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In order to develop a low-energy-spread, high brightness electron
source using negative electron affinity technology, it is necessary to survey
the effects of cathode structure and activation on energy spread, lateral
velocity distribution, peak current, and lifetime. Most research in NEAPC
technology has gone into detector applications, to improve photoyield at low
light intensity and high wavelength. Intevac is a leader in this area. The
scientific understanding and technical expertise developed in this effort are
important to achieving our goal of an electron source optimized for low-
energy electron applications; however, it will be necessary to investigate other
cathode properties (peak brightness, energy spread) under a substantially
different operating regime (high light intensity, small emission area, high
extraction field).

To this end it is important to examine the operation of the
photocathode in detail; the best way to describe this is by tracking the life of an
electron, illustrated in Figure 1. We start with an electron in the valence
band (step 1), which is excited by an incoming photon into the conduction
band (step 2). The electron then relaxes, by optical phonon scattering (which
has a mean free path of about 300A), into ht=e conduction band minimum,
where the electron has a fairly long lifetime, which leads to a long diffusion
length (a few pIm in a good photocathode). Thus electrons excited within a
few Ipm of the surface have a high probability of reaching the surface. It
should be noted here that Intevac has developed the technology of a glass-
bonded thin film photocathode which can be used in transmission mode
(light entering from beneath the surface). Besides offering ruggedness and
simplicity of electron gun design, transmission mode NEAPCs offer lower
energy spread than the more commonly used reflection-mode NEAPCs. In 14
reflection mode, there are many more "hot" electrons - electrons which r%
haven't yet thermalized to the CMB - at the surface; in reflection mode ima
NEAPCs, many of these "hot" electrons escape, broadening the energy spread. qt4@

on
When the electrons reach the surface, they encounter the band-bending l

region, where they are accelerated toward the surface. Since the electrons are 4
"hot" in this region, they may interact with optical phonons here and lose (or ___

gain) energy (step 3). Thus their energy spread increases. Electrons with
energy above the vacuum level can then escape. The work-function-
lowering activation layer, by determining the vacuum level, acts as an energy
filter, blocking the lower-energy electrons from escaping.
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There is another phenomenon at the surface that plays a potentially
important role in improving brightness of NEAPC sources. Because the
electrons have appreciably lower effective mass in the semiconductor than in-
vacuum (a ratio of 1:15 for GaAs), their semicondcutor quantum-mechanical
wavelength is much shorter. When the electrons are emitted into vacuum,
quantum-mechanical refraction takes place, and the electrons are focused into
a narrow forward cone. This is an excellent property for an electron source.

The activation layer also plays a role in determining emission
characterisitics. In the layer, electrons may scatter elastically, which would
degrade their angular distribution, or inelastically, which would degrade both
their angular and energy distributions. This consideration favors a thinner
activation layer.

To optimize the NEAPC source for low-energy eletron beam work, we
are examining the effect of activation layer thickness on both the lateral and
total energy spreads. One structure being examined is a GaAsP cathode
activated with only a monolayer of Cs. This type of NEAPC has not been fully
investigated as it has lower quantum efficiency and less sensitivity to long
wavelengths than currently used cathodes. However, the thin activating
layer should minimize scattering, improving brightness, and an extremely
low energy spread should be obtainable by adjusting the bandgap and using
the vacuum level as an energy filter. Other possibilities include activation
with F instead of 0, which may provide thinner activation layers, and
increasing the doping near the surface. The latter modification would
decrease the width of the depletion region and thus improve the energy
spread of emitted electrons as they w;'! be less likely to scatter there.

Figure 2 shows a possible optimized photocathode structure. Like the
typical Intevac cathodes, this structure uses AlGaAs to block electrons from
diffusing too far from the surface; this design also incorporates a graded
bandgap to accelerate the electrons toward the surface. This action improves
the cathode's efficiency and decreases the cathode's response time (which is in
the tens of picoseconds even without this improvement). Also, since a small
source size is desireable from an electron optics standpoint, if the laser is
focused to a diffraction-limited spot in the active region, the graded bandgap
will reduce the diffusive spreading of the electrons before emission. To
further improve the source size and response time of the cathode, it is
designed to be thinner than an ordinary cathode, perhaps less than 1 micron.
The most important modifications, however, are near the surface. The
depletion region has been reduced by "spike doping," - the last 100 A of the
cathode are doped as heavily as possible. Furthermore, a thin Cs-only
activation layer is employed. These modifications should greatly reduce
scattering in these two regions, improving energy spread and brightness.



Currently we are examining the effect of activation on cathode
brightness. The experiments are carried out using photocathodes made using
Intevac's proprietary techniques sealed in tubes at UHV. Our first series of
measurements consists of measuring the lateral energy distributions of
electrons emitted from various photocathodes by monitoring the current
intercepted by a knife edge that is transported across the beam. The tube
design is shown in Figure 2. This apparatus affords the highest resolution
measurements of this type ever made on negative electron affinity devices.
Initial measurements have been made on photocathodes activated with the
standard Intevac nightvision activation, and show that, as expected, the
electrons have very low lateral velocities, corresponding to approximately
40meV on average. Tubes with GaAsP cathodes and Cs-only activations are
being fabricated.

