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ABSTRACT

Directed Acyclic Graph Scheduling is a technique used to implement the real-time

execution of Digital Signal Processing applications on multiple-processor data-flow

machines that support variable-grained parallelism. The approach used in the Navy's AN/

UYS-2 Digital Signal Processor statically schedules an application graph at run-time using

a First-Come-First-Served (FCFS) policy. Research by Shukla and Zaky [Shukla 91]

developed a new algorithm, the Revolving Cylinder(RC), to ameliorate the inherently non-

deterministic output flow of the FCFS scheduling approach currently used in the system.

Although the RC technique solved the problem ot output-flow determinism there was

no broad coverage of other current research in the very specialized field of real-time data-

flow machines.

This thesis reviews Revolving Cylinder analysis and then surveys, compares, and

evaluates research in the field using the review as a baseline for comparison. The RC

approach is best at improving the throughput and output flow determinism of a narrow

range of applications on a particular architecture. Each of the other approaches offer

improvements over RC scheduling in either performance as measured by throughput or

through flexibility in applications handled. For each of these improvements, however,

significant trade-offs are made and so improvements become relative when they affect

system robustness and an ability to handle repeated execution of application graphs. The

AN/UYS-2 can implement RC scheduling with a minimum of cost and no hardware

reconfiguration and this makes it the best approach for short-term system improvement.
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I. INTRODUCTION

Today's military battlefield is one of ever increasing lethality. Tomorrow's combatants

must have the ability to respond to threats within milliseconds to ensure their survival.

These narrowing reaction windows necessitate both accurate and timely responses. Real-

time processors ensure that these responses are performed within a known, guaranteed

bound or deadline. This allows the designer of an application to use that bound with

confidence that the system will return a result swiftly and reliably. Examples of real-time

systems currently in use are those in aircraft cockpits, weapon sensors, and navigation

systems. All of these handle increasingly complex tasks at high data rates and must do so

without failure.

The robustness of these systems is vital because of the tremendous penalty for failure.

Most real-time systems are embedded in some larger system and must have a high degree

of fault tolerance to ensure the survivability of the platform [Levine 91]. Many of today's

real-time systems have multiprocessor based architectures which increase throughput by

sharing workloads. This facilitates graceful degradation in the event of failure by having

multiple instances of each resource amongst which to spread a load.

A. Digital Signal Processing

Digital Signal Processing (DSP) is one of the applications standing to benefit by a

departure from von Neumann style architectures. It is widespread and of particular use to

the military on platforms ranging from submarines to spacecraft. DSP applications are well

suited for description using Large Grain Data-flow Graphs (LGDF) because they can be

described using a combination of mathematical expressions and block diagrams. The data-

flow paradigm preserves the integrity of the flow of data and as a result allows the natural

exploitation of any concurrency in the graph [Lee 87].



B. The AN/UYS.2

In the 1980's the Navy realized the potential of data-flow architectures and developed

the AN/UYS family of DSP's. The AN/UYS-2, the system with which we are most

concerned, was developed in order to introduce a standard DSP for military land, sea, and

air applications. It is a variable-configuration multiprocessor based on the use of Standard

Electronic Modules or SEM's. There are two different SEM's available: Type B and type

E. The type E modules perform the same functions as those of type B but they are smaller,

lighter, and more power efficient. They were developed for aircraft use because of the

limitations imposed by limited space/lift in an airframe.

The modules are built from off-the-shelf hardware and are used to construct the

processor's Functional Elements (FE) [Rice 90].

External Environment

FE CBUS
Scheduler Global Memory (1)"..(n-1) GM-n

II Data MTera, t Netw )rk

I Data 1rar sle-r etW-orT -

lCmdProgProc Apl... ml ISC(1...k-1) IOP(1...k)
#sr• 1 1 Damta toad

User~~--V r
Interface

Figure 1: AN/UYS-2 Architecture [Little 911.
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1. System Architecture

The system's modular design is based on six different functional elements.

These are the Scheduler (SCH), the Arithmetic Processor (AP), the Global Memories

(GM), the Input/Output Processor (IOP), the Command Program Processor (CPP), and the

Input Signal Conditioner (ISC). Each of these performs specific functions in the

architecture and they are all connected by two buses, the Control Bus (CBUS) and the Data

Transfer Network (DTN) (Figure 1).

2. The System's Use of Data-Flow

Because DSP algorithms involve minimal decision making they are ideally

suited for a data-flow machine. We avoid the inherent penalties involved in multiple

branching and can minimize communication overheads if we choose granularity correctly.

The data-flow paradigm and its implementation in the ANIUYS-2 are reviewed in the

following chapter and a detailed description of the machine is in [Little 91] and [Bell 92].

By mapping nodes of the LGDF graph to processors as their data becomes available we

naturally schedule and then execute the algorithm. Nodes are mapped to Arithmetic

Processors and edges correspond to the data flows on the DTN and the FE CBUS. Currently

the system uses a First Come First Served (FCFS) algorithm to schedule nodes on

processors. This approach takes advantage of the inherent strengths of multiple processing

by attempting to schedule nodes to any available processor.

3. The Revolving Cylinder Technique

In real-time DSP the two most desired properties are predictability and

throughput performance [Little 91]. Unfortunately, the inherent non-determinism of the

data flows in a LGDF graph can be exacerbated by an arbitrary policy of resource conflict

resolution and thus degrade the predictability of output.

The research efforts of Zaky and Shukla [Shukla 92] of the Naval Postgraduate

School seek to improve the efficiency of resource allocation in the AN/UYS-2 and thus

effect a reduction in the unpredictability of the DSP's output arrival. The resulting
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scheduling technique is called the "Revolving Cylinder". The key idea of the technique is

that it inserts synchronization arcs in the LGDF graph in order to improve throughput. It

restructures the graph by performing a compile-time analysis of each application execution

profile. Each node in the graph is scheduled to run at its earliest possible start time. If that

is not possible due to dependencies then it is delayed until the dependency is satisfied. The

restructured graph is then mapped to a specific number of AP's to determine whether it

satisfies the required data rate. This technique ensures maximum processor usage by only

giving resources to those nodes capable of executing at that time [Little 91].

C. OBJECTIVES AND ORGANIZATION

1. Objectives

The purpose of this thesis is to review current research in the field of scheduling

real-time applications on data flow architectures and then attempt to find possible

improvements to the Revolving Cylinder. The thesis distills the salient features of the

Revolving Cylinder technique and establishes a framework of comparison. This becomes

a benchmark against which to compare the methodologies of other real-time scheduling

research. Current techniques are reviewed and then compared to the Revolving Cylinder

with emphasis on the differences, strengths, and weaknesses of each when viewed in the

context of the framework.

2. Organization

Chapter II consists of a brief review of Digital Signal Processing and the data-

flow paradigm. This familiarizes the reader with the task of the AN/UYS-2 and the reasons

a data-flow architecture is so uniquely suited to the task. Chapter IIn covers the Revolving

Cylinder in depth and establishes the primary features of the technique in order to establish

a reference framework for comparison with other techniques. Chapter IV covers current

research efforts in real time multiprocessor scheduling and compares them using the

4



framework of the RC as a reference. Chapter V is the conclusion in which

recommendations are made and in which future research possibilities are covered.
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I. BACKGROUND

A. DATA-FLOW IMPLEMENTATION OF DSP

The military has a number of applications which use digital signal processing

techniques in their implementations. These include radar and sonar systems, image

processing, speech recognition, etc. Each is of vital strategic concern to the nation given

our increased requirements for sensors, control, and intelligence information. The Naval

Postgraduate School is working on improving DSP performance for systems operating in

real-time environments such as the AN/UYS-2.

1. DSP Performance

The current and future performance needs of DSP applications require ever-

increasing throughput capacities. This necessitates the use of cutting-edge and extremely

expensive hardware. Yet as hardware technologies improve we approach the physical

limitations of single processor architectures. A processor capable of I billion operations per

second requires a 1 nanosecond clock period. At this point we start to see the limitations

imposed by the speed of light because a signal can only move 20cm in silicon during such

a short interval. This causes huge design problems in terms of skewed clock signals, size

limitations, and performance degradation [Meng 91].

An attractive alternative to increasing single processor performance is the use of

multiple processors concurrently working on a single task. A multiple processor's potential

to divide a job up and perform it faster means higher throughput with less expensive

hardware.

The first hurdle, however, is that sequential programming languages fail to fully

exploit concurrency because the programmer spends a great deal of time countering the

basic design of the language by using special instructions designed to spawn parallelism.

Development and debugging are difficult because of the contradiction between language

structure and programming task. Languages and applications whose properties promote

parallelism are thus the easier to implement.
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Data flow introduces the notion of values applied to functions rather than

instructions fetching the contents of memory cells as in conventional control flow [Gaudiot

87]. Conventional Von Neumann machines declare an instruction ready when a program

counter points to it. This event is usually under the direct control of the programmer. A

control flow program is a sequential listing of instructions whereas as a data flow program

is best represented as a graph in which nodes are instructions which communicate with

other nodes using the edges of the graph as illustrated in Figure 2.

Input a node I node 2

a+X Output

Input X

Input r

Node I must have tokens on both of its input arcs before it can

fire. Similarly, node 2 must have the result of node I and data coming
in on its other arc. This ensures that node 2 waits for node I even
though they fire asynchronously.

Figure 2: An illustration of a data-flow computation [Gaudiot 87].

Signal processing algorithms are appropriate for description by functional

languages and are often represented by mathematical expressions and a graph form (see

Figure 3 below). Using Graphical representations of an application allows the programmer

to utilize an intuitively obvious representation of a task. A DSP graph is best implemented

by a vector operation (i.e., a loop in which all iterations present no dependencies among

themselves) which easily delivers parallelism by compiler analysis or programmer
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inspection. It usually consists of simple constructs such as arithmetic instructions, FFT

butterfly networks, simple filters, and so on.

A Graphical representation of a second order digital filter. The forks
replicate each input sample on all output paths. The "D" on two of the
arcs indicates delay and the "l"s adjacent to each node indicate that a
single token is produced or consumed on that edge when the node fires
[Lee 87]

Figure 3: Example of a DSP application's graphical representation
[Lee 87].

