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Preface

The 1992 Complex Systems Summer School once again p)rovided an excitil'ng
atmosphere for research, learning, and discussion in a wide variety of fields and
topics. As in previous volumes, the contents of this book reflect the topics dis-
cussed in the 1992 summer school, although a few do not appear within. W\e make
special note of the fact that one of our lecturers, Joshua Epstein of the Brookings

Institution, has used his Summer School lectures as the basis for a book, Nonlineor
Dynamics, Mathematical Biology, and Social Sciencc, to be published as a separate
volume within the SFI con, ilexity series. We are also pleased to include a number

of contributions from the participants themselves. These are the result of research
by individuals or working groups set up during the school. The results are quite

impressive. Special thanks to Brian Keeley for his efforts oni this part of the vol-

ume, and to Cathleen Barczys for arranging the student seminar series during the
Summer School itself.

We are also pleased to note that Una Smith. a participant in the School. has pre'-

pared a biologist's guide to Internet resources. This contains all overview and lists of
free Internet resources such as scientific discussion groups and mailing lists: research

newsletters, directories, and bibliographies: huge data and software archives: and

tools for finding and retrieving information. The guide is a formal Usenet FAQ: that

is, it is posted in various *.answers newsgroulps in Useniet and arclhived in the FAQ

repository on rtfin.mit.edu, where the mlost current version (lan be found via FTP

1992 Lectures in Complex Systems, Eds. L. Nadel & D. Stein, SFI Studies in

the Sciences of Complexity, Lect. Vol. V, Addison-Wesley, 1993 XV
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or e-mail. For more detailed information, please refer to Una Smith's contribution
in the text.
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4 Melanie Mitchell

1. INTRODUCTION

"The advent of electronic computers has brought about a revolution ill all areas of
science and engineering and has opened up the possibility for scientific investiga-
tions and technological accomplishments of a wholly new kind. Computers have
permitted the in-depth study and modeling of systems of great complexity, such

as stellar and galactic dynamics, atmospheric processes, biological cells, brains, the
human immune system, natural ecologies, and economies. The importance of un-
derstanding such systems is enormous: many of the most serious challenges facing
humanity-e.g., environmental sustainability, economic stability, or the control of
disease--as well as many of the hardest scientific questions--e.g., tile nature of
intelligence or the origin of life--will require a deep understanding of complex sys-
tems. Computers have also provided the ability to address previously intractable
practical problems such as large-scale combinatorial optimization, the automatic
analysis of complex data, and the creation of autonomous learning systems, all of
which will have tremendous significance for science and technology.

As research in such areas has progressed, the need for increasingly powerful
and sophisticated computational systems has become critical. Tile recent develop-
ment of massively parallel comluters holds much potential promise for addressing
these problems. However, powerful hardware is almost never enough for making
significant progress on the types of problems listed above: at present the main bot-
tleneck lies in the creation of new computational methods--algorithms, interfaces.
and analysis tools-that are more sophisticated and that fit these problems more
naturally than do traditional computational and mathematical methods.

What is required are methods that naturally take advantage of parallel process-
ing, methods in which appropriate complex behavior emerges from the interaction
of simple parts rather than being laboriously (and most often inadequately) pre-
programmed, and methods that can efficiently search through large spaces, that
have sophisticated pattern-recognition abilities, and that are "adaptive" -i.e., able
to automatically improve their performance (according to some measure) over time
in response to what has been encountered previously.

Such features have been the basis of some novel approaches to computation
that have been developed in recent years, many of them inspired by natural adap-
tive systems. In particular, almost since the advent of the computer age, a small
number of computer scientists have been inspired by the process of biological evolu-
tion. They have attempted to develop "evolutionary" approaches to computational
problems and, in turn, to use computers to model evolutionary processes. The field
of genetic algorithms springs from one such approach.
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1.1 THE APPEAL OF EVOLUTION

Why use evolution as an inspiration for solving computational problems! Natural
evolution addresses many of the requirements discussed above, in the context of

biology. Evolution can be thought of as a massively parallel search through a huge
space of possible solutions to a problem, where the "problem" is to create an organ-
ism that can survive and flourish in a given environment and the "solutions" are the
genetic blueprints for different organisms. Evolution results in emergent complexity

from simple rules-the rules of evolution under natural selection are simple to state,
and yet their effects are hard to predict and their repeated action has given rise to

extremely complex structures. One example is the human nervous system, which
is, among other things, the paramount existing system for sophisticated pattern

recognition.

1.2 ELEMENTS OF GENETIC ALGORITHMS

Genetic algorithms (GAs), computational methods inspired by ideas from evolution
under natural selection, were invented in tile 1960s by John Holland of the Uiniver-
sity of Michigan and were first described at length in his book Adaptation in Natural
and Artificial Systems.3 8 A GA searches through a space of "chromosomes," each of

which represents a potential solution to a given problem (in some cases, a solution

consists of a set of chromosomes). These chromosomes often take the form of bit
strings; each bit position ("locus") in the chromosome has two possible values ("al-
leles"), 0 and 1. (These biological terms are used in the spirit of analogy with real

biology, though the entities they refer to are, of course, much simpler than the real
biological entities.) Each chromosome can be thought of as a point in the search
space of potential solutions. The search takes place by processing populations of
chromosomes, moving from one population to another. This is different from most
search methods, which move between single points in the search space. The GA
most often requires a "fitness function" that assigns a score (fitness) to each chro-

mosome in the current population. The fitness of the chromosome depends on how
good a solution that chromosome is to the problem at hand.

For example, a common application of GAs is in function optimization, where
the goal is to find a set of parameter values that optimize a complex niultiparameter

function. As a simple example, one might want to maximize the one-dimensional
function

75

f(x) = x + I sin(32x)I,xc[0... 7r.

Here the potential solutions are values of x; these might be encoded as bit strings.
The fitness function would translate a given bit string into a real number and then
apply the function at that value. The fitness of a string would be the function value

at that point.
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__ FIGURE 1 A robotic
navigation problem, in
which one potential solution

0 0 Backward; 0 1 = Left; 1 0 = Forward; 11 Right (a series of 'forward,"
"backward," "left, and "right"

101001 1011 0010 ... moves) is encoded as a bit

F F L F R B F string.

As another example, the GA might be applied to the robotics problem illus-
trated in Figure 1. Here the problem is to find a good strategy for traversing the
maze efficiently to reach the goal, where a strategy is a sequence of FORWARD,
BACKWARD, LEFT, and RIGHT moves. As shown in the figure, each of these
possibilities can be represented by two bits. A bit string encoding a potential so-
lution is also shown. The fitness of a strategy might be calculated by letting the
robot follow the strategy and measuring the Euclidean distance between its final

position and the goal.
The preceding two examples show two different contexts in which potential

solutions to a problem are encoded as abstract bit-string "chromosomes" and fitness

functions are defined on the resulting space of bit strings. A search space together
with a fitnes- function is known as a "fitness landscape," analogous to the notion
of a fitness landscape in biology.90 The GA is a method for searching a fitness
landscape for high-fitness strings. The GA, in its simplest form, involves three
"genetic" operators:

0 Reproduction: This operator makes identical copies of some of the chromo-

somes in the population (the fitter the chromosome, the more copies are likely

to be made).
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N Crossover: This operator exchanges subparts of two chromosomes. For ex-
ample, the strings

10000100

and
11111111

could be crossed over after the third bit to produce two offspring:

10011111

and
11100100.

This operator roughly mimics sexual recombination between two single-

chromosome organisms.
N Mutation: This operator randomly flips some bits in the chromosome. For

example, the string 00000100 might be mutated in its second position to yield
01000100. Mutation can occur at each bit position in a string with some prob-
ability, usually very small.

1.3 A SIMPLE GA

With these three genetic operators, we can now give a simple genetic algorithm:

1. Start with a randomly generated population of chromosomes (potential solu-

tions to a problem).
2. Calculate the fitness of each chromosome in the population.
3. Apply genetic operators (reproduction, crossover, and mutation) to the popu-

lation to create a new population.
4. Go to step 2.

This process is iterated over a number of time steps ("generations"). After several

generations, the result is often one or more highly fit solutions in the population.
This simple procedure is the basis for most applications of the GA. There are

a number of details to fill in, such as the size of the population or how exactly to
apply the genetic operators, and often the success of the algorithm depends very
much on these decisions. There are also much more complex versions of the GA
(e.g., GAs that work on representations other than bit strings or GAs that have

different types of crossover and mutation operators). Some examples will be given
later in this chapter.

As a more detailed example of the simple GA, suppose that the fitness of a bit
string is equal to the number of l's in the string and suppose that the population
contains four strings.
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The initial (randomly generated) population might look like:

Fitness
00000110 2
11101110 6
00100000 1
00110100 3

A common way to perform reproduction in GAs is known Ls fitness-propor-
tionate reproduction: each individual in the population is assigned an expected
number of copies value equal to its fitness divided by the average fitness of time
population. These values are given below:

Fitness ExpectedCopies

00000110 2 2/3
11101110 6 6/3
00100000 1 1/3
00110100 3 3/3

Since an individual cannot have a fractional number of copies. sonie kind of
sampling procedure must be used to assign an integral number of copies to each
individual, based on the expectation values. Usually this is done so that 1he total
actual number of copies equals the population size. The distribution above might,
for example, yield zero copies for the first string, two copies for the second, and one
each for the third and fourth under a random sampling procedure biased by expec-
tation value. (The zero copies for the first string is just the luck of the draw here.
If the selection procedure were repeated several times, the average results would be
closer to the expected values.) Pairs of strings are then randomly chosen from the
copies, and each pair crosses ovcr to produce two offspring. The simplest form of
crossover is single-point crossover, in which a single crossover point is chosen ran-
domnly with uniform probability over the entire string, and substrings of the parents
before and after the crossover point are exchanged. The two offspring from the cross
then undergo mutation with some probability--for example, the probability might
be fixed at 0.01 per bit, which, in the case of strings of length 8, would mean an
0.08 chance that a given string would be inmutated in one position. The resulting
strings then are placed in the new population, and the entire procedure is repeated
for the next generation.

The GA described above is very simple; many other, more complicated versions
have been developed, some of which are described in this chapter. This chapter does
not include a general discussion of the issues involved in implementing a GA: such
discussions can be found in Goldberg, 27 Davist m6 and Michalewicz. 5

9
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1.4 OVERVIEW OF SOME APPLICATIONS OF GENETIC ALGORITHMS

The algorithm described above is very sjll.but variations oin this basic thelniu
have been used in a large niumber of scientific and engineering problenils and 1110(1(1.s

including the following:

"* Optimization: GAs have, been used in a wide variety , .if op~tiniizat ion tasks.
including numerical optimization (e.g.. De .]ong'8 ) as well as comhnilatorial
optimization problems such as circuit designl (e.g .. Slialookar and NMaZtlil1Jer.1)

and job shop scheduling (e.g., Nakano 6 5 ).
"* Automatic programming: GAs have bweei used as a means to e~volve (0111-

puter programs to perform various tasks:M 13 1: one slich i -o ject will he dis-
cussed in detail later in this chapter.

"* Machine and robot learning: GAs have been ulsed inl sonme machime learmi-
ing tasks such as classification and pred iction (e.1g.. predlict ion (of dvlliiamical
systems, 5 8 weather p)rediction. 76 andl lnr(e(i('tioli of proteinl structlurev`)ý thle dv-
sign of neural networks (e.g., Belew et al.. ('aliahers. 12 Harp) and SauiinoL.
.Miller et al.,"0 and Montana and Davis"A). and the evohlitio 101(f behavioral rulles

for a cognitive system. 3 5

"* Economic models: GAs have been used by' ecolloillists to IllioeleI processes of'
innovation, to model the developmient of bidding' strategTies. and~ to 1110(1(1 the
emergence of economic markets. 2 .

3 7

"* Immune system models: GAs hawe been uisedl to mode(l( the evoluiotn 1 of
immunological antibodies in a changing ('livirollIlleilt (of ait iemis. 2

"* Ecological models: GAs have beeni used ill llodels (of' ecological phlemloinlelia
such as biological arms races, host-parasite coevolutioii. synmbiosis. and resiource'
flow in ecologies. 3 .3 9.5

0 ,7
3 .7 4

This list is by no means exhaustive, but it g)ive(s the flavor of the kinds of tl lungs
GAs have been used for, both iii problemi-solving and scientific contexts. Because
of the GA's success ill these and other areas. initerest has been growing rap~idly inl

the last several years among researchers in nianv (liscilililies andl ti'hefildl (if GAs,
is b~ecoming its own subdiscip~line of coml~uter Science. with its owil con fereliIces.
journals, and scientific society.

A BRIEF EXAMPLE: USING GENETIC ALGORITHMS TO EVOLVE
STRATEGIES TO THE "PRISONER'S DILEMMA"

As a warni-uil) to more extensive discussions oif GA apI)licatiolls. I will (lescril(( all
al)plication of the GA to evolve strategies for t lie Prisoner's Dileiminiia. I

The Prisoner's Dilemina is a simp~le two-elx-soli galmme t hat has been studnied eX-

tensively in game theory, economics, and p)olitical 5('iveli becaumse it cain he seen as
ain idealized model for real-world p~hellnoenla such1 as anuis races.: Oiui agiveli turn11.
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Player B

Cooperate Defect

Cooperate 3, 3 0, 5

Player A

Defect 5,0 1,1

FIGURE 2 The payoff matrix for the Prisoner's Dilemma (adapted from Axelrod 4).
The numbers given in each box are the respective payoffs for players A and B in that
situation.

each player independently decides whether to "cooperate" or "defect." The game is
summarized in the payoff matrix shown in Figure 2. If both players cooperate, they
each get three points. If player A defects and player B cooperates, then player A
gets five points and player B gets zero points; vice versa if the situation is reversed.
Finally, if both players defect, they each get one point. What is the best strategy
to take? If there is only one turn to be played, then clearly the best strategy is
to defect: the worst consequence for a defector is to get one point and the best
is to get five points, which are better than the worst score and the best score,
respectively, for a cooperator. The dilemma is that if the game is iterated, that is, if
two players play several turns in a row, the strategy of always defecting will lead to
a much lower total payoff than the players would get if they both cooperated. How
can reciprocal cooperation be induced? This question takes on special significance
when the notions of "cooperating" and "defecting" correspond to actions in, say. a
real-world arms race.

Robert Axelrod of the University of Michigan has studied the Prisoner's
Dilemma and related games extensively. His interest in what makes for a good
strategy led him to organize two Prisoner's Dilemma tournaments (described in
Axelrod 3 ). He solicited strategies from researchers in a number of disciplines. Each
participant submitted a computer program that implemented his or her strategy.
and the various programs played iterated games with each other. During each iter-
ated game, each program remembered what move its opponent made on the three
previous turns, and its strategy was based on this memory. The programs were
paired in a round-robin tournament, where each played with many or all of the
other programs over a number of turns. The first tournament contained 14 dif-
ferent programs and the second tournament contained 62 programs. Some of the
submitted strategies were rather complicated, using techniques such as Nlarkov
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processes and Bayesian inference to model other players and to determine the best
move. However, in both tournaments the winner (the strategy with the highest
average score) was the simplest of the submitted strategies: TIT FOR TAT. TIT
FOR TAT cooperates on the first move and then, on subsequent moves. does what-
ever the other player did last. That is, it offers cooperation and then reciprocates
it, but if the other player defects, TIT FOR TAT will punish that with a defection.

After the two tournaments, Axelrod decided to see if the GA could eolve strate-
gies to play this game successfully.4 The first problem was figuring out how to best
encode a strategy as a bit string. The encoding used by Axelrod follows. Suppose
the memory of each strategy is one previous move. There are four possibilities for
the previous move:

CC (case 1)

CD (case 2)

DC (case 3)

DD (case 4)

Case 1 is when both players cooperated on the previous move. case two is when
player A cooperated and player B defected, and so on. A strategy is siniply a rule
that specifies an action in each case. For example, TIT FOR TAT is the following
strategy:

If CC (case 1), then C.

If CD (case 2), then D.

If DC (case 3), then C.

If DD (case 4), then D.

This strategy can be encoded by a string of length 4 which says what to do in each
of the four cases:

C D C D.

To use the strategy, the player determines the case corresponding to the previous
move and uses the letter corresponding to that case in the string (e.g.. in case 1.
the player uses the letter in the first position in the string. here C).

Axelrod's tournaments involved strategies that used three, pr(vious inoves.
There are 64 possibilities for the previous three moves:

CC CC CC (case 1)

CC CC CD (case 2)

CC CC DC (case 3)

etc.

Thus a strategy can be encoded by a 64-bit string, e.g.,

CDCCCDDCCCDD ....
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Axelrod actually used a 70-bit string where the six extra bits (C's or D's) were
not part of the strategy but encoded three hypothetical "previous moves" used by
the strategy to decide what to do on the very first move of the game. The number
of possible strategies is thus 270; the search space is thus far too big to search
exhaustively.

In Axelrod's first experiment, the GA had a population of 20 strategies. The
fitnesses of strategies in the population were determined as follows. Axelrod had
found earlier that eight of the human-generated strategies from the second tour-
nament were representative, in the sense that a given strategy's score playing with
these eight was a good predictor of the strategy's score playing with all 62 entries.
This set of eight strategies (which did not include TIT FOR TAT) served as the
"environment" for the evolving strategies in the population. Each strategy S in the
population played iterated games with each of the eight fixed strategies, and S's
fitness was its average score over all the games it played.

The GA was run for 50 generations, with fitness-proportionate reproduction,
crossover, and mutation being applied at each generation. Forty replications were
made of the GA run, with different random number seeds used for each replication.
Most of the strategies that evolved were similar to TIT FOR TAT, having many of
the properties that make TIT FOR TAT successful. However, the GA often found
strategies that scored substantially higher than TIT FOR TAT. This is a striking
result, especially in view of the fact that in a given run the GA is testing only
20 * 50 = 1000 individuals, out of a huge search space of 270 individuals.

It is not correct to conclude that the GA evolved strategies that are "better"
than any human-designed strategy. The performance of a strategy depends very
much on its environment-that is, the other strategies that it is playing with. Here
the environment was fixed-it consisted of eight human-designed strategies that
did not change over the course of a run. The highest-scoring strategies produced
by the GA were ones that "learned" how to exploit specific weaknesses of the
eight fixed strategies. It is not necessarily true that these high-scoring strategies
would also score highly in some other environment. TIT FOR TAT is a generalist,
whereas the highest-scoring evolved strategies were more specialized to their given
environment. Axelrod concluded that the GA is good at doing what evolution often
does: developing highly specialized adaptations to specific characteristics of the
environment.

To see the effects of a changing (as opposed to fixed) environment, Axelrod
carried out another experiment in which the fitness of a strategy was determined
by allowing the strategies in the population to play with each other rather than
with the fixed set of eight strategies. The environment changes from generation
to generation because the strategies themselves are evolving. At each generation,
each strategy played iterated games with each of the nineteen other members of
the population, and its fitness was again its average score over all games.

In this second set of experiments, Axelrod observed the following phenomena.
The GA initially evolves uncooperative strategies, because strategies that tend to
cooperate early on do not find reciprocation among their fellow population members
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and thus tend to die out. But after about 10 to 20 generations, the trend starts to
reverse: the GA discovers strategies that reciprocate cooperation and that punish
defection (i.e., variants of TIT FOR TAT). These strategies do well with each other
and are not completely defeated by other strategies, as were the initial coopera-
tive strategies. The reciprocators score better than average, so they spread in the
population, resulting in more and more cooperation and higher and higher fitness.

This example illustrates how one might use a GA both to evolve solutions to

a complex problem and to model evolution and coevolution in an idealized way.
One can think of many additional possible experiments, such as running the GA
without crossover and seeing the effect this has on the evolution of strategies (this
experiment was done by Axelrod 4 ) or allowing a more open-ended kind of evolution
where the amount of memory available to a given strategy is allowed to increase
with evolution (such an experiment was performed by Lindgren5 0 ).

1.6 HOW AND WHY DO GENETIC ALGORITHMS WORK?

GAs are simple to describe and program, but their behavior can be complex and
many open questions exist about how and why they work and what they are
good for. Much work has been done on the foundations of GAs (see, for example,
Holland, 38 Goldberg,2 7 Rawlins,7 2 and Whitley"g). The last section of this chapter
describes some approaches toward answering these questions. Here I give a brief
overview of some fundamental concepts related to the theory of GAs.

At a very general level of description, it is believed that GAs work by discov-
ering, emphasizing, and recombining high-quality building blocks of solutions in a
highly parallel way. The idea here is that good solutions tend to be made up of
good building blocks-combinations of bit values that often confer higher fitness to
the string in which they are present.

Most studies of the theory of GAs start with the notion of schemas (or
"schemata" ),38 which formalizes the informal notion of "building blocks." A schema
is a set of bit strings that can be described by a template made up of l's, O's, and
*'s, where the *'s represent wild cards (or "don't cares"). For example, the schema
s = 1....1 represents the set of all 6-bit strings that begin and end with 1. The
strings that fit this template (e.g., 100111 or 110011) are said to be instances of s.
The schema s is said to have two defined bits (the number of non-*'s) or, equiv-
alently, to be of order 2. Its defining length (the distance between its outermost

defined bits) is 5.
Note that not every possible subset of the search space of bit strings can be

described as a schema; in fact, the huge majority cannot. In a search space of bit

strings of length 1, there are 21 possible strings and thus 22' possible subsets of
strings, but only 3 1 possible schemas. However, a central tenet in GA theory is
that schemas are the building blocks that the GA processes effectively under the

operators of reproduction, mutation, and single-point crossover.
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How does the GA process schenias? Any given bit string of length 1 is an
instance of 21 different schemas. For example, the string 11 is an instance of **
(the schema that contains the entire search space), *1, 1*, and 11 (the schema
that contains only one string, 11). Thus any given population of N strings contains
between 21 and N x 21 different schemas (if all the strings are identical, then there are
exactly 21 different schemas; otherwise, the number is less than N x 2'). This means
that at a given generation, while the GA is explicitly evaluating the fitnesses of the
N strings in the population, it is actually implicitly estimating the average fitness of
a much larger number of schemas. For example, in a randomly generated population
of N strings, on average half the strings will be instances of 1*** ... * and half will
be instances of 0"**... *. The evaluations of the approximately N/2 strings that are
instances of 1"** ... * give an estimate of the average fitness of that schema. (The
average fitness of a schema is defined to be the average fitness of all strings in the
search space that are instances of that schema.) Similarly, in evaluatiirg a population
of N strings, the GA is implicitly estimating the average fitnesses of all schemas
that are present in the population. This simultaneous evaluation of large numbers
of schemas in a population of N strings is known as implicit parallelism. 38 The
effect of reproduction is to gradually bias the sampling procedure toward schemas
whose fitness is estimated to be above average. Over time, the estimate of a schema
s's average fitness should in principle become more and more accurate since the
GA is sampling more and more instances of s (some possible problems with this
assumption are discussed in the last section in this chapter).

We can calculate the dynamics of this sample biasing as follows. Let s be a
schema present in the population at time t (i.e., there is at least one instance of s
at time t). Let N(s, t) be the number of instances of s at time t, and a(s, t) be the
observed average fitness of s at time t (i.e., the average fitness of instances of s in
the population at time t). We want to calculate N(s, t + 1), the expected number
of instances of s at time t + 1. Assume that reproduction is carried out as described
earlier: the expected number of copies of a string x is equal to F(x)/F(t), where
F(x) is the fitness of string x in the population and F(t) is the average fitness
of the population at time t. (For now, we will ignore the effects of crossover and
mutation.) Then,

N(s, t + 1) =EF(x)

X(S F(t)

- .,,F(x)]

F(t)

- Nt(st)),

F(t)

by definition, since ii(s, t) =E-]x,, F(x)/N(s, t) for x in the population at time t.
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This is known as tile Schema Theorem3" (see also Goldberg 2 7). It says that
schemas whose observed average fitness stays above the population average fitness
will receive exponentially increasing numbers of samples over time.

Crossover and mutation can both destroy and create instances of s, so the right
side of Eq. (1.1) call be thought of as a lower bound on N(s, t + 1) if we include
the effects of crossover and mutation. First, let us consider the disruptive effects of
crossover. Let Pc be the probability that single-point crossover will be applied to a
string. Then we can state a lower bound on the probability Se(s) that a schema s

will survive under crossover:

S(s) Ž1-Pc ( ds))

.where d(s) is the defining length of s and I is the length of bit strings in the

search space. That is, crossovers occurring within the defining length of the schema

can destroy the schema, so we multiply the fraction of the string that the schema
occupies by the crossover probability to obtain an upper bound oii II, probability

that it will be destroyed. (The value is an upper bound becaube some crossovers
inside a schema will not destroy it, e.g., if two identical strings cross with each

other.) In short, the probability of survival tinder crossover is higher for shorter
schemas.

The disruptive effects of mutation can be quantified as follows. Let p,, be the
probability of any bit being mutated. Then Sn(s), tile probability that schema s
will survive under mutation, is the following:

S"'(8) = (1 - P.,)o(,

where o(s) is the order of s (i.e., the number of defined bits in s). That is, for each
bit, tile probability that it will not be mutated is 1 - p, so the probability that no
bits of schema s will be mutated is this quantity multiplied by itself o(s) times. In

short, the probability of survival tinder mutation is higher for lower-order schemas.
These disruptive effects call be used to amend Eq. (1.1):

iLS t) [ ds
N(s,t + 1) -ý g '- N(s,t) 1 - p,-[) [(1- p,)] J)(1p . (1.2)

F@t) 1 1-lI

The conclusion is that short, low-order schemas whose average fitness remains above

the mean will receive exponentially increasing numbers of samples over time.
The Schema Theorem as stated in Eq. (1.2) is incomplete in that it only deals

with the destructive effects of crossover and mutation. However, crossover is believed
to be a major source of the GA's search power, taking the high-fitness schemas

that are emphasized in the population and recombining them to form even fitter
higher-order schemas that, are themselves then emphasized via reproduction. The
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supposition that this is the process by which GAs work is known as the "Building-
Block Hypothesis" 38' 27 : it proposes that the GA produces fitter and fitter strings
by combining building blocks.

The Schema Theorem and the Building-Block Hypothesis deal with the roles
of reproduction and crossover in GAs. What is the role of mutation? Holland 3 8

proposes that mutation is what prevents loss of diversity at a given bit position.
For example, without mutation, all the strings in the population might come to
have a 1 at the first bit position, and there would be no way to obtain a string
beginning with a zero. Mutation provides a kind of "insurance policy" against such
fixation.

The reader may have noticed that the Schema Theorem given in Eq. (1.1) ap-
plies not only to schemas but to any subset of strings in the search space. The reason
for specifically focusing on schemas is that they (in particular, short, high-fitness
schemas) are a good description of the types of building blocks that are combined
effectively by single-point crossover. Thus, a belief underlying this formulation of
the GA is that schemas will be a good description of the relevant building blocks
of a good solution. GA researchers have defined other types of crossover operators
that deal with different types of building blocks and have analyzed the generalized
"schemas" that a given crossover operator effectively manipulates (e.g., Radcliffe71

and Vose8 5 ).

2. GENETIC ALGORITHMS IN PROBLEM SOLVING
In the previous section some applications of GAs were listed, including applications
both for solving practical problems and for modeling natural evolutionary systems.
This section describes three projects in which the GA is used in problem solving.
These three projects each include different GA representations and techniques and
give a good flavor for the diversity of possible uses for GAs.

2.1 AUTOMATIC PROGRAMMING

Automatic programming-having computer programs automatically write comi-
puter programs--has a long history in the field of artificial intelligence, but auto-
matic programming methods have not had much success in producing the complex
and robust programs needed for real applications. John Koza of Stanford Univer-
sity has used a form of the GA to evolve computer programs to perform various
tasks43' 4 4 and claims that his mnethod--"Genetic Programming" (GP) has the
potential to produce programs of the necessary complexity and robustness. The
programs are expressed in the programming language Lisp. Programs in Lisp can
easily be expressed in the form of a "parse tree," the object the GA will work on.
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For example, consider a program to compute the area of a circle. In a programming

language such as FORTRAN, such a program might be:

PROGRAM AREA-OF-CIRCLE

R . 45
PI . 3.1415

AREA - PI * (R * R)

PRINT AREA
END AREA-OF-CIRCLE

In Lisp, this program could be written as

(DEFUN AREA-OF-CIRCLE 0)

(SETF R 45)

(SETF PI 3.1415)

(* PI (* R R)))

(In Lisp, the value of the last expression in the program is automatically printed.)
Assuming we know PI and R, the important statement here is (* PI (* R R)), which
can be expressed as the parse tree shown in Figure 3. In Koza's GP algorithm,

the population does not consist of bit strings but of such trees, and new genetic
operators are defined to work on them.

Each tree consists of functions and terminals. In the tree shown in Figure 3,
the multiplication operator * is a function that takes two arguments. PI and R

are terminals. Notice that the argument to a function can be the result of another
function, as in the expression above where one of the arguments to the top-level *

is (* R R).

Koza's algorithm is:

1. Choose a set of possible functions and terminals for the program. The idea
behind GP is, of course, to evolve programs that are difficult to write and,
in general, one does not know ahead of time precisely which functions and
terminals will be used in a successful program. So the user of GP has to make
an intelligent guess as to a reasonable set of functions and terminals for the
problem at hand. For example, for the area-of-circle problem, the function set
might be {+, -, *, /, *i} and the terminal set might be {PI, R, C, D} (where

C is the circle's circumference and D is its diameter).
2. Generate an initial population of random trees (programs) using the set of pos-

sible functions and terminals. These random trees must be syntactically correct

programs-that is, the number of branches extending from each function node
must equal the number of arguments taken by that function. Three programs

from a possible randomly generated initial population are displayed in Figure 4.
Notice that the randomly generated programs can be different sizes (different
numbers of nodes and levels in the trees). In principle a randomly generated

tree can be any size, but in practice Koza restricts the size of the initially
generated trees.

3. Calculate the fitness of each program in the population. The fitness of a program

is calculated by running it on a set of "training cases" -a set of inputs for which
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the correct output is known. For the area-of-circle example, the training cases
might be a set of experimental observations in which the areas of a set of
circles were measured experimentally (assuming that the user did not know
the formula ahead of time). Another application might be to evolve a robot
program to navigate a maze; there the training cases might be a number of
mazes, and the desired output is a set of moves that takes the robot to the goal
of the maze. The fitness of a program is a function of the number of training
cases on which it performs correctly (some fitness functions might give partial

credit to a program for getting close to the correct output).
The randomly generated programs in the initial population are not likely to

perform well but, with a large enough population, some of them will perform
better than others by chance. This initial fitness differential provides a basis
for "natural selection" to get off the ground.

4. Apply reproduction, crossover, and mutation to the population. Reproduction
in GP is the same as in the simple GA described above, with the expected
number of copies of a program being its fitness divided by the average fitness
of the population. Crossover is performed by selecting pairs of parents from the

set of copies made under reproduction and allowing them to exchange subtrees.
Figure 5 displays one possible crossover. Here, a random point is chosen in
each parent (the top two trees) and the subtrees beneath those two points
are exchanged, to produce two offspring (the bottom two trees). Notice that
crossover allows the size of a program to increase or decrease.

P1*

FIGURE 3 Parse tree for
the Lisp expression for

PI*R 2.
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*

R -I

R*[(PI*C)- ]PI {PIPI)!(PI PI)

R*

FIGURE 4 Three programs from a possible
PI randomly generated initial population for

the area-of-circle task. The expression
represented by each tree is printed beneath

R + (%I/j * D) the tree.

Mutation might performed by choosing a random point, in a tree and replacing
the subtree beneath that point by a randomly generated subtree. Koza generally
does not use a mutation operator in his applications. 44
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Steps 3 and 4 are repeated for some number of generations.
It may seem difficult to believe that this procedure would ever result in a

program that would perform the desired task; the famous example of a monkey
randomly hitting the keys on a typewriter and producing the works of Shakespeare
comes to mind. But surprising as it might seem, the GP technique has succeeded
in evolving correct programs to solve a large number of specific problems in various
domains, including optimal control, planning, sequence induction, symbolic regres-
sion, image compression, robotics, and many others. One example (described in
detail in Koza 44 ) is the problem of block stacking. This is a common "microworld"
used to develop and test planning methods in artificial intelligence. The specific
problem to which GP was applied is illustrated in Figure 6. Here, the problem is to
find an algorithm that takes any initial configuration of blocks- -some on the table,
some in a stack-and places them in the stack in the correct order. Here the correct
order spells out the word "universal."

For the terminals and functions for this problem, Koza used the set defined
by Nilsson.66 The terminals consisted of three sensors (available to a hypothetical
robot to be controlled by the resulting program):

"* CS ("current stack") returns the name of the top block of the stack. If the
stack is empty, this sensor returns NIL.

"* TB ("top correct block") returns the name of the topmost block on the stack
such that it and all blocks below it are in the correct order.

"* NN ("next needed") returns tile block needed immediately above TB in the
goal "universal." If no more blocks are needed, this sensor returns NIL.

In addition to these terminals, there were five functions available to GP:

"* MS(x) ("move to stack") moves block x to the top of the stack if X is on the
table.

"* MT(x) ("move to table") moves the top of the stack to the table if block x is
anywhere in the stack.

"* DU(expressionl, expression2) ("do until") executes expressioil1 until expres-
sion2 (a predicate) becomes satisfied (i.e., returns TRUE).

"* NOT(expressionl) returns TRUE if expressionl is NIL and returns NIL
otherwise.

"• EQ(expressionl, expression2) returns TRUE if expression1 and cxpression 2
are equal (i.e., return the same value).

The programs in the population are generated from these two sets. The fitness of
"a given program is the number of sample enviromnental cases (initial configurations
of blocks) for which the stack is correct (i.e., spells "universal") after the program
is run. Koza used 166 different environmental cases, carefully constructed to cover
the various classes of possible initial configurations (see Koza 41 for details).

I
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RI - P1 /I

dp, C R P 1 P

N,,/

1 CP11 PI PI

R

FIGURE 5 An example of crossover in the Genetic Programming algorithm. The two
parents are shown at the top of the figure and the two offspring are shown below. The

crossover points are indicated by slashes in the parent trees.
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R

S

A

FIGURE 6 One initial state for the block-stacking problem. The goal is to find a plan
that will stack the blocks correctly (spelling "universal") from any initial state. (Adapted
from Koza. 43 )

The initial population contained 300 randomly generated programs. Some ex-
amples (written in Lisp style rather than tree style) follow:

"* (EQ (MT CS) NN)
"Move the current top of stack to the table, and see if it is equal to the next
needed." This clearly does not make any progress in sorting the blocks, and the

program's fitness is 0.
"* (MS TB)

"Move the top block on the stack to the stack." This program effectively does

nothing, but doing nothing allows it to get one environmental case correct: the
case where all the blocks are already in the stack in the correct order. Thus
this program's fitness is 1.

"* (EQ (MS NN) (EQ (MS NN) (MS NN)))

"Move the next needed block to the stack three times." This program makes
some progress and gets four environmental cases right, giving it fitness 4. (Here

EQ serves merely as a control structure. Lisp executes the first expression.
then executes the second expression, and then compares their value. EQ thus

performs the desired task of executing the two expressions in the proper order --
we don't actually care whether their values are equal.)

By generation 5, the population contains some much more successful programs.
The best one is:

(DU (MS NN) (NOT NN))
"Move the next needed block to the stack until no more blocks are needed.-

Here we have the basics of a reasonable plan. This works in all cases in which
the blocks on the stack are already in the correct order: thie program moves tle

renmaining blocks on the table onto thle stack in the correct or(der. Thfere were
ten such cases in the total set of 166, so this program's fitness is 10. Notice that

this program uses a building block (MS NN) that was (lis('overe(d in thle first

generation and found to be useful there.

----- ---
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In generation 10 a completely correct program (fitness 166) was discovered:

(EQ (DU (MT CS) (NOT CS)) (DU (MS NN) (NOT NN)))
This is an extension of the best program of generation 5. The program empties

the stack onto the table, and then moves the next needed block to the stack
until no more blocks are needed. GP thus discovered a plan that works in all
cases, although it is not very efficient. Koza"4 discusses how to amend the fitness
function to produce a more efficient program to do this task.

Koza's GP technique has produced some interesting and impressive results, but
there are some open questions about its capabilities. Does it work well because the
space of Lisp expressions is in some sense "dense" with correct programs for the
tasks Koza has tried? This was given as one reason for the success of the artificial
intelligence programs AM and Eurisko,4 5 which used Lisp expressions to discover
"interesting" conjectures in mathematics, such as the Goldbach conjecture (every
even number is the sum of two primes). Koza refutes this hypothesis about GP
by demonstrating how difficult it is to randomly generate a successful program
to perform some of the tasks for which GP evolves successful programs. However,
one could speculate that the space of Lisp expressions (with a given function and
terminal set) is dense with useful intermediate-size building blocks for the tasks on
which GP has been successful. The fact that GP is often extremely quick to find
solutions (e.g., within 10 generations using a population of 300) lends credence to

this hypothesis.
Some other questions are:

"* Will the technique scale up to more complex problems for which larger programs
are needed?

"* Will the technique work if the function and terminal sets are large?
"* How many environmental cases are typically needed? In many of Koza's exam-

ples, the evolving programs are tested on all possible environmental cases. In
most real-world problems, such exhaustive (or even near-exhaustive) testing is
infeasible. It is important to know the extent to which GP produces programs
that generalize well after seeing only a small fraction of possible environmental

cases.
"* To what extent can programs be optimized for correctness, size, and efficiency

at the same time?

The success of GP over a wide range of problems is encouraging and makes it well
worth the effort to address these questions in future research.
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2.2 COMPLEX DATA ANALYSIS AND PREDICTION

One major impediment to scientific progress in many fields is the inability to make
sense of huge amounts of data that have been collected via experiment or computer
simulation. There has been much work on developing automatic methods for finding
significant and interesting patterns in complex data, or for forecasting the future
from such data, but in general this remains an open problem.

Norman Packard of the Prediction Company has developed a form of the GA to
address this problem68 and has applied his method to a number of data analysis and
prediction problems, including work with Thomas Meyer on forecasting a particular
chaotic dynamical system. 58

The general problem can be stated as follows. A series of observations from
some process (e.g., a physical system or a formal dynamical system) take the form
of a set of pairs: I :FYI),... F, YN)},

where Y = (x1 ,...,x,,) are independent variables and y is a dependent variable.
For example, in a visual pattern-recognition task, the independent variables might
be some set of features of the visual image (e.g., number of edges, number of ver-
tices, curvature of lines, etc.) and the dependent variable might be the category of
the visual image (e.g., "the letter 'A'"). Or in a time-series prediction task, the in-
dependent variables might be Y = (x(tl),x(t 2 ), .. , x(t,,)), representing the values
of a state variable at successive time steps, and the dependent variable might be
y = x(tn+k), representing the value of the state variable at some time in the future.
(In these examples there is only one dependent variable y, but a more general form
of the problem would allow any number of dependent variables.)

Packard used the GA to search through the space of sets of conditions on
the independent variables for sets of conditions that give good predictions for the
dependent variable. An individual in the GA population is a set of conditions such
as:

C = {(xI = C1 V C2 V c3) A (x5 = di V d2 ) A (X6 = el V e2)}.

This individual represents all the situations in which xl is equal to one of the values
C1 , c 2 , or C3, and x5 is equal to either d, or d2 , and X6 is equal to either el or e 2 .
Here cl, C2, c3 , etc. are the values of some feature; they do not have to be numerical.
No requirements are made on the values of any of the other independent variables.

If the independent variables are numerical, a set of conditions might be

C = {(c < x, < c') A (d < x5 S d') A...}.

Such a condition set C specifies a particular subset of the data points. Packard's goal
is to use a GA to search for condition sets that are good predictors of something-in
other words, to search for condition sets that specify subsets of data points whose
dependent-variable values are close to being uniform. In the character-recognition
example, if the GA found a condition set such that all the characters satisfying that
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set are instances of the letter 'A,' then we might be confident to predict that some
new character satisfying those conditions is also an 'A.'

The fitness of each individual C is calculated by running all the data points
(i, yi) in the training set through C and, for each Pt that satisfies C, collecting the
corresponding y'. After this has been done, a measurement is made of the uniformity
of the resulting set of y's. For numerical y's, Meyer and Packard used the following

fitness function:
or a

F(C) = log - -Oro Nc"

Here a is the standard deviation of the set of y's for data points satisfying C, ao is
the standard deviation of the distribution of y's over the entire data set, Nc is the
number of data points satisfying condition C, and a is a constant. The first term of
the fitness function measures the amount of information in the distribution of y's
for points satisfying C, and the second term is a penalty term for poor statistics-if
there is a small number of points satisfing C, then the first term is less reliable,
so C should have lower fitness. The "onstant a can be adjusted for each particular

application.
Meyer and Packard us( t I, ollowing version of the GA:

1. Initialize the populiion with a random set of C's.
2. Calculate the fitness of each C by running all the data points through it (note

that this can be very computationally expensive!).
3. Rank the population by fitness.
4. Discard some fraction of the lower fitness individuals and replace them by new

C's obtained by applying crossover and mutation to the remaining C's.
5. Go to step 2.

Meyer and Packard use a form of crossover known in the GA literature as
"uniform crossover." 83 This operator takes two C's, and exchanges approximately

half the "genes" (conditions). That is, at each gene position in parent A and parent
B, a random decision is made whether that gene should go into offspring A or
offspring B. An example follows:

Parent A : {(3.2 < X6 5.5) A (0.2 < x8 • 4.8) A (3.4 < x9 K_ 9.9)}

Parent B: {(6.5 _• x 2 _6.8) A (1.4 < x 4 <4.8) A (1.2 <x 9 < 1.7)

A (4.8 < X1 e <_ 5.1)}

Offspring A: {(6.5 <_ x 2 !5 6.8) A (1.4 <_ x 4 <4.8) A (3.4 < x9 K 9.9)}

OffspringB: {(3.2 < x 6 _• 5.5) A (0.2 _< xs :< 4.8) A (1.2 _< xg • 1.7)

A (4.8 < x 16 < 5.1)}
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FIGURE 7 Plot of time series from Mackey-Glass system with T = 150. Time is plotted
on the horizontal axis and x(t) is plotted on the vertical axis. (Reprinted from Meyer
and Packard.58 Copyright @ 1992 by T. P. Meyer.)

Offspring A Kas one gene from Parent A and two genes from Parent B. Offspring
B has two genes from Parent A and two genes from Parent B.

In addition to crossover, four different mutation operators are used:

"* Add a new condition:
{(3.2 < X6 :_ 5.5) A (0.2 < x8 < 4.8)} - {(3.2 < X6 _K 5.5) A (0.2 < X8s _
4.8) A (3.4 < x9 < 9.9)}

"* Delete a condition:
{(3.2 _< X6 _< 5.5) A (0.2 < x8< 4.8) A (3.4 < x9 _< 9.9)} -* {(3.2 < x6 _
5.5) A (3.4 < xg < 9.9)}

"* Broaden or shrink a range:
{(3.2 <_ X6 <_ 5.5)A(0.2 <_ xs 4.8)} - {(3.9 <_xX6 _< 4.8)A(0.2 < X8 _< 4.8)}

"* Shift a range up or down:
{(3.2 •< X6 _ 5.5)A(0.2 < xs 8 4.8)} - {(3.2 < X6 :_ 5.5)A(1.2 5 X8 _• 5.8)}

Meyer and Packard applied this technique to the problem of finding "regions
of predictability" in time series generated by a chaotic dynamical system. The
particular system they used is defined by the Mackey-Glass equation 52:

dx = ax(t - r) - bx(t).

dt 1 + [x(t - ,)]c

Here x(t) is the state variable, and a, b, c, and r are constants. A plot of the time
series from this system (with r set to 150) is given in Figure 7.

To form the data set, Meyer and Packard did the following: for each data point
i, the independent variables P are 50 consecutive values of x(t) (one per second):

= X . ... ,. s01.

The dependent variable for data point i, yt, is the state variable at a given time in
the future: yt = �o5+t, Each data point (.P, y') is formed by iterating the Mackey-
Glass equation with a different initial condition, where an initial condition consists
of values for {x-,,... ,x0}.



Genetic Algorithms 27

f (.r2x > 1.122) A (x, < 1.330) A (X.6 > 1.168) A y
-\ (.rx:, < 1.342) A (r.1 > 1.304) A (-49 > 1.262) -- Y = 0.18 ± 0.014

((x 2s < 1:330) A (.r2c, > 1.177) A (X 3 1 > 1.127) Ajb (x 38 < 1.1.56) A (x,10 < 1.256) A (x 46 > 1.194) A - y = 0.27 ± 0.019
(x;7 < 1.311) A (.r. 1,, > 1.070)

(a -2, > 0.992) A (,< 1.150) A (.0'3 > 1.020) A=
(x34 < 1.090) A (,rz, < 0.9.51) A (x,,2 > 0.599) A , Y= 1.22 ± 0.024
(045 > 0.591) A (.r.1 , < 0.763) A (x5, 0 > 0.576)

.(x19 < 0.967) A (0 22 < 1.04f)) A (0 2 6 > OAK7) A
0=•9< 1.066) A (x:1: > 0.416) A (X3 4 < 1.00S) A

7(3':3<1.331) A (X40 <0.9.11) A (Xr41 >0.654) A -- y=134-±-0034

(042 > 0.262) A (0r48 > 0.639) A (0 49 < 0.814)

FIGURE 8 The four best condition sets found by the GA for the Mackey-Glass system

with -r = 150. (Adapted from Meyer and Packard. 58)

The results of running the GA using this data from the r = 150 time series with
t' = 150 are illustrated in Figures 8 and 9. Figure 8 gives the four best condition sets

found by the GA, and Figure 9 shows the four results of those condition sets. Each
of the four plots in Figure 9 shows the trajectories corresponding to data points

(Y, y') that satisfied the condition set. The leftmost white region is the initial
50 time steps during which the data was taken. The vertical lines in that region

represent the various conditions on Y given in the condition set. For example, in plot
a, the leftmost vertical line represents a condition on X20 (this set of trajectories

is plotted starting at this point), and the rightmost vertical line in that region

represents a condition on x49. The shaded region represents the period of time not

covered by P, and the rightmost vertical line represents the point at which the y'

observation was made. Notice that in all of these plots, the values of the y t 's fall into

a very narrow range, which means that the GA was successful in finding subsets of
the data for which it is possible to make highly accurate predictions. (Other results

along the same lines are reported in Meyer. 56 )
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(a)

(b)

(d , . ....... ...

FIGURE 9 Results of the four best condition sets from Figure 8. Each plot shows
trajectories of data points that satisfied that condition set. The leftmost white region is
the initial 50 time steps during which data was taken. The vertical lines in that region
represent the various conditions on Y given in the condition set. The vertical line at the
right-hand side represents the time at which the prediction is to be made. Note how the
trajectories narrow at that region, indicating that the GA has found conditions for good
predictability. (Reprinted from Meyer and Packard.58 Copyright @ 1992 by T. P. Meyer.)
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These results are very striking, but some questions immediately arise. First and
most important, are the results significant? That is, do the discovered conditions
yield correct predictions for data points outside the training set (i.e., the set of
data points used to calculate fitness) or do they merely describe chance statistical
fluctuations in the data that were learned by the GA? Meyer and Packard performed
a number of "out of sample" tests with data points outside the training set that
satisfied the evolved condition sets and found that the results were robust-the yt

values for these data points also tended to be in the narrow range.
Another question is: how exactly is the GA solving the problem? What are the

schemas that are being processed? What is the role of crossover in finding a good
solution? Uniform crossover of the type used here has very different properties than
single-point crossover, and its use makes it harder to figure out what schemas are
being recombined. Meyer found that turning crossover off and relying solely on the
four mutation operators did not have a large effect on the solution time or solution
quality57 ; this brings up the question as to whether or not the GA is the best
method for this task. An interesting extension of this work would be to perform
control experiments in which the performance of the GA is compared with other
search methods such as hill climbing.

Yet another question is: to what extent are the results restricted by the fact
that only certain conditions are allowed (i.e., ones that are conjunctions of ranges
on independent variables)? Packard6" proposes a more general form for conditions
that also allows disjunctions (V's); an example might be:

1[(3.2 < x6 <5.5) V (1.1 < x6 !5 2.5)] A [0.2 < x8 <: 4.8]}.

Here we are given two non-overlapping choices for the conditions on x6 . A
further generalization proposed by Packard would be to allow disjunctions between
sets of conditions.

A final question is: to what extent will this method succeed on other types
of prediction tasks? Packard68 proposes applying this method to tasks such as
weather prediction, financial-market prediction, speech recognition, and visual pat-
tern recognition. It is an open question to what extent this method will succeed on
such "real-world" prediction tasks.

2.3 NEURAL NETWORKS

Neural networks are becoming an increasingly popular approach to machine learn-
ing, and recently some efforts have been made to combine GAs and neural networks.
by using GAs to evolve aspects of neural networks.
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corrections

output pattern

weights

weight wi~t
corrections weight sJatiXatio activation

input pattern

FIGURE 10 A schematic diagram of a simple feedtorward neural network and the
learning process by which weight values are adjusted.

In its simplest form (illustrated in Figure 10), a neural network is a collection
of connected units in which the connections are weighted, usually with real-valued
weights. The network is piesented with an input pattern on its input units (e.g.,
a set of numbers representing features of an image to be classified). Activation
spreads over the weighted connections according to some predefined method and
winds up as an activation pattern over the output units that encodes the network's
"answer" to the input (e.g., a classification of the input pattern). In many applica-
tions, the network learns a correct mapping between input and output patterns via
a learning algorithm in which a set of inputs are presented to the network. After
each input has propagated through the network and an output has been produced,
the weights in the network are adjusted in order to reduce the difference between
the network's output and the correct desired output. The most common weight ad-
justment method for feedforward networks is known as back-propagation. 77 (For an
overview of neural networks and their applications, the reader can consult Rumel-
hart and McClelland 5 ,7s and Hertz, Krogh, and Palmer.32 )

There are many possible ways to apply GAs to neural networks. Some possible
aspects that can be evolved are:
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"* the weights (and thresholds) in a fixed network;
"* the network architecture; and
"* the learning rule used by the network.

In this subsection, I will describe three different projects, each using a GA to evolve
one of these aspects.

EVOLVING WEIGHTS IN A FIXED NETWORK. David Montana and Lawrence Davis6 3

took the first approach--evolving the weights and thresholds in a fixed network.
That is, Montana and Davis were using the GA instead of back-propagation as a
way of finding a good set of weights and thresholds. Several problems associated
with the back-propagation algorithm (including the tendency to get stuck at local
optima in weight space) often make it desirable to find alternative weight-training
schemes.

Montana and Davis were interested in using neural networks to classify under-
water sonic "lofargrams" (similar to spectrograms) into two classes: "interesting"
and "not interesting." The overall goal is to "detect and reason about interesting
signals in the midst of the wide variety of acoustic noise and interference which
exist in the ocean." The networks were to be trained from a database containing lo-
fargrams and classifications made by experts as to whether or not a given lofargram
is "interesting." Each network had four input units representing four parameters
used by an expert system that performs the same classification. Each network had
one output unit and two layers of hidden units with seven and ten units respec-
tively. The networks were fully connected feedforward, meaning that each unit was
connected to every unit in the next higher layer. Thus there were a total of 108
weights on connections between units, and an additional 18 weights on connections
between the non-input units and a bias (threshold) unit-a total of 126 weights to
evolve.

The GA was used as follows. Each chromosome is a list (or "vector") of 126
weights. Figure 11 shows (for a much smaller network) how the encoding was done:
the weights are read off the network in a fixed order and placed in a list. Notice
that, here, each "gene" in the chromosome is a real number rather than a bit.
To calculate the fitness of a given chromosome, the weights in the chromosome
are assigned to the links in the corresponding network, the network is run on the
training set (here 236 examples from the database of lofargrams), and the sum of
the squares of the errors (i.e., differences between the desired output and the actual
output) is returned. Here, low error means high fitness.
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FIGURE 11 Illustration
of Montana and Davis'
encoding of network
weights into a list
that serves as a
".chromosome" for the

(.3 -. 4 1.2 .8 -. 3 -. 1 .7 -6.3) GA.

.3 -4, 3

4 

/ A.7

1.2 -63-.

.8 -. 1 Q -2.21.

(.3 -. 4 1.2 J8 -. 3 -.1 .7 -6.3) (.3 -. 4 1.2 -2.2 -. 3 1.4 .7 -4.8)

FIGURE 12 Illustration of Montana and Davis' mutation method. The weights on
incoming links to the right-hand node in the middle layer (underlined weights) are
mutated.
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Parent 1 Q Parent 2

-. 4 -. 9

2 1
.7

12-3-66.3 11.8 .5

(.3 -. 4 1.2 .8 -. 3 -. 1 .7 -6.3) (.7 -. 9 1.3 .4 1.8 -. 2 2.1 .5)

Child

0
.7 -. 9

.7

0-.2
(.7 -. 9 1.2 .4 -. 3 -. 2 .7 .5)

FIGURE 13 Illustration of Montana and Davis' crossover method. The offspring is
created as follows: for each non-input node, a parent is chosen at random and the
weights on the incoming links to that node are copied from the chosen parent.

An initial population of 50 weight vectors was chosen randomly, according to
the probability distribution given by e-Ixl. (Each weight is between -1.0 and +1.0.)
Montana and Davis tried a number of different genetic operators in various exper-
iments. The mutation and crossover operators they used for their comparison of
the GA with back-propagation are illustrated in Figures 12 and 13. The mutation
operator selects n non-input units and, for each incoming link, adds a random value
to the weight on the link. In their experiments, n = 2 and the random values were
selected between -1.0 and +1.0 from the e-111 distribution. The crossover operator
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takes two parent weight vectors and, for each non-input unit in the offspring vector,
selects one of the parents at random and copies the weights on the incoming links
from that parent to the offspring.

The performance of a GA using these operators was compared with the per-
formance of a back-propagation algorithm. The GA had a population of 50 weight
vectors, and a selection method was used in which the population was ranked by
fitness and the rankings (rather than absolute fitness) determined the probability
of allowing a given weight vector to reproduce (either via direct copying, crossover
with another weight vector, or mutation). The GA was allowed to run for 200
generations (or 10,000 network evaluations). The back-propagation algorithm was
allowed to run for 5,000 iterations, where one iteration is a complete cycle through
the training data. Montana and Davis reasoned that two network evaluations under
the GA are equivalent to one back-propagation iteration, since back-propagation
on a given training example consists of two parts-the forward propagation of ac-
tivation (and the calculation of errors at the output units) and the backward error
propagation (and adjusting of the weights). The GA performs only the first part,
and since the second part requires more computation, one GA evaluation takes less
than half the computation of a single back-propagation iteration.

Ie ma m mm lnmmIm mm mm m m
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from unit: 1 2 3 4 5 bias

to unit: 1 0 0 0 00 0 -0 000000
2 0 0 0 0 0 0 000000

3 L L 0 0 0 L 110001
4 L L 0 0 0 L 110001 3

5 0 0 L L 0 L - 001101

1 2
000000000000110001110001001101 ......

FIGURE 15 An illustration of Miller, Todd, and Hegde's representation scheme. Each
entry in the matrix represents the type of connection on the link between the from unit
(column) and the to unit (row). The rows of the matrix are strung together to make
the bit-string encoding of the network, given at the bottom of the figure. The resulting
network is shown at the right. (Reprinted from Miller et al.60 by permission of the
authors.)

The results of the comparison are displayed in Figure 14. Here one back-
propagation iteration is plotted for every two GA evaluations. The x-axis gives
the number of iterations, and the y-axis gives the best evaluation (lowest sum of
squares of errors) found by that time. It can be seen that the GA significantly
outperforms back-propagation on this task, obtaining better weight vectors more
quickly. (Montana and Davis also presented other experimental results not discussed
here. See Montana and Davis63 for details.)

This experiment shows that in some situations, the GA is a better training
method for networks than is simple back-propagation. This does not mean that
the GA will outperform back-propagation in all cases. It is also possible that en-
hancements of back-propagation might help it overcome some of the problems that
prevented it from performing as well as the GA in this experiment. More research
needs to be done to characterize the problems for which the GA will outperform
back-propagation for discovering weight vectors.

EVOLVING NETWORK ARCHITECTURES. The second approach to applying GAs to
neural networks--evolving the network architecture-is illustrated in work done
by Geoffrey Miller, Peter Todd, and Shailesh Hegde (MT&H). 60 Here, "network
architecture" refers to structural aspects of the network: the number of units in
the network and their topological arrangement in terms of interconnections. The
neural network community has produced many heuristics for designing network
architecture (e.g., "more hidden units are required for more difficult problems"),
but there is no sure recipe to follow in designing the best architecture for a given
problem. MT&H propose that the GA is a promising method to automate the
design procedure.

Of course, the first problem is to decide on a scheme for representing network
architectures as chromosomes. MT&H restricted their initial project to feedforward
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networks with a fixed number of units, for which the GA will evolve the connection
topology. MT&H used the representation scheme illustrated in Figure 15. The con-
nection topology is represented by a 2 x 2 matrix, in which each entry represents
the type of connection from the "from unit" to the "to unit." Here there are only
two possible elements: "0," meaning no connection, and "L," meaning a "learn-

able" connection-i.e., one for which the weight can be changed through learning.
Figure 15 also shows how the connection matrix is transformed into a bit-string
chromosome for the GA ("0" corresponds to 0 and "L" to 1) and how the bit string

is decoded into a network (the connections from a bias unit to units 3, 4, and 5
are not shown). Connections that were specified to be learnable are initialized with
small random weights. Since MT&H currently restrict these networks to be feed-

forward, any connections to input units or feedback connections specified in the
chromosome are ignored.

MT&H used a simple fitness-proportionate reproduction method and the usual

mutation operator (bits in the string were flipped with some low probability). Their
crossover operator chose the bits corresponding to a random row in the matrix, and
those bits (representing the entire row) were swapped between the two parents to

produce the two offspring. The intuition behind that operator is similar to that
behind Montana and Davis' crossover operator-each row represents all the incom-

ing connections to a single unit, and this set is thought to be a functional building
block of the network.

