 AD-A275 989 o
| AT @
. v

ELECTE . I -
FEB22 134 T document kG p.ena??g;:“d \ e
k& {or public releﬁsﬁ.@&i * R

SOFTWARE COST ESTIMATING MODELS:
| A COMPARATIVE STUDY OF WHAT THE
, . MODELS ESTIMATE

-—

THESIS

|

| : George A, Coggins, Captain, USAF
o Roy C. Russell, Captain, USAF

‘| AFIT/GCA/LAS/93S-4
|
|

94-0551 v
I ‘B

R T e 0

DEPARTMENT OF THi AIR FORCE

- y AIR UNIVERSITY
AIR FORCE INSTITUTE OF TECHNOLOGY
v — e ——————]
: Wright-Patterson Air Force Base, Ohio

M4 2 18 117 ull

{ e e
eyt

|
i - -
| \
" AFIT/GCA/LAS/93S-4
| :
|
o "o .
J. * .‘i.",%: v 2 \qﬁ& ﬂi’: "
B g a i
¥, L \
on M ki, *)
w P
! SOFTWARE COST ESTIMATING MODELS:
JI A COMPARATIVE STUDY OF WHAT THE e
| MODELS ESTIMATE oo e
!/ NTIS Ci Akl f\Jv |
; THESIS DiiC 121 ! !
.: Uverrie e d o
: George A. Coggins, Captain, USAF ot v j
; Roy C. Russeli, Captain, USAF T R
f AFIT/GCA/LAS/93S-4 BY)
Di-t:ibut.on! ;
it 1
| _ T T A et 1
: Dt Speindi :
| |
i _ i
- Ao I |
| Approved for public release; distribution unlimited
|

—— e

The views expressed in this thesis are those of the authors
i and do not reflect the official policy or position of the
Department of Defense or the U.S. Government.

]

@ —s

AFIT/IGCA/LAS/935+4

SOFTWARE COST ESTIMATING MODELS:
A COMPARATIVE STUDY OF WHAT THE MODELS ESTIMATE

THESIS

Presented to the Facullv of the Scheol of Logistics and Acquisition Management
of the Air Force Institute of Technology
Air University
in Partial Fulfillment of the
Requirements for the Degre 2 of

Master of Science in Cost Analysis

Gearge A. Coggins, B.S. Roy C. Russell, B.S.
Captain, USAF Captain, USAF

September 1993

Approved for public release; distribution unlimited

Acknowledgements

This research effort could not have been completed without the
assistance of several key individuals. We would iike to take this opportunity to . :-5
acknowledge these people.

We would like to thank Ray Kile for his thoughtful insights regarding
REVIC and Richard Maness of Martin Marietta for his assistance with SASET.
Our thanks to Wellington Kao, Karen McRitchie, and Dan Gallorath of SEER
Technologies for helping us understand SEER-SEM and to Jim Otte of PRICE
Systems for his help with PRICE-S. It would have been impossible to complete
this document without their assistance and patience in answering countless
qitestions about their respective models. We thank our thesis advisor, Dan
Ferens, for providing guidance and frequent feedback during this effort.

Finally, we would like to thank our wives and families for putting up with
their "absentee husbands". Chris thanks his wife, Lara, and daughter, Chelsea,
for their andless support and understanding. Andy thanks bis wife, Debbie, and
daughter, Jordan, for understanding the many times he couldn't be with them.

We couldn't have done it without you.

Andy Coggins and Chris Russsli

Table of Contents

~age

: ACKNOWIEAZEMENES ... ii
E . LISt OF FIQUIES ..o ettt re e e e eeea e v

|
} List Of Tables. . e vii
: ABSIract ... iX
{ Lo ItrodUCHION ..o e et 1

|
(RENEIAl ISSUGceiiiiiiee et e 1
SpeCfic Problem e 3
Research ObjectiVe ... e 4
; Scope of Re@search.............ccoociniii e e, 4
L DefiNitiONS it 5
,} THhESIS SITUCIUIEoceiie e e 7
H, Literature REVIBW ..o, 9
"' A OVBIVIBW ..ottt 9
e Software Development ISSUBSccoecviiiiiiiie e 9
| Ever-Increasing Size and Complexity...........cccccccooviiiiiiininenn, 9
g Software Sizing Problems. ... 11
Changing Requirements and Specifications... 13
Normalization Explained............cc.cccc oo e 14
Cost Model DesCriptionscoooviriiiiiiiiie e e, 15
| REVIC. e 15
' SASET . oottt et 17
| PRICE-S. . e e 18
i SEER-SEM ..o e 20
SUMMENY .ottt te e e eesre s arree e 21
| HE Methodologyo e e 22
N OVBIVIBW ..ot iicieie ettt e e et e e eee e e et 22
Phase 1. mdeoendent ANAIYSIS......iveieiit e 22
Phase 2. Validation and Concurrence...............cccccooovivveeeeeeeeee e, 24

“ i
\ !

] Page
- W FINdIngs ..o et e e eaa e 26
5 o Finding #1. Soitware Development Phases ...l 26
R Finding #2. Development Activities and Cost Elements........................ 38 .

I Finding #3. Source Lines of Code and i.anguage Oifferences.............. 47
» Finding #4. Key Model Attributes and ey Cost Drivers 54
. Finding #5. Implications ot Project Size on Model Qutput..................... 57
! Finding #6. Impact of Schedule Compression and Extensions 80
o Finding #7. Distinctive Characteristics of Model Data Bases....... 88
el rFinding #8. Resulis of Baseline Test €asecccooo i 91

|
3 V. Conclusions and Recommendationscococrvveorrmeeceeres oo, 100
i OVEIVIBW ...ttt v et eaa e e e et 100
: ll CONCIUSIONS ... oo e e100
l: ReCoOmMMENdatioNS...........ociiieii e e 102

|
b Appendix A: Checklist Used to Examine Cost Madelsc.ccooein i 104
' Appendix B: Model Inputs Sheets for the Baseline Test Case......................... 107
g i Bibliography R et e EareetaerieoaeaEsteeebteteaaeaaaeeaa e e tan bt e e eeas 154
| VIt e, e 158

|

|

|

|

|

j
: List of Figures
JI Page
! 1-1 Distribution of Software and Hardware Costs BT OUU TR 2
. { . 2-1 Effect of Adding Personnel to a Software Projectcv 11
4-1 Ripple Effect for Calculating Activity Estimates.................ccccciiin. 32
- 42 Example of PRICE-S Report with COst EISMENtSoccvrrerreveer 45
4-3 Example of SEER-SEM, ver 3.21 Report with Labor Categdries 45
| 4-4 Sample Ada and Assembly Program Operation.c..ccceeeeiin e 47
- i 4-5 Impact of REVIC Inputs for Persuinnel Capabilitias anu Experience 56
, 4-6 Impact of REVIC Inputs for Development Environment 57
| 4-7 Impact of REVIC Inputs for Target Environment..................ccccoooiis 57
' 4-8 Impact of REVIC Inputs for Project Requirements......................ccccees 58
4-5 Effect of Application on Cost for PRICE-S..............iiiii 61
. ‘: 4-10 Effect of New Design on Cost for PRICE-Scooooeiiieiiiiiii e 61
f 4-11 Effect of New Code on Cost far PRICE-Sccccocovviiveereceeeve e 62
| 4-12 Effact of Productivity Factor on Cost for PRICE-Sooooovveeeio, 62
4-13 Effect of Platform on Cost for PRICE-S ... 63
” i 4-14 Effect of Complexity on Cost for PRICE-Sc..oo oo, 63
) ! 4-15 Technology and Environment Impacts for SEER-SEM............................ 64
: l 4-16 Impact of SEER-SEM Inputs for Personnel Capabilities and
'| EXPOIIONCE ...t 65
4-17 Impact of SEER-SEM Inputs for Development Environment................... 65
; | 4-18 Impact of SEER-SEM Inputs for Target Environment 66
4-19 Impact of SEER-SEM Inputs for Project Requireménts 66
4-20 Functional Relationship Between Size and Effort for REVIC.................. 69

4-21 Functional Relationship Between Size and Effort for Various
Software Types in SASET ... e 72

4-22

4-23
4-24
4-25

Functional Relationship Between Size and Effort for
Software Classes in SASET ...

Functional Relationship Retween Size and Effort for
Schedule Penalty Factors for SASET ...
Effect of Schedule Constraints on Cost for PRICE-S

Vi

Various

SEER-SEM

i

2-1
2-2
2-3
4-1

4-2
4-3
4-4
4-5

4-6

47
4-8

4-9

4-10
4-11
4-12
4-13
4-14
4-15
4-16
4-17
4-18
4-19
4-20

List of Tables

Examples of Software Content in Recent Projects..................... P18‘0g
REVIC Parameters by Categoryccooovveeeviiniiiiiiieciviiiniieiiieci e, 16
PRICE-S Input Variablesccooeeen e 19
DoD-STD-2167A Phases/Activities and Key Formal Reviews or

AUIES ..ot e b s e s e 26
Correlation Matrix of Software Development Phasesc.c...ee 27
Defau't Allocation Percentages for REVIC Development Phases............ 29
Default Allocation Percentages for SASET Development Phases........... 30
Defauit Allocation Percentages for SEER-SEM Platform Knowledge

BaS .o 34
Default Aflocation Percentages for SEER-SEM Development

Method Knowledge Baseccccoeeviivniiciiiiiin e 35
Allocation Pcrcentages for SEER-SEM Development Phases 36
Descriptions of SEER-SEM's Development Methodsc.ococn o 36
Generai Development Activities included in Model Estimates................. 38
Specific Cost Elements/Activities Estimated by Each Model 39
REVIC Cost Elements and Definitions. ... 40
Default Allocation Percentages for REVIC's Activities..............ccccceeeee. 41

SASET Cost Elements and Definitionsccooeeneeiiiieiiiiciin 42
PRICE-S Cost Elements and Definitionscccocciiiiiii i, 44
SEER-SEM Cost Elements and Definitions ... 46
Sample SASET Caiculations for New HOL Equivalent SLOC................. 50
Language Selections within PRICE-S................cooi i 52
L.anguage Selections within SEER-SEM. ... 53
Categorization of Key Model Attributes 55
Default Values for SASET Software Types..............coovoiviciiiiiiiinin e, 89

Vii

Ry

4-21
4-22
4-23

4-24

4-25

4-26

4-27
4-28
4-29
4-30
4-31

Default Values for SASET Software Cilasses.............ccccccoiviiniin.] gge
Correlation Mairix of Project Size Relationships..........cccoovvvvvviiiiinn 68
Effort Equations Used by REVICcccoiiiiiiii e, 68
Impact of Breaking Large CSClI into Multiple Smaller CSCls in

S A S E T et e 73
Impact of Breaking Large CSC! into Multiple Smaller CSCls in

PRICE-S .. .ottt eie ettt s taesae et esar e e e ssaensa e s earasasesaaeene 76
impact of Breaking Large CSC! into Multiple Smalier CSCls in

SEER-SEM. ..o et 79
Impact of Schedule Compression and Extensions...................cccvveeeieee. 81
Scheduie Penalty Factors for REVIC.........c...oooocieivieiiiccieee e, 81
Impact of Stretching Out Full-Scale impiementation for SEER-SEM....... 86
Summary of Key Maodel Inputs for Baseline Test Case............................ 93
Baseline Test Case Results for Each Mcdel in Manmonths.................... 95

viii

AFIT/GCA/LAS/93S-4

Abstract

The objective of this thesis was to develop a consolidated document
which highlights the differences in definitions, assumptions, and methodologies
used by the REVIC, SASET, PRICE-S, and SEER-SEM cost models and
examines the impact of these differences on the resuiting estimates. To achieve
this objective, the foliowing research questions were investigated: (1) What
differences exist between the cost models? (2) How do these differences
impact the resuiting cost estimates? (3) To what degree can we explain and
adjust for differences between cost modeis?