DSP expressions readily translate into data-flow graphs. An instruction is

declared executable when it has all its operands (see Figure 2). We can see the utility of a

paradigm which encapsulates nodes so naturally. In the graphical representation above this

means that all the input arcs to a node must carry data values (referred to as tokens) before

the node is executed. Execution proceeds by first absorbing the input tokens, processing the

input values according to the instructions of the of the node, and accordingly producing

result tokens on the output arcs [Gaudiot 87]. The graphical representations of a DSP are

highly similar to those of a data-flow algorithm and as such map naturally to an architecture

using this paradigm.
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The graphical description of a digital filter (Figure 3) is a directed, acyclic graph

and could be implemented on a data-flow machine. The nodes represent large grain

computations which can be selected from a library of signal processing functions.

2. Data Flow Implementation of DSP

Practical implementations of a data-fin -v approach require some mechanism for

both the management of data flows and the capture of the built-in scheduling and

synchronization properties of the graph. These mechanisms typically operate at run-time

and result in overheads that lead to sub-optimal performance. The amount of overhead

depends upon the granularity of the graph and on the amount of recursion or branching

present. Research, in fact, shows that a hardware implementation of the data-flow paradigm

for general applications results in unmanageable overheads [Shukla 92].

Our problem lies in finding tasks that can use current multiprocessor technology

to increase throughput speeds. DSP naturally yields a great deal of useful parallelism

because we know, a priori, the amount of data produced and consumed during execution

and that there is negligible use of decision making or branching at in the application.

Data-flow graphs describe the dependencies between the different functional

nodes of an application. They also provide intrinsic scheduling and synchronization

because the executability of an instruction is decided by local criterion only and the

presence of the operands is sensed locally by each instruction. This is an attractive property

for an implementation running in a distributed environment.

If we choose the granularity of the nodes correctly then the effect of each

operation is limited to the production of results consumed by a specific number of other

nodes. This precludes the existence of side-effects which may effect the state of a cell of

memory used only much later by some other unrelated operation. Granularity has the added

benefit of keeping interprocessor communications to a minimum. The generality of this

9



representation allows us to specify parallelism from the instruction level all the way up to

the task level.

B. Data-flow implementation of DSP on The AN/UYS-2

Applications are specified as data-flow graphs with nodes representing large grain

computations chosen from a library of signal processing functions. The edges of a graph

represent queues which receive data from the source node and supply data to the destination

node. Each queue is allocated a memory module for storage which maintains its current size

and remaining capacity.

As data arrives on all the input queues of a node, the threshold values (the minimum

number of data items that must be present in a queue for its destination to become ready)

associated with each queue are eventually exceeded. A node is ready for execution when

two conditions are satisfied:

(1) All incoming queues exceed their thresholds and

(2) all output queues must be under their capacity values.

All memory modules communicate the events of threshold/capacity crossing to the

scheduler which determines if a node is ready. Initially all processors are on the Free

Processor List (FPL) and the scheduler assigns them nodes as they are placed on the Ready

Node List (RNL).

1. Setup, Execution, and Breakdown

When a node is assigned to a processor it fetches the data and the instruction

stream corresponding to the node from the appropriate memory module. When the entire

instruction stream and queue data are fetched the setup of the node is complete. Each

processor communicates this event to the scheduler to get itself placed on the FPL so that

the next node may start setup. Thus, the node already setup begins execution while the next

node on the RNL begins setup. This occurs under the restriction that a processor may have

only one node set up and pending to execute at any time. The data generated by an

10



execution is first stored locally. Upon completion, a processor transfers the data to the

appropriate memory-module storing the output queues in what is referred to as the

breakdown phase.

Every node goes through three phases at a processor Setup, Execution, and

Breakdown. Since their functions are independent and the set-up/breakdown operations

may require time comparable to the execution time, these operations could be overlapped

by providing independent functional units for data movement and execution in the

processor.

2. Performance Degradation

Upon arrival of sufficient data at nodes which only receive input from the

outside world, an instance of the graph is started and its execution proceeds according to

the data-flow principle. As a result of the data-flow execution, which corresponds to

asynchronous task-level pipelining, several instances of the graph are active

simultaneously.

Aside from the requirement that the required throughput must be met by the

machine, real-time performance may require that all instances of the graph should complete

in the same amount of time. Between the completion of the setup of a node at a processor

and the actual start of its execution, there may be a delay because the execution unit at a

processor has not completed the previous node. This delay is in addition to the delay a ready

node may experience waiting on the RNL. Both delays result in an increase in the latency

of the graph execution.

On the other hand. an execution unit may have to wait for the setup completion

of the next node assigned to it after it completes its current node. If this happens, execution

cycles are lost and the machine's throughput degrades.

To maximize throughput all execution units must run continuously so each

processor must have a node set up for execution at the time it finishes the previous node's

computation. Because the scheduler is a simple run-time dispatcher that matches RNL

11



nodes to free processors, the delays described above depend upon the application's

execution profile. This profile depends upon the data rate, the spatial and temporal

parallelism in the graph, the number of processors in the system, the number of memory

modules, and the allocation of queues to memory modules.

Since task-level parallelism is being considered, performance can be improved

significantly if setup and breakdown cost can be minimized. One method to reduce this cost

is to chain successive nodes together and execute them on a single processor one after the

other. This results in saving the breakdown cost for the first node and setup cost for the next

node.

C. Unpredictability in Program Behavior

In real-time environments the ability to predict a program's performance is critical for

efficient allocation of resources such as memory modules, processors, and queue sizes. The

AN/UYS-2's use of the First-Come-First-Served (FCFS) paradigm for assignment of

processors to ready nodes degrades its performance in two ways: Irregular execution

patterns and interference/contention in the memory modules.

When data arrives periodically, unpredictable execution patterns arise due to the

absence of direct control over execution of nodes that depend only upon the receipt of data

from the external world. If the output queue capacities for these nodes are unlimited they

execute at a rate that matches the input arrival rate and are independent of the rate at which

other nodes execute. In the presence of finite queues, they execute at the input rate until the

output queues are filled and then stall until nodes down the graph create space in the queues

by consuming data from the output queues. This leads to the individual graph instances not

being executed uniformly. This is undesirable in real-time environments because it leads to

non-deterministic output rates and thus cannot guarantee that minimum performance

bounds will remain inviolate.

12



Al

BI C 2

D 2 E 4

F 2

A simple data-flow graph. Letters
label nodes. arcs are tokens, and

numbers are the execution times for

Figure 4: A sample input graph for the AN/UYS-2 [Little 91].

Figure 4 is an illustration of a simple data-flow graph and Table I is a possible schedule

of execution for that graph. The table shows how the schedule might run in an environment

in which the inputs from the outside world readied an "A" node for the RNL on every cycle.

Without any additional scheduling management the RNL swiftly fills w'th the second and

third instances of the graph before the system has a chance to fully execute the first

instance. FCFS guarantees that the first instance of a graph will finish before the next but

it cannot provide anything close to deterministic output as it approaches heavy loads

Machine throughput can degrade because the memory access patterns may be such that

there is contention at the memory modules while setting up and breaking down nodes.
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TABLE 1: A possible execution of the graph of Figure 4 under FCFS

Cycle AP 1 AP 2

1 Al

2 BI Cl

3 A2 CI

4 DI El

"5 DI El

6 D1 El

7 A3 El

8 B2 C2

In the following section, a framework is presented that introduces synchronization

dependencies in the graph based on the technique of revolving cylinder analysis. This

technique addresses the problem illustrated above by inserting extra dependencies in the

graph and then enforcing them at run-time. In this way we avoid much of the overhead of

run-time scheduling management by using the execution profile of the graph to do the work

for us.
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III. Revolving Cylinder Analysis

Revolving Cylinder Analysis generates a new data-flow graph as a result of compile-

time analysis [Shukla 92]. This provides built-in run-time support for the system scheduler.

The Revolving Cylinder restructures the application, described as a task-level data-flow

graph, by mapping it on the surface of a hypothetical cylinder whose dimensions are

determined by both the number of system processors and the sum of node execution times.

The technique results in increased predictability in simulations of typical DSP

applications [Shukla 91]. It differs from other research in that it uses the application profile

of the graph to reduce the scheduling overheads that make data-flow so difficult to

implement. The essential features of RC analysis are outlined in this chapter in order to

establish a framework of comparison with current research in this field.

A. An Introduction to RC Analysis

The key to RC analysis is that the insertion of dependencies in the application graph

will result in both increased throughput performance and more deterministic output rates.

These added dependencies change the point at which a node will enter the Ready Node List

(RNL) based on whether or not its predecessors higher in the LGDF graph are complete and

whether previous iterations of the graph are complete. The actual scheduling of a node to a

processor is left to the scheduler (SCH) at run-time. The goal is to allow scheduling to

remain dynamic and thus keep overheads low.

The Revolving Cylinder automatically determines whether an application can meet

real time requirements during graph compilation. Having done so it then restructures the

graph so that it will have more deterministic throughput and output arrival rates. This

ensures that each instance of a node completes without the creation of an execution backlog

in the lower nodes as discussed in Chapter II.

15



Given the simple application graph in Figure 5, RC analysis determines whether it can

be mapped to a set number of processors while still satisfying a required data rate. For

reasons of brevity the costs of setup and breakdown for each node are ignored.

AlI

Bi C 2

D 2 E 4

F 2

A simple data-flow graph.
Letters label nodes. arcs are tokens,
and numbers are the execution

Figure 5: Reference data-flow graph [Little 91]

It can be proved that, as long as communications overheads are ignored, the optimum

throughput for an application is the sum of node execution times divided by the number of

available processors. As an example, a system with 2 processors executing the graph of

figure 5 has an execution time of (12/2 = 6) cycles. The optimum result is that the system

could start a new instance of the graph every 6 cycles as long as it avoids the scheduling

pitfalls akin to those of FCFS discussed in the previous chapter [Little91 ].
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B. Insertion of Delays

The idea of delays in the execution graph provides a stepping stone to the concepts of

the revolving cylinder. If we insert artificial delays into the graph we can overlap the

execution of subsequent instances of a node because the delays force the graph to execute

uniformly despite the fact that some nodes may have their data available before others.

