compile into the Ada system library supplied by DDC-1.
If however, a unit is compiled into the Ada system library, the $ada_root_lib will no longer
match the Ada system library and -root_extract must be specified in order to link from the Ada
system library.

6.5.11 -[no)debug

-debug
-nodebug (defaulr)

The -debug option spccifics that dcbug information is generated. The debug information is

rcquired to enablc symbolic dcbugging. If -nodebug is spccificd, the Ada linker will skip the
gencration of debug information, thus saving link time, and will not insert the dcbug information

63

DACS-80x86 User's Guide
The Ada Linker
6.5.15 -template

-template <filc-name>
-template $ada_template (default)

The template file is known to the linker via the cnvironmental variable ada_template. DDC-I

supplics a dcfault icmplate file as part of the standard rclcase system. Pleasc refer to appendix H
for dctailed information.

6.5.16 -npx

-npx (dcfaul)
-nonpx

The -npx option specifics that the 80x87 (8087, 80287, or 80387) numecric coprocessor is uscd
by the Ada program. When -npx is specificd, the 80x87 is initialized by the task initialization
routine, the floating point stack is resct during exception conditions, and the 80x87 context is
saved during a task switch.

Configurable Data

A 16 bit boolcan constant is gencratcd by the Ada Linker:

_CD_NPX_USED |boolean

0 - 80x87 is not uscd
1 - 80x87 is used

6.5.17 -tasks

-tasks [n]
(dcfault is no tasking)

This option specifics the maximum number of tasks allowed by the RTS. If specified, n must be
greater than zcro. If -tasks is specified without a value for n, n defaults to 10. If -tasks is not
specificd, the RTS uscd will not include support for tasking. If -tasks is specified, the RTS uscd
will include suppornt for tasking.

Ada Interrupt tasks identificd with pragma INTERRUPT_HANDLER need not be included in the
count of maximum number of tasks. The main program must be counted in the maximum numbecr

of tasks. Note that the main program, which may implicitly be considcred a task, will not run
undcr control of the tasking kernel when -notasks is specificd. See also -rms option.

Configurable Data

For -tasks, the linker generates the following configurable data:

65

DACS-80A86 User’'s Guide
The Ada Linker

6.5.19 -time_slice
-time_slice [r] (default no time slicing is active)

The -time_slice options specifics whether or not time slicing will be used for tasks. Il specificd,
R is a dccimal number of scconds representing the default time slice to be used. Hf R is not
specificd, the default time siice will be 1/32 of a sccond. R must be in the range Duration’Small
< R < 2.0 and must be greater than or cqual to the -timer Jinker option valuc. Time slicing only
applics to tasks running at cqual priority. Because the RTS is a preemptive priority scheduler, the
highcst priority task will always run before any lower priority task. Only when two or more tasks
arc running at the same priority is time slicing applicd to cach task.

Time slicing can be specified on a per task basis dynamically at run-time. Sce Scciion E.l
(Package RTS_EntryPoints) for more details.

Timc slicing is not applicable unless tasking is being used. This means that the -tasks option
must be uscd for -time_slice to be cffective.
Configurable Data

The Ada Linker gencrates the following data:

_CD_TIME_SLICE_USED [BOOLEAN]

= 0 =~ Ro time slicing
- 1 - Time slicing

_CD_TIME_SLICE [absclute integer l

= rcpresenting the number Y that satisfics Y ¥ DURATION'SMALL = R

Example:
$ ada_link -time_slice 0.125 -tasks p

» Spccifics tasks of cqual priority 1o be time sliced cach cighth of a sccond.

6.5.20 -timer

-timer R
-timer 0.001 (default)

The -timer option spccifics the resolution of calls to the Run-Time System routine TIMER (sce
the Run-Time System Configuration Guide for DACS-80x86 for morc information). The number,
R, spccifies a dccimal number of seconds which have clapsed for cvery call 10 TIMER. The
dcfault TIMER rcsolution is one milliseccond. R must be in the range DURATION'SMALL< R
< 2.

67

DACS-80x86 Uscr's Guide
The Ada Linker

For cuch library task, the represenlation spec:
FOR Task_objcct’STORAGE_SIZE USE N,

can be uscd to spccify the library task stack sizc. However, if the representation spee is not usced,
the default library 1ask sizc specificd by -It_stack_size will be used.

For cfficicncy rcasons, all tasks created within library tasks will have stacks allocated within the
same scgment as the library task stack. Nomally, the segment which contains the library task
stack is allocatcd just large cnough to hold the default library task stack. Thercfore, onc must usc
the option -It _stack _option or thc pragma LT_SEGMENT_SIZE to rescrve more space within the
scgment that may be uscd for nested tasks® stacks. (Sce the implementation dependent pragma
LT_SEGMENT_SIZE in Scction F.1 for morc information).

The range of this parameter is limited by physical memory size, task stack size allocated during
the build phasc of the link, and thc maximum scgment size (64K for all cxcept the 386/486
protected mode, which is 4 GB).

Configurable Data

The Ada Linkcr gencrates the following intcger constant:

_CD_LT_STACK_SIZE r INTEGER I

Example:
$ ada_link -It_stack_size 2048 -tasks p

« Link the subprogram P using a 2K words dcfault library stack size.

6.5.23 -lt_stack._size

-It_segment_size n
-It_segment_size (lt_stack_size + 20 + cxception.stack_space) (dcfault)

This paramcter defines in words the size of a library task segment. The library task scgment
coniains the task stack and the stacks of all its nested tasks.

The default value is only large cnough to hold onc default task stack. If -It_stack_size is used and
specifics a valuc other than the dcfault valuc, -1t_segment_size should also be specificd to be the
size of <task_stack_size> +

<total_of_ncsted_tasks_sizes> +

<20_words_overhead> +

exception_stack_space.

Note that the task stack size specified by the 'STORAGE size can be representation spec or by
the option -lt_stack_size.

Dynamically allocated tasks rcceive their own segment equal in size 10 the mp_segment_size.

69

DACS-30x80 Uscr's Guide
‘The Ada Linker
Example:
§ ada_link -mp_stack_size 1000 p

. Link the subprogram P with a stack of 1000 words.

6.5.25 -mp_segment_size

-mp_scgment_size n
-mp_scgment_size 8100 (Dcfault)

The -mp_segment_size option specifics the size, in words, of thc scgment in which the main
program stack is allocatcd. The default sctting can be calculated from the formula:

mp_scgment_sizc = mp_stack_sizc +
overhead + (tasks - 1) *
(overhcad + task_slorage_sizc)

Nommally, the main program scgment sizc can bc set 1o the sizc of thc main program stack.
However, when the main program contains nested tasks, the stacks for the nested tasks will be
allocated from the data segment which contains the main program stack. Thercfore, when the
main program contains nested tasks, the main program stack scgment must be extended via the
-mp_segment_size option.

The range of this paramcter is limited by physical memory sizc, task stack sizc allocated during
the build phasc (in tasking programs only), and the¢ maximum scgment sizc (64K for all except
the 386/486 protected mode, which is 4 GB).

Note: Dynamically allocated tasks reccive their own scgment cqual in size to mp_scgment_size.

Configurable Data

The Ada Linker allocates the _CD_MP_STACK (scc thc -mp_stack_size option) within a data
scgment called _CD_MP_STACK_SEGMENT:

_CD_MP_STACK_SEGMENT [MP STACK ‘ I
1 1 T
MP_STACK_START MP_STACK_SIZE MP_SEGMENT SIZE
Examplc:

$ ada_link -tasks -mp_segment_size 32000 program_a

Links thce subprogram PROGRAM_A, which contains tasks ncsted in the main program
allocating 32,000 words for the main program stack scgment.

71

DACS-80xX86 User’s Guide
The Ada Linker

thc Ada program contains standird interrupt tasks for which the RIS requires the above data
structure. You must relink the Ada program specifying the -interrupt_entry_table option.
Example:
$ ada_link -tasks -interrupt_cntry_table 5,20 p

« Links thc subprogram P, which has standard Ada intcrrupt cntnics numbcered S
through 20).

6.5.28 -[nojenable_task _trace

~cnable_task_trace
-nocnable_task_trace (dcfault)

This option instructs the exception handler 1o produce a stack trace when a task terminates because
of an unhandled exception.

Configurable Data

_CD_TRACE_ENABLED [BOOLEAN j

= O -~ task trace disabled
1 -~ task trace enabled

6.5.29 -exception_space

-exception_space n
-exception_space (a0h (dcfault)

Each stack will have set its top arca aside for cxccption spacc. When an exception occurs, the
cxception handler may switch stack to this arca 10 avoid accidental overwrite below the stack
bottom (which may lcad to protcclion exceptions) if the size of thc remaining part of the stack
is smaller than the N value. Specifying a value =0 will never cause stack switching. Oiherwisc an
N value below the default value is not recommended.

Configurable Data

_CD_EXCEPTION_STACK_SPACE_SIZE [INTEGER]

Notc that this valuc is added to all requests for task stack space, thus requiring an increasc in the
rcquirements of the appropriate scgment’s sizc

73

APPENDIX C

APPENDIX F OF THE Ada STANDARD

The only allowed implementation dependencies correspond to
implementation-dependent pragmas, to certain machine-dependent
conventions as mentioned in Chapter 13 of the Ada Standard, and to
certain allowed restrictions on representation clauses. The
implementation-dependent characteristics of this Ada implementation,
as described in this Appendix, are provided by the customer. Unless
specifically noted otherwise, references in this Appendix are to
compiler documentation and not to this report.
Implementation-specific portions of the package STANDARD, which are
not a part of Appendix F, are:

package STANDARD is

type SHORT_ INTEGER is range -32_768 .. 32 _767;

type INTEGER is range -2_147_483_648 .. 2_147_483 647;
typé LONG_INTEGER is range -2%*63 .., 2%%63-1;

type FLOAT is digits 6
range -16#0.FFFF_FF#E32 .. 16#0.FFFF_FF#E32;

type LONG_FLOAT is digits 15
range -16#0.FFFF_FFFF_FFFF_F8#E256 .. 16#0.FFFF_FFFF_FFFF F8#E256;

type DURATION is delta 2#1.0#E-14 range -131_072.0 .. 131_071.0;

end STANDARD:;

DDC-I Ada Compiler System
DACS Sun SPARC/SunOS to 80x86 Bare
Ada Cross Compiler System

User’s Guide

APPENDIX F

Oog)

APPENDIX F - IMPLEMENTATION-DEPENDENT CHARACTERISTICS

This appendix describes the implementation-dependent characteristics of DACS-80X86™ as required
in Appendix F of the Ada Reference Manual (ANSI/MIL-STD-1815A).

F.1 Implementation-Dependent Pragmas

This scction describes all implementation defined pragmas.

F.1.1 Pragma INTERFACE_SPELLING

This pragma allows an Ada program to call a non-Ada program whose name contains characters
that are invalid in Ada subprogram identifiers. This pragma must be used in conjunction with
pragma INTERFACE, i.c., pragma INTERFACE must be specificd for thc Ada subprogram namc
prior to using pragma INTERFACE_SPELLING.

The pragma has the format:

" pragma INTERFACE_SPELLING (subprogram name, string litcral);
where the subprogram name is that of one previously given in pragma INTERFACE and the string
literal is the exact spelling of the interfaced subprogram in its native language. This pragma is

only required when the subprogram name contains invalid characters for Ada identifiers.

Example:
function RTS_GetDataSegment return Integer;

pragma INTERFACE (ASM86, RTS_GetDataSegment):
pragma INTERFACE_SPILLING (RTS_GetDataSegment, "R1SMGS?GetDataSegment");

The string literal may be appended '"NEAR (or "FAR) to specify a particular method of call. The
default is "'FAR. This suffix should only be used, when the called routines requirc a near call

(writing 'FAR is however harmlcss). If 'NEAR is added, the routine must be in the same segment
as the caller.

F.1.2 Pragma LT_SEGMENT_SIZE

This pragma sets the size of a library task stack segment.
The pragma has the format:

pragma LT_SEGMENT_SIZE (T, N);

where T denotes cither a task object or task type and N designatcs the size of the library task

193

A=) ‘
'(‘:\{.é DACS-80x86 Uscr's Guide

Implecmentation-Dependent Characteristics

stack scgment in words.

The library task's stack scgment defaults 1o the size of the library task stack. The sizc of the
library task stack is normally specified via the representation clause (note that T must be a task
type)

for T'STORAGE_SIZE usc N;
The size of the library task stack segment detcrmines how many tasks can be created which are
nested within the library task. All tasks crcated within a library task will have their stacks
allocated from the same scgment as the library task stack. Thus, pragma LT_SEGMENT_SIZE

must be specificd to reserve space within the library task stack segment so that nested tasks’
stacks may be allocated (sce scction 7.1).

The following restrictions arc places on the use of LT_SEGMENT_SIZE:

1) It must be used only for library tasks.
2) It must be placed immediately after the task object or typc name declaration.

3) The library task stack segment size (N) must be greater than or equal to the library task
stack size.

F.1.3 Pragma EXTERNAL_NAME

F.1.3.1 Function

The pragma EXTERNAL_NAME is designed to make permanent Ada objects and subprograms
extemally available using names supplied by the user.