The fitness of a chromosome is calculated in the same way as in Montana and

Davis' project: for a given problem, the network is trained on a training set for
a certain number of epochs (one "epoch" is one pass through the training set),

using back-propagation to modify the weights. The fitness of the chromosome is a

function of the sum of the squares of the errors on the training set at the last epoch.
Again, low error translates to high fitness.

MT&H tried their GA on three tasks (XOR, a "four quadrant" problem, and

pattern copying) that are relatively easy for neural networks to learn. The networks

had different numbers of units for different tasks (ranging from five units for the

XOR task to 20 units for the pattern-copying task); the goal was to see if the

GA could discover a good connection topology for each task. For each run the

population size was 50, the crossover rate was 0.6 (probability for a given pair of

parents to cross over), and the bitwise mutation rate was 0.005. In all three tasks,
the GA was easily able to find networks that readily learned to map inputs to

outputs over the training set with little error. However, the three tasks were too
easy to be a rigorous test of this method-it remains to be seen if this method can

scale up to more complex tasks that require much larger networks with many more

interconnections.
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EVOLVING A LEARNING RULE. David Chalmers1 2 took the idea of applying GAs to
neural networks one step further and applied GAs to the task of evolving a good
learning rule for neural networks. Chalmers limited his initial study to single-layer,
fully connected feedforward networks. A learning rule is used during the training
procedure for modifying network weights in response to the network's performance
on the training data. At each training cycle, one training pair is given to the net-
work, which then produces an output. Assuming a single-layer, fully connected
feedforward network, a learning rule might use the following local information for
a given training cycle to modify the weight on the link from input unit i to output
unit j:

"* a1: the activation of input unit i;
"* oj: the activation of output unit j;
"* tj: the training signal (i.e., correct activation) on output unit j; and
"* wij: the current weight on the link from i to j.

The amount to modify the weight wij is a function of these values:

Awij = F(a1 , oj, tj, wij).

The chromosomes in the GA population encode such functions.
Chalmers made the assumption that the learning rule should be a linear func-

tion of these variables and all their pairwise products. That is, the general form of
the learning rule is:

Awij = ko(klwij + k 2ai + k30j + k4t3 + k5wija1 + k6wijoj + k7 Wijtj + ksajoj

+ k9aitj + kloojtj).

(Here, k0 is a scale parameter, which affects the learning rate of a network.) The
assumption about the form of the learning rule came in part from the fact that a
known good learning rule for such networks-the "Widrow-Hoff" or "delta" rule-
has this form: Awej = q(tjoj - aioj).7 8 (Here, i? is a constant representing the
learning rate.) One goal of this work was to see if the GA could evolve a rule that
is as good as the delta rule.

The task of the GA is to evolve values for the ki's. The chromosome encoding
for the set of ki's is illustrated in Figure 16. The scale parameter ko is encoded as
five bits, with the zeroth bit encoding the sign (1 encoding + and 0 encoding -),
and the first through fourth bits encoding an integer n: k0 = 0 if n = 0; otherwise,
IkoI = 2'-. Thus k0 can take on the values 0, ±1/256, ±1/128, ... , ±32, ±64. The
other coefficients ki are encoded by three bits each, with the zeroth bit encoding
the sign and the first and second bits encoding an integer n. For i = 1 ... 10, k, = 0
if n = 0; otherwise, Ik11 = 2n-1.

It is known that single-layer networks can learn only input-output mappings
that are linearly separable.78 As an "environment" for the evolving learning rules,
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Genome encoding:

k0 k, k2 k3

10010 001 000 110

k0 encoded by 5 bits:

sign
integer n

b 0  b 1  b 2  b 3  b 4

I koI = 2n-9

Other k's encoded by 3 bits each:

sign
integer n

b0  b 1  b 2

I kil = 2n-1

FIGURE 16 Illustration of the method for encoding the k's in Chalmers' system.

Chalmers used 30 different linearly separable mappings to be learned via the learn-
ing rules. The mappings always had a single output unit and between two and seven
input units.

The fitness of each chromosome (learning rule) was determined as follows. A
subset of 20 mappings was selected from the full set of 30 mappings and, for each
mapping, 12 training examples were selected. For each of these mappings, a network
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was created with the appropriate number of input units for the given mapping (each
network had one output unit). The network's weights were initialized randomly. The
network was run on the training set for some number of epochs (typically 10), using
the learning rule specified by the chromo,'ime. The performance of the learning
rule on a given mapping was a function of the network's error on the training set,
with low error meaning high performance. The overall fitness of the learning rule
was a function of the average error of the 20 networks over the chosen subset of
20 mappings-low average error translated to high fitness. This fitness was then
transformed to be a percentage, where a high percentage means high fitness.

Using this fitness measure, the GA was run on a population of 40 learning
rules, with two-point crossover (crossover was performed at two points along the
chromosome rather than at one point) and standard mutation. The crossover rate
(probability of two parents crossing over) was 0.8 and the bitwise mutation rate
was 0.01.

The results of a run of the GA were that, over 1000 generations, the fitness
of the best learning rules in the population rose from between 40%-60% in the
initial generation (indicating no significant learning ability) to between 80% and
98%, with a mean (over several runs) of about 92%. The fitness of the delta rule
is around 98% and, on one out of ten runs, the GA discovered a successful form of
this rule with 98% fitness. (On three other runs, it discovered slight variations of
this rule with lower fitness.)

These results show that, given a somewhat constrained representation, the GA
is able to evolve a successful learning rule for simple single-layer networks. To what
extent this method will be successful in finding learning rules for more complex
networks (including networks with hidden units) remains an open question, but
these results are a first step in that direction. Chalmers points out that it is unlikely
that evolutionary methods will discover learning methods that are more powerful
than back-propagation, but speculates that the GA might be a powerful method for
discovering learning rules for unsupervised learning paradigms (e.g., reinforcement
learning) or for new classes of network architectures (e.g., recurrent networks).

Chalmers performed a second interesting study in which he asked the question:
How much diversity in learning tasks is needed to produce a general learning rule?
That is, to what extent were the learning rules that evolved effective only on the
specific environment of the given 20 mappings and to what extent were they more
general? This is similar to the issues brought up in Axelrod's Prisoner's Dilemma
study described earlier, in which the initial experiment yielded rules that were
specifically adapted to a fixed environment of strategies and in which more generally
successful strategies evolved only in a more diverse environment (the environment
made up of the other evolving strategies).

To study this issue, Chalmers first measured the generality of the best rules
evolved in the set of ten runs by testing each one on the ten mappings that had
not been used in the fitness calculation for that rule. The mean fitness of the best
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FIGURE 17 Results of Chalmers' experiments testing the effect of diversity of
environment on generalization ability. The plot gives the evolutionary fitness and
test fitness as a function of the number of tasks in the environment. (Reprinted from
Chalmers' 2 by permission of the author.)

rules on the original mappings was 92%, and Chalmers found that the mean fitness
of these rules on the test set was 91.9%, indicating that the environment of 20
mappings was sufficiently diverse for the GA to evolve general rules.

Chalmers then looked at the question of how diverse the environment has to be
to produce general rules. He repeated the original experiment, varying the number
of mappings in each original environment between 1 and 20. A rule's evolutionary
fitness is the fitness obtained by testing a rule on its original environment. A rule's
test fitness is the fitness obtained by testing a rule on ten additional tasks not in the
original environment. Chalmers then measured these two quantities as a function of
the number of tasks in the original environment. The results are shown in Figure 17.
The two curves are the mean evolutionary fitness and the mean test fitness for
rules that were tested in an environment with the given number of tasks. This
plot shows that while the evolutionary fitness stays roughly constant for different
numbers of environmental tasks, the test fitness increases sharply with the number
of tasks, leveling off somewhere between 10 and 20 tasks. The conclusion is that

I
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the evolution of a general learning rule requires a sufficiently diverse environment
of tasks although, in this case of simple single-layer networks, the necessary degree
of diversity is fairly small.

3. GENETIC ALGORITHMS IN SCIENTIFIC MODELS
In this section I describe two modeling projects, one project on modeling the in-
teraction between evolution and learning, and a related project in which a simple
model of culture is added to the original model.

3.1 MODELING THE INTERACTION BETWEEN LEARNING AND
EVOLUTION

Many people have drawn analogies between learning and evolution as two adap-
tive processes--one taking place during the lifetime of an organism, and the other
taking place over the evolutionary history of life on Earth. A major question in
evolutionary theory and in psychology is: to what extent do these processes in-
teract? In particular, can learning that occurs over the course of an individual's
lifetime guide the evolution of that individual's species to any extent? The famous
(or infamous) Lamarckian hypothesis states that traits acquired during the life-
time of an organism can be transmitted genetically to the organism's offspring.
Lamarck's hypothesis is generally interpreted to refer to acquired physical traits
(such as physical defects due to environmental toxins), but something learned dur-
ing an organism's lifetime also can be thought of as a type of acquired trait. Thus,
according to Lamarck, learning might guide evolution directly. However, because of
overwhelming evidence against it, the Lamarckian hypothesis has been rejected by
virtually all biologists; in addition, it is very hard to imagine a direct mechanism
for "reverse transcription" of acquired traits into a genetic code.

Does this mean that learning can have no effect on evolution? In spite of the
rejection of Lamarckianism, the (perhaps surprising) answer seems to be that learn-
ing can indeed have significant effects on evolution, though in less direct ways than
Lamarck proposed. One proposal of a mechanism by which learning affects evolution
is due to J. M. Baldwin, and is known as the "Baldwin Effect." 6 (Similar mecha-
nisms were proposed by Lloyd Morgan51 and Waddington."6 ) Baldwin pointed out
that if learning helps survival, then organisms best able to learn will have the most
offspring, thus increasing the frequency of the genes responsible for learnir-,. And
if the environment remains relatively fixed so that the best things to learn remain
constant, then this can lead, via selection, to a genetic encoding of a trait that
originally had to be learned.5 4 For example, an organism that has the capacity to
learn that a particular plant is poisonous will be more likely to survive (by learning
not to eat the plant) than organisms that are unable to learn this information,
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and thus will be more likely to produce offspring that also have this learning ca-
pacity. Evolutionary variation will have a chance to work on this line of offspring,
allowing for the possibility that the trait-a siding the poisonous plant-will be
discovered genetically rather than learned anew each generation. Having the de-
sired behavior encoded genetically would give an organism a selective advantage
over organisms that were merely able to learn the desired behavior during their
lifetimes, because learning a behavior is generally a less robust process than de-
veloping a genetically encoded behavior. Too many unexpected things could get in
the way of learning during an organism's lifetime. In short, the capacity to acquire
a certain desired trait allows the learning organism to survive preferentially, thus
giving genetic variation the possibility to independently discover the desired trait.
Without such learning, the likelihood of survival-and thus the opportunity for ge-
netic discovery-decreases. In this indirect way, learning can guide evolution, even
if what is learned cannot be transmitted genetically.

Some computer scientists and computational biologists have constructed com-
puter models that explore issues related to the interaction between learning and
evolution (e.g., Hinton and Nowlan,34 Belew,7 Nolfi et al.,6 7 Fontanari and Meir, 20

Ackley and Littman,1 and Parisi et al."°). In this section I describe one model con-
structed by Geoffrey Hinton and Steven Nowlan and an extension constructed by
Richard Belew.

Hinton and Nowlan used the GA to construct a computer model of the Baldwin
effect. 34 Their goal was to empirically demonstrate this effect and to measure its
magnitude, using the simplest possible model. An extremely simple neural-network
learning algorithm modeled learning, and the GA played the role of evolution, evolv-
ing a population of neural networks with varying learning capabilities. In Hinton
and Nowlan's model, each individual is a neural network with 20 potential con-
nections. Each connection can have one of three values: "present," "absent," and
"learnable." These are specified by "1," "0," and "?," respectively, where each "?"
connection can be set during learning to either 1 or 0. There is only one correct
setting for the connections (i.e., only one correct set of l's and O's). The problem
to be solved (the learning goal) is for each network to find this single correct set of
connections. This will not be possible for those networks that have incorrect fixed
connections (e.g., a 1 where there should be a 0), but those networks that have
correct settings in all places except where there are ?'s have the capacity to learn
the correct settings.

Hinton and Nowlan used the simplest possible "learning" method: random
guessing. On each learning trial, a network simply guesses a 1 or 0 at random
for each of its learnable connections.
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FIGURE 18 Illustration of the fitness landscape for Hinton and Nowlan's search
problem. (Adapted from Hinton and Nowlan 34 ; copyright @ 1987 by Complex Systems
and reprinted by permission.)

This is, of course, a "needle in a haystack" search problem, since there is only
one correct setting in a space of 220 possibilities.III The fitness landscape for this
problem is illustrated in Figure 18-the single spike represents the single correct
connection setting. Introducing the ability to learn changes the shape of this land-
scape, as shown in Figure 19. Here the spike is smoothed out into a "zone of
increased fitness," within which it is possible to learn the correct connections.

For the GA, each network is represented by a string of length 20 consisting

of the l's, O's, and ?'s making up the settings on the network's connections. The
initial population consists of 1,000 individuals, generated at random but with each
individual having on average 25% O's, 25% l's, and 50% ?'s. The fitness of an in-
dividual is calculated as follows. Each individual is given 1,000 learning trials--
on each learning trial, the individual tries a random combination of settings for

1
PlThe problem as stated has little to do with the usual notions of neural-network learning; Hinton

and Nowlan presented this problem in terms of neural networks so as to keep in mind the possibility

of extending the example to more standard learning tasks and methods.
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FIGURE 19 With the possibility of learning, the fitness landscape for Hinton and
Nowlan's search problem is smoother, with a zone of increased fitness. (Adapted
from Hinton and Nowlan 3 4; copyright @ 1987 by Complex Systems and reprinted by
permission.)

the ?'s. The fitness is a function of the number of trials needed to find the correct
solution: 1 9n

Fitness = 1 +
1000'

where n is the number of trials (out of 1000) left after the correct solution has
been found. Thus an individual that already has all its connections set correctly
would have fitness 20, and an individual that never finds the correct solution would
have fitness 1. Hence, a tradeoff exists between efficiency and flexibility: having
many ?'s means that, on average, many guesses are needed to arrive at the correct
answer, but the more connections that are fixed, the more likely it is that one or
more of them will be fixed incorrectly, meaning that there is no possibility to find
the correct answer.

Hinton and Nowlan's GA is similar to the simple GA described in subsection 1.3.
An individual is selected to be a parent with probability proportional to its fitness,
and can be selected more than once. The next generation is created by 1,000 single-
point crossovers between pairs of parents. No mutation occurs. An individual's
chromosome is, of course, not affected by the learning that takes place during its
lifetime-parents pass on their original alleles to their offspring.
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FIGURE 20 Mean fitness versus generations for one run of the GA on each of three
population sizes. The solid line gives the results for population size 1000, the size used
in Hinton and Nowlan's experiments. These plots are from a replication by Belew. 7

(Reprinted from Belew7 ; copyright @ 1990 by Complex Systems and reprinted by
permission.)

Hinton and Nowlan ran the GA for 50 generations. A plot of the mean fitness
of the population versus generation for one run on each of three population sizes
is given in Figure 20. (This plot is from a replication of Hinton and Nowlan's ex-
periments performed by Belew. 7 ) The solid curve gives the results for population
size 1000, the size used in Hinton and Nowlan's experiments. This plot shows that
learning during an individual's "lifetime" indeed guides evolution by allowing the
population fitness to increase. This increase in fitness is due to a Baldwin-like effect:
those individuals that are able to efficiently learn the task tend to be selected to
reproduce, and crossovers among these individuals tend to increase the number of
correctly fixed alleles, increasing the learning efficiency of the offspring. With learn-
ing, evolution could discover individuals with all their connections fixed correctly
(and such individuals were discovered in these experiments). Without learning, the
evolutionary search never discovered such an individual.
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FIGURE 21 Relative frequencies of correct, incorrect, and undecided (i.e., "?") alleles
in the population plotted over 50 generations. (Reprinted from Hinton and Nowlan 34;

copyright @ 1990 by Complex Systems and reprinted by permission.)

Figure 21 shows the relative frequencies of the correct, incorrect, and undecided

(i.e., "?") alleles in the population plotted over 50 generations. As can be seen, over

time the frequency of fixed correct connections increases and the frequency of fixed
incorrect connections decreases.

On inspection of Figure 21, one question immediately comes up: why does the

frequency of undecided alleles stay so high? Hinton and Nowlan answer that there

is not much selective pressure to fix all the undecided alleles, since individuals

with a small number of ?'s can learn the correct answer in a small number of

learning trials. If the selection pressure were increased, then the Baldwin effect

would be stronger. Figure 22 shows these same results over a much-extended run

(these results come from Belew's replication and extension of Hinton and Nowlan's

original experiments'). This plot shows that the frequency of ?'s goes down to about

30%. It would go down to zero given enough time but, under this selection regime,
the convergence is extremely slow.
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FIGURE 22 Relative frequencies of correct, incorrect, and undecided (i.e., "?") alleles
in the population plotted over 500 generations, from Belew's replication of Hinton
and Nowlan's experiments. (Reprinted from Belew7 ; copyright @ 1990 by Complex
Systems and reprinted by permission.)

In short, learning allows genetically coded partial solutions to get partial credit,
rather than the all-or-nothing reward that an organism would get without learning.
A common argument for the benefits of learning is that learning makes it possible
to deal with genetically unpredictable aspects of the environment (e.g., aspects that
change too quickly for evolution to keep up). While this is clearly one benefit of
learning, the Baldwin effect is different: the Baldwin effect says that learning helps
organisms adapt to genetically predictable (but difficult) aspects of the environ-
ment, and that learning allows these adaptations to eventually become genetically
encoded. Thus the Baldwin effect is important only on fitness landscapes that are
hard to search by evolution alone, such as the extreme example given by Hinton
and Nowlan.

The "learning" mechanism used in Hinton and Nowlan's experiments-random
guessing-is, of course, completely unrealistic as a model of learning. However,
their goal was to keep the model as simple as possible, without compromising the
model's generality too much. Hinton and Nowlan point out that "a more sophisti-
cated learning procedure only strengthens the argument for the importance of the
Baldwin effect" (see Hinton and Nowlan, 34 p. 500). This is true insofar as a more so-
phisticated learning procedure would further broaden the "zone of increased fitness"
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shown in Figure 19. However, if the learning procedure were too sophisticated-
that is, if learning the necessary trait were too easy-then there would be little

selection pressure for evolution to move from the ability to learn a trait to a genetic
hardwiring of that trait. Such tradeoffs occur in evolution and can be seen even
in Hinton and Nowlan's simple model. Computer simulations such as theirs can
help us to understand and to measure the details of such tradeoffs, as well as other
details of subtle processes such as the Baldwin effect.

3.2 ADDING CULTURE

Belew 7 carried out a careful replication and analysis of Hinton and Nowlan's model
of learning and evolution and also extended the model to incorporate a third fac-
tor, culture. He defined culture as an "adaptive system that allows the hard-won

knowledge learned by an individual to improve the evolutionary fitness of other
conspecifics (i.e., members of the same species) via nongenetic informational path-
ways." Belew's models of culture were, like Hinton and Nowlan's model of learning,
extremely simple; these models are not meant to be realistic in their details but
rather to be first steps in assessing the effects of the interaction among learning,
evolution, and culture.

In his first experiment, Belew made one addition to Hinton and Nowlan's model:
an offspring from a successful parent (one who has found the correct solution within
the allotted number of learning trials) is given a "cultural advantage" (CA). This

cultural advantage gives the offspring a better than 0.5 chance of guessing the
correct values of learnable connections. In most of Belew's simulations, CA = 0.1,

which means that the offspring of a succcssful parent has a 0.6 chance of guessing
the correct value for any learnable connection.

The results of adding this form of "culture" to the model are shown in Fig-

ure 23, where plots (for a single, typical run) of the mean population fitness versus
generation with and without CA are shown. The population fitness with CA = 0.1
rises much more quickly than that without CA, but does not get as high. This is
because a culturally advantaged individual with many learnable connections (?'s)

has a much better chance of being successful (guessing the right answer)-the more
effective learning procedure (guessing plus CA) serves to broaden the "zone of in-
creased fitness" shown in Figure 19. Culturally advantaged individuals thus tend to
reproduce more quickly and, via crossover, spread ?'s in the population, leading to
worse average performance. In the model with CA, the population tends to converge

to a suboptimal solution (an individual with a relatively large number of ?'s).
To countet this convergence, Belew introduced a small probability of mutation

into the GA (recall that Hinton and Nowlan's GA had no mutation). The results

are shown in Figure 24. The four curves give (in the order given in the plot's key)
the original results with no mutation and no CA, the results with no mutation but
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FIGURE 23 Mean population fitness versus generation with and without "cultural
advantage" (CA). Each plot is for a single, typical run from Belew's experiments.
(Reprinted from Belew7 ; copyright 1990 by Complex Systems and reprinted by
permission.)

with CA = 0.1, the results with no CA but with a mutation probability of 0.001
per bit, and the results with both CA and mutation. It can be seen that the model
with both CA and mutation retains the advantages of CA alone and avoids the

disadvantages.
Belew carried out a third experiment, in which he studied how culture helps a

system to deal with a changing environment. The environment here is the specific
correct connection settings. Belew changed the environment by varying several of

the bits in that correct solution every 25 generations. He found that the original
model (with no mutation or CA) was not able to adapt to these changes in the

environment; the population converged on certain alleles that were correct during
the first 25 generations and was not able to modify these when the environment

changed. Introducing a small probability of mutation into the original model allowed
the population to adapt to changes, but the adaptation process was relatively slow.

On the other hand, introducing cultural advantage with mutation allowed the popu-
lation to adapt very quickly to changes. Cultural advantage allowed the population
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to stay flexible (i.e., retain more learnable connections) so it could adapt to envi-

ronmental changes, while mutation prevented a too-fast convergence to many ?'s

and thus kept the mean fitness of the population high.

Belew also experimented with a different model of culture-a "broadcast"

model-which will not be described here.
Belew's model of cultural advantage is, of course, much too simple to be realistic

but, even in its simplicity, it captures something about how culture interacts with

evolution and learning. These simulations are a first step in using abstract computer

models to help us to understand these complex interactions. Belew's results show

two advantages for culture: it allows faster convergence on a solution and it allows

robustness in the face of a changing environment.
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FIGURE 24 Mean population fitness versus generation with and without CA, and with

and without CA with a small probability of mutation added. Each plot is for a single,

typical run from Belew's experiments. (Reprinted from Belew7 ; copyright @ 1990 by

Complex Systems and reprinted by permission.)
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4. THEORETICAL FOUNDATIONS OF GENETIC ALGORITHMS
As GAs become more and more widely used for practical problem solving and
for scientific modeling, increasing emphasis has been put on understanding the
theoretical foundations of this class of algorithms. Some major questions in this
area are:

0 What are the laws describing the behavior of schemas in GAs?
0 How can we characterize the types of fitness landscapes on which the GA is

likely to perform well?
u What does it mean for a GA to "perform well"? That is, what is the GA good

at doing?
0 How can we characterize the types of fitness landscapes on which the GA out-

performs other search methods, e.g., hill climbing?

The first question above is answered in part by the Schema Theorem. As was
described in subsection 1.6, the Schema Theorem states that those schemas whose
average fitness remains above the population mean will receive exponentially in-
creasing numbers of samples over time. This idea is related to the solution of the
two-armed bandit problem discussed in Holland. 38 The two-armed bandit problem
asks: Given a slot machine with two arms, each with an unknown average pay-
off rate, what strategy of dividing one's play between the two arms is optimal for
making a profit? The solution states that the optimal strategy is to be willing at
all times to sample either arm, but with probabilities whose ratio diverges increas-
ingly fast as time progresses. In particular, as more and more information is gained
through sampling, the optimal strategy is to exponentially increase the probabil-
ity of sampling the better-seeming arm relative to the probability of sampling the
worse-seeming arm. (One never knows with absolute certainty which of the two ac-
tually is the better arm, since all information gained is merely statistical evidence.)
The possible schemas in a search space can be likened to the arms on a multiarmed
bandit, and the evaluation of a given string in a population is like sampling a num-
ber of arms at once-the arms corresponding to the schemas of which the string is
an instance. The Schema Theorem shows how the GA implicitly obtains statistical
averages (without explicit calculations) for the various schemas (arms), and then
implicitly allocates exponentially increasing numbers of samples to those schemas
(arms) that are observed to be above-average.

There are some limitations, though, to this analogy between the behavior of
GAs and the solution to the multiarmed bandit problem. The analogy assumes
that the observed average fitness of a schema is close to its actual average fit-
ness. However, this can fail for several reasons, 30 including large variation within a
schema, small population size, and biased sampling due to premature convergence
(e.g., the population might converge to a set of strings that are mostly instances
of 1111* ... *; this would result in a biased estimate of the average fitness of, say,
schema 11 ... . *)



52 Melanie Mitchell

In addition, the Schema Theorem addresses only the negative aspects of
crossover-i.e., to what extent it disrupts schemas. It does not address the question
of how crossover works to recombine highly fit schemas. What is needed is a more
detailed description of the dynamics of building-block processing and combination.

There have been other approaches to understanding GAs and characterizing
the landscapes on which they will perform well. In this section I will describe three
of these approaches: Walsh analysis and GA deception, characterizing the effects of
the statistical structure of fitness landscapes, and studying schema processing in de-
tail on specially designed fitness landscapes. Several other approaches are described
in the proceedings of the Foundations of Genetic Algorithms workshops. 72'8 9

4.1 WALSH ANALYSIS AND GA DECEPTION

(This subsection is adapted from Forrest and Mitchell 22 by permission of the au-
thors; copyright @ by Morgan Kaufmann.)

As mentioned above, two of the goals for a theory of GAs are (1) to describe
in detail how schemas are processed and (2) to predict the degree to which a given
problem will be easy or difficult for a GA. Albert Bethke addressed these issues by
applying Walsh functions8 7 to the study of schema processing in GAs.10 In partic-
ular, Bethke developed the Walsh-schema transform, in which discrete versions of
Walsh functions are used to efficiently calculate the average fitnesses of schemas.
He then used this transform to characterize functions as easy or hard for the GA to
optimize. Bethke's work was further developed and explicated by Goldberg. 25

,
26 In

this subsection I introduce Walsh functions, describe how the Walsh schema trans-
form can be used to understand GAs, and sketch Bethke's use of this transform
for characterizing different functions. This discussion is similar to that given by
Goldberg.

25

SCHEMAS AND PARTITIONS

Before introducing Walsh functions, it is necessary to explain the notion of a par-
tition of the search space. Schemas can be viewed as defining hyperplanes in the
search space {0, 1}1, as shown in Figure 25. Figure 25 shows four hyperplanes (cor-
responding to the schemas 0*..., 1**.., *0***, and *1***). Any point in the space is
simultaneously an instance of two of these schemas. For example, the point in the
figure is a member of both 1**** and *0"** (and also of 10***). The hyperplanes
defined by schemas induce a partitioning of the search space.36 For example, as
seen in Figure 25, the partition d***. (where "d" means "defined bit") divides the
search space into two halves, corresponding to the schemas 1*... and 0O.... That is,
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FIGURE 25 Schemas define hyperplanes in the search space.

the notation d**** represents the partitioning that divides the space into two halves
consisting of schemas with a single defined bit in the leftmost position. Similarly,
the partition *d*** divides the search space into two different halves, corresponding
to the schemas *1"** and *0***. The partition dd*** represents a division of the
space into four quarters, each of which corresponds to a schema with the leftmost
two bits defined. Any partitioning of the search space can be written as a string in
{d, * }1, where the order of the partition is the number of defined bits (number of d's).
Each partitioning of n defined bits contains 2' partition elements and each partition
element corresponds to a schema. Each different partitioning of the search space
can be indexed by a unique bit string in which l's correspond to the partition's
defined bits and O's correspond to the nondefined bits. For example, under this
enumeration, the partition d*** ... * has index j = 1000... 0, and the partition

dd***...* has index j = 11000...0.

WALSH FUNCTIONS AND WALSH DECOMPOSITIONS

Walsh functions are a complete orthogonal set of basis functions that induce trans-
forms similar to Fourier transforms. However, Walsh functions differ from other
bases (e.g., trigonometric functions or complex exponentials) in that they have
only two values, +1 and -1. Bethke demonstrated how to use these basis functions
to construct functions with varying degrees of difficulty for the GA. In order to do
this, Bethke used a discrete version of Walsh's original continuous functions. These
functions form an orthogonal basis for real-valued functions defined on {0, l}'.
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FIGURE 26 Plots of the four Walsh functions defined on two bits.
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The discrete Walsh functions map bit strings x into {1, -1}. Each Walsh func-
tion is associated with a particular partitioning of the search space. The Walsh
function corresponding to the jth partition (where, as was described above, the
index j is a bit string) is defined as follows°''84:

S1, if x A j has even parity (i.e., an even number of l's);
j(x) = ~ -1, otherwise.

Here, A stands for bitwise AND. For example, 00001(1001) = 0 since 1001 A
0001 = 0001 which has an odd number of l's. Notice that Vj(x) has the property
that the only bits in x that contribute to its value are those that correspond to l's
in j. This is an important property, as will be seen below.

Plots of the four Walsh functions defined on two bits are given in Figure 26.
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FIGURE 28 Four different partitionings of the space of 2-bit strings.

Since the Walsh functions form a basis set, any function F(x) defined on {0, 1 }'
can be written as a linear combination of Walsh functions:

2 -1

F(x) = E wjVj(x),
j=o

where x is a bit string, 1 is its length, and each wj is a real-valued coefficient called
a Walsh coefficient. For example, the function shown in Figure 27 can be written
as

F(x) = 2VOiaoo(X) + ,bi0000(x).

The Walsh coefficients wj of a given function F can be obtained via the Walsh
transform, which is similar to a Fourier transform. Below I will explain how the
Walsh transform works and discuss the close relationship between Walsh analysis

and schemas.
As a simple example of the Walsh transform, consider the function F(x) = x ,

where x is a two-bit string. The space of two-bit strings can be partitioned into sets
of schemas in four different ways, as illustrated in Figure 28.

The Walsh transform works by transforming F(x) into the summed series of
Walsh terms F(x) _2'-IWals tems ~x)= ZZ-J=0 w 2 ~(x), in which increasingly longer partial sums

provide progressively better estimates of the value of F(x). The terms in the sum are
obtained from the average values of F in progressively smaller partition elements.

In this example Walsh analysis will be used to get better and better estimates
for F(ll) (= 9).

Consider first the average value of F on the entire space, which is the same
as the average fitness u(**) of the schema ** in the partition j = 00 (part A of
Figure 28):

u(**)= F = (F(OO) + F(01) + F(10) + F(1l))/4 = 14/4.

Let Woo = u(**) = F. This could be said to be a "zeroth order" estimate of F(1l)
(or of F(x) for any x).
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Now to get a better estimate for F(11), some corrections need to be made to
the zeroth-order estimate. One way to do this is to look at the average value of F
in a smaller partition element containing F(11)-say, *1 (the right-hand element
shown in part (B) of Figure 28). The average value of the schema *1 is

u(* 1) = woo - deviation.,;

that is, it is equal to the average of the entire space minus the deviation of u(*1)
from the global average. Likewise, the average value of the complement schema *0
is

u(*O) = Woo + deviation. 1 ,

since u(*1) + u(*0) = 2u(**) = 2w0o. (The assignment of + or - to deviation. 1
here is arbitrary; it could have been reversed.) The magnitude of the deviation is
the same for both schemas (*1 and *0) in partition *d. Call this magnitude wol. A
better estimate for F(11) is then woo - wol .

The same thing can be done for the other order 1 schema containing 11, namely
1*. Let w1o be the deviation of the average value in d* from the global average. Then,

u(W*) - woo - wIo.

An even better estimate for F(11) is woo - w01 - wI0. This is a first-order estimate
(based on 1-bit schemas). The two deviation terms are independent of each other,
since they correct for differences in average values of schemas defined on different
bits, so we subtract them both. If the function were linear, this would give the exact
value of F(11). (In some sense, this is what it means for a function defined on bit
strings to be linear.)

However, since F(x) = x2 is nonlinear, one additional correction needs to be
made to account for the difference between this estimate and the average of the
order 2 schema (i.e., the string 11 itself):

F(11) = Woo - Wo, - W1o + correction 11 .

The magnitude of the order 2 correction term is the same for each F(x). This
can be shown as follows. We know that

F(11) = Woo - Wo, - w1o + correction 11,

and, by a similar analysis,

F(10) = woo + Wol - w1o + correction o.

Adding both sides of these two equations, we get

F(1l) + F(10) = 2woo - 2w10 + correction,, + correction1 o.
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But F(11) + F(10) = 2u(l*) (by definition of u(l*)), so we have

F(1l) + F(10) = 2u(l*) = 2woo - 2wio

since, as was discussed above, u(l*) = w 0o-w 10 . Thus, correction 11  -correction 1 o.
Similarly,

F(01) =woo - w0 1 + w 10 + correctionol,

so
F(11) + F(01) = 2w0o - 2wo0 + correction1 1 + correctionol

and, since
F(11) + F(01) = 2u(*1) = 2w 0o - 2wOl,

we have correction,, = -correctionol.
Finally,

F(OO) = woo + woi + w1o + correctionoo,

so
F(OO) + F(01) = 2woo + 2wlO + correction1 1 + correctionol,

and since

F(OO) + F(01) = 2u(O*) = 2w 0o + 2w 1o,

we have correctionoo = -correctionol. Thus the magnitudes of the second-order
correction terms are all equal. Call this common magnitude w11 .

This discussion shows that, for this simple function, each partition j' has a
single wj, associated with it, representing the deviation of the real average fitness
of each schema in partition j' from the estimates given by the combinations of
lower-order wj's. The magnitude of this deviation is the same for all schemas in
partition j'* This was easy to see for the first-order partitions and, as shown, it
is also true for the second-order partitions (which are the highest-order partitions
in this simple example). In general, for any partition j, the average fitnesses of
schemas are mutually constrained in ways similar to those shown above, and the
uniqueness of wj can be similarly demonstrated for j's of any order.

Table 1 gives the exact Walsh decomposition for each F(x).

TABLE I Expressions for F(x) for
each xE{O, 1}2.

F(OO) = woo +wol +±wo +wi1.
F(O1) = woo - wol + wlo - wiI.
F(10) = Woo + wol - w 1o - w I.
F(l1) = woo - wol - w1o + wi1.
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It has now been shown how function values can be calculated in terms of Walsh
coefficients, which represent progressively finer correction terms to lower-order esti-
mates in terms of schema averages. A converse analysis demonstrates how the wj's
are calculated:

0+1+4+9

14

4
wol =WOO - u(*1)

0+1+4+9 1+9

4 2
0-1+4-9

4
6

4

WO =WOO - u(1*)
0+1+4+9 4+9

4 2
0+1-4-9

4
12

4
w~l = F(11) - first-order estimate

= F(11) - (woo - wOl - w1O)

(14 6 12)

4

4

And to check:

F(l1) =woo - wol - w1o + wCIl = 14/4 + 6/4 + 12/4 + 4/4 = 9.

In general,

1 2
o1= y E F(x)V,(x).

X=0

This is the Walsh transform (it is derived more formally in Goldberg 25 ). Once
the w, 's have been determined, F can be calculated as

2'-1

F(x) = Oj W

j=0
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How does one decide whether or not a deviation term wj is added or subtracted
in this expression? The answer to this question depends on some conventions: e.g.,
whether u(*l) is said to be woo - w01 or woo + Wol. Once these conventions are
decided, they impose constraints on whether higher-order Walsh coefficients will be
added or subtracted in the expression for F(x). If x happens to be a member of a
schema s whose average deviates in a positive way from the lower-order estimate,
then the positive value of the wj corresponding to s's partition goes into the sum.
All that is needed is a consistent way of assigning these signs, depending on the
partition j and what element of j a given bit string x is in. The purpose of the
Walsh functions Oj(x) is to provide such a consistent way of assigning signs to
wj's, via bitwise AND and parity. This is not the only possible method; a slightly
different method is given by Holland for his hyperplane transform.36

THE WALSH-SCHEMA TRANSFORM

There is a close connection between the Walsh transform and schemas. It was
shown above that, using Walsh coefficients, a function's value on a given argument
x can be calculated using the average fitnesses of schemas of which that x is an
instance. An analogous method, proposed by Bethke,"° can be used to calculate
the average fitness u(s) of a given schema s. Bethke called this method the Walsh-
schema transform. This transform gives some insight into how schema processing is
thought to occur in the GA. It also allowed Bethke to state some conditions under
which a function will be easy for the GA to optimize, and allowed him to construct
functions that can be difficult for the GA because low-order schemas lead the search
in the wrong direction.

Formal derivations of the Walsh-schema transform are given by Bethke,1 °
Goldberg, 25 and Tanese.84 Here the the transform is presented informally.

Using the same example as before, the average fitness of the schema * 1 is
u(*l) = woo - w01 ; this comes from the definition of w0 1 . The value of u(*1) does
not depend on, say, w10 ; it depends only on Walsh coefficients of partitions that
either contain *1 or contain a superset of *1 (e.g., ** D *1). In general, a partition
j is said to subsume a schema s if it contains as an element some schema s' such
that s' D s. For example, the 3-bit schema 10* is subsumed by four partitions:
dd*, d**, *d*, and ***, which correspond respectively to the j values 110, 100, 010,
and 000. Notice that j subsumes s if and only if each defined bit in j (i.e., each 1)
corresponds to a defined bit in s (i.e., a 0 or a 1, not a *).

The Walsh-schema transform expresses the average fitness of a schema s as a
sum of progressively higher-order Walsh coefficients wj, analogous to the expression
of F(x) as a sum of progressively higher-order wj's. Just as each w3 in the expression
for F(x) is a correction term for the average fitness of some schema in partition
j containing x, each wj in the expression for u(s) is a correction term, correcting
the estimate given by some lower-order schema that contains s. 'rhe difference is
that, for F(x), all 21 partition coefficients must be summed (although some of them
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may be zero). But to calculate u(s), only coefficients of the subsuming partitions
("subsuming coefficients") need to be summed.

The 2-bit function example given above is too simple to illustrate these ideas,
but an extension to three bits suffices. Let F(x) = x2 as before, but let x be defined
over three bits instead of two. The average fitness of the schema *01 is a sum of the
coefficients of partitions that contain the schemas ***, **1, *0*, and *01. An easy
way to determine the sign of a subsuming coefficient wj is to take any instance of
s and to compute ?P (x). This value will be the same for all x E s, as long as j is a
subsuming partition, since all the ones in j are matched with the same bits in any
instance of s. For example, the partition **d (j = 001) subsumes the schema *11,
and V0ool(x) = -1 for any x E *11. Using a similar method to obtain the signs of
the other coefficients, we get

u(*11) = w000 - wo ol -- W010 W011"

In general,

u(s) = Tj (S)
j:j subsumes s

where %Pj(s) is the value of Oj(x) (= +1 or -1) for any x E s.
The sum

u(*11) = W000 - W001 - w010 + w011

gives the flavor of how the GA actually goes about estimating u(*11). To review, a
population of strings in a GA can be thought of as a number of samples of various
schemas, and the GA works by using the fitness of the strings in the population to
estimate the fitness of schemas. It exploits fit schemas via reproduction by allocating
more samples to them, and it explores new schemas via crossover by combining fit
low-order schemas to sample higher-order schemas that will hopefully also be fit. In
general, there are many more instances of low-order schemas in a given population
than high-order schemas (e.g., in a randomly generated population, about half of
the strings will be instances of 1** ... *, but very few, if any, will be instances of
111 ... 1). Thus, accurate fitness estimates will be obtained much earlier for low-
order schemas than for high-order schemas. The GA's estimate of a given schema s
can be thought of as a process of gradual refinement, where the algorithm initially
bases its estimate on information about the low-order schemas containing s and
gradually refines this estimate from information about higher and higher order
schemas containing s. Likewise, the terms in the sum above represent increasing
refinements to the estimate of how good the schema *11 is. The term w000 gives
the population average (corresponding to the average fitness of the schema ***) and
the increasingly higher-order wj's in the sum represent higher-order refinements of
the estimate of *11's fitness, where the refinements are obtained by summing wj's
corresponding to higher and higher order partitions j containing *11.

Thus, one way of describing the GA's operation on a fitness function F is
that it makes progressively deeper estimates of what F's Walsh coefficients are,
and biases the search towards partitions j with high-magnitude wj's, and to the
partition elements (schemas) for which these correction terms are positive.
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THE WALSH-SCHEMA TRANSFORM AND GA-DECEPTIVE FUNCTIONS

Bethke1° used Walsh analysis to partially characterize functions that will be easy for
the GA to optimize. This characterization comes from two facts about the average
fitness of a schema s. First, since u(s) depends only on wj's for which j subsumes
s, then if the order of j (i.e., the number of l's in j) exceeds the order of s (i.e., the
number of defined bits in s), then wj does not affect u(s). For example, w11 does not
affect u(*l1): *ll's two instances 011 and 111 receive opposite-sign contributions
from w111. Second, if the defining length of j (i.e., the distance between the leftmost
and rightmost l's in j) is greater than the defining length of s (i.e., the distance
between the leftmost and rightmost defined bits in s), then u(s) does not depend
on wj. For example, w101 does not affect u(*l1), since u(*11)'s two instances again
receive opposite-sign contributions from w1l.

Bethke suggested that if the magnitude of the Walsh coefficients of a function
decrease rapidly with increasing order and the defining length of the j's-that is,
the most important coefficients are associated with short, low-order partitions-
then the function will be easy for the GA to optimize. In such cases, the location of
the global optimum can be determined from the estimated average fitness of low-
order, low-defining-length schemas. As was described above, such schemas receive
many more samples than higher-order, longer-defining-length schemas: "low order"
means that they define larger subsets of the search space and "short defining length"
means that they tend to be kept intact under crossover. Thus the GA can estimate
their average fitnesses more quickly than those of higher-order, longer-defining-
length schemas.

Thus, all else being equal, a function whose Walsh decomposition involves high-
order j's with high-magnitude coefficients should be harder for the GA to optimize
than a function with only lower-order j's, since the GA will have a harder time
constructing good estimates of the higher-order schemas belonging to the higher-
order partitions.

Bethke's analysis was not intended as a practical tool for use in deciding
whether a given problem will be hard or easy for the GA. A Walsh transform
of F requires evaluating F at every point in its argument space (this is also true for
the "Fast Walsh Transform,""25) and is thus an infeasible operation for most fitness
functions of interest. It is much more efficient to run the GA on a given function and
to measure its performance directly than to decompose the function into Walsh co-
efficients and then to determine from those coefficients the likelihood of GA success.
However, Walsh analysis can be used as a theoretical tool for understanding the
types of properties that can make a problem hard for the GA. For example, Bethke
used the Walsh-schema transform to construct functions that mislead the GA, by
directly assigning the values of Walsh coefficients in such a way that the average
values of low-order schemas give misleading information about the average values
of higher-order refinements of those schemas. Specifically, Bethke chose coefficients
so that some short, low-order schemas had relatively low average fitness, and then
chose other coefficients so as to make these low-fitness schemas actually contain the
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global optimum. Such functions were later termed "deceptive" by Goldberg24,26,28

who carried out a number of theoretical studies of such functions. Deception has
since been a central focus of theoretical work on GAs. 13' 17,26, 48,4 9,88 Walsh analysis
can be used to construct problems with different degrees and types of deception,
and the GA's performance on these problems can be studied empirically. The goal
of such research is to learn how deception affects GA performance (and thus why
the GA might fail in certain cases) and to learn how to modify the GA or the
problem's representation in order to improve performance.

Intuitively, it seems that a deceptive problem will be difficult for the GA. The
GA works by accumulating information about schemas and using this information
to bias its future samples. If some schemas give the GA the wrong information about
the location of the global optimum, then the GA should have difficulty finding the
global optimum. However, the GA is often able to find the optimum fairly readily
even on functions with a large number of deceptive schemas.27 There is not yet any
rigorous understanding of the relation between different types of deception and the
performance of the GA. Some critical discussions of the notion of deception and its
role in understanding GAs are given in Forrest and Mitchell 22 and Grefenstette. 29

4.2 STATISTICAL STRUCTURE OF FITNESS LANDSCAPES

Stuart Kauffman of the Santa Fe Institute has studied in detail how certain statistics
of a particular class of fitness landscapes affect the process of evolution over those
landscapes41 . In particular, Kauffman has defined a class of parameterizable fitness
landscapes called "NK landscapes." [2J The purpose is to define the simplest class of
landscapes whose "ruggedness" can be varied; one can then create landscapes with
various degrees of ruggedness and study the effects of the degree of ruggedness on
evolution over these landscapes.

A NK landscape is defined over a space of bit strings. To create an NK land-
scape, one chooses a value for N and K, where N is the number of bits in the
string and K is the degree of "epistasis"-the number of other bits that each bit's
fitness contribution depends on. One then chooses, for each locus i, the K other

FIGURE 29 The network of dependencies for
locus I locus 2 locus 3 the example NK landscape.

(2 ]Kauffman's NK landscapes are a slightly different formulation of his "random Boolean

networks.",40,
42
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loci that affect i's fitness contribution. That is, the fitness contribution of the allele
at i depends on itself and the alleles at these K other loci. There are 2 K+1 possible
configurations of these K + 1 alleles, and one assigns to each such configuration
a randomly chosen fitness contribution between 0 and 1. The fitness of the entire
string is defined to be the average of the contributions of each locus.

For example, consider a simple NK landscape with N = 3 and K = 1. Suppose
we have decided that the fitness contribution of locus 1 (the leftmost locus) depends
on locus 2, the contribution of locus 2 depends on locus 3, and the contribution of
locus 3 depends on locus 2. This network of dependencies is illustrated in Figure 29.
Now we randomly assign fitness contributions for each possible configuration (the
asterisks denote the loci that are not taken into account in determining the fitness
contribution for a given locus):

Fitness contribution of locus 1:

00*: contribution = 0.6

01*: contribution = 0.2

10*: contribution = 0.3

11*: contribution = 0.8

Fitness contribution of locus 2:

* 00: contribution = 0.2
* 01: contribution = 0.4

* 10 : contribution = 0.1

* 11: contribution = 0.3

Fitness contribtion of locus 3:

* 00: contribution = 0.1
* 01: contribution = 0.9

* 10 : contributi-n = 0.2

* 11: contribution = 0.1

To calculate the fitness of a given string, we determine the contributions from
each locus in that string and average them. For example, F(000) = (0.6 + 0.2 +
0.1)/3. Now that the fitness of each possible chromosome has been determined, the
entire fitness landscape has been defined.

NK landscapes, though highly simplified, are meant to capture some important
aspects of fitness landscapes in nature. In particular, the N sites can roughly be
thought of as representing N traits in an organism, with the fitness contribution
of each trait depending on the value of K other traits. With a fixed N, when K
is tuned from 0 to N - 1, the resulting landscape goes from being very smooth
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(few local optima) to very rugged (many local optima). NK landscapes are closely
related to spin glass models in physics. 4 1

Kauffman has looked in detail at how the statistical structure of NK landscapes
varies for different values of N and K.4 l The statistical structure includes, among
other properties, the number of local fitness optima in the landscape, the average
length of an "adaptive walk" from a given point to a fitness optimum, and the
average number of alternative optima that can be reached via an adaptive walk
from a given point. Kauffman has used his results on the statistical structure of NK
landscapes to predict some aspects of the dynamics of evolution on these landscapes
and to hypothesize about what features of landscapes would allow organisms of
significant complexity to evolve.

The notion of the statistical structure of a fitness landscape assumes a metric
over the space of genotypes (here, bit strings). For example, in defining the "average
length of an adaptive walk to a fitness optimum," one needs to specify a metric
in terms of which length will be measured. Kauffman's metric (like that for most
studies of fitness landscapes) is in terms of single mutations, or Hamming distance.
The Hamming distance H between two bit strings is the number of bit positions
in which they differ (e.g., H(1001, 1000) = 1 and H(1001,0110) = 4). Kauffman's
statistics on NK landscapes are all in terms of this metric. For example, the length
of a "walk" from string A to string B is the number of single mutations needed to
transform A into B (an "adaptive walk" is a walk in which each step leads to an
improvement in fitness).

If mutation were the only genetic operator used in a GA, one could straightfor-
wardly apply Kauffman's results to predict some aspects of the performance of GAs
on NK landscapes. However, the main source of variation in GAs is crossover, which
defines a different metric on the space of genotypes. What characteristics must a
fitness landscape have in order for crossover to be a useful operator? Kauffman
offers some intuitive answers in the context of NK landscapes.41 If K = 0, then the
contribution of each of the N loci is independent, and each locus can be thought
of as an independent building block. In this case, crossover may help speed up the
search for the optimum since, in a single step, it can combine different substrings
of optimized alleles from different strings. That is, if string A and string B have
high fitness, then their offspring are likely to have even higher fitness. Likewise, if
K is small and the epistatic interactions are restricted to be among near neighbors.
then crossover may be useful since it can combine distant regions of strings that are
functionally independent. Kauffman also hypothesizes that crossover will be useful
when the fitness landscape contains pairs of fitness peaks that together contain
mutual information about good regions of the space. When strings located at such
peaks cross over, there is a good possibility that they will produce fit offspring.

These are all intuitive arguments similar to the Building-Block Hypothesis men-
tioned earlier, and Kauffman has given some experimental evidence to support these
hypotheses.

Bernard Manderick, Mark de Weger, and Piet Spiessens of the Free University
of Brussels have extended Kauffman's work and have applied their results to the
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problem of predicting the GA's performance on a given landscape. 53 In their work
they looked at two types of correlation measures:

"* Operator-specific correlation coefficients:

covariance(Fparents, Foffspring)

a`(Fparents)a(Foffspring)

Given a certain operator that creates offspring from parents, these correlation
coefficients measure how well the offsprings' fitness is correlated with the par-
ents' fitness.

" Correlation length of landscape:
This measure gives the length (in Hamming distance) at which fitnesses are no
longer correlated (see Manderick et al. 53 for details).

Manderick et al. measured the correlation coefficient of crossover as a function of
the Hamming distance between the two parents for four different NK landscapes, in
which N was fixed at 10 and K was varied. Their results are displayed in Figure 30.
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FIGURE 30 Correlation coefficient of crossover as a function of the Hamming distance
between the two parents for four different NK landscapes, in which N was fixed at
10 and K was varied. (Reprinted from Manderick et aIS3 by permission of the authors;
copyright @ 1991 by Morgan Kaufmann Publishing.)
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TABLE 2 Relation between correlation length r of an NK landscape and GA performance
Imp. (number of improvements after 2,048 generations). These results (each averaged
over five runs) are given for several different values of K. N is fixed at 96. (Adapted from
Manderick et al.5 3 by permission of the authors.)

K 0 1 2 4 8 16 32 48 95

r 29.96 24.37 19.51 14.15 7.06 3.90 1.72 1.00 0.52
Imp. 19.80 16.00 15.20 11.60 8.60 6.20 3.80 5.40 5.20

Each curve corresponds to the results on a landscape with the given K value, and
each point on a curve was obtained by randomly selecting 100 pairs of parents (each
separated by the given Hamming distance), crossing over each pair at a random
locus, and computing the correlation coefficient between the fitnesses of the parents
and the fitnesses of their offspring. As can be seen, the correlation goes down
as Hamming distance increases and, the greater the K, the faster the decrease
in correlation. Assuming that crossover is useful only when there is a correlation
between the fitness of parents and the fitness of offspring, Manderick et al. point
out that their results help to quantify a qualitative heuristic used by some GA
practitioners: crossover performs best when it is restricted to similar parents.

Manderick et al. also measured the relation between the correlation length of
a landscape and GA performance. These results are given in Table 2. Here N was
fixed at 96 and K was varied. For each K, the correlation length was calculated
by sampling a number of random walks on the landscape. The correlation length r
is roughly the average number of single mutation steps from a given string needed
until the fitness of the resulting string and the fitness of the original string are no
longer correlated (see Manderick et al.53 for details). The performance of the GA
was measured in terms of the number of improvements in a fixed number M of
generations-that is, the number of strings in generation M whose fitnesses are
higher than that of any string in the initial population (here M = 2048 and the
results are averaged over five runs). Table 2 shows that both correlation length and
GA performance decrease with K. Manderick et al.'s conclusion is that the GA
performs well on an NK landscape when the correlation length of the landscape is
high.

The results of Kauffman and of Manderick et al. are initial steps in characteriz-
ing, in terms of statistical properties, the types of fitness landscapes on which GAs
are likely to perform well. However, the NK landscapes are a limited class that may
not capture the landscape features most relevant to the performance of GAs. The
next subsection describes an attempt to define a parametrizable class of landscapes
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that more directly captures such features and that yields some surprising results
related to the Building-Block Hypothesis.

4.3 ROYAL ROAD LANDSCAPES

(This subsection is adapted from Forrest and Mitchell2 ' by permission of the au-
thors; copyright @ 1993 by Morgan Kaufmann.)

Stephanie Forrest of the University of New Mexico and I are currently car-
rying out research to answer the four questions posed at the beginning of this
section. 1,21 Our strategy for answering these questions consists of the following
general approach. We begin by identifying features of fitness landscapes that are
particularly relevant to the GA's performance. A number of such features have been
discussed in the GA literature, including local hills, "deserts," deception, hierarchi-
cally structured building blocks, noise, and high fitness-variance within schemas.
We then design simplified landscapes containing different configurations of such
features, for example, varying the distribution, frequency, and size of different fea-
tures in the landscape. We then study in detail the effects of these features on the
GA's behavior. A longer-term goal of this research is to develop statistical meth-
ods of classifying any given landscape in terms of our spectrum of hand-designed
landscapes, thus being able to predict some aspects of the GA's performance on
the given landscape.

It should be noted that by stating this problem in terms of the GA's perfor-
mance on fitness landscapes, we are sidestepping the question of how a particular
problem can best be represented to the GA. The success of the GA on a particular
function is certainly related to how the function is encoded (e.g., using Gray codes
for numerical parameters can greatly enhance the performance of the GA on some
problems") but, since we are interested in biases that pertain directly to the GA,
we will simply consider the landscape that the GA "sees."

In this subsection I describe some initial results from this long-term research
program. A starting point for our research is the Building-Block Hypothesis, which
states that the GA works well when short, low-order, highly-fit schemas ("building
blocks") recombine to form even more highly fit, higher-order schemas. In Gold-
berg's words, "...we construct better and better strings from the best partial solu-
tions of past samplings" (see Goldberg, 26 p. 41). As has been emphasized in earlier
sections, the ability to produce fitter and fitter partial solutions by combining build-
ing blocks is believed to be the primary source of the GA's search power. However,
in spite of the presumed central role of building blocks and recombination, the
GA research community lacks precise and quantitative descriptions of how schemas
interact and combine during the typical evolution of a GA search. Thus, we are in-
terested in isolating landscape features implied by the Building-Block Hypothesis,
and studying in detail the GA's behavior-the way in which schemas are processed
and building blocks are combined-on simple landscapes containing those features.
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One major component of this endeavor is to define the simplest class of land-
scapes on which the GA performs "as expected," thus confirming the broad claims of
the Building-Block Hypothesis. However, the task of designing such landscapes has
turned out to be substantially more difficult and more subtle than we originally
anticipated. Our initial choices of simple landscapes have revealed some surpris-
ing and unanticipated phenomena. The story of how small variations of a basic
landscape can make GA search much less effective reveals a great deal about the
complexity of GAs and points out the need for a deeper theory of how low-order
building blocks are discovered and combined into higher-order solutions.

Below I introduce the Royal Road functions, a class of nondeceptive functions in
which the building blocks are explicitly defined. I then present experimental results
that demonstrate how simple variants of these functions ?an have quite different
effects on the performance of the GA and discuss the reasons for these differences.

STEPPING STONES IN THE CROSSOVER LANDSCAPE

The Building-Block Hypothesis suggests two landscape features that are particu-
larly relevant for the GA: (1) the presence of short, low-order, highly fit schemas
and (2) the presence of intermediate "stepping stones" -intermediate-order higher-
fitness schemas that result from combinations of the lower-order schemas and that,
in turn, can combine to create even higher-fitness schemas. Two basic questions
about stepping stones are: How much higher in fitness do the intermediate step-
ping stones have to be for the GA to work well? And how must these stepping
stones be configured? To investigate these questions, we first defined the Royal
Road functions which contain these features explicitly.

s1 = l111111"********************************************************;ci = 8
S2 = ************************************************************;c 2 = 8
s3 = *****************C** *** *** ***c 3 = 8
S4 = ************************C4*********************************; c4 = 8

S6 C6=

87 = ***********************************************1 I I I ********; C7 8 8

Sopt=1111111111111111111 II 1111111111111111111111111111111111111111

FIGURE 31 An optimal string broken up into eight building blocks. The function
Rl(x) (where x is a bit string) is computed by summing the coefficients c,
corresponding to each of the given schemas of which x is an instance. For example,
Rl(1lllllll00...0) = 8, and Rl(ll1lllll00...0llllllll) = 16. Here
c. = order(s).
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To construct a Royal Road func' *on, we select an optimum string and break
it up into a number of small building blocks, as illustrated in Figure 31. We then
assign values to each low-order schema and each possible intermediate combination
of low-order schemas, and use those values to compute the fitness of a bit string x
in terms of the schemas of which it is an instance.

As illustrated in Figure 31, the function R1 is computed very simply: a bit
string x gets 8 points added to its fitness for each of the given order 8 schemas of
which it is an instance. For example, if x contains exactly two of the order 8 building
blocks, Rl(x) = 16. Likewise, R1(111 ... 1) = 64. Stated more generally, the value

Rl(x) is the sum of the coefficients c, corresponding to each given schema of which
x is an instance. Here c, is equal to order(s). The fitness contribution from an
intermediate stepping stone (such as the combination of s, and s3 in Figure 31) is
thus a linear combination of the fitness contribution of the lower-level components.
R1 is similar to the "plateau" problem described by Schaffer and Eshelman. 79

According to the Building-Block Hypothesis, Rl's building-block and stepping-
stone structure should lay out a "royal road" for the GA to follow to the global
optimum. In contrast, an algorithm such as simple steepest-ascent hill climbing,
which systematically tries out single-bit mutations and only moves in an uphill
direction, cannot easily find high values in such a function, since a large number
of single bit positions must be optimized simultaneously in order to move from
an instance of a lower-order schema (e.g., 11111111* ... *) to an instance of a
higher-order intermediate schema (e.g., 11111111 *...11111111...). While
some initial random search may be involved in finding the lowest-level building
blocks (depending on the size of the initial population and the size of the lowest-level
blocks), the interesting aspect of RI is studying how lower-level blocks are combined
into higher-level ones, and this is the aspect with which we are most concerned.
Part of our purpose in designing the Royal Road functions is to construct a class
of fitness landscapes that distinguishes the GA from other search methods such as
hill climbing. This actually turned out to be more difficult than we anticipated, as
will be discussed below.