Future experiments will involve measuring total energy spread,
lifetime, and peak brightness of a variety of cathode structures.
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Current Status of Computer Models for Charged Particle
Systems

Brent Boyer and L. F. W. Pease

Althugh there are mniny analyical method ams"lIlefor analyzhig charged particle systems, in

general they apply to gemomerally sim~ple lens systems., As a reuls& comiputer modeling has

emserged as a poweru tool for designing Mystms which will euca, focus, and analyze chared

particle bemus. Personal computers are now sapeicintly powesfid and economical thai any

researchier can have accns to he nhceswry computer resources. This has causedcomputer

modeling to become very popular. Here we summarize the main featu res of comiputer modeling

for cha rged particle systems. The topics covered include numerical techniques, source modeling.

lens design, deftector modeling, tolerances, space charge effects, and beamn-target interactions~

Introduction

Although the earlier textbooks ont electron (and ion) optics antedated the widespread Use of computers. the
use of com'puters for solving electron optical problems goes back at least four decades. During the early fifties
Liebmalln and his colleagues at the AS Rtesearch Centre in the UIK emiployed a comsbination of resistance tietwork

analog computation and digita integration to solve for fields and published a series of papers that becamne the 'bible'
for those desgning: axially symmeutic electrostatic and magnetic lenses [I]. Munro in 1970 described a series of

pMogrM for doing the mso= calculaton on a'modern' digital comnputer far more rapidly and conveniently [2]. His
results bore out those of the AE1 team almnost exactly.



For analyzing such lenses the first task is solve th Lapac equauom accordng to dh boundary condions

se by the magnedc polepieces sad their magneto-static poentials, and by th electrodes and their electri potentials.

For axial symmery and with no polepiece or electrodes on axis (the usual arrangement) the propertes of the

solutions to the Laplace equation are such that it is possible to determine both first order properties (focal engft,

principal plane positions and chromatic aberati coefficient) and third orde propert (e.g. sphercal aberration) of

the resulting lenses from only the on-axis distribodons of electric nad magnostac potentials, V(Oz) and 0(O,z).

A worked example for a magnetic len is shown below in the section on Len Modeling using a series of programs

written by Munro. Munros programs can also be used to determine the magnewtottic potential when the material in

the magnetic circuit approaches aturation,

The limitation of the above treatment is that it does not take into account higher order aberrations (5th order

and above) which may be significant for certain cases. To do a precise simulation of charged particle optics requires

determination of the fields everywhere, not just on-axis, and the particle trajectories are determined by numerical

integration of the corresponding equation of motion. The techniques for calculating fields - both on-axis and

everywhere - along with numerical ray tracing am discussed below in the section on Numerical Techniques.

Another issue in charged particle optics are those mutually repulsive forces that charged particles exert

between themselves. This effect is known as space charge and it has deleterious effects on beam quality.

Traditionally, the beam perveance, NV-32, was a parameter used to indicate how seriously space charge will affect the

beam quality. If the perveance was sufficiently low then the space charge effect was thought to be negligible. This

was the result from work done on vacuum tubes where the space charge was modeled as a continuum of charge

density; this model predicts that space charge acts as a diverging lens. In most electron beam lithography equipment

the values of perveance ame such that this lens effect is negligible and so space charge was ignored until about 1970

in this application. However, it has since been established that in such equipment the occurence of random

interactions is sufficiently frequent to cause surprisingly large energy spread (the Boersch effect') and appreciable

trajectory bending 13]. Because of the random nature of these interactions this phenomenon is best treated using a

Monte Carlo technique in which the position and momentum of each of a finite population of particles is tracked as

the particles move down the column [4). A whole section below is devoted to modeling the space charge effect.

Electron sources for electron beam lithography equipment traditionally have been relatively simple

structures [5]. However point sources for both ions and electrons pose challenges for modelling because of the huge

disparity between the nm-scale geometies of the tips and the cm-scale geometries of the surrounding electrodes.

How this is presently tackled is described in the section on Source Modeling. but it is not clear that a satisfactory

approach yet exists.



Rinally, the interaction of the beum with the solid tygit cm be modaed s a ontinuous slowing down of

doe puticles dtI sufficr scatwin at random intervals at a nman fequency sat byr scanering cros sections of fte
incident prticles in dhe tarpt material. Such modelling has been the subject of countless papers since 1963 and a

brief descuiption along with mrfences to recent literatue is given in the section on Besm-Target interactions.

Numerical Techniques

With the exception of source modeling and space charge effects, much of the computing required for

Charged Particle sytems goes into determining electric and/or magnetic fields from boundary conditions such as

potentials on electrodes or current through coils. This section will briefly describe some of the numerical techniques.

available for calculating these fields, and will conclude with a discussion of numerical ray tracing.

For a cylindrically symmetric system (no 0 dependence), any potential (electric or scalar magnetic) will

have the following Taylor expansion since it satisfies the Laplace Equation [6]:

0(r, z) = O(z) - -4 (z)r 2 + 4- (z)r' - ... (4)
4 64

This says that the potential at any point (r, z) can be determined merely by knowing 4)(r - 0, z). So, in

principle, you do not need to explicitly compute the potentials everywhere; you only need to compute them along

the z-axis.

Although the above Taylor expansion will only be valid for small values of r, much useful information

may still be extracted. For example, the paraxial ray equation and third order aberration theory can be derived from it.

See the references in [71 for more details. In addition, a modified form of equation (I) is used when designing

deflectors. as. will be discussed below.

It also may happen that one needs the full solution to the potential/field everywhere inside the system, not

just near the optical axis. This will be required. for instance, to do full ray tracing of particles down the column 2nd

especially to do ray tracing near an electron gun. In this case, the full partial differential equation (Laplace's

equation) must be solved.



Discussed below ae the three most popula techniqu for soving for potentials either on-axis or

everywhere. inside dhe sysmm. Muem methods we the boundary element method (BEM) the finit diffeenc method

(FDM), and the finite element method (FEMO.