F.1.3.2 Format
The format of the pragma is:

pragma EXTERNAL_NAME(<ada_entity>,<extemnal name>)
where <ada_entity> should be the name of:

- a permanent object, i.e. an object placed in the permanent pool of the compilation unit - such
objects originate from package specifications and bodies only,

- a constant object, i.e. an object placed in the constant pool of the compilation unit - please

note that scalar constants arc embedded in the code, and composite constants are not always
placed in the constant pool, because the constant is not considered constant by the compiler,

194

,:4:)')‘) DACS-80x86 Uscr's Guide '
f* é Implementation-Dependent Characteristics

* a subprogram namc, i.c. 2 namc of a subprogram dcfined in this compilation unit - plcase
notice that scparatc subprogram spccifications cannot be used, the code for the subprogram
must be present in the compilation unit code, and where the <external name> is a siring
specifying the extcrnal name associated the <ada_entity>. The <external names> should be
unique. Specifying identical spellings for different <ada_cntitics> will generate crrors at compile
and/or link time, and the responsibility for this is left 10 the user. Also the uscr should avoid
spellings similar to the spellings gencrated by the compiler, e.g. E_xxxxx_yyyyy. P_xxxxx,
C_xxxxx and other intemal idcentifications. The target debug type information associated with
such extcmal namecs is the null type.

F.1.3.3 Restrictions

Objects that are local variables to subprograms or blocks cannot have extemal names associated.
The entity being made cxtemal ("public”) must be defined in the compilation unit itsclf. Atempts
to name entities from other compilation units will be rcjected with a waming.

When an entity is an object the valuc associated with the symbol will be the relocatable address
of the first byte assigned to the object.

F.13.4 Example
Consider the following package body fragment:
package body example is

subtype stringl0 is string(1..10);

type s is
record
len : integer:;
val : stringlQ;

end record;

global_s : s;
const_s : constant stringlQ := "1234567890";

pragma EXTERNAL_NAME (glcbal_s, “GLOBAL_S OBJECT");
pragma EXTERNAL NAME (const_s, "CONST_S"):

procecdure handle(...) is
end handle;
pragma EXTERNAL_NAME (handle, "HANDLE PROC");

.o .

end ezample;

The objects GLOBAL_S and CONST_S will have associated the names "GLOBAL_S_OBJECT"
and "CONST_S". The procedure HANDLE is now also known as "HANDLE_PROC". It is

195

—

< r
:E"’@ DACS-80x86 User's Guide
q 2 Implementation-Dependent Characteristics

allowable to assign morc than onc cxtcmal name 1o an Ada cntity.

F.1.3.5 Object Layouts

Scalar objccts arc laid out as described in Chapter 9. For arrays the object is described by the
address of the first element; the array constraini(s) arc NOT passed, and thercfore it is
reccommended only to usc arrays with known constraints. Non- discriminaicd rccords take a
consccutive number of bytes, whereas discriminated records may contain pointers to the heap. Such

complcx objects should be made cxtcmally visible, only if the user has thorough knowlcdge about
the layout.

F.1.3.6 Parameter Passing

The following scction describes bricfly the fundamentals regarding parameter passing in connection
with Ada subprograms. For more dctail, refer to Chapter 9.

Scalar objects are always passed by value. For OUT or IN OUT scalars, code is generated to
move the modificd scalar to its destination. In this case the stack space for paramciers is not
removed by the procedure itself, but by *he caller.

Composite objects are passed by reference. Records are passed via the address of the first byt
of the record. Constrained arrays are passed via the address of the first byte (plus a bitoffset when
a packed array). Unconstrained arrays are passed as constrained arrays plus a pointer to the
constraints for each index in the array. These constraints consist of lower and upper bounds, plus
the size in words or bits of each clement depending if the value is positive or ncgative
respectively. The user should study an appropriate disassembler listing 1o thoroughly understand
the compiler calling conventions.

A function (which can only have IN parameters) retums its result in register(s). Scalar results are
registers/float registers only; composite results leave an address in some registers and the rest, if
any, are placed on the stack top. The stack still contains the parameters in this case (since the
function result is likely to be on the stack), so the caller must restore the stack pointer to a
suitable value, when the function call is dcalt with. Again, disassemblies may guide the user (o
see how a particular function call is to be handled.

F.1.4 Pragma INTERRUPT_HANDLER

This pragma will cause the compiler to generate fast interrupt handler entries instead of the normal
task calls for the entrics in the task in which it is specificd. It has the format:

pragma INTERRUPT_HANDLER;
The pragma must appear as the first thing in the specification of the task object. The task must

be specificd in a package and not a procedurc. See Section F.6.2.3 for more details and restrictions
on specifying address clauses for task cntrics.

196

C ~ DACS-80x86 Uscr's Guide
rb\ S Implementation-Dependent Characteristics

F.1.5 Pragma MONITOR_TASK

F.1.5.1 Function
The pragma MONITOR_TASK is uscd to specify that a task with a certain structure can be

handled in a spccial way by thc Run-Time System, cnabling a very cfficient context switch
operation.

F.1.5.2 Format
The format of the pragma is
pragma MONITOR_TASK;

The pragma must be given in a task specification before any entry declarations.

F.1.5.3 Restrictions
The following restriciions apply on tasks containing a2 pragma MONITOR_TASK :
« Only single anonymous tasks can be "monitor tasks".

« Entries in "monitor tasks” must be single entries (i.e. not family entries).

The task and entry attributes are not allowed for “monitor tasks” and "monito: task" entries.

The <declarative part> shou71d only contain declaration of objects; no types or nested sturctures
must be used.

* The structure of the task body must be one of the following:
1

task body MON_TASK is
<declarative part>
begin
<statement list>
loop
select
accept ENTRY l<parameter_list> [do
end):
or
accept ENTRY 2<parameter_list> (do
<statement_list>
end};
or
terminate
end select;
end loop;
end;

where each entry declared in the specification must be accepted unconditionally exactly once.

197

DACS-80x86 Uscr's Guide
Implementation-Dependent Characteristics

2.
task body MON_TAsSK i3
<declarative part>
bagin
<statement list>
loop
accept MON_ENTRY<parametar list>([do
<statement_list>
end);
end loop;
end;

where the task only has one cntry.

In both cascs the declarative parts, the statement lists and the paramcter lists may be empty.
The statement list can be arbitrarily complex, but no nested sclect or accept statements are
allowed.

No exception handler in the monitor task body can be given.

The user must guarantce that no exceptions arc propagated out of the accepts.

F.15.4 Example

The following tasks can be defined

task LIST_RANDLER 1s
pragma MONITOR_TASK;
entry INSERT(ELEM:ELEM TYPE);
entry REMOVE(ELZM:out ELEM_TYFE);
entry IS_PRESENT(ELEM:ELEM_TYPE;
RESULT:out BOOLEAN);
end LIST_ HANDLER:

task body LIST_HANDLER is
"define 1list"
begin
"initlalize list"
select
accept INSERT(ELEM:ELEM_TYPE)do
“insert in list"
end INSERT;
or
accept REMOVE(ELEM:out ELEM_TYPE)do
“find in list and remove from list”
end REMOVE
or
accept IS_PRESENT(ELEM:ELEM_TYPE
RES: out BOOLEAN)do
"scan list*"
end IS_PRESENT;
or
terminate,
end select
end MCN_TASK;

The task can be used

task type LIST USER is
end LIST_USER;

task body LIST USER is

198

oy DACS-30x80 User's Guide
S ; -
ﬁé Implementation-Dependent Characteristics
begin
select
LIST_BANDLER.INSERT (FIRST_ELEM);
else

raise INSERT_ERROR;
end select;
loop
LIST_BANDLER.INSERT(NEXT_ELEH);
end loop;
end LIST_USER;

F.1.C Pragma TASK_STORAGE_SIZE (T, N)

This pragma may be uscd as an alicmative to the attribute "TASK_STORAGE_SIZE 10 dcsignate
the storage size (N) of a particular task object (T) (sce section 7.1).

F.2 Implementation-Dependent Attributes

No implementation-dcpendent attributes are defined.

F.3 Package SYSTEM

The specifications of package SYSTEM for all DACS-80x86 in Real Address Mode and
DACS-80286PM systems are identical except that type Name and constant System_Name vary:

Compiler System System Name
DACS-8086 iAPX86
DACS-80186 iAPX186
DACS-80286 Real Mode 1APX286
DACS-80286 Protected Mode iAPX286_PM

Below is package system for DACS-8086.
package System is

type wWord is new Integer;
type DWord is new long_integer;

type UnsignedWord is range 0..65535;
for UnsignedWord’SIZE use 16;

type byte is range 0..25S5;
for byte’SIZE use 8;

subtype Segmentld is OUnsignedwWord;
type Address is
record
offset : Unsignedword;
segment : SegmentId;
end record;

subtype Pricrity 1s Integer range 0..31;

199

DACS-80x86 User's Guide

() Implementation-Dependent Characteristics
type Name 1s (1APX86);

SYSTEM_NAME : constant Name := 1APX86;
STORAGE_UNIT : constant 1= 16;

MEMORY SIZE : coastant 1= 1_048_576;
MIN_INT : constant 1= -2_147_483_647-1;
MAX_INT : constant 1= 2_147_483_647;
MAX_DIGITS : constant 1w 15;

MAX_MANTISSA : ‘constant r= 315

FINE_DELTA : constant := 241.08E-31;

TICK : constant ;= 0.000_000_125;

type

type

type
type
type

type

Interface_language 1is
(ASMS6, PLMB6, c86, C86_REVERSE,
ASM_ACF, PLM_ACF, C_ACF, C_REVERSE_ACF,
ASM_NOACF, PLM_NOACF, C_NOACF, C_REVERSE_NOACF);

Exceptionld i3 record
unit_number : Onsignedword;
unique_number : UnsignedWord;
end record;

TaskValue is new Integer;
AccTaskValue is access TaskvValue;

SemaphorevValue is new Integer;

Semaphore is record
counter : Integer;
first : TaskValue;
last : TaskValue;
SQNext 1 SemaphoreValue;

-- only used in EDS.
end record;

InitSemaphore : constant Semaphore := Semaphore’ (1,0,0,0);

end System;

The package SYSTEM specification for DACS-80386PM package system

package

type
type
type

type
for
type
for
type
for

System 1is

Word is new Short_Integer;
Dword is new Integer;
QWword is new Long_Inteager;

UnsignedWord is range 0..65535;
Unsignedword’ SIZE use 16;

UnsignedDWord is range O..l164FFFF_FFEF#;
OUnsignedDWord’ SIZE use 32;

Byte is range 0..255;

Byte’SIZE use 8;

subtype SaegmentlId is UnsignedWord;

type

Address is

record

offset : UnsignedDWord;
segment : Segmentld;

end record;

for

Address use

record

offset at O range 0..3);
segment at 2 range 0..15;

end record;

subtype Priority is Integer range 0..31;

200

is:

fs" é Implemcentation-Dependent Characteristics

type Name 1s (1APX386_FPM);

SYSTEM_NAME : constant Name :=
STORAGE_UNIT : cunstant 1=
MEMORY_SIZ2E i constant e
MIN_INT : constant e
MAX_INT : constant A
MAX DIGITS : constant -
HAx:hANTISSA : constant H
FINE DELTA : constant i
TICK : constant i

type Intexface_languaga is

(ASMBSE, PLM8G,
ASM_ACF, PLM_ACF,

LAPX386_PM;

16;

1641_0000_00004;
-1648000_0000_0000_0000¢;
164 TFFF_FFFF_FFFF_FFFF4;
15;

31;)
241.04E-2)1;
0.000_000_062_5;

css, C86_REVERSE,
C_ACF, C_REVERSE_ACF,

ASM_NOACF, FPLM NOACF, C_NOACF, C_REVERSE_NOACF);

type ExceptionlId 1s record

unit_number : UnsignedDWord;
unique_number : UnsignedDWord;

end record;

type Taskvalue is new Integer;
type AccTaskValue 1s access TaskValue;
type SemaphoreValue is new Integer;

type Semaphore i{s record
countar

first, last

SQNext

end record;

: Integer;

: TaskvValue;
Semaphorevalue;

-- only used in HDS.

.

InitSemaphore : constant Semaphore := Semaphore’({1,0,0,0);

end System;

F.4 Representation Clauses

The DACS-80x86™ fully supports the "SIZE representation for derived types. The representation
clauses that are accepted for non-derived types are described in the following subsections.

F.4.1 Length Clause

Some remarks on implementation dependent behavior of length clauses are necessary:

» When using the SIZE attribute for discrete types, the maximum value that can be specified is
16 bits. For DACS-80386PM/80486PM the maximum is 32 bits.

« SIZE is only obeyed for discrete types when the type is a part of a composite object, e.g.

arrays or records, for example:

tvpe byte is range 0..255;
for bvte’size use 8;

sixteen bits_allocated : byte; -- one word allocated

201

N VWM TUVACUY UM Y UUIUC
f.\‘é Implemcentation-Dependent Characteristics

eight_bit per element : array(0..7) of byte; -~ four words allocated
type rec is
record

cl,c2 : byte; -~ eight bits per component
end record; .

Using the STORAGE_SIZE attribute for a collcction will set an upper limit on the total size
of objects allocated in this collection. If funher allocation is attempted, the cxception
STORAGE_ERROR is raiscd.

When STORAGE_SIZE is specificd in a length clause for a task type, the process stack area
will be of the specified size. The process stack arca will be allocated inside the "standard” stack
segment. Note that STORAGE_SIZE may not be spccified for a task object.

F.4.2 Enumeration Representation Clauses

Enumeration representation clauscs may specify representations in the range of -32767..+32766 (or
-16#7FFF..16#7FFE).