This class of functions provides an ideal laboratory for studying the GA's
behavior:

"* The landscape can be varied in a number of ways. For example, the "height"
of various intermediate stepping stones can be increased or decreased. Also,
the size of the lowest-order building blocks can be varied, as can the degree
to which they cover the optimum. Finally, different degrees of deception can
be introduced by allowing the lower-order schemas to differ in some bits from
the higher-order stepping stones, effectively creating low-order schemas that
lead the GA away from the good higher-order schemas. The effects of these
variations on the GA's behavior then can be studied in detail.

"* Since the global optimum and, in fact, all possible fitness values are known in
advance, it is easy to compare the GA's performance on different variations of
Royal Road functions.



70 Melanie Mitchell

N All of the desired schemas are known in advance, since they are explicitly built
into the function. Therefore, the dynamics of the search process can be studied
in detail by tracing the histories of individual schemas.

We are using the Royal Road functions to study some questions about the effects
of crossover on various landscapes, including the following: For a given landscape,
to what extent does crossover help the GA find highly fit schemas? What is the effect
of crossover on the waiting times for desirable schemas to be discovered? What are
the bottlenecks in the discovery process? How does the configuration of stepping
stones and size of steps defined by stepping stones affect the GA's performance?
Answering these questions in the context of the idealized Royal Road functions is
a first step toward answering them for more general cases.

We first investigated the effect of the step size of the intermediate stepping
stones on the GA's performance. To do this, we compared the performance of the
GA on R1 with its performance on a second function R2, where the fitness contri-
butions of certain intermediate stepping stones are much higher. R2 is illustrated
in Figure 32. R2 is computed in the same way as RI: the fitness of a bit string x is
the sum of the coefficients corresponding to each schema (s8-s14 ) of which it is an
instance. For example, R2(1111111100... 011111111) = 16, since the string is an
instance of both s, and s8, but R2(11111111111111100... 0) = 32 since the string
is an instance of si, s 2, and sg. Thus, a string's fitness depends not only on the
number of 8-bit schemas to which the string belongs, but also on their positions in
the string. The optimum string 11111111 ... 1 has fitness 192, since the string is an
instance of each schema in the list.

S, -- *********************************C1 = 8S2 = =l**************************************************************;c= 8

S3 =C3 = 8
S4  C4**************************************************************c = 8
s5 = ******************************** 11I1111************************;C = 8
S6 =C6 = 8
S7 C7==

Sa = ***************************************8************************c8 = 8
sq = ************************************************************* c 9 = 16
s10 =******** 1111 111*****************CIO = 16

S11 == 16s 1;********************************************************** *** Cl1 = 16
S12 ,*******************************$******************************* 1** = 16
514 =llllllllllllll1lllllllllllll********************************; C13 = 32
sj4 1*****************************111111111111111111111 11 1; c14 = 32

FIGURE 32 Royal Road Function R2. R2(x) is computed in the same way as
RI: by summing the coefficients c8 corresponding to each of the given schemas of
which x is an instance. For example, R2(1111111100... 011111111) = 16, but
R2(111111111111111100...0) = 32. R2(11111111 ... 1) = 192.
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ROYAL ROAD EXPERIMENTS

For our initial experiments, we used functions defined over strings of length 64. The
GA population size was 128, with the initial population generated at random. In
each run the GA was allowed to continue until the optimum string was discovered,
and the total number of function evaluations performed was recorded. We used a
standard GA with single-point crossover and sigma scaling, an alternative scheme
for assigning t - expected number of copies to each individual. Under sigma scaling,
an individual s expected number of offspring is 1 + (Fi - F)/2a, where F, is i's
fitness, F is the mean fitness of the population, and a is the standard deviation.
The maximum expected offspring of any string was 1.5-if the above formula gave

a higher value, the value was reset to 1.5. This is a strict cutoff, since it implies that
most individuals will reproduce only 0, 1, or 2 times. The effect of this selection
scheme i- to slow down convergence by restricting the effect that a single individual
can ha on the population, regardless of how much more fit it is than the rest of

the population. Even with this precaution, we observe some interesting premature
convergence effects, described below. The crossover probability was 0.7 per pair of
parents and the mutation probability was 0.005 per bit.

EXPERIMENTS ON R1 AND R2

We expected the GA to perform better-that is, find the optimum more quickly-

on R2 than on R1. In R2 there is a very clear path via crossover from pairs of the

eight initial order 8 schemas (sl-s8) to the four order 16 schemas (s9-s 12), and
from there to the two order 32 schemas (S13 and 814), and finally to the optimum
(Sept). We believed that the presence of this stronger path would speed up the

GA's discovery of the optimum, but our experiments showed the opposite: the GA
performed significantly better on R1 than on R2. Statistics summarizing the results
of 500 runs on each function are given in Table 3. This table gives the mean and
median number of function evaluations taken to find the optimum over 500 runs
each on RI and R2. Each run on a given function uses identical parameters but
starts with a different random-number seed.

h we hope to understand the GA's performance in general, we need to under-
stand in detail what are the potential bottlenecks for discovering desirable schenmas.
This has been studied extensively in the deception literature, but R2 is a nonde-
ceptive function that nonetheless contains some features that keep the GA from

discovering desirable schemas as quickly as in R1. What slows down the GA in
the case of R2? To investigate this, we took a typical run of the GA on R2 and
graphically traced the evolution of each schema shown in Figure 32. Figure 33 gives
this trace for three sets of schemas: s1, s2 , and sg; 83, s4l, and si0; and s5, s6, and
sI (see Figure 32). In each plot, the density (% of population) of each schema is

plotted against time (generations). The density is sampled every 10 generations.
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TABLE 3 Summary of results of running the GA on R1 and
R2. The table gives the mean and median number of function
evaluations taken to find the optimum over 500 runs on each
function. The numbers in parentheses are the standard errors.

Function Evaluations to Optimum
500 runs RI R2

Mean 62099 (std err: 1390) 73563 (std err: 1794)
Median 56576 66304

These plots show a striking phenomenon. In the top plot in Figure 33, s, and S2

appear early and instances of them quickly combine to form s9 . Once each schema
is discovered, its density in the population rises quite quickly to over 90% of the
population by generation 60 or so. Around generation 220 there is a distinct dip in
the densities of these three schemas.

The middle plot shows a very different evolution for S3, s4 , and slo. The schemas
S3 and S4 are both present in the initial (randomly generated) population (though
s3 's presence at generation 0 is not visible on the plot) but, while s4 rises quickly, s3
dies out by generation 10, is fleetingly rediscovered (along with slo) at generation
120 (see blip on the x-axis), and does not return until the very end of the run, at
which point a mutation brings it (along with sio) back (see blip on the x-axis).
This same mutation is responsible for creating sopt at generation 535, when the run
ends. After a quick initial rise, the schema S4 enters a pronounced dip at the same
time the milder dip can be seen in the top plot of Figure 33, around generation 220.

What is the cause of these dips, and what prevents s 3 from persisting in the

population? A likely answer can be inferred from the bottom plot. Schema s6 ap-
pears around generation 30, rises fairly quickly, and takes a sharp upturn around
generation 220, rising to about 95% of the population. Schema s5 appears briefly
around generation 20 (dot close to the x-axis) and dies out, but appears again at
generation 220. The instance of it in the population is also an instance of s 1,, and in-
stances of s8I rise very quickly. This rise exartly coincides with the minor dip in s1 ,
S2, and s9 and the major dip in 84. What a ,ars to be happening is: in the first few
instances of S 11, along with the sixteen l's in the fifth and sixth blocks are several
O's in the first through fourth blocks. An instance of sII has fitness 8 + 8 + 16 = 32,
whereas an instance of an order 8 schema such as s4 has fitness 8. This difference
causes s I I to rise very quickly compared to s4 , and instances of s II with some O's in
the fourth block tend to push out many of the previously existing instances of S4 in
the population, and prevent the rediscovery of S3. This phenomenon has been called
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Evolution of schemas 1, 2, and 9
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FIGURE 33 Evolution of three sets of schemas in a typical run of the GA on R2.

(See Figure 32 for schema numbers.) In each plot, the density of esch schema (% of

population) is plotted against the generation. Note that in the middle plot, schemas 3

and 10 are visible only as tiny bumps on the x-axis at generations 120 and 535.
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"hitchhiking," where O's in other positions in the string hitchhike along with the
highly fit s11 . The most likely positions for hitchhikers are those close to the highly
fit schema's defined positions, since they are less likely to be separated from the
schema's defined positions under crossover. Such effects are seen in real population
genetics and have been discussed in the context of GAs by Schraudolph and Belew, °
and Das and Whitley,13 among others. Note that this effect is pronounced even with
the relatively weak form of selection used in our GA. (We also compared the GA's
performance on R1 and R2 using a linear rank-scaling method 5 instead of the
sigma-scaling method described above, and obtained results similar to those given
in Table 3.)

The plots given in Figure 33 come from a single run, but this run was typical:
the same type of phenomenon was observed on many of the other runs on R2 as
well. Our hypothesis is that this hitchhiking effect is what causes the relatively
slower times (on average) for the GA to find the optimum on R2. The power of
crossover to combine lower-level building blocks was hampered, since some of the
necessary building blocks were either partially or totally suppressed by the quick rise
of disjoint building blocks. This suggests that there is more to characterizing a GA
landscape than the absolute direction of the search gradients. In these functions.
it is the actual differences in relative fitnesses for the different schemas that are
relevant.

In R1, which lacks the extra fitness given to some intermediate-level schemas.
the hitchhiking problem does not occur to such a devastating degree. The fitness
of all instance of, say, sll in R1 is only 16, so its discovery does not have such a
dramatic effect on the discovery and persistence of other order 8 schemas in the
function. Contrary to our initial intuitions, it appears that the extra reinforce-
ment from some intermediate-level stepping stones actually harms the GA in these
functions.

These results point to a pervasive and important issue in the performance of
GAs: the problem of premature convergence, in which the GA population converges
on some suboptimal set of alleles at some set of loci. The fact that we observe a
form of premature convergence even in this very simple setting suggests that it can

be a factor in any GA search in which the population is simultaneously searching
for two or more nonoverlapping high-fitness schemas (e.g., s 4 and s I), which is
often the case. The fact that the population loses useful scheinas once one of the
disjoint good schenmas is found suggests one reason that the rate of effective implicit
parallelism of the GA 3 ' 2 7 may need to be reconsidered. (For another discussion of
implicit parallelism in GAs, see Grefenstette and Baker. 30 )

DO INTRONS SUPPRESS HITCHHIKERS?

In order to understand the hitchhiking behavior more p)recisely, we performed an
experiment that we believed would eliminate it to some degree. Our hypothesis
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was that hitchhiking occurred in the loci that were spatially adjacent to the high-
fitness schemas (e.g., sil above). In order to reduce this effect, we constructed a
new function, R 2 introns, by introducing blocks of 8 "introns"-8 additional 's-in
between each of the 8-bit blocks of l's. Thus in R 2

introns, strings were of length
128 instead of 64. For example, in R2 introns, S1 is 1 * S2 is

...... 11ll 1111.,. *. , and their combination, sg, is

l11111111 ........ 11l111111"* ....

The optimum is the string containing each block of eight l's, where the blocks are
each separated by eight loci that can contain either O's or l's. The idea here was that
a potentially damaging hitchhiker would be at least 8 bits away from the schema
on which it was hitchhiking, and would thus be likely to be lost under crossover.
(Levenick4 6 found that inserting introns into individuals improved the performance
of the GA in one particular set of environments.)

As shown in column 1 of Table 4, the GA on R 2
introns was not faster than the

GA on R2. This was contrary to our expectations, and the reasons for this result
are not clear, but one hypothesis is that once an instance of a higher-order schema
(e.g., s 1l) is discovered, convergence is so fast that hitchhikers are possible even in
loci that are relatively distant from the schema's defined positions.

VARYING THE COEFFICIENTS IN R2

It is clear that some internmediate-level reinforcement is necessary for the GA to
work. Consider RI', a variant of RI, where Rl'(x) = 8 if x is an instance of at least
one of the 8-bit schemas, and Rl'(x) = 64 if x is an instance of all the 8-bit schemas.

Here the GA would have no reason to prefer a string with block of sixteen l's over
a string with a block of eight l's. and thus there would be no pressure to increase

the number of l's. Intermediate schemas in R1 provide additive reinforcement, since

TABLE 4 Summary of results of 200 runs of the GA on two
variants of R2.

Function Evaluations to Optimum
200 runs Ritro,. R 2flat

Mean 75599 (std err: 2697) 62692 (std err: 2391)
Median 70400 56448
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the fitness of an instance of an intermediate-order schema is always the sum of
the fitnesses of instances of the component order 8 schemas. Some schemas in R2
provide additional reinforcement: the fitness of an instance of, say, s9 is much higher
than the sum of the fitnesses of instances of the component order 8 schemas si and
S2. Our results indicate that the extra reinforcement given by some schemas is too
high-it hurts rather than helps the GA's performance.

Does such additional reinforcement ever help the GA rather than hinder it? To
study this we constructed a new function, R 2 flat, with a much weaker reinforcement
scheme: for this function, Cl-C 1 4 are each set to the flat value 1. Here there is still
additional reinforcement (an instance of s9 will have fitness 1 + 1 + 1, which is
greater than the sum of the two components), but the amount of reinforcement is
reduced considerably.

The results of running the GA on R2flat is given in the second column of Table 4.
The average time to optimum for this function is approximately the same as for R1.
Thus the smaller fitness reinforcement in R 2 flat does not seem to hurt performance,
although it does not result in improved performance over that on R1.

DISCUSSION

The results described above show that the GA's ability to process building blocks

effectively depends not only on their presence but also on their relative fitness.
If some intermediate stepping stones are to( much fitter than the primitive com-
ponents, then premature convergence slows down the discovery of some necessary
schemas. Simple introns do not seem to alleviate the premature convergence and
hitchhiking problems.

Our results point out the importance of making the Building-Block Hypoth-
esis a more precise and useful description of building-block processing. While the
disruptive effects that we observed (hitchhiking, premature convergence, etc.) are
already known in the GA literature, as yet no theorem exists associating them with
the building-block structure of a given problem.

In our experiments we have observed that the role of crossover varies consid-
erably throughout the course of the GA search. In particular, three stages of the
search can be identified: (1) the time it takes for the GA to discover the lowest-
order schemas, (2) the time it takes for crossover to combine lower-order schemas
into a higher-order schema, and (3) the time it takes for the higher-order schema to
take over the population. In multilevel functions, such as the Royal Road functions,
these phases of the search overlap considerably, and it is essential to understand the
role of crossover and the details of schema processing at each stage (this issue has
also been investigated by Davis 14 and by Schaffer and Eshelman, 79 among others).
In previous work, 6 1 we have discussed the complexities of measuring the relative
times for these different phases.
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EXPERIMENTS WITH HILL CLIMBING

As was mentioned earlier, part of our purpose in designing the Royal Road func-
tions is to const-, ' the simplest class of fitness landscapes on which the GA will
not only perform well, but on which it will outperform other search methods such
as hill climbing. In addition to our experiments comparing the GA's performance
on R1 and R2, we compared the GA's performance with that of three commonly
used iterated hill-climbing schemes: steepest-ascent hill climbing, next-ascent hill
climbing, 64 and a scheme we call "random-mutation hill climbing," that was sug-
gested by Richard Palmer.6 9 Our implementation of these various hill-climbing
schemes follows:

a Steepest-ascent hill climbing (SAHC):

1. Choose a string at random. Call this string current-hilltop.
2. Systematically mutate each bit in the string from left to right, recording

the fitnesses of the resulting strings.
3. If any of the resulting strings give a fitness increase, then set current-hilltop

to the resulting string giving the highest fitness increase. (Ties are decided
at random.)

4. If there is no fitness increase, then save current-hilltop and go to step 1.
Otherwise, go to step 2 with the new current-hilltop.

5. When a set number of function evaluations has been performed, return the
highest hilltop that was found.

s Next-ascent hill climbing (NAHC):

1. Choose a string at random. Call this string current-hilltop.
2. Mutate single bits in the string from left to right, recording the fitnesses of

the resulting strings. If any increase in fitness is found, then set current-
hilltop to that increased-fitness string without evaluating any more single-
bit mutations of the original string. Go to step 2 with the new current-
hilltop, but continue mutating the new string starting after the bit position
at which the previous fitness increase was found.

3. If no increases in fitness were found, save current-hilltop and go to step 1.
4. When a set number of function evaluations has been performed, return the

highest hilltop that was found.

This method is similar to Davis' "bit-climbing" scheme."s In his scheme, the
bits are mutated in a random order, and curmrnt-hilltop is reset to any string

having equal or better fitness than the previous best evaluation.
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TABLE 5 Summary of results of 200 runs of various hill-climbing algorithms on R2.

Function Evaluations to Optimum
200 runs SAHC NAHC RMHC

Mean > 256,000 (std err: 0) > 256,000 (std err: 0) 6551 (std err: 212)
Median > 256,000 > 256,000 5925

8 Random-mutation hill climbing (RMHC):

1. Choose a string at random. Call this string best-evaluated.
2. Choose a locus at random to mutate. If the mutation leads to an equal or

higher fitness, then set best-evaluated to the resulting string.
3. Go to step 2.
4. When a set number of function evaluations has been performed, return the

current value of best-evaluated.

Table 5 gives results from running these three hill-climbing schemes on R2.
In each run the hill-climbing algorithm was allowed to continue either until the
optimum st. - was discovered or until 256,000 function evaluations had taken
place, and the total number of function evaluations performed was recorded. The
entries in the table are each means over 200 runs. As can be seen, steepest-ascent
and next-ascent hill climbing never found the optimum during the allotted time,
but random-mutation hill climbing found the optimum on average more than ten
times faster than the GA. Note that random-mutation hill climbing as we have
described it differs from the bit-climbing method used by Davis1 5 in that it does
not systematically mutate bits and it never gives up and starts from a new random
string; rather it continues to wander around on plateaus indefinitely. Eshelman 19

has pointed out that the random-mutation hill-climber is ideal for the Royal Road
functions-in fact, much better than Davis' bit-climber-but will have trouble with
any function with local minima. (Eshelman found that Davis' bit-climber does very
poorly on R1, never finding the optimum in 50 runs of 50,000 function evaluations
each.)

These results are a striking demonstration that, when comparing the GA with
hill climbing on a particular problem or test-suite, it matters which type of hill-
climbing alrgorithm is used. Davis15 has also made this point.
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CONCLUSION

The research on Royal Road landscapes is an initial step in understanding more
precisely how schemas are processed under crossover. By studying the GA's be-
havior on simple landscapes in which the desirable building blocks are explicitly
defined, we have discovered some unanticipated phenomena related to the GA's
ability to process schemas efficiently, even in nondeceptive functions. The Royal
Road functions capture, in an idealized and clear way, some landscape features
that are particularly relevant for the GA, and we believe that a thorough under-
standing of the GA's behavior on these simple landscapes will be very useful in
developing more detailed and useful theorems about GA behavior.

The results described in this subsection represent work in progress, and there

are several directions for future investigation.
In the short term, we plan to study more carefully the bottlenecks in the discov-

ery of desirable schemas and to quantify more precisely the relationship between
the fitness values of the various building blocks and the degree to which these
bottlenecks will occur. Hitchhiking is evidently one bottleneck, and we need to un-
derstand better the way in which it occurs and under what circumstances. Once we
have described the phenomena in more detail, we can begin developing a mathe-
matical model of the schema competitions we observe (illustrated in Figure 33) and
how they are affected by different building-block fitness schemes. The hill-climbing
results need to be further analyzed and explained. An important part of this re-
search is to construct versions of "royal road" landscapes that will fulfil) our goal
of finding simple functions that distinguish GAs from hill climbing. Some steps in
that direction are reported in Mitchell and Holland.6 2

The Royal Road functions explore only one type of landscape feature that is
relevant to GAs: the presence and relative fitnesses of intermediate-order building
blocks. Our longer-term plans include extending the class of fitness landscapes
under investigation to include ( -,r types of relevant features; some such features
were described in Mitchell et at."l We are also interested in developing statistical
measures that could determine the presence or absence of the features of interest.
These might be related to work on determining the statistical structure of fitness
landscapes described in subsection 4.2. If such measures could be developed, they
could be used to help predict the likelihood of successful GA performance on a
given landscape.
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Rhythmic Activity in Neuronal Systems:
Insights Into Integrative Function

INTRODUCTION
Most functions carried out by the nervous system are integrative in nature. Our
ability to see depends on the integration of color, motion, form, and depth signals
from many different locations in the visual field. Our sense of hearing requires the
temporal integration of many different frequencies and intensities of sound occurring
at different locations at the same time. When we move we most often do so in a
coordinated way involving the concerted action of many muscles. These functions
rarely take place in isolation but rather occur in parallel as integrative sensorimotor
functions involving aspects of cognition and memory.

From a physiological point of view we know very little about the neural mecha-
nisms underlying such integrative actions of the nervous system. A simple example
illustrates this point. Consider the act of picking up a glass of water and taking
a drink. Such a task engages vast numbers of cells in many different parts of the
brain. The visual system must detect, localize, and recognize the glass. The motor
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system must initiate and control the movement of the eyes, the hand, the arm, and
the shoulder. The somatosensory system must tactilely sense the object and provide
information about the strength of grip required to hold it. And all of this must take
place in a continuous fashion requiring the parallel and coordinated involvement of
each system. This entire process, one of the simplest examples of normal sensori-
motor behavior, requires the coordinated, dynamic interaction between a host of
systems in the brain, each of which must carry out parallel computations involv-
ing millions of interconnected neurons. How does the nervous system control the
dynamic coordination of multiple systems operating in parallel?

It seems reasonable to assume that a mechanism or a class of mechanisms
has evolved to enable the temporal coordination of activity within and between
subsystems of the central nervous system. For several reasons, rhythmic neuronal
activity has long been thought to play an important role in such coordination.
Since the discovery of the electroencephalogram (EEG) over 60 years ago, it has
been known that neural systems in the mammalian brain often engage in rhythmic
activities. These patterned neuronal oscillations take maiyy forms. They occur over
a broad range of frequencies and are present in a multitude of different systems in
the brain during a variety of different behavioral states. They are often the most
salient aspect of observable electrical activity in the brain and typically encompass
widespread regions of cerebral tissue. Our understanding of such processes, however,
is only beginning to emerge.

With the advent of sophisticated new techniques in multielectrode recording
and neural imaging, studies of the behavior and function of neuronal populations
have entered a new era. It is now within the realm of possibility to record from 100
single neurons simultaneously,20 3 to optically measure the activity in an entire cor-
tical area, 29' 190 or to noninvasively image the pattern of electrical current flow in an
alert human being performing a task. 153 In a number of instances the application of
these new techniques has revealed that spatially and temporally organized activity
in a distributed population of cells often takes the form of synchronous rhythms.
When taken together with cellular neurophysiological and anatomical studies, these
findings provide new insights into the behavior and mechanisms controlling the co-
ordination of activity in neuronal populations.

In this chapter I will review recent advances in six areas of systems neurophys-
iology where synchronous rhythmic activity has been observed and investigated.
I have made no attempt to exhaustively review the literature on the occurrence
of neuronal oscillations in the nervous system. Rather I have chosen to focus on
particular areas where it appears that coordinated activity in a neural system may
play a functional role. These areas include the olfactory bulb, thalamocortical spin-
dle rhythms, and the visual cortex, each reviewed in some detail, and the olivo-
cerebellar system, hippocampal rhythms, and the somatomotor cortices, which I
discuss more briefly. In each case I have attempted, when possible, to combine a
discussion of the macroscopic behavior of the system and its relation to behav-
ior with the cellular mechanisms thought to control the rhythmic activity and its
synchronization.
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THE OLFACTORY SYSTEM: THE INDUCED WAVE AND THE
SPATIAL CODING HYPOTHESIS
THE INDUCED WAVE

Adrian, a pioneer in the investigation of rhythmic neuronal activities, discovered

a unique form of oscillatory activity in the olfactory system that he later termed

"the induced wave."' 2' 3' 4'5 This was a rhythmic fluctuation of voltage evoked in
the EEG of the olfactory bulb of rabbits and hedgehogs by the stimulation of the

olfactory receptor sheet. It ranged in frequency from 40-80 Hz and was associated
with increased firing in the output neuron population within the bulb (Figure 1).

Since then, subsequent studies by Adrian and others have revealed that the
induced wave is a general property of the olfactory bulbs of a number of vertebrate
species. Induced waves have been observed in the olfactory bulbs of amphibia and

fish,1 13 ,185 a variety of mammalian species, 35' 66 and humans.96 In each instance the
occurrence of the rhythmic activity was found to depend on input from the sensory

receptor sheet, itself showing no evidence of oscillatory activity.6
,1"

5 2 In later stud-

ies, most notably by Freeman and his colleagues, it was discovered that olfactory

structures receiving input from the bulb, such as the anterior olfactory nucleus, the
prepiriform, and piriform and entorhinal cortices also displayed an induced wave

dependent on olfactory receptor input3l,62,66 (Figure 2). These rhythmic activi-
ties often had a broader and somewhat lower range of frequencies. If bulbar output

(a)
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(b)

FIGURE 1 "induced waves" due to olfactory stimulation (amyl acetate). The records
are both from rabbits, anesthetized deeply with urethane. This electrode was placed in
the surface layer of olfactory bulb. Time mark (black line) gives 0.1/sec. The frequency
of the waves is (a) 60/sec and (b) 55/sec. (See Figure 1 of Adrian,3 'The Electrical
Activity of the Mammalian Olfactory Bulb," Electroenceph. Clin. Neurophysiol. 2
(1950): 377-388.) Reprinted by permission.



92 Charles M. Gray

(d)4h4y

(e)

FIGURE 2 (a) Bursts of EEG activity from olfactory bulb and (b)-(e) prepyriform cortex
in waking cat. (See Figure 6.28 of Freeman, 66 Mass Action in the Nervous System,
New York: Academic Press, 1975.) Reprinted by permission.

to these structures was blocked by severing the lateral olfactory tract-the main
output pathway of the bulb-the induced waves could no longer be evoked in the
piriform cortex.1 9 However, even when the bulbar stalk was completely transected
the induced wave in the bulb persisted. This effect was also revealed in a later
study by Gray and Skinner8 4 using reversible cryogenic inactivation of the olfactory
peduncle (Figure 3).

These findings demonstrated conclusively that the induced wave is generated by
mechanisms intrinsic to the olfactory bulb. Gradually a number of studies initiated
in the 1960s began to unravel these basic neural mechanisms.66 Anatomical studies
revealed that the principal circuit in the bulb consisted of a negative feedback
loop between the mitral cells, the output neuron of the bulb, and the granule
cells, an inhibitory interneuron population 44 ,172 (Figure 4). An essential feature
of this circuit was the dendrodendritic reciprocal synapse.1 6 1 Mitral and granule
cells were found to make bidirectional synaptic contact at their apical dendrites
in the external plexiform layer of the bulb, thus providing a structural basis for
the recurrent inhibition of mitral cells. These synapses were found to be located
exclusively in the external plexiform layer directly above tile mitral-cell body layer
of the bulb. 17 2
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100 uV

100 ms

FIGURE 3 The combined effects of nostril closure and cryogenic blockade on the
bulbar EEG recorded from a depth electrode in the olfactory bulb in an alert rabbit.
Each trace consists of a one-second epoch of EEG activity recorded at 1-300 Hz
bandpass. Four separate conditions are displayed from top to bottom: control, nostrils
lightly pinched shut, cryogenic blockade of the olfactory peduncle, and cryogenic
blockade combined with nostril closure. (See Figure 3 in Gray and Skinner, 84

"Centrifugal Regulation of Neuronal Activity in the Olfactory Bulb of the Waking Rabbit
as Revealed by Reversible Cryogenic Blockade," Exp. Brain Res. 69 (1988): 378-
386.) Reprinted by permission.

This unique synaptic relay combined with the particular morphological struc-
ture of tVi mitral and granule cells led Rail and Shepherd16 2 to the prediction that

field potentials in the bulb, observable as the induced wave or evoked potential,
were generated by synaptic current flow in the granule cell population. Their argu-

ment was based primarily on the morphology of the dendrites of mitral and granule
cells (Figure 4). The former have radially organized dendrites15 1 and were thought

to generate a closed dipole field of potential that did not sum with other sur-
rounding mitral-cell dendritic potentials. In contrast the granule cells, which vastly
outnumber the mitral cells, have well-aligned longitudinally oriented dendrites.140

Excitatory synaptic current in this population of cells was thought to give rise to
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FIGURE 4 (a) Reconstruction of an intracellularly stained type II mitral cell in the
olfactory bulb of a rat. GL, EPL, MCL, IPL, and GCL refer to the glomerular layer,
the external plexiform layer, mitral cell layer, internal plexiform layer, and the granule
cell layer, respectively. (b) Reconstruction of intracellularly stained granule cells in the
olfactory bulb of a rabbit. Each scale bar is 50 pim. (See Figure 3(a) of Orona, Rainer,
and Scott,151 "Dendritic and Axonal Organization of Mitral and Tufted Cells in the Rat
Olfactory Bulb," J. Comp. Neurol. 226 (1984): 346-356; and Figure 2 of Mori and
Kishi, 140 "The Morphology and Physiology of the Granule Cells in the Rabbit Olfactory
Bulb Revealed by Intracellular Recording and HRP Injection," Brain Res. 247 (1982):
129-133.) Reprinted by permission.
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an open dipole field easily detected at the surface of the bulb. The resulting model
suggested that the field potential was the direct result of excitatory synaptic activity
in the granule cell population. It predicted both the laminar distribution of the
evoked potential and its triphasic waveform. 162

This finding was particularly significant because it suggested that the induced
wave resulted from the combined activity of the granule cell population. Subsequent
experiments by Freeman and his colleagues confirmed this prediction. They showed
that the spike discharge of mitral cells rarely exhibited any evidence of rhythmicity
as expected. Rather they found that mitral cells most often fire at low rates around
10 spikes/sec and show interspike interval and autocorrelation histograms having
properties consistent with a Poisson process. 66 This seeming lack of rhythmicity in
the mitral-cell firing patterns proved to be misleading. Subsequent investigations
demonstrated that the timing of mitral-cell spikes was often related to the phase
of the induced wave. In particular it was found that the mitral cells showed their
highest firing probability shortly after the negative peak of the induced wave when
the latter was measured at the surface of the bulb. 66 This delay in firing was
approximately 1/4 of the period length of the induced wave itself. Thus, even though
the spike trains of mitral cells showed little evidence of periodicity, their firing
nonetheless was closely related to the oscillatory pattern in the induced wave.

These data confirmed two predictions. First, they demonstrated that mitral -cell
activity did not give rise to the extracellular voltage measured in the induced wave.
Second, the 1/4-cycle phase lead of mitral-cell activity relative to the induced wave
was consistent with the prediction that bulbar rhythmicity was generated by a re-
current inhibitory interaction between the mitral and granule cell populations. 66" 62

Subsequent studies confirmed the basic tenets of the Rall/Shepherd model.
Using a two-dimensional multielectrode array, Freeman 64 directly measured the
spatial distribution of potential throughout the depth of the bulb during different
phases of the evoked response following electrical stimulation of the lateral olfactory
tract (LOT). He found the potential field to be concentrically organized during the
peak of mitral-cell activity consistent with a closed field. In contrast during the
surface negative phase of the evoked response, when the granule cells are maximally
excited, he observed an open dipole field of potential that reversed polarity at
the mitral-cell body layer. These findings gained further support in a later study
by Mori and Kishi.140 Utilizing intracellular recording, they demonstrated that
suprathreshold EPSPs in granule cells occurred during the surface negative phase
of the LOT evoked response.

The combination of these anatomical and physiological studies eventually led
to the following scheme thought to underlie the rhythmicity in the induced wave. 65

Afferent input on the olfactory nerve axons excites the apical dendrites of the mi-
tral cells. This depolarization propagates along the mitral-cell dendritic membrane
resulting in both spike discharge at the soma and the synaptic excitation of the
granule cells at the dendrodendritic synapses. Activity in the granule cells leads to
a recurrent inhibition of the mitral-cell population, the decreased activity of which
results in a disexcitation of the granule cell population. This latter effect, in turn,

.... __._......
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results in a disinhibition of the mitral-cell population. If the afferent input coming
from the olfactory nerve is sustained, the mitral cells will be reexcited and the cycle
will repeat.65' 75

Induced rhythms in the piriform cortex (Figure 2) have been shown to depend
on the presence of the induced wave in the bulb.'9,66 If the output of the bulb,
the LOT, is severed, rhythmic activity is abolished and electrical stimulation of the
central stump produces a biphasic evoked potential having little or no oscillatory
component. Such results have led to the view that rhythmic activity in the piriform
cortex is tuned to and dependent on the rhythmic afferent drive from the bulb for
its expression.

SPATIAL DISTRIBUTION OF ACTIVITY
On the basis of his studies in the 1940s and early 1950s, Adrian 3' 4 proposed what
has come to be known as the spatial coding hypothesis. He reasoned that, for
each discriminable odor, there should exist a unique spatial pattern of activity
representing a given odor quality that persists transiently throughout the olfactory
system. Adrian's ability to test his own hypothesis unfortunately was hampered by
technical limitations. He was limited to recording field potentials or unit activity
from one or a few electrodes at a time. In subsequent years, however, Freeman
and nis colleagues began a concerted and sustained effort to test Adrian's basic
hypothesis. Their approach was founded on two specific assumptions: First, the
representation of an odor in the olfactory bulb and cortex should exist during the
inspiratory phase of respiration when the induced wave is present. Second, the close
correlation between the phase of the induced wave and the firing patterns of cells
in both the bulb and cortex should enable one to indirectly measure the spatial
pattern of activity of large populations of cells in the bulb and cortex by recording
the induced wave at many locations simultaneously.

In order to test the hypothesis, it is necessary to obtain an adequate spatial
sample of the induced wave in either the bulb or the cortex in a behaving animal.
On the basis of a detailed analysis of the spatial frequency of the induced wave over
the surface of the olfactory bulb,6" Freeman67 developed a technique for measuring
the induced wave over the lateral surface of the bulb or the cortex at 64 locations
simultaneously. Each recording site was separated by 0.5 mm. This provided a
sample of activity from roughly 20% of the bulbar surface and 30-50% of the
piriform cortical surface at an optimal spatial resolution. Using this technique the
first glimpse of the spatial distribution of the induced wave yielded a remarkable
picture6 7 : the oscillatory activity was synchronous over broad expanses of the bulb
and cortex (Figure 5). In fact, it appeared as though the entire structures of both
the bulb and cortex were often oscillating at a common phase and frequency. Phase
differences were present but showed no clear dependence on odor. The frequencies
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in the signals changed over time within a burst but were found to covary across
space. Fluctuations in the signal at one site were accompanied by similar changes
across the structure. The most notable inhomogeneities were in the amplitude of
the signals. The induced wave was often found to have one or more foci or hot spots
where the amplitude of the signals over a region were significantly higher than in
surrounding regions. These spatial patterns varied slightly from burst to burst but
often took the form of a characteristic signature for each animal. The patterns were
never the same for any two animals. 67

These remarkable patterns raised a number of interesting questions. How can
such synchrony be established among hundreds of millions of cells within and be-
tween two separate cortical structures? What relationship do the patterns show to
odor stimuli and behavioral state? What is the significance of the oscillation? Does
it carry information in a temporal codc or simply provide a mechanism for control-
ling synchrony? Freeman and his colleagues addressed these questions through a
combined approach of physiological experiment and theoretical modeling.
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FIGURE 5 Induced wave recorded at 64 locations over the lateral surface of the
olfactory bulb in an alert rabbit breathing purified air. The interelectrode spacing is
0.5 mm.
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Subsequent studies of the influence of odor stimuli on the spatial patterns re-
vealed another remarkable result: there was essentially no effect. Freeman measured
the spatial pattern of phase, frequency, and root mean squared amplitude of the
induced wave separately in both the bulb and the cortex of awake rabbits during
the passive presentation of several different odors. None of the measures revealed a
significant change in the pattern related to the odor stimuli. Spatial phase changed
unpredictably in the bulb showing no consistent relation to the odors. In the cortex
the principal anteroposterior phase gradient of the induced wave was found to be the
result of conduction delays in the propagation of activity in the LOT. Outside the
trajectory of the LOT the phase patterns bore no relation to the odors presented.
The frequency content of the signals was equally uninformative. The induced wave
consisted of multiple frequencies in both the bulb and cortex and no relation could
be found between frequency content and odor presentation. Similarly for amplitude
the rms power of the induced wave surprisingly showed no consistent relationship

to the odor.
67

These studies prompted a number of conclusions. First, the synchrony of ac-
tivity was robust and could be established within the bulb and cortex very rapidly,
on the order of 10-20 misec. The spatiotemporal properties of the induced wave,
its frequency and its phase, appeared to show no relation to odor input. This sug-
gested that the oscillations were not carriers of information but rather a basic neural
mechanism for establishing synchronous interactions among widely distributed pop-
ulations of cells. The anatomical substrate for establishing synchrony in the piriform
cortex was clear. The long-range excitatory collaterals of the pyramidal cells could
easily provide the necessary drive for synchronizing the activity in a distributed
population of cells. 92

,
93' 94 In the bulb the answer to the question was a bit more

perplexing. Freeman and his colleagues had suggested that a system of mutually
excitatory collaterals of mitral cells, as in the piriform cortex, would provide the
ideal substrate. Evidence for such connections has remained rather sparse, 20 0 but
a system of axon collaterals of the superficial tufted cells has been discovered that
also could serve such a function. 103,170 Alternatively it is conceivable that the exten-
sively branching dendritic arbors of the mnitral cells could provide the substrate for
synchronization (Figure 4). Propagation of activity along the dendritic tree would
act to excite large groups of inhibitory granule cells. These cells, in turn, would
deliver inhibitory feedback onto groups of mitral cells, thereby controlling the tim-
ing of their ouput. In addition to this mechanism it is possible that the dendritic
release of excitatory transmitter from mitral/tufted cells could act to excite the
same or adjacent mitral/tufted cells, thereby providing another form of positive
feedback.

44' 148 ,149

The absence of changes in the amplitude patterns of the induced wave in re-
sponse to different odor inputs imained a mystery. Either the spatial measure of
the activity was too crude to reveal the associated changes or tile behavioral condi-
tions of the experiment precluded the observation of specific changes in relation to

the odor stimuli. To address these issues the experiments were repeated with two
significant changes in the paradigm. First, the animnals were engaged in a classical
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discriminative conditioning protocol in order to present the odors within a behav-
iorally significant context. Second, a new quantitative statistical test was devised
to measure amplitude pattern differences with much greater sensitivity.

These improvements in technique led to some astonishing results. 71"193 When
odors were presented within a behavioral context (i.e., either positively or neg-
atively reinforced), the animals reliably discriminated between them by sniffing
and/or licking. This insured that the animals were actually detecting and classify-
ing the stimuli. Under these conditions the statistical measure revealed significant
differences between the control amplitude pattern of the induced wave and the
pattern evoked during the response to the odor. This difference was transient and
was most pronounced during the first three inspirations following odor presenta-
tion (Figure 6). If odors were presented without reinforcement, the animals rapidly
habituated their behavioral responses8 4 and no reliable spatial pattern differences
could be detected. 67 ,71 These findings clearly suggested that the spatial coding
of odor information was a learning-dependent process. 72 Thus, in a behaviorally
meaningless context it was thought that the patterns evoked by unreinforced odors
rapidly habituated and, as a result of the low sensitivity of the method, were not
detectable.

A second equally surprising result was revealed by these experiments. In the
course of evaluating pattern differences in the induced wave evoked by odor stim-
uli, it was necessary to measure the pattern present in the control state when the
animals were breathing purified air. As stated above, these measurements revealed
a rather stable spatial amplitude pattern of the induced wave that was unique for
each animal. This control pattern, however, was observed to change during the
course of behavioral training (Figure 7). For example, after acquiring a particular
discrimination behavior to a pair of odors, the foci in the control patterns were seen
to shift contiguously in position. Such spatial shifts in the control pattern contin-
ued for as long as the animal learned new behavioral discriminations. If an initial
discrimination set was extinguished and then later retrained after an intervening
sequence of different discriminations, the control pattern did not revert back to
its original form. This result revealed clear, long-term, learning-dependent changes
in the organization of the olfactory bulb. Moreover, it suggested that the control
pattern reflected a sum over all learning and not some simple spatial representation
of the currently trained odors. 7 1'7 2, 9 3

In spite of these remarkable findings it was still not possible to confirm or
reject Adrain's hypothesis on the basis of the available data. A difference in the
pattern of activity produced by a reinforced and an unreinforced odor could not
be distinguished. Freeman conjectured that this failure was still the result of in-
adequate resolution of the measurement techniques. To resolve the uncertainty, he
applied a number of data-processing techniques designed to remove sources of noise
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FICURE 6 Illustration of event-related changes in bulbar activity that accompany the
presentation of a novel odor during a single six-second trial. The three upper traces
from top to bottom are respiration, the bulbar EEG recorded from a depth electrode,
and the bulbar EEG recorded from one of the electrodes in the array. Three bursts
were sampled for spatial pattern analysis prior to (C1,C2,C3) and immediately following
(T1,T2,T3), the odor presentation. The root mean square voltage was calculated for
each of these bursts and displayed as an amplitude density plot. The number symbols
represent the highest amplitudes. (See Figure 2 of Gray, Freeman, and Skinner, 82

"Chemical Dependencies of Learning in the Rabbit Olfactory Bulb: Acquisition of the
Transient Spatial Pattern Change Depends on Norepinephrine," Behav. Neurosci.
100(4) (1986): 585-596.) Reprinted by permission

from the signals, both behavioral and neural.72 '7 4 Analysis was restricted to those
signals recorded on sessions after the acquisition of discrimination behavior was
complete, and only to those trials in which a correct behavioral response was given
by the animals. Within each trial, only the first three inspiratory bursts (80 msec in
duration) were evaluated (Figure 6). Here it was reasoned that the relevant odor-
specific patterns should be present during the burst at the beginning of a sniffing
response. 193
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FIGURE 7 Contour plots of the mean EEG rms amplitude during the induced
wave from a trained rabbit over a period of four months. Under aversive or
appetitive conditioning the patterns changed with each new set of stimulus response
contingencies. Shown are examples of five such changes. In the last stage of
conditioning the presentation of the odorant "sawdust" did not result in the retum of the
EEG pattem of the first stage. (See Figure 3 of Freeman and Skarda,72 "Spatial EEG
Patterns, Nonlinear Dynamics and Perception: The Neo-Sherringtonian View," Brain
Res. Rev. 10 (1985): 147-175.) Reprinted by permission.

A number of powerful signal-processing techniques were applied to the data.
First, the principal oscillatory component of the induced waves was extracted using
a curve-fitting method7 2 and the peak frequency in the signals was computed using
spectral analysis. This served to remove some of the biological noise from the signals.
Two different spatial-filtering techniques then were applied to the resulting signals,
a spatial filter68 and a compensation for volume conduction of the field potential.6 9

These techniques served to remove additional sources of biological noise. Initial
parameters were chosen for these calculations and the resulting processed signals
for three stimulus conditions (control, unreinforced odor, and reinforced odor) were
then submitted to a nonlinear mapping algorithm. An additional constraint was
applied that only those signals exceeding a specified frequency were included in
the analysis. A statistical test was applied to determine if the centroids of the
distributions of the three sets of data were significantly different. This entire process
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was iteractively repeated with each repetition utilizing a different set of values for
the spatial filter, the frequency cutoff, and the volume conduction compensation.72

Without the use of these data-processing techniques, it was not possible to
clearly resolve differences in the spatial patterns of the induced wave evoked by
air and the two odors.19 3 The inclusion of the additional data-selection criteria and
imaging methods now made it possible, however, to resolve significant differences in
the spatial patterns evoked by the two odors.7 2 The best resolution of the pattern
differences was obtained when (1) spatial frequencies above 0.5 cycles/mm were
filtered out, (2) volume conduction compensation was focused at the external plex-
iform layer of the bulb (i.e., a focal depth of 0.5 mm), and (3) burst frequencies
below 55 Hz were excluded from the analysis. The latter result proved to be partic-
ularly important. Oscillatory bursts of frequencies lower than 55 Hz had a higher
degree of frequency variability and were spatially more disordered. In effect these
bursts appeared to be spatially nonspecific, suggesting that they were not signaling
the presence of the odor but rather a failure of classification.

These studies revealed that different odors indeed do evoke different spatial
patterns of activity in the olfactory bulb. The conditions under which this process
occurs however, appear to be quite different from what Adrian had hypothesized.
Rather than a hard-wired, labeled-line type of process, the spatially specific coding
of odor information in the bulb appears to be learning dependent. Spatial coding
relies on experience in a behaviorally meaningful context. If odors are presented
without reinforcement, a process of habituation ensues and it appears that no spa-
tially specific patterns are evoked. It is likely, although not yet confirmed, that these
processes depend on synaptic plasticity. Moreover, the structural changes that take
place in the bulb are expressed mainly when the odor evokes a response in the nasal
epithelium. If the mechanisms controlling convergence of the activity to a particular
pattern fail, the process can be repeated by continued sniffing. This may explain
why many of the lower frequency bursts were spatially disorganized.

Finally, another, even more remarkable result was revealed by these studies.
The spatial representation of odor quality is not spatially specific; it is distributed,
not localized. This conclusion was reached by a modification of the data analysis
protocol described above. Freeman simply repeated the data analysis after deleting
channels from the data sample at random. He found that the classification of pattern
differences between the two odors was degraded in proportion to the number of
channels removed. The spatial location of the channels within the array that were
excluded from the analysis had no significant effect. In essence the information
representing the odor was distributed equally throughout the bulb, in some pseudo-
holographic manner. The obvious spatial variation of the amplitude of the induced
wave over the surface of the bulb meant that sites with low amplitude were just as
important as sites of high amplitude. The long-term changes in the location of the
hot spots indicate that, during learning, the high- and low-amplitude regions tend
to migrate. The significance of this effect remains unclear, however.

So what is the role of neuronal oscillations in these exceedingly complicated
olfactory processes? That is a difficult question to answer. We can say that it is
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highly unlikely that the oscillations per se play any direct role in the actual coding of
information, such as a temporal code. They are simply too variable and unspecific.
The most obvious attributes of the rhythmic activity are that it is synchronous
and that it is amplitude-modulated in space. This suggests that the oscillations
provide a local mechanism to enable the establishment of synchrony among a much
larger population of cells. In effect the oscillation acts as an AM carrier wave. Once
a group of neurons become synchronized, can they then act as an assembly to
code, represent, and process information. This is a difficult hypothesis to test. But
synchronous rhythmic activity is a common property of neural structures and it
would seem unlikely that the nervous system would not take advantage of it for
some functions.

THALAMOCORTICAL SYNCHRONY AND THE SLEEP SPINDLE
Soon after the discovery of the electroencephalogram, it was realized that the prop-
erties of the EEG often show a clear relationship to behavioral state. One of the
most striking changes in the EEG was observed during the transition from waking
to sleep. It was found that, as a person begins to doze off, the EEG typically changes
from a disorganized pattern of low-amplitude fluctuations containing many different
frequency components, often referred to as "desynchronized," to a more coherent
pattern of fluctuations having lower frequencies and higher voltage, or "synchro-
nized." During this period a distinct pattern of 7- to 12-Hz regular oscillations often
appears for brief periods encompassing 5-10 cycles. This rhythmic activity often

takes the form of a waxing and waning of amplitude resembling the shape of a
bundle of thread wound onto a weaver's spindle. The name "sleep spindle" stuck
(Figure 8).

Over the course of the next several decades, and particularly in the 1940s and
1950s, the neural mechanisms responsible for controlling the sleep-waking cycle be-
came the focus of an intensive research effort. 12s In the process, it became apparent
that the sleep spindle is a general property of mammalian brains. Spindle activity
was found to be present over large areas of the cerebral cortex and thalamus. Simul-

taneous measurements at multiple sites revealed that spindle oscillations are global
events involving an interaction between thalamus and cortex (Figure 9(a)). These
findings sparked widespread interest in the mechanisms underlying the generation
and synchronization of rhythmic spindle activity. In fact, the research spawned
during this period led to the study of the sleep spindle as a model system of rhyth-
mogenesis and thalamocortical synchrony.12
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FIGURE 8 Electrographic criteria of waking (W) and slow-wave sleep (S) states in
a behaving cat. WS and SW are transitional states between W and S, and S and
W. (a)-(b) EEG waves from the surface of the precruciate gyrus, ocular movements
(EOG), and electromyogram of neck muscles (EMG). Note the appearence of spindle
sequences during WS and repeated desynchronizing reactions; S begins when slow
waves appear and EEG desynchronizations no longer occur. (See Figure 5.5 of
Steriade, Jones, andLlinas,1 1

2 Thalamic Oscillations and Signaling, New York: John
Wiley, 1990.) Reprinted by permission.

Although the functional significance of sleep spindles is unclear the behavioral
dependence of these synchronous events in the EEG is well established. As a result
the vast majority of studies on spindle oscillations have focused primarily on the
mechanisms of their generation. Much of this work has been reviewed in a recent
book.182 Here, I will focus my discussion on some of the key mechanisms control-
ling spindle oscillations and not attempt to exhaustively review the literature. In
addition, much has recently been learned of the cellular basis of spindle rhythms
and I will discuss these findings where relevant.

Two discoveries facilitated the study of spindle oscillations. Early on it was
found that transection of the midbrain at the intercollicular level 34 produced a
dramatic enhancement of spindling. It was found that a similar state could be pro-
duced by the administration of barbiturate anesthetics. Both techniques essentially
produced a state similar to permanent sleep in which there is a high degree of thala-
mocortical synchrony in the frequency range of 7-12 Hz. Subsequent research efforts
relied heavily on these effects and, as a result, many of the basic neural mechanisms
controlling spindle activity have been investigated in barbiturate-anesthetized or
"cerveau isol6" animals.
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(a).. . .

FIGURE 9 Thalamic origin of spindle rhythmicity. (a) Synchrony of spindle activity
in the cat thalamus and various parts of the neocortex under nembutal anesthesia.
The four traces depict activities recorded from (top to bottom): the medial part of the
intralaminar thalamic nuclei, the anterior sigmoid gyrus, the arm sensory area, and the
middle suprasylvian gyrus. Calibration time: 5 mm/sec. (b) Spindle sequences recorded
from the thalamic intralaminar region in a bilaterally decorticated cat, with both optic
nerves divided and brainstem transection at the intercollicular level. The four traces
are taken at (top to bottom) 2 hours, 8 hours 45 min, 19 hours, and 72 hours after
operation. (See Figure 1.1 of Steriade, Jones, and Llinas,182 Thalamic Oscillations
and Signaling, New York: John Wiley, 1990.) Reprinted by permission.

Where do spindle rhythms originate? This question dominated research on
spindle activity for many years. Although, early on, it was an exceedingly difficult
question to answer, we now know that the thalamus, and specific circuits within the
thalamus, are responsible (reviewed in Steriade et al.' 8 2 ). Morison and Bassett' 4'

determined that spindle activity could be recorded in the intralaminar thalamic nu-
clei after complete removal of the neocortex and sectioning of the optic nerves in a
cerveau isol6 preparation (Figure 9(b)). Villablanca194 found that spindle rhythms
could be recorded in the thalamus for many hours and for days following the com-
plete removal of the neocortex, striatum, and rhinencephalon. Moreover, he never
found cortical spindle rhythms in animals that had had their thalamus completely
removed by suctioning. These data along with many earlier and subsequent reports
firmly cstablished the thalamic nuclei as the structures essential for generating
spindle activity in thalamocortical networks.18 2



106 Charles M. Gray

14 ". 1 1 ll IIIIII IIIIIIIII jIIIIIIIII l III IIIlU I IIII�INlll i IIl l UIIIII 111111i ll 111112 W"""" !!ff UWU !HUUf[II4I I 4I~~ 41 11 IUU414II i H
I II I ii 1iiii III I I IIII J ll Jll IJ
IJ .il 1 III 1 11 1 1 11111 I I I II

M H[l T IMff I M l 1 i ,llf If '1 ' T - ------ 7I

I" S

0.2soc

FIGURE 10 Discharge characteristics of cat reticular nucleus neurons during states of
waking (W) and slow-wave sleep (S). Three epochs are illustrated during W: (1) from
the onset of arousal from S, (2) in the middle part of W (15 sec after 1), and (3) at the
end of W, just before the transitional epoch to S (11 sec after 2). (See Figure 6.12 of
Steriade, Jones, and Llinas,182 Thalamic Oscillations and Signaling, New York: John
Wiley, 1990.) Reprinted by permission.

Of course, this raised the further question of which structures in the thalamus
engage in spindle rhythms. The answer to this question, which evolved over a period
of 20-30 years, turned out to be rather simplistic. Spindle discharges, recorded in
both the EEG and single-unit activities, were found to be a ubiquitous property
of thalamic nuclei. During sleep onset or under the influence of barbiturates the
vast majority of thalamocortical relay cells were found to shift from a tonic firing
mode to one of intermittent burst firing associated with spindling. This activity
was evident in most thalamic nuclei but was particularly pronounced in the lateral
structures 12' 13 (Figure 10). Subsequent lesion studies revealed that removal of the
midline and intralaminar thalamic nuclei produced no obvious changes in spindle
activity while lesions of the lateral nuclear groups had the dramatic effect of com-
pletely abolishing thalamic spindling. 13 In addition, the thalamic reticular nucleus,
a thin sheath of cells surrounding the outer surface of the thalamus,168 was found
to exhibit robust spindle rhythms associated with burst firing.
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These and other studies led to a focus on the thalamic circuitry thought to
underlie spindle rhythmogenesis. The lateral thalamic structures, in simple terms,
consist of three basic circuit elements: (1) thalamocortical relay cells, the principal
cell type which receives afferent input from sensory structures such as the optic
tract; (2) local interneurons that receive excitatory input from the collaterals of re-
lays cells and deliver recurrent inhibition onto the relay cells; and (3) the thalamic
reticular nucleus, a thin sheath of inhibitory cells that covers the entire thalamic
complex. This latter structure receives excitatory input from the axon collaterals of
thalamic relay cells as well as the corticothalamic cells projecting into the thalamus
from the cortex. In turn, it sends axons into the thalamic nuclei which make in-
hibitory synaptic connections onto the relays cells. There are thus two well-defined
forms of synaptic inhibition acting on relay cells which long have been thought to
provide the basic mechanism for generating rhythmic patterns of discharge.1 2'1 8 2

However, electrophysiological and lesion studies over the years, have provided
several competing views of the mechanisms underlying the genesis of spindle
rhythms. In one view, a purely circuit-based model emerged as a likely explanation
for spindling.' 2 In this scenario, afferent input acts to excite a population of relay
cells that in turn deliver synaptic excitation onto the local intranuclear interneu-
rons and the cells of the thalamic reticular nucleus. Activity in these cell groups
then feeds back a powerful synaptic inhibition onto the relay cells to suppress their
ouput. The hyperpolarization of the relay cells leads to a post-inhibitory rebound
excitation' 27 that, when combined with sustained afferent input, leads to reexcita-
tion and a repetition of the cycle. Because of the interactions within the thalamic
network the spindle rhythm is a highly synchronous event that effectively drives
the cortex into a similar rhythm. The cortex in turn delivers excitatory feedback
input to the thalamic relay cells as well as the reticular nucleus neurons and acts
to facilitate the entire sequence, thereby giving rise to a thalamocortical spindle
oscillation.