The bounday element method, also imown as the cbarg-density method, is one way to quickly determine

4b(r, z) for electrostatic problems. What one does is to break up the electrodes into smaller elements (e.g. an

annulus might be broken up into semtio of rings) and then determine what chre density must be uniformly

distributed throughout each element in order to give rise to the prescribed poentials on all boundary elements. Here

is a example:

a2 04

Annulus at 5 V Annulus at 0 V

This determination of the charge density will involve solving a matrix equation. The potential at any point in space

due to a single element is then simply found by using the formula

-dV (2)•-4,ro 0 J.J r

Note that the charge density p is uniform, so it may pulled out of the volume integral; typically the shapes used for

the boundary elements are such that analytic expressions exist for the remaining volume integral. The total potential

at any point in space is then the sunm of the potentials from all elements. Consult the references in 18] for more

details.



MlN fi•ift difkfamce vm o is very siuile t undestoomd. Reall *a tbe iurremao of the first

"deivaive of a curve is tha its thu slope of the Segent lne atth ti p If a acm c(x) is sampled at a fine

number of points, my a grid of points equally spaced by the distance A tim we mng approximate the first

derivative of c(x) by

d c c(a + A~x) - c(a) (3)

dxz AX

Similarly, the second derivative may be approximated by

d.c_.(X) c(a + Ax) - 2c(a) + c(a - Ax) (4)
dxa 2I.. Ax 2

Similar formulas hold for partial derivatives. Then any second order PDE with boundary conditions should be

solvable as follows: lay out a mesh of grid points with the appropriate dimensionality (say a rectangular grid aligned

with the x and y axis for a 2D problem) and insist that the PDE (as expressed with the above approximations) be

satisfied at every interior mesh point, and the boundary conditions be satisfied at every boundary mesh point. This

will generate a set of simultaneous, linear, algebraic equations (i.e. a matrix equation) which can be solved yielding

the potential everywhere.

The finite element method is less intuitive. It turns out that solutions of PDEs are also solutions of an

associated variational problem. What is important is that finite element methods are similar to finite difference

methods in that one must specify a grid of points. One also must specify how the solution is assumed to vary over

a given mesh surface element; a first order FEM assumes the solution is piecewise linear while a second order

solution assumes the solution is piecewise quadratic. Finite element methods are more general than finite difference

methods (indeed, FDM can be shown to be a subcase of FEM). One consequence of this is that FEM can be easily

applied to nonrectangular meshes; triangular meshes are very common. This may be a large advantage in accuracy

when the boundary is very nonrectangular - triangular meshes can easily be chosen to have the boundary mesh sides

lie closely along the boundary [9]. Rectanguler meshes suffer in that their boundary mesh sides often weave through

a rough bondary instead of lie along it. In addition. FEM is the only way to handle saturated magnetic lenses.

Standard algorithms like Gaussian elimination may be completely inadequate for solving the huge matrix equation

generated by FEM (e.g. solving Poisson's equation using second order FEM). Workers in the field have now begun

to employ the incomplete Choleski conjugate gradient (ICCG) method [ 10] and report considerable success with it -

see 1I i1 and [12].



For mor details concerning FDM and FEM a modem reference is Hall and Posching[ 13]; consult pp. 159-

183 of Hawkes t9i for the application of these methods to charged particle optics. Other references to the applicamion

of FEM for solving elemostec fields may be found in [14J.

To compare BDM with FEW for solving an electrostatic problem, note that with BEM you only break up

the electrodes into small pieces whereas with FEM the whole spae is brken into grid elements. This means that

the size of the matrix equation which must be solved far a BEM solution is significantly smaller than that for FEM,

which is a significant advantage fbr the BEM method. On the other hand, with FEM. once you have solved the

matrix equation you have the solution for the potential everywhere whereas BEM only yields the charges on the

electrodes. To get the potential at a given point from a BEM solution you must add up the potentials due to the

charge on each boundary element; this may be a modest computation as the geometrical integral from equation (2)

may be, say, an elliptic integral if the boundary element is a ring (Reneau, [81). So, if there are many boundary

elements or if you are ray tracing a sufficiently large number of particles, the FEM may be more economical. One

exception may be ray tracing using the paraxial ray equation. In this case, since you only need the potential on-axis,

the BEM may be more economical.

Given the solution for the potential, one must still exract the fields if one desires to perform numerical ray

tracing. Since the field is the gradient of the potential, this means that you must have the spatial partial derivatives

of the potential. If a grid technique like FEM has been used, the potential is only known on the grid nodes which

means that an accurate method for smooth interpolation between nodes must be developed. Chapter 13 of Hawkes

[9] goes into detail describing some of the available methods; see also some of the references in [ 14]. Lunney et al

[ 15] have developed a new method based on mulipole expansion which they claim is a superior alternative to

interpolation based schemes for computing the field.

Once the fields have been determined, an accurate method for ray tracing the particles must be employed. If

a cylindrically symmetric system is under consideration and one has solved for the axial field, then one may elect to

solve for the trajectories using the paraxial ray equation [7]. For a magnetic lens system, the paraxial ray equation is
d2 r(z) + -- B(z) r(z) = 0 (5)

""dz2 8V9

where Ti is the charge to mass ratio and Vr is the relativistically corrected beam voltage. It is just an ordinary

differential equation for the radial coordinate of the trajectory as a function of the axial coordinate, so the standard

methods such as Runge-Kutta or Predictor-Corrector may be employed to numerically solve it. See Preis et al for a

good description of these techniques [ 16].