Using the simple application graph of the previous example as a starting point we insert the

delays required to ensure that an instance of the graph can be executed and overlapped

every six cycles. The altered graph is shown in figure 6.

AlI
Delay =I

Delay = 22
Delay = 2

D 2 E 4

F 2

A simple data-flow graph with delays

inserted

Figure 6: The graph of Figure 5 with additional delays [Little 91].
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The delays seem counterintuitive for improved performance until we realize that they

facilitate the control and execution of multiple instances of an application [Shukla92I. They

help control the execution of the graph by forcing the system to wait on execution of a node

until the nodes higher in the graph are begun. Table 2 depicts the schedule table of one

instance of the application of Figure 5, with delays, executing on the system. By inspection

of the schedule we see that another instance can be started every six cycles because the

delays keep the execution of the graph free of the latencies found in the FCFS algorithm.

TABLE 2: A template for the execution of the graph of Figure 6

Cycle AP 1 AP 2

1 Al

2 BI

3 Cl

4 Cl

5 D1 El

6 D1 El

7 El

8 El

9 F1

10 Fl
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TABLE 3: Execution profile of the RC schedule for Figure 6 at any point after start-up

Cycle AP 1 AP 2

6(i)- 5 A(i) E(i - 1)

6(i) - 4 B(i) E(i - 1)

6(i) - 3 C(i) F(i - 1)

6(i) - 2 C(i) F(i- 1)

6(i)- I D(i) E(i- 1)
6(i) D(i) E(i - 1)

With the exception of the first 6 cycles of the schedule, which represent a transient,

every subsequent group of six consecutive cycles could be summarized by the schedule in

Table 3. With this paradigm we are almost at the heart of the Revolving Cylinder but for

one important difference. The artificial insertion of delays works well as a run-time

scheduling mechanism but it is difficult to implement during compile-time analysis. We

want a simple technique which will take advantage of the inherent scheduling of the graph

at compile-time so as to keep run-time overheads low.

C. Implementation of The Revolving Cylinder

RC scheduling recommends when a graph node is scheduled at compile-time (i.e.:

statically) but choosing the AP to schedule it on is left to the run-time dispatcher. This

enables execution scheduling to remain dynamic. The reason for implementing the

algorithm as a cylinder is that data arrives periodically and so the application is invoked

cyclically [Little 92].

1. Mapping Nodes to The Cylinder

The idea is to schedule the graph such that it wraps around the cylinder and its

end meets its beginning. Let us assume that there is a cylinder whose circumference is the

intended execution length of the schedule in Table 3 (6 nodes with a total of 12 cycles to
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be executed in the example) and whose height is the number of processors (2). The table

can be wrapped around the cylinder such that its beginning meets its end. The line on the

surface of the cylinder that separates the end from the beginning has the effect of a divide-

by-C counter where C is the circumference of the cylinder. The counter is incremented

every time the line is crossed to enter the beginning from the end. Hence we get the counter,

(i), which allows us to keep track of which nodes belong to any particular graph in

execution. [Little9l ].

P2 2 PE P2 I

4 5 6 8 910 ii 12
•'Cycles i 1ý,Cycles - ycles ,Cycles.

C P1f "'1 P1 A1
P A3B3 C3 P 3D3 D3 IA B4 C4 PIlC4D 4 D4

P2 P2 P2 P2

1 2 3 4 5 6 7 8 9 12
'~~Cycles A'"Cycles % '_Cycles A ''Cycles_-d

Figure 7: A visualization of the graph of Figure 6 executing on a
Revolving Cylinder [Akin 931.

Figure 7 is an illustration of the schedule of Table 3 mapped to a Revolving

Cylinder. The transient start-up cost of the schedule is prohibitive and seems

disproportionate were the application executed only once or twice. The benefit comes once
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the machine gets past the 7th cycle. The run-time enforcement of this mapping ameliorates

the nondeterministic output rates of data-flow graphs. It is readily apparent that, although

each instance still takes 12 cycles, the system will complete an application every six cycles

and thus reach the full potential offered by two processors. In this the Cylinder operates

much like asynchronous pipelining on a control-flow machine [Akin 93].

Each slot in the cylinder is of width equal to the smallest node in the graph. For

each node in the graph, starting with the top node (in our example, A) and working towards

the bottom node (F), attempt to schedule the node at its earliest start time. If it cannot be

inserted at start time, delay the start time by the width of a slot and repeat until it can be

inserted. Adjust the earliest start time of all descendants of that node and repeat the

sequence with the next node as the top node in the graph. In the same way that delays helped

in the previous section this mapping ensures that maximum cylinder usage (and hence

throughput) will result.

2. Assigning Scheduling Arcs in The Graph

Once all nodes have been inserted into the cylinder and the cylinder is full, assign

arcs to he nodes based upon their location in the cylinder. For each entry mapped to an AP

in the cylinder, if there are other nodes assigned to the same AP with the same index and

the node higher up in the cylinder is not an ancestor of the other, then create a dependency

from the higher node to the lower. The restructuring of the graph in the example is not

unique. There are several ways of filling the table and so there are corresponding sets of

additional dependency arcs.
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F 2

The data-flow graph of Figure 5

with dependencies added.

Figure 8: Graph of Figure 5 with added scheduling arcs [Little 911.

Even for a single assignment, there exist several sets of additional dependencies.

This introduces the problem of selecting the best assignment and a suitable set of arcs

associated with it for some arbitrary graph. The heuristic used for such selection is

minimization of the number of additional arcs introduced. Figure 8 shows one possible

restructuring resulting from this technique.

The run-time mechanism of the scheduler is fixed and thus any execution

sequence enforcement is accomplished at compile-time. The grey lines in Figure 8 show

the additional data-dependencies used to enforce RC assignment at run-time. Each grey line

represents a queue of tokens generated by the source and absorbed by the destination. Each

source generates a single token when it completes execution. The 2-tuple associated with

each indicates the threshold and consume amounts for the control token flow on these arcs.

The threshold amount refers to the number of tokens that must be present on the arc for its

destination node to be eligible for execution.The consume amount refers to the number of
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tokens removed from the arc when it executes once. Thus, the arc from B to C forces node

C to delay going onto the Node Ready List until node B is complete. This has the same

effect as specifying delays without actually scheduling them into the application graph.

Given such restructuring, the setup and breakdown times for arcs (A,B), (B,D)

(A,C) and (E,F) can be minimized. This is done by chaining sequential nodes which feed

directly into each other. The nodes are collapsed into a single node for assignment to a

single processor. The trade-off becomes one of reduced overheads for communication

versus loss of parallelism and throughput gains. The flexibility of the system's granularity

enables the system to make this choice effectively. It is assumed that the overhead of

implementing the control-token queues is negligible with respect to the cost of

implementing data queues [Levine 92].

D. Framework for Comparison

Based on whether a scheduling decision is made at compile-time or at run-time we can

classify a data-flow implementation over a spectrum that ranges fror- fully static to fully

dynamic. Dynamic implementations have the most management and communication

overhead but this makes them more flexible and easier to implement than a static

implementation. They have the added benefit of being more robust in the case where a

processor malfunctions and so degrade gracefully.

To their credit, static implementations are more efficient and have the predictable

performance crucial to a real-time system. They are, however, difficult to realize,

inflexible, and degrade poorly. Their effectiveness is determined by how accurately the

computational problem is known before-hand. This is a difficult problem and typically the

worst-case estimate results in large inefficiencies.

A carefully implemented hybrid of compile-time effort and run-time complexity

strikes the appropriate balance between throughput and guaranteed performance. RC

analysis provides such a blend by building scheduling management into the graph at
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compile-time and then allowing the run-time scheduler to assign nodes to processors

dynamically.

A node is synchronous if we know, a priori, how many new input samples are

consumed and how many output samples are produced every time a node is invoked. A

Synchronous Data-Flow graph is a directed acyclic graph made up of synchronous nodes

[Lee 87]. Revolving Cylinder analysis is most suited for use with synchronous data-flow

graphs.

The RC technique is directed towards improving throughput and the determinism of

output flow in real-time systems, under high loads, with repetitive tasks to perform. Tasks

that fall in this category are those such as radar, Magnetic Resonance Imaging, and other

continuous scan applications. Other real-time scheduling systems are concerned with

getting the fastest possible response without regard to how efficient the continued

execution of the task might be. These fall under the guise of some weapon systems

applications in which instant response is required from a single instance of an application.

These schedulers seek to pack an application graph so that it will run in the least possible

number of cycles.

The system we use is non-preemptive. Enough research is available in the literature to

obviate an extended discussion of this thesis. Suffice it to say that the graph's inherent

structure implies nodal orders of execution. This, combined with known node execution

times, leads to more deterministic output flow than a preemptive scheduling scheme.

Figure 9 illustrates the difference between the two [Lewis p.249]:
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time PI P2 time0  PI P2
I

1 2 2

2 3

3 3(b)

(a (a) A non-preemptive and (b)
preemptive schedule for 3 tasks with an
execution time of 2 cycles

Figure 9: Preemptive vs. non-preemptive scheduling.

Revolving cylinder analysis is a policy which can be implemented on a number of

different machines. The key is that it improves the determinism of output flows whenever

there are repetitive tasks whose executions are deterministic. It does this by a mix of static

scheduling and dynamic assignment of nodes to processors at run time. We are interested

in the approaches used by other researchers in the field of real-time scheduling. Chapter IV

covers these in detail.
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IV. ALTERNATE APPROACHES

We now look at data-flow graph scheduling techniques ranging from the scheduling

approach used to implement real-time prototypes on the Naval Postgraduate School's

Computer Aided Prototyping System (CAPS) to Som's multiprocessor "Algorithm To

Architecture Mapping Model". Each of these seeks to improve real-time performance of

systems using directed acyclic graphs. The target architectures vary from simple control

flow von Neumann machines to a SSIMD architecture. This chapter covers the approaches

in depth and discusses the strengths and weaknesses of each.