F.43 Record Representation Clauses

When representation clauses are applied to records the following restrictions are imposed:

if the component is a record or an unpacked array, it must start on a storage unit boundary
(16 bits)

a record occupies an integral number of storage units (words) (even though a record may have
fields that only define an odd number of bytes)

a record may take up a maximum of 32K bits

a component must be specified with its proper size (in bits), regardless of whether the
component is an array or not (Please note that record and unpacked array components take up
a number of bits divisible by 16 (=word size))

if a non-array component has a size which equals or exceeds one storage unit (16 bits) the
component must start on a storage unit boundary, i.e. the component must be specified as:

component at N range 0..16 * M - 1;

where N spccifies the relative storage unit number (0,1,...) from the beginning of the record, and
M the required number of storage units (1.2,...)

the elements in an array component should always be wholly contained in one storage unit

if a component has a size which is less than one storage unit, it must be wholly contained
within a single storage unit:

202

R 2O O S T T LI L L N SR R RV LW SN IR ¥ WY
lL\\‘(*‘

component at N runge X .. Y;

where N is as in previous paragraph, and O <= X <= Y <= 15. Noltc that for this restniction
a component is not rcquired to start in an integral number of storage units from the beginning
of the record.

If the record type contains components which are not covered by a component clause, they are
allocated consccutively after the component with the value. Allocation of a record component
without a componcent clause is always aligned on a storage unit boundary. Holcs created because
of component clauses arc not otherwise utilized by the compiler.

Pragma pack on a rccord type will attempt to pack the componcnts not alrcady covered by a
representation clause (perhaps nonc). This packing will begin with the small scalar componcnts and

larger components will follow in the order specified in the record. The packing begins at the first
storage unit aftcr the components with representation clauscs.

F.43.1 Alignment Clauses
Alignment clauses for records arc implemented with the following characteristics:

= If the dcclaration of the record type is done at the outermost level in a library package, any
alignment is accepted.

« If the record declaration is done at a given static level higher than the outermost library level,
i.e., the permanent area), only word alignments arc accepted.

« Any record object declared at the outermost Icvel in a library package will be aligned according
to the alignment clause specified for the type. Record objects declared clsewhcre can only be
aligned on a word boundary. If the rccord type is associated with a different alignment, an
error message will be issued.

+ If a record type with an associated alignment clause is uscd in a composite type, the alignment
is required 1o be one word; an error message is issucd if this is not the case.

F.5 Implementation-Dependent Names for Implementation Dependent Components

None defincd by the compiler.

F.6 Address Clauses

This section describes the implementation of address clauscs and what types of entities may have
their address specified by the user.

203

= DACS-80x86 User's Guide
M é Implementation-Dvacndent Characteristics
F.6.1 Objects

Address clauscs arc supported for scalar and composite objects whose size can be determined at
compile time. The address clause may denote a dynamic value.

F.6.2 Task Entries

The implementation supports two mcthods to cquate a task entry to a hardware intcrrupt through
an address clause:

1) Direct transfer of control to a task accept statement when an interrupt occurs. This form
rcquires the use of pragma INTERRUPT_HANDLER.

2) Mapping of an interrupt onto a normal conditional entry call. This form allows the intcrrupt

cntry to be called from other tasks (without special actions), as well as being called when
an interrupt occurs.

F.6.2.1 Fast Interrupt Tasks
Direcdy transferring control to an accept statement when an interrupt occurs requires the

implemcntation dependent pragma INTERRUPT_HANDLER to tell the compiler that the task is
an interrupt handler.

F.6.2.2 Features

Fast interrupt tasks provide the following features:

» Provide the fastest possible response time to an interrupt.

« Aliow entry calls to other tasks during interrupt servicing.

+ Allow procedure and function calls during interrupt servicing.
< Docs not require its own stack to be allocated.

» Can be coded in packages with other declarations so that desired visiblity to appropriate parts
of the program can be achieved.

» May have multiple accept statements in a single fast interrupt task, each mapped to a different
interrupt. If more than one interrupt is to be serviced by a single fast interrupt task, the accept
statements should simply be coded consecutively. See example 2 how this is done. Note that
no code outside the accept statements will ever be executed.

204

R .
Né DACS-80x86 Uscr’s Guide

'l:\’ Implcmeniation-Dependent Characteristics
F.6.23 Limitations

By using the fast intcrrupt fcature, the uscr is agreeing to place certain restrictions on the task in
order to specd up the software response to the interrupt. Conscquently, usc of this method 1o
capture interrupts is much faster than the normal mcthod.

The following limitations arc placcd on a fast intcrrupt task:
« It must be a task object, not a task type.
« The pragma must appcear first in the specification of the task object.

« All cntries of the task object must be single entrics (no families) with no paramcters.

» The cntrics must not be called from any task.

« The body of the task must not contain any statements outside the accept statecment(s). A loop
statement may be used t0 enclose the accept(s), but this is meaningless because no code outside
the accept statcments will be executed.

» The task may make one entry call to another task for every handled interrupt, but the call must
be single and parameterless and must be made 10 a normal tasks, not another fast interrupt
task.

» The task may only reference global variables; no data local to the task may be defined.
- The task must be declared in a library package, i.e., at the outermost level of some package.

« Explicit saving of NPX state must be perforined by the user within the accept statement if such
state saving is required.

F.6.2.4 Making Entry Calls to Other Tasks

Fast interrupt tasks can make entry calls to other normal tasks as long as the entries are single (no
indexes) and paramcterless.

If such an entry call is made and there is a possibility of the normal task not being ready to
accept the call, the entry call can be qucued to the normal task’s entry queuc. This can be forced
by using the normal Ada conditional entry call construct shown below:

accept E do
select
T.E;
eise
null;
end select;
end E;

Normally, this code sequence mcans make the call and if the task is not waiting 10 accept it

immediately, cancel the call and continue. In the context of a fast interrupt task, however, the
semantics of this construct are modified slighdy to force the queuing of the entry call.

205

DACS-80x86 Uscr's Guidce
Implementation-Dependent Characteristics

If an unconditional cntry call is made and the called task is not wailing at the corresponding
accept statement, then the interrupt task will wait at the entry call. Altematively, if a timed entry
call is made and the called task does not accept the call before the delay cxpires, then the call
will be dropped. The conditional entry call is the preferred mcthod of making task cntry calls
from fast intcrrupt handlers becausc it allows the interrupt service routine 10 complceie straight
through and it guarantees qucucing of the cntry call if the called 1ask is not waiting.

When using this method, make sure that the interrupt is included in the -interrupt_entry_table
specificd at link time. Sce Scction 7.2.15 for more dctails.

F.6.2.5 Implementation of Fast Interrupts

Fast interrupt tasks are not actually implcmented as true Ada tasks. Rather, they can be viewed
as procedures that consist of code simply waiting 10 be cxecuted when an interrupt occurs. They
do not have a state, priority, or a task control block associated with them, and are not scheduled
to "run" by the run-time system.

Since a fast interrupt handler is not really a task, to code it in a loop of somckind is mcaningless
because the task will never loop; it will simply execute the body of the accept statement whenever
the interrupt occurs. However, a loop construct could make the source code more easily understood
and has no side effects except for the gencration of the executable code to implement to loop
construct.

F.6.2.6 Flow of Control

When an interrupt occurs, control of the CPU is transferred directly to the accept statement of the
task. This means that the appropriate slot in the interrupt vector table is modified to contain the
address of the corresponding fast interrupt accept statement.

Associated with the code for the accept statcment is
at the very beginning:
code that saves registers and sets (E)BP to look like a frame where the interrupt retum
address works as retumn address,

at the very cnd:
code that restores registers followed by an IRET instruction.

Note that if the interrupt handler makes an entry call 10 another task, the interrupt handler is
completed through the IRET before the rendezvous is actually completed. After the rendezvous
completes, normal Ada task pdority rules will be obeyed, and a task context switch may occur.

Normally, the interruptng device must be reenabled by receiving End-Of-Interrupt messages. These
can be sent from machine code insertion statements as demonstrated in Example 7.

206

Dy DACS-80x86 Uscr's Guide
G\- é Implementation-Dependent Characteristics
F.6.2.7 Saving NPX State

If the interrupt handler will perform floating point calculations and the statc of the NPX must be
saved because other tasks also use the numeric coprocessor, calls 1o the appropriate save/restore
routincs must be madc in the statement list of the accept statement. These routines arc Jocated
in package RTS_EntryPoints and are called RTS_Store_NPX_Statc and RTS_Rcstorc_NPX_State.
Sec example 6 for more information.

F.6.2.8 Storage Used

This section dctails the storage rcquircments of fast intcrrupt handlers.

F.6.2.9 Stack Space

A fast interrupt handler executes off the stack of the task exccuting at the time of the interrupt.
Since a fast intcrrupt handler is not a task it docs not have its own stack.

Since no local data or parameters are permitted, use of stack space is limited to procedure and
funcuon calls from within the interrupt handler.

F.6.2.10 Run-Time System Data
No task control block (TCB) is created for a fast intcrrupt handler.

If the fast interrupt handler makes a task entry call, an entry in the _CD_INTERRUPT_VECTOR
must be made to allocate storage for the queuing mechanism. This table is a run-time system data
structure used for queuing interrupts to normal tasks. Each entry is only 10 words for 80386/80486
protected mode compilers and 5 words for all other compiler systems. This table is created by
the linker and is constrained by the user through the linker option -interrupt_entry_table. For
more information, see Section F.6.2.1 on linking an application with fast interrupts.

If the state of the NPX is saved by user code (see Section F.6.2.7), it is done so in the NPX save

area of the TCB of the task executing at the time of the interrupt. This is appropriate because it
is that task whose NPX state is bcing saved.

F.6.3 Building an Application with Fast Interrupt Tasks

This section describes certain steps that must be followed to build an application using one or
more fast interrupt handlers.

207

C DACS-80x86 User's Guide
\ Implementation-Dependent Characteristics

F.6.3.1 Sou:rce Code

The pragma INTERRUPT_HANDLER which indicates that the interrupt handler is the fast form

of intcrrupt handling and not thc normal type. must be placed in the task specification as the first
statcment.

When specifying an address clause for a fast intcrrupt handler, the offset should be the interrupt
number, not the offsct of the intcrrupt in the interrupt vector. The segment is not applicabic
(although a zcro valuc must be specified) as it is not used by the compiler for interrupt addresscs.
The compiler will place the interrupt vector into the INTERRUPTVECTORTABLE scgment. For
rcal address mode programs, the intcrrupt vector must always be in segment O at cxccution time.
For protccted mode programs, the uscr specifics the interrupt vector location at build time.

Calls 1o RTS_Store_NPX_Statc and RTS_Restore_NPX_State must be included if the state of the
numeric coproccssor must be saved when the fast intcrrupt occrus. These routines are located in
package RTS_EntryPoints in the root library. Sce cxample 6 for morc information.

F.6.3.2 Compiling the Program

No special compilation options are required.

F.6.3.3 Linking the Program

Since fast interrupt tasks are not real tasks, they do not have to be accounted for when using the
-tasks option at link time. In fact, if there are no normal tasks in the application, the program
can be linked without -tasks.

This also means that the linker options -1t_stack_size, -It_segment_size, -mp_segment_size, and
-task_storage_size do not apply to fast interrupt tasks, except to note that a fast interrupt task will
execute off the stack of the task running at the time of the interrupt.

If an entry call is made by a fast interrupt handler the interrupt number must be included in the
-interrupt_entry_table option at link time. This option builds a table in the run-time system data
scgment to handle entry calls of interrupt handlers. The table is indexed by the interrupt number,
which is bounded by the low and high interrupt numbers specified at link ume.

F.6.3.4 Locating/Building the Program

For real-address mode programs, no special actions need be performed at link time; the compiler
creates the appropriate entry in the INTERRUPTVECTORTABLE segment. This segment must be
at segment O before the first interrupt can occur.

For protectes mode programs no special actions need be performed. The Ada Link automatically
recognizes Ada interrupt handlers and adds them to the IDT.

208

o DALD-¥Ux86 User's Guide
é Implementation-Dependent Charactenistics

F.6.4 Examples

These cxamples illustratc how to write fast interrupt tasks and then how 1o build the application
using the fast intcrrupt tasks.

F.6.4.1 Example 1

This cxample shows how to code a fast interrupt handler that docs not make any task cntry calls,
but simply performs some interrupt handling code in the accept body.

Ada source:

with System; -
package P is

<potcntially other declarations>

task Fast_Interrupt_Handler is

pragma INTERRUPT_HANDLER;

entry E;

for E use at (segment => 0, offset => 10);
end;

<potentially other declarations>
end P;
package body P is
<potentially other declarations>
task body Fast_Interrupt_Handler is
begin
accept E do
<handle interrupt>
end E;
end;
<potentially other declarations>
end P,
with P;
procedure Example_l is
begin

<main program>
end Examplc_];

Compilation and Linking:

209

A DACS-80x86 Uscr's Guide
Implementation-Dependent Characteristics

$ ada Example_1
$ ada_link Example_1 ! Note: no other tasks in the system in this example.

F.6.42 Examplc 2

This example shows how 10 writc a fast intcrrupt handler that services more than onc interrupt.