Iff the curay of &he pwaniu my eqtWOiMi is iOMiUffce&th. dm-ir prced techniue =Mu be CMPW"&

Onewach cuawte way o ray yming is to consider a Taykr serie exspsion in oider to dasmnnine de fimue oston

of a prticle given its prebent posibos:

r(t + At) = r(t) + r'(t)At + -I r(t)t + -r"'(t)At 3 + ... (6)
2 6

where pinie denio differentatici with respect to the time t. If v(t) is defined as the velocity and a(t) as the

acceleiration, we can towfil equation (6) as:

r(t + A0t) = r(t) + v(t)At + Ia(t)At2 + -a'(t)At 3 + ... (7)
2 6

Making use of Newton's Second law (F = ma), we can expmss this as:

r(t + At) = r(t) + v(t)At + - F(r(t), t)At2

2m
• m[ 9F~(r(t), t)] t + .. (8)

+ Ir(v(t)VF(r~) t) + V) rrt), t)]AJ& +

6m[ '' ~

The force F for electromagnetic forces is

F(r(t), t) = q(E + v x B) (9)

and is in general a function both of particle position and time since E, v, and B in general depend on position and

time. From equation (8) you can trace the particles' trajectory by advancing the time in small increments At. This

is known as the power series method of ray tracing. The terms shown in equation (8) constitute a third order power

series method; it is common to drop the last term and do a second order method if less accuracy will suffice.

An alternative to the power series approach would be to numerically solve the differential equation for the

trajectory. This differential equation is just Newton's Second Law:

d2r(t) 1F(r(t), t) (10)
dt' m

where F is again given by equation (9). It is simple to see that in rectangular coordinates, this equation breaks

down into three coupled ordinary differential equations. Then the standard techniques like Runge-Kutta or Predictor-

Corrector may be used to solve them [16]; see [17) as an example in the literature where this is applied to charged

particle trajectories.

A very accurate technique for tracking a particle's motion in a force field is the technique of Nystrom

integrators. developed in 1925 by Nystrom [181. This technique is also very complicated which has hindered its

acceptance. Lear has exploited the capabilities of computers to ease the difficulty of implementing the method [19].

His application was actually the study of orbital motion, but perhaps there may be application in charged particle

optics.



Source Modeling-

There we several isses involved in modeling charged particle sourcus Frst, there must exist a good
physical model for the emission Process. For thriionic eection sources, dhe Richadson-Dushman equation with

Schottky's field enhancement correction has proven to be a good model. Field emission electron sources am

adequately modeled by the Fowler-Nonelnim equation. A difficult source to model is liquid metal ion sources,

because the tip is not fixed but changes shape during the emission process in a manner which is hard to prdict

Once the appropriate model has been selected, a source modeling program needs to very accurately dewrmi

the fields near the source. This is both because the emission process itself always strongly depends on the field

configuration and also because the electrons will be ray traced upon emission. The most common candidates for

determining the fields are the grid methods (FDM or FEM). In a typical electron source, the emission area may be
as small as a few hundred angstoms while the extraction electrodes may be spaced millimeters away from the source.

This huge length scale difference means that a grid method for solving the fields cannot have constant grid spacing -
this would require too many elements to adequately model the source region. Thus, the grid must change scale from

small grid spacing near the source to large grid spacing near the eicrtuodes. This is almost always far too tedious for

a human to specify the grid sizing by hand, so a good source modeling program should include a routine for

automatically generating a grid with adaptive length scales.

Lastly, it is usually vital to include space charge effects when modeling the emission process - the

repulsion caused by electrons which have already been emitted can greatly affect the emission of additional electrons.
Furthermore, the presence of other electrons will modify the trajectories that would result if only fields from the

electrodes were present. See below for a whole section which is devoted to techniques for modeling space charge

effects.

One of the most comprehensive solutions to modeling electron sources is the program SOGUN reported by
Zhu and Munro [12]. Their program can handle either thermionic or field emission guns. They use a 2nd order,

isoparametric FEM code to solve for the electric potential. The sides of the grid elements in this technique are not
lines but are quadratic curves - this enables the grid lines to almost perfectly conform to the boundary shapes (e.g.
curved cathodes and electrodes). The fact that this is a 2nd order method means that the potential can be solved with

higher accuracy. Once the potential has been solved for, the electric field needs to be extracted. This is one difficulty
with isoparametric grids, but Zhu and Munro report a new algorithm to do this. The commercial version of this

program, SOURCE, also includes automesh generation so that logarithmic changes in grid size - which is needed for
field emission guns - can be done by computer [20]. Ray tracing is done by a third order power series method [21],



*

and qpch darge effects w modeled by imavedy solving Poso~n's equaion as disumed below. The pWp is

"abl to deformine th total beam current, the ausom position and sim and beam abertios. Sampk outputs
from Mumn's software may be found on the next two paes, where they model a theramionic LAB 6 un and a field

emission gum.

Other earlier work on modelmg sources may be found in Weber [22], 1Hmnmannaeldt [23], Kang [24], and . .

Renau [25]. Browning [26] has successfully employed the BEI. See Hawkes [27] for a discussion of an analytical

model for source region space charg effects. A reference to modeling liquid metal ion sources may be found in Cw

and Tong [28]. Mohammed and Garcia [29] discuss automesh generation for elecrostatic problems.
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Lens Modeling

LnA UOdlmg Is the moat wal deveoped am for coipuer modeling of cbhrd particle systens. with

early Proginu qzun aver 20 yeam ago r2j.