Seven specific areas of model differences were addressed inciuding: (1)
software development phases, (2) development activities arnid cost elements, (3)
source lines of code and language differences, (4) key model attributes and key
cost drivers, (5) implications of prcject size on model output, (6) impact of
scheduie compression and extensions, and (7) distinctive characteristics of
model data bases.

A hypothetical baseline test case was developed to determine if users
could explain and adjust for known model differences. Although the researchers
felt the differences could be partially explained, it was very difficult to logicaily
adjust for the differences. It is tha researchers' opinion that the underlying

equations and model assumptions are so dissimilar that objective normalization

efforts are virtuaily impossible for the average modsl user.

SOFTWARE COST ESTIMATING MODELS:
A COMPARATIVE STUDY OF WHAT THE MODELS ESTIMATE

L_Introduction

General Issue

The computer revolution has dramatically impacted all facets of scciety.
Frem manned space flight to Nintendo™ games, computers have become an
integral part of daily life. We use computers to write term papers, analyze
properties of new drugs, and navigate aircraft. Most chiidren gain basic
computer skills in elementary school through interactive learning sessions and
on-line games.

However, within the Department of Defense (DoD), computer applications
go far beyond games. The basic role of the military is to defend and protect the
national interests of the United States. In sume instances, existing war fighting
capability cannot adequately address perceived threats. When this occurs, the
military community may initiate a new weapons system acquisition.

[gl l_ rai . -~ . _.
raceu w ap y 1anging v gy ail
t

weapon systems are increasingly dependent on computers and associated
software. As shown in Figure 1-1, current trends indicate computer software

development and maintenance costs for military systems generally exceed those

of the hardware system (1:18).

10¢

60 |~ \\\\
N

ol \\\Qm

i+ N oag \\ Muntenance

1955 1970 1985

Percont of tatal costs

Yesr

Figure 1-1. Distribution of Software and Hardware Costs (1:18)

As new military applications of computers were discovered, software
acquisition costs within the DoD skyrocketed. Software costs increased from
approximately $3.3 billion in 1974 to $10 billion in 1984 (2:1462). This rapid
growth in software costs shows no signs of abating. A recent study of DoD
mission critical software costs predicts a 12 percent annual growth rate from
$11.4 billion in 1985 to $36 billion in 1995 (2:1462). Given the current
environm nt of spiraling software costs and tight budget constraints, the need
for accurate estimates cannot be un.~rstated.

Unfort nately, software cos’. estimating capabilities have not kept pace
with the explosive growth of softwar > development. Parametric software cost
models used in the early 1980s were accurate to within 20 percent of the
project's actual cost only 68% of the time (1:495); however, no evidence of

significant improvements in cost estimation models was noted in several recent

studies of parametric cost models (3, 4, 5, 6).

This does not imply cost analysts should avoid using parametric cost
models. To the contrary, in the early stages of many projects when little actual
cost data is available, parametric cost models are ideal for generating initial
"ballpark" estimates. However, users should realize all new projects have a
certain degree of inherent risk and no model can estimate the cost of all possibie
contingencies for all projects. Even if such a model was available, analysts are
not automatically guaranteed good estimates. A software cost estimating medel,
like any other computer-based model, "is a 'garbage in - garbage cut' device: if
you put poor sizing and attribute-rating data in on one side, you will receive poor
cost estimates out ihe other side" (1:308).

Cost analysts have a variety of parametric models available to aid
preparation of software cost and schedule estimates. Currently, the four Air
FForce preferred software cost estimating models are: REVIC, SASET, PRICE-S
and SEER-SEM (7). Each model has its own terminology, assumptions,
estimating methouologies, strengths, and limitations. A thorough understanding

of the models and their differences is essential for accurate, credible: estimates.

Specific Problem

No singie or consolidated document exists which explaine the techr;cal
characteristics of the four preferred software cost models. As a resuit, it is
difficult to evaluate and compare cost estimaies generated by different cost
models. Analysts must refer to numerous users manuals, contact softwara
maodel vendors, or rely on second-hiand information when preparing and

comparing estimates from different models. In many instances, existing

documentation does not fully explai:i the intricacies of the models. More

importantly, many users are unaware of the differences between models or what

impact these differences have on the resulting estimates.

Research Objective

The objective of this thesis is to develop a consolidated document which
highlights the differences in definitions, assumptions, and methodologies used
by the REVIC, SASET, PRICE-S, and SEER-SEM cost models and examines the
impact of these differences on the resulting estimates. To achieve this objective,

the following questions must be investigated:

(1) What differences exist between the cost models?

(2) How do thase differences impact the resulting cost estimates?

(3) To what degree can we explain and adjust for differences between
cost models?

Scope of Research

This research effort was undertaken to support the Air Force Cost
Analysis Agsncy (AFCAA). Specifically, AFCAA requested a technical analysis
of the REVIC, SASET, PRICE-S, and SEER-SEM software cost estimating
models. As a result, only these four models were chosen for analysis. No
research effort was expended researching other existing cost estimating models
such as SLIM, COSTMODL, System-4, or Checkpoint.

This effort did not specifically research the estimating accuracy between
models. Research was conducted with the intent of explaining the differences
between the models and examining the impact of these differences on the

resulting estimates. Cost analysts should consider the strengths and

weaknesseas of each model as well as availability of information, time

i
;

constraints, and the nature of the proposed project prior to selecting a specific

model.

Definitions
The following definitions are provided to ensure the reader and
researchers have a mutual understanding of key terms and concepts used in this

thesis.

Algorithm. A mathematical set of orderad steps leading to the optimal
solution of a problern in a finite number of operations (8:557).

Analogy. An estimating methodology that compares the proposed system
to similar, existing systems. After adjusting for complexity, technical, or physica!
differences, the cost estimator extrapolates the estimated cost for the new
system using cost data from the existing system (9:A-5).

CSCl, CSC, and CSU. Larye software development efforts are generally
broken down into smatler, more manageable entities called computer software
configuration items (CSCls). Each CSCI may be further broken down into
computer system components (CSCs) and each CSC may be further broken
down into computer software units (CSUs) (10:B-14).

Cost Estimating. "The art of collecting and scientifically studying costs

and related information on cu: rent and past activities as a basis for projecting

s &s aii input 0 the decision process for a future activity.

T
L

Cost Model. A tool consisting of one or more cost estimating
relationships, estimating methodologies, or estimating techniques and used to

predict the cost of a system or its components (9:A-23).

Expert Opinion. An estimating methodology which queries technical
experts and users 1egarding the estimated cost of a proposed system (8:581).

Hardware. Cansists of the physical and electrical components of a
computer system including items such as circuits, disk drives, wiring, and
associated peripherals involved in the actual functions of the computer (12).

Normalization. The process of rendering constant or adjusting for known
differences (8:594).

Parametric Cost Model. A mcdel that employs one or more cost
estimating relationships for measurement of costs associated with the
development of an item based on the project's technical, physical, or other
characteristics (8:596).

PRICE-S. Programmed Review of Information for Costing and
Evaluation - Software. A commercial software cost estimatirig mode! distributed
by PRICE Systems, a division of Martin Marietta Corporation. See the Cost
Madel Description section in Chapter |l for details regarding this model.

REVIC. Revised Enhanced Version of Intermediate COCOMO. A non-
proprietary parametric cost model used to estimate software costs. See the Cost
Model Description section in Chapter Il for details regarding this model.

SASET. Software Architecture Sizing and Estimation Tool. A non-
proprietary parametric cost model used to estimate software costs. See the Cost
Model Description section in Chapter |l for details regarding this model.

SEER-SEM. System Evaluation and Estimation of Resources - Software

-Estimation Model. A commercial software cost estimating model developed by

Galorath Associates, Incorporated. SEER-SEM is currently site-licensed for Air

Force use. See the Cost Mode! Description section in Chapter Il for details

regarding this model.

|
-
i
!
i

Software. The combination of computer programs, data, and
documentation which enable computer equipment to perform computational or
central functions (12).

Software Development Cycle. The software development cycle is

typically broken into 8 phases: (1) System Requirements Analysis and Design,
(2) Software Requirements Analysis, (3) Preiiminary Design, (4) Detailed
Design, (5) Code and CSU Testing, (6) CSC Integraticn and Testing, (7) CSCI
Testing, and (8) System Testing. Software maintenance is often considered the
ninth phase in this sequence (10).

Software Maintenance. Software does not break or wear out;

maintenance refers to corrective, adaptive, and perfective charniges to software.
Changes result when correcting software errors (corrective), responding to
changing data or processing requirements (adaptive) and improving features
through erihancements (perfective) (13:4).

Source Line of Code (SLOC). For purposes of this research effort, SLOC

is defined as all lines of executable and non-executable code with the exception
of embedded comments. See Chapter IV, Findings, for specific model
definitions for SLOC.

Thesis Structure

investigative questions. The information gained by answering these questions
will allow the researchers to compile a consolidated document which highlights
the differences between the cost modeis and examines how these differences

impact the cost estimates. Chap’er ll, Literature Review, reviews recent

publications in the area of software cost estimating and describes each of the

cost models selected for review. Chapter iil, Methodology, explains how the
! research effort was structured to gather information needed to answer the
investigative questions. Chapter IV, Findings, analyzes the information obtained

and answers the investigative questions. Chapter V, Conclusions and

Recommendations, draws an overall conclusion regarding the differences
between cost models based on the literature review and information obtained

and analyzed in the preceding sections of the thesis. Chapter V aiso identifies

areas where further rasearch may be warranted.

|I. Literature Review

———

Overview

This chapter reviews recent publications and research efforts in the field
of software cost and schedule estimation. Specifically, this review (1) examines
software development issues wiich impact the accuracy of cost estimates, (2)
explains a normalization technique for comparing estimates generated by
different cost models, and (3) provides descriptions of the cost models reviewed

in this research effort.

Software Deveiopment lssues

Software developers and cost estimators seldom use the phrase "on-time
and under-budget" ‘when describing their latest software project. Three software
development issues contribute to this problem: ever-increasing project size and
complexity, software sizing problerns, and unstable software requirements and
specifications.

Ever-Increasing Size and Complexity. Since the beginning of software
development, there has been a race between the capabilities of the toois
available to programmers and the increasing complexities and sizes of the
programs they wera called upon to create (14:6). Early programming languages,
such as Assembly language, required tne programmer to transform a problem
from its mathematical forni iito the step-by-step format demanded by the
language. Assembly ianguage programming was a slow, time-consuming
method of generating code. However, high ordered languages (HOL) such as

FORTRAN and Ada increased programmer efficiency because each line of HOL

generated several Assembly commands.

As programming efficiency increased, the size of software programs also
increased. Table 2-1 provides examples of software development efforts for

several recent projects.

Table 2-1. Examples of Software Content in Recent Projects (15:100, 101, 104)

1989 Lincoln Continental 83,517 35 1.8
Lotus 1-2-3 v. 3 400,000 263 7.0
Citibank Autoteller 780,000 150 13.2
Space Shuttle 25,600.000 22,096 1200.0

As the preceding table indicates, software programming has become a more
intricate, and costly, component of major projects.