A. Scheduling Hard Real-Time Systems on CAPS

1. An Introduction to CAPS

The Computer Aided Prototyping System (CAPS) being developed at the Naval

Postgraduate School seeks to overcome the complexity in the design and development of

hard real-time environments using rapid prototyping to build and maintain these systems

[Levine 91]. Rapid prototyping is a means for stabilizing and validating the requirements

for complex systems (e.g. embedded control systems with hard real-time constraints) by

helping the customer visualize system behavior prior to detailed implementation. CAPS

supports an iterative prototyping process characterized by exploratory design and extensive

prototype evolution, thus enabling engineers to produce complex systems that match user

needs and reduce the need for expensive modifications after delivery [Levine 92].

2. System Overview

CAPS consists of several modules. Figure 10 describes the major software

modules of the system.The first module of the system is the user interface which consists

of a graphical editor for the formal prototyping language called Prototyping System

Description Language (PSDL). The second module is the Software Database System which
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includes the Rewrite Subsystems, the Software Design Management Subsystem, and the

Reusable Software Component Database.

Figure 10: CAPS modules [Levine 911.

PSDL
Specifica-
tion

ADA Con Ciler/Linker

tYP Executing

Prototype

Figure 11: The Execution Support System (ESS) [Levine 91].
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The third module is the Execution Support System (ESS). This module contains

the PSDL Translator, the Static Scheduler, and the Dynamic Scheduler. Figure 11 shows

the implementation and interfaces of the ESS.The Dynamic Scheduler acts as a run-time

executive when exercising the system. It schedules nodes without timing constraints, which

are not included in the static schedule, by using spare capacity or slack in the static schedule

(see Figure 14). It handles run-time exceptions and hardware/operator interrupts and

communicates with the user interface during prototype runs. Thus it performs like a

miniature operating system.

It is the static scheduler that we are interested in. The purpose of the static

scheduler is to build a static schedule for a set of tasks that must obey both precedence and

timing constraints. This schedule gives the order of execution and the timing of the

operators. It is legal and feasible if both precedence relationships are maintained and timing

constraints are guaranteed to be met.

3. The Static Scheduler

The static scheduler has five modules: PSDL READER, FILE PROCESSOR,

TOPOLOGICAL SORTER, HARMONIC BLOCK BUILDER, and OPERATOR

SCHEDULER.

The first component, PSDL READER, reads and processes the PSDL

prototyping program. It is essentially a filter that removes information not needed by the

static scheduler.

The second, FILE PROCESSOR, analyzes the text file generated by reader and

separates the information into a linked list data structure and a file of non-critical nodes. It

then converts sporadic operators into their periodic equivalents. The block builder and the

operator scheduler generate linked lists containing the vertices and links of the graph.

The third component, TOPOLOGICAL SORTER, performs a topological sort

on the data structure. It develops a true topological ordering and is not dependent on a
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specific ordering of nodes in the PSDL input file. The result is a total ordering of the nodes

depending on data flow.

The fourth component, HARMONIC BLOCK BUILDER, determines the

Harmonic Block length of the static schedule. An illustration of the Harmonic Block is

found in Figure 14. The system takes each of its real time processes and finds their least

common multiple. This guarantees that the system will schedule and execute each critical

process within the bounds of performance. The trick is to find a harmonic block which will

meet the performance constraints of a real-time system.

The last module, OPERATORSCHEDULER, combines the output of

TOPOLOGICALSORTER, FILE PROCESSOR, and HARMONIC BLOCK BUILDER

to produce a static schedule. The static schedule is a linear table giving the exact execution

start time for each time-critical node and the reserved maximum execution time (MET) for

each.

4. Graph Implementation

The nodes are atomic or composite. An atomic node is defined as the basic

individual unit of work to be executed and a composite node is defined as being a node that

can be decomposed into atomic nodes. This allows the system to deal with varying

granularity. Each node is characterized by its timing constraints, precedence constraints,

and resource constraints. The researchers assume that the resource requirements for each

node, to include memory and external systems, are always met.

There are two different types of data in PSDL: discrete and continuously

sampled streams. Discrete data are used in applications where the values of data must not

be lost/replicated and in which the period of the producer and consumer of the data must be

the same (lockstep performance). Sampled data are used in applications where values must

be available at all times and can be replicated without affecting their meaning. Each data

stream represents a directed edge from the node that produces the data to the node that
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consumes the data in the precedence graph. Cycles, and hence internode recursions, are not

permitted in the precedence graph.

5. Creating the Schedule

a. Algorithm Options

After creating a constraint graph the static scheduler creates a schedule

using one of the following algorithms: Earliest Start Time, Exhaustive Enumeration, or

Simulated Annealing. Since the static scheduling problem is NP-hard, systemic global

search is the only guaranteed way to return a feasible static schedule for a hard real-time

system if such a schedule exists. The exhaustive enumeration algorithm is implemented in

CAPS to accomplish this, but the algorithm is very costly in practice.

Shing and Levine [Levine 92] developed a simulated annealing approach as a heuristic

algorithm to schedule the prototypes of hard real-time systems. The goal of this algorithm

is to quickly find a valid schedule if one exists in a majority of cases where the cost of

complete enumeration is too great.

b. Simulated Annealing

The simulated annealing procedure was chosen because it was iterative,

probabilistic, simple and insensitive to the form of the cost function. An example

combinatorial optimization problem is an assignment problem where there are a number of

personnel available to do an equal number of jobs. The cost for each person to do each job

is known. The goal is to assign each person to a job so that the total cost is as small as

possible. There are a wide range of combinatorial optimization problems in a similar vein

for which simulated annealing is tractable. These include graph partitioning, graph

coloring, number partitioning, VLSI design, and travelling salesman type problems [Levine

92].
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6. Basis of The Algorithm

Simulated annealing is based on the behavior of physical systems. The approach

is modelled on the way that liquids freeze and metals crystallize. At high temperature,

molecules move freely with respect to one another. As the liquid cools, this mobility is lost.

Atoms line up and form a pure crystal that is at a minimum energy level. As the system

cools it tends toward a state of minimum potential energy.

7. Annealing and Optimization

Examining simulated annealing in non-physical terms, a comparison is made to

the concept of local optimization or iterative improvement. Local optimization repeatedly

improves an initial solution until no further improvement of the solution is possible. This

is known as iterative improvement or "hill climbing." Simulated annealing differs from

local optimization in that random uphill movements (acceptance of a worse solution) are

permitted while the system "temperature" is warm enough to allow it.

Cost

Poor Best
Local Cost

•tima Solution

Simulated Annealing
Allows the solution
to get over this potential
barrier

Decreasing Temperature over time

Figure 12: A representation of a simulated annealing solution's
cost over increasing time [Levine 91].
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This prevents the algorithm from being trapped in a poor locally optimal solution

as demonstrated in Figure 4.3. Simulated annealing provides significantly better results

than can be found utilizing local optimization.

The key to the use of the simulated annealing approach to solving combinatorial

optimization problems is the random acceptance of worse iterative solutions. Initially when

the system is in a nigh energy state (high temperature), the probability is greater that a

worse iterative soluticn is accepted. As the system cools this probability decreases, but

even at the lower erei gy states the probability for making an uphill move still exists. Uphill

moves allow the algorithm to leave a poor local solution and reach a better solution. This

general scheme of always taking a downhill step while occasionally taking an uphill step is

known as the Metropolis algorithm [Levine 91].

8. The Cost Function

The choice of a probability function to determine if an uphill movement is

allowed is an important consideration. At each step of the simulated annealing algorithm a

new state is constructed based on the current state. This new state is constructed by

displacing or adjusting a randomly selected element. If this new state has a lower cost than

the current state, the new state is accepted as the current state. If the new state has a higher

cost than the current state, the new state is accepted with the probability:

exp(-Ae/kT)

This function is known as the Boltzman probability distribution where:

Ae = difference in cost between new state and current state

k = Boltzman's constant of nature relating temperature to energy

T = Current Temperature

A characteristic of this probability function is that at very high

temperatures every new state has an almost even chance of being accepted as the current

state. At low temperatures the states with a lower cost have a higher probability of being
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accepted as the current state. Simulated annealing is simple to implement and can be

applied to a variety of combinatorial optimization problems.

9. Real-Time Scheduling Constraints

Developing hard real-time schedules using simulated annealing requires that

several modifications must be made to the steps of the simulated annealing algorithm.

These changes are required because true random orderings of graph nodes cannot be

maintained since there are precedence constraints in a hard real-time schedule. Another

change to the algorithm is that hard real-time scheduling only seeks a feasible schedule, not

the best possible or optimum schedule. This factor simplifies and speeds up the

development of the annealed schedule.

0P-3
Old Ordering New Ordering
op_i opjl
op_2 op_3
op_3 op_2
op_4 op_4

Reordering of nodes preserving precedence

Figure 13: Reordering of nodes using CAPS scheduler [Levine 91].

The method of adjusting a given solution maintains the precedence relationships

that exist between operators of a hard real-time system's application graph. As long as

precedence is maintained nodes can be adjusted randomly within a given schedule. True

random orderings cannot occur since a parent must always appear before its children.
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Figure 13 demonstrates a feasible reordering of nodes that can occur using simulated

annealing.

In both the old and the new ordering, the position of each operator in the list is

valid based on the precedence relationship indicated by the graph. The algorithm

,uarantees precedence by checking for a parent-child relationship between nodes it is

attempting to reschedule. The goal of the hard real-time scheduler is to find a feasible

schedule for the graph, not the optimum schedule. This means that the search for a schedule

is terminated as soon as a feasible schedule is found. Both loops of the annealing, algorithm

are modified so that if a feasible schedule is found, the loop condition for both loops is

satisfied and annealing is terminated.

10. Solution Deadlines

Each proposed solution, including the initial solution, is examined to see if it

satisfies two criteria:

(1) Examine each node's start time.

The start time must be examined to see if any node starts before its earliest

allowable start time.

(2) The finish time is then examined to see if it exceeds the upper bound

for node termination.