In conjunction with the view that spindle rhythms emerge as a property of an
interconnected network, evidence began to accumulate suggesting that single cells
are tuned to oscillate at particular frequencies by virtue of their intrinsic membrane
properties. A key turning point for this concept came after the discovery that many
thalamic cells possess a low-threshold calcium conductance1'00

,1
0 1,118 ,119 responsible

for the rebound bursts described by Maekawa and Purpura.1'2 7 This current was
found to play a key role in the generation of spindle rhythms in thalamus largely
because of its voltage dependence on activation and inactivation. The conductance
was found to be activated at membrane potentials more positive than -65 mV
and deinactivated at membrane potentials negative to -65 mV.l°0ll1i 3 4 This re-
lationship results in a profound effect on the response of relay cells to input. A cell
receiving a depolarizing input at a resting level of -55 mV produces a train of single
spikes as output. If the resting level of the cell is hyperpolarized to -70 mV, its
response to input consists of a calcium spike upon which a burst of fast sodium and
potassium action potentials is superimposed (Figure 11). The interplay between the
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low-threshold calcium conductance and the inhibitory influence of the nRT provide
the most likely mechanism for the generation of spindle rhythms in relay cells. 182

More recently, an additional cation current has been discovered that, when act-
ing in concert with the low-threshold calcium conductance, confers upon the tha-
lamic relay cells an intrinsic tendency to oscillate at 1-4 Hz.133,134 When activated
by hyperpolarization, depolarizes the cell resulting in the activation of the low-
threshold calcium conductance and the generation of a calcium spike. The resulting
depolarization during the burst leads to the deactivation of the cation current and
the inactivation of the low-threshold calcium current. These events cause a net hy-

perpolarization of the cell and the consequent reactivation of the cation current

combined with the removal of inactivation of the low-threshold calcium current.
Under appropriate conditions the time course of these conductances leads to an
oscillation of the membrane potential at 1-4 Hz. 133,134

In combination with these studies on relay cells, it was found that cells of the
thalamic reticular nucleus (nRT) also possess a set of conductances giving them an
intrinsic tendency to oscillate.'... 2 (Figure 12). In these cells the low-threshold cal-

cium current and a calcium-dependent potassium current are critical elements. The
latter current is both calcium and voltage dependent and is responsible for the pow-

erful after-hyperpolarization (AHP) that is seen to follow the calcium spike.'8 2 A
depolarizing input delivered during a period of relative hyperpolarization of the cell

(a) (b) (c)
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FIGURE 11 Electrophysiological properties of thalamic neurons. A subthreshold
depolarization of the cell at resting level (broken line) is illustrated in (b). After a DC
depolarization (c), repetitive firing of the cell is observed during a current pulse having
the same amplitude as the one in (b). Following DC hyperpolarization, current pulses
similar to those in (b) produce a single high-frequency burst (a). (See Figure 4.3 of
Steriade, Jones, and Llinas,182 Thalamic Oscillations and Signaling, New York: John
Wiley 1990.) Reprinted by permission.
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FIGURE 12 Rhythmic response of nucleus reticularis neurons to orthodromic
activation. (a) Electrical stimulation of corticothalamic inputs results in a burst of
action potentials followed by an inhibitory pause, followed by rhythmic burst firing
in a guinea pig nRT cell recorded extracellularly. (b) Intracellular recording of this
activity revealed that the burst of action potentials is associated with a large excitatory
postsynaptic potential followed by a hyperpolarization of the membrane potential and
the rhythmic appearance of low-threshold calcium spike-mediated bursts of action
potentials and burst after hyperpolarizations. (See Figure 1 of Bal and McCormick, 18

"Ionic Mechanisms of Rhythmic Burst Firing and Tonic Activity in the Nucleus Reticularis
Thalami: A Mammalian Pacemaker," J. Physiol. (1992): Submitted.) Reprinted by
Permission.

leads to a low-threshold calcium spike and a burst of action potentials followed by an
AHP. The resulting hyperpolarization reinitiates the sequence by deinactivating the
low-threshold calcium conductance. The time course of these two currents enables
the nRT cells to generate 7- to 12-Hz burst discharges intrinsically."8 An additional
calcium-activated cation current has recently been discovered in nRT cells which
may contribute to the termination of a spindle oscillation by gradually depolarizing
the cells and counteracting the hyperpolarizing influence of the calcium-dependent
potassium current.' 8
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FIGURE 13 Episodes of rhythmic burst discharges recorded (a) extracellularly and
then (b) intracellularly from the same reticular nucleus neuron of a cat under barbiturate
anesthesia. (See Figure 6.16 of Steriade, Jones, and Llinas,' 82 Thalamic Oscillations
and Signaling, New York: John Wiley, 1990.) Reprinted by permission

The unique anatomical organization of the nRT and its powerful tendency to ex-

hibit intrinsic spindle-like oscillations (Figure 13) led naturally to the notion of this
structure as a pacemaker for spindle bursts. 182 Three important findings provided
support for this hypothesis. Several anterior thalamic nuclei known to be naturally
devoid of input from the nRT do not exhibit spindle oscillations.142' 154'1 7 9

,1
8 2 Re-

lay nuclei deprived of their input from the nRT by chemical or surgical lesions fail
to exhibit the normal pattern of spindle rhythms1 8 0

1
8 2 (Figure 14). And spindle

oscillations are present in the nRT after surgical isolation in vivo.1 81"8 2 Thus the
view emerged that thalamocortical spindle rhythms are largely, if not exclusively,

dependent on the nRT for their generation.
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FIGURE 14 Abolition of spindle waves in thalamic nuclei disconnected from the cat
reticular nucleus. (a) Acute experiment with right thalamic transection. Absence of focal
spindling in the right centrolateral nucleus and in the ipsilateral EEG contrasts to the
spindle sequences in the contralateral (left) EEG. (See Figure 6.23a of Steriade, Jones,
and Llinas, 182 Thalamic Oscillations and Signaling, New York: John Wiley, 1990.)
Reprinted by permission.

Nonetheless, it is clear that the intrinsic properties of relay cells and the

anatomical organization of the thalamic network play a facilitatory, if not syn-
ergistic, role in the generation of thalamocortical spindles.18,' 41 A typical spindle
sequence is likely to include the following events. Synaptic input to nRT under

appropriate conditions leads to burst discharge in a population of cells due to the
activation of the low-threshold calcium current. This response of the nRT cells
to input has two effects: the cells of the nRT are hyperpolarized by the calcium-
activated potassium current, and a group of thalamic relay cells is synaptically
inhibited by input from the nRT. The relay cells exhibit a rebound excitation due

to the low-threshold calcium current. The nRT cells in turn receive two depolarizing
inputs, (1) an intrinsic drive from the calcium-activated cation current and the low-

threshold calcium current and (2) a synaptic excitation coming from the relay cells.

The nRT cells are driven to burst and the cycle repeats. These mutually reinforcing
influences act to recruit large numbers of cells in the thalamic network and thereby
deliver a synchronized rhythmic input to the cortex. Thalamically projecting cells
in layer 6 of the cortex in turn deliver excitatory input onto cells of the nRT and
relay nuclei further facilitating the oscillatory sequence. Within one to two cycles of

the oscillation, large networks in thalamus and cortex become engaged in a spindle

burst.
During this synchronized oscillatory mode of firing, the thalamus becomes less

sensitive to afferent input. Herein lies the possible function of the spindle rhythm
and its association with the onset and occurrence of sleep. The thalamic network
generates a state of internal activation during which powerful intrinsic and synaptic
influences dominate its activity. The normally powerful influence of afferent inputs

become ineffective in overriding the synchronous activity and sensory information

is no longer able to reach the cerebral cortex.
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THE VISUAL CORTEX AND FEATURE INTEGRATION
The process of visual pattern recognition presents a formidable task to the mam-
malian central nervous system. Within a period that may be as brief as 200 mil-
liseconds, complex combinations of visual features making up a retinal image must
be unambiguously grouped together giving visual scenes a segmented appearance
as a collection of independent entities or objects. The number of possible interrela-
tionships that features and objects can have within visual scenes is nearly infinite.
And yet the visual system appears to have adapted an extremely effective strat-
egy to enable the grouping of features pertaining to objects while avoiding false
conjunctions with nearby features belonging to other objects.

The obvious ease with which mammalian nervous systems deal with complex
visual environments is all the more surprising when one considers the underlying
organization of the visual system. The bulk of the mammalian visual system is
subdivided into a collection of maps.of the visual field.171 The majority of these
maps reside in the neocortex and each map or area is laid out as a complete or
partial representation of the visual field. This collection of areas exhibits a parallel
hierarchical organization in which there exist many interconnections within and
between different levels of the hierarchy.58 At low levels in the hierarchy, cortical
areas are retinotopically organized and this point-to-point mapping of the visual
field gradually becomes less precise until at the highest levels of the system, cells in
the cortex respond to visual stimuli placed in nearly any location within the visual
field. The representation becomes nonretinotopic.

Superimposed on this organization is the additional property of feature speci-
ficity. In primary visual cortex and its satellite areas, cells respond most effectively
to particular categories or combinations of visual features, such as motion, form,
and color.115 Cells having similar response properties are grouped together and
this compartmentalization is preserved throughout the system yielding, at higher
stages of the hierarchy, areas that are devoted to the analysis of particular aspects
of visual images.4" At the highest levels in the primate, this segregation of function
is thought to yield two separate functional streams, one for object recognition and
discrimination located in the ventrolateral regions of the temporal lobe and another
for spatial localization and motion processing located in the parietal lobe. 191

Taken at face value it is apparent that, when one views a visual image con-
sisting of numerous identifiable objects, vast numbers of neurons in many different
cortical areas become active simultaneously. The representation of an object thus
is not likely to take place at any given fixed location but rather involves a large
population of cells distributed over the hierarchy of visual cortical areas. This view
of visual pattern recognition as a distributed population-based code presents sev-
eral formidable challenges to our understanding. How are the neuronal elements
comprising the representation of a particular object bound together? How does the
binding process achieve its combinatorial flexibility to enable the recognition of a
nearly infinite variety of objects? How can multiple object representations coexist
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at the same time within the same set of cortical areas without being confounded?
How do these representations change with time as the visual image changes or as
the observer moves its eyes?

In the mid to late 1970s it was recognized that population or ensemble coding
as a mechanism for representing sensory information is not without problems. 95 ,137

Foremost among these is the problem associated with the superposition of objects
in an image.19 5 ,19 6 ,17 4 If ensembles encoding properties of a visual image are solely
distinguished by the amplitude of the constituent neuronal responses, some ambi-
guities remain unresolved. Problems arise when an image contains more than one
coherent figure or when the background itself has some coherent properties, such
as a regular texture. If ensembles were to form for each coherent object, it would
become impossible to identify which active neurons belong to the ensembles coding
for each particular figure and the background. Individual figures would no longer
be distinguishable. It was proposed that an additional signal is needed to label the
relevant neurons as belonging to the representation of a coherent object and not to
part of another object or the background. von der Malsburg,195 drawing on earlier
theoretical ideas,95 ,137 proposed that temporal correlation among neuronal popu-
lations could provide the requisite label for the selective and transient formation of
ensembles of neurons representing specific objects. Such a mechanism, it was pro-
posed, would allow multiple independent ensembles to be formed simultaneously
within the same cortical network and thereby avoid the confusion associated with
the superposition of images.

SYNCHRONOUS NEURONAL RESPONSES IN CAT VISUAL
CORTEX
The first evidence for the prediction that selective temporal correlations among
neuronal populations might play a role in cortical information processing came
from work on the olfactory system. As described in detail earlier, Freeman and
his colleagues demonstrated that spatially correlated oscillatory neuronal activity
in the olfactory bulb and cortex contributes to olfactory discrimination (for a re-
view see Freeman6 6 ). These findings led to the prediction that similar synchronous
oscillatory responses should also exist in neocortical structures. 70 '7 2 Prompted by
such predictions Gray and Singer observed, several years later, that neurons in
area 17 of the cat visual cortex often exhibit synchronous rhythmic responses to
optimal visual stimuli in a frequency range of 40-60 Hz (Figure 15).83 '8 This tem-
poral pattern was observed both in the responses of single neurons and in the local
field potential (LFP). 5 1'8 3'8 5 In those recordings where the spike train was peri-
odic the action potentials typically occurred during the peak negativity of the LFP
oscillation. Analysis of the autocorrelation histograms of the spike trains and the
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FIGURE 15 Multiunit activity and local field potential responses recorded from area 17
in an adult cat to the presentation of an optimally oriented light bar moving across the
receptive field of the recorded cells. (a) Oscilloscope records of a single trial showing
the response to the preferred direction of movement. In the upper two traces, at a
slow time scale, the onset of the response is associated with an increase in high-
frequency activity in the local field potential. The lower two traces display the activity
at an expanded time scale. Note the presence of rhythmic oscillations in the local field
potential and the multiunit activity that are correlated in phase. (See Figure 1(a) of Gray
and Singer,85 "Stimulus-Specific Neuronal Oscillations in Orientation Columns of Cat
Visual Cortex," Proc. Nat. Acad. Sci. 86 (1989): 1698-1702.) Reprinted by permission.
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FIGURE 16 Orientation-specific intercolumnar synchronization of oscillatory neuronal
responses in area 17 of an adult cat. (a) Normalized orientation tuning curves of the
neuronal responses recorded from five electrodes spaced 400 um apart and centered
on the representation of the area centralis. Response amplitudes (ordinate) to stimuli
of different orientations (absscissa) are expressed as a percentage of the maximum
response for each electrode. The arrows indicate the stimulus orientation (112 degrees)
at which the responses were recorded in (b), (c), and (d). (b) Post-stimulus-time
histograms recorded simultaneously from the same five electrodes at an orientation of
112 degrees. Note the small difference in the latencies of the responses.
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FIGURE 16 (cont'd.) indicating overlapping but slight offset receptive field locations.
(c) Autocorrelograms of the responses recorded at sites 1 (1-1), 3 (3-3), and 5 (5-
5). (d) Cross correlograms computed for the three possible combinations (1-3, 1-5,
3-5) between responses recorded on electrodes 1, 3, and 5. Correlograms computed
for the first direction of stimulus movement are displayed with unfilled bars with the
exception of comparison 1-5 in (d). (See Figure 1 of Gray, Koenig, Engel, and Singer,ss
"=Stimulus-Specific Neuronal Oscillations in Cat Visual Cortex Exhibit Inter-Columnar
Synchronization Which Reflects Global Stimulus Properties," Nature 338 (1989): 334-
337.) Reprinted by permission.

frequency spectra of the LFPs revealed that the two signals were, on the average, of
the same frequency. And spike-triggered averaging of the LFP demonstrated that
the two signals were closely correlated in time.

Taken together, the results of these experiments demonstrated that units close
enough to be recorded with a single electrode, if responsive to the same stimulus,
show a synchronization of their respective oscillatory activity.8,5 Subsequent stud-
ies revealed that oscillatory responses often synchronize over much larger distances
within area 17.51,53,86 Recordings were made of multiunit activity from both closely
(0.5-2.0 mm) and widely (4.0-10.0 mm) separated locations in area 17 such that
the corresponding cells had either spatially overlapping or nonoverlapping recep-
tive fields. When the groups of cells were activated with moving bars of optimal
direction and orientation the oscillatory responses were often found to synchronize
with, on average, little or no phase lag (Figures 16 and 17). This response synchro-
nization occurred over distances of up to 7 mm within area 17.86.53 If the recorded
cells had overlapping receptive fields, the response synchronization showed no clear
dependence on the orientation preferences of the recorded cells. 53's 6 If the cells had
nonoverlapping receptive fields, synchronization occurred less frequently and was
primarily found between cells with similar orientation preference. 53'8 6

These studies lent support to the notion that synchronous interactions among
cells within a cortical area could contribute to the integration of information across
the visual field. The integration of disparate visual features, however, is likely to
involve the interaction of cells in different cortical areas. It thus became impor-
tant to determine if response synchronization could be measured between cells in
different cortical areas. The first experiments addressing this question were con-
ducted by Eckhorn et al.51 They demonstrated that oscillatory field-potential activ-
ity recorded in area 18 of the cat was often synchronous with unit activity recorded
simultaneously in area 17. The observed correlations, as those measured in area
17, were found to be stimulus dependent but not locked to the visual stimulus. No
consistent phase relation could be observed between the stimulus onset and the os-
cillatory responses. 5 1'83', 5 Subsequently, Engel et al.5 5 demonstrated synchronized
neuronal responses among cells recorded simultaneously in areas 17 and PMLS
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FIGURE 17 The local field potential and multiunit activity recorded at two sites in area
17 separated by 7 mm show similar temporal properties and correlated interactions.
(a) Plot of the LFP responses (1- to 100-Hz bandpass) recorded on a single trial to the
presentation of two optimally oriented light bars passing over the receptive fields of the
recorded neurons at each site. The peak of the responses overlap in time but are not in
precise register. (b) The average cross correlogram computed between the (cont'd)



118 Charles M. Gray

FIGURE 17 (cont'd.) two LFP signals (20-100 Hz bandpass) at a latency
corresponding to the peak of the oscillatory responses. The thick horizontal line
represents the 95% confidence limit for significant deviation from random correlation.
(c) Peni-stimulus-time histograms (PSTH) of the multiunit activity recorded over ten trials
at the same two cortical sites as shown in (a). Again the responses overlap but are
not in precise register. (d) Autocorrelograms (1-1,2-2) and cross correlograms (1-2)
of the multiunit activity recorded at each site. Note the presence of a clear periodicity
in each correlogram indicating that the responses are oscillatory and that they show
a consistent phase relationship. (e) Plots of the spike-triggered averages of the LFP
signals at each site computed over all 10 trials. The thick and thin lines correspond
to electrodes 1 and 2 respectively. Note that the peak negativity of the waveform
is correlated with the occurrence of neuronal spikes at 0-ms latency. (f) Normalized
average power spectrum of the LFP signals computed from periods of spontaneous
(thick line) and stimulus-evoked (thin line) activity. The frequency of the activity is
similar in both the autocorrelograms of the MUA and the power spectra of the LFPs.
(See Figure 1 of Gray, Engel, Koenig, and Singer,88 "Synchronization of Oscillatory
Neuronal Responses in Cat Striate Cortex: Temporal Properties," Visual Neurosci.
8 (1992): 337-347.) Reprinted by permission.

(Figure 18). The properties of this synchronous activity were very similar to that
observed within area 17 and between areas 17 and 18. The synchrony was stimulus
dependent and exhibited an oscillatory temporal structure."5 These studies clearly
demonstrated that temporal correlations in neuronal activity, in fact, do occur over
large distances in visual cortex spanning different cortical maps. Thus, in principle
the integration of visual information across feature domains could be achieved by
such a mechanism.

55

If the mechanisms controlling response synchronization are general, then it is
reasonable to assume that such processes should not be limited to one hemisphere.
In a further set of experiments Engel et al.5 6 investigated the occurrence of tem-
porally correlated neuronal activity recorded in area 17 of the two hemispheres.
They found that cells having overlapping receptive fields near the vertical midline
showed a high incidence of response synchronization to optimal visual stimulation
(Figure 19). These interactions were found to be absent in animals that had pre-
viously had their corpus callosum severed.56 These results have been confirmed
recently and extended to include synchronization of activity between cells in area
PMLS of the two hemispheres.3 7 Although these investigators did not explicitly
observe oscillatory responses, the implications of the results were similar. Synchro-
nized neuronal activity can be established over large distances spanning the two
cerebral hemispheres.
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FIGURE 18 Interareal synchronization is sensitive to global stimulus features.
(a) Position of the recording electrodes. A17, area 17; LAT, lateral sulcus; SUPS,
suprasylvian sulcus; P, posterior, L, lateral. (b)-(d) Plots of the receptive fields of
the PMLS and area 17 recording. The diagrams depict the three stimulus conditions
tested. The circle indicates the visual field center. (e)-(g) Peristimulus-time histograms
for the three stimulus conditions. The vertical lines indicate 1-sec windows for which
autocorrelograms and cross correlograms were computed. (h)-(j) Comparison of
the autocorrelograms computed for the three stimulus paradigms. (k)-(m) Cross
correlograms computed for the three stimulus conditions. (See Figure 3 of Engel,
Kreiter, Koenig, and Singer,55 "Synchronization of Oscillatory Neuronal Responses
Between Striate and Extrastriate Visual Cortical Areas of the Cat," Proc. Nati. Acad.
Sci. 88 (1991): 6048-6052.) Reprinted by permission.
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FIGURE 19 Interhemispheric synchronization of oscillatory responses. (a) The
electrodes were located in area 17 of the right and left hemisphere close to the
representation of the vertical meridian. (b) The receptive fields of the two multiunit
recordings. The cells had the same orientation preferences, and the fields were located
in the respective contralateral hemifields within 4 degrees of the vertical meridian
(dashed line). Circle, center of the visual field. (c) Histograms of the responses evoked
simultaneously with two light bars of optimal orientation. (d) Autocorrelograms computed
for the two responses in a 1-sec window centered on the peak of the response. (e)
The cross correlogram of the two responses computed within the same time window.
(See Figure 3 of Engel, Kreiter, Koenig, and Singer,56 "Interhemispheric Sychronization
of Oscillatory Responses in Cat Visual Cortex," Science 252 (1991): 1177-1179.)
Reprinted by permission.
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SYNCHRONOUS NEURONAL RESPONSES IN MONKEY
VISUAL CORTEX
The occurrence of high-frequency oscillatory activity in the visual cortex of monkeys
is a controversial subject. Reports of the phenomenon have been both positive and
negative. In one report, Young et al.20 6 found little or no evidence for oscillatory
activity in areas V1, MT, and IT in macaque monkeys. This study was conducted
under conditions very similar to those used in the earlier cat studies. 53,85 ,8 7 Record-
ings in areas V1 and MT were performed while the animals were under Halothane
anesthesia and paralysis, while those in area IT were performed on alert animals
trained to fixate a visual target. 20 6 Multiple-unit activity and field potentials were
recorded from single electrodes and the signals were subjected to autocorrelation
and spectral analysis, respectively. Very little evidence for rhythmic firing was ob-
tained even though the methods of data analysis used were very similar to those
employed in the cat experiments.53 Similar, though not identical, studies by Tovee
and Rolls18 7 and Bair et al.17 found little evidence for high-frequency oscillatory
activity in areas IT and MT of alert macaque monkeys, respectively.

Contrary to these results, Livingstone114 found that many cells in area V1 of
squirrel monkeys exhibit a pattern of rhythmic burst firing in response to optimal
visual stimulation. These cells were found to be located in layers 2, 3, and 4 in both
blob and interblob regions but not in layers 5 or 6.116 Moreover, she performed
multielectrode recordings and found that cells showing this rhythmic burst firing
were often synchronized, as in the cat experiments. 114 This synchrony was found
to extend up to 5 mm. Also contrary to the above results, Kreiter and Singer10 5

found evidence for rhythmic burst firing in cells recorded in area MT of the alert
macaque monkey. This activity was found to be synchronous among nearby cells
recorded with closely spaced electrodes.10 5"10 6 Finally, a recently published report
has demonstrated robust oscillatory activity in the striate cortex of alert Macaque
monkeys (Eckhorn et al.52 ). These signals exhibit most if not all of the characteris-
tics of oscillatory responses recorded in cat striate cortex, and were reported to be
more robust than in the cat.

The data on oscillatory activity in the primate visual cortex are thus not con-
sistant across laboratories. Differences in results could arise from different methods
of visual stimulation, behavioral training, and data analysis or be due to a sampling
bias from different layers or cells types. In the reports citing positive evidence for
oscillatory activity in the monkey striate cortex the principal difference with the cat
is a higher frequency range. Otherwise, the phenomena appear to be very similar.
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STIMULUS DEPENDENCE OF RESPONSE SYNCHRONIZATION
If the synchronization of neuronal responses contributes to the binding of dis-
tributed features in the visual field, then it is conceivable that cross-columnar in-
teractions should not only depend on receptive field properties of the recorded cells,
but should change dynamically with variations of the visual stimulus.19 5' 19 6 This
appears from a theoretical point of view to be important since any given cell in the
visual cortex is likely to participate in the representation of large numbers of visual
stimuli. Therefore a mechanism enabling cells to synchronize their activity with
different groups of cells under differing conditions of stimulation could potentially
provide a robust combinatorial flexibility in the coding of visual or other sensory
information.

To date, a number of examples of stimulus-dependent changes in the magnitude
of synchrony among neurons in visual cortex have been observed. These data, col-
lected from a number of different experiments, must still be considered somewhat
preliminary but, nonetheless, provide provocative food for thought. One example
of stimulus-dependent changes in correlated firing comes from the work of T'so et
al.'8 9 They recorded the activity from two cells in area 17 of the cat having over-
lapping receptive fields of different orientation preference. The arrangement of the
fields were such that the cells could either be activated by two optimal bars moving
across each receptive field or by a single bar moving across both fields having an
orientation capable of activating both cells. They found the correlation of firing to
be greater in the latter condition than in the former, even though the cells generated
vigorous responses under both stimulus conditions'8 9 (Figure 20).

A similar result was obtained by Gray et al."6 when observing oscillatory neu-
ronal responses in cat area 17. They recorded multiunit activity from two locations
separated by 7 mm. The receptive fields of the cells were nonoverlapping, had
nearly identical orientation preferences, and were spatially displaced along the axis
of preferred orientation. This enabled stimulation of the cells with bars of the same
orientation under three different conditions: two bars moving in opposite directions,
two bars moving in the same direction, and one long bar moving across both fields
coherently. Under these conditions no significant correlation was found when the
cells were stimulated by oppositely moving bars. A weak correlation was present for
the coherently moving bars. But the long-bar stimulus resulted in a robust synchro-
nization of the activity at the two sites (Figure 21). This effect occurred in spite of
the fact that the overall number of spikes produced by the two cells was similar in
the three conditions.8 6

In a nearly identical experiment Engel et al.55 demonstrated that the synchro-
nization of activity between cells in areas 17 and PMLS of the cat also depends on
the properties of the visual stimulus. They recorded from cells having nonoverlap-
ping receptive fields with similar orientation preference that were aligned co-linearly.
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FIGURE 20 Correlograms from a cell pair with visual stimulation oriented differently.
One cell of the pair had an orientation preference of 100 degrees, and the second cell
had an orientation preference of 130 degrees. The two cells had matched directionality
and ocular dominance and were separated by 350 um. The pair was first stimulated
with a single light slit oriented at 120 degrees (a), then with two slits simultaneously
at '00 degrees and 150 degrees (b). (See Figure 11 of T'so, Gilbert, and Wiesel,189

"FReationships Between Horizontal Interactions. and Functional Architecture in Cat
Striate Cortex as Revealed by Cross-correlation Analysis," J. Neurosci. 6(4) (1986):
1160-1170.) Reprinted by permission.

This enabled them to conduct the same test for the effects of coherent motion on
response synchronization. They found little or no correlation when the cells were
activated by oppositely moving contours and a robust synchronization of activity
when the cells were stimulated by a single long bar moving over both fields55 (Figure
18). These findings, combined with the earlier results, indicate that the global
properties of visual stimuli can influence the magnitude of synchronization between
widely separated cells located within and between different cortical areas.

A more detailed analysis of the influence of visual stimuli on response syn-
chronization was conducted by Engel et al.5 7 In this study, multiunit activity was
recorded from up to 4 electrodes simultaneously having a spacing of approximately
0.5 mm. The proximity of the electrodes yielded recordings in which all the cells
had overlapping receptive fields and a range of orientation preferences. This config-
uration often led to the opportunity of comparing the correlation of activity among
cells coactivated by either one or two moving bars. In a number of cases, cells having
different orientation preferences were found to fire asynchronously when activated
by two independent bars of differing orientation. The same cells, however, fired syn-
chronously when coactivated by a single bar of intermediate orientation,5 7 much in
the same manner as demonstrated previously by T'so et al. ̀ 9 These results provide
further evidence that the synchronization of activity, and hence the formation of
neuronal assemblies in visual cortex, is a dynamic process under the influence of
visual stimuli.
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FIGURE 21 Long-range synchronization in area 17 reflects global stimulus properties.
(a) Orientation tuning curves of multiunit responses recorded at two sites separated
by 7 mm. At both sites, the responses were tuned to vertical orientations (arrows).
(b) Peri-stimulus-time histograms of the responses recorded at each site for three
different stimulus conditions: (I) two light bars moved in opposite directions; (1I) two
light bars moved in the same direction; and (Ill) one long light bar moved across both
receptive fields. A schematic plot of the receptive fields and the stimulus configuration
is displayed to the right of each peri-stimulus-time histogram. (c) Autocorrelation (1-
1,2-2) histograms computed for the responses recorded at both sites for each of the
three stimulus conditions (I-Ill). (d) Cross-correlation histograms computed for the
same responses. Note that the strongest response synchronization is observed with
the continuous long light bar. For each pair of correlograms except the two displayed in
(c) (1,1-1) and D (I), the second direction of stimulus movement is shown with unfilled
bars. (See Figure 3 of Gray, Koenig, Engel, and Singer,85 "Stimulus-Specific Neuronal
Oscillations in Cat Visual Cortex Exhibit Inter-Columnar Synchronization Which Reflects
Global Stimulus Properties," Nature 338 (1989): 334-337.) Reprinted by permission.
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That this process is a general property of visual cortex and not confined to the
visual cortex of anesthetized cats was recently demonstrated by Kreiter et al.1 °6

Recordings of multiunit activity were made from two electrodes in area MT of a
macaque monkey. The electrode separation was less than 0.5 mm yielding cells
with nearly completely overlapping receptive fields but often differing direction
preferences.8 This enabled them to repeat the earlier experiment conducted in the
cat. When possible the cells were coactivated by first two moving bars and then
one. Under these conditions little or no correlation in activity was observed when
the cells were activated by two independently moving bars. The firing of the cells
synchronized, however, when responses were evoked by a single bar moving over
both fields in a direction capable of activating both cells together.10 6 Repeated
measures of the responses from the same cells under identical conditions revealed
the effect to be stable.

These numerous examples demonstrate that under appropriate conditions the
synchronization of activity of two or more groups of neurons in cat and monkey
visual cortex can be influenced by the properties of visual stimuli. The results fur-
ther suggest that response sychronization occurs preferentially when the cells are
activated by stimuli having coherent properties. These data thus support the hy-
pothesis that synchronization of activity can act as a mechanism for establishing
relations between spatially distributed features in a visual image. However, it must
be pointed out that, for every positive example cited above, there are also instances
in which the correlation of neuronal responses is not influenced by changes in vi-
sual stimulation.169 This question has not been extensively investigated and much
research still needs to be done to rigorously determine the stimulus dependence of

response synchronization in visual cortex.

TEMPORAL PROPERTIES OF RESPONSE SYNCHRONIZATION
One of the more impressive aspects of mammalian visual pattern recognition is
its rapidity. Psychophysical and behavioral studies have demonstrated that various

forms of pattern recognition can be performed within 100-300 ms. 2 1 ,
2 3 ,

9 7' 1 5 9 ,1
6 0

These findings provide a key temporal constraint on the neuronal mechanisms un-

derlying pattern recognition. They suggest that if response synchronization, oscilla-
tory or otherwise, is utilized for the processing of visual information, the interactions
must be rapid. In fact, oscillatory responses of 40-60 Hz should couple within 1-5
cycles. Thus, a measure of the temporal properties of the synchronized oscillations
becomes an important step in determining their functional significance.

This question was addressed in a study by Gray et al.8 ' Recordings of field

potential and unit activity were performed at two sites in cat visual cortex having
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FIGURE 22 The onset and offset of response synchronization is a rapid process.
Shown here are four examples each of the onset ((a),1-4) and offset ((b),1-4) of
synchronized oscillations at near 0-ms phase-lag. The thick and thin lines represent
the two LFP signals recorded. The examples were chosen for their clear and rapid
transitions and therefore reflect the most robust cases recorded. The epochs were
sampled from the data recorded during the peak of the visual response in each case,
and no care was taken to select these examples with respect to the latency of onset of
the neuronal response. Note in each case that transition to or from synchrony appears
to occur within 20-40 ms. In the example shown in A4, there is a transition from
synchrony to asynchrony and back to synchrony again within a period of approximately
100 ms. (See Figure 7 of Gray, Engel, Koenig, and Singer,8 8 "Synchronization of
Oscillatory Neuronal Responses in Cat Striate Cortex: Temporal Properties," Visual
Neuroscience 8 (1992): 337-347.) Reprinted by permission.
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a separation of at least 4 rmm. This insured that the receptive fields of the recorded
cells would not overlap and that there would be little contamination by volume con-
duction in the field potential signals from one recording site to the other. 53 Field
potential responses were chosen for analysis in which the signals displayed a par-
ticularly robust oscillation, a close correlation to the simultaneously recorded unit
activity, and a statistically significant, average cross correlation. Under these condi-
tions it became possible to determine (1) the onset latency of the synchrony between
the two recordings; (2) the time-dependent changes in the phase, frequency, and
duration of the synchrony within individual trials; and (3) the intertrial variation
in each of these parameters.

Combined with previous observations,5 3 the results demonstrated that corre-
lated oscillatory responses in cat visual cortex exhibit a high degree of dynamic
variability. The amplitude, frequency, and phase of the synchronous oscillations
fluctuate over time. The onset of the synchrony is variable and bears no fixed re-
lation to the stimulus. Multiple epochs of synchrony can occur on individual trials
and the duration of these events also fluctuates from one stimulus presentation to
the next. Most importantly, the results demonstrated that response synchroniza-
tion can be established within 50-100 ms (Figure 22), a time scale consistent with
behavioral performance on visual discrimination tasks.8 8

MECHANISMS UNDERLYING THE GENERATION OF
OSCILLATORY RESPONSES IN VISUAL CORTEX
As discussed earlier, for the olfactory system and thalamocortical spindle rhythms,
there are three basic mechanisms likely to underlie the generation of oscillatory neu-
ronal activity in the visual cortex. The first and most obvious mechanism to consider
is oscillatory afferent input. It is conceivable that the periodic temporal structure
of cortical responses could be simply due to an oscillatory input from the lateral
geniculate nucleus in much the same way as input from the olfactory bulb drives
the piriform cortex into an oscillatory pattern. Support for this view has come from
a number of studies demonstrating both in the retina and the LGN the existence of
robust oscillatory activity in the frequency range of 40-60-Hz. 14, 16 ,2 4,5 0,7 6,78 ,1 10,143

In both structures the oscillatory activity is present in a subpopulation of roughly
20% of the cells and appears to be largely spontaneous in nature.110 ' 163 Diffuse
changes in illumination also evoke oscillatory activity'1 0 but often the oscillations
are suppressed or uninfluenced by visual stimuli.7 8

Such input to the cortex could provide a catalyst or even a driving influence
for oscillatory responses. However, the data on retinogeniculate oscillations do not
appear to account for several aspects of the cortical oscillatory activity. Cortical
oscillations are often synchronous across multiple hypercolumns within an area,53,86
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between cells in different areas,51 ,5 5 and between cells in area 17 of the two cere-
bral hemispheres.5 6 An explanation of these phenomena in terms of afferent input
from the LGN would require that the synchronously firing cells in cortex be driven
by a common source. Such common input could occur through a divergence of
connectivity from LGN to cortex or by synchronization of the activity within the
LGN.

It is well established that afferents to the cortex from the LGN can have ter-
minal arbors that span up to 3-4 mm in cortex.60 However, few thalamic afferent
connections to area 17 can account for the synchronization of activity that has
been observed across 6-7 mm. of cortex5 3 ,8 6 (or between two cortical areas5 1 ,5 5 ).

It is likely that such interactions result largely from the influence of intracortical
connections. 79,80 ,8 1,13 1,147 ,'16 Moreover, LGN afferents to the cortex project only
to the ipsilateral hemisphere and therefore cannot provide the necessary common
drive to synchronize activity in the two cerebral hemispheres. 56 In fact, several lines
of evidence indicate that the common input underlying interhemispheric synchro-
nization passes through the corpus callosum. 37'56

Synchronization of activity at the thalarnic level in principal could provide
the structural basis for synchrony in the cortex. This is, of course, what happens
during a thalarnocortical spindle.' 8 2 Although synchrony among thalamic cells is
pronounced during low frequency spindling, correlated 40- to 60-Hz oscillatory ac-
tivity in the LGN has only been observed for closely spaced cells. 16 To date no
correlations of 40-60 Hz oscillations have been observed between LGN cells having
nonoverlapping receptive fields.

Nevertheless, it is possible that rhythmic input from the LGN could make a
significant contribution to the generation of oscillatory responses and their local syn-
chronization in cortex. 78 One important experiment to test this hypothesis would
be to simultaneously measure oscillatory activity in LGN and cortex in retino-
topic correspondence. The occurrence of significant synchronization in the activity
of these two structures would support a role for the LGN in generating cortical
high-frequency oscillations.

The other mechanisms likely to underlie the generation of cortical oscillatory
responses rely on purely intracortical processes. In one scenario, rhythmic 40- to
60-Hz firing could arise soley from intracortical network interactions. A possible
substrate for this could be inhibitory feedback in much the same manner as that
described for the olfactory bulb and cortex.6 6 Although direct evidence that re-
current inhibition underlies high-frequency cortical oscillations is very limited,8 9

such a prediction appears plausible since local circuit inhibitory interneurons exist
in abundance in the neocortex, 125' 130 and artificial neuronal networks containing
recurrent inhibitory connections readily exhibit oscillatory activity.38' 66

,1
0 4' 20 1' 20 2

Demonstration of such interactions is complicated, however, by the difficulties as-
sociated with recording from identified inhibitory cells. Thus, one may be largely
limited to indirect sources of evidence.
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240 ms
15 ms

FIGURE 23 Repetitive burst-firing cell recorded extracellularly from area 17 of an
awake behaving cat. Upper trace shows the response of the cell to the presentation
of an optimally oriented light bar passed over the cell's receptive field. The lower trace
shows part of the response at an expanded time scale. Note the presence of repetitive
burst discharges at a frequency near 40 Hz. (See Gray.90 )

Alternatively, oscillatory activity in cortex may arise as a consequence of the
intrinsic membrane properties of cortical neurons,1 22 much as it does in thalamo-
cortical relay neurons133 and cells of the thalamic reticular nucleus.1'8 ' 8 2 Support
for this conjecture has recently been obtained from in vitro intracellular recordings
in rat frontal"2 4 and sensorimotor cortex.17 3 In the former study, intrinsic 10- to
50-Hz oscillations in membrane potential were observed in inhibitory interneurons
of layer 4. These fluctuations were produced by membrane depolarization and were
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dependent on both sodium and potassium conductances.' 2 4 In the latter study,
intrinsic low-frequency 5- to 10-Hz oscillations produced by membrane depolariza-
tion were found in a subpopulation of layer 5 cells.' 7 3 These cells are known to be
capable of intrinsically generating bursts of action potentials in response to depo-
larizing inputs.4 5,10 8 ,132 This phenomenon of intrinsic bursting may prove relevant
since cortical 40- to 60-Hz oscillatory activity is often associated with burst firing
in single cells8 7 '90 (Figure 23).

Recent intracellular recordings from cat striate cortex in vivo have attempted to
distinguish among the various possible mechanisms. High-frequency 30-60-Hz oscil-
lations of membrane potential have been observed in response to visual stimuli59,99

(Figure 24). These signals show a remarkable similarity to oscillatory activity
recorded extracellularly.8 5 The oscillations in membrane potential are stimulus
dependent and orientation specific and occur less often in simple cells receiving
monosynaptic input from the LGN. 99 Action potentials occur on the depolarizing
phase of the oscillation mirroring the negativity observed extracellularly.85 Two
further lines of evidence indicate that the oscillations result from extrinsic as op-
posed to intrinsic mechanisms.9 9 Oscillations in membrane potential increase in
amplitude in response to visual input when the cells are hyperpolarized, suggesting
that they arise from excitatory synaptic input rather than voltage-dependent mem-
brane conductances (Figure 24). Intracellular depolarization reveals no consistent

(a)-30p

(b)
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FIGURE 24 Intracellular recording of the response of a complex cell in area 17 of an
anesthetized cat to the presentation of an optimally oriented light bar passed over the
cell's receptive field. In (a) the cell is being hyperpolarized by the injection of -130 pA
of current. The action potentials in A have been truncated. (See Figure 1 (a),(b) of
Jagadeesh, Gray, and Ferster,99 Visually-Evoked Oscillations of Membrane Potential
in Neurons of Cat Striate Cortex Studied with In Vivo Whole Cell Patch Recording,"
Science 257 (1992): 552-554.) Reprinted by permission.
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tendency of the cells to fire at frequencies in the range of 30-60 Hz. These data
therefore suggest that oscillatory responses in visual cortex reflect a property of the

cortical network.
Because of the small sample size (28 cells), it is likely that cells exhibiting an

intrinsic capacity to oscillate could have easily been missed. In fact, no burst-firing
cells were observed in the study of Jagadeesh at el. 9 9 Thus one cannot rule out the
possibility that a subpopulation of cells in visual cortex have an intrinsic tendency
to fire in repetitive bursts at a frequency of 30-60 Hz. 90

HIPPOCAMPAL RHYTHMS: CARRIER WAVES FOR SYNAPTIC
PLASTICITY?
The hippocampus is an archicortical structure in the limbic system known for the
similarity of its shape to a seahorse. During a number of different behavioral states,
it is known to exhibit some of the most robust forms of synchronous rhythmic ac-
tivity to be observed in the central nervous system. Foremost among these is the
theta rhythm, a sinusoidal-like oscillation of neuronal activity at 4-10 Hz that oc-
curs during particular behavioral states (see below). In addition, two other neuronal
rhythms have been discovered, one having a frequency in the range of 30-100 Hz
that occurs during both anesthesia- and theta-related behavioral states39 '112 and
another more recently discovered signal having a frequency around 200 Hz asso-
ciated with alert immobility and the presence of sharp waves in the hippocampal
EEG.

4 3

THETA RHYTHM
The theta rhythm or rhythmic slow activity (RSA) was originally discovered in
1938 by Jung and Kornmuller and later investigated more extensively by Green and
Arduini 9' among others. It occurs primarily in nonprimate mammals and is broadly
distributed throughout the hippocampus during two different behavioral states. 28

The most prominent of these two is type I or movement related theta.19 2 During
exploratory behaviors such as walking, shifts in posture, or the manipulation of
objects with the forelimbs, type I theta is prominent throughout the hippocampus.
A second form of RSA termed type II theta occurs during periods of behavioral
immobility.28 This form of theta can also be elicited by sensory stimulation under
anesthesia, making it quite amenable to detailed analysis.

In both behaving and anesthetized animals, theta activity is localized largely to
the hippocampus, 25 the surrounding entorhinal cortex,1 ' 9,138 and the medial septal
nucleus15 7 (Figure 25). The generation of hippocampal RSA has long been thought

li_
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to depend largely on input from the medial septal nucleus a structure thought
to act as a pacemaker. 9,28 , 39 ,157 Both the medial septal nucleus and the entorhi-
nal cortex appear to be capable of intrinsically generating RSA either through
network interactions28 '1 8 6 or by intrinsic cellular membrane properties.1 1 Stellate
cells in layer 2 of the entorhinal cortex, for example, are intrinsically oscillatory
by virtue of a combination of sodium and potassium conductances. 1" These neu-
rons project via the perforant path to area CA1 and the dentate gyrus of the
hippocampus where they produce an additional 4-10 Hz drive on the system. 39

Although it is clear that both the medial septum and entorhinal cortex do provide
a rhythmic afferent drive to hippocampus, recent intracellular recordings indicate

13 12 11 10 9 8 7 6 5 4 3 2 1
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FIGURE 25 Topography of hippocampal rhythmic slow activity. A diagrammatic
representation of a saggital section of the brain showing the reconstruction of
microelectrode tracks made during a mapping experiment. During the mapping,
a reference microelectrode was fixed in the stratum moleculare. Tracks 1-8 were
each 0.75 mm apart and tracks 8-13 were each 1 mm apart. Each individual track
went to a depth of 5 mm from the surface of the brain. The filled circles represent
the location and approximate amplitude (mV) of RSA in each track and the dashes
indicate locations where no RSA was recorded. (See Figure 9 of Bland and Wishaw,25

"~Generators and Topography of Hippocampal Theta (RSA) in the Anesthetized and
Freely Moving Rat," Brain Res. 118 (1976): 259-280.) Reprinted by permission.
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that hippocampal pyramidal neurons are also capable of generating intrinsic oscil-
lations of membrane potential in the 4- to 10-Hz range. 5 ', 1"' Thus there exists a
redundant set of mechanisms in these structures capable of generating theta activ-
ity.

The intrinsic membrane properties and the local network interactions among
cells in the hippocampus, entorhinal cortex, and medial septal nucleus lead to a
wide range of rhythmic synchronous activities displayed in the discharges of sin-
gle cells in these structures. Some cells show a rather precise pattern of repetitive
burst firing synchronized to the phase of the RSA observed in the field potential.

(a) (b) (c)

. fl 1 .Ii. P I

FIGURE 26 Types of entorhinal cortex neuronal discharges. rd: short samples of raw
data, unit activity (upper) and reference theta rhythm (lower). Autocorrelation functions
(ACF) indicate the presence of a stationary theta rhythm dunng the epochs processed.
(a) Rhythmic cell at the theta frequency as demonstrated by the autocorrelation
histogram (ACH). (b) Intermediate cell with almost no periodic ACH. (c) Nonrhythmic
cell as demonstrated by the aperiodic ACH. Vertical calibration in all figures for ACH:
impulses/sec. (See Figure 1l(a),(b),(c) of Alonso and Garcia-Austt,'° "NeuronaI Sources
of Theta Rhythm in the Entorhinal Cortex of the Rat II. Phase Relations Between
Unit Discharges and Theta Field Potentials," Exp. Brain Res. 67 (1987): 502-509.)
Reprinted by permission.
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Autocorrelation and interval histograms of the spike trains of these cells reveal a
clear 4- to 10-Hz periodicity. In the hippocampus proper, these neurons are termed
theta cells and are largely thought to be inhibitory interneurons. 28

.
61 In the en-

torhinal cortex such cells have been classed simply as rhythmic1° whereas in the
medial septum they are termed "B" cells. 156 In each of these structures, there are
significant numbers of cells that display little or no rhythmicity in their discharge
patterns. These cells on first glance appear not to participate in theta activity. Fur-
ther studies, however, have shown that the vast majority of these nonrhythmically
firing cells show a clear relation with the phase of the theta rhythm observed in
the field potential°0 ' 27 ,156 (Figure 26), a result similar to that observed for mitral
cells and pyramidal neurons in the olfactory bulb and piriform cortex in relation
to the induced wave (see above, Freeman66). Thus, although often not readily ap-
parent in the activity of single cells, the hippocampal theta rhythm represents the
coordinated activation of very large populations of synchronously active cells.

(a) (b) (c)
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FIGURE 27 Spatial distribution of theta activity. (a) Diagrammatic representation of
the hippecampal formation seen from above with the temporal part deflected laterally.
A reference electrode was situated in the cross between the lines labelled long and

trans. The moving surface electrode was shifted along the two lines in steps of 0.5
mm. (b) The upper graph gives computer-averaged amplitude. The middle and lower
graphs give the correlation coefficients and phase shift between the reference and
the moving electrode records, plotted as a function of the longitudinal position of the
latter. (c) Same as (b), but with the moving electrode shifted along the transverse axis

(transverse) in (a). Data obtained during spontaneous theta activity are indicated by
open circles and data recorded during hypothalamic stimulation by filled triangles. (See
Figure 2 of Bland, Andersen, and Ganes,26 "Two Generators of Hippocampal Theta
Activity in Rabbits," Brain Res. 94 (1975): 199-218.) Reprinted by permission.
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walk still

FIGURE 28 EEG recorded from the stratum radiatum of the left (I) and right (r) CA1
region of the hippocampus during walk-immobility (still) transition. Note regular theta
waves during walking and large monophasic sharp waves during immobility. Note
also the bilaterally synchronous nature of sharp waves. (See Figure 1 of Buzsaki.42

"Two-Stage Model of Memory Trace Formation: A Role for "Noisy" Brain States."
Neuroscience 31(3) (1989): 551-570.)

This synchronization process was observed within CA3 by Kuperstein et al. 1°7

at a much finer scale of resolution using multiple microelectrode recording tech-
niques. By recording single cell activity at up to 24 sites simultaneously, they were
able to avoid the potential problem of volume conduction of the field potentials gen-

erated within the hippocampus. Their results revealed a complex but synchronous
pattern of activity during the theta rhythm. Different cells tended to fire at different
phases of the theta rhythm, but these relations were consistent and tended to yield
a coordinated pattern of activity from the sample as a whole.10 7

HIPPOCAMPAL FAST ACTIVITY
Another form of rhythmic activity in the hippocampus about which much less is
known is the so-called fast activity. 112 These rhythmic field potential signals have
a frequency ranging from 30-100-Hz occur during theta-related behaviors and at
higher amplitudes and lower frequencies (30-50 Hz) under anesthesia. The signals
have been recorded in CAl and in the dentate but are most prominent in the hilus
of the dentate gyrus. Fast activity has been observed to be synchronous between the
two hippocampi. And the activity of interneurons and granule cells is often in phase
with the fast oscillations observed in the field potential signals. 39 Little else is known
regarding the functional significance of this form of activity in the hippocampus.' 12

These fast rhythms however, are indicative of the propensity of the hippocampus

to engage in large-scale cooperative patterns of synchronous rhythmic activity.



136 Charles M. Gray

of the dentate gyrus. Fast activity has been observed to be synchronous between the
two hippocampi. And the activity of interneurons and granule cells is often in phase
with the fast oscillations observed in the field potential signals. 39 Little else is known
regarding the functional significance of this form of activity in the hippocampus.112

These fast rhythms however, are indicative of the propensity of the hippocampus
to engage in large-scale cooperative patterns of synchronous rhythmic activity.

............. ........

FIGURE 29 Averaged sharp wave (n = 50) recorded simultaneously from 16
microelectrodes along the longitudinal axis of the CA1 region of the hippocampus.
Spacing between electrodes was 200 um. All tips were positioned in the stratum
radiatum. Note the simultaneous occurrence of sharp waves over a distance of 3.2 mm.
(See Figure 2 of Buzsaki, 4 2 "Two-Stage Model of Memory Trace Formation: A Role for
"Noisy" Brain States," Neuroscience 31(3) (1989): 551-570.) Reprinted by permission.
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HIPPOCAMPAL SHARP WAVES

During the transition from exploratory behavior to alert immobility, associated with
acts such as eating and grooming, hippocampal activity in the rat shows another
remarkable change. Highly synchronous theta activity vanishes and is largely re-
placed by a pattern of irregular activity intermingled with large amplitude (of 1-3
mV) sharp waves of voltage lasting 40-100 ms. 3 9' 4 0 ' 4 2 These events are synchronous
in the two hippocampi (Figure 28) and show a high degree of coherence across the
transverse and longitudinal axes of the hippocampus 42 (Figure 29). Moreover, each
sharp wave is associated with a synchronous burst discharge of action potentials in
a population of pyramidal cells. 42
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FIGURE 30 Fast field oscillation in the CA1 region of the dorsal hippocampus.
Simultaneous recordings from the CAI pyramidal cell layer (1) and stratum radiatum
(2). Note the simultaneous occurrence of fast field oscillations, unit discharges, and
sharp wave, Calibrations: 0.5 mV (trace 1), 0.25 mV (traces 2 and 3), and 1.0 mV
(trace 4). (See Figure 1 of Buzsaki, Horvath, Urioste, Hetke, and Wise,4 3 "High-
Frequency Network Oscillation in the Hippocampus," Science 256 (1992): 1025-1027.)
Reprinted by permission.
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FIGURE 31 Dorsal projection of a CA2 pyramidal neuron in the hippocampus.
Arrow indicates the midline of the brain and the closed circle indicates the position
of the soma. Graduations on the axes are at 1-mm intervals. (See Figure 3(b) of
Tamamaki, Abe, and Nojyo,18 4 "Three-Dimensional Analysis of the Whole Axonal
Arbors Originating from Single CA2 Pyramidal Neurons in the Rat Hippocampus
with the Aid of a Computer Graphic Technique," Brain Res. 452 (1988): 255-272.
Reprinted by permission.

Recently these signals have been examined at a higher degree of spatial and
temporal resolution using new multielectrode recording techniques. 43 These studies
have revealed that the sharp wave actually consists of a synchronous oscillation of
activity in a population of cells at a frequency near 200 Hz (Figure 30). Individual
cells were found to fire at low rates, but their coordinated activation yielded an
emergent pattern of activity having an oscillatory character. Single cells recorded
in isolation in the pyramidal cell layer showed no indication of rhythmicity but
were often found to fire in phase with the 200-Hz oscillation recorded in the field
potential. In a few recordings the activity of identified interneurons was also mea-
sured. These cells fired consistently at phases near 180 degrees different from that
of the pyramidal cell population, suggesting a role for the interneuron population
in the generation of the oscillations. When observed at spatially separate sites ex-
tending up to 1.2 mm, the activities of single cells were founc to be correlated with
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each other and the oscillatory field potential. It remains to be determined if similar
synchronous interactions extend over larger distances.

FUNCTIONAL SIGNIFICANCE OF SYNCHRONOUS HIPPOCAM-
PAL RHYTHMS
The preceeding discussions clearly demonstrate that the hippocampus can exhibit a
wide range of well-organized coherent states of rhythmic activity. These states are
often closely linked to particular behavioral states or acts. And the synchronous
activity patterns can often encompass both hippocampi and surrounding limbic
structures. In fact, as is the case for hippocampal theta, synchronous states of
activation can be coupled to motor acts such as exploratory sniffing behavior. 126

Although the functional significance of these synchronous rhythms is largely
unknown, such stereotyped and global patterns of activity are suggestive of an
important function. Multiple, redundant mechanisms have evolved to enable the
generation of various forms of rhythmic activity39 ,188 and the anatomical organi-
zation of hippocampus clearly lends itself to the establishment of macroscopic pat-
terned statos. Hippocampal pyramidal cells have widely arborizing axonal collater-
als which extend over many millimeters including the contralateral hippocampus18 4

(Figure 31). These long-range connections in combination with the intrinsic mem-
brane properties of cells and local network organization yield a structure capable of
some of the most robust and organized states of synchronous activity to be observed
in the central nervous system. The question is, of course, what are the functions of
these coherent states of activity.

Despite extensive studies into the mechanisms of generation, the behavioral de-
pendence, and the spatiotemporal distribution of hippocampal rhythmic activity,
we still do not know the answer to this question. A number of attractive proposals
have been put forth, however. Several of these relate closely to the well-established
role of the hippocampus in learning and memory136 and the propensity of hip-
pocampal neurons to exhibit synaptic plasticity such as long-term potentiation and
depression.

30 ,178

Studies investigating the latter phenomena have established that correlation of
activity among synaptically connected neurons is a critical factor in the induction
of changes in synaptic strength. Correlated activity is, of course, the essence of
hippocampal rhythms. Thus these coherent rhythmic states may provide the sub-
strate for synaptic modifications and the storage of information. For example, it has
recently been observed that tetanic stimulation of excitatory pathways in the hip-
pocampus in phase with the theta rhythm 155 or delivered in vitro at the frequency
of the theta rhythm, 10 9 leads to a marked long-term increase in synaptic strength.
If stimulation is given at frequencies significantly above or below the theta range, the

!-_ _ _ _ ___ _ __
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FIGURE 32 Intracellular recording from an olivary neuron in a slice preparation of a
guinea pig brain stem. The response was elicited by a 70-ms, 0.5-nA positive current
pulse. Asterisk, the sodium-dependent component of the response; arrowhead, the
prolonged depolarization generated by the high-threshold calcium current; and arrow,
the low-threshold calcium spike. Dashed line indicates the resting potential. (See
Figure 1 of Yarom, 205 "Oscillatory Behavior of Olivary Neurons," in The Olivocerebellar
System in Motor Control, edited by Piergiorgio Strata, Berlin: Springer-Verlag, 1989.)
Reprinted by permission.

induction of synaptic gain changes is less pronounced or absent. Moreover, if 5-Hz
tetanic stimulation is given to two pathways together but 180 degrees out of phase,
synaptic connections can actually be significantly weakened or depressed. 178 These
data suggest an important role for hippocampal theta in the control of mnemonic
functions.

Another important factor regulating synaptic plasticity in the hippocampus
is the degree of cooperactivity of the convergent input onto any given neuron. 135

Consistent with this it is well known that high-frequency tetanic stimulation pro-
vides an effective stimulus for the induction of LTP in hippocampal neurons. The
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FIGURE 33 Spontaneous oscillation of the membrane potential and its synchronicity
in two inferior olive neurons simultaneously recorded intracellularly. (a) Spontaneous
oscillatory property of the membrane potential. (b) Lissajous figure to illustrate
the regularity of the spontaneous oscillation. The x-axis of the oscilloscope was
derived by a sinusoidal waveform of 4 Hz. (c) Superimposed traces of spontaneous
membrane potential oscillations recorded simultaneously from two olivary neurons
(a,b). (d) An average record of 6 traces recorded during the same time interval from
the two cells in B and superimposed in (a) and (b). (See Figure 4 of Llinas and
Yarom,121 "Oscillatory Properties of Guinea-Pig Inferior Olivary Neurons and Their
Pharmacological Modulation: An In Vitro Study," J. Physiol. 376 (1986): 163-182.)
Reprinted by permission.

hippocampal sharp wave represents perhaps the closest physiological correlate to
a tetanic electrical stimulus, brief high-frequency synchronous bursts of activity in
a population of cells. These waves, however, have the added dimension of spatial
organization, making it likely that a large number of coherent states of sharp wave
activity could exist at different times. Such spatial variation could provide the
hippocampus with a powerful combinatorial capacity for information storage. 42

THE OLIVOCEREBELLAR SYSTEM AND PHYSIOLOGICAL
TREMOR
One of the most robust and regular oscillatory systems in the brain resides in
the inferior olivary nucleus. This subcortical motor structure provides the climbing
fiber input to the cerebellum and exerts a powerful control on cerebellar output

generated by purkinje cells. Single units in the inferior olive of the intact animal
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demonstrate a pronounced rhythmicity in their discharge patterns.15,9 8 This rhyth-
micity can be readily observed in vitro12 1 and is known to arise intrinsically through
a combination of specific membrane conductances.1 8,1 9 ,20 5 As in the generation
of thalamocortical spindles, the interplay between a low-threshold calcium conduc-
tance and a calcium-dependent potassium conductance is integral to the oscillatory
behavior 20 5 (Figure 32). These conductances endow the inferior olive neurons with
an intrinsic capacity to oscillate at 4-10 Hz upon receiving input.