Ada source:

with System; !
package P is

task Fast_Intcrrupt_Handler is
pragma INTERRUPT_HANDLER;

enury ElL;
enry E2;
enry E3;

for E1 use at (segment => 0, offsct => 5);
for E2 use at (segment => 0, offset => 9);
for E3 use at (segment => 0, offset => 11);

end;
end P; .
package body P is
task body Fast_Interrupt_Handler is
begin
accept El1 do

<service interrupt 5>
end El;

accept E2 do
<service interrupt 9>
end E2;
accept E3 do
<service interrupt 11>
end E3;
end;

end P;

Compilation and Linking:

210

h\i& Implcmentation- Dependent Characteristics

$ ada Example_2
$ ada_link -tasks - Example_2 # assumes application also has normal tasks (not shown)

F.6.43 Example 3
This example shows how 10 access global data and make a proccdure call from within a fast
interrupt handler.

Ada source:

with System;
package P is

A : Intcgern
task Fast_Intcrrupt_Handler is
pragma INTERRUPT_HANDLER;
enry E;
for E use at (scgment => 0, offset => 16#127#);
end;
end P,
package body P is
B : Integer;
procedure P (X : in out Integer) is
begin
X =X+1
end;

task body Fast_Interrupt_Handler is

begin
accept E do
A:= A +B;
P (A)
end E;
end;
end P;

Compilation and Linking:

$ ada Example_3
$ ada_link Example_3

211

P‘ e DACS-80x86 Uscr's Guide
L) Implcmentation-Dependent Characteristics
F.6.4.4 Example 4

This example shows how 10 make a task cntry call and force it to be queucd if the called task
is not waiting at the accept at the time of the call.

Note that the application is linked with -tasks=2, where the tasks arc T and the main program.
Since the fast interrupt handler is making an entry call to T, the techniques uscd guarantce that
it will be queued, if necessary. This is accomplished by using the conditional call construct in
the accept body of the fast intcrrupt handler and by including the interrupt in the --
interrupt_entry_table at link time.

Ada source:

with System;
package P is

task Fast_Intcrrupt_Handler is

pragma INTERRUPT_HANDLER;

entry E;

for E use at (segment => 0, offsct => 8);
end;

task T is
entry E;
end;

end P;
package body P is

task body Fast_Interrupt_Handler is
begin
accept E do
select
T.E;
else
null;
end select;
end E;
end;
task body T is
begin
loop
select
accept E;
or
delay 3.0
end select;
end loop;
end;

end P;

212

rg“s’, Implementation-Dependent Characteristics

Compilation =nd Linking:

$ ada Example_4)
$ ada_link -tasks 2 -interrupt_entry_table 8,8 Example_4

F.6.4.5 Example 5

This example shows how 10 build an application for 80386/80486 protectcd mode programs using
fast interrupt handlers.

Ada source:

with System;
package P is

task Fast_Interrupt_Handler is

pragma INTERRUPT_HANDLER;

enry E;

for E use at (segment => 0, offsct => 17);
end;

end P;
package body P is
task body Fast_Interrupt_Handler is
begin
accept E do
null;
end E;
end;

end P;

Compilation and Linking:

S ada Example_5
$ ada_link -tasks - Example_3

213

N I mplcmcma—li‘or;-bcv;;cn—dﬂc‘r;l ‘Characteristics

F.6.4.6 Example 6

This cxamplc shows how 10 save and restore the state of the numeric coprocessor from within a
fast interrupt handicr. This would be required if other tasks arc using the coprocessor 1o perform
floating point calculations and the fast interrupt handler also will use the coprocessor.

Note that the state of the NPX is saved in the task control block of the task cxccuting at the time
of the interrupt.

Ada source:

with System;
package P is

task Fast_Intcrrupt_Handler is
pragma INTERRUPT_HANDLER;
entry E;
for E use at (segment => 0, offset => 25);
end;
end P;

with RTS_EntryPoints;
package body P is

task body Fast_Interrupt_Handler is
begin
accept E do
RTS_EntryPoints.Store_NPX_State;
<user code>
RTS_EntryPoints.Restore_NPX_State;
end E;
end;
end P;
Compilation and Linking:

$ ada Example_ 6
$ ada_link -npx -tasks - Example 6

F.6.4.7 Example 7
This example shows how to send an End-Of-Interrupt message as the last step in servicing the

interrupt.

Ada source:

214

A\l d

with System;
package P is

task Fast_Interrupt_Handler is

pragma INTERRUPT_HANDLER;

entry E;

for E usc at (scgment => 0, offsct => 5);
end;

end P;

with Machinc_Code; usc Machine_Code;
package body P is

proccdure Send_EOI is
begin
machine_instruction’
(register_immcdiate, m_MOV, AL, 16#66#),
machine_instruction’
(immediate_register, m_OUT, 16#0e0#, AL),

cnd;
pragma inline (Send_EOI);
task body Fast_Interrupt_Handler is
begin
accept E do
<user code>
Send_EOI,
end E;
end;
end P;
Compilation and Linking:

$ ada Example_7
$ ada_link -tasks - Example 7

F.6.5 Normal Interrupt Tasks

"Normal” interrupt tasks are the standard method of servicing interrupts. In this case the interrupt
causes a conditional entry call to be made to a normal task.

F.6.5.1 Features
Normal interrupt tasks provide the following features:

1) Local data may be defined and used by the interrupt task.

215

W BEPALIL I RGUUT UCPCTIOT L LU NARCICNSUCS

2) May be called by other tasks with no restrictions.
3) Can call other normal tasks with no restrictions.

4) May be declared anywhere in the Ada program where a normal task declaration is allowed.

F.6.5.2 Limitations

Mapping of an interrupt onto a normal conditional cntry call puts the following constraints on the
involved entrics and tasks:

1) The affccted cntries must be defined in a task object only, not a task type.

2) The entrics must be single and parametericss.

F.6.5.3 Implementation of Normal Interrupt Tasks

Normal interrupt tasks are standard Ada tasks. The task is given a priority and runs as any other
task, obcying the normmal priority rules and any time-slice as configured by the user.

F.6.5.4 Flow of Control

When an interrupt occurs, control of the CPU is transferred to an interrupt service routine
generated by the specification of the interrupt task. This routine preserves the registers and calls
the run-time system, where the appropriate interrupt task and entry are determined from the
information in the _CD_INTERRUPT_VECTOR table and a conditional entry call is made.

If the interrupt task is waiting at the accept statement that corresponds to the interrupt, then the
interrupt task is scheduled for execution upon return from the interrupt service routine and the call
to the run-time system is completed. The interrupt service routine will execute an IRET, which
reenables interrupts, and execution will continue with the interrupt task.

If the interrupt task is not waiting at the accept statement that corresponds 1o the interrupt, and
the interrupt task is not in the body of the accept statement that corresponds to the interrupt, then
the cnury call is automaticaily queued to the task, and the call t0 the run-time sysiem is
completed.

If the interrupt task is not waiting at the accept staiement that corresponds to the interrupt, and
the interrupt task is executing in rthe body of the accept statcment that corresponds to the interrupt,
then the interrupt service routine will NOT complete until the interrupt task has exited the body
of the accept statement. During this period, the interrupt will not be serviced, and execution in
the accept body will continue with interrupts disabled. Users are cautioned that if from within
the body of the accept statement corresponding to an interrupt, an unconditional entry call is made,
a delay statement is executed, or some other non-deterministic action is invoked, the result will
be erratic and will cause non-deterministic interrupt response.

Example 4 shows how End-Of-Interrupt messages may be sent to the interrupting device.

216

F.6.55 Saving NPX State
Because normmal interrupt tasks arc standard lasks, the statec of the NPX numcric coprocessor is

saved automatically by the run-time sysiem when the task cxccutes. Therefore, no special actions
are nccessary by the user 1o save the statc.

F.6.5.6 Storage Used

This scction describes the storage requirements of standard interrupt tasks.

F.6.5.7 Stack Space

A nomal interrupt task is allocated its own stack and exccutes off that stack while servicing an
interrupt. Sce the appropriate sections of this User’s Guide on how to sct task stack sizes.

F.6.5.8 Run-Time System Data
A task control block is allocated for each normal interrupt task via the -tasks option at link time.

During task elaboration, an entry is made in the run-time system _CD_INTERRUPT_VECTOR
table to “define” the standard interrupt. This mechanism is used by the run-time system to make
the conditional entry call when the interrupt occurs. This means that the user is responsible to
include all interrupts serviced by interrupt tasks in the -interrupt_entry_table option at link time.

F.6.6 Building an Application with Normal Interrupt Tasks

This section describes how to build an application that uscs standard Ada tasks to service
interrupts.

F.6.6.1 Source Code

No spccial pragmas or other such directives are required to specify that a task is a normal interrupt
task. If it contains interrupt entries, then it is a normal interrupt task by default.

When specifying an address clause for a normmal interrupt handler, the offset should be the
interrupt number, not the offset of the interrupt in the interrupt vector. The segment is not
applicable (although some value must be spccified) because it is not used by the compiler for
interrupt addrcsses. The compiler will place the interrupt vector into the
INTERRUPTVECTORTABLE segment. For rcal address mode programs, the interrupt vector
must always be in segment 0 at execution time. This placement can be accomplished by specifying

217

DACS-80x86 Uscr's Guide
Implementation-Dependent Characieristics

the address to locatc the INTERRUPTVECTORTABLE scgment with the loc86 command, or at
run ume, by having the stanup code routine of the UCC copy down ihe
INTERRUPTVECTORTABLE scgment to scgment O and the compiler will put it there
automatically. For protected modc programs, the user specifics the interrupt vector location at
build time.

F.6.6.2 Compiling the Program

No special compilation options are required.

F.6.6.3 Linking the Program

The interrupt task must be included in the -tasks option. The link options -It_stack_size, ---
It_segment_size, -mp_scgment_size, and -task_storage_size apply to nomal interrupt tasks and
must be sct (o appropriate values for your application.

Every interrupt task must be accounted for in the -interrupt_entry table option. This option
causcs a table to be built in the run-time system data segment to handle interrupt entrics. In the

case of standard interrupt tasks, this table is used to map the interrupt onto a normal conditional
cntry call to another task.

F.6.7 Examples

These examples illustrate how to write normal interrupt tasks and then how to build the application
using them.

F.6.7.1 Example 1
This example shows how 10 code a simple normal interrupt handler.
Ada source:

with System;
package P is

task Nommal_Interrupt_Handler is
entry E;
for E use at (segment => 0, offset => 10);
end;
end P;
package body P is

task body Nommal_Interrupt_Handler is

218

é DACS-80x86 Uscr's Guide
fﬁ Implementation-Dependent Characteristics
begin
accept E do
<handle interrupt>
end E;
cnd;
end P;
with P;
procedurc Example_1 is
begin

<main program>
cnd Example_I;

Compilation and Linking:

$ ada Example_1
$ ada_link -tasks 2 -interrupt_entry_table 10,10 Example_1

F.6.7.2 Example 2

This example shows how to write a normal interrupt handler that services more than one interrupt

and has other standard task cntries.
Ada source:

with System;
package P is

task Nommal_Task is

entry EIl;
entry E2; -- standard entry
entry E3;

for E1 use at (segment => 0, offset => 7);
for E3 use at (segment => 0, offset => 9),

end;
end P;
package body P is
task body Nommal_Task is
begin
loop
select

accept El1 do
<service interrupt 7>

219

DACS-80x86 User's Guide
Implementation-Dependent Characteristics

end El;
or
accept E2 do
<standard rcndczvous>
cnd E2; :
or
accept E3 do
<service intcrrupt 9>
end E3;
end sclect;
cnd loop;

end Normal_Task;
end P;
Compilation and Linking:

$ ada Example_2
$ ada_link -tasks -interrupt_entry_table 7,9 Example_2

F.6.7.3 Example 3

This example shows how to build an application for 80386 protected mode programs using normal
interrupt handlers.

Ada source:

with System;
package P is

task Nommal_Interrupt_Handler is

entry E;

for E use at (segment => 0, offset => 20);
end;

end P;
package body P is
task body Normal_Interrupt_Handler is
begin
accept E do
null;
end E;
end;

end P;

220

f‘\i@ LALD-BUXDOD USCT § LuIUC

Implementation-Dependent Charactenistics

Compilation and Linking:

$ ada Example 3
$ ada_link -tasks -interrupt_entry_Table 20,20 Example_3

8

F.6.7.4 Example 4

This example shows how an End-Of-Inicrrupt message may be sent to the interrupting device.
Ada source:

with System;
package P is

task Normal Interrupt Handler is
entry E;

for E use at (segment => (,

offset => 7);
end;

end P;

with Machine_Code:;
package body P is
procedure Send EOI is
begin
machine_instruction’

use Machine_Code;

(register_immediate, m MOV, AL, 16#66%);
machine_instruction’

(immediate_register, m _OUT,
end;

16#0e0#, AL):;
pragma inline (Send EOI);

task body Normal Interrupt_ Handler is
begin
accept E do
<user code>
Send_EOI;
end E;
end;

end P;

Compilation and Linking:

$ ada Example 4
S ada_link -tasks -interrupt_entry_table 7,7 Example_4

221

(L\\S}J DACS-80x86 Uscr's Guide
Implementation-Dependent Characieristics

F.6.8 Interrupt Qucuing

DDC-I provides a uscful fcature that allows task cntry calls made by intcrrupt handlers (fast and
normal variant) to be qucued if the called task is not waiting to accept the call, cnabling the
interrupt handler to complete to the IRET. What may not be clear is that the samc interrupt may
be qucucd only once at any given time in DDC-1's implementation. We have made this choice
for two recasons:

a) Qucuing docs not come for frce, and queuing an interrupt more than once is considerably
morc cxpensive than quecuing just one. DDC-I feels that most customers prefer their
interrupt handlers to be as fast as possible and that we have chosen an implementation that
balances performance with functionality.

b) In most applications, if the scrvicing of an interrupt is not perfarmed in a relatively shon
period of time, there is an unacceptable and potentially dangcrous situation. Qucuing the
samc interrupt morc than once represents this situation.