The comaon feature of almost all probe famning louses whether elacmus c or magnetostedc, i that they
have cylindrical symmory. For exampple a typical elecostatc lens conaists of ring electrodes and a typical

maneto*atic lens is cylindrical current coils aumrunded by high permeability materials which concentrate the

magnetic field across a small gpp. This symmetry reduces a 3D field problem to a 2D problem.

The historical method of handin this problem is to cosider a Taylor series exapansion of the piotential

(Equation I). This method requires knowledge of the potentials on-axis, which can be obtained by any of the means

described in the Numerical Techniques section. Once these have been obtained, the on-axis fields (electric or

magnetic) ae easily determined and then the praxial ray equation - an ordinary diferential equation (see equation 5) -

must be numerically solved for certain trajectories (the "principal rays"). These trajectories we then used in

numerical integrations to obtain the aberration coefficients; important ones are spherical and chromatic aberations.

These aberration coefficients are then used to predict lens performance. Chu and Munro [7] report on a program

capable of modeling both lenses and deflectors in this manner.

We give a worked example below of how to model the performance of a magnetic lens. This will give the

reader an idea of what computer modeling of charged particle optics involves. This particular example is taken from

a manual Munro has provided our lab [30].



The leons gomy we will consider is shomnon the next page, labeled "F lgb*". The

first task will be to demmin the axial magnetic field (also known the flux density), uig

Mu's pogriam MI 1. Decause of the symmer y theo rns, we sned only solve over the

ngon AY2D; this region is shown in dMel in Fig. 19b-. MI I expects that you have

divided the geometry into quadrilaerals., a down in "M. 20b",. in which edges of the pole

piece le along edges of the quadrilateals. You will need to tell Ml I the exact location of

these quadilateras. Furthermore, since MI I uses a FEM tnque to solve for de magnetic
scalar potential everywhere inside AYZD, you will need to tell Ml I what density of mesh

lines to use inside each quadrilateral. This is sketched out in "Fig. 21b": the numbers along

the lines YZ and ZD are the locations, in millimeters, of the corresponding quadrilateral

vertex; the mimbers along the lines AD and AY label the mesh lines thnz the quadrilateral

edges. The completed mesh is shown in "Fig. 22b". Now the steps outlined above we
something that you the user do on paper - the actual input data supplied to the computer, in

the form of a text file, is shown in "Table Ib". This is the format of "Table lb": the fiis two

big blocks of numbers ue the axial ("ze) and radial ("r") coordinates of the quadrilateral
vertices; the numbers 1-7-12-22-27 and 1-5-10-15-20 on the top and left of these blocks ue
the mesh line labels (compare with "Fig. 21 b"). The next line of numbers, 1-22-5-15-1000

tells the location of the pole piece and its relative permeability. The final two columns of

numbers tell the boundary potential distribution (in amptums). The output of this program is
the axial magnetic field, shown in "Table 2b".

Now that the axial magnetic field has been obtained, we may go on to examine the objective

properties of the lens. Munro's program M21 will calculate the excitation parameter and -

depending on the magnification condition - the object and/or image plane, the objective

principal plane, the objective focal length. the objective magnification, the spherical

aberration coefficient, the chromatic aberration coefficient, and the magnetic field at the object

and/or image plane. These us the main properties needed to predict lens performance. Along
with the data file containing the axial magnetic field, the user must also input to M21 the

initial beam voltage, the increment in beam voltage, the number of beam voltages, the
magnification condition (zero, low, high, or infinite), and possibly the position of the object

or image plane (if the magnication is either low or high). Examples of the output of M21 for

the lens of "Fig. 18b" ue found in "Table 14" and "Table 15".
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9000. -5.27 -200.00 20.76 0.105 137.55 21.05 0.0001
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13000. 4.39 -200.00 30.50 0.153 425.90 32.94 0.0001
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As noted in the Intraduiction the above technique of Taylor series expansion only handles third order effects

and this may result in poor accuracy for many situations. While the theory can be extended to higher orders, the

resulting equations i much mor complicated so tat an alternative technique is necessay. One such alternative

method of lens modeing is to give the les design paranmets (eg. electrode shopes and potentials) to a program

which determines the fields ewrywhm in the lens. Direct ray tracing can then be used to se how the electrons

travel. This easily yields charateristics such as optimal focal plane position and focal spot size with high accuracy.

The fields are determined by first solving for the potentiaL typically by either the FDM or FEM mesh methods. A

recent innovation is the use of the ICCG method for solving the maociated matrix equation for FEM determiaion

of the potential; see Lencova and Lenc [Il]. Lencova and WiWelink [311 also introduced automeshing capabilites for

their lens design program - although there is a less serious need for this capability in lens design as compared to

source modeling. Any good program for designing magnetic lenses should have the capability of handling magnetic

saturation effects.

A commercial software package which is capable of modeling charged particle lenses using this second

technique of direct ray tracing is the program OFr1CS put out by Munro's company [20]. A typical example of the

capability of Munro's software is shown in the top picture, (a), on the next page. The near vertical lines are the

equipotentials between the two electrodes. The near horizontal lines are trajectories for electrons with different

starting beigths. The focal plane and spot size are easily determined from where the trajectories arm most closely

crossed together. A plot of focal position vs. square of ray slope is on the bottom - note the fifth order effect which

the above third order theory would miss.