In a small percentage of in vitro slice preparations, neurons in the inferior olive
exhibit a sustained subthreshold oscillation of membrane potential at a frequency
of 4-10 Hz. When this behavior is observed, it is often the case that many, if not
all, of the cells in the slice show continuous oscillations at the same frequency 121,20 5

(Figure 33). This behavior is thought to depend on electrotonic coupling between
cells in the nucleus. 7",118 Because of this coupling, single cells continue to oscillate
when they are depolarized or hyperpolarized away from their resting potential by
intracellular current injection.121 Thus disruption of the oscillation in a single cell
does not disrupt the pattern present in the rest of the network. External stimulation
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FIGURE 34 Cross correlogram of the activity of two simultaneously recorded purkinje
cells in the cerebellar cortex of an anesthetized rat. (See Figure 7(b) of Sasaki,
Bower, and Llinas,'8 7 "Multiple Purkinje Cell Recording in Rodent Cerebellar Cortex,"
Europena J. Neurosci. 1 (1989): 572--586.) Reprinted by permission.
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FIGURE 35 Distribution of fast (35-45 Hz) rhythms over the cat anterior cortex. The
hatched zones represent data pooled from 20 cats, encompassing the extreme limits
of two foci found to display this activity. Below are presented two compressed spectral
arrays taken at 1-min intervals of the EEG recorded at A and C, with a total recording
time of 90 min. Episodes of fast rhythms (35-45 Hz) that accompany high vigilance and
immobility can be seen. They alternate with rhythmic activities in the (cont'd)
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FIGURE 35 (cont'd.) lower frequency ranges that correspond to quiet vigilance,
drowsiness, and then sleep. Added to each set of spectral arrays is the average
spectrum computed over the 90-min recording time. Lower left: Fast hypervigilance
rhythms simultaneously recorded over the parietal cortex (Cx) and the posterior
thalamic group (Th). Time scale = 0.5 sec. Lower right: Coherence spectrum of
the activity between the thalamus and cortex. (See Figure 5.3 of Steriade, Jones
and Llinas,' 82 Thalamic Oscillations and Signaling, New York: John Wiley, 1990.
Reprinted by permission.

delivered to a group of cells can transiently disrupt the rhythm, however. 12 1 These
findings suggest that the sustained nature of the oscillations in the inferior olive
is an emergent property of the coupled network. The oscillatory behavior critically
depends on the intrinsic membrane properties of the cells but is expressed when a
network of cells are electronically coupled.2 °5

This emergent property of the inferior olive has a profound impact on the ac-
tivity of the cerebellar cortex. In effect the sustained and synchronous oscillations
in the climbing fiber input result in the synchronous and rhythmic discharge of
populations of purkinje cells. 20"167 Using a sophisticated system for monitoring the
activity at up to 32 sites Sasaki et al.167 demonstrated that purkinje cells within
separate cerebellar folia show a high degree of synchronous rhythmic discharge at
6-10 Hz (Figure 34). The synchrony extends over distances of 2 mm in the rostro-
caudal direction but falls off sharply within 250 um in the mediolateral direction.
This effect results from a variation in the frequency of the rhythmic discharge of the
purkinje cells along this axis.167 However, the spatial organization of the synchrony
observed in the cerebellar cortex is thought to depend on the pattern of electro-
tonic coupling of cells in the inferior olive. Llinas and Sasaki12 3 demonstrated that
blockade of GABAergic transmission in the inferior olive leads to a disruption of the
specificity of the spatial pattern of synchrony observed among purkinje cells. Thus
the inferior olive appears to act as an important control structure in the generation
and regulation of synchronous rhythmic patterns of activity in the cerebellar cortex.

As in other systems the functional significance of these synchronous olivo-
cerebellar rhythms is not fully understood. However, an attractive hypothesis has
been put forward by Llinas and his colleagues.' 20 '21 3 In essence the rhythms of
6-10 Hz are thought to provide the underlying mechanism controlling physiologi-
cal tremor. 129 This tremor may provide a time frame, or carrier frequency, for the
generation of complex coordinated movements requiring distributed populations of
cells to be coactive. Such a mechanism may explain why both voluntary and invol-
untary movements occur in phase with physiological tremor 129 and why the upper
limit of the rate of repetitive movements is at or near 10 Hz. 167
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THE SOMATOMOTOR CORTEX AND ATTENTIVE BEHAVIOR
Another, less well understood, but equally impressive form of synchronous rhythmic
activity occurs in the somatosensory and motor cortices and thalamus of cats and
monkeys. This activity has been observed primarily in intracortical field potential
recordings. It ranges in frequency from 15-45 Hz and is most prevalent and highest
in amplitude under conditions of alert attentive behavior. Early studies of this phe-
nomenon revealed that, during periods of attentive immobility, the EEG recorded
from the somatosensory cortex often shifted from a disorganized pattern of low fre-
quencies to a clearly oscillatory pattern having a dominant frequency around 15 Hz
in the monkey16 4 and 35-45 Hz in the cat.

3 2
,3 3 These rhythmic patterns of activity

persisted for as long as the animal maintained a state of attentive behavior.
This effect was found to be particularly striking in the cat when the animal was

able to view, but not gain access to, a mouse housed in another cage. Under these
circumstances the cat displayed a sterotypical pattern of attentive behavior in which
it remained completely motionless, its ears pointed forward and its gaze directed
towards the mouse. 32 During these periods the EEG in both the somatosensory
cortex and ventrobasal thalamus showed a pronounced spectral peak at 35-40 Hz
that was coherent between the two structures (Figure 35). These data provided one
of the first clear demonstrations of thalamocortical synchrony at a frequency range
above that observed in spindle activity and in the alpha rhythm. Subsequently these
high-frequency rhythmic activities in the cat have been localized to several areas of
the somatosensory cortex33 and have been found to depend on dopaminergic input
from the ventral midbrain for their occurrence. 139

A similar form of synchronous high-frequency rhythmic activity has recently
been observed in the motor cortex of alert macaque monkeys. In studies by two
groups, field potentials49' 77 ,'144' 145 and multiple unit activity144' 145 were recorded
from a number of electrodes simultaneously in different regions of the motor cor-
tical map. In one study, activity was also recorded from the adjacent somatosen-
sory cortex. 144 The animals were trained to perform a stereotyped motor task as
well as to perform fine voluntary movements of the hands in the absence of vi-
sual guidance. 144 During the periods prior to execution of the trained task, activity
of 25-35 Hz was readily apparent in both the field potential and less so in the
unit activity. Correlation measurements revealed that the field potentials were syn-
chronous over distances spanning up to 10 mm in motor cortex.7 7 '1 4 These signals
were found to rapidly abate during the onset and execution of the movement. If,
however, the animals were allowed to extract a raisin from a Kluver board with-
out the benefit of visual guidance, a task requiring significant attention, the 25- to
35-Hz activity increased in amplitude, and synchrony could be observed within the
motor cortex as well as between the motor and somatosensory cortex (Figure 36),
a distance approaching 20 mm in the macaque.144"145

I
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FIGURE 36 Local field potentials recorded simultaneously in five anterior-posterior
tracks separated by 2 mm each. Electrode sites, marked on the sketch of the cortical
surface (lower left), straddled the central sulcus. Averages of the local field potentials
aligned on triggers from oscillatory cycles in trace 1. The monkey was reaching for a
raisin offered to the side of its head by the experimenter. (See Figure 4 of Murthy and
Fetz,144 "Coherent 25-35 Hz Oscillations in the Sensorimotor Cortex of the Awake
Behaving Monkey," Proc. Nati. Acad. Sci. 89 (1992): 5670-5674.) Reprinted by
permission.

These data suggest a possible role of synchronous activation of motor and so-
matosensory cortex during the preparation of planned movement. The clear abate-
ment of the rhythmic activity during the execution of a trained motor act suggests
that such activity plays little or no role in learned or overtrained movements. How-
ever, during novel tasks requiring a degree of attention, the rhythmic activity is
highly synchronous over large regions of somatomotor cortex. Thus, among a num-

ber of possible interpretations, it is conceivable that in novel situations the somato-
motor cortical map requires a higher degree of temporal coordination in order to
execute previously unlearned movements.
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CONCLUSIONS

It is clear from the foregoing discussions that synchronized rhythmic activity is
a general property of neuronal systems in the mammalian brain. Such activity
occurs in a number of different systems, over a range of spatial and temporal scales,
during different behavioral states and can be generated by a variety of different
mechanisms. At present, the functional significance of such coherent macroscopic
states of activity is largely a matter of speculation. And the degree to which these
states of activity can be related to particular functions depends on the system under
study.

It does appear, however, that the generation of rhythmic activity patterns in
groups of neurons can often arise from what otherwise seem to be mechanisms
for maintaining stability. For instance, excitatory neurons in the nervous system
are almost invariably connected to inhibitory cells. This is a simple and obvious
requirement for maintaining stability and preventing runaway excitation. The result
of such an anatomical arrangement is often the appearance of rhythmic discharge
patterns, a result well known to neuronal network modelers. 66' 10 4 ,17 6 ,20 1,20 4 The
time course of transmission through the negative feedback circuit determines the
frequency of oscillation.66

At the cellu * - vel, there is a similar requirement for stability. Excitatory
conductances such as fast sodium, persistent sodium, and low- and high-threshold
calcium are often accompanied by inhibitory conductances such as delayed rectifier,
A current, and calcium-dependent potassium currents. The interplay of these con-
ductances constitute negative feedback circuits at the membrane level that often
give rise to intrinsic oscillatory behaviors. 11,18,121,124,173,182

It comes as no surprise then that the nervous system should exhibit a wide range
of oscillatory phenomena expressed at the level of single cells and local networks of
cells. The question then arises as to whether such oscillatory activities are simply
epiphenomena reflecting the physiological characteristics of neural structures, al-
ternatively, has the nervous system taken advantage of a class of ubiquitous neural
mechanisms for specific functional purposes? The fact that oscillatory activities are
often associated with or give rise to global macroscopic states of synchronous ac-
tivity related to specific behaviors lends support to the latter alternative. Perhaps
then evolution has taken advantage of the ubiquitous nature of rhythmic activity
in the nervous system and has utilized it as a means for forming large-scale coher-
ent patterns of activity. Such patterned states of activity, once they are formed,
may have emergent computational capacities that vastly exceed their component
neuronal elements. Most functional tasks performed by the nervous system appear
to require a means for the integration of information distributed in both space and
time. As suggested by anatomy,58 this requires in turn that large populations of
neurons act in concert. Neuronal rhythms may simply be a useful mechanism for
dynamically grouping populations of cells into organized assemblies.
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Better Than the Best:
The Power of Cooperation

We show that when agents cooperate in a distributed search problem, they
can solve it faster than any agent working in isolation. This is accomplished
by having agents exchange hints within a computational ecosystem. We
present a quantitative assessment of the value of cooperation for solving
constraint satisfaction problems through a series of experiments. Our re-
sults suggest an alternative method to existing techniques for solving these
problems in computer science and distributed artificial intelligence.

1. INTRODUCTION
The development of parallelism in computation allows a number of agents to share
the work required to solve computational problems. The potential speedup offered
by this approach has led to a large effort devoted to the design of parallel algorithms
and architectures. In spite of its obvious advantages however, the effective use of
concurrency is fraught with difficulties. Most of these difficulties stem from the fact
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that the experience gained from programming single processor machines cannot be
simply extrapolated to large number of computational agents, because parallel com-
puting involves a number of new issues: how tasks can be usefully divided among
many agents, how one program can exploit the knowledge generated by another,
and how the agents can communicate efficiently with each other. These issues are
particularly important for large-scale distributed processing in which individual
agents operate largely without central controls. If the task is easily decomposed
into fairly independent subtasks, requiring little communication, a parallel imple-
mentation is relatively easy. However, this is not always possible and eliminates the
possibility of using communication to significantly help with individual subtasks.

Some insights into how these issues can be effectively addressed for more com-
plex cases can be gaind from studying the way human societies solve problems of
collective interest. Aitr ough the individuals differ from these computational agents
in many important aspects, they nevertheless face the same general problems of
coordination and communication described above. In human societies, the benefit
of cooperation underlies the existence of firms, scientific and professional commu-
nities, and the use of committees charged with solving particular problems. Often
groups of people can solve a problem more effectively than any single individual act-
ing alone. This suggests implementing, in a computational context, the mechanisms
that seem to work among humans.

The existence of computational ecologiesi° provides a natural framework for
these methods because they share a number of key features in common with human
societies. These include asynchronous independent agents that solve problems from
their local perspective involving uncertain and delayed information that they can
retrieve from the system. A number of attempts at collective problem solving from
this perspective have been made. These include work by several authors who have
pointed out the beneficial effects of cooperation on hard problems by constructing
models in which agents cooperate to accomplish a task.2' 5'8 "14,19

In a computational context, cooperation involves a collection of agents that in-
teract by communicating information, or hints, to each other while solving a prob-
lem. The most natural way to think of cooperation is as a collection of independent
processes, possibly running on separate processors. However, it is always possible
to have a single computational process that, in effect, multiplexes among the pro-
cedures followed by this diverse set of agents. In this way, a single agent could also
obtain the benefit of cooperation discussed here. This ability of one computational
process to emulate a collection of other processes is quite distinct from other cases
of cooperation, e.g., human societies, where individuals have different skills that
are not easily transferred to others. Most important to increasing in performance
is the diversity of approaches available by having many agent processes.

The information exchanged between agents may be incorrect at times and
should alter the behavior of the agents receiving it. An example of cooperative
problem solving is the use of a genetic algorithm 6 to find states of high value in
some space of possibilities. In a genetic algorithm, members of a population of states
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exchange pieces of themselves or mutate to create a new population, often contain-
ing states of high value. In a neural network, the output of one neuron affects the
behavior of the neuron receiving it.

We will concentrate on a particular type of computational task-searching, an
important general task arises that when no algorithmic method is known for directly
constructing a solution. Instead, one must examine a large number of alternative
candidate states to identify a satisfactory solution. Typically, the number of con-
sidered states grows exponentially as larger problems are considered, making these
problems considerably more difficult than many numerical operations such as lin-
ear algebra or solution of differential equations whose computational cost generally
grows as a low-degree polynomial as problems scale up. Because of the huge number
of considered states in a search, many heuristic methods have been developed to
guide the selection of states. While not always correct, they can considerably reduce
the time required to find a solution, by guiding the search toward states that are
more likely to lead to solutions. Most heuristics are meant to improve individual
searches. By contrast, the cases that we will discuss highlight the potential of coop-
erative methods that can be thought of as heuristics in which information obtained
by one agent is used to guide the search of another. We also present a number of
more practical issues that arise in applying cooperation to problems in computer
science and distributed artificial intelligence. 5

As a concrete illustration of the value of cooperation for the search, we solve
discrete constraint satisfaction problems in which values from a finite set must be
assigned to a finite set of variables such that a number of conditions (the con-
straints) are satisfied. Constraint satisfaction problems lie at the heart of human
and computer problem solving.13,16,1 8 Examples are scheduling, navigating through
"a maze, and crossword puzzles, to name a few. A complete state in the search is
"a set of assignments for all the variables and a partial state has only some of the
variables assigned.

To evaluate the usefulness of cooperation in computational problems, we ex-
amine its behavior for two specific problems. At one extreme, a cryptarithmetic
problem with a simple individual search method shows how even very simple meth-
ods can benefit from an exchange of information. By contrast, our second example,
graph coloring, is a computationally hard problem that illustrates how simple hints
can be used in conjunction with an effective heuristic search method.

2. COOPERATIVE SEARCHES
The success of cooperation may be explained by observing that hints change the
way different agents find the solution by combining these hints with their own
current state. Although not always successful, those cases in which hints do combine
well allow the agent to proceed to a solution by searching in a reduced space of
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possibilities. Even if many of the hints are not successful, this results in a larger
variation of performance and hence can still improve the performance of the group
when measured by the time it takes for the first agent to finish.

The speed at which an agent can solve the problem depends on the initial
conditions and the particular sequence of actions it chooses as it moves through a
search space. This sequence relies on the knowledge, or heuristics, that an agent
has about which state should be examined next. The better the agent uses the
heuristics, the quicker it will solve the problem. When many agents work on the
same problem, this knowledge can include hints from other agents suggesting where
solutions are likely to be.

Cooperative search methods are based on modifying individual search meth-
ods. A useful distinction is whether a method is complete or incomplete. Complete
methods systematically examine states and are guaranteed to either eventually find
a solution or terminate when no solution exists. By contrast, incomplete methods
explore more opportunistically and may miss some states in the search space; hence,
they can never guarantee that a solution does not exist. For parallel searches, a fur-
ther issue is whether to split the search space among the agents. In the simplest
case, each agent examines the entire search space. However, this can mean a single
state is examined by more than one agent during the search. This can be avoided
by partitioning the search space into disjoint parts and assigning one to each agent.
In this partitioned search, agents only examine states in their assigned part of the
space, thus avoiding unnecessary duplicate examination of the states. Restricting
each agent to examine a state at most once and partitioning the search space so that
a state is not examined by more than one agent improve performance somewhat,
but far less than the enhancement due to cooperation. 3

2.1 THE USE OF HINTS

There are a number of search methods an individual agent can use to solve a
problem, as well as a variety of methods for combining the partial information
obtained from other agents. These choices determine if hints build on each other
and, if so, how the search improves.

2.1.1 SEARCHING WITH COMPLETE STATES. The most straightforward search
method is "generate and test." In this case, at each step an agent generates a
complete state and tests whether it is a solution. This generation can be done in
a simple pre-specified order or new states can be generated randomly. In random
generation, states can be selected completely at random (which we refer to as ran-
dom selection with replacement) or the selection can be made only from states that
have not yet been examined. The latter case avoids some unnecessary searching and
guarantees the search will terminate after all search states are examined, but does
introduce an additional requirement of storing previously examined states and the
cost of checking that they are not subsequently generated.
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FIGURE 1 (a) Illustration of the tree-structured search space resulting from three
variables, v 1 , v2 , and v3 , (corresponding to the nodes in the tree) each with two
possible values (corresponding to the branches). Searches generally start at the top
of the tree and examine successive branches until a complete state (corresponding to
a leaf, at the bottom of the tree) that satisfies the constraints is found. (b) The pruning
of the search tree for the constraint problem {v, $4 v2 , v2 54 v4 }. The crosses indicate
those states that violate one or more of the constraints. The arrows point to the leaves
corresponding to solutions, i.e., {v1 = 1, v2 = 2, v3 = 1} and {vl = 2, v2 = 1, v3 = 2}.

Other restrictions on the generation of new states are possible as well. For
instance, the assignments to all the variables can be replaced in one step (which
we refer to as "jumping" around the search space) or some assignments can re-
main unchanged, with the extreme case being a change to only a single assignment
("walking"). Walking rather than jumping through the space preserves the property
that an agent near or far from a solution is still fairly near or far after one step.

There are more sophisticated methods that share the same basic strategy, i.e.,
start from some randomly selected initial state and attempt to make a series of zero
or more small adjustments to the state, attempting to satisfy all the constraints.
If these adjustments do not produce a solution, a new initial state is selected.
Examples of this strategy include simulated annealing,12 heuristic repair,' 7 and
simple hill climbing. By contrast, generate and test makes no adjustments and
simply tests the initial state itself.

With this search strategy, if hints are only used to guide the selection of the
initial state and each new hint completely overwrites the old state, there will be
no build up of progress from one hint to another. Alternatively, if the new hint
modifies just part of the state, then successive hints could correspond to a kind of
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random walk in the state space in which there is (at least for the lucky agents) an
overall bias to move successive initial states closer to a solution that is eventually
found by the local adjustments.

2.1.2 CONSTRUCTING SOLUTIONS FROM PARTIAL STATES. Other search methods
rely on a more systematic exploration of the space, attempting to construct a com-
plete solution by incrementally extending partial solutions. Combined with some
backtrack scheme when further progress is impossible, such a hierarchical construc-
tion of a solution, allows for pruning regions of the search space that would be
unproductive. With this depth-first search method, some ordering of the variables
is selected (e.g., either fixed in advance or chosen randomly) and partial states are
constructed using this ordering until a full solution is found or enough assignments
are made to violate one of the constraints, indicating that no solution corresponds
to this partial state. Where these constraint violations occur well before all assign-
ments have been made, backtracking avoids a considerable amount of unnecessary
search.

A simple illustration of the resulting tree-structured search is shown in
Figure 1 (a). Specifically this is for a constraint problem with three variables, v1, v2,

and V3 , each of which can be value 1 or 2. The nodes in the tree represent the
variables, and the links from a node represent the two choices for the values to
assign to that node's variable (corresponding to the value 1 for the left branch and
2 for the right branch). The leaves of the tree correspond to complete search states
in which each variable has a value. For example, the leftmost leaf corresponds to
the assignments {v 1 = 1,v 2 = 1,1v3 = 1}. Partial states, in which some variables
are not assigned, are found higher in the tree (in the ordering illustrated, v, is
assigned first, v2 next, and v3 last). Adding consideration of these partial states
means that these search methods could potentially examine more states than the
those that use only complete states. However, this increase i.- ';otal states is usually
more than offset by the ability to prune, high in the tree, many states at one time.
This pruning is illustrated in Figure l(b) for the constraints {vl # v2, v2 - v3 }; i.e.,
the values for the first two variables, and the last two, are required to be different.
For example, the leftmost pruned node is due to the partial state {vI = 1, V2 = 1}
that already violates the first constraint so there is no need to consider possible
values for the third variable.

These basic methods can be improved with the use of heuristics to guide the se-
lection of states. An important class of heuristics uses information obtained in prior
steps of the search. Such heuristics are readily modified for cooperative search and
allow us to directly evaluate the effect of cooperation. Specifically, in a noncooper-
ative search, an agent using such a method could only use information that it had
found previously, while cooperative search also allows the agent to use information
found by others.

Hints can naturally be used to guide the ordering of backtrack choices, which
can be viewed as moving in a tree structure. When a hint gives the correct choice
for an agent, the remaining choices, in effect, are pruned. More gen, illy, these
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hints can give large partial solutions from other regions of the search space. This
is the case, for example, when putting together a puzzle by working on different
regions and then combining them. Genetic algorithms are another instance of this
general strategy.

2.1.3 DIVERSITY. A more interesting possibility is to have a group of agents use
different search methods. Such diverse communities are particularly well suited
for the use of cooperation since r particular agent may not be able to utilize all
the information it generates, whereas another agent using a different strategy can.
For example, a systematic backtrack search method rapidly may find promising
regions of the search space but take a long time to finally reach a solution when
some changes to choices made early in the backtracking are required. This could
be quickly fixed by other methods that make adjustments opportunistically with
no prespecified ordering. Thus the exchange of information among methods can
improve performance beyond that possible without cooperation.

The effectiveness of these hints will depend on the search choices made by the
agents. For example, as the search progresses, agents may find better partial solu-
tions so that hint quality increases over time. Conversely, as agents get near the
solution, hints become less important since they will tend to duplicate partial solu-
tions already found or, in fact, incorrect hints may even become more detrimental.

2.2 IMPLEMENTATION ISSUES

From this general discussion of using hints with various search methods, we now
turn to a number of implementation issues and how they were resolved in our
experiments. From the many ways to address these issues, we made fairly simple
choices. We can expect further improvements from more sophisticated use of hints,
but the choices made here illustrate the potential of this method and have many
direct correspondences with a wide range of constraint satisfaction problems. As
a note of caution in developing more sophisticated strategies, the choices made
should tend to promote high diversity among the agents 7

,
9 so there will be many

opportunities to try hints in different promising contexts. This means that when
viewed from the perspective of a single agent, some choices that appear reasonable
could result in lowered performance for the group as a whole.

2.2.1 COOPERATIVE SEARCH. There are two basic steps in implementing a cooper-
ative search based on individual algorithms. First, the algorithms themselves must
be modified to enable them to produce and incorporate information from other
agents, i.e., read and write hints. We should note that the first step, in itself, may
change the performance of the initial algorithm or its characteristics (e.g., changing
a complete search method into an incomplete one). Since this may change the ab-
solute performance of the individual algorithm, a proper evaluation of the benefit
of cooperation should colmpare the behavior of multiple agents, exchanging hints,
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to that of a single one running the same, modified algorithm but unable to commu-
nicate with other agents. In that way, the effect of cooperation, due to obtaining
hints from other agents, will be highlighted.

In the second step, decisions as to exactly what information to use as hints,
when to read them, etc. must be made. The hints consist of any useful information
concerning regions of the search space to avoid or that are likely to contain solutions.
A simple choice for constraint satisfaction problems is to use partial solutions, i.e.,
partial states whose assignments do not violate any constraint. We must also specify
the organizational structure, i.e., which agents communicate with each other. In
our experiments, all hints were written to a central bi .:board, so each agent could
access the results of any other agent. Hierarchical organizations more suitable to
larger populations have also been studied.3

The next major question is: during its search when should an agent produce
a hint. Generally, agents should tend to write hints that are likely to be useful in
other parts of the search space. Possible methods include only writing the largest

partial solutions an agent finds (i.e., at the point it is forced to backtrack) or only
the hints comparable in size to those already on the blackboard.

Another set of complementary questions concerns when an agent decides to read
a hint from the blackboard, which one it should choose, and how it should use the
information for its subsequent search. Once again, a number of reasonable choices
have different benefits in avoiding search and costs in their evaluation, as well as
more global consequences for the diversity of the agent population. For instance,
agents could select hints whenever a sufficiently good hint is available, whenever
the agent is about to make a random choice in its search method (i.e., use the

hint to break ties), or whenever the agent is in some sense stuck, e.g., needing to
backtrack, or at a local optimum of a hill-climbing search method. For deciding
which available hint to use, methods range from random selection 2 to picking one
that is a good match, in some sense, to the agent's current state.

A final issue concerns the memory requirements for the hints. To avoid the
potential of an unbounded growth in the size of the blackboard, one can limit the
number of hints it could store. Once this limit is reached, some hints have to be
discarded. For our experiments, the oldest (i.e., added to the blackboard before any
others) of the smallest (i.e., involving the fewest assignments) hints were overwritten
with new hints. We found that relatively small blackboards were sufficient to obtain
significantly better performance than the independent searches.

2.2.2 PERFORMANCE MEASUr-S. Before turning to our experimental comparison
of cooperating and noncoop .- ing agents, we must specify how the performance
of a group of agents is to be measured. The appropriate performance measure
depends on the nature of the problem. 3 In many cases, one is interested in finding
"a single solution to the problem and each agent is individually capable of finding
"a complete solution. This means that the search is complete as soon as one agent
finds a solution. The appropriate overall performance measure then is just the time
required for some agent in the group to find a solution.
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As a simple performance criterion we use the number of search steps required
for the first agent to find a solution. However, we should note that this ignores
the additional overhead involved in selecting and incorporating hints. Including
such costs in simple cases doesn't change the qualitative observation of coopera-
tive improvement. 3 Whether this remains true for the more sophisticated search
methods remains open and is ultimately best addressed by comparing execution
times of careful implementations of the algorithms. Moreover, an actual parallel
implementation would also face possible communication bottlenecks at the central
blackboard though this is unlikely to be a major problem with the small black-
boards considered here due to the relatively low reading rate and the possibility

of caching multiple copies of the blackboard which are only slowly updated with
new hints. Nevertheless, the improvement in the number of search steps reported
below, and comparisons of the execution time of our unoptimized code, suggest the
cooperative methods are likely to be beneficial for large, hard problems.

3I CRYPTARITHMETIC
For our first example, we consider a simple search method, used in the familiar
problem of solving cryptarithmetic codes. These problems require finding a unique
digit assignment to each of the letters of a word addition so that the numbers
represented by the words add up correctly. An example is this sum: DONALD +
GERALD = ROBERT, which has one solution given by A = 4, B = 3, D = 5,
E = 9, G = 1, L = 8, N = 6, 0 = 2, R = 7, and T = 0. In general, n letters yields
10' possible states. However, the requirement of a unique digit for each letter means
that there are (n) ways to choose the values and n! ways to assign them to the

letters, which reduces the total number of search states to n!() 10!/(10 - n)!.

Thus the above example, which has 10 letters, has 10! states in its search space.
Solving a cryptarithmetic problem involves performing a search. Although

clever heuristics can be used to rapidly solve the particular case of cryptarithmetic, 15

our purpose is to address the general issue of cooperation in parallel search using
cryptarithmetic as a simple example. Thus we focus on simple search methods,

without clever heuristics that can lead to ( uick solutions by a single agent. This is
precisely the situation faced with more complex constraint problems where searches
remain long even with the best available heuristics.

The basic search paradigm we have used in the cryptarithmetic problem is "ran-
dom generate and test with replacement." We used hints consisting of letter-digit
assignments in columns that add correctly. These hints were posted to a blackboard.
Agents used the available hints to select their next state. In a noncooperative search,
an agent using this method could use only hints that it had previously found so
each agent had a separate blackboard. Cooperative search allowed the agent also
to use hints found by others, using a single blackboard.
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For each search step, an agent chooses a hint randomly from the blackboard and
replaces assignments in its current state with those specified by the hint. If there
are no hints, it chooses a random letter-digit assignment using random generate and
test. Once the agent obtains the new state, it generates and posts all possible hints
from its state, if any. Thus, assignments that work for more than one column are
posted as several different hints. When random states are generated by jumping,
rather than single-letter replacements, there is a greater possibility of generating
more hints faster but at the expense of frequently overwriting partially correct
states.

As an example of this search method, consider an agent solving the problem
AB+AC = DE. This problem has 10!/5! = 30,240 possible states and 144 solutions
(determined by exhaustive search). In the first step, each agent selects a random
set of letter-digit assignments such that no digit is assigned to more than one
letter. Suppose the letter-digit assignments, or state, of the first agent are A = 4,
B = 2, C = 7, D = 3, and E = 9. In this case the assignments do not coirespond
to a solution since 42 + 47 does not equal 39. However, the rightmost column,
B+C = E(2-+-7 = 9), does add up correctly so that the agent's state is partially (or
locally) correct. Partial correctness includes cases where a carry has been brought
over from the previous column or may be sent to the next column. Note that
although a particular column may be locally correct, it may not lead to a solution.
In this example, the agent has one column correct (three letters: B, C, and E). If
these letter assignments do lead to a solution, then there are only two letters that
need to be assigned from seven possible choices. Thus the agent went from a search
space of size 30,240 to one of 7!/5! = 42 states, a reduction by a factor of nearly
1,000. In a cooperative search, this reduction could also be used by other agents,
perhaps in other regions of the search space where this hint is more successfully
used.

3.2 RESULTS

As a specific case, we examine the effect of cooperation for groups of 100 agents
solving the problem WOW + HOT = TEA. This problem, with six distinct letters,
has 151,200 search states and 82 different solutions. The comparative performance
of cooperation is shown in Table 1.

It also worthwhile to note the effect of cooperation as the problems become more
difficult. One way of measuring the difficulty of problems is by the ratio of the num-
ber of states in the search space, T, to the number of solutions, S. Table 2 shows
the relative speed for the first finisher of 100 agents for four problems of vastly
different complexities. The data for the cooperative case came from experiments
while the behavior of the noncooperative case was obtained theoretically 3 by not-
ing that each random-generate-and-test step has probability SIT to find a solution.
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TABLE 1 Average performance of 10 trials of 100 agents solv-
ing WOW + HOT = TEA for different search methods. The
relative time is the average time required for the first agent of
the group to find a solution, divided by the average time re-
quired for the cooperative case. The relative deviation is the
standard deviation in the time to first solution divided by the
average time for each method. The benefit of cooperation, i.e.,
sharing hints among the agents, is shown by the comparison
between the cooperative case and the case where the agents
used the same method, i.e., had memory, but did not share it.
For comparison the last row shows the theoretical performance
of the unmodified random-generate-and-test method.

search method relative time relative
deviation

cooperative 1 .87
independent, with memory 7.5 .49
independent, no memory 23.9 1

TABLE 2 Scaling of cooperative performance for cryptarithmetic problems of increasing
difficulty for 100 agents. The second column comparing the ratio of speeds, the cooperative
search to independent agents with no memory, represents an average over about 100 trials
for the first three cases and a few trials for the last case. (Note that the entry for the second
problem is 45 compared to 23.9 of Table 1; this was from a separate run of the experiment
and indicates the degree of statistical fluctuation in the cooperative search.) The fourth
column shows the range in the fraction of hints on the final blackboard that were subsets
of some solution for some of these cooperative searches. Typically these were added just
before the end of the search by the agent that found the first solution.

Problem ratio of TIS Fraction of hints
speeds that are subsets of

solutions

AB + AC = DE 7 210 0.9 -1.0
WOW + HOT = TEA 45 1844 0.5 - 0.6
CLEAR + WATER = SCOTT 145 181440 0.1 - 0.2
DONALD + GERALD = ROBERT 315 3628800 0.004
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Note that as the problem becomes more difficult the importance of cooperation and
use of memory in speedup is increased. The relative increase becomes even more
startling when one considers that the fraction of hints posted on the blackboard that
are subsets of any of the solutions (not necessarily the one found first) decreases
as the problems become more complex. Thus the high performance is due to some
agents finding combinations of hints that lead to solutions even though the full
hints are rarely part of a solution.

Another way of studying the effect of cooperation vs. problem complexity is to
vary the effectiveness of the search performed by the agent itself, i.e., the self-work,
without utilizing the hints from the other agents. For example, suppose that, when
the agents are not using hints, they perform a depth-first backtrack search, each
using a randomly selected ordering of the variables. During the depth-first search
the agents have the opportunity to prune partial states that do not lead to any
solution. For example, if some columns do not add up correctly, there is no point
in considering assignments to uninstantiated letters for this state. Whenever a hint
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FIGURE 2 Cooperation works best for harder problems. The plot shows the average
time to the first solution for 100 agents solving the AB + AC = DE as a function of
the probability of pruning, P(bt), a state that is known not to lead to a solution. The left
side of the plot corresponds to "hard" problems where pruning of the search space is
very poor and the right side of the plot corresponds to *easy" problems where pruning
is very effective. The light line, for the case of noncooperating agents, is a depth-first
search. The dark line is for the case where the agents spend 80% of their time doing
depth-first self-work and 20% cooperating, i.e., using hints from the blackboard. The
lines show the best linear fits to the data. The data points correspond to the average
solution time from 50-100 runs. The error bars are thf error of the mean.
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is used, it overwrites the current partial state in the same manner as for the agents

using simple generate and test, so that there may be large jumps through the search
space and the resulting search is no longer complete. We can simulate the effect of
this pruning by probabilistically pruning partially assigned states that are known

not to lea- to a solution. (We can do this with cryptarithmetic by generating all the
solutions ahead of time.) When the probability of pruning is small, this corresponds
to difficult problems because the agents must instantiate nearly all the letters of an

incorrect assignment before pruning. The results of this study, shown in Figure 2,

show the greater relative importance of cooperation for harder problems.

In summary, these results show the value of cooperation in solving a relatively
easy constraint satisfaction problem using simple search methods. One question
remains: how can this method be used in solving harder problems.

4. GRAPH COLORING
The distinction between easy and hard problems is important in determining the
feasibility of computations, and a great deal of research has been devoted to it.4

An important distinction among problems is based on how rapidly the number of

elementary operations required to solve them increases as the problems scale up
to larger instances, particularly whether the scaling is dominated by polynomial

or exponential growth. An elementary operation could typically be an arithmetic

operation for a numerical problem or an examination of a single state in a search

problem.
A surprising result is that sometimes the difference between these classes of

problems is extremely subtle. For instance, consider two given nodes of a graph,

which consists of a number of nodes and links between them. The problem of

deciding whether there is a path between them, i.e., a series of distinct linked
nodes that connect the two given nodes, whose total length is less thian a given

bound M can be solved in polynomial time with respect to the number of nodes in

the graph. On the other hand, the similar problem of whether there is a path with
length greater than M has no known solution in polynomial time. However. if one is

given a path whose length is claimed to be larger than M so that such a path exists,

an algorithm will quickly verify that the answer is correct; it counts the links in the

path and checks that the length is indeed larger than M. This procedure operates

in linear time in the length of the path which in turn is no more than the total

number of nodes in the graph. This is an example of a simple yes-or-no problem in

which an affirmative answer can be verified in polynomial time, even though there

may be no way to actually construct the answer readily.

Such problems are said to belong to the class NP (for nondeterministic poly-

nomial). Conceptually, these problems can be rapidly solved by a nondetcrministic

algorithm, i.e., one that can somehow guess the correct answer, and then rapidly
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verify it. Actual implementations, however, are deterministic and appear to be un-
able to solve the problem in polynomial time. Note that NP includes all problems
in P, the class of problems for which there is a deterministic polynomial time algo-
rithm. Whether NP is in fact the same as P remains an open question.

Although the class NP is based on the ability to easily verify solutions, it also
can be shown to include many optimization problems whose solutions would seem
more difficult to check. For instance, corresponding to the path problems men-
tioned above are the optimization problems of determining the shortest and longest
paths between the vertices, respectively. The shortest path can be found in polyno-
mial time, but there is no known rapid solution (i.e., short of checking all possible
paths) for determining the longest one. In the latter case, being given a path that is
claimed to be the longest is difficult to directly verify since not only its length must
be determined-it must also be compared to all other possible paths. However,
this latter problem does in fact belong to NP because it can be transformed into
a series of verifiable problems involving specified bounds on the lengths such that
the total time to verify all the subproblems is still polynomial. Another example of
such a problem is the travelling salesman problem, in which a collection of cities

(9

FIGURE 3 A graph with nine nodes of three colors (black, gray, and white) such that
no two adjacent nodes have the same color.
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and distances between them is given, and the task is to find the shortest path that
visits each city. Among the problems in the class NP, some are known to be at least
as hard, up to a polynomial factor, as any other problem in the class. In this sense,
these so-called NP-complete problems constitute the most difficult problems in NP.
As far as currently known, the solution cost grows exponentially in the worst case
as the size of the problem increases.

As our second example of cooperative search, we consider the NP-complete
problem of graph coloring. The problem consists of coloring the nodes in a graph,
from a limited set of colors, such that no two adjacent nodes (i.e., nodes linked by
an edge in the graph) have the same color. An example of a colored graph is shown
in Figure 3. Graph coloring has received considerable attention and a number of
search methods have been developed. 11 Paradoxically, although some graphs are
very hard to color, among graphs of a given size, there is considerable variation in
the difficulty of finding a solution, and most of them can be colored (or determined
to have no coloring) quite rapidly with existing heuristic methods.

For this problem, the average degree of the graph -f (i.e., the average number
of edges coming from a node in the graph) distinguishes relatively easy from harder
problems, on average. For the case of three-coloring, (i.e., when three different col-
ors are available) which we focus on in this paper, the region of hardest problems
is empirically observed to occur near -y = 5.1 We used the Brelaz search heuristic"
which effectively finds colorings by assigning the most constrained nodes first (i.e.,
those with the most distinct colored neighbors) and breaking ties by choosing nodes
with the most uncolored neighbors (ties that remain after applying this criterion
are broken randomly). For the chosen node, the smallest available color is exam-
ined first, with successive colors considered when the search is forced to backtrack.
For the graph shown in Figure 3, this heuristic would first color the central node
with four neighbors, then randomly select one of those neighbors to color (since
after the first node is colored, each of its neighbors will have the same number
of uncolored neighbors), etc.; this continues until a complete coloring is found o,
the search is forc--' to backtrack because no consistent coloring is possible for the
next node select . By focusing attention on the most constrained nodes first, this
will generally rapidly determine if a proposed partial coloring is inconsistent, thus
pruning unproductive searches high in the tree and avoiding substantial wasted
effort. This heuristic is considerably more efficient than simple generate-and-test or
backtracking with a random ordering of the nodes.

To generate a collection of hard problems, we examined a large number of
random graphs. Trivial cases with underconstrained nodes were removed by en-
suring each node had at least three edges. Notice that nodes with fewer edges are
underconstrained in that they can always be colored differently from the nodes
they are linked to when there are three available colors. The resulting graphs were
searched repeatedly with the Brelaz heuristic, and only those with high search cost
were retained. Moreover, to correspond with the cooperative methods used for the
cryptarithmetic example and to simplify the use of hints, we considered only graphs
that had solutions. In addition to high average cost for solution with the Brelaz
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heuristic, these graphs also had a large variance in the cost of repeated searches
due to different choices made at tie points. This variance gives rise to improved
performance by multiple independent searches in parallel, stopping when the first
one finishes. The experiments reported here show the additional benefit from ex-
changing hints.

At any point in a backtracking search, the current partial state is a consistent
coloring of some subset of the graph's nodes. When writing a hint to the black-
board, the Brelaz agents simply wrote their current state. Specifically, each agent
independently wrote its current state at each step with a fixed probability q.

Each time the agent was about to expand a node in its backtrack search, instead
it would attempt, with probability p, to read a compatible hint from the blackboard,
i.e., a hint whose assignments: (1) were consistent with those of the agent (up to
a permutation of the colors)!1 and (2) specified at least one node not already
"assigned in the agent's current state. Frequently, there was no such compatible
hint (especially when the agent was deep in the tree and hence had already made
assignments to many of the nodes), in which case the agent continued with its own
search.

When a compatible hint was found, its overlap with the agent's current state
was used to determine a permutation of the hint's colors that made it consistent
with the state. This permutation was applied to the remaining colorings of the
hint and then used to extend the agent's current state as far as possible (ordering
the new nodes as determined by the Brelaz heuristic), thus retaining necessary
backtrack points so that the overall search remained complete. In effect, this hint
simply replaced decisions that the Brelaz heuristic would have made regarding the
initial colors for a number of nodes. Thus, this amounts to a fairly conservative use
of hints compared to the backtrack search for cryptarithmetic in Figure 2, where
hints overwrote the agent's state without retaining backtrack points.

4.2 RESULTS

The experimental results show the benefit of cooperation for giaph coloring using
a variety of search methods.8 In Figure 4, we compare the performance of a group
of ten independent and ten cooperative agents, all using the same Brelaz search
algorithm described above. We generated a set of graphs whose search cost was
one to three orders of magnitude more than the minimum possible. To highlight
the benefit of cooperation beyond that achieved with multiple runs of independent
agents, we compare the cooperative case with the same number of agents running

,l)We thus used the fact that, for graph coloring, any permutation of the color assignments for a

consistent set of assignments is also consistent.
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FIGURE 4 Performance of groups of ten cooperating agents using the Brelaz search
method on a range of graphs vs. the performance of a group of ten independent agents
using the same method. The performance values used for each graph are the median
over ten trials of the search steps required for the first agent in the group to find a
solution. For comparison, the line shows the performance of the independent agents. In
these experiments, the blackboard was limited to hold 100 hints, and we used p = 0.4,
q = 0.1, and graphs with 100 nodes.

TABLE 3 Extreme cases from Figure 4. Note that the search space for this prob-
lem has 3100 ; 5 x 1047 states, giving much larger values of T/S than for
the cryptarithmetic problems. The number of solutions was found by exhaustive
search. The fourth column shows the average size (i.e., number of colored nodes)
of the hints on t, blackboard at the time the solution was found. The fifth shows
the fraction that are subsets of a solution.

example independent T/S avg. hint size fraction of hints that
search cost are subsets of

solutions

A 3614 9 X 1042 64.2 0.02

B 985 7 x 1041 42.3 0.05
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TABLE 4 Performance for the examples, A and B, given in Table 3 for
different search methods. The relative time is the median time required
for the first agent of the group to find a solution, divided by the median for
the cooperative case. The relati•, : deviation is the standard deviation in
the time to first solution divided by the median time for each method. The
benefit of cooperation, i.e., sharing hints among the agents, is shown by
the comparison between the cooperative case and the case where the
agents used the same method, i.e., had memory but did not share it.
For comparison, the last row shows, the performance of the unmodified
backtrack using the Brelaz heuristic. Note that the deviations for this
backtrack search method are considerably smaller than for the generate-
and-test search used for the cryptarithmetic example.

relative time relative deviation
search method A B A B

cooperative 1 1 0.03 0.14
independent, with memory 1.6 2.7 0.03 0.05
independent, no memory 1.8 3.1 0.06 0.11

independently. Note that in both cases, cooperation gives better performance than

simply taking the best of ten independent agents. Moreover, cooperation appears to
be more beneficial as problem hardness (measured by the performance of a group
of independent agents) increases. We obtained a few graphs of significantly greater
hardness than those shown here confirming this trend.

As with cryptarithmetic, most hints on the blackboard are not subsets of so-

lutions. As an example, for two of the cases shown in Figure 4, Table 3 shows the
number of hints on the final blackboard (for a single run) that are subsets of so-
lutions. Note that unlike the cryptarithmetic case, here the blackboard is limited
to 100 hints. Finally, Table 4 shows the speedup obtained for some of the graph-

coloring cases. These are considerably less than those obtained from the simple
generate-and-test search with cryptarithmetic, but are comparable to the sneedup
obtained with the backtrack search shown in Figure 2.

Similar cooperative improvements are obtained for other search methods,8 in-
cluding heuristic repair,17 in which changes are made to complete colorings that
minimize the number of violated constraints, and a mixed group of agents in which

some use the Brelaz heuristic with backtracking, as described above, while others
use heuristic repair.
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5. DISCUSSION
We have shown how cooperating agents working toward the solution of a constraint
satisfaction problem can lead to a marked increase in the speed with which they
solve it compared to their working in isolation. A summary of the cases studied is
shown in Table 5.

In our implementation we defined hints in terms of information that moved the
agents toward a region of the space that could have a solution. Another possibility
is for hints to contain information that tends to move them away from regions that
can have no solutions. More generally, any search algorithm that agents may use will
have parameters that will affect the benefit of cooperation. Another consideration
is when are the hints most useful for problem solving. At the beginning of a problem
the hints provide crucial information for starting the agents off on a plausible course,
but usually they will be fairly nonspecific. Near the end of the problem however,
there are likely to be many detailed hints but of less relevance to the agents since
they may have already discovered that information themselves. This suggests that
typical cooperative searches will both start and end with agents primarily working
on their own and that the main benefit of exchanging hints will occur in the middle
of the search.

This work suggests an alternative to the current mode of constructing task-
specific computer programs that deal with constraint satisfaction problems. Rather
than developing a monolithic program or perfect heuristic, it may be better to have
a set of relatively simple cooperating processes work concurrently on the problem
while communicating their partial results. This would imply the use of "hint engi-
neers" for coupling previously disjoint programs into interacting systems that are
able to use each others' (imperfect) knowledge.

This new method may be particularly useful in areas of artificial intelligence
such as design, qualitative reasoning, truth maintenance systems, and machine
learning. Researchers in these areas are just starting to consider the benefits brought
about by massive parallelism and concurrency, and our work suggests the additional
benefits that could be obtained from cooperation.

In closing, we have seen how computational ecosystems can be used to solve
complex problems by exploiting the benefit of cooperation in a distributed context.
We believe this is just the beginning; one can envision systems where the demands
of a particular task will dynamically spawn new processes to work on promising
avenues while deleting those agents that are not making much progress. This will
require new programming methods for resource allocation in these systems. The
spread of these ecosystems will make it easier to pLogram them in order to use
cooperative methods for the solution of even harder problems.
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TABLE 5 Comparison of cooperative searcn methods used for cryptarithmetic and graph
coloring, except that the cryptarithmetic results shown in Figure 2 use simple backtrack
and only use hints on some of the search steps.

search problem cryptarithmetic graph coloring

individual method random generate and test backtracking using Brelaz
heuristic

blackboard size unlimited 100 hints, old ones over-
written with new ones

hints were partial digits for some letters that consistent colors for some
solutions added correctly nodes

when to write a hint whenever some columns randomly with probability
added correctly q = 0.1 at each step

when to read a hint every step when hint was randomly with probability
available p = 0.5 at each step a

compatible hint was
available

how to use a hint overwrite current state extend current state
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We describe a form of distributed computation in which agents have in-
complete knowledge and imperfect information on the state of the system,
and an instantiation of such systems based on market mechanisms. When
agents can choose among several resources, the dynamics of the system can
be oscillatory and even chaotic. A mechanism is described for achieving
global stability through local controls.

1. INTRODUCTION
Propelled by advances in software design and increasing connectivity of computer
networks, distributed computational systems are starting to spread throughout of-
fices, laboratories, countries, and continents. In these systems, computational pro-
cesses consisting of the active execution of programs can spawn new ones in other
machines as they make use of printers, file servers, and other machines of the net-
work as the need arises. In the most complex applications, various processes can
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collaborate to solve problems, while competing for the available computational re-
sources, and may also directly interact with the physical world. This contrasts with
the more familiar stand-alone computers, with traditional methods of centralized
scheduling for resource allocation and programming methods based on serial pro-
cessing.

The effective use of distributed computation is a challenging task, since the
processes must obtain resources in a dynamically changing environment and must
be designed to collaborate despite a variety of asynchronous and unpredictable
changes. For instance, the lack of global perspectives for determining resource al-
location requires a very different approach to system-level programming and the
creation of suitable languages. Even implementing reliable methods whereby pro-
cesses can compute in machines with diverse characteristics is difficult.

As these distributed systems grow, they become a community of concurrent
processes, or a computational ecosystem, 5 which, in their interactions, strategies,
and lack of perfect knowledge, are analogous to biological ecosystems and human
economies. Since all of these systems consist of a large number of independent actors
competing for resources, this analogy can suggest new ways to design and under-
stand the behavior of these emerging computational systems. In particular, these
existing systems have methods to deal successfully with coordinating asynchronous
operations in the face of imperfect knowledge. These methods allow the system as
a whole to adapt to changes in the environment or disturbances to individual mem-
bers, in marked contrast to the brittle nature of most current computer programs
which often fail completely if there is even a small change in their inputs or an
error in the program itself. To improve the reliability and usefulness of distributed
computation, it is therefore interesting to examine the extent to which this analogy
can be exploited.

Based on the law of large numbers statistical mechanics has taught us that many
universal and generic features of large systems can be quantitatively understood as
approximations to the average behavior of infinite systems. Although such infinite
models can be difficult to solve in detail, their overall qualitative features can be
determined with a surprising degree of accuracy. Since these features are universal
in character and depend only on a few general properties of the system, they can be
expected to apply to a wide range of actual configurations. This is the case when
the number of relevant degrees of freedom in the system, as well as the number
of interesting parameters, is small. In this situation, it becomes useful to treat
the unspecified internal degrees of freedom as if they are given by a probability
distribution. This implies assuming a lack of correlations between the unspecified
and specified degrees of freedom. This assumption has been extremely successful
in statistical mechanics. It implies that although degrees of freedom may change
according to purely deterministic algorithms, because they are unspecified, they
appear to be effectively random to all outside observer.

Consider, for instance, massively parallel systems which are desired to be robust
and adaptable. They should work in the presence of unexpected errors and with
changes in the environment in which they are embedded (i.e., fail soft). This implies
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that many of the system's internal degrees of freedom will be adjustable by taking
on a range of possible configurations. Furthermore, their large size will necessarily
enforce a perspective that concentrates on a few relevant variables. Although these
considerations suggest that the assumptions necessary for a statistical description
hold for these systems, experiments will be necessary for deciding their applicability.

While computational and biological ecosystems share a number of features, we
should also note there are a number of important differences. For instance, in con-
trast to biological individuals, computational agents are programmed to complete
their tasks as soon as possible, which in turn implies a desirability for their earliest
death. This task completion may also involve terminating other processes spawned
to work on different aspects of the same problem, as in parallel search, where the
first process to find a solution terminates the others. This rapid turnover of agents
can be expected to lead to dynamics at much shorter time scales than seen in
biological or economic counterparts.

Another interesting difference between biological and computational ecologies
lies: in the fact that for the latter the local rules (or programs for the processes)
can be arbitrarily defined, whereas in biology those rules are quite fixed. Moreover,
in distributed computational systems the interactions are not constrained by a Eu-
clidean metric, so that processes separated by large physical distances can strongly
affect each other by passing messages of arbitrary complexity between them. And
last but not least, in computational ecologies the rationality assumption of game
theory can be explicitly imposed on their agents, thereby making these systems
amenable to game dynamic analyses suitably adjusted for their intrinsic character-

istics. On the other hand, computational agents are considerably less sophisticated
in their decision-making capacity than people, which could prevent expectations
based on observed human performance from being realized.

By now there are a number of distributed computational systems that exhibit
many of the above characteristics and offer increased performance when compared
with traditional operating systems. Enterprise8 is a miarketlike scheduler where in-
dependent processes or agents are allocated at run time among remote idle worksta-
tions through a bidding mechanism. A more evolved system, Spawn, 12 is organized
as a market economy composed of interacting buyers and sellers. The commodities
in this economy are computer-processing resources, specifically, slices of CPU time
on various types of computers in a distributed computational environment. The sys-
tem has been shown to provide substantial improvements over more conventional
systems, while providing dynamic response to changes and resource sharing.

From a scientific point of view, the analogy between distributed computation
and natural ecologies brings to mind the spontaneous appearance of organized be-
havior in biological and social systems, where agents can engage in cooperating
strategies while working on the solution of particular problems. In some cases, the
strategy mix used by these agents evolves towards an asymptotic ratio that is con-
stant in time and stable against perturbations. This phenomenon sometimes goes
under the name of evolutionarily stable strategy (ESS). Recently, it has been shown
that spontaneous organization can also exist in open computational systems when
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agents can choose among many possible strategies while collaborating in the solu-
tion of computational tasks. In this case, however, imperfect knowledge and delays
in information introduce asymptotic oscillatory and chaotic states that exclude the
existence of simple ESS's. This is an important finding in light of studies which
resort to notions of evolutionarily stable strategies in the design and prediction of
an open system's performance.

In what follows we will describe a market-based computational ecosystem and
a theory of distributed computation. The theory describes the collective dynam-
ics of computational agents, while incorporating many of the features endemic to
such systems, including distributed control, asynchrony, resource contention, and
extensive communication among agents. When processes can choose among many
possible strategies while collaborating in the solution of computational tasks, the
dynamics leads to asymptotic regimes characterized by complex attractors. Detailed
experiments have confirmed many of the theoretical predictions while uncovering
new phenomena, such as chaos induced by overly clever decision-making procedures.

Next, we deal with the problem of controlling chaos in such systems, for we
have discovered ways of achieving global stability through local controls inspired
by fitness mechanisms found in nature. Furthermore, we show how diversity enters
into the picture, along with the minimal amount of such diversity that is required
to achieve stable behavior in a distributed computational system.

2. COMPUTATIONAL MARKETS FOR RESOURCE
ALLOCATION
Allocating resources to competing tasks is one of the key issues for making effective
use of computer networks. Examples include deciding whether to run a task in par-
allel on many machines or serially on one, and whether to save intermediate results
or recompute them as needed. The similarity of this problem to resource alloca-
tion in market economies has prompted considerable interest in using analogous
techniques to schedule tasks in a network environment. In effect, a coordinated so-
lution to the allocation problem is obtained using Adam Smith's "invisible hand." 10

Although unlikely to produce the same optimal allocation made by an omniscient
controller with unlimited computational capability, it can perform well compared to
other feasible alternatives. 1' 7 As in economics,3 the use of prices provides a flexible
mechanism for allocating resources, with relatively low information requirements:
a single price summarizes the current demand for each resource, whether proces-
sor time, memory, communication bandwidth, use of a database, or control of a
particular sensor. This flexibility is especially desirable when resource preferences
and performance measures differ among tasks. For instance, an intensive numerical
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simulation's need for fast floating-point hardware is quite different from an interac-
tive text editor's requirement for rapid response to user commands or a database's
search requirement for rapid access to the data and fast query matching.

As a conceptual example of how this could work in a computational setting,
suppose that a number of database search tasks are using networked computers
to find items of interest to various users. Furthermore, suppose that some of the
machines have fast floating-point hardware but are otherwise identical. Assuming
the search tasks make little use of floating-point operations, their performance will
not depend on whether they run on a machine with fast floating-point hardware.
In a market based system, these programs will tend to value each machine based
on how many other tasks it is running, leading to a uniform load on the machines.
Now suppose some floating-point intensive tasks arrive in the system. These will
definitely prefer the specialized machines and consequently bid up the price of those
particular resources. Observing that the price for some machines has gone up, the
databse tasks will then tend to migrate toward those machines without the fast
floating-point hardware. Importantly, because of the high cost of modifying large
existing programs, the database tasks will not need to be rewritten to adjust for the
presence of the new tasks. Similarly, there is no need to reprogram the scheduling
method of a traditional central controller, which is often very time consuming.

This example illustrates how a reasonable allocation of resources could be
brought about by simply having the tasks be sensitive to current resource price.
Moreover, adjustments can take place continually as new uses are found for par-
ticular network resources (which could include specialized databases or proprietary
algorithms as well as the more obvious hardware resources) that do not require
all users to agree on, or even know about, these new uses thas encouraging an
incremental and experimental approach to resource allocation.

While this example motivates the use of market-based resource allocation, a
study of actual implementations is required to see how large the system must be for
its benefits to appear and whether any of the differences between simple computer
programs and human agents pose additional problems. In particular, a successful use
of markets requires a number of changes to traditional computer systems. First, the
system must provide an easily accessible, reliable market so that buyers and sellers
can quickly find each other. Second, individual programs must be price sensitive so
they will respond to changes in relative prices aniong resources. This implies that
the programs must, in some sense at least, be able to make choices among various
resources based on how well suited they are for the task at hand.

A number of marketlike systems have been implemented over the years.,sll, 12

Most instances focus on finding an appropriate machine for running a single task.
While this is important, further flexibility is provided by systems that use market
mechanisms to also manage a collection of parallel processes contributing to the
solution of a single task. In this latter case, prices give a flexible method for allo-
cating resources among multiple competing heuristics for the same problem based
on their perceived progress. Thus it greatly simplifies the development of programs
that adjust to unpredictable changes in resource demand or availability. So we have
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a second reason to consider markets: not only may they be useful for flexible allo-
cation of computational resources among competing tasks, but the simplicity of the
price mechanism could provide help with designing cooperative parallel programs.

One such system is Spawn,12 in which each task, starting with a certain amount
of money corres) -,nding to its relative priority, bids for the use of machines on the
network. In this way, each task can allocate its budget toward those resources most
important for it. In addition, when prices are low enough, some tasks can split into
several parts which run in parallel, as shown in Figure 1, thereby adjusting the
number of machines devoted to each task based on the demand from other users.
From a user's point of view, starting a task with the Spawn system amounts to
giving a command to execute it and the necessary funding for it to buy resources.
The Spawn system manages auctions on each of the participating machines and
the use of resources by each participating task, and provides communication paths

IDP-LEVlEL AP1PUCATION

ROTUSER IPTRleACE

APPPPCAATOO SUD1'ASK

FIGURE 1 Managing parallel execution of subtasks in Spawn. Worker processes
(W) report progress to their local managers (M) who in turn make reports to the next
higher level of management. Upper management combines data into aggregate reports.
Finally, the root manager presents results to the user. Managers also bid for the use of
additional machines and, if successful, spawn additional subtasks on them.
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FIGURE 2 Price as a function of time (in seconds) in an inhomogeneous Spawn
network consisting of three Sun 4/260's and six Sun 4/110's running four independent
tasks. The average price of the 260's is in black, the less powerful 110's in gray.

among the spawned processes. It remains for the programmer to determine the spe-
cific algorithms to be used and the meaningful subtasks into which to partition the
problem. That is, the Spawn system provides the price information and a market,
but the individual programs must be written to make their own price decisions to
effectively participate in the market. To allow existing, nonprice-sensitive programs
to run within the Spawn system without modification, we provided a simple de-
fault manager that simply attempted to buy time on a single machine for that task.
Users could then gradually modify this manager for their particular task, if desired,
to spawn subtasks or to use market strategies more appropriate for thle particular
task.