If the upper bound for a node is violated, the amount of time that this bound is

violated will be added into the schedule's cost.

a. Precedence

There is no requirement to examine a schedule to see that precedence is

maintained since each adjustment to the schedule will guarantee that operator precedence

is maintained.
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b. Harmonic Block Length

The proposed schedule must also be examined to check that the finish time

of the last operator in the schedule does not exceed the harmonic block length. A harmonic

block is defined as a set of periodic operators, where the periods of all component operators

are exact multiples of the base period. The base period is the greatest common divisor of

all periods of the critical periodic operators and the harmonic block length is the least

common multiple of these operators as in Figure 14. The basic idea is that a schedule is

developed to fit inside a harmonic block. Once a schedule is developed that fits within the

harmonic block, subsequent copies of the block can be made to maintain the hard real-time

schedule [Levine 92].

Slack

P1 P2 P2 / P2 P1 P2 "-N P2

0 1 2 3 4 5 6 7 8 9 10

_ _ _ _ _ _ Harmonic
Block =
(2x5) = 10 time units

PI must occur every 5 units
P2 must occur every 2 units
The harmonic block seeks to ensure that execution is guaranteed within these cons

Figure 14: Harmonic Block length in CAPS

If a schedule does exceed the harmonic block length, it cannot be valid

because subsequent copies of the schedule will also violate their timing constraints. If the

schedule satisfies all timing constraints and the harmonic block length is not violated then
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it is feasible. At this point the simulated annealing algorithm is terminated and the schedule

is returned to CAPS.

The intent of scheduling real-time systems on CAPS is to guarantee the

execution of tasks on a serial processor within a specified time bound. Thus the harmonic

block ensures time for each critical process. If a feasible schedule is found (i.e., a harmonic

block which satisfies time and execution constraints) the system is going to guarantee that

a real-time application will execute within its bounds.

System Kernel has priorit
What was slack is now used by over all processes - disrur
FCFS non-critical processes / determinism of execution

/ and output rates

P1 P2 P2 / P2 Kernel interrupt P1 P2 P2

0 1 2 3 4 5 6 7 8 9 10

of Harmonic
Block =
(2x5) = 10 time units

Figure 15: Kernel interrupts and non-critical processes

Real-time processes are given a higher priority than non-critical tasks and

so execute within the bounds of the harmonic block. The system handles data arrival both

periodically and aperiodically by the use of interrupts and polling. Aperiodic data arrival

means that interrupts are necessitated by the arrival of critical tasks with higher priority

than an non-critical task currently executing on the CPU. Polling is used to handle the

execution of queue of non-critical tasks waiting for slack in the execution of the harmonic

block. In periodic operation the system only has to handle the task of polling each of the
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non-critical processes competing for system resources. Real-time processes are guaranteed

processor time by the Harmonic Block and need no polling.

One of the problems of the system is that the kernel has priority over all

tasks as shown in Figure 15. In this example the Harmonic Block of Figure 14 is interrupted

by a system call. Once the system call is finished the scheduler crams processes into the

block to try and make execution time limits, even if a critical task is in the middle of

execution then it is preempted by any kernel calls. A statistical analysis can determine the

frequency of these interrupts but there is still non-determinism in the schedule's output

flow. Another potential problem lies in the inherently non-deterministic output flow of

ADA. There is no way to guarantee performance of the system when no time bounds are

guaranteed on the connection interface of ADA sockets, etc. This is a temporary problem

being addressed in the next versions of the language but it does bear inspection. More

information on the approach is available in [Levine 92].

B. Scheduling for Real-Time DSP Performance on a Rectangular Grid

Lincoln Laboratory of M.I.T. developed a Block Diagram Compiler (BDC) designed

and implemented for converting graphic block diagram descriptions of signal processing

tasks into source code to be executed on a Multiple Instruction - Multiple Data Stream

(MIMD) array computer [Ziss 871. The compiler takes a block diagram of a real-time DSP

application as input entered from a graphics workstation. It then translates the graph

representation into code for the target multiprocessor array. The current implementation

produces code for a rectangular grid of Texas Instruments TMS32010 signal processors

built at Lincoln Laboratory but the concept can be extended to other processors or

geometries.

1. Target Hardware Implementation

The current hardware implementation of the MIMD array consists of a two-

dimensional rectangular grid of TMS32010-based processing cells. The size and shape of
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the array is somewhat arbitrary with the restriction that one cell can be nearest-neighbor to

no more than four other cells. Enough communications paths exist in this array to allow it

to function as both a 4x4 square grid and a 16xl linear array (Figure 16).

16 processor array D I
Current configuration has enough 2 0 2 Cl0l
communications - aths to allow it D
to act as either !..16 3 3
or 4x4 array. " F -------------------------------- - ----------202 0 2 , 0 2 , 0

3 3 3 3---- ---- ---- ------ -- -----.. . . . . . . -- -.. . . "£- -------- ---- -' I ......-

0 Cel.el.....
3 3

Figure 16: Lincoln's variable geometry MIMD machine [Ziss 87].

2. Mapping The Graph Nodes to Processors

a. Individual Processors

A user begins by drawing a block diagram of his application using a library

of basic DSP functions implemented as nodes. The nodes can be as simple as adders and

multipliers or as complex as FFT's. Processor assignment is done either manually or by the

task-assignment module. In other words, the application nodes are scheduled statically. The
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problem of mapping nodes to processors is similar to that encountered by data-flow

architectures.

The Lincoln architecture relies on special hardware to track the availability

of data. This approach uses the Lincoln machine's hardware FIFO queues and the

efficiency gains offered by processor locality. Figure 17 illustrates the design of a single

TMS 32010 processor. Data-flow concepts could be simulated in the object code but this

imposes a heavy communications overhead contrary to the real-time processing

requirements of the system.

to north neighbor

Port I

l6bit data bus

to west neighbor to east neighbor

FII OH I Port 2 TMS32010 Port0 0 -

/ [4k wor externalI
12 bit address bus memo

FIFO queues on two ports allow 2 transceiver(l, 0)
and 2 receiver ports (2, 3). This allows [ FIFO
asynchronous interprocessor communications to south neighbor

Figure 17: Texas Instrument TMS 32010 DSP [Ziss 871.

b. Entering/scheduling an application graph

Block Diagram Compilers are normally used as parts of simulation

languages for digital signal processing. The Lincoln approach differs in two ways. First, it

uses a graphic input interface to enter the application to the machine. The second difference

is that instead of providing simulation code for a general purpose computer the compiler

directly produces efficient object code to run in real-time on a MIMD array. When the
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system schedules nodes statically it takes the physical arrangement of nodes and their

processors into account. The compiler takes a graphical representation of a real-time DSP

application and translates it into efficient assembly language code for each processor.

MIMD systems are often difficult to program as the programmer must

(1) partition the problem among the processors,

(2) route the interprocessor data transfers, and

(3) write different code for each processor in the array.

The system is designed to perform these three steps automatically. Signal

processing problems usually have enough inherent structure to allow efficient mapping

onto a MIMD array. The structure typically takes the form of parallelism and pipelining and

is well represented by a directed graph. As a result the system can use an application's

graph representation as high level compiler input.

c. Node assignment

Nodes assigned to the same processor are linked by common memory

locations within the processor. I/O routines are created to transfer data between nodes in

different processors. If the terminals of an interprocessor data transfer are assigned to

adjacent processors, the routing is trivial. If the two processors are not adjacent, store-and-

forward routines are generated for the intermediate processors, yielding a simple packet

network.

The development of the compiler was eased by the choice of an

asynchronous MIMD array hardware target. Because intercell data transfers are designed

to be asynchronous the need for BDC software for insuring lock-step synchronous transfers

between cells was obviated. Thus, the TMS32010 assembly code controlling I/0 transfers

became simple to implement because hardware handles most of the data availability

overhead.
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3. Problem Partitioning and Task Assignment

Given a specification of the signal processing operations by a block diagram,

the components of this specification, the nodes, must be assigned to individual processors

in the array. At its simplest level, the structure of the array makes it possible for any block

to be assigned to any processor and have the appropriate signal paths routed between

processors.

a. Assessing Assignment quality

While this simplistic assignment strategy might suffice for uncomplicated

situations it begs the question during high system utilization. Figure 19 illustrates the

random assignment of the simple graph in Figure 18. In this case we see the high

communications overhead if assignments are not chosen with respect to locality. Operator

I is assigned to a random processor, as are the others. Communications from OPI (heavy

black arrows) traverse a circuitous path to get to OP2 and OP3. Results from OP2

(horizontal stripes) and OP3 (hashed arrows) then wend their way to OP4. Obviously,

criteria need to be established and enforced to assess and then ensure the quality of each

assignment.

OPJ2

A simple data-flow graph

Figure 18: An example data-flow graph
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For example, the lack of a global memory demands that the memory

capacity of each processor may not be exceeded. An intuitively appealing criterion, as

opposed to a constraint, is to minimize the number of processors used in the assignment.

This global criterion is used to reduce the complexity and emphasize the conciseness of an

assignment. These requirements must be taken into account both to make a reasonable

assignment of nodes to processors and to assess the quality of the assignment.

Heavy lines show actual I 1
communications if the simple D 2 0 2 0
graph of Figure 18. is mapped D
arbitrarily on the 33arbitrarily on !he ........................ • ......... ............... .........array.--021 I

33

.1 0 2" 0

Figure 19: Arbitrary assignment of graph

b. Optimizing the Assignment

To achieve an assignment of signal processing components to

computational processors that satisfied a set of both local and global criteria an
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optimization problem was defined with a cost function which reflected these requirements.

The independent variables over which the optimization was performed are the processor

assignments for the nodes and signal routes through the array. These variables are

fundamentally discrete; thus, optimization procedures that require the evaluation of a

derivative could not be used. Instead, a combinatorial optimization procedure is necessary.