Examples of earlier work in computer modeling of electrostatic lenses may be found in the program

CIELAS by Hill and Smith [321 and the program ELOP-GELOP by van Oostrum [331.
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Deflector Modelfing

Difleckr modeling is similar to lensmodeling in that one wants to demne the field diribution caused

by electrode or current coil magemmw mad thm use ele•o my tra• g or aburai coefficients to predic the

performance. The ain difference betw deflector and lenses is tha def•ectr never have cylindrical symmetry, so

detemining the field distribution is a 3D problem. In principal on could use, say, a 3D FEM progmm to solve for

the fields. In practice, 3D models am so much mo- demanding of computer time and memory capacity compared to

2D models that they have not yet been used for deflector design. Instead, approximate methods have been developed

to cope with the 3D problem.

It turns out that electrostatic deflectors, while lacking cylindrical symmetry, typically still possess some

degree of axial rotation symmeu-y. In particular, the most common electrostatic deflectors have invariance with

respect to rotations of either 90 or 45 degrees. In such a case, the 3D field distribution can be calculated via Fourier

expansion as a sum of harmonic terms:
O(r, 0, z) -- 1 (rz)cos(O) + 0 3 (r, z)cos(30) +

f= (~ + I (zi r 3COS(9) - f3(z)r 3cos(30) + 01

(the rotational symmetry eliminates all even harmonic terms). The common approximation is to neglect the higher

order terms and only deal with terms shown in the equation above; this may be an inadequate approach for large angle
deflectors. Methods for calculating either the functions 10m or the functions fI and f3 for both magnetic and

electrostatic deflectors are outlined in Munro and Chu [34]. These methods include invoking the Biot-Savart law for

magnetic deflectors if no ferromagnetic materials are present - otherwise a FEM code is run. Likewise, electrostatic

deflectors can be solved either by the BEM method or FEM. Lencova [35] reports a code for handling tapered

magnetic deflectors.

There are many lenses, such as multipole lenses, slit lenses, grid lenses, and concentric hemispherical

analysers which are not cylindrically symmetric. Multipole lenses, which are known to be capable of correcting

beam aberrations [36]b can be modeled exactly like deflectors if they have the same symmetry properties; Smith and

Munro report a multipole/deflector program [37]. The other types of lenses may be modeled in a manner similar to

equation (11). except that the lack of symmetry will mean that the even harmonic terms will need to be included.

Future trends for deflector modeling will probably be to increase the accuracy of the field calculations and to

model traveling wave deflectors.



Tolerances

A vital tool for chargd paticle optics desin is a plngram which can cculM toleranw• - the maximum

amount of mechamical imperfections which do not move the performance out of specification. Typical imperfections

ae things like erm in machini or lens eements nm being pwpady aliged

The basis for all tolerance modeling programs is Sturrock's Principle [38]. Sturrock's Principle says that
the effect of moving a point P on an electrode by the vector br p is equivalent to leaving the point unchanged but

changing the potential by 80P - - V4) i 8r.. This is really convenient, to model the effect of, say, a lens

being machined elliptical instead of cylindrical, one could actually model the lens as being cylindrical but now have a

changed boundary potential (via Sturrock's principle). The fact that the boundary potential is no longer cylindrically

symmetric means that the same techniques developed for deflector design must now be invoked, namely Fourier

expansion as a sum of harmonic terms. Note that unlike deflector design, the even harmonic terms may be nonzero.
This will now give you an approximation for the axial potential 0(r = 0, z) which, when combined with a

unified lens/deflector aberration theory [7], allows you to compute the aberrations by numerically solving integrals.

Liu [39] and the references they cite describe a modern approach to lens and deflector tolerancing software.

Archard [40] is a useful reference to assist in understanding Sturreck's original paper.

Space Charge Modeling

All charged particle optical systems suffer from space charge effects. This refers to the mutually repulsive

electric forces that similarly charged particles exert on each other [411. Hence, a beam of electrons will actually have

different trajectories when going through a lens than those that would be predicted from ray tracing when only the

static fields from the lens are taken into account. These mutually repulsive forces have deleterious effects; the axial

components cause the beam energy spread to widen (the "Boersch effect") and the radial components cause spatial

broadening; both degrade the focusing ability of the system.



With an estimate for the beam curen1t desity, a fi order model for the ec& of space Cha Is to

namne that the charge dmni=Y is static and coninmusly distributed ovr the column and then to solvi for the • w

fields in the system. Fo instance, to model space charge effects in an electrostatic iles in this mamn , on would

be solving Poisson's equation instemd of the simpler La*ces equation (which is used when only eWctdes we

considered). Fortunately, this only requires slight modification of the codes used in lens design.

One way to obtain an estimate for the curnm density is to caculate the fields with no charge assumed

present, u=ce the trajectories of a bunch of particles through this system (where the particles start out with random

positions, energies, and entry times - the randomness is a distribution obtained from some model), and then to use
these trajectories to estimate the charge density. Now one can solve Poisson's equation for a more accurate solution.
One could continue to itert on the charge densities derived from successive solutions if desired. This is the method
used by Munro in his electron gun program to simulate space charge effects near the source. He has found that this

method converges to a solution in about 10 iterations (see p. 1866 of reference [12]).

A more effective method to model space charge is by full Monte Carlo simulation. In such a simulation,
particles again are assigned random starting positions, energies, and entry times according to some distribution
model. Then direct ray tracing is performed, using both the static fields from the optical elements and the dynamic
electric fields generated by all the pair interactions. This method is appealing because it correlates with what is
happening physically as a particle beam moves down a column. There are effects predicted by these Monte Carlo
studies which the above first order models do not account for. In particular, when two real electrons make a close

approach they experience higher angle scattering than the scattering predicted from a continuum distribution. This
effect is known as residual stochastic Coulomb interactions. See Hawkes' book [42] for a brief discussion.