Note that this note refers 10 queuing of the same inlcrrupt more than once at the same ume.
Different interrupts may be qucued at the same time as well as the samc interrupt may be queued
in a scquential manner as long as there is never a sitvation where the queuing overlaps in time.

If it is acceptable for your application 10 qucue the samc intcrrupt morc than once, il is a
rclatively simple procedure to implement the mechanism yourself. Simply implement a high
priority agent task that is called from the intcrrupt handler. The agent task accepts calls from the
interrupt task and makes the call on behalf of the interrupt handler to the originally called task.
By careful design, the agent task can be madc 1o accept all calls from the interrupt task when they
are made, but at the very least, must guarantce that at most onc will be qucued at a time.

F.6.9 Recurrence of Interrupts

DDC-I recommends the following techniques to ensure that an interrupt is completely handled
before the same interrupt recurs. There are two cases 10 consider, i.e. the case of fast interrupt
handlers and the case of normal interrupt handlers,

F.6.9.1 Fast Interrupt Handler

If the fast interrupt handler makes an entry call to 2 nomal task, then place the code that
reenables the interrupt at the end of the accept body of the called task. When this is done, the
interrupt will not be reenabled before the rendezvous is actually completed between the fast
interrupt handler and the called task even if the call was queued. Note that the interrupt task
cxecutes all the way through the IRET before the rendezvous is completed if the entry call was
queued.

Normally, end-of-interrupt code using Low_Level_IO will be present in the accept body of the fast
interrupt handler. This implies that the end-of-interrupt code will be executcd before the
rendezvous is completed, possibly allowing the interrupt to come in again before the application
is ready to handle it.)

If the fast interrupt handler does not make an entry call 10 another task, then placing the

222

‘.‘LV . e mmmrmes o mgpm—ren e —— o oo

cnd-of-intcrrupt code in the accept body of the fast interrupt task will guarantee that the interrupt
is completcly scrviced before another interrupt happens.

F.6.9.2 Normal Interrupt Handler

Place the code that feenables the interrupt at the end of the accept body of the normal interrupt
task. When this is done, the interrupt will not be recnabled before the rendczvous is actually
completed between the normal interrupt handler and the called task cven if the call was queucd.
Even though the interrupt “completes” in the sense that the IRET is cxccuted, the interrupt is not
yct recnabled because the rendezvous with the normal task's interrupt entry has not been made.

If these techniques are uscd for either variant of interrupt handlers, caution must be taken that

other tasks do not call the task entry which rcenables interrupts if this can cause adverse side
cffects.

F.7 Unchecked Conversion

Unchecked conversion is only aliowed between objects of the same "size". However, if scalar type
has different sizes (packed and unpacked), unchecked conversion between such a type and another
type is accepted if either the packed or the unpacked size fits the other type.

F.8 Input/Output Packages

In many embedded systems, there is no nced for a traditional I/O systcm, but in order to support
testing and validation, DDC-I has dcveloped a small terminal oriented 1/0 system. This 1/0 system
consists esscntially of TEXT_IO adapted with respect to handling only a terminal and not file /O
(file 1/0 will cause a USE emor to be raised) and a low level package called
TERMINAL_DRIVER. A BASIC_IO package has been provided for convenience purposes,
forming an interface between TEXT_IO and TERMINAL_DRIVER as illustrated in the following
figure.

TEXT I0
BASIC IO
TERMINAL DRIVEIR
(H/W interface)

The TERMINAL_DRIVER package is the only package that is target dependent, i.c., it is the only

223

l?.\p Implecmentation-Dependent ‘Characteristics

package that nced be changed when changing communications controllers. The actual body of the
TERMINAL_DRIVER is writicn in asscmbly language and is pant of the UCC modules DIIPUT
and DIIGET. The user can also call the terminal driver routines dircctly, i.c. from an asscmbiy
language routine. TEXT_IO and BASIC_IO arc wrtten completely in Ada and nced not be

changed.

BASIC_IO providcs’ a mapping between TEXT_IO control characters and ASCII as follows:

TEXT_I1O ASCII Character
LINE_TERMINATOR ASCIL.CR
PAGE_TERMINATOR ASCILFF
FILE_TERMINATOR _ ASCHL.SUB (CTRL/Z)
NEW_LINE ASCILLF

The services provided by the terminal driver are:

1) Reading a character from the communications port, Get_Character.

2) Writing a character to the communications port, Put_Character.

F.8.1 Package TEXT_IO

The specification of package TEXT_IO:

pragma page;
with BASIC_IO;

with IO_EXCEPTIONS;
package TEXT IO is

type FILE_TYPE 1is limited private;

type FILE _MODE is (IN_FILE, OUT_FILE);

type COUNT is range O .. INTEGER’LAST;

subtype POSITIVZI_COUNT is COUNT range 1 .. COUNT’LAST;
UNBOUNDED: constant COONT:= 0; -- line and page length

~=- max. size of an integer output fileld 2¢....#
subtype FIELD is INTEGER range O .. 35;

subtype NUMBER_ BASE is INTEGER range 2 .. 16;

type TYPE_SET is (LOWER_CASE, UPPER_CASE);

pragma PAGE;

-- File Management

procedure CREATE (FILE : in out FILE TYPE;

MODE : in FILE MODE :=OUT_FILE;
NAME : in STRING H

FORM : 4n STRING e
):

procecdure OPEN (FILE : in out FILE TYPE;

MODE : in FILE_MODE;
NAME : in STRING;

224

FORM : 1in STRING H
):

procedure CLOSE (FILE : in out FILE TYPE);
procedure DELETE (FILE : in out FILE TYPE);
procedure RLSET (FILE : in out FILE_TYPE;
MODE : in FILE_MODE);
procedure RESET (FILE : in out FILE_TYPE);

function MODE . (FILE : in FILE_TYPE) return FILE MODE;
function NAME (FILE : in FILE_TYPE) return STRING;
function FORM (FILE in FILE_TYPE) return STRING;

function IS_OPEN(FILE : in FILE TYPE return BOOLEAN;

pragma PAGE;
-~ control of default input and output files

procedure SET_INPUT (FILE : in FILE TYPE);
procedure SET OUTPOT (FILE : in FILE_TYPE);

function STANDARD_INPOT return FILE TYPE;
function STANDARD_OUTPUT return FILE_TYPE;

function CORRENT_INPUT return FILE_TYPE;
function CURRENT OUTPUT return FILE_TYPE;

pragma PAGE;
-~ specification of line and page lengths

procedure SET_LINE_LENGTH (FILE : ip FILE TYPE;
TO : in COUNT);
procedure SET_LINE LENGTE (TO : in COUNT);

procedure SET_PAGE_LENGTH (FILE : in FILE_TYPE;
TO : in COUNT);
procedure SET_PAGE_LENGTR (TO : in COUNT);

functicn LINE_LENGTE (FILE : in FILE_TYPE)
return COUNT;
function LINE_LENGTH return COUNT;

functicn PAGE_LENGTH (FILE : in FILE TYPE)
return COUNT;
function PAGE_LENGTH return COUNT;

pragma PAGE;
~=- Column, Line, and Page Control

procedure NIW_LINS (FILE : in FILE_TYPE;
SPACING : in POSITIVE_COUNT := 1);
procedure NEW LINE (SPACING : in POSITIVE COUNT := 1);

procedure SKI?_LINE (FILE : in FILE_TYPE;
SPACING : in POSITIVE_COUNT := 1);
procedure SXIP?_LINE (SPACING : in POSITIVE_COUNT := 1);

 ee

1

function END_OF_LINE (FILE : in FILE_TYPE) return BOOLEAN;
function END_OF LINE return BOOLEAN;

rocedure NZW_PAGE (FILE : in FILE_TY?RE);
procedure NEW_PAGE;

procedure SXKIP_PAGE (TILE : in FILE_TYPE);
procedure SKI?_PAGE;

functicn ERD_OF _PAGE (FILE : in FILE_TYPE) return BOOLEAN;
function END_OF_PAGE return BOOLEAN;

function END_OF FILE (FILE : in FILE_TYPE) return BOOLEZAN;
function ZND OF FILE return BOOLEAN;

225

ot (' Implementation-Dependent Characteristics

procedure SET_COL (FILE : in FILE_IYPE;

T0 : in POSITIVE COUNT);
procedure SLT_COL {TO : f{n POSITIVE_COONT);
procedure SET_LINE (FILE : in FILE_TYPE;

TO : in POSITIVE_COUNT);
procedure SET LINE {TO : in POSITIVE_COUNT);

function COL (FILE : in FILE_TYPE)
return POSITIVE_COUNT;
function COL return POSITIVE_COUNT;
functien LINE (FILE : in FILE_TYPE)
return POSITIVE_COUNT;
function LINE return POSITIVE_COUNT;
function PAGE (FILE : in FILE_TYPE)
return POSITIVE_COUNT;
function PAGE return POSITIVE_COUNT;

pragma PAGE;
-- Character Input-Output

procedure GET (FILE : in FILE_TYPE; ITEM : out CHARACTER):

procedure GET (ITEM : out CHARACTER);
procedure POT (FILE : in FILE_TYPE; ITEM : in CHARACTER);
procedure PUT (ITEM : 4in CHARACTER);

-=- String Input-Output

procedure GET (FILE : in FILE_TYPE; ITEM : out CHARACTER);

procedure GET (ITEM : out CHARACTER);
procedure PUT (FILE : in FILE_TYPE; ITEM : 4in CHARACTER);
procedure PUT (ITEM : in CHARACTER);

procedure GET_LINE (FILE : in FILE_TYPE;
ITEM : out STRING;
LAST : out NATURAL);

procedure GET_LINE {ITEM : out STRING;
LAST : out NATURAL);

procedure POT_LINE (FILE : in FILE_TYPE;
ITEM : in STRING);
procedure PUT_LINE (ITEM : 1n STRING);

pragma PAGZ;
-- Generic Package for Input-Output of Integer Types

genexic
type NUM is range <>;
package INTEGER IO is

DEFAULT_WIDTH : FIELD = NUM’'WIDTH;
DEFAULT BASE : NUMBER BASE := 10;
procedure GET (FILE in FILE_TYPE;
out NUM;

WIDTH : 4in FIELD := 0);
procecdure GZT ({ITEM : out NUM;

WIDTH : in FIELD := 0);

procecdura PUT (FILE : in FILE_TYPE;

ITEM : 1in NUM;

WIDTH : 4n FIELD := DEFAULT_WIDTH;

BASE : 4in NUMBER_BASE := DEFAULT_BASE};
procecure PUT - (ITEM : 1in NUM;

WIDTE : 4in FIZLD := DEFAULT_WIDTH;

BASE : 3in NUMBER_BASE := DETAULT_BASE);

procedure GET (FRCM : in STRING;
ITEM : out NUM:

LAST

procedure PUT (TO
ITEM

BASE

end INTEGER_IO:

pragma PAGE;
~= Generic Packages for

generic
type NOM is digits <>;
package FLOAT 10 is

DEFAULT_FORE
DEFAULT_AFT
DEFAULT_EXP

FIELD
FIELD
FIELD

procedure GET (FILE
ITEM
WIDTH :
(ITEM
WIDTH

.
H

procedure GET

procedure PUT (FILE :

ITEM

procedure PUT

procedure GET

4 s ee we

procecure PUT

end FLOAT_IO;

pragma PAGE;

generic
type NOM is delta <>;
package FIXED_IO is

DEFAULI_FORE : FIELD :=
DEFAUOLT_AFT : FIELD :=
DEFAULT_EXP : FIELD :=
procecdure GET (FILE
ITEM
WIDTH :
procedure GET (ITEM
WIDTH :
procedure PUT (FILE :
ITEM
FORE
ATT
EXP
procecure PUT (ITEM :
FORE :
AFT

: in

: in

: out POSITIVE);

¢ out STRING;
in NUM;

in NUMBER _BASE := DEFAULT_BASE);

Input-Output of Real Types

2;
NUM’DIGITS - 1;
3;

in FILE_TYPE;

out NOM;

in FIELD := 0);

out NUM;

in FIELD := 0);

in FILE_TYPE;

in NUM;

in FIELD := DEFAULT_FORE;
in FIELD := DEFAULT_AFT;
in FIELD := DEFAULT EXP);
in NUM; -

in FIELD := DEFAULT_FORE;
in FIELD := DEFAULT_AFT;
in FIELD := DEFAULT_EXP);
in STRING;

out NUM;
out POSITIVE).
out STRING;

in NUNM;

in FIELD := DEFAULT_AFT;
in FIELD := DEFAULT_EXP);

NUM’ FORE;
NUM’ AFT;
0

in FILE_TYPE;

: out NUM;

in FIELD := 0);

: out NOM;

in FIELD := 0);

in
in

FILE_TYPE:

NUM;

FIZLD := DEFAULT_FORE;
FIELD :=~ DEFAULT_AFT;
FIZLD := DETAULT_EXP);

in
ia

NUM;
FIZLD := DEFAULT_FORE;
FIZLD := DEFAULT_AFT;

in
in

227

EXp
procedure GET (FROM :
ITEM
LAST :

procedure POT (TO :

end FIXED_IO;

pragma PAGE;
-=- Generic Package for

generic
type ENUM i3 (<>);
package ENUMERATION_IO is

- - - S

in FIELD := DEFAULT_EXP);

in STRING;
out NUM;
out POSITIVE);

out STRING,
in NUM;
in FIELD := DEFAULT_AFT;
in FIELD := DEFAULT EXP);