One apparent solution for tackling large projects is to hire more
programmers. However, empirical evidence indicates this approach is seldom
applicable when dealing with software projects (16:18). Frederick Brooks,

author of The Mythical Manmonth, notes software programming is not a perfectly

partitionable task - simply adding people does not guarantee the job wiil be
accomplished sooner (16:18). Although total effort initially decreases as workers
are added, total effort actually increases as more and more workers are added
to a project. Brooks attributes this effect to increased intercommunication neecs
(16:18). As more workers are added, more intercommunication is necessary to
ensure all the workers work toward the same goal. Beyond a certain point, the
benefits gained by adding more workers are outweighed by the increased

communication needs (16:19). Figure 2 -1 illustrates Brooks' Law.

10

Months

Figure 2-1. Effect of Adding Personnel to a Software Project (16:19)

Not cnly are projects becoming larger, but project complexity is also
increasing. In his article "No Silver Buliet. Essence and Accidents of Software

|
' Engineering”, Brooks states:

Software entities are more complex for their size than perhaps anv ather
| human construct because no two parts are alike (at least above the
] statement level) ... in this respect, software systems differ profoundly
i from computers, buildings, or automobiles, where repeated elements
! abound. (17:11)
|

/ Software Sizing Problems. Estimating project size has hean described as

N a very difficult undertaking "often considered to require black magic” (18:19). To
measure size, one r:quires a measurement technique. ,\lthough a number of
sizing methodologies exist, two of the most commonly used methods are
counting source lines of code (SLOC) and using function point aigorithms (or

some variation of the basic function point algorithm).

11

One of the most common techniques for measuring project size is
counting the number of SLOC. Many software cost estimating modeis assume
there is a relationship between SLOC developed and estimated development
cost (1:58; 14:25; 19:5-2; 20:1). This relationship appeals to the layman since it
seems logical for development costs to increase as project size increases.
(Note: These models also take many other factors into account when generating

cost estimates. See the_Cost Model Description section in this chapter for

additional information on each modei).

Using lines of code as a sizing technique presents an unusual paradox.
Moét cost models require an estimated number of lines of code, yet the actual
number of lines developed are not known until after the project 's compieted.
Overall, the SL.OCC measurement technique was criticized throughout the
literature. Most importantly, few people currently agree on wnat constitutes a
line of code (5:22). This situation is attributed to a lack of well-defined rules for
counting lines of code in each programming language (1:58; 21:13). For
example, should we count only procedural lines of code or do we include
declarative statements? How do we account for comments or blank lines of
code? Do we count prototyped code or only delivered source lines of code?

Differing rules for counting SLOC is not the only factor contributing te
sizing problems. There is also a lack of agreement for conversion factors when
comparing code written in different languages. For example, high order
languages are considered more efficient from a programming viewpoint than
Assembly because one line of HOL code generates sever.i lines of Assembly
code. Therefore, when comparing a program written in Assembly code and
another written in Ada code, an estimator should use a convarsion factor to

ensure an "apples-to-apples" comparison. One list of conversion factors claims

12

one line of COBOL is equivalent to three lines of Assembly, one line of PL1
equals 4.5 lines of Assembly, and 1 line of Smalltalk equa!s 15 lines of Assembly
(21:14). However, there is currently no universally accepted convention for
these equivalencies (21:14).

Due to the criticisms of using SLOC when measuring project size, several
alternative techniques have been suggested. Function points, introduced by
Ailan Albrecht, are computed from five attributes of a program: the number of
external input types, external output types, logicai internal types, external
interfaces types and external inquiry types (22:1-2). Several variations on
Albrecht's function peints have evolved including Adjusted Function Points, Mark
Il Function Points, and Capers Jones' Feature Points. Although some
independent studies have verified function points are superior to SLOC for
estimating cost and effort for business-related projects (22:2-3), a recent study
indicates function points are less useful for estimating real-time projects (4:45).

Changing Requirements and Specifications. According to one software

developer, the hardest part of building a software system is deciding exactiy
what to build. No other step in the development process cripples the resulting
system moie than a poorly defined system and no other part is more difficult to
later rectify (17:17). As projects become larger and more complex, the
importance of well-defined specifications cannot be understated. However,
translating customer needs to written documenits understandable by all parties
continues to be a very difficult endeavor.

In his book, The Scftware Development Proiect: Planning and Managing,

Phillip Bruce identifies well-defined software requirements as the cornerstone of
a weli-defined, well-understood, and weli-costed software develcpment effort

(23:17). Vague, pecorly written requirements hamper pricing and design efforts

13

by the developing contractor. Many times, program deficiencies resuiting from
poor requirements are not identified until the acceptance demonstration when
the customer realizes the software does not have certain displays, interactive
menus, or other desired features (23:17).

This does not suggest good requirements are carved in stcne and never ’
change. Software requirements are st'bject to change throughout the
development process. Many factors contribute to these changes: the customer
desires a more functional software package, new technologies are developed,
or funding and mission pricrities change. According to Alan Davis, user needs
are constantly evolving; therefore, the system under development is always
aiming at a moving target (24:1454).

However, the very nature of the software itself is often biamed for this
changeability. Paul Rook made the following observations about software

characteristics in a Software Engingering Journal article:

(1) Software has no physical appearance.
(2) ltis deceptively easy to introduce changes into software.

(3) Effects of software changes propagate explosively. (25.7)

Normalization Explained

When asked how much they are willing to pay for a car, most consumers
will adjust their offer price based on the presence {or absence) of varicus
features such as air-conditioning, compact disk player, or other interior
upgrades. This process of making adjustments for known differences is

commonly referred to as normalization. The concept of normalization is

14

particularly important when comparing cost estimates generated by different cost
models.

According to The AFSC Cost Estimating Handbook, proper use of any

cost model requires a thorough analysis of the model's assumptions and
limitations as well as its capabilities and features (9:8-6). This handboock points
out several key questions the cost estimator should resolve before using any

model to prepare an estimate. Specifically:

(1) What phases of the acquisition cycle are included in the model?
(2) Is the data required to use the model available?

(3) What units of measure are used by the modei (dollars or
manmonthis)?

(4) What is the content of the data base nan which the mode! was
derived? ’

(5) What is the range of input .aiues for which the model is valid? (9:8-6
to 8-10)

Unless the estirator uncerstand= i« underlying assumptions of the model,
which phases and activity costs are included it the estimate, and other such
questions, it is impossible to fairly compare one modei's cost estimate to a

different model's cost estimate.

viodei Descriptions

VIC. Revised Enhanced Version of Intermediate COCOMO is a non-

proprietary cost medel currently managed by the Air Force Cost Analysis
Agency. Raymond L. Kile developed REVIC in response to an Air Force

Centract Management Division initiative to improve oversight of government

£ T — oy ‘\‘ e

s e R A R R

P — 0.0 1) A Syt P 4, \ T st P L TR

software contract and for better support of software contract proposal

evaluations (20). REVIC is a variation of the intermediate CCCOMOQ described

¥

in Dr. Boehm's book Software Engineering Economics (1). According to the

by

i

REVIC user manuai, the model estimates develocpment life cycle costs for

software development from requirements analysis through completion of the ‘
m-l software acceptance testing and a fifteen year mait:ic vanice life cycle (20:1). All
equations used by the REVIC model are published in the REVIC user's guide.
The only required input necessary for running REVIC is a SLOC estimate
‘ for the proposed project (20:4). However, the user can tailor an estimate by
| adjusting various categorical variaties used by REVIC. The madel has four
- : primary input categories: personnel, computer, product, and project attributes
- :15 with 19 subordinate attributes. See Table 2-2 for REVIC inputs.
o]
g Tabie 2-2. REVIC Parameters by Category (20)
L
i i Analysi Capability ACAP | Requirements Volatility (Note 1) | RVOL
i | Programmer Capability PCAP | Required Reliability RELY
e Applications Experience AEXP | Dala Base Size DATA
, Virtuat Machine Experience VEXP | Complexity CPLX
o Language Experience LEXP | Required Reuse (Note 1) RUGE
id
! Modein Programming Practices MODP | Time Constrainis TIME
5 Development Tools TOOL | Storage Limitatians STOR
i Project Security (Note 1) SECU | Virtual Machine Volatility VIRT
1‘ Development Schedule (Note 2) SCED | Computar Tumarouad Time TURN
’ N Management Reserve {(Note 1) MRES
Lo e ,

] Note 1: Additional paramisters not found in COCOMO.
3 Nota 2: REVIC accapts only the nomiral (1.00) vaiue tor SCED.

The user selects from available ratings for each parameter which range

from Very Low (VL) to Extremely High (XX). Each rating ranslaies v a

16

numerical value and when afl 19 values are multiplied together, an

! environmental factor is calculated. This environmental factor is then used in

i . REVIC's equations to calculate the project's schedule and cost.

! The REVIC model differs from COCOMO model in several ways. The

. primary difference between REVIC and COCOMO is the basic coefficients used
I in the model's equations (20:4). REVIC was calibrated exclusively on DoD
software development projects whereas COCOMO was not (13:5; 1:496). As a
result, different coefficients were calculated when regression techniques were
applied to the new set of calibration projects.

SASET. The Software Architecture Sizing and Estimation Yool is a non-
proprietary model developed by Martin Marietta Corporation for the Naval Center
for Cost Analysis (6:2-9). The Air Force Cost Analysis Agency is currently the
central Air Force focai point and sponsor for this model (7). SASET is a forward-
chaining, rule-based expert system utilizing a hierarchically structured
knowledge database to provide functional software sizing values and an optimal
software development schedule (26:1-2). COptimal development schedule refers
to a derived schedule . ased on historical data reflecting the minimum
development cost (26:1-3).

According to the SASET on-line tutorial, SASET uses a three-tiered
approach to obtain input regarding snvironmental, sizing, and complexity factors
related to propnsed system (12). These three tiers are accompanied by fourth
‘ and fifth tiers wrich gather maintenance and risk analysis information. Tier 1
l ' gathers information regarding type and class of software, prograniming
\ language, number of CSCls, and other development environmental fi:ctors. Tier
! 2 develops lines of code estimates based on user inputs regarding sottware

functions, CSCis, and CSCs.

o 17

[=

SASET's sizing methodology is unique among the four models reviewed
in this thesis. (New versions of SEER-SEM released since the beginning of this
research effort also address function point sizing). Most cost models require the
user to input the number of estimated lines of code; however, SASET aliows the
user to enter functional elements of the proposed system without any knowledge
of the estimated number of iines of code. SASET will generate a line of code
estimate based on the functionality specified by the user (12). The user also has
the option of directly inputting an independent size estimate.

Tier 3 describes the software complexity issues of the proposed system.
The user rates 20 complexity issues on a scaie of 1 (very complex) to 4 (simple}
(26:5-52). Examples of the compiexity issues include system requirements,
software documentation, development facilities, hardware constraints, software
interfaces, and software experience (29.5-52 to 5-55).

Tiers 4 and 5 are not necessary for development effort estimation. Tier 4

- defines the maintenance complexities and a maintenance schedule (12). Tier &

provides risk analysis on sizing, schedule, and budget data. SASET uses Monte
Carlo simulation techniques to create distribution curves and various tables of
risk assessment parameters (26:1-3).

PRICE-S. PRICE-S is a commercially available software cost model
distributed by PRICE Systems, a division of Martin Marietta Corporation.
PRICE-S operates in a Microsoft Windows environment and features pull-down
enus and an extensive on-line help facility. Due to its proprietary nature, all
equations used by the model are not published; however, the PRICE-S) “ ‘,

Reference Manual and other reports describe »ssential equations and expiain i

the methodologies used to develop the maodel (27, 28).