Numerically, there are two issues to be faced when implementing a Monte Carlo simulation. First, if there
are N charged particles in the column, then the number of pair interactions which must be calculated grows as N.2

This makes a full Monte Carlo simulation of space charge effects computationally expensive when many particles

are present (e.g. at high current levels). Unfortunately, this is precisely when you are most concerned about space
charge effects. Second, the accuracy of the numerical ray tracing method is highly dependant upon choosing small
time steps when two particles move close to each other. So. an appropriate algorithm must be employed to
dynamically adjust the time step. This is additional overhead and the smaller time steps required also slow the

program down. Other than these two considerations, a space charge modeling program is easy to implement as the
electric field from pairwise interaction of electrons is trivial to calculate (the electrostatic expression is
E = e /(47mor')).

In spite of the computational expense involved in a full Monte Carlo simulation, many people have
developed codes employing it. Munro's program COULOMB uses it [43]; his program can model Gaussian round-
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miludagor wreiding sections. Shhlma~ma [441 has apparenly done a full Momrn Carl investigation hfti space
charge ects a lectmn souces. Groves [451] and Saki [461 we mamong @d- who report fun Mon Carlo

sintalion coda.

In order to sped up spac charge calculations while keeping some of do beneft of a full Mom Carlo code

(e& the had scatering effucts) there have bee several atotps at appoximme Morne Carlo methods. One

aploch is dot of Allee [47], in which they restrict the numb of pair intinactioms. Earlie work by Yau [48) had
investigated do possibility of having a fixed sphere of influence about each electron such hat only nearest neighbor
interaction we considered. AMis incorporaied a more sophisticaued approach in which dte size of this sphere
(actually a cube) is dyaunically adjusted so that on average only a specified number of electrons are inside it. The

dynamic "sphere" adjustment is cleverly implemented so that only a few comparisons per electron need be done.
They found that using only about 10 nearest neighbors gave results comparable to including all the pair interactions.

As a result of considering fewer interactions, the calculation time will grow as N1'4, which is superior to the N2

growth for a full Monte Carlo simulation.

Another possibility is the "Fast" Monte Carlo technique developed by Jansen [49], [50]. In'this method,

the particles we given random initial positions and velocities just as in a full Monte Carlo simulation. The

difference is that the ray tracing is not done numerically but analytically: if one can assume that space charge

interactions only cause small deviations in trajectory, then analytic formulas can be derived to calculate these

deviations. These formulas may still require numerical methods to solve, but this turns out to be much quicker than

numerical my tracing. Jansen claims a speedup factor of 10 to 100 times for his method. The assumption about

small deviations is not valid for all beam conditions - in particular, it becomes false for large beam currents.

Nevertheless, for small to medium beam currents, his method may provide the fastest way to get a good estimate for

space charge effects.

Special mention should be made here about space charge modeling for focused ion beam <FRB) systems.
FIB's are more prone to suffer from space charge effects than electron systems for two reasons. First, ions are many
thousands of times heavier than electrons, so for a given energy they move much slower. This means that to

achieve a given beam current, the density of ions must be much greater than the density of electrons in a beam with
the same current. Second, FIB's ae typically operated at higher current levels than electron beams. Another way to

recognize the susceptibility of FIB systems to space charge is the fact that a tightly focused charged particle beam is
not in equilibrium, so the longer time of flight means greater relaxation towards equilibrium; see [421 and [50). Two
workers who report on Monte Carlo codes for FIB systems are Narum [51] and Vijgen [52]. Nanui's code was

capable of implementing a dynamic sphere of influence to limit the number of particle interactions and dynamic time

steps while Vijgen's modeling used Jansen's "Fast" Monte Carlo programs.
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(SIM) will require dueftled kMMwhd oldoe emission of aecomsy, Ilc S$ 5). Modeling bearntarget
interactions may be very' impoa for lithgraiphic applications whAme dl0u pi rsumch a beum energy may
greatly affect proximnity ex pobwe or ample durmage.

An introduction to the physics of electrom acattering and diffuimon an solids can be found w- Reizw [56).
David C. Joy has published an excellent introduction to Monce Cark electrne scoateing uimialations [57]. The
typical method make saeveral simpilifying usumeptioms. PAMt it is aummed tbo eludec scattering can be aprn
from inelastic scaltaering elusti acanemng Is sumamed suponsibis for cbusgiag fthe 1 dirc -o ofd &e uo A a rajectory
while Inelastic scattering is smamed to only cause energy laws Next. for edam scattering. do solid Jaice of atMs
is viewed as a collection ol d. individual saioms. Finally. the ineludetacaiscming is asumied to contimiously drain
an electron of its energy at a rtie given by the Bethe formula [58]. The eludei scattering P oss section used is the
screened Rutherford formula for an isolated aon; duis formula, pradict a ma free path which is used to deternmie
in a random fashion how long an electron will travel until it neut scatters. At its next scatlering siMe the scatter
angle will next be determined and the whole process will be reetduntil the electron nuns out of energy due to die
continuous inelastic scattering takng place between elastic scattering events. Several thousand computed trajectories
will yield an estimate with a few percenit error of such characteristics as electron peneustio distance and energ
deposition. Joy has made his programs freely available to the public (591.