Input-Output of Enumeration Types

DEFAULT _WIDTH : FIELD = 0;
DEFAOLT_SETTING : TYPE_SET := UPPER_CASE;

procedure GET (FILE :
procedure GET (

procedure PUT (FILE
ITEM
WIDTH
SET

procedure PUT (ITEM
WIDTH
SET

procedure GET (FROM
ITEM
LAST :
procedure PUT (TO
ITEM :
SET
end ENUMERATION_10;
pragma PAGE;
-~ Exceptions

STATUS_ERROR

R

in FILE_TYPE; ITEM : out ENUM) ;
ITEM : out ENUM);

FILE_TYPE;

in ENUM;

in FIELD := DEFAULT_WIDTH;

in TYPE_SET :=~ DEFAULT_SETITING);
in ENUM;

in FIELD := DEFAULT_WIDTH.

in TYPE_SET := DEFAULT_SETTING);

in STRING;
out ENUM;
out POSITIVE);

: cut STRING;

in ENUM;
in TYPE_SET := DEFAULT_SEITING);

exception renames IO _EXCEPTIONS.STATUS_ERROR;

MODE_ERROR : exception renames IQ_BXCEPIIONS.MODE;EEROR:

NAME ERROR

: exception renames IO_EXCEPTIONS.NAME _ERROR;

USE_ERROR : exception renames IO_EXCEPTIONS.USE_ERROR;
DEVICE_ERROR : exception renames IO _EXCEPTIONS.DEVICE ERROR;

END_ERROR

exception renames 10_EXCEPTIONS.END_ERFOR;

DATA_ERROR : exception renames IO_EXCEPTIONS.DATA_ERROR;

LAYOUT_ERROR

pragma page;
private

type FILE TVPE is
record

FT : INTEGER := -1;
end record;

end TEXT_IO;

exception renames IO_EXCEPTIONS.LAYOUT ERROR;

228

F.8.2 Package IO_EXCEPTIONS

The specification of the package 10_EXCEPTIONS:

package 10_EXCEPTIOJS 13

STATUS_ERROR : exception;
MODE_ERROR : exceptlion;

NAME_ERROR ! exception;
USE_ERROR : exception;
DEVICE_ERROR : exception;
END_ERROR : exception;
DATA_ERROR : exception;

LAYOUT ERROR : exception;

end TO_EXCEPTIONS;

F.83 Package BASIC_10

The specification of package BASIC_IO:

with 10 _EXCEPTIONS;
package BASIC_IO is
type count 1s range 0 .. integer’last;

subtype positive count is count range 1 .. count’last;

function get_integer return string;

-- Skips any leading blanks, line terminators or page
-- terminators. Then reads a plus or a minus sign if
-~ present, then reads according to the syntax of an
-- integer literal, which may be based. Stores in item
-- a string containing an optiocnal sign and an integer
-= literal.

-- The exception DATA_ERROR is raised if the sequence
-- of characters does not correspond to the syntax
-- described above.

-- The exception EIND_ERROR is raised if the file terminator
-- 1s read. This means that the starting sequence of an
-- integer has not been met.

-~ Note that the character terminating the operation must
-- be available for the next get operation.

function get_real return string;

~- Corresponds to get_integer except that it reads according
-= to the syntax of a real literal, which may be based.
function get_enumeration return string;

-- Corzesponds to get_integer except that it reads accordirng
-- to the syntax of an identifier, where upper and lower

-- case letters are egquivalent to a character literal
-- including the apostrophes.

229

function get_item (length : in fnteger) return string;
-« Reads a string from the current line and stores it in
-~ itom. If the remaining numbor of characters on the

-= current line i3 less than length then only these

-- characters are returned. The line terminator is not

-- akipped.

procedure put_item (item : in string);

-- If the length of the string is greater than the current
-~ maximum line (linelength), the exception LAYOUT_ERROR
-=- s raised.

== If the string does not fit on the current line a line
-~ terminator is output, then the item is output.

-= Line and page lengths - ARM 14.3.3.

procedure set_line_length (to s in count);
procedure set_page_length (to : in count);
function line_length return count;

function page_length return count;

-- Operations on columns, lines and pages - ARM 14.3.4.

procedure nevw_line;

procedure skip_line;

function end_of_line return boolean;

procedure new_page;

procedure skip_page;

function end_of_page return boolean;

function end_of_file return boolean;

procedure set_col (to : in positive_count);
procedure set_line (to : in positive count);
function col return pesitive_count;

function line return positive_count;

function page return positive_count;

-~ Character and string procedures.
-- Corresponds to the preocedures defined in ARM 14.3.6.

procedure get_character (item : out character);
procedure get_string (item : out string);
procedure get_line (item : out string;

last : out natural);

procedure put_character (item : 1in character);

procedure put_string (item : in string);

230

procedure put_line (item : in string);

-~ exceptions:

OSE_ERROR i exception renames IO _EXCEPTIONS.USE_ERROR;
DEVICE _ERROR : exception renames IO_EXCEPTIONS.DEVICE_ERROR;
END_ERROR : exception renames 10_EXCEPTIONS.END_ERROR;
DATA_ERROR 1 exception renames IO _EXCEPTICNS.DATA_ERROR;

LAYOUT ERROR ; exception :renames 10:BXC£PTIONS.LAYOUT_ERROR;

end BASIC_IO;

F.8.4 Package TERMINAL_DRIVER

The specification of package TERMINAL_DRIVER:

package TERMINAL DRIVER 1s
procedure put_character (ch : in character);
procedure get _character (ch : out character);
private

pragma interface (ASMB6, put_character);
pragma interface_spelling(put_character, "D1IPUT?put_character®});

pragma interface (ASM86, get_character);
pragma interface_spelling(get_character, "D1IGET?get_character”);

end TERMINAL DRIVZR;

F.8.5 Packages SEQUENTIAL_IO and DIRECT_IO
The s;peciﬁcations of SEQUENTIAL_IO and DIRECT_IO are spccified in the ARM:

Since files are not supported the subprograms in these units reaise USE_ERROR
STATUS_ERROR.

231

or

“-’PC’ DACS-80x86 Uscr's Guide
ﬁ‘ > Implemcniation-Dependent Characteristics
F.8.6 Package LOW_LEVEL_10

The specification of LOW_LEVEL_IO (16 biis) is:

with System;
package LOW_LEVEL 10 {is
subtype port_address is System.UnsignedWord;

type 11 _io_8 is new integer range -128..127;
type 11_1io_16 is new integer;

procedure send_control(devica : in port_address;
data : in System.Byte);
-- unsigned 8 bit entity

procedure send_control{device : in port_address;
data : in System.UnsignedWord);
== unsigned 16 bit entity
procedure send_control(device : in port_address;
data :in 1. 3o_8);
-- signed B8 bit entity
procedure send_control(device : in port_address;
data : dn 11 _10_16);
-=- signed 16 bit entity
procedure receive_control (device : in port_address;
data : out System.Byte);
-~ unsigned 8 bit entity
procedure receive_control (device : in port_address;
data : out System.UnsignedWord):
-=- unsigned 16 bit entity
procedure receive_control(device : in port_address;
data : out 11 io 8);
-- signed 8 bit entity
procedure receive_control(device : in port_address;
data : out 1l io_16);
~-- signed 16 bit entity
private
pragma inline(send_control, receive_control);

end LOW_LEVEL_IO;

The specification of LOW_LEVEL_IO (32 bits) is:
with SYSTEM:
package LCW LEVEL IO 1is

subtype port_address is System.UnsignedWord;

type 11 io_8 is new short_integer range -128..127;
type 11_1o 16 s new short_iateger;
type 11_io_32 is new integer;

procecure send_control(device : in port_address;
data : in System.Byte);
-- unsigned 8 bit entity

procedure send_control(device : in port_address;
data : in System.UnsignedWord);

232

“é ~ DACS-80x86 Uscr's Guide
fb\ Implementation-Dependent Characieristics

-=- unsigned 16 bit entity

procadure send_control(device : in port_address;
data : in System.UnsignedDWord);
-~ unsigned 32 bit entity

procedure send control(device : in port_address;
data : in 11_io_8);
~-- signed 8 bit -entity

procedure send control(device : in port_address;
data : in 1l1_1io_16);
-- signed 16 bit entity

procedure send_control (device : in port_address;
data : dn 11_io_32);
-- signed 32 bit entity

procedure receive_control(device : in port_address;
data : out System.Byte); -
-- unsigned 8 bit entity

procedure receive_control (device : in port_address;
data : out System.Unsignedword);
~- unsigned 16 bit entity

procedure receive_control(device : in port_address;
data : out System.UnsignedDWord);
-- unsigned 32 bit entity

procedure receive_control(device : in port_address;
data : out 11_1o_8);
-- signed 8 bit entity

precedure receive_control (device : in port_ address;
data : out 11 _1lo_16);
-- signed 16 bit entity

procedure receive_control(device : in port_address;
data : out 11 io 32);

-- signed 32 bit entity

private

pragma inline(send control, recelve_control);

end LOW_LEVEL_IO;

F.9 Machine Code Insertions

The rcader should be familiar with the code generation strategy and the 80x86 instruction set to
fully benefit from this section.

As described in chapter 13.8 of the ARM [DoD 83] it is possible to write procedures containing
only code statements using the predefined package MACHINE_CODE. The package
MACHINE_CODE defines the type MACHINE_INSTRUCTION which, used as a record aggregate,
defines a machine code insertion. The following sections list the type MACHINE _INSTRUCTION
and types on which it depends, give the restrictions, and show an example of how to use the
package MACHINE_CODE.

233

lﬂ(@ DACS-80x86 Uscr's Guide

Implementation-Dependent Characienistics

F.9.1 Predefined Types for Machine Code Insertions

The following types are dcfined for usc when making machine code inscrtions (their type
dcclarations arc given on the following pages):

type opcode_type

type operand_typc

type register_type

lype segment_registcr
type machine_instruction

The type REGISTER_TYPE defincs registers. The registers STi describe registers on the floating

stack, (ST is the top of the floating stack).

The type MACHINE_INSTRUCTION is a discriminant record type with which every kind of
instruction can bc described. Symbolic names may be used in the form

name'ADDRESS

Restrictions as to symbolic names can be found in section F.S9.2.

It should be mentioned that addresscs are specified as 80386/80486 addresses. In case of other
targets, the scale factor should be set to "scale_1".

type opcode_type is (
-- 8086 instructions:

m_RAAA, m_AAD, m_AAM,
m_CALLN,
m_CBHW, m_CLC, m CLD,
m_DAS, m D...C, m DIV,
m__INTO, m_IRET, m_JA,
m_JG, m_JG m_JL,
m_JNE, m_JNG, m_JNGE,
m_JO, m_J?, m_JPE,
m_LES, m_LEA, m_LOCK,

m_LOOPNE, m_LOOPNZ,
m_LOOPZ, m MOV, m_MOVS,

m_POP, m_POPF, m_PUSH,
m_REP, m Rx.PE, m R_..PN B
m_SAL, m_ SAR m SHL.
m_sSTOS, m_SUB, m_TEST,

-~ 8087/80187/80287 Floating Point

m_FABS, m_TADD, m_FADDD,
m_FNCLEX, m_rCCM, m FCOMD,
m_¥FDIV, m_FDIVD, m_FDIVP,
m_FIADD, m_FIADDD, m_FICOM,

m_FIDIVD, m FIDIVR, m_FIDIVRD,
m_FIMULD, m _FINCSTP, m_FNINIT,

ot

m_FISTPL, m_FISUB, m_rISUBD,
m_FLDCW, m FLDENV, m FLDLGZ,
m_FLDZ, m_FLD1, _.mux..
m_FPREM, m_FPTAN, m FRNDINT,
m_FSQRT, m_rST, m_FSTD,
m_FSTSW, m_FSTSWAX, m_FSUB,

m rscav m_FTST, m_FWAIT,

_FYL2XP1, m_F2Xdl,

-- 801856/80286/80386 instIuctions:

-- Notice that some immediate versions of the 8086
-- instructions only exist on these targets

~-=- {shifts, rotates,push,imul,.

m_BCUND, m_CLTS, m_ENTIER,
m_LIDT, m_LSL, m_OUTS,

254

m_AAS, m_ADC, m_ADD, m_AND, m_CALL,
m CLI, m_CMC, m_CMP, m CMPS, m_CWD, mIF,
m_HLT, m_IDIV, m_IMUL, m_IN, m_INC, mIL
m_JAE, m_JB, n JBE, m_JC, m_JCXZ, m X,
m _JLE, m_JNA, m_JNAE, m_JNB, m_JNBE, mJL,
m_JNL, m_JNLE, m_JNO, m_JWP, m_JNS, ml%
m_JPO, m_Js, m_Jz, m JMP, m_LARF, mIS
m_LODS, m_LOCP, m_ _LOOPE,
m_MUL, m_NEG, m_NOP, m_NOT, m_OR, m T,
m_PUSHF, m_RCL, m_RCR, m_ROL, m_ROR,
m_RET, m_RETP, m_RETN, m_RETNP, mSE,
m_SHR, m_SBB, m_SCAS, m_STC, m_STD, mEIL
m_WAIT, m_XCHG, m_XLAT, m_XCR,