18

PRICE-S generates software cost estimates based on project scope,
program composition, processor loading and demonstrated organization
performance, and other environmental factors (27:A-1-1). PRICE-S inputs are

@ grouped into seven main cateqgories. (See Table 2-3 for model categories.)

Table 2-3. PRICE-S Input /ariables (27:A-1-9)

1. Project Magnitude (How big?)
The amount of code to be produced and the languages to be used.

|
! 2. Program Application (What Character?)

The type of project such as MIS, Command and Control, Telemetry,
l Communications, etc.
|
i

3. Levei of New Design and Code /How much new work is needed?)
The amount of design and code that cannot be taken from existing inventory.

4. Productivity (Who will do the work?)
The experience, skill, and know-how of the assigned individuals or team, as
applicable to the specified task.

5. Utilization (What hardware constrain{s?)
The extent of processor loading relative to its speed and memory capacity.

i ,h 6. User Specifications and Reliability Requirements (Where and how used?)
5 The levei of requiremunts reiating to testing, transportability and end use of
4 the product.

7. Development Environment (What coinplicating factors exist?)

The relative impact of unique project conditions on the normal tin.e required

to complete the job, measured with respect to the arganization, re:sources, program
oA application and project size.

~e._

Operational and testing requirements are incorporated, together with
technology growth and inflation, to calculate values for six cost categories in
nine developmerit phases (PRICE-S considers one "pre-software” phase plus

the eight standard development phases) (27:A-1-2). Cost categories calculated

J by PRICE-S include Design, Prograrmming, Data, Sy ~tem Engineering/Program

Management, Quality Assurance, and Configuration Management (27:A-1-2).

19

SEER-SEM. System Estimation and Evaluation of Resources - Software
Estimation Model is a commercial cost model! distributed by Galorath Associates,
Incorporated and operates in a Microsoft Windows environment. SEER-SEM is
based on a mathematica! software estimation model deveioped by Dr. Randall
W. Jensen (19:5-1). Although the original model was developed during 1979 -
1980, SEER-SEM makes use of the latest updates to its input parameters by Dr.
Jensen, statistical conclusions from eight additional years of historical data, and
the experierice of software cost estimation experts (19:5-1). According to the

SEER-SEM user manual, the model:

(1) produces estimates for software developments from System Concept
through 25 years of operational support

(2) furnishes the estimator with a wide range of inputs to ensure proper
representation of each unique sofiware development

(3) supplies basic software development estimation, des: Jn-to, and cost-
to-comnplete capabilities

(4) offers many, varied output reports to ensure the estimator has all the
information necessary to estimate, monitor and control software
development projects. (19:5-1)

SEER-SEM has four primary input categories including plaiform,
application, development method, and development standard (19:Appendix E-1).
The mode! uses these four inputs to selact a sat of default parameter inputs from
integral knowledge bases. The only other required input is an estimated range
for number ¢ © lines of code to be developed.

The user may fine-tune the model by altering the default input parameters
selected from the knowledge base. Several key SEER-SEM parameters include

complexity, personnel capabilities, development support environment, product

20

development requirements, product reusability requirements, development
environment complexity, target environment, schedule, staffing, and software
maintenance. The user must provide three values: one for the low value, one
for the most likely value, and one for the high value (19:10-1).

The model also provides eighteen different reports analyzing cost,

schedule, and input relationships and generates charts for staffing plans,

schedule risk, and effort risk (19:11-1, 11-27). Some of the key reports
generated by SEER-SEM include the Quick Estimate Report, Basic Estimate

Report, Maintenance/Qpgaration Support Report, and Inputs Report. The user
can display these various reports in one window and the input parameters in
another window. This allows the user to analyze how the cost estimate is

impacted by changes in various input parameters.

Summary
This chapter reviewed recent publications and research efforts in the field
of software cost estimation. Several factors impacting the accuracy of cost

estimates were examined, the coricept of noermalizatinn was explained, and

model descriptions were obtained. The literature was consistent in one respect: ‘

software cost modeis, in and of themselves, do not automatically generate good |

cost estimates. One model developer best summed up this sentiment by stating: ’

Estimation is not a mechanical process. Art, skill, and knowledge are
involved The model's responsibilities are to transform measures of
estimators into consistent projections for costs and schedules. The model
cannot make the initial judgments that define the product, nor can it
commit an organization to achieving goals. It does not replace
estimators. It merely helps them do their job more quickly, more
consistently, and more thoroughly. (28:61)

lll,_Methodology

Overview

This chapter discusses the methodology used for this research effort.
Research was conducted in two phases: (1) independent analysis of the cost
models and (2) validation and concurrence of analysis by cost model vendors

and model axperts.

Phase 1. Independent Analysis

The purpose of this phase was threefold. First, the researchers had to
become familiar with each software model beforc Iny meaningful analysis could
be performed. Second, after gaining familiarity with the models, the researchers
examined the underlying assumptions and equations of each model to identify
significant differences. Lastly, a baseline case study was developed and
sensitivity analyses were conducted to determine the impact of identified
differences between models.

During the first part of this phase, the researchers worked primarily on
becoming familiar with each model under review. To achieve this objective, a
review of current software cost estimating literature was conducted, previous
model analyses were reviewead, and REVIC, SASET, PRICE-S and SEER-SEM
software and user manuals were obtained. On-line tutorials for PRICE-S,
SASET, and SEER-SEN were completed by the researchers (REVIC dees not
have this capability). Lastly, focal points for each model were identified to
provide additional assistance as required. Telephone interviews were the

primary means of communication with the focal points.

22

During the second part of this phase, the researchers examined the
underlying assumptions and equations of each model to identify significant
i differences. To achieve this objective, the researchers relied heavily on the
i models' user manualis, technical reports, published articles, telephone interviews
i with model vendors, and hands-on experience with the models. To limit the risks
associated with concurrent research (e.g. two team members conduct research
on different models), a checklist was developed for examining the models. A
! brief excerpt of the checklist is provided below. See Appendix A for complete
checklist use:d by researchers. Each issue was addressed as a specific finding

in Chapter IV, Findings.

issue 1. What DoD-STD-2167A phases and activities are included in the
estimate produced by each madel?

Issue 2. What general development activities and specific cost elements
are estimated?

Issue 3. How does each model define a source line of code and how are
tanguage differences accounted for?

Issue 4. Which model factors are key cost drivers? What estimating
methodology was used to develop these factors?

Issue 5. How does the model accaunt for schedule compression and
extensions?

Issue 6. What implications does project size have on model output?

Issue 7. Are there any distinctive characteristics about the model's data
base(s)?

During the third portion of thi phase, a baseline case study was
developed and sensitivity analyses were conducted to examine the impact of

identified differences between models. The case study was based on a fictional

| 23

flight avionics system. The fictional system was programmed in Ada and
developed using the traditional waterfali software development life cycle. See
Chapter IV, Findings for additional details regarding the case study.

A fictional case study was preferred over actual program data for several
reasons. Most importantly, it was the most flexible approach and allowed us to
develop a workable case study within this research effort's time frame.
Secondly, fictionai data alleviated any potential problems with collecting and
using proprietary data. Lastly, the purpose of this effort was to examine how the
models estimate rather than to second-guess the cost estimates of previously
completed projects or to compare the model's relative accuracies.

Using the information provided in the case study, cost estimates were
generated using the nominal (default) values for all inputs in each model to
determine the base cost estimates. With the assistance of the medel
developers/vendors, the researchers then adjusted model inputs to more

accurately reflect the development environment for the fictional case.

Phase 2. Validation and Concurrence
This phase focused primarily on querying model vendors and model
experts to obtain any additionai information not found during independent

research and validating research results with vendors. Important steps included:

1) Interviewing vendors/imodel experts (o oblain necessary ii

not found in independent analysis.

Wormation

2) Validating accuracy of research results with vendors/model experts.
3) Documenting results of validations/concurrences with vendors.

4) Reevaluating and updating, if necessary, research results after
discussions with vendors.

24

This phase relied extensively on telephone and personal interviews with
model vendors and experts. Additionally, there was an inherent degree of
overlap between Phase 1 and Phase 2. Frequent conversations were necessary
with model vendors since all equations and internal logic for the models are not

published and readily available.

25

i
s
F
|t
&
1

V. Findings

[NDING #1. Software Devaelopment Phases

Software development efforts within the Air Force are guided primarily by

two standards: DoD-STD-2167A for weapon system software and DoD-STD-

7935A for management information systems. DoD-STD-7935A will not be

discussed since this effort focused specifically on software development efforts

related to new or modified weapon systems. DoD-STD-2167A establishes

uniform requirements for software development efforts which are applicable

throujhout the weapon system's life cycie (10:B-7). (See Table 4-1 for

DoD-STD-2167A phases.) Although the standard is not intended to specify or

discourage use of any particular software development methed, it outlines

several major activities and key formal reviews the software development

process should encompass.

Table 4-1. DoD-STD-2167A Phases/Activities and Key Formal
Reviews or Audits (16:B-7)

SR, LAY $ QYOI THAE VWS 4
Phase 1 | System Requirements Analysis/Design | System Requirements Review (SRR)
System Design Review (S5DR)
Phase 2 | Software Requirements Analysis Software Specification Review (SSR)
Phase 3 | Preliminary Design Prefiminary Design Review (PDR)
Phase 4 | Detailed Design Critical Design Review (CDR)
Phase 5 | Coding and CSU Testing _ None
Phase 6 | CSC Integration and Testing Test Readiness Review (TRR)
Phase 7 | CSCI Testing Functional Configuration Audit (FCA)
Physical Configuration Audit (PCA)
Phase 8 | System Integration and Testing Formal Qualification Review (FQR)

26

Given the eight software develocpment phases identified by DoD-STD-
2167A, each software cost estimating model was examined to determine which
phases were included in the estimate produced by each model and how effort
was allocated among the development phases. Additionally, the model's ability
to account for alternative approaches for implementing the seftware life cycle
was reviewed. Table 4-2 summarizes the phases encompassed by the models

and is followed by a detailed discussion of each modei.

Table 4-2. Correiation Matrix of Software Development Phases

System Rqmts Not Addressed System Concept System Concept S/W Rygmts Analysis
Analysis/Design By Model NOTE 1
System SW Rqmts System S/W Rgmts
Analysis Analysis
SMW Rqmts
S/W Rqint lysi Rgmts
/W Rgints Analysis Engineering SMW Rgmts Analysis | S/AW Rqmis Analysis

Prellminary Design

Prellminary Design

Preliminary Design

Prellminary Design

Preliminary Design

Detailed Design Critical Design Detailed Design Detailed Design Detailed Design
Code & CSU Test Code and Unit Code Coda and Test Code & CSU Test

Testing

Uni Testing

CSC Integration & CSC Informal CSC integration &
Testing Testing Test
CSCI Testing Integration & Test CSCl Formal Testing | CSCI Testing CSCl Testing
System Integration & Developiment Test System Integration & | System Test System integrate

Test

& Evaluaticn

Tesling

Operational Test &
Evaluation

Through Operational
Test & Evaiuation

Note 1: Initial research was performed with SEER-SEM, ver. 3.00. The current version (3.21) further

allocates scheduie/effoit to System Requirements Analysis and S/W Requirements Analysis.

27

REVIC. REVIC estimates costs for six development phases versus the
sight identified by DoD-STD-2167A phases. Although the model estimates effort
associated with S/W Requirements Analysis, REVIC does not accounf for
System Requirements Analysis/Design effort. REVIC also combines phases 5
and & of DoD-STD-2167A into a Code and Unit Testing phase (20:3).