4. Algorithm Description

Simulated annealing was chosen because it answered the need for an optimized

solution of discrete variables. It can be specified by identifying a set of solutions together

with a cost function that applies a value to each solution. There exists an optimum solution

which has the minimum cost possible. There may, of course, be more than one optimum

solution. The Algorithm is the same as described in the previous section on CAPS with the

exception that the grid architecture has different costs to optimize. The main local and

global costs are summarized below:

a. Chosen Local Functions:

(1) Memory--The memory (Mreq) required for computations is

evaluated for each processor. If this amount is less than 90% of the total available (Mavail)

the cost function is zero. If greater than this number, the cost function equaled:

Mreq (-0.9 x Mavail) 2

As the TM532010 has separate program and data memories, the memory cost function

was evaluated for each and summed.

(2) Real-Time--A cost function similar to that used in the memory

usage was used to assess computational requirements. The number of cycles required by all

of the blocks assigned to a processor were summed. If less than 90% of the total available

time, the cost function is zero; if greater, the cost function assumes a quadratic form.
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(3) Input/Output--In addition to the impact of signal computations on the

memory and processing power of a single processor, the assignment of computational

demand by the input/output programs required by the signal routing mechanisms is also

made. The memory and computations required to support the routing are included in

determining the memory and real-time components of the cost function.

(4) Special Capabilities--Several processors have special "capabilities"

that distinguished them from the others. For example, only one processor had an A/D and

D/A converter and another had the host-network interface. A subtle capability that is

common to all processors is their presence. The processor array is assumed to be a

rectangular grid, with some of the grid points having no processor. This capability allows

the specification of no longer functioning processors and irregular geometries. Those

blocks in the original block diagram requiring these capabilities are noted. If such a block

is assigned to a processor lacking a specific capability, this component of the cost function

is given a large non-zero constant.

b. Chosen Global Functions:

(1) The length of each signal route is measured in terms of the number of

intervening processors. If this signal is not involved in a feedback loop, two times the

length of the signal route is added to the cost function. If part of a feedback loop, ten times

the length is added. This component of the cost function has the effect of reducing the

number of processors used to support signal processing. Because of their inefficiency,

feedback loops are especially penalized so that the components of each loop are kept

physically close. If possible they are mapped to the same processor. Figure 20 illustrates a

possible new assignment of a simple graph with these overheads taken into consideration.
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Assignment maps nodes physically close I
in order to limit length of D 2 0 2 0
communications paths. If possible
it will collapse nodes into a single 3 3procesor. "................................................ .................. "i..........

2N

3 3

I .......... .. -............. .. ...:... ... . ............... ... • 3 ...

3IJ .. ........

Figure 29: Optimized static assignment of nodes to processors

(2) In the context of simulated annealing a perturbation of the assignment

of nodes and signal routing is made. With probability 1/4, a node is randomly assigned to

another processor in the array and the attached signals rerouted. With probability 3/4, a

signal is chosen randomly and a different routing for the signal made. The routing

algorithm has probabilistic aspects as well. A small number of random routings between

the two processors containing the signal routing components are made and the one having

the smallest length chosen as the new routing. If a signal does not require interprocessor

routing (i.e.: The nodes are assigned to the same processor) the intraprocessor routing is

always chosen.
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With these definitions of cost function and of what constitutes a random

perturbation, the simulated annealing algorithm requires several thousand iterations to

determine the optimal assignment. The "temperature" is reduced geometrically at each

iteration (a reduction of about 0.9995 is used). The initial value of the temperature is equal

to twice the maximum change of the cost function when ten random trial assignments are

made: typically, this value is several hundred "degrees". The terminating threshold value

for the temperature is fixed at 0.1. Although the minimum cost assignment is not always

found, the real-time and memory constraints are always met. Typically, sub-optimum

results have inefficient signal routes.

The intent of the BDC and the array is to bring a real-time environment to

applications too large for a single processor, but without the detailed programming often

required for parallel computation. Real-time performance is not obtained by assigning

each node to its own processor and having a compiler determine an optimal signal routing

but instead by having the program for each processor consist of tightly coupled, efficiently

debugged program modules with a minimum of interprocessor computation.

MIMD architectures are more general than other multiprocessors. Despite their

usual synchronization overheads they can be used to advantage with data-flow and large

grain computation [Lewis, p.2101. The approach used in the TMS machine allows some

asynchronous operation and so eases the control overhead faced in synchronous machines.

There are other benefits as well. The use of a grid with specifiable processor degradation

yields an architecture that fails more gracefully than a synchronous machine in the event of

processor failure or system error.

The distributed memory of the architecture does impose global limits on the

memory capacity of the machine and so limits its flexibility. Another shortcoming is that

there is no code optimization for groups of programs chained onto a single processor.

Nonetheless, The Lincoln machine gives us insight as to how a heuristic algorithm can be

used to statically schedule a graph for real-time on a MIMD array. Further information can

be found in [Ziss. 87].
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C. Optimal Implementation of Flow Graphs on SSIMD Multiprocessors.

The next approach we discuss was developed by Barnwell and Schwarz [Barnwell 841

at the Georgia Institute of Technology. It is a general technique for the implementation of

recursive and nonrecursive signal flow graphs and other arithmetic algorithms on

synchronous digital machines composed of many identical programmable processors.

1. Optimality

Barnwell [Barnwell 84] defines three different categories of optimality: An

implementation is said to be rate optimal if it achieves its sampling, or input rate, bound. It

is delay optimal if it does not exceed its delay, or output rate, bound. Lastly, it is processor

optimal if it exhibits perfect processor efficiency such that every cycle of every processor

is used directly on the fundamental operations of the algorithm and no cycles are used for

synchronization or systems control. These definitions are not mutually exclusive and any

implementation could satisfy the criteria.

The Georgia Tech approach is characterized by two fundamental properties:

First, it uses the Skewed Single Instruction Multiple Data (SSIMD) mode in

which exactly the same program is executed on all the processors, and that program is an

exact single processor realization of the entire algorithm being implemented.

Second, all the data precedence relations among the processors are automatically

maintained by the inherent synchrony of the system. This often results in processor-

optimum solutions in which the use of M processors leads exactly to an M-fold increase in

the system throughput

These techniques result in a procedure in which the algorithm if specified in

some simple notation, such as a set of difference equations, and from this a compl!tely

parallel multiprocessor implementation for the algorithm is generated.

The resulting implementation is always either processor-optimum or time-

optimum in which case the absolute throughput limit for the technique has been reached.

In addition, for a large class of recursive signal flow graphs, the implementations are
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absolutely optimum in the sense that there is no other implementation for a particular signal

flow graph and a particular constituent processor. The approaches discussed here have been

tested on a synchronous multiprocessor system.

2. The SSIMD Mode

The fundamental computational mode which is utilized in these implementations

is the Skewed Single Instruction Multiple Data Mode. In this mode, exactly the same

instruction stream is executed on all processors, but with a fixed time skew maintained

between the instruction execution times and the separate processors. The program realizes

exactly one time-iteration of the flow graph. Figure 21 illustrates a Digital signal flow

representation and a single processor realization of the same.

In a single processor realization, none of the delay elements are realized directly,

but rather the output from each delay element becomes an input to the progran, and the

input to each delay element becomes an output of the program. In the SSIMD realization,

these delayed values are not computed by this processor, but are supplied from identical

computations on other processors.

x(n) r~)y(n)

r(n x(n) y~)

Signal flow graph for a second order recursive I(1) 1(2)
Direct form II digital filter Single processor realization of the digital

filter. All delays are not implemented by
the program but are realized by the
parallel structure

Figure 21: Recursive digital filter flow graph [Barnwell 82].
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Figues 22 and 23 show a single processor and a two processor SSIMD

realization for the signal flow graph of Figure 21. In the single processor solution of Figure

22, all of the past values of r(n) are supplied by the same processor, and there is never an

issue of data availability. In the two processor realization of Figure 23, alternate points are

supplied by each processor, and the two processors must be skewed such that the data

requirements of each is always met by the other.

In a single processor SSIMD
Processor realization, all recursive outputs

are supplied by the same processor

Figure 22: SSIMD single processor realization of a recursive filter
[Barnwell 82].

In multiple processor realization, recursive outputs
supplied by another processor

Figure 23: Multiple processor realization of the recursive filter of
Figure 21 [Barnwell 82].
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It should be noted that these SSIMD solutions are "free running" such that

whenever a processor completes the computations associated with one time index, it

immediately begins the computations associated with another time index. Hence each

program realizes an infinite loop and, under the assumption that the program timings are

not data dependent, each loop takes exactly the same amount of time to execute. Thus, if M

processors are started at times t(m), O<m<M-l, then the relative time skews so imposed

remain fixed until the programs are halted externally.

The problem of implementing a particular iterative arithmetic program reduces

to specifying the M starting times, t(O)...t(m-1), such that all the data available for the

various computations is available before it is needed.

3. Implementing Recursive Arithmetic Programs

The problem of implementing a particular recursive signal flow graph in SSIMD

mode can be divided into two related problems. The first is the problem of finding and

characterizing all legal SSIMD solutions for a particular single processor program for

implementing the signal flow graph. The second problem is that of constructing the

particular single processor program such that the eventual SSIMD scheduling solution will

be optimum. This section addresses the first problem for single input/single output signal

flow graphs. These results are easily extended to multiple input/output systems.

In fitting the programs together in SSIMD mode, the data which must be used

include the length of the program, T, the times at which the delayed recursive inputs are

first used, I(L).. .I(1), for a system with longest delay and the time at which the recursive

output is available, R.

The first point to note is that all SSIMD solutions are bounded by the solution

with equally spaced starting times. It can be proven that in SSIMD, the processors operate

in a circular fashion, and the relationships between a single processor and its predecessors

and successors in the processor chain are identical for all processors in the system. Any
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advantage attained by local time perturbations at one processor would be lost at some other

processor. Hence, all SSIMD solutions are bound by equally skewed solutions.

Based on these results, four important features should be noted.

First, given a single processor program for a signal flow graph (or other

algorithms describable in a similar fashion), the maximum number of processors which can

be used is immediately available and the starting times for the processors in SSIMD mode

are simply computed. Hence, for a given program, the SSIMD implementation procedure

is very simple.