Processor instructions:
m_FADDP, m_FBLD, m_FBSTP, m_FCHS,
m FCO‘&P, m FCOMPD, m_FCOMPP, m_FDECSTP,
m FDIVR, m_] FDIV‘RD m_FDIVRP, m_FFREE,
m FICOMD m FICOMP, m FICO‘!PD, m_FIDIV,
m_FI!.D, m_ . FILDD, m FILDL, m_FIMUL,
m_FIST, m_] y FIST D,m FIST?. m_FISTPD,
m_FISUBR, m_}'ISUERD, m_FLD, m_FLDD,
m_FLDLN2, m !‘LDA.ZE, m FLDLZT, m_FLD?I,
m FMULD. m_FMULP, m FNOP m_FPATAN,
m_FRSTOR m FSA\/’.Z,m FSCALE m_FS"'IPM,
m_FSTCW, m_FSTENV, m_rsn, m_FSTPD,
m_FSUBD, m_FSUBP, m_FSUBR, m_FSUBRD,
m_FXAM, m_FXC¥, m_FXTRACT, m_FYL2X,
m_INS, m_LAR, m_LEAVE, m_LGDT,
m_FOPA, m_PUSHA, m_SGDT, m_SIDT,

e

Implementation-Dependent Characteristics

m_ARPL, m_LLDT, m_LMSW,
-- 16 bit always...
m_SLDT, m_SMSW, m_STR,

-- the 80386 specific instructions:

m_SETA, m_SETAE,
m_SETG, m_SETGE,
m_SETNB, m_SETNBE,
m_SETNGE, m_SETNL,
m_SETNZ, m_SETO,
m_SETZ, m_BSF,
m_BTS, m_LFS,
m_MOVCR, m_MOVDB,

-- the 80387 specific instructions:

m_FUCOM,
m_FSINCOS,

-=- byte/w

m_ADCB,
m_ANDB,
m_BTCD,
m_CWDE,
m_pMPSB,
m_DIVB,
m_IMULB,
m_INSB,
m_MOVB,
m_MOVSXB,
m_MULD,
m_NOTD,
m_OUTSD,
m_RCLW,
m_ROLW,
m_SALW,
m_SHELW,
m_SBBW,
m_STOSW,
m_TESTW,
m_DATAW,

m_SETB,
m_SETL,
m_SETNC,
m_SETNLE,
m_SETP,
m_BSR,
m_LGS,
m_MOVTR,

m_FUCOMP,

ord/dword variants (to be used, when
-~ not deductidble from context):

m_ADCH,
m_ANDW,
m_BTIRW,
m_CWDW,
m_CMPSW,
m_DIVW,
m_IMULW,
m_INSW,
m_MOVW,
m_MOVSXW,
m_NEGB,
m_OR3,
m_POPW,
m_RCLD,
m_ROLD,
m_SALD,
m_SHLDW,
m_SBBD,
m_STOSD,
m_TEZSID,
m_DATAD,

m_ADCD,
m_ANDD,
m_BTRD,
m_CDQ,
m_CMPSD,
m_DIVD,
m_IMULD,
m_INSD,
m_MOVD,
m_MOVZXB,
m_NEGW,
m_ORW,
m_POPD,
m_RCRB,
m_RORB,
m_SARB,
m_SHRSB,
m_SCASB,
m_SUBB,
m_XORB,

~-- Special ‘instructions’:

-- 8087 temp real load/store_and_pop:

pragma page;

m_LTR,
m_VERR, m_VERW,
m_SETBE, m_SETC, m_SETE,
m_SETLE, m_SETNA, m_SETNAE,
m_SETNE, m_SETNG,
m_SETNO, m_SETNP, m_SEINS,
m_SETPE, m_SETPO, m_SETS,
m BT, m_BTC, m_BTR,
m_LSS, m_MOVZX, m_MOVSX,
m_SHLD, m_SHRD,
m_FUCOMPP, m_FPREM1, m_FSIN, m_FCOS,
m_ADDB, m_ADDW, m_ADDD,
m_BTW, m_BTD, m_BTCW,
m_BTSW, m_BTSD, m_CBWW,
m_CMPB, m_CMPH, m_CMPD,
m_DECB, m_DECW, m_DECD,
m_IDIVB, m_IDIVW, m_IDIVD,
m INCB, m_INCW, m_INCD,
m_LODSB, m_LODSW, m_LODSD,
m_MOVSB, m_MOVSW, m_MOVSD,
m_MOVZXW, m _MULS, m_MULW,
m_NEGD, m_NOTB, m_NOTW,
m_ORD, m_OUTSB, m_OUTSHW,
m_PUSHW, m_PUSHD, m_RCLB,
m_RCRW, m_RCRD, m_ROLB,
m_RORW, m_RORD, m_SALB,
™_SARW, m_SARD, m_SHLB,
m_SHRW, m_SHRDW, m_SBEB,
m_SCASW, m_SCASD, m_STOSB,
m_SUBW, m_SUBD, m_TESTB,
m_XORW, m_XORD, m_DATAB,
m_label, m_reset,
m_FLDT, m_FSTPT);

type cperand_type is (none, =~ no operands

immediate,

register,

address,

system_address,
name,

register_immediate,

register_register,
register_ address,

address_register,

one immediate operand
one register operand
one address operand
one ’'address operand
CALL name

two operands :
destiration is
register

source is immediate
two register operandcs
two poperands :
cestination 1is
register

source is address

two opaerands

235

LIALD-DURDBD UNT
‘E‘ag:; s uuiac

Implementation-Dependent Characteristics

-= destination i3
-~ address
-= 30uUICe is register
register_systom_address, -=- two operands
-~ destination 1is
-~ register
-=- source is . ’‘address
system_address_reglater, -- two operands
) -~ destination {s
-= ‘address
-- source is register
address_immediate, -- two operands :
-- destination 1is
-=- address
-~ source 1s immediate
system_address_immediate, -- two operands
-- destination 1is
-- ‘address
-- source is immediate
immediate_register, -~ only allowed for OOT
-- port is immediate
-- source is register

immadiate_immediate, -- only allowed for
-- ENTER
register register_immediate, -~ allowed for IMULimm,
~- SHRDimm, SHLDimm
register_address_immediate, -- allowed for IMULimm
register_system address_immediate, -- allowed for IMULimm
address_register_immediate, -~ allowed for SHRDimm,
~= SHLDimm
system_address_register immediate -- allowed for SHRDimm,
-- SHLDimm

):

type register_ type is (AX, CX, DX, BX, SP, BP, SI, DI, -- word regs
AL, CL, DL, BL, AH, CH, DH, BH, ~-- byte regs
EAX, ECX, EDX, EBX,ESP, EBP,ESI,EDI, -- dword regs

£S5, CS, Ss, Ds, FS, GS, -- selectors
BX_sI, BX DI, BP_SI, BP_DI, -- 8086/80186/80286 combinations
ST, ST1, sT2, S$T3, -- floating registers (stack)
ST4, STS, STS6, ST,

nil);

-- the extended registers (EAX .. EDI) plus FS and GS are only
-- allowed An 80386 targets

type scale_type 1s (scale_1, scale_2, scale_4, scale 8);
subtype machine_string is string(l..100);
pragha page;
type machine_instruction (operand_kind : operand_type) is
record
opcode : opcode_type;
case operand_kind is
when immediate =>
immediatel : integer; -- immediate

when register =>
r_register : register type; -- source and/or destination

when address s>

a_segment : reglster_ type; -~ source and/or destination
a_address_base : register_type;
a_address_index : register_type;
a_address_scale : scale_type:
a_address_offset : integer;

when system_acddress =>
sa_address : system.address; -- destination

236

i

when name =>
n_string : machine_string;

when register_immediate =>
r_i_register_to registor_type;
r_i_immediate integer;

when ragister_register =>
£_C_register_to
r_r_register_from

register_type;
: register_type;

when register_address =->

r_a_register_to : register type;
£_a_segment i register_type:;
r_a_address_base ¢ register_type;
r_a_address_index : register type;

r_a_address_scale : scale_type;

r_a_address_offset : integer;

when address_register =>
a_r _segment i register_type;
a_r_address_base : register_type:;
a_r_address_index ! register_type;

a_r_address_scale ¢ scale_type;
a_r_address_offset : integer;
a_r register_ from ¢ register_type;
when register_system_address =>
r_sa_register_to ¢ register_type;
r_sa_address ¢ system.address;

when system_address_register =>
sa_r_address : system.address;
sa_r_reg from register_type;

when address_immediate =>
a_1_segment register_type;
a_i_address_base : register_type;
a_i_address_index : reglster_type;
a i1 address_scale : scale_type;
a:i_add:ess_cffset : integer;
a_i immediate ¢ integer;

when system_address_immediate =>
sa_i_address : system.address;
sa_i_immediate : integer;

when immediate_register =>
i_r immediate ¢ integer;
i_r_register : register type;

whea immediate immediate =>
i 1 immediatel : integer;
1 _1_ immediate2 : integer;

when register_register_ immediate =>
r r § registerl : register_type;
r_i register2 : register type;

::E;i_immediate integer;

z_a

when register address_immediate =>
i _register register_type;
a_i_segment : register type;

T a i_address_base : register_type;

_a_1i_acdress_index : register_type;

_a_1_address_scale : scale_type;
a_i_address_offset: integer;
immediate :

ol
]

integer;

when register system_address_immediate =>
register_type;
system.address;
integer;

acdrlo
r_sa_1_immediate

237

umpicmeniaion-pepenacnt Lnaractensucs

-- CALL destination

-- destination
-- source

-- destination
-- source

-~ destination
-- 3source

-- destination

== 3source

-- destination
-- source

-- destination
~= source

-=- destination

== source

-=- destination
-=- source

-- destination
-- source

-« immediatel
-- immediate2

-~ destination
~=- sourcel
~= source2

-~ destination

-- sourcel

~-- scurce2

-~ destinatioen
~- sotvrcel
-- sourcel

had 1\ Implementation-Dependent Characteristics

when address_register_ immediate =>

a_r_i_segment : register_type; -- destination
é_r_3_address base : register_type:

a_r_ "1 address_index : reglater_type;

a_r_ "1 addxoss scalo : scale_type;

ar_ "1 addtoss otf:et integor; .

a_r_ "1 xeqlste: : register_type; -~ sourcel

a_ : 1 “immediate : integer; -- source2

when system address_register_ immediate =>

sa_r_i_address : system.address; -~ destination
sa_r_i_register i register_type; == sourcel
sa_r_1i_ immediate : integer; -- sourcel

when others =>
null;
end case;
end record;

end machine_code;

F.9.2 Restrictions
Only procedures, and not functions, may contain machine code insertions.

Symbolic names in the form x’ADDRESS can only be used in the following cases:

1) x is an object of scalar type or access type declared as an object, a formal parameter, or
by static renaming.

2) x is an array with static constraints declared as an object (not as a formal parameter or by
renaming). .

3) x is a record declared as an object (not a formal parameter or by renaming).

The m_CALL can be used with "name” to call (for) a routine.
Two opcodes to handle labels have been defined:

m_label: defines a label. The label number must be in the range 1 <= x <= 999 and is put
in the offset field in the first operand of the MACHINE_INSTRUCTION.

m_reset; used to enable use of more than 999 labels. The label number aftcr a m_RESET
must be in the range 1<= x <= 999. To avoid errors you must make sure that all
uscd labels have been defined before a reset, since the reset operation clears all used
labels.

All floating instructions have at most one opcrand which can be any of the following:
- 2 memory address

+ a register or an immediate value
+ an entry in the floating stack

238

F.93 Examples

The following scction contains cxamples of how 1o use the machine code inscrions and lists the

generated code.

F.9.4 Example Using Labels

The following assemblcr code can be descnbed by machine code inscrtions as shown:

MOV AX,7
MOV CX, 4
CMP AX,CX
JG 1
JE 2
MOV CX, AX
1: ADD AX,CX
2: MOV SS: ([BP+DI), AX

package example MC is

procedure test_labels;
pragma inline (test_labels);

end example_MC;

with MACHINE CODE; use MACHINE CODE;
package body example MC is
procedure test_ labels is

begin

MACHINE_INSTRUCTION’ (register_immediate, m MOV,
MACHINE_INSTRUCTICN' (register_ immediate, m_MOV, CX,

MACHINE_INSTROCTION’ (register_register,
MACHINE_INSTRUCTION’ (immediate,
MACHINE_INSTRUCTION’ (immediate,
MACHINE_INSTRUCTION’ (register_register,
MACHINE_INSTRUCTION’ (immediate,
MACHINE_INSTRUCTION' (register_register,

X, 1);
4);
m_CMP, AX, CX);
m JG, 1);

m _JE, 2);
m_MOV, €X, RAX);
m_label, 1);
m_ADD, AX, CX);

MACHINE_INSTRUCTION’ (immediate, m_label, 2);

MACHINE_INSTROUCTICN’ (address_reglster,

end test_labels;

end example MC;

F.9.5 Advanced Topics

m_MOV, Ss, BP,
DI, scale_l, O,

This section describes some of the more intricatc details of the workings of the machine
code insertion facility. Special attention is paid to the way the Ada objects are referenced in
the machine code body, and various alternatives are shown.