REVIC's terminology for its last two phases can cause some confusion
when comparing these phases against those identified by DoD-STD-2167A.
REVIC's Integration & Test phase is actually comparable to DoD-STD-2167A's
CSClI Testing phase. The REVIC User Manual defines the Integration & Test
phase as the integration of CSCs into CSCis and the testing of the CSCls
against the test criteria developed in the program (20:3). This effort corresponds
to DoD-STD-2167A's definition of the CSCI test phase. Additionally, REVIC's
Development Test & Evaluation phase is similar to DoD-STD-2167A's System
Integration & Test. This phase includes testing the weapon system to ensure
the requirements of the system level specifications are met.

Methadology for Aiiocating Development Effort Among Phases. REVIC

initially calculates total software development effort based on user inputs for
SLOC and various environmental factors. Total development effort is then
allocated to four phases based on preset percentages. (See Table 4-3 for
REVIC's default allocation percentages.) The model then adds 12% of total
development effort for S/W Requirements and 22% for Development Test and
Evaluation (DT&E) to account for the remaining two phases. For example, if the
effort associated with Preliminary Design, Critical Design, Code & Unit Testing,
and Integration & Test equals 1000 manmonths, REVIC adds 120 manmonths
for S/W Requirements Engineering and 220 manmonths for the DT&E phase.

The final estimate will total 1340 manmenths. Users may change the

28

Vil
,

2,

Table 4-3. Default Allocation Perceniages for REVIC Developmd nt Phases

Preliminary Design ’ 23%
Crtical Design 29%
Code & Unit Testing “ 22%
—I—ntegration & Test) 26%

percentages associated with these two phasas to better matci the distribution of
effort applicable to their particular organization.

Primary and Aiternative Approzches to the Sottware Lite Cycle. REVIC is

based on the waterfall life cycle anproach The mndel does not allow the user to
specify ottier life cycle approaches such as evolutionary, prototype, or
incremental developmeni. Although REVIC has several development mode
optiors (Ada, Organic, Semi-detacted, and Embedded), these nicdes dzscribe
the lype of deveiopment project and not the software life cycle approach.

SASET. If the user selects the DoD-STD-2167A life cycle optien, SASET
estimates co. t and schedule milestones for ten pnases versus the eighi phases
idertitied by DoD-STD-2167A. SASET Liaaks Phasc 1 into two phases: &
System Concept phase ard a Syster, Softvare Requirements Analysis piiase.
SASET alsn divides Phase £ into two distinct phases: a (Code phase and a Unit
Test phase. Al other SASET phiases are egquivalent to the phases described vy
DoD-STG-2167A.

Methodology for Allocating Develupment Etfort Among Phases. Like

REWVIC, SASET first calculates total development effort and then allocates a

percentags o the efiurt to each of the ten phases. The user can change the

29

L

default aljocation percentages, however, the allocation percentages mur* add up

:‘,'-r_ . to 1.0. (See Table 4-4 for the SASET's default allocation percentages.)

Tabla 4.4. Default Allocatien Percentages for SASEY Development Phases

s | . System Consupt 7.5%
: \ System S/W Requirements Analysis 8.5%
. ; S/W Reqgairements Analysis 9.0%
. Preliminary Design 7.0%
Detailed Design 17.0%

Code 13.0%

Unit Testing 7.0%

CSC Intorrn2] Testing 9.0%

' ‘ CSCl Formal Testing . 7.0%
‘ J Systern Integration & Testing 15.0%

E it should also be noted SASET adds an integration penaity when several

CSCls must be integrated. However, the integration penalty is simply added to

the total efiort and distrivuted then among all ten phases based on the allocation

. perceritage. The user has the option of assigning higher allocation percentages

"3y o the applicable ghases to more accurately capture the additional effort involved
g with CSCl integration.

Crimary and Alternative Approaches to the Software Life Cycle. SASET is

' based on the waterfall life cycle approach. The model does not have spercific
nptions wh.ch allow the user to select alternative life cycle approaches s wh as

evolutionary, prototype, or incremental development. However, if the use; was

30

extremely proficient with adjusting SASET calibration files, alternative life cycle
approaches could be modeled (29).

PRICE-S. PRICE-S estimates cost and schedule milestones for nine
phases of software development versus the eight phases identified by DoD-
STD-2167A. PRICE-S breaks the System Requirements Analysis/Design
phase into two phases: a System Concept phase and a System Software
Requirements Analysis phase. PRICE-S also combines phases five and six of
DoD-STD-2167A into a Code and Test phase. With the exception of the
Operational Test & Evaluation phase, all other phases are equivalent to the
phases described by DoD-STD-2167A.

The Operational Test and Evaluation phase accounts for contractor
support costs related to the operationa! effectiveness and suitability of the
deployed system. According to a PRICE-S model developer, this phase should
be included if the project is a fairly simple effort (i.e. one or two contractors
involved). However, if the effort is more complex and involves several
contractors performing tests at various locations, the analyst should exclude this
phase and estimate these costs outside of the madel (30).

Methodology for Aflocating Development Effort Among Phases. PRICE-S

differs from REVIC and SASET in that no preset allocation percentages are used
to distribute effort to the various software development phases. The core of
PRICE-S consists of three major development activities: design, implementation
and testing. These activities comprise Preliminary Design, Detailed Design,
(Code and Unit Test and CSCI Test. Key costs for the three major development
activities are estimated and then a "ripple effect" submodel is used to distribute
the cnsts across the software development phases. Figure 4-1 illustrates the

ripple effect submodel used by PRICE-S.

31

COSTS IN DOLLARS/10C0 DESIGN IMPL T &i TOTAL

SYSTEMS ENGINEERING 4 (49 313) 781,
PROGRAMMING 38.
CONFIG CONTROL, Q/A *-)iv N2
DOCUMENTATION - 162,

PROGRAM MANAGEMENT "
TOTAL 1778

o

Figure 4-1, Ripple Effect for Calculating Activity Estimates (31)

The model developers viewed systems engineering during design as the
key to software deveiopment effort (28:6). As systems engineering for a project
increases, all other efforts necassary to complete the project wili also increase.
This is why the model developers call systems engineering "key" and use it as
the starting point for the ripple effect.

According to "The Central Equations of the PRICE Software Cost Model”,
programming, configuration management, a. ! quality assurance are viewed as
supporting activities during the design phase (28:41). A~ arestilt, their effort
and cost are driven by the amount of activity in systems engineering. This
relationship is illustrated in Figure 4-1 by the two arrows immediately below the
system engineering sstimate. Dacumentation is a funation of the three
preceding activities and program management is a function cf the suin of the
four elements that need to be estimated.

Programming is the central activity in the implementation phase and the
same approach used to estimate design costs is used to estirnate supporting

activities. During integration and testing, PRICE-S model developers elected to

32

X b Mmoo
e ——— .

|
-
: ‘]

R

use systems engineering as the driver and all supporting activities are calculated
from this factor (28:41). _

After these caizulations are performed, the costs are rebalanced to
account for several faclors such as high utiiization and specification levels. The
Systams Engineering cost is apportioned to Design Engineering and System
Engineering/ Program Management. Configuration/Quality Assurance is split
into two cust elements: Config ration Ma.agement and Quality Assurance
(28:47). The design activity is mapped to Preiiminary Design and Detailed
Desiyn, implementation is mapped to Code and Unit Test, and integration and
test is mapped to CSC1 Taest. Profiles are then created for each of the cost
categorizs and used to distribute the costs over the development period.

Prirnary and Allsrnative Approaches to the Software Life Cycle. PRICE-S

i5 based on the watarfall life cycle approach. The model does not have specific
options which allow the user to select zitermative life cycle approaches such as
evolutionary, jwrototype, or incremental development. However, according to
PRICE-S personnel, alternative life cycle approaches can be modeled (30). For
exampls, an incremental life cycle approach can be modeled by setting up
muliiple CSCls and adjusting global faciors to represent the project's
dsvaicpment profile. Inexperienced model users should seek assistance when
attemipting this process to ensure the desired results are achieved.

SEER-SEM. SEER-SEM estimates costs for nine software development
phases. Overall, the phases closely parallel those identified by DoD-STD-
2167A phases. Initial research was performed using SEER-SEM, version 3.00.
Although this version of SEER-SEM estimates System Requirements Analysis
effort; it is reported under the S/W Requirements Analysis phase and not

specifically allocated to earlier phases (32). The current version (SEER-SEM,

33

ver. 3.21) addresses this issue and further allocates System Requirements
Anaiysis effort to its associated phase.

Methodoloqgy for Allacating Development Effort Among Phases.

According to the mode! developer, SEER-SEM allocates a percentage of the
development schedule rather than effort to each phase (33). The aliocation
percentages are a function of the "Platform” and "Development Methods"
knowledge bases. These knowledge bases specify the "Percent of Base Full
Scale Implementation" allocated to various development phases. According to
the SEER-SEM User's Manual, Full Scale Impiementation (FSI) includes
Preliminary Design, Detailed Desigri, Code and CSU Test, CSC Integration and
Test (19:5-10).

The "Platform" and "Development Method" knowledge bases were
examined to identify the detault allocation percentages. (See Tables 4-5 and
4-5 for default allocation percentages.) Users may review and change, if
desired, the allocation percentages by adjusting the vaiues in the knowledge

basgs.

Table 4-5. Default Allocation Percentages for SEER-SEM Platform Knowledge Base

:_"s‘:"i";n 20 20 20 20 | 20 [20 | 20 20 20
?ST:SZ‘;R 43 50 43 | 43 | 43 | 43 | 43 43 43
Raee | 10 70 70 1 70 [70 | 70 | 70 70 70 .
:sﬂf::n 97 97 97 97 97 97 97 97 97
:‘S‘:::'::T 100 | 100 | 100 | 100 | 00 | 100 | 00 | 100 100

34

Table 4-6. Default Allocation Percentages for SEER-SEM Development Method
Knowledge Base

% of Base N 20 20 13 20 1 1 23 0
FSlto POR [S——
% of Base 0 45 45 | 35 | 45 | 3 3 42 0

51 to COR

% of Basa 0 75 75 95 75 97 95 95 0
FSlto CUT

% of Base 0 97 97 97 97 g8 a7 97 0
FSito TRR

% of Base 0 100 | 100 | 100 | 100 | 100 | 100 | 100 0
FSlto FQT

|
i
|
\ An empirical analysis of SEER-SEM indicates the allocation percentages
! associated with non-FSI phases (Requirements Analysis, CSClI test, énd System
l integration and Testing) are generally independent of development method.
o --1. Although the model developer states users "will see vastly different effort in
| requirement analysis depending on which knowledge bases are chosen”, our
analysis indicates the cost associated with requirements analysis was generally
5.8 percent of the total CSCl cost (33). (See Table 4-7 for an example of

allocation percentages for a ground based radar system.) The reader shouid

note these are only approximate ailocation percentages for efforts involving the
design, code, and test of 100% new code based on different development
methods.

Primary and Alternative Approaches to the Software Life Cycle. SEER-

SEM is uniqgue among the models reviewed since specific options for alternative
lite cycle approaches are available The user chooses from eight development
methods when describing the project and its CSCls. (Note: Version 3.21

addresses a ninth development method: the evolutionary life cycle approach).

Table 4-8 provides descriptions of each development method.