Secondly, and more importantly, the maximum number of processors which can

be used to advantage is a function of a single time index, 1(1(x)), 1<1 < L, where L is the

longest delay in the system. Hence, a simple constraint exists for optimizing a particular

program for SSIMD implementation. The program is obtained by maximizing the

minimum number of processors, M(l) which could be utilized on any arbitrary recursive

input whose time of delay was the constraint on the system [Barnwell 82].

Third, and perhaps most importantly, the optimum time skew is not a function

of either the program duration or the number of recursive inputs or outputs of the program.

This allows for several important generalizations to be made and, for properly written

programs, leads to impressive solutions. For example, the system of Figure 21 can typically

be implemented with 8 or 9 processors even though it has only two recursive inputs. The

throughput gains for a data-flow architecture working with recursion are immediate.

Finally, it should be noted that there are no constraints at all if the algorithm is

reconcursive. In a theoretical sense, this is a trivial statement, since it is clear that if there

are no constraints on data availability, then any number of processors can be used to

advantage. However, in an implementation sense the SSIMD approach still leads to elegant

processor-optimum solutions for any number of processors.
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4. Optimum Signal Flow Graph Implementation

A study produced a set of systematic procedures for generating single

processor programs which could produce optimum realization when utilized in the SSIMD

mode. The problem addressed was how to proceed in an automated fashion from a simple

representation of a signal flow graph, such as a set of difference equations or a matrix

representation, to a single processor program which maximized the minimum value of

M(l). This solution can be found by systematically investigating both the computational

orderings of and at the nodes. It is easy to see that it can be accomplished inefficiently by

an exhaustive search.

The most important result, however, concerns the optimality of the SSIMD

solutions. For a very large class of signal flow graphs, including both the normal and

transposed forms of all direct form, cascade, and parallel digital filters, the SSIMD solution

is absolute optimum in the sense that, for a particular constituent processor, it achieves the

greatest possible throughput for the fewest possible processors.

This can be illustrated in the context of the example of Figure 20. First note that

in order maximize the number of processors used the quantity needed to make recursive

feedback available must be minimized. This requires that each of the recursive delayed

inputs, I(1) and 1(2) in Figure 22b, be first used as near in time to the completion of the

computation of the recursive output, R, as possible. This leads to the general principal that

when ordering the computations at a node, the delayed recursive inputs should be used last.

This shows that the system throughput is not a function of the length of the program or the

number of delayed inputs, but is only a function of the input/output time for one result and

the time of one multiply/add operation. These are fundamental constraints of the processors

themselves.

Further, the output/input of a result and the multiply/add operations are the

minimum possible required computations in a recursive signal flow graph. Since a single

processor realization involves the fewest possible special (non-arithmetic) operations, it
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also achieves this throughput with the fewest processors. These results can be generalized

for a large class of recursive signal flow graphs, which lead to several important points.

The first is that the SSIMD implementations are generally simpler than other

multiprocessor options which typically include the parsing of the signal flow graph to

promote local parallelism. By including everything needed for each instantiation of an

application graph on each of the processors the overhead of interprocessor communications

is minimized. This requires individual processors capable of handling the entire graph.

The second important point is that all the limits on the number of processors and

the throughput are a reflection of the recursive nature of the programs. As previously noted,

if there is no recursion, then the solution is no longer constrained by the algorithm but rather

by the nature of the hardware.

The largest potential problem in SSIMD solutions concerns the inter-

processor communication issues. Since the entire SSIMD development is done under the

assumption that the processors can communicate "at will", this would first appear to be a

critical issue. It turns out, however, that it is not. This is true for two reasons.

First, the fundamental periodicity of the SSIMD solution makes the

communications requirements very uniform, which avoids many potential time conflicts.

second, and most important, the natui- of the communications environment can be

systematically controlled. To see this, one simply needs to note that the number of

processors with which a particular processor must communicate is controlled by the

maximum length of the delay elements in the application graph.

The use of long delay chains does improve the final solution since it leads to

SSIMD realizations which require fewer processors to realize a time-optimum solution.

But the entire procedure still works if the maximum delay length is constrained to be one.

This is the case for the classical formulation for signal flow graphs. For such realizations,

each processor only communicates with its two nearest neighbors, and communications are

always unidirectional. Such realizations have the same maximum throughput rate, but, in
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general, require more processors to achieve it. Most important, however, they have a

communications environment which is always trivially implementable.

SSIMD first fully distributes the algorithm in time because a separate time index

is assigned to each processor. It then explicitly maps this time distribution into space. The

difference between this and a systolic array is that a systolic implementation only maps the

algorithm in space. The SSIMD approach is more processor and rate optimal than a systolic

array. The primary advantage of SSIMD comes from the fact that instead of viewing the

problem from the system clock, time is referenced at the individual processors and so a

complex timing problem in the systolic array becomes a relatively simple one in the SSIMD

paradigm. More information on the approach is available in [Barnwell 82] and [Barnwell

84].

D. ATAMM: A Paradigm for Predictable Performance in Real-Time on

Multiprocessors

I. The Algorithm To Architecture Mapping Model (ATAMM)

Som, Mielke, and Stoughton of Old Dominion University are working on the

development of strategies for predictable performance in homogeneous multicomputer

data-flow architectures operating in real-time [Som 90]. The approach is restricted to large-

grained, decision-free applications such as the real-time implementation of control and

signal processing algorithms. The mapping of such algorithms onto data-flow architectures

is realized by a new marked graph model called ATAMM (Algorithm To Architecture

Mapping Model). Algorithm performance and resource needs are determined for

predictable periodic execution of algorithms. Predictability in performance and resource

requirements is achieved by algorithm modification and input data injection control.

PL.. ormance robustness is gracefully degraded to adapt in the event of decreasing numbers

of resources. Two key areas the approach focuses on are as follows.

First, the ability to achieve predictability of algorithm performance is considered

to be the most important feature of real-time computing. It sometime is more important than
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the actual performance. The design of such a system must have precise knowledge about

the time of input arrival and output generation for the algorithm, not simply knowledge of

statistics concerning average performance. However, predicting algorithm performance

accurately in multicomputer data-flow architectures is known to be very difficult as most

scheduling problems in a multicomputer environment are NP hard.

Directed Graph Tool
IEEE 488 bus MICRO

AMOS 

'X

1 1750As I 1553B Communication link

(4)

-L ~ B M PC38 1/

DUAL PI BUS I

Real-Time Data Transfer By Broadcasting

Figure 24: ATAMM Architecture [Som 90].

Second, very little research has been directed towards resource management in

data-driven computing. The execution of algorithms must be controlled so that resource

need does not exceed resource availability. Otherwise data packets experience unnecessary

waiting times and require extra storage space, and system performance becomes

unpredictable.

This scenario is unacceptable in real-time computing with hard deadlines for

outputs. New abstract computational models are required for real-time data driven

computations which lead to algorithm performance and resource requirements that are

predictable. On going research at Old Dominion University has led to the development of
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a new marked graph model for describing the execution of algorithms in real-time data-

flow architectures, ATAMM.

The model specifies the criteria for a multicomputer operating system to achieve

predictable performance within resource constraints. It represents the applications as

directed acyclic graphs. The architecture is assumed to consist of two to twenty identical

functional units or resources each having a capability of processing, communication, and

memory. The number of algorithm nodes in a problem is not expected to be more than

twenty. This range of functional units and algorithm nodes is selected due to the large-

grained aspect of the target algorithms and knowledge of target architectures.

The approach to achieving predictability in performance and resource

requirements is to modify the algorithm graph and to control the input data injection rate so

that a functional unit is always available for every enabled algorithm node. Algorithm

performance is characterized by throughput and computing speed. When sufficient

resources an available, the system executes algorithms with maximum throughput and

maximum computing speed and the corresponding resource requirement is predicted.

The programmer can develop strategies for graceful degradation in performance

when only limited resources are available or when resources fail. The user is able to

specify, off-line, trade-offs between decreasing throughput or decreasing computing speed

with the help of a software design tool. The operating system is able to implement these

changes on-line in real-time as the number of resources decreases.

2. The ATAMM Model [Som 90]

ATAMM describes algorithm execution on a data-flow architecture by three

marked graphs, the algorithm marked graph (AMG), which is similar to the input graph

used in RC scheduling, the node marked graph (NMG), and the computational marked

graph (CMG).
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a. Algorithm Marked Graph

An algorithm marked graph is a marked graph which represents a

decomposed algorithm. Transitions and places represent algorithm operations and

operands respectively. The transition times represent the computational times required for

the algorithm operations. The algorithm marked graph contains an edge (i, j) directed from

node i to node j if the output of node i is an input for node j. Edge (i, j) is marked with a

token if the output from node i is available as an input to node j. All edges can have a queue

and accommodate more than one token at a time.

To illustrate the representation of a computational problem consider the

directed graph in Figure 25. This input graph is used by ATAMM and is similar to that used

in RC analysis.

12 node time

source 2 3 sink

SSi 617 So

5• node #

Figure 25: ATAMM input graph (AMG) [Som 901
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b. Node Marked Graph

NMG EDGE LABELS
O E ----------------------------

IF '" IF Input buffer full
IE Input buffer empty
DR Data read

D OF PC Process complete
I E" PR Process ready

OE Output buffer empty
PR OF Output buffer full

Figure 26: A sample Node Marked Graph [Som 90].

The node marked graph (NMG) is a representation of the execution of a

transition on the AMG by a functional unit. Three primary activities, reading of input data

from memory (r), processing of input data to compute output data (p), and writing of

output data to memory (w), are represented as transitions in the NMG. Data and control

flow paths are represented as places, and the presence of signals is notated by tokens

marking appropriate places. The NMG for an AMG transition is shown in Figure 26.

The conditions for firing the process and write transitions of the NMG are

as defined for a general Petri net, while the read transition has one additional condition for

firing. A functional unit must be available for assignment to the algorithm operation before

the read node can fire. Once assigned, the functional unit is used to implement the read,

process, and write operations before being returned to a queue of available functional units.