Studies with this system show that all equilibrium price can be meaningfully
defined with even a few machines participating. A specific instance is shown in
Figure 2. Despite the continuing fluctuations, this small network reaches a rough
price equilibrium. Moreover, the ratio of prices between thle two machines closely
matches their relative speeds, which was thle only important difference between the
two types of machine for these tasks. An additional experiment studied a network
with some lengthy, low-priority tasks to which was added a short, high-priority task.
The new task rapidly expands throughout the network by outbidding the existing
tasks and driving the price of CPU time uip, as shown in Figure 3. It is able therefore
to utilize briefly a large number of networked machines and to illustrate the inherent



192 Bernardo A. Huberman and Tad Hogg

0.0200

0.0175

0.0150

0.0125

.0.0100

0.0071

0.0050

0.0025

500. 1000. 1500. 2000. 00 3000.
tlme in seoonds

FIGURE 3 Price as a function of time (in seconds) when a high-priority task is
introduced into a Spawn network running low-priority jobs. The first vertical line
segment on the time axis marks the introduction of the high-priority task, and the
second one the termination of its funding.

flexibility of market-based resource allocation. Although the very small networks
used in these experiments could be adequately managed centrally, these results do
show that expected market behavior can emerge even in small cases.

Computer market systems can be used to experimentally address a number
of additional issues. For instance, they can help in understanding what happens
when more sophisticated programs begin to use the network, e.g., processes that
attempt to anticipate future loads so as to maximize their own resource usage.
Such behavior can destabilize the overall system. Another area of interest is the
emergence of diversity or specialization from a group of initially similar machines.
For example, a machine might cache some of the routines or data commonly used
by its processes, giving it a comparative advantage in bids for similar tasks in the
future. Ultimately this could result in complex organizational structures embedded
within a larger market framework. 9 Within these groups, some machines could
keep track of the kinds of problems for which others perform best and use this
information to guide new tasks to appropriate machines. In this way the system
could gradually learn to perform common tasks more effectively.

These experiments also highlighted a number of more immediate practical is-
sues. In setting up Spawn, it was necessary to find individuals willing to allow their
machines to be part of the market. While it would seem simple enough to do so,
in practice a number of incentives were needed to overcome the natural reluctance
of people to have other tasks running on their machines. This reluctance is partly
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based on perceived limitations oil the security of the network and the individual
operating systems, for it was possible that a remote procedure could crash an in-
dividual machine or consume more resources than anticipated. In particular, users
with little need for computer-intensive tasks saw little benefit from participating
since they had no use for the money collected by their machines. This indicates
the need to use real money in such situations so that these users could use their
revenues for their own needs. This in turn brings the issue of computer security to
the forefront so users will feel confident that no counterfeiting of money takes place
and tasks in fact will be limited to use only resources they have paid for.

Similarly, for those users participating in the system as buyers, they need to

have some idea of what amount of money is appropriate to give a task. In a fully
developed market, there could easily be tools to monitor the results of various auc-
tions and, hence, give a current market price for resources. However, when using
a newly created market with only a few users, tools are not always available to
give easy access to prices and, even if they are, the prices have large fluctuations.
Effective use of such a system also requires users to have some idea of what re-
sources are required for their programs or, better yet, to encode that information
in the program itself so it will be able to respond to available resources-e.g., by

spawning subtasks-more rapidly than the users can. Conversely, there must be a
mechanism whereby sellers can make available information about the characteris-
tics of their resources (e.g., clock speed, available disk space, or special hardware).

This can eventually allow for more complex market mechanisms, such as auctions
that attempt to sell simultaneous use of different resources (e.g., CPU time and

fast memory) or future use of currently unavailable resources to give tasks a more
predictable use of resources. Developing and evaluating a variety of auction and
price mechanisms that are particularly well suited to these computational tasks is
an interesting open problem.

Finally, these experimental systems help clarify the differences between human
and computer markets. For instance, computational processes can respond to events

much more rapidly than people, but they are far less sophisticated. Moreover, unlike
the situation with people, particular incentive structures, rationality assumptions.
etc. can be explicitly built into computational processes, allowing for the possibility
of designing particular market mechanisms. This could lead to the ironic situation in

which economic theory has greater predictability for the behavior of computational
markets than for that of the larger, and more complex, human economy.

3. CHAOS IN COMPUTATIONAL ECOSYSTEMS
The systems we have been discussing are basically made up of simple agents with
fast response times, compared to human agents in more complex and slower eco-

nomic settings. This implies that an understanding of the behavior of computational
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ecosystems requires focusing on the dynamics of collections of agents capable of a
set of simple decisions.

Since decisions in a computational ecosystem are not centrally controlled,
agents independently and asynchronously select among the available choices based
on their perceived payoff. These payoffs are actual computational measures of per-
formance, such as the time required to complete a task, accuracy of the solution,
amount of memory required, etc. In general, the payoff G, for using resource r
depends on the number of agents already using it. In a purely competitive environ-
ment, the payoff for using a particular resource tends to decrease as more agents
make use of it. Alternatively, the agents using a resource could assist one another in
their computations, as might be the case if the overall task could be decomposed into
a number of subtasks. If these subtasks communicate extensively to share partial
results, the agents will be better off using the same computer rather than running
more rapidly on separate machines and then being limited by slow communications.
As another example, agents using a particular database could leave index links that
are useful to others. In such cooperative situations, the payoff of a resource then
would increase as more agents use it, until it became sufficiently crowded.

Imperfect information about the state of the system causes each agent's per-
ceived payoff to differ from the actual value, with the difference increasing when
there is more uncertainty in the information available to the agents. This type of
uncertainty concisely captures the effect of many sources of errors such as some
program bugs, heuristics incorrectly evaluating choices, errors in communicating
the load on various machines, and mistakes in interpreting sensory data. Specif-
ically, the perceived payoffs are taken to be normally distributed, with standard
deviation a, around their correct values. In addition, information delays cause each
agent's knowledge of the state of the system to be somewhat out of date. Although
for simplicity we will consider the case in which all agents have the same effective
delay, uncertainty, and preferences for resource use, we should mention that the
same range of behaviors is also found in more general situations. 4

As a specific illustration of this approach, we consider the case of two resources,
so the system can be described by the fraction f of agents which are using resource
1 at any given time. Its dynamics is then governed by'

df

where ai is the rate at which agents reevaluate their resource choice and p is the
probability that an agent will prefer resource 1 over 2 when it makes a choice.
Generally, p is a function of f through the density-dependent payoffs. In terms of
the payoffs and uncertainty, we have

p I I ( erf (GI(f)-G 2 (f)) (2)
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where a quantifies the uncertainty. Notice that this definition captures the simple
requirement that an agent is more likely to prefer a resource when its payoff is
relatively large. Finally, delays in information are modeled by supposing that the
payoffs that enter into p at time t are the values they had at a delayed time t - r.

For a typical system of many agents with a mixture of cooperative and compet-
itive payoffs, the kinds of dynamical behaviors exhibited by the model are shown in

(a)a. Stable E librtai

IA

Uwme

(b)
b. Sb-ph Odladso

L4.

"2 U.. .0 SO FIGURE 4 Typical behaviors
for the fraction f of agents

(c) using resource 1 as a function
~C. Cbs of time for successively longer

"delays: (a) relaxation toward
1, stable equilibrium, (b) simple

persistent oscillations, and (c)
"f chaotic oscillations. The payoffs
,*, are G1 = 4 + 7f - 5.333fI for

resource 1 and G 2 = 4 + 3f
for resource 2. The time scale

I is in units of the delay time 7-,
Use 49 a = 1/4, and the dashed line

shows the optimal allocation for
these payoffs.



196 Bemardo A. Huberman and Tad Hogg

Figure 4. When the delays and uncertainty are fairly small, the system converges
to an equilibrium point close to the optimal obtainable by an omniscient, central
controller. As the information available to the agents becomes more corrupted, the
equilibrium point moves further from the optimal value. With increasing delays,
the equilibrium eventually becomes unstable, leading to the oscillatory and chaotic
behavior shown in the figure. In these cases, the number of agents using particular
resources continues to vary so that the system spends relatively little time near
the optimal value, with a consequent drop in its overall performance. This can be
due to the fact that chaotic systems are unpredictable, hence making it difficult for
individual agents to automatically select the best resources at any given time.

4. THE USES OF FITNESS
We will now describe an effective procedure for controlling chaos in distribu'ted
systems. 4 It is based on a mechanism that rewards agents according to their actual
performance. As we shall see, such an algorithm leads to the emergence of a diverse
community of agents out of an essentially homogenous one. This diversity in turn
eliminates chaotic behavior through a series of dynamical bifurcations which render
chaos a transient phenomenon.

The actual performance of computational processes can be rewarded in a num-
ber of ways. A particularly appealing one is to mimic the mechanism found in
biological evolution, where fitness determines the number of survivors of a given
species in a changing environment. In computation this mechanism is called a ge-
netic algorithm. 2 Another example is provided by computational systems modeled
on ideal economic markets, 9"12 which reward good performance in terms of prof-
its. In this case, agents pay for the use of resources, and they in turn are paid for
completing their tasks. Those making the best choices collect the most currency
and are able to outbid others for the use of resources. Consequently they come to
dominate the system.

While there is a range of possible reward mechanisms, their net effect is to in-
crease the proportion of agents that are performing successfully, thereby decreasing
the number of those who are less successful. It is with this insight in mind that we
leveloped a general theory of effective reward mechanisms without resorting to the
details of their implementations. Since this change in agent mix in turn will change
the choices made by every agent and their payoffs, those that were initially most
successful need not be so in the future. This leads to an evolving diversity whose
eventual stability is by no means obvious.

Before proceeding with the theory, we point out that the resource payoffs that
we will consider are instantaneous ones (i.e., shorter than the delays in the system),
e.g., work actually done by a machine, currency actually received, etc. Other reward

.... .......
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mechanisms, such as those based on averaged past performance, could lead to very
different behavior from the one exhibited in this paper.

In order to investigate the effects of rewarding actual performance, we generalize
the previous model of computational ecosystems by allowing agents to be different
types, a fact which gives them different performance characteristics. Recall that
the agents need to estimate the current state of the system based on imperfect and
delayed information in order to make good choices. This can be done in ,. number of
ways, ranging from extremely simple extrapolations from previous data to complex
forecasting techniques. The different types of agents then correspond to the various
ways in which they can make these extrapolations.

Within this context, a computational ecosystem can be described by specifying
the fraction of agents, frs of a given type s using a given resource r at a particular
time. We will also define the total fraction of agents using a resource of a particular
type as

fres =

rS(3)

ftype = rs
r

respectively.
As mentioned previously, the net effect of rewarding performance is to increase

the fraction of highly performing agents. If -y is the rate at which performance is
rewarded, then Eq. 1 is enhanced with an extra term which corresponds to this
reward mechanism. This gives

dfr _,d - (f t ypep, - f') + 0(fesri fIr) (4)

where the first term is analogous to that of the previous theory and the second
term incorporates the effect of rewards on the population. In this equation, p,, is
the probability that an agent of type s will prefer resource r when it makes a choice
and 17 is the probability that new agents will be of type s, which we take to be pro-
portional to the actual payoff associated with agents of type s. As before, a denotes
the rate at which agents make resource choices and the detailed interpretation of
-y depends on the particular reward mechanism involved. For example, if they are
replaced on the basis of their fitness, it is the rate at which this happens. On the
other hand, in a market system, -y corresponds to the rate at which agents are paid.
Notice that in this case, the fraction of each type is proportional to the wealth of
agents of that type.

Since the total fraction of agents of all types must be one, a simple form of the
normalization condition can be obtained if one considers the relative payoff, which
is given by

- r frsGrZr - -•,fresGr• 5
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Note that the numerator is the actual payoff received by agents of type s given
their current resource usage and the denominator is the total payoff for all agents
in the system, both normalized to the total number of agents in the system. This

form assumes positive payoffs: e.g., they could be growth rates. If the payoffs can
be negative (e.g., they are currency changes in an economic system), one can use

instead the difference between the actual payoffs and their minimum value m. Since
the 77, must sum to 1, this will give

77S frsG, - m (6)f~ X resG, -- Sm

where S is the number of agent types, and which reduces to the previous case when
m =0.

Summing Eq. 4 over all resources and types gives

dt ), (7)

df-- -y = e = - .. .

dt -Y(1,~ fYe

which describe the dynamics of overall resource use and the distribution of agent

types, respectively. Note that this implies that those agent types which receive

greater than average payoff (i.e., types for which ?7, > fstyPe will increase in the

system at the expense of the low performing types).
Note that the actual payoffs can only reward existing types of agents. Thus. in

order to introduce new variations into the population, an additional mechanism is
needed (e.g., corresponding to mutation in genetic algorithms or learning).

5. RESULTS
In order to illustrate the effectiveness of rewarding actual payoffs in controlling

chaos, we examine the dynamics generated by Eq. 4 for the case in which agents

choose among two resources with cooperative payoffs, a case which, as we have

shown, generates chaotic behavior in the absence of rewards. 5 ,6 As in the particular

example of Figure 4(c), we use r = 10; G1 = 4 + 7fI - 5.333f2; G 2 = 7 - 3f2:

o = 1/4; and an initial condition in which all agents start by using resource 2.

One kind of diversity among agents is motivated by the simple case in which

the system oscillates with a fixed period. In this case, those agents that are able

to discover the period of the oscillation can then use this knowledge to reliably

estimate the current system state in spite of delays in information. Notice that this
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FIGURE 5 Fraction of agents using resource 1 as a function of time with adjustment

based on actual payoff. These parameters correspond to Figure 4(c), so without the

adjustment, the system would remain chaotic.
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FIGURE 6 Behavior of the system shown in Figure 5 with a perturbation introduced at

time 1500.

estimate does not necessarily guarantee that they will keep performing well in the

future, for their choice can change the basic frequency of oscillation of the system.

In what follows, he diversity of agent types corresponds to the different past

horizons, or extra delays, that they use to extrapolate to the current state of the

system. These differences in estimation could be due to the variety of procedures

for analyzing the system's behavior. Specifically, we identify different agent types

with the different assumed periods that range over a given interval. Thus, agents

of type s use an effective delay of r + s while evaluating their choices.
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el 3

40 0

FIGURE 7 Ratio f.YPe(t)/fstype(O) of the fraction of agents of each type, normalized
to their initial values, as a function of time. Note there are several peaks, which

correspond to agents with extra delays of 12, 26, and 34 time units. Since T- = 10,
these match periods of length 22, 36, and 44 respectively.

The resulting behavior, shown in Figure 5, should be contrasted with Figure

4(c). We used an interval of extra delays ranging from 0 to 40. As shown, the

introduction of actual payoffs induces a chaotic transient that, after a series of

dynamical bifurcations, settles into a fixed point that signals stable behavior. Fur-

thermore, this fixed point is exactly that obtained in the case of no delays. This

equilibrium is stable against perturbations because, if the system were perturbed

again (as shown in Figure 6), it rapidly returns to its previous value. In additional

experiments, with a smaller range of delays, we found that the system continued to

oscillate without achieving the fixed point.
This transient chaos and its eventual stability can be understood from the

distribution of agents with extra delays as a function of time. As can be seen in

Figure 7, actual payoffs lead to a highly heterogeneous system characterized by a

diverse population of agents of different types. It also shows that the fraction of

agents with certain extra delays increases greatly. These delays correspond to the

major periodicities in the system.

6. STABILITY AND MINIMAL DIVERSITY
As we showed in the previous section, rewarding the performance of large collections

of agents engaging in resource choices leads to a highly diverse mix of agents that

stabilize the system. This suggests that the real cause of stability in a distributed
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system is sufficient diversity, and the reward mechanism is an efficient way of au-
tomatically finding a good mix. This raises the interesting question of the minimal
amount of diversity needed in order to have a stable system.

The stability of a system is determined by the behavior of a perturbation around
equilibrium, which can be found from the linearized version of Eq. 4. In our case,
the diversity is related to the range of different delays that agents can have. For a
continuous distribution of extra delays, the characteristic equation is obtained by
assuming a solution of the type e~t in the linearized equation, giving

A + a - ap' f dsf(s)e-A\(s+r) = 0. (8)

Stability requires that all the values of A have negative real parts, so that per-
turbations will relax back to equilibrium. As an example, suppose agent types are
uniformly distributed in (0, S). Then f(s) = 1/S, and the characteristic equation
becomes

A ap 1 - S e-Ar = 0. (9)

Defining a normalized measure of the diversity of the system for this case by
77 =_ S/-, introducing the new variable z A=r(1 - 7), and multiplying Eq. 9 by

-r(1 + 77)zez introduces an extra root at z - 0 and gives

(z2 + az)e' - b + be" = 0 (10)

where
a=ar(1+77) >0,

b =P/aT(l+77)>, (11)
77

+77

The stability of the system with a uniform distribution of agents with extra delays
thus reduces to finding the condition under which all roots of Eq. 10, other than z =
0, have negative real parts. This equation is a particular instance of an exponential
polynomial, having terms that consist of powers multiplied by exponentials. Unlike
regular polynomials, these objects generally have an infinite number of roots and
are important in the study of the stability properties of differential-delay equations.
Established methods can be used then to determine when they have roots with
positive real parts. This in turn defines the stability boundary of the equation.
The result for the particular case in which p' = -3.41044, corresponding to the
parameters used in Section 5, is shown in Figure 8(a).
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(a)

(b)

FIGURE 8 Stability as a
function of /3 = aT and
Y1 = S/T for two possible
distributions of agent types:
(a) f(s) = 1/S in (O,S)

and (b) f(s) = 1/Se-s/s.
The system is unstable in the

M .shaded regions and stable to
I .the right and below the curves.

Similarly, if we choose an exponential distribution of delays, i.e., f(s) =

1/Se-'/s with positive S, the characteristic equation acquires the form

(z 2 +pz + q)ez + r = 0 (12)

where 1
p = ciT-+- > 0,

77

T- > 0, (13)77

r= `-P : >0,

77

and z = \-r. An analysis similar to that for the uniform distribution case leads to
the stability diagram shown in Figure 8(b).

Although the actual distributions of agent types can differ from these two
cases, the similarity between the stability diagrams suggests that, regardless of
the magnitude of 3, one can always find an appropriate mix that will make the
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system stable. This property follows from the vertical asymptote of the stability
boundary. It also illustrates the need for a minimum diversity in the system to
stablize it when the delays are not too small.

Having established the right mix that produces stability one may wonder
whether a static assignment of agent types at an initial time would not consti-
tute a simpler and more direct procedure to stabilize the system without resorting
to a dynamic reward mechanism. While this is indeed the case in a nonfluctuating
environment, such a static mechanism cannot cope with changes in both the nature
of the system (e.g., machines crashing) and the arrival of new tasks or fluctuat-
ing loads. A dynamic procedure is needed precisely to avoid this vulnerability by
keeping the system adaptive.

Having seen how sufficient diversity stabilizes a distributed system, we now turn
to the mechanisms that can generate such heterogeneity as well as the time that it
takes for the system to stabilize. In particular, the details of the reward procedures
determine whether the system can even find a stable mix of agents. In the cases
describe above, reward was proportional to actual performance, as measured by the
payoffs associated with the resources used. One might also wonder whether stability
would be achieved more rapidly by giving greater (than their fair share) increases
to the top performers.

We have examined two such cases: (a) rewards proportional to the square of
their actual performance and (b) one giving all the rewards to top performers
(e.g., those performing at the 90th percentile or better in the population). In the
former case we observed stability with a shorter transient whereas, in the latter
case, the mix of agents continued to change through time, thus preventing stable
behavior. This can be understood in terms of our earlier observation that, whereas
a small percentage agents can identify oscillation periods and thereby reduce their
amplitude, a large number of them no longer can perform well.

Note that the time to reach equilibrium is determined by two parameters of
the system. The first is the time that it takes to find a stable mix of agent types,
which is governed by -y, and the second is the rate at which perturbations relax,
given the stable mix. The latter is determined by the largest real part of any of the
roots, A, of the characteristic equation.

7. DISCUSSION
In this paper we have presented a case for treating distributed computation as an

ecosystem, an analogy that turns out to be quite fruitful in the analysis, design,

and control of such systems. Resource contention, complex dynamics, and reward
mechanisms seem to be ubiquitous in distributed comptitation, making it also a

tool for the study of natural ecosystems in spite of the many differences between

computational processes and organisms,.
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Since chaotic behavior seems to be the natural result of interacting processes

with imperfect and delayed information, the problem of controlling such systems is

of paramount importance. We discovered that rewards based on the actual perfor-
mance of agents in a distributed computational system can stabilize an otherwise

chaotic or oscillatory system. This leads in turn to greatly improved system perfor-
mance.

In all these cases, stability is achieved by making chaos a transient phenomena.

In the case of distributed systems, the addition of the reward mechanism has the
effect of dynamically changing the control parameters of the resource allocation

dynamics in such a way that a global fixed point of the system is achieved. This
brings the issue of the length of the chaotic transient as compared to the time

needed for most agents to complete their tasks. Even when the transients are long,
the results of this study show that the range gradually decreases, thereby improving
performance even before the fixed point is achieved.

A particularly relevant question for distributed systems is the extent to which
these results generalize beyond the mechanism that we studied. We only considered

the specific situation of a collection of agents with different delays in their appraisal
of the system evolution. -Hence it remains an open question whether using rewards
to increase diversity works more generally than in the case of extra delays.

Since we only considered agents choosing between two resources, it is important

to understand what happens when the agents have many resources to choose from.
One may argue that since diversity is the key to stability, a plurality of resources

provides enough channels to develop the necessary heterogeneity, which is what we
observed in situations with three resources. Another note of caution: While we have

shown that sufficient diversity can, on average, stabilize the system, in practice a
fluctuation could wipe out those agent types that otherwise would be successful in

stabilizing the system. Thus, we need either a large number of each kind of agent
or a mechanism, such as mutation, to create new kinds of agents.

A final issue concerns the time scales over which rewards are assigned to agents.

In our treatment, we assumed the rewards were always based on the performance
at the time they were given. Since in many cases this procedure is delayed, there
remains the question of the extent to which rewards based on past performance are

also able to stabilize chaotic distributed systems.
The fact that these simple resource allocation mechanisms work and produce a

stable environment provides a basis for developing more complex software systems
that can be used for a wide range of computational problems.
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The Geometry of Excitability

This chapter presents a series of lectures given from this manuscript (with
many digressions and less coherently) at St. John's College in Santa Fe.
There was quite a lot of illustrative material, including reprints, laboratory
demonstrations, computer programs, 135 color slides, and 4 videos. Two
dozen printed pictures stand in for it here. I am keeping the first three
of these five lectures unpedantic and devoid of scholarly apparatus. There
are few citations in the first three, and I am leaving out all physiological
detail and mathematics, to try instead to convey the context in which they
may have interest to you when you are ready. The last two lectures are
deliberately redundant. They review and supplement by traversing much
of the same material from a somewhat different direction. Every step is
keyed to a bibliography of about 247 publications. These should suffice for
whatever follow-up you choose.

1992 Lectures in Complex Systems, Eds. L. Nadel & D. Stein, SFI Studies in
the Sciences of Complexity, Lect. Vol. V, Addison-Wesley, 1993 207
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FIRST LECTURE
Many were startled by a tragic incident in 1990, when basketball player Hank
Gathers unexpectedly collapsed on the court and died of heart failure on national
television. Sudden cardiac death was a new experience for most witnesses. Though
it seldom happens to people in youthful vigor, it does occur about 1,000 times a
day even in the United States alone, so perhaps 20,000 times a day in the world
at large, or about once every 4 seconds. In fact, "the majority of deaths in the
developed countries of the world are caused by coronary artery disease, with the
majority of these deaths occurring suddenly due to... ventricular fibrillation."'2 38

What the problem boils down to is that the muscle of the heart has basically two
modes of activity. It has a nice orderly mode of synchronous squeezing about once
a second, or up to about twice or three times that fast when pumping more blood
to your brain and muscles during vigorous exercise or making love or watching a
horror show like CNN. And it has a second mode in which contraction occurs locally
but not in a globally synchronous way, about 5-10 times per second. This second
mode looks uncoordinated and does not manage to pump blood to your brain and
muscles. So you faint and in a couple more minutes your brain fails irreversibly, then
respiration stops, then metabolism slows drastically throughout the body. That is
called death; in this case, specifically, "sudden cardiac death." This second mode
of perfectly healthy heart muscle is not at all understood, but like most things
that are not well understood, it has an imposing name: it is a cardiac arrhythmia
called ventricular fibrillation. The word "cardiac" means "having to do with the
heart." "Ventricular" means "more specifically, having to do with the ventricular
chambers of the heart," the heavy musculature that you are using in mode 1 right
now. The word "arrhythmia" sounds like it means "not rhythmic," but as used
by cardiologists it actually means any departure, whether rhythmic or not, from
the usual rhythm. The word "fibrillation" sounds like it means "falling apart into
fibrils," as though each tiny part of the muscle were twitching independently of the
others. That is what people thought until 50 years ago, when the name h:.ad already
taken root.

The cardiac arrhythmia called ventricular fibrillation is probably the least well
understood of all arrhythmias. The name has been around for close to a century and
much study within the usual context of medicine and physiology has been invested
in figuring out what it means. I am going to tell you about an approach to the
problem from the perspective of dynamical systems theory.

The center of attention will be solutions of partial differential equations pur-
porting to represent the electrical activity of heart muscle, which precedes and de-
termines its mechanical contractions. These equations support stable particle-like
pulsating/rotating modes of activity in two- or three-dimensional continua called
"excitable media."
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EXCITABILITY

Before saying what an excitable medium is, I should say what excitability is. First
of all, it is an adjective. You find this adjective stuck onto materials, and people,
and organs that are content to just sit there and not do anything until stimulated in
the right way, and then still not to do anything dramatic unless stimulated beyond
a certain threshold, but then to make a big fuss and go inexcitable before gradually
returning to the excitable state. Excitable systems usually have a threshold. To
excite promptly and dramatically, they need more than that much stimulation.
Less won't set off the dramatic response that gives excitable systems their name.
They also have a so-called refractory state just after excitation, while they are
recovering and cannot yet be excited again. When stated verbally like this, these
several properties sound like separate ad hoc gimmicks concatenated arbitrarily,
but, when you look at excitability in terms of vector fields, it is evident that they
are just three aspects of one thing.

For an example of excitability, consider yawning. Yawning can be provoked by
someone else yawning sufficiently nearby. Just thinking of someone else yawning is
usually not a sufficient stimulus, but seeing your neighbor yawn widely often makes
it irresistible, exceeding your threshold.

One simple idealization of excitability in nerve membranes was provided during
the middle of this century by K. F. Bonhoeffer in Germany, Richard FitzHugh in
the United States, and Jin-Ichi Nagumo in Japan:

au u_
Ot • '(1)

av- =E(u + -yv).

These equations represent the following situation. At each point in a spatial
continuum, two local state variables, denoted u and v, change continuously in time.
Quantity u represents an electric potential difference across the cell membrane and
v represents one of the ionic currents responsible for maintaining that gradient. The
local kinetics are described by two first-order ordinary differential equations. The
kinetics adopted are quite simple: but for one term, rates of change are linear in
two variables. The diffusing quantity u, called the "excitation variable," "activa-
tor" or "propagator," is degraded at a rate proportional to v, which is called the
"recovery variable," "inhibitor" or "controller." Quantity u is also autocatalytically
regenerated in proportion to u. Its "nullcline" is the locus on the (u, v) plane of
Figure 1 where u's rate of change is 0. This would be the horizontal line u = 0 were
there no more to the equation. But with the additional cubic degradation rate,
the first equation's nullcline becomes a Z-shaped zigzag. Meanwhile, the recovery
variable, v, grows at a rate proportional to u plus a constant, while also undergo-
ing first-order decay. Its nullcline is a straight line. At the intersection between the
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U

FIGURE 1 A sketch of the phase portrait of
the FitzHugh-Nagumo model of excitability,
per Eq. (1), supposing spatial uniformity or

V D 0. The heavy curve is the "nullcline"
locus du/dt = 0; to its left du/dt > 0. The
heavy line is the "nullcline" locus dv/dt = 0,
supposing 0 and -y both about 1/2; to its left
dv/dt > 0. Both rates are 0 where nullclines

.. •cross in a unique (attracting, in this instance)
equilibrium.

linear and cubic nuliclines, there is a globally attractinR equilibrium. If the local
state is perturbed from equilibrium by displacing u a( ross the middle branch of the
cubic nullcline (thus crossing a threshold), then it departs farther before returning

clockwise toward equilibrium.
Now consider the constants (parameters). Parameter E governs the rate of this

excitation relative to the recovery process. If parameter • is small, then the Ou/Ot
is much quicker than Ov/dt: u increases until it crosses the upper branch of the
cubic, then glides along it until jumping to the lower branch, which escorts it back
to the original equilibrium. The offset parameter f3 and slope parameter -Y locate
the flat nullcline, so they locate equilibrium along the Z-nullcline and so determine
the threshold for excitation from that resting state. This is a generic picture of the
local dynamics of one very common kind of continuous excitable kinetics.

EXCITABLE MEDIA

The general idea of excitability, in this zero-dimensional or spatially uniform sense,
is thus that a small t)ut not too small stinmlus, applied to such a dlynamical system
while it is in a certain range of states called "excitable" states, inay provoke it I,)
execute a relatively large and rapid excursion. In an excitable medium, the local
dynamics are excitable and neighboring regions are so cou1)led that excittion in
one region can provide its neighbors with the kind of stimulus required to provoke
excitation there. Aln excitable medium is an array of mainy excitab,'' units, each
cOulpled to neighbors so that one can trigger the next, like those lines of donii-
noes you sometimes see in TV commercials. One domino falls, kicking off the next,
which shortly after kicks off the next, anmd a wave of falling l)rop)agates. A solitary

pulse of asymptotically stable shape anid speed then propagates 1y this miechanismi.
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It is also not hard to imagine a wave of yawns propagating across a lecture the-
ater. Excitable media play a fundamental role in phenomena that interest physical
chemists and physiologists, just as hydrodynamic media and the electromagnetic
continuum and the complex-valued field of quantum mechanics play fundamental
roles in phenomena that interest physicists. All are described by partial differential
equations describing the rates of change of locally defined quantities in terms of all
those quantities and their spatial derivatives.

One way to make an excitable medium from such local dynamics is by spatially
coupling a continuum of such sites through the second spatial derivative of the
propagator variable, u. The local time rate of change of u now consists of local
excitable kinetics plus this new "Laplacian" term representing diffusion of u from
adjacent sites. In these lectures I represent the idea of excitability in such equations,
and numerically study their properties alongside parallel laboratory investigations
of two representative excitable media, one physiological and one chemical. The self-
organizing stable objects that I want to show you were discovered while trying
to understand the kind of turbulence called "fibrillation" in the excitable medium
called "heart muscle." They also occur in a chemically excitable medium called
the "Belousov-Zhabotinsky reagent." They are probably endemic to all sorts of
excitable media. Such excitable media are commonly written as partial differential
equations in two (or more) local scalar variables, both of which diffuse:

au
- = f(u, v) + D.V 2 u,

a (2)
c- = g(u, v) + DvV 2V;

for example,

3
- U - +3 V DV 2u, (3a)

at E

-V = e(u + -yv) + 6DV 2v. (3b)at

In electrophysiological applications, propagator variable u represents local elec-
tric potential across the cell membrane, a quantity which diffuses easily by field-
guided transport of ions. Controller variable v represents the ionic conductivity of
relatively immovable proteins embedded in the cell membrane which act as voltage-

sensitive ionic channels. In this application the recovery variable (the second equa-
tion, governing v) is strictly local: 6 = 0. These two equations (3) taken together
are then called "the cable equation" (because the essential physics was borrowed
from Lord Kelvin's analysis of a proposed trans-Atlantic undersea telegraph cable).

In context of chemical excitability, both u and v are the local concentrations of
reacting molecular species. The Laplacian introduces Fick's law of molecular diffu-
sion, added to the local kinetics of synthesis and degradation-to all rate equations,
not just the propagator's, if the chemical species are all comparably mobile.
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Without the cubic degradation term, we have a linear partial differential equa-
tion. With parameters in the range that will interest us, its analytical solution
relaxes boringly from any initial distribution of u and v promptly toward uni-
form quiescence. But with the nonlinear term added, so that the local dynamic
is excitable, we encounter the possibility of interesting behavior: a self-sustaining
impulse may propagate like a shock front. This is supposed to represent a chemical
wave or an electrophysiological impulse. In these lectures I will draw your attention
to the geometrical forms of this shock front in two- and three-dimensional media,
and the roles they play in cardiac physiology and in physical chemistry.

HEART MUSCLE ("MYOCARDIUM")

The study of excitable media leads to one of the central problems of cardiology, the
problem of ventricular fibrillation, and I think to a quantitative understanding of
certain aspects of it. Let's start with basic facts about the electrical mechanisms of
the normal heartbeat. The human heart is, first of all, a mechanical pump. Like any
other mechanical pump, it has lots of parts. We focus on one part, the thick ven-
tricular muscle that provides power for the pump. The key to normally coordinated
contraction is an electrical signal called an action potential. The action potential is
usually depicted in textbooks as an impulse propagating one-dimensionally along a
nerve fiber. It starts, propagates, and is snuffed out when there is no more membrane
to activate. Similarly in the thick muscle of the human ventricle, it propagates two-
dimensionally or even three-dimensionally, normally from inside to outside. The
additional dimensions introduce qualitatively new possibilities for more complex
modes of activity. But now for starters consider just the normal spread of an action
potential in the human ventricular wall. It is a one-way trip from inside to outside
and it takes only 1/14 second: activation is essentially synchronous. This normally
synchronous activation shows as an electrical spike once per second on an electrocar-
diogram. (The electrocardiogram integrates into a spot reading of voltage the sum
over all boundaries of the excitable medium of the component in the direction of
the electrode of the activation front's propagation vector.) If the ventricular muscle
becomes uncoordinated in its normally synchronous contractions, then the ventric-
ular chambers cease to rhythmically contract in unison, blood ceases to surge once
a second into the brain, and the deprived brain within minutes changes irreversibly,
as mentioned above.

In this tragic episode the electrocardiogram's discrete spikes turn into 5-hertz
smooth wiggles (which more commonly accelerate to about 10 hertz). What's going
on at this stage is called "reentry." Five times per second the action potential is
somehow reentering muscle that it already passed through, without ever snuffing
out: the same action potential circulates endlessly. How do we know this? Well,
when people are having open-chest surgery in hopes of correcting a life-threatening
cardiac arrhythmia, you can fit an array of electrodes around the whole heart so
as to monitor the times when action potentials arrive at hundreds of sites around
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the surface. Then the heart is stimulated electrically to try to provoke the specific
cardiac arrhythmia that this particular heart easily falls into. A computer gathers
these hundreds of voltage measurements once every thousandth of a second, and
paints a picture on a TV screen showing how the action potential is moving across
the heart surface. This is called an "epicardial map." On such a screen you see the
activation front circulating several times each second. This high-frequency reactiva-
tion apparently makes the muscle vulnerable to fibrillation: the 5-hertz regularity
begins to break up and degenerates into a ragged wiggle. Meanwhile, the blood is
not circulating, the brain dies, and respiration stops.

This kind of trace provides an important clue to the initial stage of vulnerability
to fibrillation and sudden cardiac death. But giving it a name-reentry-doesn't
quite answer the question: what is going on here? To find out, it is instructive
to digress for a close look at such waves in other excitable media that are, at
the moment, experimentally more tractable. This digression is intended to bring
you to back to cardiac arrhythmias from a perspective that may have biomedical
engineering applications which remain to be exploited.

Several excitable media share certain basic features with mammalian heart
muscle. For example, they have a threshold, and a refractory state between ex-
citation and recovery. For some excitable media, the degree of correspondence is
pretty amazing. Even the equations of their mechanism have the same form as the
electrophysiologist's equation for electrical conduction in heart muscle. Of course,
they lack a lot of the distinguishing idiosyncrasies of heart muscle; e.g., they are not
made of cells. But the point of doing science is supposed to be to simplify things, to
find out what are the essentials, and to tease them apart from the incidentals. No
one knows beforehand which are the essentials and which are the incidentals, so we
make models and do experiments and eventually find out. In the present case the
striking result is that, in quite a broad range of analogous excitable media, we find
behaviors strikingly similar to reentry and the early stages of fibrillation. These
behaviors include a vulnerable phase, a special moment when a stimulus can evoke
this alternative mode of spontaneous activity.

THE BELOUSOV-ZHABOTINSKY MEDIUM

To understand the geometry of action potential propagation in excitable media, it
would be convenient to study an excitable medium in which everything happens
slower-in seconds or minutes rather than in fractions of a second. And it would
be nice if the propagating disturbance were not an invisible electrical disturbance,
for example, if it were visibly indicated by color changes. Exactly such a chem-
ical excitable medium was discovered in the Soviet Union by Boris Belousov in
1950. Belousov was a biochemist interested in the basic metabolic cycle of oxida-
tive metabolism in all cells called the Krebs' Cycle. He was trying to simplify the
Krebs' Cycle in a cell-free extract so that its essential functions could be studied
in glassware. He overdid it, reducing the Krebs' cycle to just one substrate (citric
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acid), replacing the enzymes by a metallic catalyst, the cerium ion, and replacing
the mitochondrial electron-transport system by an inorganic oxidizer, the bromate
ion.

In this drastic oversimplification he found a reaction that oscillates sponta-
neously while changing color. His report was imagined at the time to violate sacred
dogmas of theoretical thermodynamics, so it was persistently refused publication
in Russian journals from 1950 until Belousov aged, withdrew, and died embittered
in 1970. In the late 1970s, several years too late, I was privileged to be party to

a letter-writing campaign that secured the 1980 Leninski Primia (Lenin Prize) for
his work. That is a considerable honor, but Belousov never knew about it.

This Lenin Prize was shared by five people. Among the four still living were
A. Zhabotinsky and A. Zaikin. They had discovered 20 years after Belousov's first
unpublished report that this oscillating reaction also propagates an impulse of ox-
idation/reduction activity. Until then this reaction had been studied mainly as an
instance of limit-cycle kinetics in homogeneous solution, so modeling started by
adding molecular diffusion to a limit-cycle kinetics like the Brusselator or a version
of the Ginzburg-Landau equation (Eq. (5) below). Yet one might ask whether the
phenomena of propagation necessarily have anything to do with the limit cycle, or
might persist unaltered in its absence. I posed this question experimentally and
found that the BZ medium (as it came to be called2 11 ) can be altered to not os-
cillate, but instead just be an ordinary excitable medium with the main properties
that enable heart muscle to propagate an impulse three-dimensionally. To extricate
it from the overwhelming context of limit-cycle modeling, I called the nonoscillating
variant "the malonic acid reagent," but the name didn't stick: instead the original
name generalized. In these lectures I use "BZ" for all versions.

Figure 2 shows a thin, essentially two-dimensional layer of this chemical solution
in a plastic dish such as I was using at the time for experiments about pattern
formation in fungi. A few sites of spontaneous periodic activity radiate pulses of
oxidative activity at regular intervals. Notice that each pacemaker has its own
period. The mechanism of propagation is that bromous acid is created in the blue
zone and diffuses into the orange region just ahead until it too gets excited beyond
a threshold and turns blue itself, emitting bromous acid molecules to topple the
next domino, so to speak. This pulse propagates at a fixed speed in the order of
millimeters per minute rather than half a millimeter per millisecond as in heart
muscle. But just as in heart muscle and just as in grass fires, each pulse has a
refractory wake. You can see the consequence wherever two fronts collide: neither
continues through the ashlike wake of the other. Behind the tapering wake, the
medium recovers and again grows excitable.
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FIGURE 2 Circular waves radiating from pacemaker points in a 1.6-mm layer of the
Belousov-Zhabotinsky excitable medium. The dish is 47 mm in diameter. Snapshots are
30 sec apart.

The mechanism of this reaction and its three-dimensional coupling through
molecular diffusion are now understood in enough detail so that they ain h)(e written
down as fairly exact equations for numerical solution in a (omputer. Thie remarkable
feature that makes it an instructive analogy to heart muscle is that tl,(,se equations
turn out to b)e identical in their essential features to the one written above and to
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the electrophysiologist's cable equation for action potential propagation in living
nerve and muscle.

It was in this chemically excitable medium that something strange turned up
in my lab (and in the same year, in Zhabotinsky's near Moscow). This happened
due to an experiment that I designed to check one of the implications of my un-
derstanding of the mechanism at that time. This was a topological inference that
rotating waves could not exist in any such medium. Since I already believed it, I
was eventually able to prove it (not rigorously) on paper. Another essential part
of any mathematical proof taken as a metaphor for physical/chemical phenomena
remained to be carried through: illustration in the laboratory to check whether the
assumptions and approximations behind the mathematics were valid in this partic-
ular instance. If this "theorem" were right and pertinent, then if we stir up random
complicated patterns of excitation in the chemical medium, we should see them all
resolve into wave fronts of the sort familiar in two-dimensional physics, acoustics,
optics, radio and TV engineering, and so forth, viz., closed concentric rings radi-
ating away from sources here and there. You would never see, for example, wave
fronts that just end without closing, leaving a dangling stump.

Or would you? Try looking at it this way:
Any excitable medium supports such a pulselike plane wave or a train of pulses.

A train of equispaced traveling pulses is equivalent to a single pulse circulating on a
one-dimensional ring. There is a one-parameter family of such solutions, depending
on wave spacing or, equivalently, on the ring's perimeter. One might expect similar
circulation on a thin enough planar annulus or within a thin enough solid torus.
This circulating solution persists if the annulus or torus is fattened. It persists even
when the hole in the annulus or torus is finally closed. What happens when the
hole closes? Does the entire wave front vanish, perhaps by swift erosion from the
unsupported tip? In passive media (elastic continua, water surface, the electromag-
netic continuum) and in some excitable media, it does. Let me leave it there for a
moment, and direct your attention to another way of posing the question.

Imagine doing this experiment in any familiar wave-supporting medium, e.g.,
water (Figure 3, top). When you provide a central perturbation by throwing a stone
in the pond, you expect a centrally symmetric response, a collection of closed con-
centric wave fronts. This is indeed what you get in solving any familiar so-called
"wave equation" for passive media, whether for water waves, sound waves, radio
waves, or light waves. It is also what you get in any excitable medium, initially at
rest then excited from a central disk. Now try throwing a second stone in the water.
You expect to see a second, interpenetrating set of circles concentric to the new
splash site. But excitable media and such wave equations as shown above turn out
to respond in a topologically different way (Figure 3, second panel). The second
excitation fails to propagate, wherever its wave fronts overlap the refractory wake
of the first waves. For this to happen, the stimulus must be given at a place and
moment after the trailing edge of the refractory wake has passed it, and its wave
front must originate at some radius from the splash site so that it can intersect the
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FIGURE 3 The bottom panel is not what
one would expect of familiar wave equations
(e.g., for water ripples in a pond), but it is
what occurs in excitable media.

circle of the trailing edge of wake. If all that were satisfied, then vOUl miight exp~ect
the surviving- arc of a circle to projpagate normally, just diapaigweever it

overlaps that mioving wake (Figure 3, third panlel). T1he endpoints of thle arc would
thus move ap~art along the hyperbola onl which the two m1oving. circles ('ami imntersect.

SPIRAL WAVES RADIATED FROM ROTORS

13umt suirprisinigly. c( l t.radict i ng WVienier and 1 osvimlbu et his 20  Fingu re 1()b.for
example, ini real chiemiical and physiological exc'itable nmedia. thle eunlpoiiits of a
broken wave fromit turn out not to propagate but to stayN where th 1'ey were first
created. 'I'hme wave front coils arounmd thmeim inito two comiiter-rotat ing sp~irals ra-
dhat ing out, of a tiny vortex c'ore (Fig-ure 3. bottomin). each like a rotating Oil( )rdlel
sprinkler spinmning oit a -wave froint of ('xcit at ion. T1he Wave fronit is a spiral withI
equal dlistanices between successive turns, so along every radhius there is ani outgoing
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periodic wave train at the period of source rotation. Because these wave trains are
progressively phase-shifted from northward to eastward to southward to westward,
the wave front ends not far from the pivot around which the spiral turns. Except
in media that are only marginally excitable, the vortex core, alias "rotor," is about
1/3 wavelength in diameter: 140 microns in the chemical medium, about 10 mm in
myocardium. Its wavelength squared and divided by its period seldom differs more
than four-fold from 87r 2 times the diffusion coefficient. Unlike any pacemaker point,
the core's interior is not going through the same cycle of excitation and recovery
experienced by every other point. This source, paradoxically, is quiescent unless
"meandering" starts (see below), and if the spiral meanders, then the center ex-
cites at intervals distinct from the rotation period of the spiral. At least, it seems
paradoxical if you imagine that the waves acquire their energy from the source, and
carry it away, as in passive media like a vacuum or air. In excitable media, however,
the energy is produced locally and the passing wave merely milks the local medium,
much as light waves do in a laser cavity.

Such behavior is never seen in autonomous solutions to "the wave equation(s)"
of passive media in familiar physics. You don't see things like this in two-dimensional
optics, acoustics, and so on (though they can occur in active media, e.g., Coullet
et al., 36 Brambilla et al., 26 and in cross sections transverse to the propagation
direction, in three-dimensional wave fields, e.g., Wright and Berry 24 °). Solutions of

the familiar "wave equation" in empty space cannot support a dangling endpoint
or radiate continually from a pivot in a uniform continuum because that would
constitute an endless source of energy. Of course, one might provide an energy source
at the center and let it rotate: a rotating neutron star does emit an electromagnetic
wave in the shape of a equispaced spiral. A motorboat racing in a tight circle creates
a similar scene in water. And in an active medium such as the inverted population
of gases in a laser, every point in the medium is an energy source: rather than
Maxwell equations, one uses Maxwell-Bloch equations, and spirals become possible.
In such cases, and in the chemical and electrophysiological cases we will attend to in
these lectures, the contours of fixed level of any local state variable (water depth,
magnetic field intensity, chemical concentration, voltage) are indeed closed rings
(very elongated and rolled-up) as they must be for topological reasons unless the
medium has a boundary near enough to matter. But each contour runs through two
mirror-image spirals, changing from wave front to wave back as it passes near tile
center of each. Only by ignoring the wave back part of one contour can we get the
misleading appearance of a dangling end. The feature that makes excitable media
different from the familiar media of physics is not the dangling wave fronts, but the
fact that the medium does contain an energy source, in fact at every point.

What we see outside the rotor in any given medium is not another kind of wave,
but just the same kind of wave, radiating from a different kind of source. Instead of
an ephemeral source, a single stimulus that sends out an impulse in all directions,
we have a self-sustaining structure, a tiny disk of rotating concentration gradients
that excites the surrounding medium. The mystery is not so much about the wave
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as about the tiny disk, the rotor: how is it created, why does it persist, what are
its dynamical properties, how can it perish?

Since it continues to rotate, it continues to excite, and provides a perpetual
source. Without changing the parameters of the medium, its period can be made
longer or shorter. This can be done by carving out of it a hole of the right size. In
media with parameters in a certain range, it can also be done by tickling the rotor to
switch to an alternative stable anatomy that rotates at a different period. Then the
spiral wave is radiated at that new period and wavelength. The propagating wave
front is an interesting structure, but it differs in no important way from one emitted
from a radially symmetric source. The interesting difference here is in the source,
a reaction-diffusion structure that forms near the endpoint of a broken front. The
rotor looks like an energy source, like the rotating neutron star mentioned above,
but please remember that in excitable media "energy" is not a useful concept and
waves do not attenuate as they spread out because every point, not just the rotor,
is an energy source. The rotor is only an organizing center, a signal source at the
origin of the reentrant propagation pattern.

THE FUNDAMENTAL PROBLEM OF ELECTROPHYSIOLOGY

The experience of discovering the rotor while preparing an experiment to illustrate
its nonexistence illustrates instead the utility of experiment in pointing to faulty
assumptions. In retrospect, the assumption that seemed to imply that such vortices
could not arise in a uniformly excitable continuum turned out to be the assumption
that the dynamics of the medium could be realistically approximated by attention
to a single internal state variable (like u-like membrane potential in heart cells, or
the v-like colored catalyst in the BZ reaction). The actual existence and stability of
these vortices derives instead from the crucial role of additional less-visible variables
of state involved in processes of refractoriness and recovery similar to those in
myocardium.

From one point of view, this is the Fundamental Problem of Electrophysiology.
The field is limited to observing electrical potentials at each point in space, but
they constitute just one component of a multicomponent state vector at each point,
and the other components determine the rate of change of the potential. Without
observing the dynamics of the other components, it is impossible to make sense
of the observed dynamics of the potential, except in contrived simple situations.
A similar problem afflicts chemical wave experiments, in which the video camera
records at each point a color which, in principle, could convey information about
as many chemical species as there are distinct color detectors (three, for humans
and human technology), but, in fact, only one of them absorbs in the visible. In
both situations, knowledge obtained through indirect experiments about the basic
dynamical laws can be deployed to infer the values of a second variable from the
one observable variable and its observed time derivative and Laplacian. This is
illustrated below [lecture 5]. But it solves The Fundamental Problem only if just
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two variables are dominantly important. Strictly speaking, this is not the case
either in chemistry or in electrophysiology, but it often turns out that a consortium
of subsidiary variables function as one, en bloc.

OTHER WAVE EQUATIONS

The familiar nondispersive scalar wave equation of physics, written in dimensioned
terms, is

"a2 - c 2 v 2
o, (4)

where 0 is a real-valued potential. This represents local pressure in sound waves
or electric potential in light waves. It does not look much like Eq. (3) for the
dynamics of a typical excitable medium, which has two first time derivatives rather
than one second time derivative, has at least two local state variable in place of the
single potential here, and has a stp'e- 'ependent source term lacking here. At second
glance, you recognize that were fl. -y, ., all = 0 (which is perfectly compatible with
excitability), then Eq. (3b) we, Ad be simply u cx 9v/ot and then Eq. (3a) could be
written as a single equatinn with a second time derivative, 12 u/0t2 . But there would
still be a source term, now entailing time derivatives, and the Laplacian would now
be operating on the time derivative of u. These two kinds of wave equation are
fundamentally difierent.

Another famous wave equation is the time-dependent complex Ginzburg-
Landau (CGL) equation for generic behavior of a dynamical continuum near a
Hopf bifurcation to limit-cycle oscillation of low amplitude (normalized to unity
here). After lots of normalizing and making things dimensionless for mathematical
(unphysical) transparency:

-9 = (1 + ico)z + (1 + ic,)V 2z - (1 + ic 2 )Iz12z (5)

where z is a complex number representing two interacting variables or (in polar
coordinates) the amplitude and phase of oscillation in a two-dimensional center
manifold. Coefficient co can be zeroed without loss of generality (moving to a ro-
tating reference frame). This is sometimes called the "Kuramoto-Tsuzuki equation"
because "CGL" has by now proliferated into too many meanings. It make waves
in space, as shown by Kopell and Howard'1 ' in the special case with c, = 0, so
it resolves into a pair of reaction-diffusion equations representing a perfectly si-
nusoidal limit-cycle oscillator spatially distributed with diffusion coupling: the "A
- f1 equation" or "radial isochron clock" or "Poincar6 oscillator" in various liter-
ature streams. This was also shown by Kuramoto and Koga128 and by Yamada
and Kuramoto 24 1 in the "phase model" or "ring device" or "simple clock" limit of
strong adherence to the limit cycle (the "Kuramoto-Sivashinski equation"). This
model does make spiral waves around phase singularities: if c2 3 0, there is an am-
plitude dependence of rotation frequency so contour lines tend to wind up around
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the phase singularity, but only up to a certain pitch, limited by the diffusion term. It
is not at all clear that the reasons for the CGL equation's behavior are comparable
to the reasons for superficially similar behavior in excitable media.

(Anyway, so I thought 20 years ago, and so for publication of my first rotor
computation, I abandoned the CGL model in favor of an electrophysiologically
motivated, nonoscillatory excitable medium. In the following years I steadfastly ad-
vised others also to beware that seductive path... but maybe they had better sense.
Much more has since come of the CGL medium in connection with spiral waves,
their rotor sources, and the interactions among rotors, not only in two dimensions
but also in three dimensions. In a certain parameter range (1 + cic2 < 0), it also
develops turbulence, 126' 127 a feature we will value below in connection with fibril-
lation. However, I repeat that this field of smooth oscillators is not an excitable
medium (unless periodically driven at a period close to the edge of its ability to
entrain). Almost all of this lecture series is about excitable media and therefore not
about these sinusoidal oscillators. )

(Here is yet another aside on "the way things work in the discovery business."
Also in 1973 1 laid aside cellular automaton models, e.g., Reshodko,172 as being too
unfaithful to the behavior of real excitable media-e.g., the rotor, the spiral's core, is
structureless in CA simulations-preferring the partial differential equations of elec-
trophysiology and of physical chemistry. Every 2-3 years thereafter, a conspicuous
publication appeared in which they were rediscovered as models of two-dimensional
spiral waves simpler than PDE models. I used them again in 1984, before it was
feasible to solve PDE's on large enough three-dimensional grids, to make the first
three-dimensional organizing centers of various topological genres...but again soon
set them aside as inadequate for realistic dynamics. Meanwhile, others persevered
and created marvelously enhanced CA models which now serve more of the pur-
poses of simulation [e.g., see Gerhardt et al.72 and Weimar et al. 1971, for those
lacking access to the hardware needed to solve three-dimensional reaction-diffusion
equations.)

The nonlinear Schrbdinger wave equation is another special case of the complex
Ginzburg-Landau equation (5), with co = 0 and cl and c2 very large, i.e., with the
"TVs removed and cl = c2 = 1 or functions of position, or of time also in the
nonautonomous case. This is another kind of wave equation, with a complex-valued
local state z = %F = (u+iv) and the familiar time- and position-dependent potential
function V(r, t) replaced by a state-dependence IIF2. Neglecting units involving h
and m,

I-5= 1F,2 I _ (6)

or
o(u + iv) = i(_(u2 + v 2 )(u + iv) + V2 (u + iv))

at

_-
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which, separated into real and imaginary parts, reads:

at (u 2 + v2 )v - V2v,

aV (u 2 +v 2)u+V 2u.
at

This resembles the wave equation (2) in oscillatory reaction-diffusion media,
but look at the significant differences: one of the diffusion coefficients is negative,

u and v are interchanged in the diffusion terms, the amplitude is implicitly very
small, and the local kinetics depicts a harmonic oscillator rather than excitability.
Vortex solutions exist in two dimensions and they make vortex filaments in three
dimensions, which move in ways analogous to hydrodynamic vortex filaments. 134 ,173

But again, these are not the ways of vortex filaments in excitable media.
The typical wave equation (2) for an excitable medium is thus not much like

physically familiar wave equations, so no one need be surprised that it makes waves
with distinctive properties.

SECOND LECTURE
Figure 4 shows a vortex in the excitable medium's wave equation (3), calculated on
a fine grid of sample points connected by diffusion. The top and bottom boundaries
happen to be impermeable, but the side walls are connected: this is a cylinder, slit
open and laid fiat. The spiral wave front is radiating anticlockwise outward from
the tiny central vortex core called the rotor. What are the main properties of this
distinctive "rotor" solution? When first discovered, they were thought to be few and
simple: the rotor has a unique period (the shortest possible) in a given medium,
turns at the corresponding uniform angular velocity about a fixed pivot, and radi-
ates a periodic wave train in the form of an involute spiral. For years I accepted
most of these beliefs. All four are mistaken. Rotors of discretely different periods
can coexist in some media, the period in any case exceeds the minimum response
time of the medium by a goodly fraction or even a large multiple, rotors tend to
move around spontaneously so the period waxes and wanes as observed from a cho-
sen direction, and the spiral is not exactly an involute even when the rotor pivots
rigidly. It fact, as more and more people came into this area of study, there came

to be more and more well-studied equations like Eq. (3), and many had unexpected
idiosyncrasies. Was there to be no end to the proliferation of diverse rotors and wave
behaviors? This possibility is particularly important in clinical cardiology. It was

guessed decades ago, and proved experimentally several years ago, that spiral waves
underlie an important class of cardiac arrhythmias, including ones that promptly
lead to fibrillation and sudden cardiac death. So pharmaceutical modification of
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FIGURE 4 An anticlockwise rotor and surrounding spiral wave, computed from Eq. (3)
on a cylinder, here slit open and laid flat. From Courtemanche et al.37 with permission.

the electrical properties of heart muscle by so-called antiarrhythinic drugs might be
profitably understood as parametric adjustment affecting the properties of spiral
waves. Well, to do that rationally you would need to know what are the present
properties, and what properties you would like to have, and what parameter ad-
justment would effect the change, and what drugs in what amounts would adjust
those parameters in the required way. No such rational scheme exists today, but it
might become possible if one could understand the parameter dependence of spiral
wave behaviors.

To understand that, the most direct approach is to pick one generic excitable
medium, nominate a couple of seemingly generic parameters, and vary them sys-
tematically and exhaustively, while watching the results. Then do it again for a
different medium, and see how much of the first p)attern is apparent in modestly
distorted form in the second p)attern. Well, in the past three years, this has been
done in four media, and there does seem to be a common pattern.

Before you can perceive that pattern, you have to see through some of the
sources of confusion that obstructed its perception in the past:

1. Equations (2) of a given excitable medium are conventionally written in at least
four distinct formats, often using the same canonical variable and parameter
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names (e.g., t, x, E), but with differently scaled meanings that I distinguish by
superscript prefixes:

format 0: 5 = f(u,v) + D OX 2

0 0 -g(u, v) + 6 D 0° 2

(9u A(u, V) 02U
format 1: -u+ DfO it D1ix2

av eg(u,v) +6D 0 1x2
a ita 2

au f(u, v) 02U
format 2: - + Da

a t g(u,v) + 6Do2j2

fu f (u,v) 3 O2U
format 3: 5 3 t 3E + 3X2

'9V a3 2U0W -g(u, v) + 6 3E

The format makes some important differences. For example, in "format 0," the
spiral's period is a U-shaped function of E, while in the other formats it is
monotone increasing or decreasing. It is possible to translate among formats by
appropriate change of variables. I will present all results in "format 1." There

are also several forms of f() and go in common use, thus some additional
translation is needed among usages of "u," "v," and the parameters, ',efore

the ostensibly diverse findings of diverse published papers can be unified as an
overlapping mosaic of findings. Let it suffice here to just say that they do unify
when properly compared.