35

L - - = LIS ¥ LS S ML . SR B S-S S e —— S SRS S S 4 —— W) ——— o e e e e i — e e e =5 %=

§

g Table 4-7. Allocation Percentages for SEER-SEM Development Phases

s aa dasasra

padadaaianaston s TR

|

|

[

I
)' S/W Rqmits

3

|

nvalysis (Note 1) | 58% | 58% | 58% | Se% | s0% | 30% | 58% | 58%
g::ii;;inm 9.0% | 90% | 9.0% | 0% | 03% | 03% | 475% | 9.0% .
AI Detailed Desien | 46 004 | 16.5% | 16.5% | 16.5% | 0.7% | 06% | 15.3% | 15.0%
Code & CSU Test

23.5% | 26.9% | 27.0% 27.0% 745% | 736% 10.7% | 23.5%

28.1% | 23.1% | 23.2% 23.2% 1.1% 2.3% 2.1% 28.1%

| CSC Integ. & Test
! CSCI Test

3.2% 3.2% 3.2% 3.2% 2.2% 3.5% 3.2% 3.2%

System Integ.

0 49 5 4% A% 49 5.79 49 4%
Thrt OT&E 16.4% | 15.4% | 15.4% 15.4% 15.4% 16.7% 15.4% 15.4%

) Note 1 This phase includes effort associated wil. hoth System [lequirerrents Analysis and Soitware Requirements
G Analysis. Subsequently analysis of SEER-GEM, ver. 3.21 indicaies the total effort allocated to System
) Requirements Analysis and Software Requirements Analysis remains at approximately 5 8%: however, the

| effort is now allocated to each phase rather than corrbined in the SAW Requirements Analysis phase.

Table 4-8. Descriptions of SEER-SEM's Development Methods {19:9-3 and 9-4)

i Davelopment Mathod’ Deascription
i Ada Development Use of Ada as a programming fanguage
|
l
o] Ada Development with Use of Ada as a programming language foilowing the
: Inci menta! Methods incremental development process
Ada Full Use Use of Ada plrogrammmg language, Ada development tools,
and methods
None No formal developrment process used
| Prototype iterative development

Cyclical madel where a repeating set of activities are
performed on an increasingly more detailed representation of
the product

Linear model which ailows the developer to iterate among the
activities within each of the iife cycle nhase: for each of the
incrernents defined for the system

Linear model where the activities of each phase of the life
cycle must be completed befare continuing to the next phase

Spiral

Traditional Incremental

Traditional Waterfalil

SEER-SiM uses project and CSCi descriptions to select the appropriate
knowledge base and its associated input values. (See Finding #7 for more
infermation regarding SEER-SEM's knowledge bases.) Low level inputs are
modified when different development methods are specified. For example, the
"Adafuil" option has different inputs for "Modern Development Practices Use"
and "Language Type" to account for language differences and increased use of
automated software tools. Likewise, inputs for "Requirements Volatility" are
different when the "Incremental" option is selected. As a result, estimates vary

when different development methods are specified.

37

Finding #2. Development Activities and Cost Elements

When comparing the final cost estimates produced by different models, it
is important to recognize which development activities are (and are not) included
in the model's output. While no regulatory requirement for a specific cost
element format was identified, a framework of general deveiopment activities is
suggested. Using this framework as a baseline, analysts can then identily and
adjust for differences between the models.

Each model was examined to determine which general development
activities are included in estimates. Table 4-9 provides a summary of the
comparison between the baselined development activities to the activities
estimated by each model. Table 4-10 identifies the specific cost elements

estimated by each modei and is followed by model definitions for each element.

Table 4-9. General Development Activities included in Model Estimates

Rgmts Effort Note 1 Yes Yes Yes |
Design Yes Yes Yes Yes
Code Yes Yes Yes Yes
Test Activities Yes Yes Yes Yes
Quality Assurance Yes Yes Yes Yes
Configuration Mgt Yes Yes Yes Yes
Direct S/W Program Mat Yes Yes Yes Yes
Documentation Note 2 Yes Yes Yes

Note 1; System Requirements Analysis not addressed by REVIC,
Nota * Does not reflect all effort necessary to conform to DoD-STD-2167A documentation requirements.

38

Table 4-10. Specific Cost Elements/Activities Estimated by Each Model

REVIC + Requirements Analysis

» Product Design

* Programming

» Test Planning

+ Verification and Validation

« Project Office Functions

« Configuration Management and Quaility Assurance
« Manuals

SASET + Systems Engineering
« Software Engineering
« Test Engineering

» Quality Engineering

PRICE-S o Design

« Programming

« System Engineering/Project Management
e Configuration Control

o Quality
e Data
SEER-SEM = Regquirements Analysts

+ Software Design

« Software Programming

o Software Test

« Project Management

« Configuration Management
« Quality Assurance

+ Data Preparation

REVIC. REVIC distributes effort between eight major cost elements or
B | project activities. Definitions and activities associated with REVIC's cost

elements are listed in Table 4-11.

Table 4-11. REVIC Cost Elements and Definitions {1:49) '

} Regquirements Analysis. Determination, spacification, review and update of software
: functional, performance, interface, and verification requirements.

: Product Design. Determination, specification, review and update of hardware-soitware
architecture, program design, and data base design.

Programming. Detailed design, code, unit test, and integration of individual computer
program components. lnciudes programming, personnel planning, tool acquisition,
data base development, component level documentation, and intermediate levei

] programming management.

Test Planning. Specification, review and update of product test and acceptance test plans.
Acquisition of associated test drivers, test tools, and test data.

l Veerification and Validation (V&V). Performance of independent requirements validation,
design V & V, product test, and acceptance test. Acquisition of requirements and design
V & V tools.

| Project Office Functions. Project level management functions. Includes project level
| planning and control, contract and subcontract management, and custorner interface.

Configuration Management and Quality Assurance. Configuration management includes
product identification, change control, status accounting, operation of program support library,
development and monitoring of end item acceptance plan. Quality assurance includes
development and monitoring of project standards, and technical audgits of software products
and processes.

: Manuals. Developn 2nt and update of user, operatos, and maintenance manuals.

The amount of effort associated with each activity is a percentage of the

effort allocated to the following development phases. Software Requirements

Engineering, Preiiminary Design, Programming (including Critical Design and

Code & Test), and Integration & Test. For example, 46% of the effort incurred in

the Software Requirements Engineering phase is allocated to the requirements

,
|
[
1
|
»
1
1
.
1
1
1
|
1
s

analysis activity. The effort required in Development Test & Evaluation phase is
distributed among the eight activities. The effort distributed to each activity is
reported in REVIC's Activity Distribution Report and summarized in Table 4-12.
The percentage allocated by the Software Requirements Engineering phase
changes slightly for projects larger than 128,000 SLOC. Specifically, 44% of the

effort (versus 46%) is allocated to requirements analysis.

Table 4-12. Default Allocation Percentages for REVIC's Activities

Rgmts Analysis 45% 10% 3% 2%
Product Design 14% 42% 6% 4%
Programming 6% 12% 55% 40% «/ ..
Test Planning 4% 6% 6% 4% .
yenpaation & 8% 8% i 10% 25%
prolest office 12% 11% 7% 8%
CM/QA 4% 3% 7% 9%
Manuals 6% 8% 6% 8%

Project Management and Documentation Costs. REVIC includes the cost

of project management and
management costs are limited to direct project management and project office
functions. REVIC does riot estimate indirect higher management costs (1:59).
More importantly, REVIC does not estimate all data requirements
necessary to conform to DoD-STD-2167A. According to the REVIC model

developer, less than 15% of the estimate is attributed to the cost of

41

documentation (34). REVIC implicitly includes the cost of a Requirements
Analysis document, a Detailed Design document, and Test documentation in its
estimate. However, the effort required to genercte many of the documents
required by DoD-Std-2167A is not included in the estimate. As a resuit, REVIC
will tend to underestimate documentation costs for projects based on DoD-STD-
2167A. Users can refer to REVIC's CDRL section to aid in caiculating additional
effort necessary to meet DoD-STD-2167A documentation requirements.

SASET. SASET allocates effort among four engineering organizations
rather than traditional cost elements. These organizations are Systems
Engineering, Software Engineering, Test Engineering, and Quality Engineering.

The primary activities associated with each organization are listed in Table 4-13.

Table 4-13. SASET Cost Elements and Definitions (29)

Systems Engineering. Involves analysts who translate and analyze customer requirements,
develop requirements and testing parameters, and serve as a customer interface.

Software Engineering Utilizes requirement information obtained from Systems Engineering
and derives requirements, applies requirements to S/W design and architecture, and
implements design (coding).

Test Engineering. Responsible for developing the test plan and test precedures, executing
tests, and reporting results.

Quality Engineering. Oversees product development and ensures the development plan is
carried out and properly executed. Verifies requirements are accomplished, customer
expectations are satisfied, and the product is produced in accordance with company
practices.

SASET allocates 14% of the total effort to systems engineering, 66% of .
the total effort to software engineering, 15% to test engineering, and 5% to

quality engineering; however, these percentages can be changed by the user.

SASET then further allocates organizationat effort in each phase of the software

life cycle. For example, based on SASET's default calibration settings, 9.6% of
the effort required ior the code phase is alioczied to Systems Engineering,
72.9% to Software Engineering, 12% to Test Sngineering, and 5.5% to Quaiity
Engineering. !lsers car reser to SASET's "Summary of Software Devalopment
Effort by Organizction & Phase Report” to determinie how the effort is allocated
arnong the varicus development phases.

Progran rdanagenient and Documentation Gosts. SASET calculetes

direct sortware program managament costs and documentztion costs; how.ver,
neither are specitically hroken out. SASET dues not spacificaliy breck out
documemation costs for softwure development nrojects. According tc Martin
harietta personnel, the model dows accaunt for documentation costs anc that
approximataly 22% of the totat development effort is ztiribut=d o documentation
efrort and is distributed throughout the project's life cycle (29).

PRICE-S. PRICE-S esdmates six major cost elements for software
dovelopment efforts. The cost elernents include design, crugramming, systems
engineering/project managen.ent, configuiation management, gquality, and data.
Dafinitions for PRICZ-S cost elements and definitions cre listed in Table 4-14.

Prcagram Manageriient and Documentation Costs. PRICE-S specifically

accounts for all cnsts associated with software decumentation and direct
software program management. Documentation costs are accounted and
reported within the DATA cost element. Although program management is not
specifically broken out, it is accounted and reported within the "System
EngineeringlProjéct Management" cost element. This cost element includes the

cost of System Engineering activities as weli as Project Me i1gement.

43

D

Table 4-14. PRICE-S Co: t Elements and Definitions (27:A-10 and A-11)

Design. The design cost element contains all costs attributed to the software engineering
design department. These costs include engineering supervision, technical ansd
administrative support and vendor liaison required for the software development effort.

Programming. The programming cast eleiment contains all costs attributed to writing the
sources code and subseguently testing it.

System Engineering/Froject Management. This element includes the System Engineering to
define the software .ystem, and the Project Management effoit required to manage the
software development project. The system engineering activily encompasses the effort to
define the system requirements, and the integrated planning and control of the technicai
program efforts of th:: aesign engineering, specialty engineering, development of test
piocedures, and system oriented testing and problem resolution. Project Management efforts
include managing the software development program in accordance with all procedures
identified in the Software Deveiopment Plan, design review activities, and administrative
duties.

Configuration Control. This activity involves the determination, at all times of precisely what
is, and is not, an approved part cf the system. To accomplish this, it is necessary to perform
three tasks. The first involves incorporating requirements and specifications into the
Functional and Allocated Baselines. Once a document has been incorporated into the
baseline, changes may only be made through the configuration control task. This task
involves the evaluation of changes and corrections to the baseline. Finally, it is necessary to
provide for the dissemination and contrci of approved baseline material. Configuration
Control also review the test procedures and ensure compliance with test plans and
specifications.