The initial marking for a NMG consists of a single token in the process ready place so that

only one functional unit can work on an AMG transition at a time (static data-flow

architecture). However, the Output Buffer Empty (OE) edge may contain a number of

tokens so that the execution of an AM., ansition can be repeated by another functional

unit before the output is consumed. The total initial number of tokens on OE and OF edges

is the size of the output queue in edge OF.
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c. Computational Marked Graph

The computational marked graph (CMG) is constructed from the AMG by

replacing every transition by the corresponding NMG. AMG places are replaced by place

pairs, a forward directed place representing data-flow and a backward directed place

representing control flow. The performance measure TBIO (time between input and

output) is the elapsed computing time between an algorithm input and the corresponding

algorithm output. Therefore, TBIO is an indicator of computing speed. The algorithm-

imposed lower bound for TBIO, denoted TBIO(lb), is given by the sum of transition times

for nodes contained in the longest directed path (critical path) from the input source to the

output sink in the AMG.

The performance measure TBO (time between outputs) is the elapsed

computing time between successive algorithm outputs when the AMG is operating

periodically at steady-state. Therefore, the inverse of TBO is an indication of output per

unit time or throughput. The algorithm imposed lower bound for TBO (TBO(lb)) is given

by the largest time per token of all directed circuits in the CMG. A second bound on TBO

is imposed by the availability of resources. The resource-imposed minimum value of TBO

is given by TCE/R where TCE (total computing effort) is the summation of all the transition

times of the AMG and R is the number of available processors.

3. Injection Control

When presented with continuously available input data packets, the natural

behavior of a data-flow architecture results in operation where new data packets are

acceptcd as rapidly as the available resources and the input node of the AMG permit. This

leads to operation at a steady-state where TBIO > TBIO(lb). This occurs because the

pipeline from input to output becomes congested with extra data packets which must wait

for free resources to be processed. From bounds on TBO, the output of the AMG cannot be

generated at a rate higher than l/TBO(lb) or R/TCE. Injection control is a control procedure

59



which limits the maximum rate at which new input data packets can be injected from the

source. Therefore, injection control eliminates data packet congestion and thus preserves

operation at TBIO(lb).

Two diagrams which display graph play and are useful for determining the

number of resources needed to achieve specified performance measures are the SPG and

TGP. The SGP (Single Graph Play) diagram displays the execution of each node of the

AMG as a function of time. The diagram is constructed for a single input data packet

assuming availability of a resource for every enabled node. When several nodes are active

at the same time, lines indicating node activity are stacked vertically so that computing

concurrency is apparent. a sample SGP diagram shown in Figure 27.

Data Packet 4 3 2 1

A 5

Time

Figure 27: Simple Graph Play diagram for the graph of Figure 25
[Sor 90].

The resource requirements to execute a single data packet are obtained by

counting the number of active nodes during each time interval in the SGP diagram. The

peak resource requirement is denoted by Rrnin and represents the minimum number of

resources required to achieve SOP. As an example, Ruin is 4 for the graph of Figure 24.

The TGP (total graph play) diagram is a diagram which displays the execution

of each algorithm node when the algorithm is executed periodically in steady-state with
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period TBO. As with SGP, the diagram is constructed under the assumption that a resource

is available for every enabled node. The TGP diagram is drawn using information from the

SGP. SGP is divided into segments of width TBO and these segments are overlaid to form

TGP. Each segment from SGP represents a new input data packet. Data packets are

numbered sequentially so that the packet numbered (i+l) is the data packet which is input

to the algorithm TBO time units after the packet numbered i. To illustrate the construction

of this diagram, TGP for the graph of Figure 24 is shown in Figure 27.

, TBO= 2

2

t=0 Time- ' t+TBO

Figure 28: Total Graph Play of Figure 25's graph [Som 90].

The resource requirements to execute multiple data packets injected with period

TBO are obtained by counting the number of active nodes during each time interval in the

TOP diagram. As TOP is periodic at steady state with period TBO, so also is the total

resource requirement. The peak resource requirement necessary to execute the graph

periodically with period greater than or equal to TBO is denoted Rmax.

Rmax is determined by finding the largest resource requirement in all TOP

diagrams drawn for injection intervals greater than or equal to TB0. For example, the TOP
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diagram drawn for TBO = TBOIb = 2 shown in Figure 27 indicates that a minimum of 7

resources is required. If this same TGP is drawn for all values of TBO = 2, it can be shown

that the required number of resources does not exceed 7.

62



V. CONCLUSION

A chinese proverb says "to know the road ahead, ask those coming back". The

approaches of the previous chapter give an insight into the relative merits and possible

shortcomings of both the ANAJYS-2 and RC analysis. Through the perspective of other

real-time systems an insight is gained into furtherance of the system's performance

possibilities.

A. The RC Approach in Context

Revolving Cylinder analysis is a flexible policy developed to improve the performance

of the AN/UYS-2. It is unusual because it actually takes control and communications

overheads into consideration when executing in real-time. Its attraction lies in its ability to

reduce these overheads in the system while maintaining the fullest possible utilization of

all processors. RC analysis can be implemented on a variety of architectures and has merit

beyond the confines of the AN/UYS-2 architecture.

I. Static vs. Dynamic Node - Processor Assignment

The ANIUYS-2 schedules its nodes statically but allows the hardware scheduler to

actually assign the nodes to a processor dynamically at run time. This keeps structure in

the execution order of an application graph without introducing control overheads at run-

time. RC scheduling gives a deterministic output flow rate with the caveat that the

application's nodes must have a regular (i.e., non-branching) execution profile. The trade-

off is that the system cannot guarantee that determinism because of a lack of prior

knowledge about where the system will execute each particular node of an application.

CAPS uses a fully static scheduling approach to schedule and map execution nodes to

a conventional processor. The use of the harmonic block allows the target machine to run

a number of processes at different execution rates while still meeting real-time deadlines.

RC scheduling in its current incarnation is rate-monotonic. The range of applications
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suitable for the AN/UYS-2 can be increased by the addition of a flexible rate mechanism

along the lines of CAPS.

Static assignment such as that found in the Lincoln and Georgia Tech machines will

increase the determinism of the machine's output flow by inducing "lock-step" execution

of each node. The AN/UYS-2 cannot implement this scheme without incurring huge

communication penalties because of the common bus each resource uses to communicate

with the scheduler and other processors/global memories.

2. Throughput During High Demand Periods

The performance of the AN/UYS-2 is improved under high loads with the

implementation of the Revolving Cylinder [Akin 93] because of the increased determinism

in throughput rates. The ATAMM approach seeks to control determinism through the

control of data injection rates. While this does help induce regularity it loses some of the

structure of the original data. This matters in the threat environment in which the AN/LJYS-

2 is going to operate.

The CAPS implementation suffers throughput degradation under high loads

because slack is removed from the harmonic block and any kernel calls made will delay the

execution of real-time processes past their deadlines. The inability to predict this delay

through anything but statistical analysis is concerning in a real-time environment.

SSIMD can achieve high throughputs but the Georgia Tech machine is more

suited to problems of finer granularity than those handled on the AN/UYS2 because it loads

an entire application onto each processor. The execution of small application graphs is

faster on the machine because of the inter-processor communications but the architecture

is not as flexible as that of the AN/UYS-2.

The MIMD hardware of the Lincoln machine allows a locality of assignment not

possible with the AN/UYS-2. The fact that the processors can communicate with each other

without having to get on a common bus makes this an attractive idea. The ability to do this
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reduces the non-determinism of output flow and improves throughput under high demand

by dynamically assigning nodes to processors by proximity as well as availability.

3. Determinism of Output Flow Rate

The AN/UYS-2 implementation of RC scheduling produces output flow with a

determinism that is dependent on the application graph's execution profile. If the execution

graphs are inherently non-deterministic due to branching, recursion, etc... then the system's

output flow reflects it. The SSIMD array can handle recursion smoothly by having one

iteration of the recursion running on a processor fed into the next processor for another

execution. This is not possible on the AN/UYS-2. The implied communications overhead

burdens the data bus to the point where throughput is seriously degraded.

Input injection rate control is the method that ATAMM uses to induce regularity

in its output flow. This approach can improve the regularity of the ANIUYS-2 but the

arbitrary loss of data is unacceptable. There may be ways to implement this of approach

without specifically controlling the injection rate. This involves the system keeping current

input on hand in a read buffer. As the input changes, the value of the buffer changes, but

there is always current data on hand for the start of a new graph instance.

B. Summary

RC scheduling addresses the determinism of the response time of a data flow machine.

Other research in the field of data-flow machines used in real-time environments, with the

exception of Old Dominion, note the importance of such determinism and then either

ignore the problem or use statistical profiles of an application to build in a response

cushion.

There are trade-offs in the approach insofar as deterministic execution profiles are

required to produce deterministic output flows. More deterministic performance can be

obtained from fully static scheduling policies but the RC approach offers a hybrid with the
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flexibility and robustness of dynamic data-flow with some of the determinism and

throughput performance of control-flow execution of each node.

C. Possible Improvements to The AN/UYS-2

The set-up, execution, and breakdown of nodes is one of the bigger overheads in the

implementation of the RC schedule. Lee [Lee 90] addresses the concept of hardware

implementation of functions normally performed through software. The main advantage of

the approach is that each fetch, set-up, breakdown, and write is much faster if performed in

hardware. This also enables processors to access shared memory the same way they access

local memory.

The addition of nearest-neighbor communication paths between the AP's might allow

more deterministic flow without the high overheads of a fully synchronous

implementation. This parallels some of the ideas of the Lincoln labs machine without major

alterations to the System hardware.

D. Future Research

The similarities of the Lincoln and Old Dominion machines to the AN/UYS-2 indicate

that performance and throughput determinism gains are most easily found by mixing the

balance of static and dynamic node scheduling. The RC technique is extremely good at

wrenching deterministic output flow from an existing architecture without expensive

modifications. These other approaches suggest that some gains can come from hardware

changes and some few from software.

The investigation of interprocessor communications and the modification of data

arrival rates are two promising avenues for further improvement of the AN/UYS-2 and the

RC technique. Each of these are implementable at low cost and have the potential to

increase the system's performance.
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Another avenue of investigation is the CAPS system's use of multiple rate execution

times. This capability can add flexibility to the range of applications the AN/UYS-2 can

handle and increase the life-span of the system for years to come.
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