2. The word "excitability" has distinct meanings to different people. For some,
"excitability" is the solitary wave speed or the threshold (the minimum dis-
turbance required to excite from equilibrium). Or the threshold normalized by
the range of the ensuing disturbance. For others it means the initial or maxi-

mum rate of excitation, or sometimes that relative to the rate of recovery after
excitation, in either case, dominated by e. I use both dimensionless ratios as
independent parameters. Also for some people, perhaps thinking of SNIPER
bifurcations (see below), "excitability" connotes "inability to oscillate sponta-

neously," while for others, perhaps thinking of Hopf bifurcations, oscillation is
not incompatible with excitability, which then only means "able to take a flying
leap across state space when nudged in the right way." I use it in the latter

sense, so a medium's ability to excite on cue is independent of its ability or lack
of ability to cycle spontaneously if left alone.
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3. In some "reaction diffusion" models, only the excitor variable can spread
through the medium, e.g., electric potential in electrophysiological models,
while the inhibitor variable is strictly local. In others, both diffuse equally, e.g.,
most chemical reaction models. (And in others the inhibitor diffuses more freely
than the excitor: this leads to wave front instabilities and Turing patterns, not
discussed here.)

4. There may be qualitatively distinct classes of excitable media, with only one
major class thus far examined in any detail. It is not yet clear that this class
is fairly representative of all. What I describe below is found in equations (and
corresponding laboratory systems) resembling item (3) in that there are two
variables, a Z-shaped nullcline for the fast and freely diffusing variable, and a

single, globally attracting uniform equilibrium.

B C

A

D E

FIGURE 5 With various settings of equation (3)'s parameters •3 and 6, the tip of
the spiral wave in Figure 4 traces out paths like these. The scale bars (accidentally
erased during the original publication) represent one "space unit." From Winfree 225 with
permission.
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FIGURE 6 Figure 5(a) is one member of this series, obtained by selecting/3 at
each E to obtain the same (four-fold) symmetry. The scale bar (erased in the original
publication) represents 30 "space units." From Winfree 225 with permission.
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MEANDER

It turns out that the isolated vortex in a uniform unbounded medium is typically not
motionless like those seen in computations during the first several years. Rather, it
typically executes a flowery dance. I dubbed this "meander," 202 ,248 suggesting ran-
domness, thought to derive from non-uniformity of the experimental arrangements.
This was before the discovery that ideal, numerical vortices also can "meander" and
that this is not a numerical artifact (my belief until 1985) and that it does not re-
quire strange and ungeneric adjustment of the model and before it was appreciated
that the most common kind of "meander" is quite regularly biperiodic. 247

Figure 5 shows several of the biperiodic meander flowers traced by the tip of
the spiral wave in the FitzHugh-Nagumo medium (Eq. (3)). Though they vary
greatly in absolute size, all are confined to the "core" of the spiral: a central disk
of perimeter equal to one wavelength.. .with an interesting exception that we will
come to shortly.

This diagram happens to hold -y = 1/2 in Eq. (3) while varying e and 0, but
slopes 0 and 1 were also explored, with similar results. At slope 1 it is possible
to obtain three intersections with the Z-shaped nullcline. This also seems to make
little difference for rotor behavior.

Figure 6 shows a series of flowers with four petals, all with greatest curvature
to the outside so the petals appear to stick outward. At one end of the series, they
are small, nearly perfect circles, but with a little wobble at the right period to
exactly retrace an excursion with four-fold symmetry. At the opposite end they
consist of long straight segments punctuated by tight turns through -270'. This
series corresponds to a one-dimensional locus in Figure 7, along which the angle
between petals is 900. Along adjacent loci, the flower does not quite close. Somewhat
further away lies the 60' "isogon" (6 petals), and the 30' isogon (12 petals), etc.
Ultimately the 00 isogon is reached, beyond which petals show their maximum
curvature on the inside (Figure 5(d)). In the neighborhood of the 00 isogon, the
wave tip is looping through the medium like a pencil point on a rolling disk. The
rotor has a linear momentum (gradually turning unless parameters are exactly on
the 00 contour) in an arbitrary direction (Figure 5(b) and (c)). The flower in such
cases is not confined to a disk of small perimeter. At about the same time as my
study,22 5 Dwight Barklay (unpublished) found all the foregoing patterns also in his
excitable medium 16' 17"18 while varying its equivalents of y and fi. Thus we learn
that rotors have an unforeseen property beyond position and phase: they also have
intrinsic orientation or direction, which changes on a schedule independent of the
familiar rotation.

I am not sure how wide a range of angles the isogons span. Are there 180'
and -180' isogons? The former would lie far to the right in Figure 7 and would be
populated by tip paths which almost run back and forth along a nearly fixed, but
very slowly rotating, slit. Myocardial spiral waves have sometimes been described
so, but it is not clear whether this is an artifact of the anisotropic fibrous struc-
ture of their substrate, possibly including an actual slit along which fibers fail to
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communicate laterally. I have never seen them in the FHN medium, except when
mistakenly running computations on overly coarse grids. However, Krinsky et al.1 23

have reported them in a related model of excitability. The putative -180' isogon
would lie under and to the left of the 0' isogon, against aM. It would be populated
by flowers of a shape not yet seen.

These isogons do not fill the whole parameter space. At the end where the
wave tip's path scarcely deviates from a circle, we find OM, the parameter-space

Hopf bifurcation locus delimiting the domain of two-period meander. The other
end has not yet been found, but it might encounter WC, a recently discovered
locus delimiting more complex meander, sometimes called "hyper-meander." Figure

8 shows two examples: 8(a) from Eq. (3) and 8(b) from the Oregonator model
discussed below.
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FIGURE 8 To the right from Figure 7's iC flowers cannot be described by
concatenation of two periodic processes. The upper pannel shows such a flower
alongside its y(t), with 0 = 1.2 and e = 0.03. The lower panel shows complex meander
in the Oregonator model of the Belousov-Zhabotinsky reaction. Both from Winfree 225

with permission.
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FIGURE 9 This is a guess at the generic landscape of rotor types in excitable media,
as two dimensionless parameters are varied: horizontally, the ratio of excitation to
recovery rates (called e above), and vertically the ratio of threshold to full amplitude
of excitation (correlated with /3 above). From left to right the bifurcation loci are OP
(for which there seems little theory), OR (where most Russian work concentrates), OM
(where Barkley proved a Hopf bifurcation), and OC (not understood at all). Work using
singular perturbation techniques covers the far right. Symmetric spirals lie along the
top edge, where media with smooth, round limit cycles occupy the left part. The tick
mark on the vertical axis marks the Hopf bifurcation of the local kinetics, which leads
to smooth oscillations only near equilibrium. Note that the Ginzburg-Landau reaction-
diffusion model has no home on this plane, nor are there domains of wave-breaking
turbulence.
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the laboratory or by numerical experiments. These lectures accordingly empha-
size experiments, mostly numerical. The student should be skeptically aware that
conclusions from such spotty evidence may also go astray.

Figure 9 gives my "artist's impression" of a generic bifurcation diagram for
rotor behavior in excitable medium, as a function of threshold and rate ratios. It
indicates the domains of various behaviors and corresponding approximate mathe-
matical methods. People have studied spiral waves analytically and computationally
in various approximations, not always clearly distinguished, with results whose over-
lapping or disjoint domains of validity are not always clearly fenced in, so results
often seem contradictory. Experimentalists are forever discovering spiral waves in
new biological and physical situations, and making up a model of the putative inech-
anism, and confirming it by demonstration that the model makes spiral waves with
behavior similar to the observations. This tactic relies on the implicit assumption
that the idiosyncratic behaviors of spiral waves reflect idiosyncrasies of the under-
lying mechanisms. But the possibility exists that any excitability model is capable
of all these behaviors, just depending on the tuning of some generic parameters. So
then, if you pick the wrong mechanism, you can nonetheless match observed spiral
wave behavior by choice of parameters, if nothing else constrains that choice. Thus
these exercises are often remarkably successful and seldom exclude an initial mis-
taken model. If diagrams like Figure 9 can be improved in accuracy and generality.
such difficulties will be reduced.

Another curious feature of excitable media is that there is only one kind of
spiral wave: it has a characteristic wavelength and rotation period for a given local
kinetics. If you create disturbances from which spiral waves emerge, they are all
identical except for position and phase: all have the same period and wavelength.
Anyway, that what was thought for 20 years. Since everyone knew that, but no one
had ever proved it, I went in search of a counterexample by recording the rotational
period of the spiral wave while varying one parameter of Eq. (3), and while holding
the other two fixed in a range guess to favor peculiar behavior. As E is increased, tiw
period hardly changes until a critical E2 at which it jumps to a much longer period,
then continues to lengthen as E is further increased. Backing up this evolution, the
long-period solution persists past the former jump point, and drops to the short
period solution only at El < 62. There is an intermediate range of parameter valuies
in which both types of rotor are viable. Choosing a medium in this range, you thus
find both kinds of rotor coexisting. One has tighter spirals than the other, and turns
quicker, so it eventually dominates. But until then, or in the absence of the faster
solution, the slower solution is perfectly stable.

Incidentally, one of the deepest mysteries in this business is the persistent ab-
sence of completely different kinds of reaction-diffusion structures. Why do diverse
models keep turning up only Turing patterns (periodic ripples) and rotors'? For
20 years I have expected the advent of a marvelous diversity of modes in whi'ch
diffusion and arbitrarily chosen local kinetics might interact to generate dtaymmniual
structures such as one sees, for example, in living cells. But they have not t urne(d
up. Is this a problem, or does it only reflect the absence of a convenienttly fast
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visual utility with real-time manual control of parameters and initial conditions,
for intuitive exploration of the possibilities? Such a facility constructed for the Sil-
icon Graphics Iris revealed that the most common alternative to rotors and Turing
patterns is utter turbulence.

Returning to rotors, the dependence of spiral wavelength, A0 , and period, TO,
on small parameter c is an encouraging exception to my impression that in this area
the route to discovery has more often been numerical experiments than analytical
mathematics. In the limit as e --+ 0 (the singular perturbation limit), both A0
and ro blow up (or vanish, depending on "format" choice). En route, they follow
the cube-root laws anticipated by Fife5 8' 59' 60 and by Kessler and Levine"' more
accurately than the square-root laws estimated in the Russian literature: in format
1, e.g., A0 is proportional to the inverse sixth root of e and 70 is proportional to the
inverse cube root. Fife's scaling was mostly ignored amid contradictory alternatives
until it was also discovered numerically.225 It has swiftly become the basis of newer
analytical work.17, 24

,1
0 1 ', 02

,'12,'1 3 The basic reason for the cube-root laws is that
as e becomes smaller, the reaction-diffusion system jumps in the u-direction from
the lower branch of the Z-nullcline to the upper, and from the upper to the lower,
at smaller and smaller lvi. It does not wait to jump at the turnaround points of
the Z (at u = ±1, v = ±2/3). Thus the range of v traversed becomes narrower
and narrower as e decreases, so r0 becomes briefer, and the wavelength shorter.
(No such e-dependent abbreviation and attenuation of the cycle is expected in an
excitability model like Figure 21 below. This is why I imagine that comparable
numerical experiments with that model might reveal limitations to the generality
of behaviors explored up to now in excitability models like Eq. (3).)

In contrast to the rotor period r0 , the shortest period at which the medium
can respond in 1:1 fashion, Tmin, apparently does follow a square-root law on E,
so the ratio 'rO/rmin -- 00 as e -* 0, leaving a wide gap of excitability between
the spiral's refractory wake and the next turn of its activation front. This conflicts
sharply with a conviction common among cardiologists, that rotors spin nearly at
period min and so they are only precariously viable and have no zone in which an
extra stimulus could incite the medium to affect (and perhaps undo) them. The
facts seem to be otherwise, both for rotors in typical excitable media and for those
in heart muscle: they are perniciously stable, and they can be entrained or even
extinguished by properly timed small stimuli.

One consequence of these power law dependencies is that the ratio A2/r0 is
independent of (small) e, and so it is a fixed and dimensionless multiple of the
propagator's diffusion coefficient. This multiple, Q, does depend on other details
of the local kinetics, e.g., the threshold, but not on e. Q less than about 67r has
never been seen in numerical experiments, nor in the laboratory unless the value
of D is very much in doubt. Q seldom differs more than about four-fold from 87r2,
except in media of marginal excitability. This not a theorem but merely an em-
pirical observation about all known continuous reaction-diffusion-based excitable

media. But it has its uses, for example in guessing the nature of the communication
that binds local reactivity into a spatial pattern. There is a skin disease8 3

,14
9 ', 8 '
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resembling an excitable process, even to the extent of making rotating spirals, with
wave length about 1 cm and period about 12 hours. If Q is around 80 as in other ex-
citable media, then the propagator's diffusion coefficient is about 3 x 10- cm 2 /sec,
which suggests a protein or a virus struggling from cell to cell. A better-studied
case is the catalytic oxidation of carbon monoxide to carbon dioxide on the surface
of hot platinum crystals in your car's catalytic converter. This reaction is excitable
and propagates typical waves, including spirals, the first of which to be published
had wave length about 0.005cm and period about 10sec, suggesting propagator
diffusion at 4200 K about 3 x 10-8 cm 2/sec, 95,224 thus suggesting migration of an
adsorbed gas across the surface rather than gas-phase diffusion. As it turned out,
that first photograph was atypical: the spiral was apparently stuck on some kind
of hole, giving it abnormally long period and wavelength. Nettesheim et al.15 1 give
a corrected wave length for the free spiral (at higher temperature, 448° K) about
0.0013cm and period about 8sec so QD is 20 x 10-8 cm 2 /sec, so if D is as above,
then Q -, 5: about three times smaller than the record minimum for all known
excitable media and mathematical models. This might suggest a closer look at D.
Supposing Q within a factor of 4 or so around 80 as usual, the predicted propa-
gator diffusion coefficient would be within a factor of 4 or so around 0.25 x 10-8
cm 2 /sec. When the CO diffusion coefficient was measured, it proved to be about
0.27 x 10-8 cm 2/sec;1 7 6 but this was at 4060 K and we really want it at 4480 K.
Nettesheim et al."5 1 suggest 4 to 9 x 10-8 cm 2/sec at that temperature, but note
that estimates vary widely. Regardless of the residual ambiguity and the need for
more refined measurement, the value predicted from familiarity with rotors and the
values observed experimentally are as much as three orders of magnitude smaller
than values used in recently published mathematical theories about this reaction.
So much can yet be expected to change in this area.

Another excitable medium that has been modeled successfully by simple kinetic
equations similar to Eq. (3) is the BZ reaction. In silica gel preparations of this
reaction, the "controller" quantity v (the colorful catalyst, ferroin) is bound and
does not diffuse, but, in other gels or the ungelled liquid, it diffuses freely. Does this
make a qualitative difference for rotor behavior in the Oregonator model of the BZ
medium? As in the case of Eq. (3), it turns out not to, though there are substantial
quantitative differences. With -y diffusing freely we found computationally that the
pivot point of the vortex does not sit still, but slowly migrates along a flowerlike
path. As chemical parameters E and f are varied, the wavelength, period, flower
symmetry, and flower petal shape all vary. The pattern of these dependencies is
about the same as in the FHN model with similar parameters. Something of the sort
was shown 20 years ago in the BZ reagents (Winfree,21 5 p. 181) but flower varieties
more like the computations were discovered by Jahnke et al., 92 and at least two
other laboratories then confirmed these observations.167 '8 s5 Though many flowers
like Figure 5 have since been observed in chemically excitable media, two of the
most striking predictions have not yet been confirmed in the laboratory. I believe
they will be, because diagrams like Figure 7 have turned up in every excitable
medium examined to date. One is "hyper-meander," which cannot be described in
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terms of two distinct periods; Figure 8(b) shows an example. This occurs to the
right of 8C. Another is "linear looping" meander, which occurs along a certain
locus (the "0V isogon" between OM and OC): the center of the spiral in a perfectly
uniform isotropic medium glides at fixed speed in a direction determined only by
the manner in which the rotor was initiated (or subsequently perturbed). In such
media the wave tip traverses a cycloid (at large -) or (at small -) straight runs of
length less than \ 0 punctuated by a 360' turn about the end of each.

This puts me in mind of the confident assertion of a nineteenth century math-
ematician and philosopher, Auguste Comte3 5 (in translation): "Every attempt to
refer chemical questions to mathematical doctrines must be considered, now and al-
ways, profoundly irrational and contrary to the spirit of chemistry.... If the employ-
ment of mathematical analysis should ever become so preponderant in chemistry-
an aberration which is happily almost impossible -it would occasion a vast and
rapid and widespread degeneration of that science."

ROTORS IN THE ELECTROPHYSIOLOGIST'S MYOCARDIAL MEMBRANE
MODEL

The pattern of bifurcations shown in Figure 7 seems to illuminate diverse excitable
media. Thus it seems that real phenomena can be anticipated from principles as
basic as merely reaction kinetics in an idealized motionless continuum. In the chem-
ical instance it led directly to several discoveries in the laboratory. Might similar
benefits be derived from the equations of electrophysiology? The FHN model that
was explored in some detail just above is the simplest half-way plausible caricature
of electrical activity in nerve and muscle membrane. It summarizes the accepted
principles of electrophysiology that are thought to apply on a large scale in heart
muscle. So just as we checked the Oregonator computations in the laboratory to
discover strikingly regular and symmetric flowerlike meander in a chemically ex-
citable gel, we should check the FHN computations in the laboratory to see how
much can be anticipated that might have a bearing on cardiology.

A caution: whoever designed the human heart ("Mother Nature") would get a
D for engineering physics if she left it essentially like any generic excitable medium.
Why? Because such excitable media are susceptible to infection by rotors. Figure 9
shows that (for media like Eq. (3)) the only parameter domain in which propagation
is reliable yet rotors fail is just a fringe near the propagation boundary, where the
medium is only marginally excitable. This would not seem a safe operating regime
for hearts. So if hearts manage to evade such infection most of the time, it must be
because they are not generic excitable media. There must be some special gimmick.
What it is I don't know, but these mathematical studies indicate that it should be
looked for. This caveat should be borne in mind while examining heart muscle for
comparison and contrast with generic excitability.
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FIGURE 10 The inner turn of a spiral wave in a 16-cm square (200 x 200 grid points)
of Beeler-Reuter membrane, slightly modified for external potassium concentration
elevated from normal 4.5 mM to 7 mM to simulate heart muscle's excitability in rapidly
paced tissue. The contours are hand-sketched activation fronts at intervals of 40 ms in
order of line thickness. The inner tip of the activation front traces the border of a 1-cm
disk. From Figure 2 of Winfree 22 1 with permission.

To bring laboratory data to bear on this question, two approaches come to
mind. One uses a computational summary of decades of diverse experiments and
the other is directly experimental. We will consider both in turn.

The computational approach consists of checking whether better electrophysi-
ological equations quantitatively more faithful to heart muscle do indeed support
rotors, and whether they confirm the observed size and period. So my graduate stu-
dents William Skaggs in 1987 and then Marc Courtemanche in 1990 set up arrays
of about 40,000 idealized ventricular cells in one or another supercomputer, using
a version of the so-called Beeler-Reuter membrane model once considered to give a
fair representation of the electrical behavior of the myocardial cell membrane. These
equations were formulated using the best description available 15 years ago, while
today's productive electrophysiologists were just beginning their careers. Most con-
temporary users modify it one way or another. It represents calcium kinetics rather
sluggishly, for example, so we cut the associated time constants in half. We asked
whether it supports two-dimensional vortices similar to those known in all other
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excitable media, and quantitatively whether it gets the size and period right. It
almost does. The diameter of the vortex core is about 1 cm and it rotates about
5times/sec (Figure 10). The main point is that an appropriate stimulus starts a
persistent high-frequency rotating excitation. Others have since repeated this kind
of computation, also in other models of myocardium, and all obtain vortices of
roughly the same size and period. If diverse electrophysiologically motivated mem-
brane models agree on at least these qualitative features, then it seems worthwhile
to go looking for them in the real medium that inspired all the models.

ROTORS IN LIVING MYOCARDIUM

These vortices, discovered computationally as an implication of the accepted dy-
namical equations of heart muscle, had not been seen in the clinic nor in the lab-
oratory. So it seemed worthwhile to find out whether they are real or not. Does
real myocardium support them? Are they vastly larger than the hearts in which
we would (erroneously) invoke them as interpretation of familiar arrhythmias? Or
possibly so much smaller that they would span only a few cells, proving that the
continuum approximation used to predict their properties is utterly inappropri-
ate? Or possibly just the size below which small hearts are incapable of sustained
arrhythmias and fibrillation?

The question here is about ventricular muscle and "rotors" as conceived un-
der the rubric of cable-equation electrophysiology (Eq. (2), Gulko and Petrov77

and Winfree 20 5,20 6 ). In the 1970s it had already been settled that atrial muscle
does support them6,7 though electrophysiologists still prefer to describe them in
terms of an ad hoc models rather than in terms of electrophysiological equations.
There remained doubt as to their role in ventricular (therefore potentially lethal)
arrhythmias. This doubt stemmed partly from the difficulties of observation and
partly from the failure of any model to predict or account for observations quanti-
tatively, at least to order-of-magnitude, in terms of basic physics. Thus the effort
of the 1980s focused on making theory quantitatively predictive and extending it
to the ventricular myocardium.

Dog experiments were designed in the format of the computer experiments, but
it proved impossible for several years to interest epicardial mapping laboratories in
trying the different protocol required for inducing fibrillation in this controlled
way. When it was finally tried in about 1986, exactly such vortices were created
and observed and found to be about the right size: about 1 cm, the same in all
mammalian species tested up to now. They also turn out to have roughly the
characteristic frequency of pernicious arrhythmias and fibrillation: around 10Hz.

The shortest stably sustainable period of rapidly beating mammalian and avian
hearts is shorter the smaller is the heart; this period varies as the fourth root of body
mass, and heart mass stays about 0.6% of body mass. But all such hearts are made
of similar membranes and cells, with similar electrical properties and susceptibility
to similar rotors. More quantitatively, it turns out that hearts capable of beating
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faster than rotors are all too small to accommodate a 1-cm rotor, and are incapable
of sustained fibrillation.

These figures can be understood roughly from the observation that dimen-
sionless ratio Q is usually about 100 (order of magnitude) in rotors, regardless
of their particular physical, chemical, or mathematical mechanisms. Q can be
written as A2/Di-o or as \oco/D. Ventricular D is about 1 cm 2 /sec, and speed

Ao/r 0 is about 30cm/sec. Speed can be "derived" as VD = excitation time =
N/lcm2 /sec/O.OOlsec. This is, of course, the speed of a solitary excitation into
virgin territory not of the spiral wave train, but for myocardium the difference is
not large. It follows that A0 should be expected to be about 1 cm and To should be
expected to be about 0.1 sec (encouragingly, like the dominant period of the EKG
during fibrillation).

Rotors seem to be one of the main avenues to fibrillation and death. They have
now been observed also in the human heart during potentially lethal arrhythmias.
Now in more detail:

The ultimate way to ask the same questions posed above numerically is the
experimental approach, exposing real hearts to the same initial conditions that
conjured rotors from the equations of electrophysiology, to see if they do the same
in normal, healthy heart muscle. This is necessary because the only thing we really
know for sure about the purported equations of almost anything biological is that
they aren't right. They are sort of right, but they are necessarily idealized. No
matter how detailed, they are still only simplified abstractions, and even though
they may capture the simply describable essence of the known phenomena, they
might not predict new phenomena in even a qualitatively convincing way. Models
can only be relied on for hints. The hinted experiment has to be tried.

It was already well known and used in other areas of physiology. Called the
pinwheel experiment, it was first used to clarify topological aspects of the dynamics
of the (still-unknown) circadian clock mechanism. Then it was used for similar
purposes involving the biochemical oscillator that regulates sugar metabolism in
yeast cells, then to clarify the dynamics of the human circadian clock, then in the
BZ chemically excitable medium to create spiral waves. Starting about 1980 1 tried
to persuade cardiac physiologists to execute the same procedure on normal heart
muscle, but there were no takers. So I just published the ideas in Scientific American
in 1983, and wrote a more detailed book about it in 1985. In 1986, while the book
was still in press, rotors were created in normal heart muscle by this experimental
protocol. So it is worthwhile to explain the principle of the protocol:

In a pinwheel experiment a geographical gradient of stimulus intensity is ap-
plied across a geographical gradient of timing. A geographical gradient of stimulus
intensity is automatically created around any DC stimulus electrode because cur-
rent density is high nearby and falls off with increasing distance from the electrode.
A geographical gradient of timing is automatically established by passage of an
action potential, turning on cells in orderly succession. According to the theory
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and practice of pinwheel experiments, any appropriate crossing of two such gradi-
ents should initiate a reentrant vortex in a medium capable of sustained periodic
activity, therefore in myocardium.

It should be understood tiat there is not very much innovation in this. Wiener
and Rosenblueth 2°° had presented a cogent theory of spiral waves on myocardium,
including a mechanism resembling Figure 3 for their creation in mirror-image pairs
by a discrete stimulus in the wake of a prior wave. There were doubts about the
realism of this model, and the spirals it predicted were enormously too large, and
they had no stabilizing "excitable gap" and were liable to spontaneous extinction,
but much of the theoretical difficulty was resolved by the improved axiomatic models
of V. I. Krinsky,121' 122 co-awardee in the 1980 Lenin Prize. This work included the
first real theory, not just of spirals, but also of their deterioration to fibrillation. Yet
there remained substantive doubts about this whole approach, since the manner of
intercellular coupling used for modeling convenience has implications that differ
markedly in some respects from the "cable equation" of electrophysiology or the
equivalent diffusion equation of physical chemistry. Some of these problems were
resolved independently in Russia and the USA by the first computations of spiral
waves using the latter mechanisms, 77' 20 5 ' 20 6 and by their laboratory demonstration
in a chemical reaction-diffusion medium.20 2,24 4 Allessie et al.6 '7's then demonstrated
rotors in atrial myocardium. The trick for initiating them works only at special
sites discovered by trail, and its mechanism remains inscrutable. In the experiments
described in these lectures, the stress is not on the mere existence of rotors, but more
on their demonstration in ventricular myocardium as the prelude to fibrillation,
and on their creation by a mechanism that is quantitatively understandable in
electrophysiological terms.

My present purpose is only to motivate an interest in the theory (which is
better presented elsewhere, e.g., Winfree 215' 216 ), so it will suffice in this lecture to
just remind you of the two-stones-into-the-pond image in lecture 1 (Figure 11).
The first creates a radial gradient of timing in the wake of the first wave, and the
second, landed in that wake, produces a transverse gradient of stimulus intensity
which has different effects in different places. On the side opposite from the first
wave, the second stimulus creates a new wave front, while between stimulus center
and the first wave, that is, in the refractory region, it cannot create a wave front. In-
between, on each side, there must be an endpoint of the new wave front. These are
the places where the timing gradient and the stimulus gradient cross transversely
through critical values, and where rotors arise. The experiaiental question is: what
becomes of the endpoint? Does it move along a hyperbolic arc? Does it retract
and vanish, or somehow become diffuse? Or does it evolve into a stable, standard,
compact rotor? And, if so, what are its size and period?
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FIGURE 11 Detail of the third panel of Figure 3
to show the interruption of ring 2 by the dotted
refractory wake of ring 1. Rotors materialize
out of the transverse gradients created near
the termini of the segment of ring 2 propagating
toward stimulus site 1.

FIGURE 12 The southern hemisphere of a dog's heart, showing successive positions
(thin to thick contours) of the excitation front during one rotor period of about 120
msecs. Numbers are excitation times in milliseconds at each electrical pickup site. This
mirror-image pair of rotors was initiated by "the pinwheel experiment": when locus B'
had reached roughly the white U-shaped locus while propagating downward trom the
stimulator at the top (the black dot), locus S' was created around the gray electrode in
the center. This was supposed to create rotors at 'J' 5'' intersections, and it did. From
Winfree'•22 • with permission.

,,163
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The easiest way to think about the geometry of these crossed gradients is
to focus attention on two special contour lines on the myocardium. One is the
moving contour along which cells are reaching a certain time of recovery, called
T*. In heart muscle this critical time T* falls soon after the membrane repolarizes
behind the moving activation front. The other is the fixed contour around the
stimulus source, along which a certain intensity of local excitation is produced. This
critical local stimulus intensity is called S*. According to theory in heart muscle,
this critical stimulus corresponds to an extracellular potential gradient several times
exceeding the pacing threshold, which we know to be about 1 volt/cm. When S*
was measured,6 ,8'8 the factor "several" turned out to be about 5. (See below.)

A good thing about these two contours is that both are readily observable
and measurable. Where they cross, a reentrant vortex is supposed to be initiated.
It may not stay there, particularly if the creating gradients are much deformed
relative to the actual shape of a stable rotor, but it might not bounce far from
its birthplace. If this is right, then a lot of the horrendously complex subtlety of
cardiac electrophysiology has been boiled down to something much more tractable,
viz., the locations of two special contours that are observable in heart muscle.

Another way to think about this criterion (the original way210 ) comes from
noticing that the phase portrait of myocardial membrane (like Figure 1) resem-
bles that of a limit-cycle oscillator, and that myocardial cells need only very slight
encouragement to take up spontaneous oscillation. So let's think of them in approx-
imation as though they already were oscillators, but with period too long to be of
practical interest. It is well known that any limit-cycle oscillator has a critical phase,
T*, at which a stimulus of critical size, S*, will pop it to or beyond the boundary of
its attractor basin: it then cannot spontaneously resume its prior normal mode of
behavior. Only two experimental parameters are needed to accomplish this, regard-
less of the complexity of the mechanism 20 1 ; this "pinwheel experiment" has since
been used to characterize the "phaseless" states of the circadian clock in several
kinds of organism, including humans, 3 9' 9 9' 2 14 in oscillatory sugar metabolism, 20 3

and in the BZ oscillator. 76'8 5 ,8 6 In geographical context, in a continuous field of
oscillators, such a stimulus generically creates a neighborhood in which the center
cell got exactly T'S*, and those around it end up with their timing reset in a cycle
around the singular center point. This is the perfect initial condition for creating a
rotor, as illustrated for example in the BZ medium.235

The creation of a rotor supposedly requires that some patch of tissue is near
the singular timc T* while it is being excited by nearly the critical electrical stim-
ulus, S*. This can be arranged in the laboratory if the pertinent quantities are first
estimated within narrow enough limits for experimental design. This pinwheel ex-
periment was carried out in dog heart at Duke University Medical School, in the
Basic Arrhythmias Laboratory of R. E. Ideker.68 '88'18 2 The disk in Figure 12 is
a flat projection of the southern hemisphere of the dog's heart. From a stimulus
electrode at the top of this map (black dot), an action potential was sent forth to
sweep across the ventricles, establishing a vertical timing gradient. (Under normal
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conditions this would be provided by the heart's atrial pacemaker.) When the hor-
izontal midline, roughly, (the white arc) was at singular phase, a second stimulus
was provided, this time from the large gray stimulus electrode at the center. Current
density was, of course, greatest close to the center, grading to practically negligible
at the edges of the disk, establishing a stimulus gradient transverse to the phase
gradient. Along the white circle of about half the disk's diameter, the local stimulus
had the singular intensity S* = 5 V/cm. Wherever the critical time contour crosses
the critical stimulus circle, theory predicts creation of a rotor. So we expect two,
oppositely rotating, because of the mirror symmetry of the experimental arrange-
ments. The numbers written at sites of pickup electrodes report the timing of local
activations, and the hand-drawn contours (thin to thick) segregate those times in
20-msec bunches. After 120 msec, excitation is back to its starting place and it goes
around again, continuing in this way cycle after cycle. In short: this healthy dog's
heart does exactly what the equations of electrophysiology saiu it would. The heart
is now embarked upon an irreversible course toward fibrillation, which erupts one or
two seconds after this 120-ms vortex is started, i.e., after 10-20 cycles. This result
is consistently obtained in all dogs, in diverse rearrangements of the experiment. It
shows that the conceptual principles used to design the pinwheel experiment are
sound in this application, and that the half-century-old electrophysiologist's cable
equation is sufficiently reliable for this class of phenomena and has surprises packed
away inside it still. It shows that normal healthy heart muscle does support rotors
of the kind seen in other excitable media, instigated by the same kinds of stimuli.
So the ones seen in humans may be understood as a reflection of understandable
normal mechanism, not necessarily rc"quiring poorly characterized aberrations of
the individually diseased heart.

Here are four further testable consequences of these principles:

1. If the stimulus gradient is parallel to the timing gradient, so that the critical
contours are parallel and do not cross, then there should be no reentry induced.
This was tried by Frazier et al., 68 and turned out just so. As a caveat: the
electrode arrangement of Davidenko et al.4 1'4 2'43 creates rotors, but it looks as
though it might also create essentially parallel T and S gradients. (They were
not measured, so this scrupulous preservation of a possible counterexample
might turn out to be mere worry.).

2. If the stimulus is given too early or too late, then the T* contour would be far
from the S* ring when the stimulus is given, so again there is no possibility of
crossing. One can calculate beforehand what should be "too early" and what
should be "too late," from the known mechanism of excitability. Or even more
simply, the difference between those times is the diameter of the T* ring divided
by the speed of the activation front. That provides a quantitative prediction
of vulnerable phase duration. This has been measured, and the estimate seems
good to within a factor of 2 or so.
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FIGURE 14 Combinations of local stimulus timing and magnitude where (large dots)
a rotor is created, or (small dots) not. [From Winfree 2 23 with permission, adapted from
Frazier et al.68 ]

3. If the stimulus is too weak, then the S* circle will not b(, large enough to ac-
commodate two mirror-image rotors side by side. If it is too strong, then the S*
contour will not even be in the medium. Thus there is no possibility of cross-
ing and there is no reentry. Again, one can calculate beforehand from simple
principles of :nechanism what should be "too weak" and what should be "too
strong." In marginal cases, contours crossing almost tangentially twice, very
close together, we should get two mirror-image vortices so close together that
they spin only briefly before recombining: just a few rapid beats are expected
in these marginal cases. The requirement that the stimulus not be too weak
is pretty obvious, because without it we would all be spontaneously breaking
into vortices all the time. But the idea provided by the theory of rotors, that
the stimulus must also not be too strong, was widely regarded as paradoxical
or nonsense before the experiment was tried a few years later. And there vwas
no quantitative estimate of either limit.
Figure 13(a) shows the anticipated results, classified by tiuming and size of stiim-
ulus at the electrode. I was unable to convince experimentalists that this was
worth testing, but R.. E. Ideker saw this figure in my 1983 Scicntifi'c Ani4an'11,1
article and with his postdocs ran the experimentt in 1986 at Duke University
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Medical School using living dog heart. The result (Figure 13(b)) is coarsely re-
solved, but the main features seem to be there. A core of fibrillation onsets only
within a narrow range of stimulus timing, and only when the stimulus is neither
too weak nor too strong, and around it a fringe of brief tachycardia episodes,
and outside that, no problem. This experiment was repeated in a quite different
preparation, the postage-stamp-sized epicardial slices of sheep heart in a petri
dish. Davidenko et al.42 found the same pattern (Figure 13(c)), with only this
intriguing difference: where Figures 13(a) and (b) have "fibrillation," Figure
13(c), using a two-dimensional heart, has persistent rotors. Rotors seem to be
the gateway to fibrillation in three dimensions, but not in two dimensions.
This bull's-eye structure, and the exact values of the top and bottom of the
target, have direct engineering implications for the design of electronic defib-
rillators. Incidentally, we later learned that the basic result (existence of an
"upper limit of vulnerability") had already been put into the literature, but
it was apparently so surprising that in the absence of a persuasive theoretical
interpretation, the fact was promptly forgotten and left uncited. 13 1 How many
other wonders might linger unfindable in the uncited literature?
These results can also be used to provide a clear measurement of the numerical
values of T* and of S*. Data from the Duke experiments are gathered in Fig-
ure 14 to show the combinations of local stimulus timing and strength realized
at all points in the hearts of all dogs. Those points that became vortex centers
are darkened. They cluster as you can see around special values, providing the
clearest measurement obtained to date for T* and of T*-and confirniation of
their existence and significance.

4. The same principles, plus one extra, provide the first quantitative suggestion for
why the fibrillation threshold is what it is, rather than 1000 times less or 1000
times more. The extra principle is that in normal ventricular myocardit, m, ro-
tors promptly incite fibrillation, so the VF threshold cannot be higher than the
threshold for creating rotors. Rotors necessarily arise in mirror-image pairs,
which will recombine before they can incite VF unless they are initially far
enough apart. What is needed to create vortex cores far enough apart'? The
vortex cores observed in the past few years in many preparations all seem to
be about 2/3cm in diameter, whether in dogs, pigs, sheep, or humans. So we
need a T* surface to cross an S* surface at sites at least 2/3cm apart. The
T* surface behind most kinds of activation front is locally similar to a plane,
and the S* surface around a solitary unipolar electrode on the epicardiuni or
endocardium is something like a hemisphere. If T* cuts the hemisphere along a
2/3-cm diameter, then the area of the S* hemisphere around the electrode tip
is 27r(1/3 cm)2. All along this area, the current density S* is 6 V/cm divided by
the electrical resistivity of muscle, about 330 Q-cin: that is, 18 mA/cm2. The to-
tal over the hemisphere's area is thus 13 mA. Is this close to the observed VFT?
The VF threshold had been repeat(,dly measured on thousands of dogs since it
was defined by Wiggers in 1940. The results from direct current, single pulse
experiments are predominantly in t he range about 12-22 mA. T[he lower values
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are from widely spaced bipolar electrodes, closest to the unipole approximation
used here. The higher values come from narrow bipoles, for which a slightly
more elaborate theory predicts correspondingly higher VFT's. This simple the-
ory thus suggests the first rough quantitative prediction/interpretation for the
known facts in this area.

.........

FIGURE 15 Two-dimensional and three-dimensional excitable media (continuous,
uniformly anisotropic, unbounded, simply connected) each sustain two kinds of wave:
the single elliptical closed ring of activation in response to a central stimulus, and the
spiral or scroll. From Winfree 223 with permission.
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(a)

(b)

FIGURE 16 (a) The scroll's axis or filament closes in a ring along the axis of this
bagel. (b) Each cross section perpendicular to it reveals an outgoing spiral wave in this
cut-away of the same wave front. From Winfree 21

2 with permission.
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THIRD LECTURE
We can now generalize from two- to three-dimensional studies. While estimating
the VFT threshold, we already ventured into three dimensions by integrating a
current flow over a hemisphere, but there was nothing essentially different from
a cylindrical or two-dimensional circular version of the problem. But there might
be something fundamentally different about three-dimensional excitable media. For
example, rotors are stable in two dimensions but spontaneously progress to fibril-
lation in three dimensions. The beginnings of a theory of three-dimensional vortex
filaments has been created, but not tested, during the past decade. That has been
my main preoccupation during the last several years and that is what I will present
in the second two lectures.

In three dimensions the vortex center of the spiral wave becomes a vortex
filament. In idealized excitable media in three dimensions just as in two dimensions,
we still have two distinct modes of activation (Figure 15). The reentrant mode is
drawn here as a straight scroll, but more generically its axis curves. Eventually
it may encounter the boundaries of the medium. Otherwise, it perfectly closes in
a ring, like a smoke ring or vortex ring. The reason for perfect closure is that
the vortex center, if motionless, has a certain concentration of substance u, so it
lies on a certain iso-u surface.. .and a certain concentration of v, so it lies on the
corresponding iso-v surface.. .and two smooth surfaces can only intersect in rings
(possibly interrupted by the boundaries). At least, this is a "reason" for models
involving only two local state variables. For real excitable media which need not
reduce in practical approximation to two-variable dynamics, vortex geometry might
be more subtle than the visions proffered here.

Such a vortex ring would look like Figures 16(a) and 16(b). The vortex filament
is a circle and the pulses radiating away from it form surfaces of revolution. The
spirals fit together in three dimensions to make closed egg-shaped wave fronts like
those that surround a "pacemaker point" or "leading focal center" of repeated
excitations. But the mechanism of this pacemaker is three-dimensional reentry, not
space-independent pointlike oscillation at an essentially arbitrary period. Only its
unique period betrays that the mechanism involves rotors rather than abnormal
cells or a patch of parametrically different medium.

Vortex rings of reentry in normal heart muscle could be as small as 2-3 cm in
diameter, according to computations using typical electrophysiological parameters.
(In case of prolonged ischemia or infarction, the cells come uncoupled and all activity
patterns become smaller, or even change their character entirely if the uncoupling
is so extreme as to abolish continuum properties.) Such a vortex ring would fit
comfortably in whale myocardium and it might also in healthy dog or pig or even
adult human heart muscle if the propagation speed along the 1-cm thickness is
much less than in the directions visible on the surface. One has to be a little careful
here about the meaning of "cm," since heart muscle is not isotropic. Waves in
heart muscle propagate on the epicardium about three times slower transversely
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to the cellular "grain" of heart muscle, than they do in along the longitudinal
direction, the way the cells point. They might be even slower in the other transverse
direction, so the 1-cm thickness of the human ventricular wall (if it can be regarded
as a continuum at all) might be effectively several centimeters for this purpose.
This is not yet clear. In any case it is clear that bits and pieces of a scroll ring
certainly would fit. Shibata and Frazier at Duke set up an experiment to elicit the
simplest geometry, the three-dimensional scroll predicted to touch both epicardium
to endocardium perpendicularly. They documented it quite clearly.

The notion that scroll rings might exist in thick myocardium has been kicking
around since at least my 1980 book. Medvinsky et al.1 4 1 in Puschino near Moscow
were the first to look for vortex rings in myocardium, using the protocol that
demonstrated them for the first time in a chemically excitable three-dimensional
medium.2 07 Their results in the atrium were strongly suggestive, but remain to be
repeated or tried in the ventricles.

That is about as far as the three-dimensional vortex story has evolved in normal.
healthy myocardium. It might have further to go if the 1-cm thickness of human LV
wall is functionally equivalent to several centimeters, due to slowness of conduction
in that direction. Or it might not if mid-myocardial tissue is fragmented by cleavage
planes so that continuum approxiinations are less serviceable than they seem to be
on the epicardium. It will be hard to know until electrophysiologists figure out
how to record from three-dimensional electrode arrays at 1-mam spacing without
altering the otherwise normal tissue in the process. Meanwhile understanding of
three-dimensional vortex filaments is developing quickly in the experimentally more
convenient context of chemically excitable media, and in numerical experiments and
mathematics.

CHEMICAL ORGANIZING CENTERS

Vortex filaments forming closed rings commonly include topologically distinct knots
and links. Compact arrangements of linked rings are called organizing centers. Each
kind of organizing center radiates closed spherical excitation fronts at the character-
istic interval of rotors (or slightly more often due to an effect of "twist" - see below).
In the presence of organizing centers, there is always some part of the medium in
an excited and contagious state. Without them, the medium prolmptly reverts to
uniform equilibrium, or if it is stimulated, it exhibits one response to each stimulus
with intervals of global quiescence between stimuli. This is the normal situation
in human heart muscle, for example. But heart muscle, like any other excitable
medium, is also susceptible to periodic modes of self-organization. The study of
periodic self-organized activity in generic excitable media is largely the study of
rotors in two dimensions, and in three dimensions, of organizing centers made of
vortex rings. It is only a conjecture that this is also the case in tile particular
excitable medium called heart muscle, but it is quite clear in several other cases.
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Since 1974 such vortex rings have been observed and their motions have been
studied quantitatively in the laboratory, using the chemical excitable medium. If,
as in heart muscle, you could not see into and through this chemical medium-if
it were visually opaque-then the nature of the source would only be given away
by the characteristic short period of the rotor where the wave front erupts onto
the observable boundary as elliptical activation fronts ostensibly radiating from a
focus. That unique period would suffice to betray the reentrant mechanism at its
source. But in the chemical gels, the entire structure is also visible. In this chemical
kinetics the millimeter-size rotor has a period about 1000 times slower than in heart
muscle, near 100 seconds rather than 100 msec, and it is a hundred times smaller,
about 1/10 mm across rather than 1 cm.

Numerically solving equations like Eq. (3) is not difficult in two dimensions.
Stable rotors were first obtained from such equations numerically 20 years ago
using a Hewlett-Packard 9830 desk calculator with 1 kilobyte of RAM driving an
audiocassette tape "hard disk" for several days. Computation in three dimensions
only requires more memory and more operations. Twenty years later we use 108

bytes of RAM and 1011 updates of u and v, but the principles are the same.
Appropriate initial conditions are required, to get anything to happen in a

three-dimensional medium that is more interesting than propagation of a single
excitation front to the walls of the box, followed by relaxation to uniform quiescence.
We need to induce self-organization, and (curiously) tile only known mode is the
rotor. Thus a filament must be created along which every cross section is a rotor or
something sufficiently similar to become a rotor. There is an easy way to do this.
The arrangement of u and v concentrations that constitutes a rotor necessarily
includes a core of transversally crossing gradients. Let's center a coordinate grid in
this disk of (u, v) combinations so that U = u - (u) and V = ii - (v). Then we
can refer to each part of the rotor by a complex number, C = U + iV. We want
to map each (x, y, z) point of the three-dimensional medium to this plane in such
a way that C = 0 along the wanted filament. There are recipes for prescribing z as
one or another rational polynomial C(x, y, z) whose roots lie along variously linked
and knotted paths through (x, y, z). We pick such a polynomial, use it to prescribe
u and v throughout the cube, and we have our initial conditions. Then we turn oil
local reactions and diffusion by updating all u and v values as though a short dt
had elapsed, and repeat many times.

It is less easy to look at the results. You are confronted by an array of about a
million concentrations. Most of them represent waves propagating through the bulk
of the medium. These waves are little different from those found in one-dimensional

pulse propagation so they are not very interesting. (Their speed depends interest-
ingly on local mean curvature, but there seems to be not much else to study about
them.) They obscure your view unless windows are laboriously cut through theul.
From my perspective, the interesting part of an organizing center is the slowly mov-
ing vortex filament that constitutes the source of these waves. There are several
ways to extract it numerically, throwing away the larger volume occupied merely
by waves radiating from the filament. One way is to select all those grid points
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whose U2 + V 2 lies sufficiently close to 0. This collection of grid points resembles
a long thin swarm of bees which can be threaded by a smooth curve representing
the vortex filament.

Having done this we then sample the local geometry at each of 100 equispaced
stations along the vortex filament. Then the u(x, y, z) and v(x, y, z) arrays are
updated through one more rotor period, and a similar snapshot is obtained again.
Each arc between stations on the original filament is found to have moved. In these
numerical experiments we ask whether any of the topologically distinct organizing
centers are asymptotically stable in the sense that they rebound to a preferred
shape after mild perturbation, and otherwise merely tumble through space like
rigid particles. We have run across several such kinds, perhaps half of the kinds
thus far initiated. And we ask under what circumstances can the motions of vortex
filaments be understood just in terms of local geometry in the neighborhood of each
moving segment. In those circumstances, what are the laws of motion (if they are
simple enough to recognize from numerical experiments)? For example, it can be
proved that if both u and v diffuse at the same rate and kinetic parameters are
such that there is no spontaneous meander, and the filament's torsion and twist (see
below) are identically 0 and the radius of curvature greatly exceeds the radius of the
rotor, then each segment of filament "should" move toward its center of curvature
with a speed equal to the diffusion coefficient over the local radius of curvature.

The first observations of curved three-dimensional filaments in this reagent, 20
years ago, showed that curved segments do indeed contract toward their centers of
curvature, leading to the demise of small rings (a couple mm in diameter) within
an hour or less. In computations the rate adheres nicely to a linear dependence
on curvature of the filament (superimposed on periodic meander). Integrating that
rate law, we find that the square of the radius should fall off linearly with increasing
time, and the slope of the decline should be twice the diffusion coefficient of the
two equally diffusing substances. That is exactly confirmed numerically. The corre-
sponding laboratory measurements of r 2 vs. t later confirmed these computations
in the sense that the slope is constant and compatible with a plausible diffusion
coefficient. Actually one does not know quite what to use for a diffusion coefficient,
since the two substances have about two-fold different coefficients even in water,
and in silica gel one of them is immobilized.

Numerical experiments show that things get more interesting when the two
diffusion coefficients are not conveniently equal. Figure 17 shows the shrinkage rate
of a planar circular vortex ring in the FHN medium (Eq. (3)) plotted against cur-
vature). At small curvature the slope is equal to the diffusion coefficient as foreseen
in that limit. But as the curvature becomes significant, the shrinkage rate grows
slower than linearly, then even decreases, eventually to 0 at a certain curvature.
In other words, shrinkage need not continue all the way to extinction. Shrinkage
stops about when the hole inside the ring has been squeezed shut, but it is not clear
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FIGURE 17 The rate at which a uniformly curved filament spontaneously moves
toward its center of curvature can be a nonlinear function of curvature. In this
computation (Eq. (3) with carefully chosen parameters e = 0.3, /3 = 0.7, -y = 0.5),
there is a zero of shrinkage rate at a certain finite radius. From Courtemanche et al.37

with permission.

whether this is due to nearness to the other side of the doughnut or simply to local
curvature of the filament. In any case, the result is a stable vortex ring, which goes
drifting through the medium like a particle with momentum. It can be deflected by
ephemeral chemical (numerical) perturbations, after which it regains it shape and
continues in the new direction. This is the first discovered stable organizing center.

Not much is yet known about the interactions amiong such particles. I know
that they do not always destroy one another u11)01 mutual encounter, and can coin-
lbine and transmute into topologically more elaborate stable organizing centers.
The possibility is not excluded that such particles. like atonis and miolecules, might
support a chemistry, in p~rinciple permitting mutation. natural selection, andl evo-
Ilition. Perhaps someday it will be ridiculous to contemplate ('hemistrY. biology.
and life in excitable media (based oni lasing in the solar corona-sphere?! based on
optical entrainment of nionlinear solid state oscillators'?). But. at this writing it still
seemis as realistic a possib~ility as chemical evolution fromin the mnedium dlescrib~ed
b y th le partial differential equiat ions of q uia tuI11 in mech an ics wvouldI have seen ied toa
c'ontemporary physicist comntemnplatiing t 'ie uiniverse of 10 b~illioni Years ago.
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Single, flat, uniformly curved, untwisted organizing centers are not very generic.
Their wave fronts are all surfaces of revolution, their vortex filaments are perfect
circles lying in a plane, there is no torsion, nothing looks twisted, and so on. In this
context the only property possessed by the vortex ring, which suffices to completely
characterize it, is its radius. So a dynamical theory need only consist of an expression
for the rate of change of radius as a function of radius, and it becomes hard to
distinguish mechanistic theory from mere description. Correction: the ring also has
a position along the axle of symmetry, so it has a velocity in that direction, and
that also depends on the radius (unless all diffusion coefficient are equal: then
this perpendicular velocity is identically zero in theory). So now you find yourself
contemplating two velocities: one at right angles to the filament's local tangent
vector in the direction of the filament's center of curvature, and one at right angles
to those two directions. Since we are now talking of local directions and local pieces
of filament, not about the whole ring, the idea comes naturally to mind that the
local velocities might be determined by local curvature, in case that were not the
same all along the ring. Thus arose the notion that Vn in the normal direction
(toward the center of curvature) is a linear or maybe quadratic function of local
curvature, at the same time that Vb in the binormal direction (perpendicular to the
plane of curvature) is also some such function. This turns out to work fairly well
in many cases, at least as a description. But there is a new problem. Notice now,
that if curvature is not the same everywhere; i.e., if the ring is not a flat circle, then
the binormal velocity is not uniform, and parts of the ring drift out of the plane at
different rates, so pretty soon it is not planar any more. It now has nonzero torsion
and we have a new ingredient for the theory. You might expect that no more
ingredients are needed beyond these two, since any curve in three dimensions can
be described by specifying its local curvature and torsion as functions of arc length.
So it might suffice to describe V, and Vb through those two independent variables,
possibly mediated by differential operators or functions. This is a mistake, because
vortex filaments in excitable media have (at least) one other crucially important
local property.

TWIST

In fluid dynamics there is a dynamical law derived from Navier-Stokes equa-
tions for conservation of mass and momentum in a "dry" i (no viscosity) that
tells just how each element of arc length along the filame,, moves under the in-
tegrated influence of all the vorticity associated with all the other elements of the
filament.115,116,134 This Biot-Savart law is not a local rule, but for filaments of slight
curvature the excellent "localized induction approximation" is, and something like
it should be derivable from Eq. (3). Unfortunately, it is not to be had by straightfor-
ward copy-cat procedures. The resemblance of vortex filaments in excitable media
to those in fluids is only superficial. First of all, their key feature is that they must
close in a ring-unless interrupted by boundaries-and that is a feature of fluid
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vortex filaments only in the nineteenth-century "dry water" idealization, lacking
viscosity. Moreover, in the localized induction approximation, a circular filament
drifts perpendicular to its plane but does not shrink, and more generally curva-
ture does not change in the absence of torsion (both contrary to the behavior of
scroll rings in excitable media) and torsion does not change if curvature is uniform
(contrary to the behavior of helical scrolls in excitable media).1 73 In the twentieth
century, liquid helium provides a sort of "dry water," but its vortex rings are quan-
tized in a way quite different from vortex rings in excitable media. Also unlike any
fluid, excitable media have a distinct temporal period associated with every point
pervaded by spiral waves frow a given organizing center. But most importantly,
the substitution of physical motion by chemical activity endows vortex filaments
in excitable media with a geometrical property unknown in hydrodynamics. This
additional property is called "twist." It measures the rotor's change of phase with
arc length along the filament in a still snapshot.

The filament is made of spatial distributions of the local state variables. Those
variables have spatial gradients transverse to the filament. Those gradients point
in some direction relative to a fixed coordinate frame. That direction changes with
arc length along the filament (and, of course, it rotates once in each rotor period).
If, in a snapshot at fixed time, it changes a lot in a short distance, then the filament
is very "twisted." This twist rate, w(s), is a real-valued function which should not
be confused with the integer W denoting a winding number on a closed curve. It
represents the "turning to the right" of the rotor with distance (in either direction)
along the filament, in a snapshot at fixed time. It is computed from the triple
product of three normalized vectors: the unit tangent vector T and the normal
component of the u or v gradient (either should serve the same purpose in this
idealization) evaluated at adjacent sites along the filament. This is the volume of a
parallelepiped of unit height, whose base, projected onto the plane normal to T, is
a parallelogram of area equal to the sine of the angle 0 between its two edges. With
gradients multiplied in the correct order, 0 is the clockwise (rightward) rotation
of the gradient vector with increasing distance along the filament. Since only the
component of the gradient perpendicular to the tangent cont. ibutes anything to
the triple product, it is sufficient to use the unresolved gradient, normalizing the
wanted component by ITxVuI:

sin = Vu(s + As) * TxmVu(s)
ITxVu(s)L As I TxxVu(s + As)l

so
AO = [d/dsVu(s)] * Tx V u(s)

s As ITx Vu(s)1 2

With s oppositely oriented (or dot and cross interchanged), this product remains
the same, but interchanging any two of the three vectors reverses its sign.
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Nonzero twist arises quite naturally and inevitably. Suppose you had a vortex

filament with no twist. But it is curved more in some places than in others. Cur-

vature slows down vortex rotation. Faster-spinning arcs then creep ahead in phase

relative to slower-spinning arcs: the accumulating difference is twist. Also a curved

filament moves in the binormal direction, at rates proportional to local curvature,

so if curvature is not uniform then even an initially planar filament acquires torsion,

which distorts an initially uniform phase distribution, creating twist. Or even with-
out curvature, real excitable media are not 100% uniform in their local properties,

so in some regions the vortex period is a little shorter than in others: if the filament

passes through such regions, it becomes more twisted with each successive rotation.

So then it seemed that we want a theory capable of predicting V" and Vb from

local curvature, torsion, and twist. 228 But it was already becoming evident that
rotors move spontaneously even in the absence of curvature, torsion, or twist. This

spontaneous motion undercuts the present basis for study of vortex filament motion,
according to which the filament is a two-dimensional rotor in every perpendicular

slice, and its motion is zero when curvature, torsion, and twist are zero, as when

isolated in the plane. Because meander is typical in two dimensions, except in an

FIGURE 18 From such an initial wave front (implicitly oriented: one side faces

quiescent medium, the other, refractory medium) a knotted scroll ring evolves. This
figure was drawn by Timothy Poston in 1985; it represents one of the complex-valued

polynomials used as initial conditions for organizing centers.171
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FIGURE 19 At a later stage of evolution, the knotted scroll ring has shrunk to a stable
shape, slowly rotating and drifting through the medium (perpendicular to the plane of
the page). This snapshot shows only the excitation fronts radiating away from it. The
front and back walls of the box are transparently connected but the side walls are
all absorbing. (This is a black-and-white version of the organizing center examined in
Henze and Winfree.81)

atypical fringe area of parameter space, chemical and numerical experiments i:i-
tended to isolate quantitative effects of curvature, torsion, and twist on filament
motion must be restricted to that fringe and have little hope of generality. Nonethe-
less, it is interesting to know qualitatively what new behaviors are introduced by
allowing nonzero twist.

A surprising consequence of twist was discovered computationally in 1989.80
Consider the evolution of an initially uncurved vortex filament given uniform twist.
In the initial condition every horizontal x, z plane contains the same two-dimensional
vortex computed fr'om the chemical kinetic equations, e.g., of the Belomsov-
Zhabotinsky reaction. Planes each bearing a spiral wave are stacked up, slightly
rotating about a common vertical y-axis. The wave radiating from this axis may
be viewed as a skewered stack of rotationally staggered spirals. By repeating this
experiment with different twists imposed, the effect of twist can he systematically
determined. For example, it shortens the rotation period of the vortex, enabling the
twisted segment to comlpete successfully with waves arriving less frequently from
less twisted segments elsewhere. It also turns out (in two of the three (different ex-
citable media examined) that if the twist rate exce(ls a certain threshold, then the
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filament sproings into helical form. This helix then grows until either stabilizing at
finite radius or hitting the no-flux walls of the vessel, where its expansion may or
may not be arrested, depending on the kinetics chosen. In these helix experiments,
all properties of the filament are uniform along the filament: arc length derivatives
of curvature, torsion, twist, and so on are all identically zero.