239

~ . - mmm e —emccarer s

F.9.5.1 Address Specifications

Packagc MACHINE_CODE provides two alicmative ways of specifying an address for an
instruction. The first way is rcferred to as SYSTEM_ADDRESS and the parametcr associalcd
this onc must be specificd via OBJECT'ADDRESS in the actual MACHINE_CODE ‘nscriion. The
sccond way closcly relates 10 the addressing which the 80x86 machines cmploy: an address has
the gencral form

segment:[basc+index*scale+offsct]

The ADDRESS type expects the machine inscriion to contain valucs for ALL these ficlds. The
default value NIL for scgment, base, and index may be sclected (however, if basc is NIL, so
should indcx be). Scale MUST always be specificd as scale_1, scale_2, scalc_4, or scale_8. For
16 bit targets, scale_1 is the only legal scalc choice. The offsct value must be in the range of
-32768 .. 32767.

F.9.5.2 Referencing Procedure Parameters

The parameters of the procedure that consists of machine code insertions may be
rcferenced by the machine inscrtions using thc SYSTEM_ADDRESS or ADDRESS formats
cxplaincd above. However, there is a great differcnce in the way in which thcy may be spccified;
whcther the procedure is specified as INLINE or not.

INLINE machine insertions can dcal with the paramcters (and other visible variables) using the
SYSTEM_ADDRESS form. This will be dcalt with corrcctly even if the actual valucs are
constants. Using the ADDRESS form in this context will be the user’s responsibility since the
user obviously attempts to address using register valucs obtaincd via other machine insertions. It
is in general not possible 1o load the address of a paramcter because an “address’ is a (wo
component structure (selector and offsct), and the only instruction to load an immediate address
is the LEA, which will only give the offset. If coding requires access 10 addresses like this, onc
cannot INLINE expand the machine insertions. Care should be taken with references to objects
outside the current block since the code generator in order to calculate the proper frame value
(using the display in cach frame) will apply extra registers. The paramcter addresses will,
however, be calculated at the entry to the INLINE cxpanded routine to minimize this problem.
INLINE expanded routines should NOT employ any RET instructions.

Purc procedure machine insertions nced to know the layout of the parameters presented to, in this
case, the called procedure. In paricular, careful knowledge about the way parameters are passed
is rcquired to achieve a succesful machine procedurc. When not INLINE a block is created around
the call which allows addressing of paramcters, and code for exiting the procedure is also
automatic.

The user takes over the responsibility for correct parameter addressing. The rules of Ada
procedure calls must be followed. The calling conventions are summarized below.

~—

F.9.53 Parameter Transfer

It may be a problem to figure out the correct number of words which the paramciers take up on
the stack (the x valuc). The following is a short descnption of the vansfer method:

INTEGER types takc up at Icast 1 storage unit. 32 bit integer types take up 2 words, and 64 bit
integer types take up. 4 words. In 32 bit targets, 16 bit intcger types take up 2 words the low
word being the valuc and the high word being an alignment word. TASKs arc transferred as
INTEGER.

ENUMERATION types take up as 16 bit INTEGER types (scc above).
FLOAT types take up 2 words for 32 bit floats and 4 words for 64 bit floats.

ACCESS types are considcred scalar values and consist of a 16 bit scgment value and a 16 or
32 bit offset valuc. When 32 bit offsct value, the segment valuc takes up 2 words the high word
being the aligment word. The offsct word(s) are the lowest, and the scgment word(s) are the
highest.

RECORD types arc always transferred by address. A rccord is never a scalar value (so no
post-proccdure action is carricd out when the record paramcter is OUT or IN OUT). The
representation is as for ACCESS types.

ARRAY values arc transfcrred as one or two ACCESS values. If the array is constrained, only
the array data address is transferred in the same manner as an ACCESS value. If the array is
unconstraincd below, the data address will be pushed by the address of the constraint. In this
case, the two ACCESS values will NOT have any alignment words in 32 bit targets.

Packed ARRAY values (e.g. STRING typcs) are transferred as ARRAY valucs with the addition
of an INTEGER bit offset as the highest word(s):

+H: BIT_OFFSET
+L: DATA_ADDRESS
+0: CONSTRAINT_ADDRESS -- may be missing

“he values L and H depend on the presence/absence of the constraint address and the sizes of
constraint and data addresses.

In the two latter cases, the form parameter’address will always yield the address of the data. If
access is requircd to constraint or bit offset, the instructions must use the ADDRESS form.

F.9.5.4 Example
A small example is shown bclow (16 bit target):

procedure unsigned_add :

(opl :in integer
op2 :in integer;
res :out integer);

241

Notice that machine subprograms cannot be functions.

The paramcters take up:

op! :integer - 1 word
op2 :integer 1 word
res :ineger 1 word
Total : 3 words

The body of the proccdurc might then be the following assuming that the proccdurc is
dcfincd at outermost package level:

procedure unsigned_add
(opl : in integer;
op2 : in integer;
res : out integer) is
begin
pragma abstract_acode_insertions(true);
aa_instr’ (aa_Create_Block,3,1,0,0,0); =--x =3, y=1
aa_instr'(aa_End_ot_declpart,0,0,0,0,0);
pragma abstract_acode_insertions(false);

machine_instruction’ (register_ system_address, m_MOV,
AX, opl’:zddress);

machino_in:truction'(registcr_system_add:oss, m_ADD,
AX, op2’address);

machine_instruc:ion'(1mmediatc, m_JINC, 1):
machine_instruction’ (immnediate, m_INT, 5);
machine_instruction'(1mmed1ate, m_label, 1):

machine_instruction’ (system_address_register, m_MOV,
res’ address, AX);

pragma abstract_acode_insertions(true);
aa_instr'(aa_Exit_subprqrm,O,o,o,nil_;:g,nil_arq);-- (2)
aa_instr’ (aa_Set_block_level, 0,0,0,0,0); -~ y-1le=0
pragma abstract_acode_insertions(false);
end unsigned_add;

A routine of this complexity is a candidate for INLINE expansion. In this case, no changes to the
above 'machine_instruction’ statcments are rcquired. Please notice that there is a difference between
addressing record fields when the routine is INLINE and when it is not:

type rec is
record
low : integer;
high : integer;

end record;

procedure add_32 is

(opt : in integer;
op2 : in integer,
res : out rec);
The parameters take up 1 + 1 + 2 words = 4 words. The RES paramcicr will be

addressed directly when INLINE expanded, i.e. it is possible to write:

e}
£
3%}

machine_instruction’(system_address_register, m_MOV,
res'address, AX);

This would, in the not INLINED version, be the same as updating that place on the stack where
the address of RES is placed. In this case, the insertion must rcad:

machine_instruction’(register_system_address, m_LES,
S1, res’address);
-- LES S1,[BP+...]
machine_instruction’(address_register, m_MOV,
ES, SI, nil, scale_1, 0, AX);
-- MOV ES:(SI+0],AX

As may bc seen, great carc must be taken to ensurc comect machine code inscriions. A hclp
could be to first writc the routine in Ada, then disassemble 10 sce the involved addressings, and
finally writc thc machine proccdurc using the collecied knowledge.

Plcase notice that INLINED machine insertions also gencrate code for the procedure itself. This
codc will be rcmoved when the -nocheck option is applicd to the compilation. Also not
INLINED procedures using the AA_INSTR insertion, which is explained above, will automatically
get a storage_check call (as do all Ada subprograms). On top of that, 8 bytcs arc sct aside in the
creatcd frame, which may freely be used by the routine as temporary space. The 8 bytes are
located just below the display vector of the frame (from SP and up). The storage_check call will
not be gencrated when the compiler is invoked with -nocheck.

The user also has the option NOT to create any blocks at all, but then he should be cenain that
the return from the routine is made in the proper way (use the RETP instruction (retum and pop)
or the RET). Again it will help first 10 do an Ada version ana sec what the compiler expects to
be done.

Symbolic fixups are possible in certain instructions. With these you may build 'symbolic’
instructions byte for byte. The instructions involved all require the operand type NAME (like used
with CALL), and the interpretation is the following:

(name, m_DATAD, "MYNAME") a full virtual address (offset and sclector) of the
symbol MYNAME (no additional offsct is possiblc).

(name, m_DATAW, "MYNAME") the offset part of the symbol MYNAME (no additional
offset is possibic).

(name, m_DATAB, "MYNAME") the selector value of symbol MYNAME

In inlined machine instructions it may bc 2 problem to obtain the address of a parameter (rather
than the value). The LEA instruction may bc used to get the offset part, but now the following
form allows a way to load a sclector value as well:

(system_address, LES, param’address) ES is loaded with the sclector of PARAM. If this
sclector was e.g. SS, it would be pushed and popped
into ES. LES may be substituted for LFS and LGS
for 80386.

F.10 Package Tasktypes

The TaskTypes packages defines the TaskControlBlock type. This data structure could be uscful
in debugging a tasking program. The following packagce Tasktypcs is for all DACS-80x86 cxcept
for DACS- 80386PM/DACS 80486PM.

with System;
package TaskTypes is

subtype Offset i3 System.UnsignedWord;
subtype Blockld is System.UnsignedWord;

type TaskEntry 1s new System.Unsignedword;
type Entrylndex is new System.UnsignedWord;
type Alternativeld is new System.UnsignedWord;
type Ticks is new System.DWord;

type Bool is new Boolean;

for Bool’'size use 8;

type Ulntg is new System.UnsignedWord;
type TaskState is (Initial,

-- The task 135 created, but activation
-~ has not started yet.

Engaged,

-- The task has called an entry, and the
-- call is now accepted, le. the rendezvous
-~ 1s in progress.

Running,
-- Covers all other states.

Delayed,
-- The task awaits a timeout to expire.

EntryCallingTimed,
-- The task has called an entry which
-~ is not yet accepted.

EntryCallingUnconditional,
-- The task has called an entry unconditionally,
-- which is not yet accepted.

SelectingTimed,
-- The task is waiting in a select statement
-- with an open delay alternative.

SelectingUnconditional,
-- The task waits in a select statement
-- entirely with accept statements.

SelectingTerminable,
-- The task waits in a select statement
-- with an open terminate alternative.

Accepting,
-~ The task waits in an accept statement.

Synchronizing,
-- The task walits in an accept statement
~- with no statement list.

Completed,

-- The task has completed the execution of
~- its statement list, but not all dependent
-- tasks are terminated.

Terminated };

~-- The task and all its descendants
-- are terminated.

244

for TasksState

for TaskState'size
type TaskTypeDescriptor
record
priority
entry count
block_id
first_own_address
module_number
entry number
code_address
stack_size
dummy

stack_segment_size:

end record;

use (Initial

->
-d>

164000 ,

16008¢ ,

Running => 164104 ,

Delayed => 16418% ,
EntryCallingTimed => 16420¢ ,
EntryCallingUncenditional => 164284 ,
SelectingTimed => 16431¢ ,
SelectingUnconditional => 164394 ,
SelectingTerminable => 164414 ,
Accepting => 1644Af ,
Synchronizing => 164538 ,
Completed => 1645C¢ ,

Terminated => 1646414);

Engaged

use 8;
1s

: System.Priority;
: Ulntg;

: Blockld;

: System.Address;
: Ulntg;

: Olntg;

: Syatem.Address;

System.DWord;

: Integer;

Olintg;

type AccTaskTypeDescriptor is access TaskTypeDescriptor;

type NPXSaveArea is array(l..48) of System.UnsignedWord;

type FlagsType is
record
NPXFlag
InterruptFlag
end record;
pragma pack(flagsType);,

type StatesType is
record
state
is_abnormal :
is_activated
failvre :
end record;

pragma pack(StatesType):

type ACF_type is
record
bp
addr :
end record;
Pragma pack(ACF_type);

pragma page;
type TaskControlBlock 1s
recoxd
sen
isMonitor :

dnext

dprev

dcelay

Saved registers

ss :

: Bool;
: Bool;

: TaskState;
Bool;
Bool;
Bool;

: Offset;
System.Address; -

System. Semaphore;
integer;

Delay queue handling
System.TaskValue ;

System,TaskValue ;
: Ticks ;

System.Unsignedword ;

245

f,\é DACS-80x86 User's Guide
Implemcntation-Dependent Characteristics

-- Auxiliary flelds

ttd : AccTaskTypeDescriptor;
FirstCaller : System,TaskValue;

-= Run-Time System fields

.

ACF : : ACF_type; ~- cf. User’s guide 9.4.2
SQFirst : Integer; -~ Only used in RMS
SemFirst ; Integer; -- Only used in RMS
TBlockingTask : System.TaskValue; -= Only used in RMS
PBlockingTask : System.TaskValue; == Only used in RMS
collection : System.Address;
partition : Integer;

TaskCheckLimit : Offset; -- to assure inline storage check

LastException : System.DWord; -- 2 * 16 bits

Savedadaaddr : Offset; -- to improve rendezvous'’s

-= NPX save area

~- When the application is linked with -npx, a spacial
-=- save area for the NPX is allocated at the very end
-- of every TCB.

-- le:

-- caseo NPX_Present is

- when TRUE => NPXsave : NPXSaveArea;

- when FALSE => null;

- end case;

end record;
-~ The following is to assure that the TCB has the expected size:
TCB_size : constant INTEGER := TaskControlBlock’size / 8;

subtype TCB_ok_value is INTEGER range 136 .. 136;
TCB_ok : constant TCB_ok value := TaskControlBlock’size / 8;

end TaskTypes;

F.11 RMS Tasking (OPTIONAL)

The DACS-80x86 systems may run tasking applications by means of Ratc Monotonic Scheduling
(RMS). RMS capability is purchased optionally, and is thus not included by default. Please contact
DDC-I for more information regarding RMS and your system. RMS allows the programmer to
guarantee properties of a tasking system, i.e. that tasks will mect their hard deadlincs. The RMS
tasking is selected by specifying -rms to the Ada link command.

247

248