Quality. This cost element includes the effort required to conduct internal reviews and walk-
throughs to evaluate the quality of the software and associated documentation. Activities
included in this element are evaluation of the Saoftware Development Plan, software
development library maintenance, and tive Soitware Configuration Management Plan.

Data. This cost element contains all costs associated with sofiware deliverable
documentation. For military platforms, this includes responding to the "Contractor Data
Requiraments List" (CDRL} which contains requirements for delivery of all requirements,
design, maintenance, and user manuals (i.e. Systems Segment Specification, Top Level
Design and Detailed Design Specifications, Programmer and User Manuals, etc.).

According to a recert internal PRICE-S report, a gerieral rule is that sixty
percént of the total System Engineering/ Project Management costs are for
Project Management and the remaining forty perceni of costs are attributed to
Systems Engineering (35). See Figure 4-2 for an example of a PRICE-S report

and associated cost elements.

44

Acquisition. ode

DATE Sun 6-20/93 TIHE 12/47 PX Projsct : sample
392148

Engine Control Devt. Item v/comps

Costs in Person Months

Design Pgming Data S/PM QA Config TOTAL B
Sys Concept 2.0 o.0 6.3 0.9 0.1 .1 3.8
Sys/SW Reqt 2.5 0.0 0.4 1.2 0.1 0.1 4.4
SV Requirenment 5.0 0.0 0.6 5.4 0.5 0.5 12.0
Prelim De=ign 8.1 1.9 0.7 4.6 0.7 0.7 16.86
Dmtail Design 12.1 2.8 1.1 6.9 1.0 1.0 24.9
Code-Test 6.1 19.5 1.0 3.3 2.6 2.6 35.1
CSCI Test 8.3 5.5 1.0 3.8 2.1 2.1 22.5
Systen Test 1.6 2.0 0.3 1.0 1.1 2.1 8.2
Oper TE 1.0 0.6 0.4 0.6 07 0.7 3.9
TOTAL 46.8 32 .4 5.9 27 4 6.8 9.8 131.2

Figure 4-2, Example of PRICE-S Report with Cost Elements

SEER-SEM. SEER-SEM estimates eight major labor categaries for
software development efforts. Definitions and activities associated with each
category are listed in Table 4-15.

Program Management and Documentation Costs. Although SEER-SEM,

version 3.0 accounts for direct software program rmanagement and
documentation costs, the specific costs allocated to each of these elements
cannot be determined. However, newer versions (SEER-SEM, version 3.21)
explicitly break out total effort among the various labor categories. See Figure
4-3 far an example of a SEER-SEM report and associated labor categaries.
According to SEER Technologies personnel, all documentation costs are
not captured by the Data Preparation category (36). For example, effort
associated developing user manuals is associated with both the Data
Preparation and Software Design categories. As a result, users should not

report total documentation costs based solely on the Data Preparation category.

45

Table 4-15. SEER-SEM Cost Elements and Definitions (19:5-11 and 5-12, 36)

Requirements Analysts. Responsible for developing S/W requirements and specifications.

Configuration Management, CSCI configuration identification, change control, configuration

status accounting, and configuration auditing to ensure proper configuration control.

Program Management. Direct labor management. It does not include hardware
management, highest level program management, etc.

Quality Assurance. Includes the quality engineering functions (ensures quality is built into the
product and developing appropriate standards), and quality control inspection and audits.

Software Design. The definition of the software architecture to impiement the software
requirements, preparation of architectural design specifications, design reviews, layout of
physical data structures, interfaces, and other design details to implement the requirements.

Software Programming. The actual coding, unit testing, maintaining appropriate unit

documentation, and test driver development for the individual software modules/CSUs.

Software Test. Preparing test plans and procedures, running tests, and preparing test reports.
This includes software-related tesis only.

Data Preparation. Effort to prepare specifications, standard enyineering draft manuals (only

includes engineering effort) and other engineering paper products.

oUK CH

ystem Concept @.00 §.e8 8.00 6. 00
System Requirements Design 2.55 P.77 2.97 1.27
/W Requirements Analysis 7.4 28.67 ®.73 3.74
Preliminary besign 14.15 12.808 52.73 15.43
petailed Design 23.73 21.57 e . ki 25.89
ode & CSU Test 23 .0M 190.13 2e.27 185.77
S5C Integrate & Test d2.26 8.07 16.13 7.27
SC1 Test 3.71 a.93 1.85 18.00
System Integrate Thru OTBRE 17 .65 N.B1 9.83 83.85
intenance / Op Suppovrt 9.38 a.08 o.08 e.aa
TOTAL 125 .17 096.582 '199.95 191.30
tictivity Dats Prep Test CH QA

ystem Concept a.90 a.08 a.00 0.00
ystem Requirements Design 1.27 2.5% a.u" 0.42
/W Requirements fnalysis .74 7.%8 1.2% 1.2%
Preliminary Design 10.29 .. 2.57 2.57
Detailed Design 17 .26 30.20 %.31 4.31
ode & CSU Test 20.27 58.66 13.51 13.%1
SC Integrate & Test 32.26 116 .9% 20.16 20.16
SCI Test 3.7% 13 . &S 2.92 2.32
System Integrate (hru OUT&E 2.21 Rs 26 11.03 4. 41
Maintenance / 0o Support 0.00 0.00 0.900 0.00
NTal 21.08 327 .55 55 .58 LB _94

Figure 4-3. Example of SEER-SEM, ver. 3.21 Report with l.abor Categcries

FINDING #3. Source Lines of Code and Language Differences

Lines of code is a commonly used metric for measuring the size of
scftware development efforts. Yet, there are many different techniques for
counting lines of code such as delivered source instructions, executable
statements, terminal semi-colons, etc. Due to the numerous conventions for
counting lines of code, it is important that analysts understand how specific
models define a line of code. For example, if a model defines a line of code as
all executable statements and comments, then the model user should ensure
inputs for project size inciude comments as well as all executable statements.

Users should alsc be aware of how different programming languages
impact development effort. For example, it may take five lines of code in one
language to perform the same operation that requires 10 lines cf code in another
language. Figure 44 illustrates a sample program operation written in Ada and
the same operation written in Assembly. The sample program operation
computes: if "x" is less than four, then "y" becoimes equal to seven; otherwise,

"y" becomes equal to "x" plus five.

Ada : if X < 4 theny :=7; else y ;= x+5; endif:

Assembly: MOV x, Ax
CMP Ax, 4
Ji iabei
INC Ax, 5
MOV Ax, y
JMP end
fabel MOV 7, y
end

Figure 4-4. Sample Ada and Assembly Program Operation (12)

In this example, it takes eight lines of Assembly code to execute the same
operation as one line of Ada. However, this does not necessarily mean it takes
eight times as much effort to deveiop a program in Assembly than Ada since
total development effort is a function of many other environmental factors.
REVIC. REVIC, a COCOMO variant, refers to lines of code as source

instructions. COCOMO's developer defined source instructions as:

All program instructions created by preject personnel and processed into
machine code by some combination of pre-processors, compilers, and
assemblers. It excludes comment cards and unmodified utility software.

It includes job control language, forrnat statements, and data declarations.
Instructions are defined as code or card images. Thus, a line containing
two or more source statements counts as one instruction; & five-line data
declaration counts as five instructions. (1:59)

When the effort involves adapted (or modified) code, REVIC adjusts
SLOC using Equation 1.

Equation (1): EDSI = ADSI *[“DM +0.3CM +0.31M J

100
where:
EDSI = Equivalent Delivered Source Instructions
ADSI = Adapted Delivered Source Instructions
DM = Design Modification
CM = Code Madification
M = Retesting

In Equation 1, ADSI is muitiplied by the percent of design modification, code
modification, and retesting. For example, an adapted code package which had .
exactly 100% design modification, 100% code madification, and 100% retest

would result with an EDSI equal to the ADSI {20:14).

48

_— e ——— A

i
]
|

Model's Ability to Account for Different Lanquages. REVIC does not

differentiate between languages. The model caiculates the same effort for
10,000 lines of Assembly as for 10,000 lines of FORTRAN. The only exception
is if the Ada development mode is selected. Estimates based on the Ada
development mode generally result in less effort than the embedded and semi-
detached development modes, but more effort than the organic development
mode. (See Finding #5 for REVIC's equations for different development modes.)

SASET. SASET defines S1.CC as:

All executabie statements, plus inputs/cutputs, format statements, data
declaration statemenits, deliverable job control language staiements, and
procedure-oriented language statements. SLOC does not include
statement continuations, database contents, "continue” statements, or
program comments. (12) :

Users may speacify the amount of new, modified, and rehosted code associated
with the development effort. New code is software code that will be developed
from scratch. Modified code is software code which has some development
already complete and can be used in the software program under consideration.
Rehosted code is completed and tested software code which will be transferred
from one computer system to the new system under development.

Once inputs for the SLOC values are made, SASET computes an
adjusted sizing value called "New HOL Equivalent Source Lines of Code". To

.y

~
U0 Ol

P Y W T 3 W oY sl & el a4
aerive tis vaiue, oAok 1

s £ sl _ R bV + S | P 3
0 O1 e mMoQiried coae dand

()
NG

the rehosted code is equivalent to the effort required to generate a new LOC.
These percentages can be changed by rnodifying the SASET TIERS.CAL
calibration file. For example, 1000 lines of modified code is equivalent to the
effort required to generate 730 lines of new code. SASET also assumes every

iree lines of Assembly code is equivalent to one line of HOL code.

Table 4-16 provides an example of how SASET caiculates the New HOL
Equivalent SLOC.

Table 4-16. Sample SASET Calculations for New HOL Equivalent SLOC

New HOL Equivalents:

1000 730 100 333 243 33 2439

Caiculations:

New HOL. = (1000 x1.00) = 1000 lines of New HOL
Modified HOL = (1000 x0.73) = 730 lines of New HOL
Rehost HOL = (1000 x 0.10) = 100 lines of New HOL
New ASSY = (1000/3) = 333 lines of New HOL
Mod ASSY = (1000/3)x0.73 = 243 lines of New HOL
Rehaost ASSY = (1000/3)x 0.10 = 33 lines of New HOL

Model's Ability to Account for Different Lanquages. SASET allows the

user to select from two categories of language types: high-order languages
(HOLs) and Assembly language. The model does not differentiate between
HOLs. For example, SASET considers a lirne of Ada equivalent to a line of CMS,
FORTRAN, or any other commonly recognized HOL. The user may also specify
the amount of new, modified, and rehosted code in HOL and/or Assembly
language.

PRICE-S. According to the PRICE-S Reference Manual, source lines of

code are defined as:

The total number of s urce lines of code to be developed and/or
purchased. Comments embedded in the code are not to be counted.
However, type daclarations and data statements should be included and
will be breken out separately via the FRAC input. (27:37)

50

et veov TR A 000 0 A AB i e BN 53e MOOEESTT AONCWEE AESHING0 AR LML B
AN A PO Wy SR B 5 0 oy g

O 40 W Y N4 PSPPI W0t 1S TSP PP T E 4 LSS LOLIEY VM ey AL (VY 3 .4 Y S| AL e B4,

PRICE-S allows the user to specify the percentage of new design and new code.
Application-weighted averages for new design and new code are used since
some parts of a software system are more difficult to design and implement than

others (27:D-1-35). This effect is illustrated by this example:

If one were to estimate the costs for a system in which 50% of the code is
to be reused, reasoning might lead to the conclusion that the effort
required wotild be about half that for 100% new code. This reasoning
would fail te recognize that it is invariably the inexpensive code (utilities,
math, etc.) that is avaiiable for reuse, and that the difficult, machine
dependent, prablem-specific code has yet to be constructed. (27:D-1-35)

PRICE-S modifies the user input for SLOC using a composite application
value (APPL). Equations 2 through 4 on the following page are used to compute
the application-weighted factors and modified SLOC. Furthermore, the model
assumes off-the-shelf code is not free since program:ners must become familiar
with the code, the final test and integration of subsystems will involve all new or
modified software, and all delivered software must be documented (27.A-1-12).