One b"S weakness Of d1s approch is the use of dhe screened Rutherford elastic cross section fomula It is
known d'At this formula has limite validity - in parficular, iti s bad for elastic scattering off of heavy elements at
low en..,-Tj- 1 1below. say. 10 keV). A more accurate method of obtaining theelastic aou snecton is partia wave
expansion using the Mott scattering formula, but this method require an extensive calculation (several bows of

sueFMpuz-- tame) each tUMe YOU want 10 use it 160). Diowning 161) has determiined an emipirical expMsio
which intepolate Over tabulated Mott Cross sectio data for a larg range Of e-ek- energies and atoi aim This
now allows the signifxcady morI accurate Mom, Cross sections to be used in a practical mannier, for Monte CarO&
scattering simulations.



A mam difficult amn to •cirately model is inelastic scanin. tlbe.m sre weral impunat inelastic

scattering mechanisms like atomic mmu shl ionzation (X-My and Aupr electron generation see [621),

from both valece and conduction elecons, and collective phenome:a such as plesmon exditatons. Those effecs

may depend not only on atomic constituents, but also on crystal stcture. There is a lack of accurate experimental

data in this field. David Joy has comqpied a dataase containing all the publishad data he could find on electron

backs0c0cfcents, secondary electron yielK, stoping po , we. and X-ray ionization cross-setons [63J. A glance

at the data reveals rather astonishing discrepanies between the results teponed by different authr and iag gaps

between data points for many elements. The experiments done to gaher this data ae particulady difficult because

the experimental apparatus is effectively part of the sample; no one has yet done a complete analysis of how to

subtract this effect out [64]. As a result of this, it is not at all uncommon to see researchers publish papers in

which, say, the forward and back scattered currents do not add up to 100% of the incident beam. In addition, the

experimentalists have been irresponsible by not fully reporting the sample characteristics. For example, it might

make a big difference in the data whether a carbon sample is amorphous, graphite, or diamond. The topography of

the sample also has a large effect on, say, secondary electron yield (trenches will act as Faraday cups) yet this is

another characteristic that may go unreported [64].

References to earlier work on Monte Carlo studies of electron scattering in solids may be found in [65];

references which focus on electron scattering as applied to electron beam lithography may be found in [66].

There is also interest in ion scattering in solids. People have done Monte Carlo studies of ion scattering in

solids, but the problem is much more challenging than electron scattering. The reasons for this include atom knock-

out effects (lattice atoms may get knocked out of their sites and in turn knock out other atoms causing a cascade

effect), crystal effects like channeling (ions may travel further along certain crystal orientations), and the fact that a

heavy enough ion dose will modify the characteristics of the sample (i.e. turn it amorphous). The people who are

concerned with modeling ion scattering in solids appear to be mainly interested in ion implantation processes for the

semiconductor industry; see the references in [671 for more details.

Future directions

As this paper has shown, existing programs model many topics in charged particle systems. However,

almost all of these programs exist in isolation so that one big feature would be the concatenation of many of the

existing programs into one easy to use program. For instance, while there are programs to handle space charge

effects, they are totally separate from those programs used in lens or deflector design while in reality you may want



to include space cbarp effects in wl.ma design magp. Them as no one pro . which completely models an

elecvo bani symatn from surc al do way though optical eements and finally sampie interaction.

Am r that a t.m computer modeig falls shm in is optimization tools. Ideally. one should giv an

Ix1 -ens desipg tohe dampum and Ut comput would then carry out a search through parametr space to

y sad fidavmam optimalasohdoi. Atpresntsuchlsoftw slimited. Munroihnsputouttheprograms 0 -

(6) and S1M020), PD). b pirfnm optimization of t•imor and fousin systems, but the optimization is limited

to those pwaases lke electo potetials sad codl curents which do not require new field calculations. Other

resembhus have invustigmad posmebical variations in th lenses, but they unse y appromaom to evaluate lens
Perfonnane. Typical is vm dr Sms eta! [69], Sziagyi and Szup [70), and Lenz [71] who solve for the axa

potential of a cylidrically symmatric lens using various appx and then use the paraxial ray equation for

calculating trajectories KID and Tanmo [721 have attempted an optimization which modifies the geometrical shape

of the lens, but they limited their optimization to minimizing the spherical aberration coefficient. Vertes et al [73]

discuss lens optimiztion r alytical instruments (e.g. mass spectrometry); other work may be found in Olson and

Kusse [741, and Rayces and Lebich [75]. The most difficult obstacle to overcome in finding a global optimization is

the prodigious amount of computing power required. One algorithm which has become popular for solving multi-

dimensional optimization problem is die imulated annealing algorithm; Forbes and Jones [76) discuss this method

as applied to lens optimization.

Lastly, although automated mesh generation programs exist (e.g. the program SOGUN), they are typically

not fully autonomous. Instead, the user (who will have insight into the problem to be solved) must still instruct the

program where to put the heaviest oncentration of grid lines. This may still be a tedious process. Furthermore,

there is probably always a need for more sophisticated numerical methods to get ever more accurate field calculations.

One technique that may relieve the user from guiding the mesh program while also being an accurate potential solver

is the use of adaptive grids. To illustrate, suppose you allow the computer to autonomously set up a coarse,

uniformly spaced grid and run an FEM code once to obtain a preliminary answer for the potentials. The computer

could look to find where the equipotential lines lie in this first solution and then completely readjust the grid so that

now the grid lines conform to the equipotential lines. This would automatically solve the problem of ensuring that

enough grid elements are present where the field is rapidly changing. A few iterations should converge to an

extremely accurate answer. Furthermore, there may be fundamental numerical accuracy benefits or new algorithms

that can be exploited if the grid lines are on approximate equipotentials.
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