Modet's Ability to Account for Different Lanquages. PRICE-S allows the

user to select from 20 different programming languages. If a specific
development language is not listed, the user may choose from four generic
groupings. Table 4-17 lists language selections within PRICE-S.

SEER-SEM. SEER-SEM defines SLOC as ali executabie source lines of
cede such as control, mathematical, conditional, deliverable Job Contral
Language (JCL) statements, data declaration statements, DATA TYPING and
EQUIVALENCE statements, and INPUT/OUTPUT format statements. Source
lines of code exclude comment statements, blank lines, BEGIN statements from
Begin/End pairs, non-delivered Programmer Debug statements, continuation of

format statements, machine/library generated data statements (19:10-2).

51

; Equation (2): NEWC > (MY, x APPL «CODE,)
‘ quation (2): == Thpr

> (MIX » APPL * DESIGN,)
APPL

Equation (3): NEWD =

Equation (4). SLOCM = SLOC* APPL

where;
APPL = APPL = Z, MIX, « APPL
MIX; = Fraction of total SLOC devoted to performing functions in
! application category;
] APPL; = Appiication value for functional application category
! CODE; = Fraction of code of application category; representing new work
| DESIGN; = Fraction of design of application category; representing new
: work
! SLOCM = Madified Source Lines of Code ,
!
| Table 4-17. Language Selections within PRICE-S (27:C-3})
i 1| Ada 9 [coBOL 17_| PASCAL
' 2 | ALGOL 10 | COMPASS 18 | PL1
i 3 [APL 11_| CORAL66 ' 19 | PRIDE
| 4 | ASSEMPLY 12 | FLOD 20 | SPL1
{ 5 | ATLAS 13 [FORTRAN 21 | HIGHER ORDER
? 6 | BASIC 14 | IFAM 22 | MACHINE
o 7 _|1C 15 [JOVIAL 23 | 4th GENERATICN
_ | 8 |CMS 6 | MICROCODE 24 | INTERPRETIVE

| SEER-SEM allows the user to allocate SI.OC between three categories:

N new liines of code, pre-existing {not designed for reuse) codse, and pre-existing

l (designed for reuse) cede. Using these inputs, the model caiculates an

! "Effective Size" which allows comparison of development alternatives when
some alternatives include reusable code and others do not (19:1-1).

New lines of code are those lines that will completely designed,

implemented, and tested. Pre-existing (not designed for reuss) code involves

lines that vvere not originally designec for reuse but will be used during this
effort, whereas pre-existing (designed for reuse) code was specifically designed
to ensure reusability. The user further allocates SLOC among six sub-
categories: pre-existing lines of code, lines to be deleted in pre-existing code,

. iines to be changed in pre-existing code, percent to be redesigned, percent to be
reimplemented, and percent to be retested.

Modei's Ability to Account for Different Lanquages. SEER-SEM allows the

user to select from a variety of programming languages. Table 4-18 lists the
choices availabie for the Language Type (complexity) parameter. The model
also accounts for differences associated with the Ada language with its

Development Method knowledge base (AdaDev, AdaFull, and Adainc).

1 Table 4-18. Language Salections within SEER-SEM (19:10-20 and 10-21)
|

Description
: Fuli Ada, Pl/l Version F
o High JOVIAL, CMS-2, Mainframe Assemblers
| Nominat Pascal, FORTRARN, COBOL, C, PL/1 Subset G, PC Basic,
Micro Assemblers, Ada without Tasking
; Low Basic, Many 4GLs

Note: The user may select in between these setting with the PLUS and MINUS ratings. For
example, naminal + is higher than nominal; nominal - is iower than nominal.

Finding #4. Key Model Attributes and Key Cost Drivers

Aithough different software cost models calculate total development effort
in different ways, the model developers appear to agree in one respect. Project
costs cannot generally be estimated solely cn the basis of the number of source
lines of code. A variety of factors such as programmer capabilities, modern
development practices, requirements volatility, and reusability requirements
influence the deveiopment effort.

Recognizing the need to account for these factors, the modeis allow users
to describe the developmeni environment by medifying various development
attributes (or inputs). For example, if the user knows the development team has
extensive programming experience for the proposed project, he or she may
adjust a model input to reflect these circumstances. If no additional information
is available, the user should select the nominal value.

This section reviewed model inputs and four broad categories were
identified: personnel capabilities, development environment, target environment,
and project requirements. Many of the key model inputs were categorized in
Table 4-19; however, this table does not atternpt to categorize all inputs nor
does it illustrate equivalent model inputs. It is provided to show a sampling of
available model inputs for the previously identified categories. Additionally, the
reader should not assume the ﬁmodel nputs are equivalent simply because they

are lined up across from one another.
The impact of various model inputs on total development effort was also
examined. The results of this analysis were provided in thie form of graphs and

figures, where possible, to illustrate the subtie (and not so subtle) impact on

model estimates.

Table 4-19. Categorizaticn of Key Model Attributes

7 .
A
. X

|
! Personnei
l Capabilities | ACAP Development Team CPLX1 Analyst Capability
v o PCAP S/W Experience PROFAC Analyst Application Exp
. AEXP H/W Experience Programmer Capability
L VEXP integration Exp Programmer Lang Exp
LEXP Personnel Resources Target System Exp
!
; Development
: Environment | MODP Dev Locations CPLX1 Modern Dev Practices Use
I TURN Workstation Types CPLX2 Resource Dedication
| VIRT Programming Lang CPLXM Multiple Site Development
_ TOOL S/W Dev Tools PROFAC Automated Too! Use
} SECU Dev Facilities LANG Language Type
Travel Requirements | SSR Date Terminal Response Time
Target
| Environment | TiME % of Memory Utilized | UTIL Memory Constraints
STOR % of Microcode APPL Time Constraints
RELY Timing & Criticality NEWC Secunty Rqmts
i DATA Man Interaction NEWD Target System Volatility
CPLX Hardware Constraints | PLTFM Target System Experience
RUSE Software Interfaces MiX Real Time Code
Project
Rgmts RVOL System Rqmts PROFAC Rgmts Volatility
S/W Rgmts CPLX1 Specification Level

Note: This table does not attempt to illustrate equivalent model Inputs. It is provided to show a sampling of
avaliable r.iodel Inputs for four main developiment categories.

REVIC. REVIC initially calculates development effart as a function of
vl SLOC and the development mode. After adding additional effort for the software
! requirements analy'sis phase and development test and evaluation phase,

REVIC multiples total effort by an environmental modifier which consists of 18

model inputs.

i The environmental maodifier is the product of the values for each modei

| attribute. As a result, REVIC's environmental modifier can have a significant

! impact on the final estimate. In a worst case scenario where input parameters
are set to the most difficult setting, the environmental maodifier will equai

| 450.703. In a best case scenario, the environmental modifier will equal 0.055.

; Thus, if the nominal effort for a project is 500 manmonths, the effort could range

| from 27.5 manmonths (best case scenario) to 225,351.5 manmonths

. Due to the sensitive nature of certain REVIC inputs, Figures 4-5 through

4-8 are provided to show the range and impact of various REVIC inputs. The

impact of schadule compression and extensions are not addressed in this

section. (See Finding #6 for details regarding this issue.)

I
m R
‘ p1.2 —0-— ACAP
| s
j ¢ 1.1 —e— pCAP
t
1 —+—— AEXFP
F
{ . 0.9 ———— VEXP
' [+]
. 1038 0" LEXP
| ro.7
0.8 +
0.5 -t % — } -+ i
’ Very Low Low Nominal High Very High XHigh XX

Figure 4-5. Impact of REVIC Inputs for Personnel Capabilities and Experience

0.5

ol MODP

—o— TURM

—®— VIRT

—O0— TOO0L

§ 1 Il] 1
i T T L T

Very Low Low Nominai High Very High XHigh XX

Figure 4-6. Impact of REVIC Inputs for Development Environment

~0 89 3 —

0.9

0.8

~0~O0M8T™

0.7
0.6
0.5

— TIME

—®—— STOR

—Xx— RELY

~—6—= CPLX

1 1 i

i 4
" t T T 1

Very Low Low Nominal High Very High XHigh XX

Figure 4-7. impact of REVIC inputs for Target Environment

57

1. / — - _
1.1 . R —a—— RVOL

3
a
°0.9
t

r

0.6

0.5 t t -+ t 4 -4

Very Low Low Nominal High Vary High XHigh XX

Figure 4-8. Impact of REVIC inputs for Project Requirements

SASET. Development effort is a function of the lines of new equivalant
HOL code, software type, and software class. The values for software type and
class of software were developed by regression analysis on Martin Marietta's
database of 501 projects (29). Tables 4-20 and 4-21 list the default values for
various scftware types and ciasses.

The following example is pravided to illustrate how the core of SASET's
estimate is calculated. A manned, fligh: application pregram with 50,000 lines of
equivalent HOL code would required 285,000 development hours (50,000 lines *
3.0 manhours/line * 1.9 manhours/line). This value represents the core of
SASET's estimate; however, the model considers other envirorimentai factors.
According to Martin Marietta personnel, these factors should not be considered

primary drivers, but they can influence the estimate (29). Consequently, users

3o

should understand how they impact the estimate.

58

Table 4-20, Defauit Vaiues for SASET Software Types

. Systems 3.30

X Applications 1.90
Support (Note 1) 0.85
Data Statements (Note 2) 0.075

Note 1: The SASET 3.0 Technicai Reference Manual (Beta Version) iecorded tha support value as 1.1.
However, SASET'S calibration file has a value of 0.85. According to Martin Marietta personnel,
0.85 is the comrect value (29).

‘ Note 2: The SASET 3.0 Techrical Reference Manual inaccurately states Data Statements are muttiplied

by Software Class value. The Data Statements value (.075) is actually multiplied by the
! corresponding Data Factors in the calibration file.

Table 4-21. Defauit Values for SASET Software Classes

’I Manned Flight 3.00

4 Unmanned Flight 2.30

’ "i Avionics 1.80
} Shipboard/Submarine 1.35

g Ground 1.00
Commercial 0.70

K 'ﬂ The core estimaie may be impactad by the Average Software Budget
D ,: Muitiplier (ASBM: "he A\SBM is the average of the Software Budget Mulitiplier
l; (EBM) and Software System Budget Multiplier (SSBM). The SBM is calculated

from the Tier 1 inputs addressing the system environment. The user may notice

that software class is a Tier 1 input; however, it is not included in the SBM

calct ‘ation. The SSBM is calculated frum the Tier 3 inputs addressing the
attributes of the system and each CSCI has its own Tier 3 section. As a result,
CSCls from the same project may have the same SBM values but different
SSBM values.

The ASBM is analogous to the environmental factors in REVIC but is less
sensitive and has less impaét or the estimate. The values for the Tier 1 and Tier
3 inputs were deveioped by expert judgment (29). The impact of schedule and
integration p