But suppose we used initial conditions like Figure 18. Here you see one three-
dimensional iso-u surface--a wave front because the way the v field is arranged, not
visibly here-adjusted to have its edge along a knotted ring. That edge turns into a
trefoil-knotted vortex ring, buried in the structure seen in Figure 19. It is confusing
to look at the wave fronts, and simpler to look just at the vortex tube from which
the waves radiate: Figure 20 shows the core tube of another knotted organizing
center, viewed along the vertical axle of the previous figure. It resembles a three-
bladed propeller. The propeller tips move at several percent of pulse propagation
speed. The entire knot is rigidly precessing, two orders of magnitude slower than
vortex rotations, about the vertical axle of Figure 19. This vortex knot acts like a
particle gliding through the medium at about 1% of wave speed while it sedately ro-
tates comparably slower than the rotor turns. It is stable in that if you deform it, it
gradually reverts to its original shape and speed and precession rate, but now with
a phase shift and with its parallel linear and angular momentum vectors turned
together to some other direction. Using six adjustable parameters, the motions

FIGURE 20 The singular filament of a knotted organizing center like Figure 18 (but
opposite handed and a different kinetics) is isolated in this view.
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of this stable organizing center can be (as foreseen by Keener10 4) described very
closely in terms of linear combinations of local filament curvature, twist, and arc-
length derivative of twist."s I find this surprising because I believe its stability is
determined by nonlocal factors: by waves from more rapidly spinning, more-twisted
arcs impacting on less-twisted arcs, and by the mutual obstruction of filaments
encountering one another transversely at very close quarters.

THE LOCAL GEOMETRY APPROXIMATION

Let's consider the adjective "local." In fluid dynamics local dynamical laws such
as the nonlinear Schrodinger equation (6) are rather poor approximations to the
Biot-Savart integral for filament motion. Why should a local theory be any better in
excitable media? There are two reasons: in excitable media there is no fluid motion
induced by remote vortex lines, and in excitable media causation goes outward
from wave sources that are protected from incoming influences by shells of outgoing
shock waves. But there are situations in which this "local geometry hypothesis," as
I dubbed it at the outset of this project in 1986, breaks down. They are important
situations. I think they are mainly responsible for the numerically observed stability
of some compact organizing centers. I am not going to go into that here, but for
those interested, these situations are discussed in Winfree and Guilford, 22

8 Henze
et al., 80 and Henze and Winfree.s' There probably are situations in which nothing
more than local geometry dominates filament motion, though they might not be
convenient for numerical simulation. What would a theory of such motion look like?

What one wants from the local geometry hypothesis is an explicit formulation

of local motion in terms of local chemical kinetics and diffusion. Local motion
consists of VIn, Vb, and the local period of the rotor, which, as we saw just above,
is also affected by local curvature and twist. Those three items would constitute a
complete description of the filament's motion if it were determined merely by local
geometry-and if, in the absence of curvature, etc., there were no meander-and
if the filament could be described in terms of position and phase, like a thread
through the pivots of stacked standard rotors. This is an intimidating list of "ifs,"
but the job was courageously taken on.

For nonmeandering filaments the local geometry hypothesis was implemented
by Keener in 1988. The bottom line of Keener's mathematics is that in the case of
small curvature and twist, smoothly changing along the filament, the departure of
the rotor's angular velocity from the two-dimensional baseline, and V, Vb are each
compounded by linear superposition of curvature, twist, and-instead of torsion-
the arc-length derivative of twist. Thus there are nine undetermined coefficients that
in principle depend only on local kinetics and diffusion, but at present they still
have to be measured empirically. Without knowing those coefficients we don't yet
have an easily testable theory, but several things are clearly right about it, so long

as curvature and twist do not become substantial. First of all, it corrects my early

erroneous notion that torsion could be an important variable, and replaces torsion
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by the derivative of twist. Henze and Winfree8 l confirmed Keener's prediction that
this is an essential variable. (It hard to imagine an important role for torsion, since
a straight line has any torsion you please, inherited from whatever helix you may
have made thinner and thinner without changing torsion, to approach straightness.)
Secondly, in the utter absence of twist, it agrees with the accepted rule that V, and
Vb depend linearly on (slight) curvature. If the nine linear coefficients could be
predicted from the local kinetics of excitability, it might become possible to make
a much stronger case.

Meanwhile, I suspect that something is fundamentally wrong with the present
incarnation of this theory, since it has no place for motion in the absence of curvature
or twist (meander) and since it predicts finite speed of an uncurved uniformly
twisted filament, in proportion to the squared twist, even though the direction is
indeterminate. It should also be remembered that its domain of validity may be
not much wider than what is explicitly claimed in its derivation (the limit of small
curvature and twist, and far from other filaments):

1. The observed dependence of the planar ring's shrinkage rate on its size is not
always even roughly linear.37 Maybe these linear terms are just the front end
of some Taylor expansions, whose further terms come into play when filaments
get close to one another or curvature and twist become severe.

2. The observed motions (especially I/b) of twisted filaments have not yet been
successfully fitted closely even after adding several new terms and corresponding
fitted parameters.80, 224

3. Even though Vt, and Vb in the one knot examined exhaustively does appear
describable in linear terms with only six arbitrary parameters, 8' that knot
clearly is not an example of a low-curvature, low-twist, local-geometry situation.

Thus it seems to me possible that we are still at an early stage in this explo-
ration, and that experiments are making indispensable contributions.

WHAT ORGANIZING CENTERS ARE NOT

I think it is worth noting explicitly that organizing centers in excitable media are
not examples of a phenomenon long awaited: chemical reaction-diffusion instabil-
ity. Two-dimensional Turing patterns were anticipated by 40 years, and half-way
through that wait, theorists were almost bursting to recognize an example in the
real world. My photographs of spiral waves in the Belousov-Zhabotinsky medium
were widely reprinted to illustrate such symmetry-breaking instabilities of a uniform
steady state. However, it was clear from the start that they are nothing of the sort.
The uniform steady state is perfectly stable to small perturbations. And rotating
spirals are not among the anticipated eigenfunctions of the Turing instability. In
three dimensions a wider variety of patterns occur: the organizing centers classified
by Strogatz and Winfree with "quantum numbers" identifying integer linkages and
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twists. These are neither alternative eigenfunctions of any reaction-diffusion sys-
tem, nor successive bifurcations on a tree of solutions. They do not arise by Hopf
bifurcation from an unstable uniform condition. Many of them are stable, and they
are discrete alternatives to the stable uniform state, arrived at only by large-scale
disturbances required to place the system in the distinct attractor basins of the
distinct organizing centers.

At this stage I leave off the line of development informally followed above with
minimal intrusion of citations, and run through about two-thirds of the same mate-
rial again from another direction, tying it to another one-third of related thoughts
and experiments. This time I will try to be more scholarly. I hope the redundancy
and the change of perspective will help to illuminate the many intriguing questions
that await attention.

FOURTH LECTURE
The main ideas behind these lectures were:

0 that normal heart muscle is an excitable medium;
* that some aspects of the dynamics of excitable media are generic, notably their

vortex excitations;
0 that these aspects are inherently three-dimensional and remain but poorly

understood;
N that pure computation from equations of mechanism should be complemented

by experiments;
N that in vent: -cular myocardium these vortex excitations are responsible for

the most pernicious arrhythmias, but are almost impossible to study three-
dimensionally in living heart muscle;

0 that they can be studied computationally and in chemically excitable media,
both of which support action-potential-like propagation in three dimensions;

s that the utility of these metaphors is attasted by verification in the laboratory
(both chemical and physiological) of conclusions (which seemed surprising until
confirmed) from prior two-dimensional numerical studies; and

N that quantitative experiments might be implemented by adapting existing com-
putational procedures in optical tomography to existing computational proce-
dures for analysis and display of the data we currently obtain by supercomputer
solution of the mechanistic equations of cardiac electrophysiology and of the
analogous chemical kinetics.
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TWO-DIMENSIONAL PHYSIOLOGY

In 1970 I discovered "rotors," the self-organizing sources of spiral waves, in aque-
ous films catalytically oxidizing malonic acid. This reaction was discovered by Be-
lousov during his study of the Krebs Cycle of cellular metabolism; it is now called
the Belousov-Zhabotinsky excitable medium. 211 In Russia Zhabotinsky indepen-
dently found rotors in the same year. Several years later, the chemical kinetics and
reaction-diffusion mechanism of rotors had been deciphered in detail and I noticed
that the equations have the same format and properties as those describing action-
potential propagation in excitable membranes. It was already widely conjectured
(by Wiener and Rosenblueth, 20 0 followed up mostly in the Russian literature, no-
tably by Krinsky121 ) that spiral waves play a role in cardiac arrhythmias. If so, then
the rotor mechanism 77 ,20 5,20 6 might be involved. (In electrophysiological contexts
"rotors" are now often called "vortices"; I use the two interchangeably in these
lectures.) I ventured some specific predictions on this basis 2 10 which then seemed
counterintuitive, e.g., that there should exist a (then unobserved) "upper limit of
vulnerability" (so named by Chen et al.32 ) for a DC electrical stimulus capable
of inducing fibrillation during the vulnerable phase. This was checked in dog my-
ocardium and found true (see Chen et al.32 ; see Figure 13(b) here, from Shibata et
al.1 8 2 ; Frazier et al.6"; see Figure 13(c) here, from Davidenko et al. 42 ). Then phys-
iologists felt motivated to check half a dozen other predictions, all of which were
confirmed (summarized in Winfree2 16' 2 17). These were only qualitative implications
of the theory summarized in Winfree. 215 With this much encouragement, the the-
ory was made quantitative in Winfree 21 9 ' 220 by applying in cardiological context
the notion of wave front curvature from physical chemistry and other recent under-
standing of the mechanism of rotors. It thus proved possible for the first time to
quantitatively predict optimum conditions and the corresponding electrical thresh-
olds for myocardial stimulation and minimum-energy pacemaking. for induction of
tachycardia and fibrillation, and for defibrillation. 220 These thresholds proved quan-
titatively correct, according to the most recent measurements. This is significant
for two reasons:

1. The values predicted were in some cases orders of magnitude lower than ex-
pected for pacemaking and defibrillation. Their confirmation has direct and
beneficial consequences for the engineering of implanted pacemakers and
defibrillators.

2. Cardiac physiology now has a quantitative theory of such things. This should
catalyze more experimental tests, providing a platform for debunking or refine-
ment of parts of the theory.
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TWO-DIMENSIONAL PHYSIOLOGY FALLS SHORT OF UNDERSTANDING
FIBRILLATION, DUE TO IGNORING THE THIRD DIMENSION OF
MYOCARDIUM

Though the foregoing two-dimensional theory for DC, single-shock stimulation of
normal dog myocardium during its vulnerable period did accurately foresee the
mechanism of fibrillation onset in terms of mirror-image rotors, and did for the first
time quantitatively derive the measured threshold from basic principles of elec-
trophysiology, nevertheless, in retrospect I see this as partly accidental. What was
really predicted was the existence, stability, and main properties of rotors in normal
ventricular myocardium, together with necessary and sufficient stimulus conditions

for their creation as counter-rotating pairs of predictable size and location (Fig-

ure 12). It was a gratuitous accident that they proved unstable and precipitated
fibrillation. The mechanism of this transition is still completely unknown. But there
is a tantalizing clue. 227 The key reason for expanding the cardiological investigation
to three dimensions is a surprising discovery (not yet widely recognized as such)
suggested by results from several cardiological laboratories during the past several

years: the transition from spiral wavc'; to fibrillation occurs spontaneously only in
functionally three-dimensional preparations! The transition from spiral waves to
fibrillation does not occur spontaneously in experimental preparations from which
the endocardium has been removed to such an extent that the surviving epicardium

is essentially two-dimensional (see Dillon et al. 50 and Kavanagh et al. 103 using an

infarct, Schalij179 and Allessie et al.9" 0 using liquid nitrogen, and Davidenko et
al. 41'4 2,43 using dermatomed thin layers of myocardium). The cause does not seem
to be mere removal the sub-endocardial lining of Purkinje fibers without seriously
compromising the three-dimensionality of propagation (see Damiano ct al.4" using
iodine). In ischemnic tissue similar treatment completely eliminated the otherwise

spontaneous transition from tachycardia to fibrillation (see Janse et al. 9 7'9 s using
phenol). My synthesis of these disparate observations is that ventricular fibrillation

is an intrinsically three-dimensional process. It is therefore essential to understand
in what ways three-dimensional excitable media differ fundamentally from now-
familiar two-dimensional media. One essential difference is that vortex filaments
in three dimensions, unlike rotors in two dimensions, have curvature and twist.

The consequences of twist seem to include interesting possibilities for the advent of

fibrillation.
21 9,220 ,222

PAST TWO-DIMENSIONAL VORTEX COMPUTATIONS AND PHYSICAL
CHEMISTRY

Thie theory of rotors diversified elaborately during the 1980s: for summaries see
Winfree,215,216, 225 Zykov, 246 Keener and Tyson,ll 0 Meron,n'" and Mikhailov and

Zykov. 14' However, it was not shown until about 1990 that tile electrophysiologist's
best quantitative summary of the ionic mechanisms of myocardial excitability (the

Beeler-Reuter model) does in fact support rotors, and that their size and period
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and wavelength are compatible with their imputed role as a prominent mechanism
of ventricular tachycardia. This has recently been established (see Courtemanche
and Winfree 3s and citations therein, and Fishier and Thakor 61 ; see Figure 10).

In the 20 years since rotors were first computed from a reaction-diffusion
mechanism,7 7,205° 2°6 the published literature about their behavior has exploded
(doubling every five years since about 1970, to about one paper per week currently)
into such unanticipated diversity of examples that by the late 1980s there seemed
an unlimited variety of vortexlike behaviors of diverse excitable media. Unbelieving,
I tested the alternative proposition that for any excitable medium characterized by
certain generic parameters (e.g., the ratio of excitation rate to recovery rate, the
ratio of excitation thr-shold to excitation amplitude, the ratio of diffusion coeffi-
cients), all the newly amiliar behaviors occur somewhere in a landscape coordi-
nated by those parameters. An exhaustive survey was conducted of rotor proper-
ties in the Oregonator model of chemical excitability with all reactants diffusing
equally9 4 --and with only the electrical potential diffusing in the FitzHugh-Nagumo
model225 and Barkley's variant of it 16' 17' 1s and in Zykov's model of electrophys-
iological excitability. 133' 225 ,247 Such a landscape was mapped and proved to be
qualitatively similar for all four. It reveals the existence of four bifurcation bound-
aries, in order of increasing "excitability" of the medium (Figures 7 and 9): OP
at which propagation fails, OR at which rotors blow up to infinite size and dif-
fuseness, OM at which the compact rotor begins to "meander" in doubly periodic
patterns, and OC at which meandering becomes more complex. The possibility of
chaotic meander was foreseen computationally175 but has not yet been sought in
the laboratory. Computed myocardial rotors seem to belong inside this boundary
and there is reason to think real myocardial rotors exhibit similar behavior. Discov-
ery of OM provoked our experiments in which doubly periodic meander was first
observed experimentally in the BZ chemical medium.92 This has since become a
popular subject for experiment and theory.17,'18 19 ,1

00
,1

0 1' 10 2,1
12

,1
43' 144' 16 7'185

TABLE 1 Notations for Two Periods

'Earth period' 'Moon period'

Jahnke et al.9 2  (N - 1)To TO

Lugosi133  
21r/Wtail 27r/Wtip

Skinner & Swinney1 8 5  1/f2 1/f1

Karma100  1/F 2 = 1/(flq - f2q) l/flq
Barkley 16  27r/(w2 -- W) 27r/wl

Meron 144 27r/Aw 27r/wl
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Various notations are used for the two periods or spectral lines W2 and W, in a
Fourier spectrum of wave trains from a meandering rotor, or the two frequencies f,
and f2 involved in tracing the trajectory of the meandering spiral wave's tip: where
70 is the rotor period assayed as the average interval between excitations far from the
rotor. N (integer-valued only in exhibition flowers) is the reciprocal angle, measured

as fraction of a circle, between successive petals of the flower. This is taken positive
for outward-petal flowers like Figure 5(a), (b), and (e), and negative for inward-petal
flowers like Figure 5(c) and (d). w2/27r is the frequency of curvature modulation in
the tip's path. (Don't be misled by subscript "2": w2 /27r = f2q = f, - f2, not = f2).
These relationships are described in Figure 5(a) of Jahnke et al. 92 The "earth-
moon" notation is an artifact of our initial impression that two-period meander
flowers were "compound circular motion," like spirograph tracings composed of
two circular orbits, one (the moon, the rotor) carried by the other (the earth's
orbit around the sun). The meander bifurcation was identified with "earth orbit
amplitude" bifurcating from 0. Skinner and Swinney corrected this to "compound
rotation" and Barkley emphasized that there is no reason for one of the closed paths

to be circular even right at the Hopf bifurcation, and extracted its actual shape.
Both "earth orbit amplitude" and the amplitude of path curvature fluctuations
bifurcate from 0 at OM, but depend differently on parameters; both can become
very large, but this happens to curvature amplitude where flowers are very pointy,

and to "earth orbit amplitude" where they are not, along the 0' isogon.
Along the 00 isogon, N and f2 = 0 and W2 = w, = 27r/ro: the curvature of the

tip's path fluctuates at the period of the rotor. The amplitude of that fluctuation

determines the linear speed or momentum of the "linear looping" rotor. Elsewhere
in the meander domain, the flower has a center, which is excited at intervals (1 -
I/N)Ti-: positive unless N < 1 (which makes no sense), and less than T, in outward-

petal flowers. Thus, in a triangular flower like Figure 5(e), excitation goes through
center three times while the rotor turns (the front moves eastward) 3 - 1 = 2 times:
the center is excited at intervals 2r,/3. This can happen only if this interval exceeds
7-mmi, which requires small e, thus outward-petal flowers of lower symmetry are
found further to the right in Figures 7 and 9 (until the onset of hyper-meander at
sufficiently small - or large interpetal angle.)

Though the FHN study was published with only the fast "propagator" or "ex-
citor" variable diffusing, this study has since been redone with the slow "recovery"
or "controller" variable equally diffusing, with similar results. The published study
also fixed the third parameter of the FitzHugh-Nagumo model (y = 0.5). It has
since been redone with y changed to 1 and to 0 with similar results (for comparison
with analytical approximations subsequently completed. 00101.102,106

The pertinence of these results in present context is that without them pa-
rameters for numerical experiments and chemical experiments can be chosen only
blindly, perchance in unrepresentative regions of parameter space or precariously
close to bifurcation loci. The diverse published recipes for BZ media (e.g., many

gathered in Jahnke and Winfree 93 ) give the impression of unsystematic diversity of

rotor behaviors. I believe it should be possible (but I have not yet tried it) to locate
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each of these recipes on the generic landscape, together with myocardium and its
various pharmaceutical modifications, and other biological excitable media such as
Dictyostelium discoideum 64,148 ,193 and oocyte cortex, 129 thus putting the whole lit-
erature into perspective. For example, the American theoretical literature is mostly
in the singular perturbation limit, far to the right on Figures 7 and 9, while much of
the Russian literature (theoretical, computations, and experimental) together with
some recent American literature (e.g., Karma'0 1) is concentrated along the lower
part of OR. Their contradictory conclusions thus need not be seen as incompatible.
The middle region, largely unexplored by theory, seems to be where myocardial
rotors live.

Before going on, let me pause to remark that the foregoing characterization of
"excitability" might not be completely geh~eric. There is at least one other kind of
differential-equation model of excitability, which might turn out to have significantly
different properties. 73 ,78 '114,1 24 ,139,186 For example, its range of v seems unlikely to
contract toward 0 as e -- 0; but that property underlies much of the behavior of
FHN-like excitable media. In the format of Eq. (2), one such example uses

f(u,v) = ( u2 -v 2 ) + (1 + bv)v,

g(u, v) = (1- u2 - v2) (1 + b)u,

in a medium with equal diffusion of both u and v.
Such media have three fixed points instead of just one. In case (7) one is

at the center of the unit circle in the (u, v) plane and two occur where it inter-
sects line 1 + bv = 0. Such media make the transition from excitability to spon-
taneous oscillation at b = 1 by a saddle-node bifurcation through infinite period
("SNIPER"), e.g., as revealed by the period and amplitude of the BZ reagent's bulk
oscillations. 69' 70 ' 138" 531 80 ,20 7 In such media, spontaneous oscillation and excitabil-
ity are indeed mutually exclusive alternatives as commonly supposed (Figure 21),
rather than independent, typically coexisting properties of the medium (as in the
most profusely modeled chemical and electrophysiological excitable media, exhibit-
ing Hopf bifurcation).

Suppose the single, attracting fixed point of FHN-like models is supplemented
by a saddle and a repelling focus which, if the first two would fuse and vanish,
would create a limit cycle (Figure 21(a)). The Japanese literature of rotors in ex-
citable media is mostly about a limiting case of this model (Figure 21(b)), "phase
models" (called "ring devices" in Winfree,2 °9 or "active rotators" in Shinomoto and
Kuramoto18 3 : dp/dt = f(0), e.g., 1 + bcos 0. These have but a single state vari-
able, 0. The class used in the present survey, in contrast, have two or more state
variables. The one-variable models can be seen as a limiting case of two-variable
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FIGURE 21 (a) The phase portrait of an
excitability model like Figure 1, but with
an extra pair of fixed points [adapted from
Winfree, 20 9 Figure 9-11. (b) In a limiting
case, the system is confined to a closed
trajectory bearing two of the fixed points (the
attractor and the saddle).

models, in which the state flows so rapidly onto a one-dimensional ring that the
"phase" description suffices. This limiting case has peculiarities that might disqual-
ify it from serious attention (e.g., its spiral wave necessarily has a discontinuity of

0 near its pivot) except that short of the limit, with rapid but finite radial flow,
behavior may in many respects resemble that found in the unrealistic limit.

This model is of particular interest as a representation of any nonlinear dynam-
ical system entrained by a periodic signal. In the entrained steady state, it holds

a stable phase relation to the driver, but if perturbed sufficiently, it can briefly
lose entrainment, changing relative phase until it approaches that same relative
phase again in the next or prior cycle. If it is only marginally entrained (the driver

frequency being near one or the other limit of the 1:1 entrainment band), then a
relatively small phase displacement suffices to initiate excursion through the com-
plement of one cycle back to the stable relative phase. This is excitability in a
dynamical system which, by itself (apart from the dynamic of its entrainment),

exhibits nothing of the sort. For example, a photosensitive chemical system may
be driven by a spatially uniform cycle of light and dark, or by regular cycle of
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temperature change, at a period which it is barely able to follow. Appropriate per-
turbation at any point causes a local excursion en route to re-entrainment one cycle

ahead or behind. In a spatial continuum with diffusion this event would trigger the
like in neighbors and propagate like the waves familiar in this kind of abstract ex-

citable medium. It is not yet known whether its variety of possible rotor behaviors
is equivalent to that already found (e.g., Figures 5-7) in single-fixed-point models.

Supposing the results prove qualitatively the same as before, it may then be

possible to characterize all known excitable media (covering a considerable range of

biological experiments) by locating them on this two-parameter landscape. Their
modifications by pharmaceutical treatment, electrical biasing, aging, mutation, and

so on should then become comprehensible as departures in one or another direc-
tion on this generic map. If such a classification is really possible, to my mind its

clarification would be the most satisfying and widely useful outcome of this whole

project.
The next important step is a computational check on the pertinence of this

ostensibly "generic" parameter plane to the eight-variable Beeler-Reuter model
of vntricular myocardium. This was done independently in at least three lab-

oratories. 38,54,61,216 In the earliest three of these citations, parameters were found
at which a more complicated "turbulent" behavior occurs. The fourth, varying

parameters systematically outside that range, produced flowers similar to those

shown in these lectures. In all, the Beeler-Reuter model was adjusted in diverse

ways: these ways evidently make a big difference. It might be that any generic
version of Figure 7, like Figure 9, should also contain another bifurcation locus, to
"turbulence."

The importance of these studies is that anti-arrhythmic pharmaceuticals are
thought to act partly by altering the excitability properties of the myocardiumi

to make rotors less viable (or more: medication does not always help). Knowing
the implications for rotor behavior would seem an essential component of ratio-
nal prescription. An improvement on this plan might use the DiFrancesco-Noble 47

model, which adds to the Beeler-Reuter 23 model the longer term consequences

of short-period activation during arrhythmia (the refractory period shortens and

propagation speed decreases due to accumulation of interstitial [K+], etc.). Can the

consequences of "fatigue" in a model replete with Na/K pumps and cylindrical gra-

dients be represented by a change in the generic excitability parameters? In what

direction relative to the bifurcation boundaries described above? The DFN model

is optimized for Purkinje fibers, not for myocardium, so results will only give a hint,

but revision to represent mnyocardium is expected and will be easy to plug into the

same code.

Is fibrillation related to such "turbulence" in models? Is it a two-dimensional

process, like the models, or does it fundamentally require three dimensions? Fib-

rillation in the acetylcholine-treated atrium clearly is two-dimensional (atrial my-

ocardium being so thin). But maybe there is a special reason for atrial fibrillation

which does not apply to normal ventricular inyocardium, viz., the greater mor-

phological and electrical inhoniogeneity of such atrial tissue. Almost, all thinking

I-___
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about ventriculai- fibrillation descended with little if any modification front thle non-
quantitative model of Moe et al. 14

' based onl "nonuniform dispersion of refractori-
ness" in the atrium.. The relevance of these assumptions to ventricular myocardiumn
has never been demionstrated quantitatively, 2 18 while that of quite different features
of ventricular myocardium hams been (viz., the theory of rotors, based onl the continl-
tious cable equation of elect rophysiology.) But thle theory of rotors inl nonoscdllating
excitable media goes only as far as tachycardia. Rotors seem stable in normal two-
()'uensional ventricular mnyocardiuni (e.g., dog right ventricular wall 245). btawy
tit into fibrillation in normial three-dime- sional ventricuflar lnvocardlium (e.g.. dog

left ventricular wall 2 ,15) . Existing theory does not illuminate that transit ion.
The possibility also remains unexcluded that in two-dimensional mniocarditim

or models thereof, wave fronts fragment and rotors multiply in part because, b~eyond(
a certain abundance of rotors per unit, area of epicardial surface, they interact iii
complicated ways not yet discovered or described.

In smoothly oscillatory and not- necessar ily-excit able perfectly continuous and
Uniform mnedia even a single phase singularity (rotor, vortex) serves as a seedI fromt
which ever more spontaneously arise ii j pairs. i26. 127,128 This seemis just what a miod-
eler would want as bridge between creation of a rotor and eruption of turbulence.
Similar lbehavior has niot yet been observed in continuous models with a single.
attracting. fixed point. As in iniocardiuni. except perhaps ill thlree-dlimenesionlal BZ
media. 80 ,166

Coarsely discrete excitable inedlia like cellIular a utomnat a have long been known
to go turb~ulent onice seeded with a rotor. Media c-anl le dliscrete inspace, in state, or
ill time; in "coupled imlaps" space or tinime is so coarsely * viscret ized that turbulence
arises inuch as iii (iscrete-state cellular automaton miodels. 71.90A.-,9.16 But these
canl only be related to severely dliseasedl nvocardiunl. One can also use a kinietics
with multiple fixed p~oints, one of which has com11plex comnjulgate eigenvalumes with
positive real p~art. Then we can get Kr~mamnoto's tu~rbullenc~e: If another fixed point
is anl attractor (as iii simpler excitable inedhia) , this need not create at liimiit c ' yle.
yet a rotor in such a mmmediumm c-an provide thme seed of t urbuilemnce. All examplle
.vas pointed out to me by NI. Baer and M. Eiswirth two weeks after thme Santa Fe
lect ures. 11, 15 B~ut siicm models still differ qilalitiltivel ' frontm present visions of heart
muscle. A bit mnore like mryocardiunn are miodels WNith di(iscrete nodes conniected b)y
conit inuoums one-dimlensionmal p~ath~s along which excit atio p01~ropagates cont inumouslY.
For exalmplle, Suzuki et al."" (in Japanese, discussed in Wimmfree 20 1. and Suzuki"!'9)
mmade movies of spirals breakinig upl onl a nimesh of wires each capable of propagatingp
aChe'm ical excitation. A related nuimnerical m iod el exh ibits sim11iIa r belhavi or. 90

Another version of react ion-diffusion tumrbumlenice occuirs ill the0 imost realistic mYm-
ocardial miodel currently available.3 1 ThbiS is tilie 'Statiouarv fronts" p)~leounlenoim
iil thle originmmal Beeler- IIeumter mnodlel of ventrit cular am iemn i)ramme am1(1d ini 501iIe Siinmple

mo d ific ations of it . 'F lie idea iii c aricat ur e is thIiat mnvocard iu (,ini 'm act ivat e in either
of two alternative modes: iii both, tlie soduimlim chialniels open, but thle calcijuin'ma-
u 'Is inigh t. or mnighit mot,, depend inmg oil thmeiru st age of1 reo'0 vi'r~v fron piorI1)'101 act ivat ion
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at the moment when a new activation front intrudes. If they do, then the local ac-
tion potential will be much more prolonged than in an adjacent area where (because
they were just slightly more recently activated) they do not. If an activation front
encounters that relatively motionless boundary before both sides have fully recov-
ered, then once again the two sides will respond differently and recover at different
times, renewing the stationary front. New fronts are created wherever activation
crosses zones that have repolarized (thus permitting re-activation), in which the
calcium-mediated events are ready to recur in one part but not in another: such
parts develop action potentials of different durations, separated by a stationary re-
polarization front. Complicated and abruptly changing mosaics of stationary fronts
(and their moving descendants, after both sides have recovered) might exist in any
such medium, e.g., heart muscle.

That verbal description is a cartoon-like simplification: really the duration of
the calcium-mediated refractory period is a smooth function of the timing of activa-
tion (see Courtemanche and Winfree, 38 Figures 3, 6, and 8). Along the wavefront,
anticipated duration varies from 60 to 240 ms quite smoothly. Also the "stationary
fronts" are not perfectly stationary. But the cartoon remains the best description
contrived so far. The numerical data are seen in Figure 22. As in Winfree216 '217 '2 2'
and Fishier and Thakor,61 arcs of conduction block occur "unexpectedly," even
in this absolutely uniform, nearly continuous medium. This turbulence is all self-
generated, once it is seeded by creation of one short-period reentrant source (wave
tip, rotor). Rotors proliferate and recombine at random during this turbulence. Ad-
jacent stationary fronts sometimes channel the excitation front, like walls forming a
tunnel. Possibly the curvature-dependent unidirectional blocks and reentrant pat-
terns described by Winfree2 13 and by Kogan et al.' 17 in models of infarcted media
also occur by this mechanism even in perfectly uniform media. This ought to be
further explored, both by alertness to such patterns in epicardial maps of fibrillation
and by examination of simpler conceptual models than the Beeler-Reuter summary
of archaic electrophysiological lore.

Videotapes of epicardial maps during VF in the dog8 9' 239 dramatize the sharp
temporal periodicity of VF at the rotor period and its lack of corresponding spatial
periodicity. Instead, pieces of wave front propagate normally, presumably pirouet-
ting about broken ends and occasionally fragmenting to produce more. Such record-
ings will provide a standard for comparison of the similarly displayed implications
of various hypotheses, e.g., of Winfree,2 16 Courtemanche and Winfree,3 s and Fish-
ler and Thakor61 that in sparsely coupled or coarsely discretized versions of the BR
model (and maybe in perfectly smooth implementations, too) something like fibril-
lation does spontaneously develop from two-dimensional rotors. The final outcome
of these studies is not yet 100% clear. An alternative possibility still needs study:
that in normal tissue, continuity is well maintained, and rotors do not spontaneously
occur or multiply, yet when the tissue is significantly three-dimensional, rotors (aIs
vortex filaments) do serve as the catalysts for the turbulence called fibrillation.
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PAST THREE-DIMENSIONAL VORTEX COMPUTATIONS

Three-dimensional vorticity, while in many respects analogous to two-dimensional
vorticity, is also fundamentally different in important respects. For example, in two
dimensions, the only organizing center for periodic activation fronts (i.e., source of
such waves) is the isolated single-armed vortex and it is quite persistent in either
of two mirror-image forms (clockwise, anticlockwise). But in three dimensions the
vortex filament generically closes in a ring which has no handedness and either
expands until hitting boundaries or shrinks and vanishes unless parameters are ad-
justed with exquisite care3 7 or it is knotted or threaded by a linking ring."l Several
chemistry papers 3,4,91,92,107,135,136,137,166,198,199,204,206,207,208,213,229 describe three-

dimensional vortex filaments both in the computer and in the laboratory. The basic
idea from 1973 to 1990 was that the vortex filament is a stack of two-dimensional
rotors, with some second-order modifications on account of the stacking (e.g., the
rotor may now move.. .this was before it was realized that even in perfectly uniform
two-dimensional media it moves anyway, in the meander trajectory). If the excitable
medium also oscillates spontaneously, then the place of the vanished scroll ring is
taken by a radial phase gradient of that oscillation, which looks like a pacemaker
(see Winfree 20 6 ,20 7 in three dimensions, independently rediscovered by Muller et
al.1 5° in two-dimensional cross section.) That is about as far as experiments went
up to the late 1980s.

By solving the chemical reactions and the molecular diffusion kinetics of the
Oregonator model of BZ medium, we ran numerical simulations of intended ex-
periments in two dimensions and in three dimensions. This resulted in some in-
teresting ostensible "discoveries" that could be checked by implementing the same
experiments at the laboratory bench. In the case of vortex rings, their shrink-
age at a rate proportional to local filament curvature was already familiar from
earlier computations and analytical approximations. 27

,
28

,
5 11 60 ,1621 63 Experiments

provided quantitative vindication of twist-free models. 3
,
4'9 1'10 7

.229 But twist itself
was still ignored.

No one has yet explored the consequences of twist in a generic experimen-
tal setting, but computational precedents are accumulating. Awareness of "twist"
dates from 1980,209 but its topological implications were not made explicit until
1983.230,231,232,233,234,235 Panfilov et al.16' and Mikhailov et al.1 45 drew attention
to its implications for spin rate and for catastrol)hic shortening of wave spacing.
but its effects on filament motion were not conteml)lated until the "local geometry
hypothesis" 22s motivated Keener10 4 and Biktasliev2 5 to an explicit nmathematical
formulation that could be solved analytically in certain limiting cases for nonmne-
andering vortices. Twist was first given explicit operational definition in numerical
experiments only three years ago222 and mncasured with demonstrable reliability
only in Henze et al.8 0 and Henze and Winfree.8 ' All analyses of chemical experi-
mnents up to present day were limited to geometries in which twist was artificially
eliminated with the single exception of the ingenious experinment of Pertsov et al., I(6
which instead constrained filament curvature to zero. This limitation to un-generic
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limiting cases was essential for getting started but at the present stage it begins to
seem like restricting analyses of biological pattern formation to dots on a straight
line, or trying to interpret electrical activation of heart muscle by analogy to action
potential propagation oil a linear nerve fiber. Moreover, inability to quantify most
three-dimensional laboratory experiments to precision better than a factor of 2 or 3
leaves the theoretical literature rapidly proliferating and mutating with no natural
selection to prune it.

One consequence of realistically admitting nonzero twist to analyses of vor-
tex filaments is that their development need no longer tend to one of two triv-
ial steady states: the straight scroll wave (a mere projection of the trivial two-
dimensional spiral perpendicular to its plane) or a shrinking planar circular scroll
that will collapse and vanish in finite time. With nonzero twist, computations show
that vortex filaments can link and knot in ways that evolve into stable organiz-
ing centers. Organizing centers are three-dimensional sources of periodic waves in
a parametrically uniform excitable medium. T-hey were predicted niatheniatically
and a "periodic table" of discrete alternative variants was outlined from topolog-
ical constraints. 230 ,23

1232,233,234.235 But nothing was known of their (theoretically
allowed) transmutations, nor about their dynamics, especially stability, and no de-
fense could then be raised against the withering criticism that they all might just be
transients en route to uniform quiescence. Since 1989 we know better (though only
in the computational world). At least eight qualitatively distinct and remarkably
stable organizing centers evolve from generic initial conditions when one solves
the known partial differential e uations of several different excitable media (see
Winfree,2 22 Henze et al.,° Henze and Winfree, 8 ' and recent unpublished unmeri-
cal experiments).

There is no single key to this work in this area: there are three kevs. alh neces-
sary. The first is facility in writing the initial conditions. Winfree et al. 2:35 described
a general method, but it was not easy to implement except in ('ellular automaton
models. No one figured out a better way until Poston recognized that tile prob-
lent was equivalent to classifying complex-valued functions oin Wt according to tile
linkage of their zero loci, and that these zeros could he most succinctly thought
of as roots of comlplex-valued polynomials of two complex variables. By attending
only to an S3 subset of that R 4, and nmapping S' to the RW target space by stere-
ographic projection the one-dimensional root loci (vortex filamients) are made to

(luster around tile origin (south pole) as the see(l of a compact organizing center
inside a coniputationally mnamiageablh box, an(l renmote plah'(,s (north pole) tend to
initially uniform composition. This 10,thd( is briefly (descril)(ed in Winfree2 1r, an(l
inl Henze and Winfrees8 ; a muore detailed exposition (tlie pr()mised "Poston and
Winfree. 1987" of Wiinfree 2m ' ) with new IRIS grap)hics will I)' Poston. Henze, and
Winfree. 1993.'17

'The(, second key resource is facility in solving the, (,'volu.).m e'quatiols of local
react ion and diffusion. This is now widely available to 11ama1Y labolratories. lhe third
key resource is the ability to tiake something ilnstructi\ve froiml til' r(,s't5 s of ('x-
te'nsive comlputation. Integrating the, partial differential equations is not mmuch use,
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without elaborate facilities for reliably quantitative geometric analysis and display

of the avalanche of data resulting. At present this analytical geometry toolkit is
best developed in my lab at the University of Arizona in Tucson. The 1990 ver-
sion comprising about 28,000 lines of Fortran and Pascal is the culmination of

efforts by mvsw"'. Pramod Nandapurkar, William Guilford, William Skagg, Erzebet
Lugosi, Marc kjourtemanche, Michael Wolfson, and Chris Henze under 5 years' sup-
port from the National Science Foundation. Its adaptation to the Silicon Graphics
IRIS initially by Wolfson then especially by Henze during 2 years' further generous
support rendered facile the production of such miraculous slides and videos as pre-
sented during these lectures (and in Henze and Winfreesl) and those to appear in
Poston, Henze, and Winfree 17 1 and Henze's dissertation. This was the fifth lecture,

unwritten but given by Henze after I returned to Tucson. I fill in a fifth lecture by
elaborating on the next intended use of the vintage-1992 Tucson Toolkit.

A newly contemplated possibility is the acquisition of data on vortex filament
motion from three-dimensional chemical experiments, using computer-assisted op-
tical tomography. Such data could in principle play the role formerly occupied by
PDE solutions as input to the analytical geometry toolkit.

FIFTH LECTURE
THREE-DIMENSIONAL INVESTIGATIONS

Among over 1000 pertinent cardiology reprints copiously marked up in many col-
ors of pen in my files, only two dozen give explicit attention to three-dimensional
aspects of cardiac 2 9 ,

3 0 .
3 3 ,

4 5 ,
5 2 .

5 3 ,
56 ' 6 6

.
6 7

.
7 9

8
7 '9 6 ' 119,140,141,1,42.165. 169,170,187.188.236.237

propagation. This is not because three-dimensional aspects are unimportant or
trivially equivalent to two-dimensional l)rol)agation, but because three-dimensional
experimental technology is only now coming into being. About half of these concern
ischemic or infarcted tissue in which l)atterns are fragmented and unclear due to
regional variegation of substrate properties, anl of the renmainder only a few even
mention rotors. 66

,67,140.165 This might be because the reality of rotors could be
confirmed and their role in ventricular arrhythmnias could be investigated only after
computer-controlled multielectrode epicardial mapping at the required resolution
became feasible in two dimensions: rather recently. l)erhap)s al)out 1986.

Electrophysiologists have resorted to analytical miathemnatics and colnputa-

tional models for previews of what might be seen and what should be watched for in
three-dimensional mapping experinents. ,. ..1. •,120.152,.1,17.1.11. 1.)-.1. This lit-
erature mostly concerns the role of anisotropy in three dinmensions and overlooks
the role of rotors. We now know that rotors p)lay a cru(ial role in arrhlthniias.
though their three-dimensional aspect has been explored only slightly, notably IY
Chen et al.3 3 As noted above, beginnings have been made on exl)horation of three-
dimensional vortex dynmamics in excitaable miedia, hoth in chemical experiments and
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in numerical experiments, but not often with explicit attention to the special cir-
cumstances of their mechanism in myocardium.

Propagation of the activation front in many other three-dimensional numerical
models of the heart is represented not by the electrophysiologically more realis-
tic cable (reaction-diffusion) equation, but by the computationally more expedient
Huyghens' construction or eikonal equation. According to this algorithm, a cell be-
comes excited (so the activation front progresses to its location) if it was quiescent
and appropriate neighbors are firing; the wave front progresses in each increment of
time by a fixed distance perpendicular to itself. This rule was used in the first three
decades of two-dimensional modeling, starting with Wiener and Rosenblueth,200

e.g., in all the "axiomatic" models and in "cellular automaton" models prior to
about 1991 (but see Weimar et al.19 7 for the newer sense of "cellular automaton").
Though its numerical simplicity makes it a favorite for three-dimensional compu-
tations, it is unacceptable for quantitative work, as explained with examples in
Plonsey and Barr. 168

It is important to note that the numerical and chemical experiments discussed
in this lecture all focus on continuous media. This is deliberate. There is currently
much debate (well summarized in Roth' 7 7 ) over the roles in ventricular tachycardia
(VT), in the transition from VT to ventricular fibrillation (VF), and in sustained
VF of the many and diverse discontinuities so evident even in normal myocardium,
and a fortiori prominent in ischemically damaged myocardium. It is important to
kn mw how the electrical behavior of myocardium is modified by the presence, quan-
titative character, and abundance of discontinuities of both structure and function.
This question has been hard to answer convincingly, not only because such dis-

'ntinuities are poorly described and quantified, but also because we still lack a
sound appreciation of the electrical behavior of myocardium and analogous ex-
citable media even in their absence, i.e., in the continuum case. For example, the
two-dimensional epicardial mapping experiments and numerical experiments cited
above showed that many features of VT and VF that have for decades been assumed

to derive from discontinuities and "non-uniform dispersion of refractoriness" in fact
occur in essentially the same form in perfectly continuous and uniform media and
in normal myocardium that approximates such media.2 18 The three-dimensional
experiments considered here are intended to provide the needed background for
such theorizing, by quantitatively exposing the dynamics of continuous excitable
media in three dimensions. Such media might or might not, for example, be capable
of something like "fibrillation" a'fter three-dimensional vortices are initiated; mo one
yet knows.

Efforts to construct a predictive analytical theory of nonneandering vortex

filament behavior25'1 0 4 ,110,166,222 have been based on the "local geometry hypoth-
esis.o"80,81,104110,228 This postulates that the motions of the filament can be an-
alyzed on a local basis in terms of the filament's local shape and the local twist
of the concentration field7. (Thus, mutual attraction or repulsion of vortex cores,
impact of wave trains from afar, spontaneous meander, etc. are overlooked.) Exist-
ing analytical models work best for planar filaments with uniform curvature and
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no twist, or in the limiting case of curvature and twist too slight to represent the
compact stable organizing centers that we find evolving from our initial conditions.
The behavior of filaments of general shape with substantial curvature, torsion, and
twist is still full of surprises. Thus exploration and discovery still depend mostly on
computation. The Tucson facility for such numerical experiments was debugged on
two published computations:

1. Henze et al."° described the consequence of uniform twist on a straight filament:
the filament buckles into a helix which expands up to a stable radius or contin-
ues unrestrained to explode through the walls of the container, or is confined
by repulsion from the walls. The mathematical theory of a different case (the
limit of small curvature and twist' 0 4 ) was found to predict outcomes substan-
tially different from our experimental results. Attempts to amend it with more
terms and corresponding adjustable parameters10 8 ,10 9 still did not enable an
impressive fit to these compact organizing centers, especially for Vb. 2 2 4 Their
numerically observed behavior remains bewildering, especially in the apparent
sensitivity of behavior to slight amounts of twist.

2. Henze and Winfree8 l described in an electrophysiologically motivated excitable
medium the stable anatomy of a vortex ring with nonuniform curvature, tor-
sion, and twist (a knot). This experiment tested the local geometry hypothesis
and found it badly wanting in that the collision boundary does not shield the
filament from impact of wave fronts emanating from remote segments of the
same filament. The ring is kept from collapsing only by the pressure of other
segments of filament obstructing its motion. Moreover, vortex core anatomy
in planes normal to the filament looks quite different at various sites. This
unexpected fact undercuts the foundation of all contemporary mathematical
analyses.

The fact is that the vortex filament is not basically a pancake stack, some-
what bent and twisted, of normally functioning two-dimensional rotors. Nonethe-
less, in these numerical jeriments the filament's motions could be described with
startling precision by anjusting the six parameters of a linear dependence on local
curvature, twist, and arc-length derivative of twist: the conclusion of Keener's 10 4

mathematics. In a way this might seem unsurprising: the only properties by which
the vortex filament is distinguished from a two-dimensional rotor are its local twist
and the local curvature and torsion that uniquely define the shape of any space
curve. To first order, one might expect their contributions to be additive and pro-
portional to the departures of all three from their values (0) in the comparison case
of the uncurved, untwisted filament or two-dimensional rotor (which by choice of
the medium's parameters we take to be motionless, nonmeandering). But there is
more to it than that: it had to be shown that the arc-length derivative of twist
plays an important role, and that torsion per se does not. Moreover, this formu-
lation of the dynamics seems a little strange when it is recognized that "motion"
means motion perpendicular to the tangent vector, in the local plane of curvature
and normal to it. When curvature is nearly 0, these directions become undefined



The Geometry of Excitability 275

or liable to violent vacillation, yet such a formulation gives a finite (possibly large)
speed to the filament in that vacillating direction, if its twist or its derivative are
not negligible. This seems physically unrealistic, yet in the one case of general shape
tested to date, in which that telltale case is excluded from the data, the linear model
statistically fits the remainder quite well. 8 1 The obtained coefficients seem indepen-
dent of curvature, twist, and its derivative; i.e., those that can be assayed with any
precision seem about the same as in two-dimensional rotors. Is this an accident, a
fortuitous consequence of other factors not present in contemporary theory, e.g.,
the close apposition of adjacent filaments? This surprising ostensible linearity still
needs interpretation. The best-fitting parameters cannot yet be compared to values
derived from the local kinetics because such values are at present merely assumed to
be unique functions of local kinetics. Since these parameters remain purely descrip-
tive, they might be entirely different for a ring of different shape, and since only
one shape was observed, the local geometry descriptors (curvature, twist, torsion,
etc.) are inevitably confounded with one another and with others not considered.

What is really needed is an examination of diverse filament shapes in one
medium, thus breaking the correlation matrix that confounds variables in the re-
gression of motion data on local geometry descriptors. This effort is in progress as
the Ph.D. thesis of Chris Henze. Being motivated more by physiology than chem-
istry, we chose the FitzHugh-Nagumo model of excitable membrane, whose param-
eter space I had surveyed with attention to two-dimensional rotor behavior. 225 This
revealed only a tiny range of parameters in which the medium has reasonable ex-
citability, no spontaneous oscillations, and a stable, nonmeandering vortex core.
This is the range in which Skaggs et al.184 and in Courtemanche et al.37 discov-
ered the first stable three-dimensional organizing center. Using this medium, we
can readily quantify vortex filament motion and relate it quantitatively to local
geometry, using a variety of geometries from the "periodic table" of Winfree and
Strogatz. 230' 23 1,232,233' 234 These numerical experiments will be essential for under-
standing the laboratory experiments outlined below and their inevitable analogs in
myocardium.

No one has yet discovered (nor looked for) any stable organizing centers in any
experimental system. Three years ago there was no reason to imagine they exist,
but now we have so many computational examples that it seems appropriate to
look. How could one look? The simplest way would be to stir up random initial
conditions in a volume of BZ liquid, then watch for persistent wave sources with
distinctive periods. Thus far only one organizing center has been found and it is
not stable in the BZ medium: this is the shrinking scroll ring, with zero twist or
torsion and very nearly the same period as the two-dimensional rotor.20 4,206,20 7 But
it is easy to imagine that mere stirring of the liquid is inadequate to accidentally
provide initial conditions for linked, knotted, twisted organizing centers such as
were numerically created in computation (2) above. A more systematic study of
filament anatomy is called for.
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COMPUTER-ASSISTED TOMOGRAPHY FOR NEW THREE-DIMENSIONAL
LABORATORY EXPERIMENTS

Laboratory experiments with rotors in two-dimensional excitable media up to now
have done little more than confirm prior numerical discoveries. But there remain
two ways that laboratory experiments can now leapfrog to preeminence.

One is already working: multielectrode recording and fluorescent-dye scan-
ning of electrical activity in heart muscle.41,42,43,48,49,82,178 Numerical experiments
played a key role in bringing this about, by showing that there are surprising phe-
nomena to seek which, if they did in fact play the foreseen role in real myocardium,
would constitute a usefully new viewpoint on cardiac arrhythmias. In the past five
years, it has been demonstrated experimentally that they ex.-'st and they do, giv-
ing a strong impetus to further improvement of both experimental and numerical

techniques in this area.
But there is a second and less widely appreciated way that laboratory exper-

iments can now play a decisive role in discovery, not just in confirmation. This
concerns the role played by the three-dimensionality of heart muscle, 169' 170 which
remains to be completely deciphered by direct electrophysiological experiment. And
it might never be, since a sufficient density of metal electrodes in depth might seri-
ously compromise normal electrophysiological function. What goes on in chemically
excitable media may have close analogies in myocardium, and if the experience
with two-dimensional rotors is any guide, those phenomena will be almost impos-
sible to recognize until they are first perceived in the more tractable context of
numerical experiments and numerically analyzed chemical experiments. For exam-
ple, the "scroll filament" was first detected in three-dimensional dog vent-icle33 by
an electrophysiological experiment explicitly contrived to check the analogy to BZ
reagent 20 4' 20 6 and its theoretical generalizations. The next designed experiment, to
detect intramural scroll rings, 217 has not yet been carried out in myocardium due
to the extreme difficulty of placing enough electrodes three-dimensionally. With
sufficient knowledge of scroll ring anatomy and behavior, this technical obstacle
might be bypassed in the following way. Scroll rings are known to drift perpendicu-
lar to the ring's plane, thus gradually revealing themselves in cross section as they
pass through any single observation plane. 20 7 Thus contemporary high-resolution
epicardial mapping technique would suffice, were the ring created intramurally in
the right orientation. 217 Medvinsky and Pertsov'4 ° and Medvinsky et al.14 1 tried
something of the sort, but the experimental technique still needs refinement.

More generally, three-dimensional reentry is an important aspect of myocardial
behavior during tachycardias, but almost nothing is known of it, even qualitatively.
Partly because of the inevitably low resolution of three-dimensional electrophysio-
logical observations, it is essential to design myocardial experiments to look for spe-
cific phenomena. The anatomical aspect of three-dimensional reentrant phenomena
seems fairly well understood now (Winfree 2 22 ), but the dynamical aspect has greater
importance for myocardium and is still understood only from theory ',105,108 and
computation.8 0,8 1 ,9 1' 222,229 These two approaches agree well only in limiting cases
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of little pertinence to feasible experiments, and neither has been adequately com-
pared to experimental reality. Tomographic experiments might provide that com-
parison and provide a more direct model for electrophysiological observations in
myocardium.

Three-dimensional experiments are not new in chemically excitable
media,2,3,4,5,91,107,125,132,166,195,198,199,204,205,207,208,229,242,243 but it has always been
hard to see what transpires inside. The first attempts to expose the three-dimensional
anatomy of activation fronts in this excitable medium used the following approaches:

1. dissecting microscope observation 20 4' 20 7,20 8;
2. absorption of BZ medium into an opaque nitrocellulose block that could be

quickly fixed or frozen and sliced into 140-micron fixed sections for one-time
reconstruction of three-dimensional anatomy 20 7 ;

3. video recording and photography of un-gelled liquid in a test-tube 198' 199 ; and
4. similar observations in various gels.2,3,4,91,125,132,166,229,243

For different reasons in each case, none of these are capable of revealing the
three-dimensional anatomy of the wave fronts and vortex filaments, except in the
most starkly simple cases (e.g., a perfect twist-free and torsion-free vortex ring.).
Most pictures obtained remain unpublished for want of unique interpretation. The
only better-than-qualitative experimental studies have necessarily avoided generic
combinations of curvature and twist. As noted above, all restrict themselves to
situations in which torsion = 0 and twist = 0 (Winfree,2 0 7 Agladze et al.,3 Jahnke
et al.,9 1 Keener and Tyson, 10 7 Winfree and Jahnke229 ) or curvature = 0 (Agladze
et al.3 ).

Optical techniques in myocardium 41
,
4 2' 43' 48' 49' 82"178 are still limited to surface

excitations because the tissue is not fully transparent to the lights needed for excita-
tion and fluorescent signal recording. However, BZ reagent is fully transparent, and
its oxidation-reduction "action potential" is marked by a dramatic change of ab-
sorption in the blue-green. It has already been shown two-dimensionally that much
can be learned about myocardium by attention to activation fronts in this "analog
computer." I conjecture that three-dimensional optical experiments in this medium
will also preview the results of similar inquiries (not yet experimentally practical) in
myocardium. The method I have in mind depends almost as heavily upon compu-
tation as does numerical solution of the electrophysiologist's cable equation in three
dimensions, but instead of being a numerical analog of myocardium, it allows us
to see an experimental analog of myocardium. This technique is computer-assisted
tomography. By photographing a three-dimensional volume of BZ reagent simulta-
neously from many directions, one obtains the two-dimensional projections needed
as input to a three-dimensional tomographic reconstruction algorithm., 1 9

,'
20 ' 21 The

resulting three-dimensional distribution of optical densities or chemical concentra-
tions has the same format as familiar partial differential equation solutions and
can be examined by the same graphics utilities that served well in numerical
experiments.

41
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Diverse artifacts must first be eliminated from the BZ reagent itself, e.g., con-
vection currents in the three-dimensional volume, growing CO 2 bubbles, and pa-
rameter gradients, notably of temperature and of oxygen. The oxygen gradient
afflicts only the surface 1-2 mm layers and can be eliminated by immersing the
reaction volume in a bath of the same solutions, lacking catalyst. This expedient

also eliminates optical refraction effects that would otherwise interfere with to-
mographic reconstruction. The temperature gradient comes from released reaction
heat (several calories/ml in typical recipes); it is minimized by keeping the reaction
volume unconfined in a thermostatted bath and by using so little catalyst that
free-energy release is quite slow. This is necessary also to keep optical density low

enough for transmission through 1-2 cm thickness. To obtain a uniform convection-
free medium free of gas bubbles, I gel the medium with silicic acid. This gel is so
hard that it does not permit nucleation/expansion of bubbles. This was the first
thing I tried in 1971 while working up the recipes and procedures that became
standard in this field. But the necessary alkalinity of silica gel (pH > about 8 ) was
incompatible with the necessary acidity of BZ reagent (pH < about 1.5) and I gave

it up. Yamaguchi et al. 242 have since used two-dimensional slabs of silica gel by first
preparing it free of BZ reagent, washing it to neutral pH leaving only silicon dioxide,
then perfusing with acid BZ reagent. However, for three-dimensional experiments,
one cannot wait for reagents to diffuse into an 1-2 cm gel block and equilibrate, and
gradients of any kind are completely incompatible with intent to measure vortex
filament motion in a uniform field. So the gel must set in the reagent. This requires
modification of BZ reagent to work well in an environment slightly more alkaline
than used heretofore, and discovery of some catalyst (compatible with BZ reagent)
by which to set the gel in an environment too acid for uncatalyzed gelation. By
tiresome trial and error, the following solution was converged upon at a compromise
pH.

The following procedure for a total volume of 8.5 ml, as in the recipes standard-
ized by Jahnke and Winfree, 93 uses those stock solutions. It differs mainly by using

five-fold less ferroin (since the optical path will be five times longer) and including
the catalyzed silicate gel and sodium phosphate buffer:

MIXTURE A. Dissolve 630 mg colloidal silicon dioxide (e.g., Cab-o-sil) in 2.3 ml of
hot 10% NaOH solution plus 3.2 ml of stock (1420 raM) NaBrO3 . Filter through
millipore. The 6 mmoles of (univalent) NaOH will later be more than neutralized
by 15 mmoles of (trivalent) phosphoric acid. pH is 11.
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MIXTURE B. Prepare bromomalonic acid by mixing 0.2 ml of NaBrO 3 stock plus 0.2
ml stock (3260 mM) H2SO 4 plus 1.2 ml. stock (1041 mM) malonic acid plus 0.45
ml stock (972 mM) NaBr. When the yellow color clears, this will contain nearly
equimolar malonic and bromomalonic acids, plus sodium sulfate. Add 0.2 ml of
stock (25 mM) ferroin, 0.6 ml of 85% phosphoric acid to overneutralize the NaOH,
and 0.1 ml of 1 gm/25 ml NaF to catalyze gelation even at the unfavorably low pH
that will result. pH is now 1.5.

Quickly squirt A (5.5 ml) into B (3.0 ml), filter (through a metal aviation-fuel
screen), and allow to gel: about 8 minutes at 25'C with 10 mM NaF and 7.4%
SiO 2 at pH 1.7. Rotors in this medium have period 72 sec and wavelength 2. r mm.
The catalyst/indicator ("v," ferroin) is firmly adsorbed onto the silica: it does not
diffuse.

Now with a very hard, glass-clear gel free of bubbles, it is necessary to quantify
the dynamics of its activation fronts. This could be done by tomography as used in
hospitals on a one-meter scale with X-rays, but now on 1-cm scale with blue-green
light. In tomography one takes photographs simultaneously from 50-100 different
angles. Each snapshot is a different shadowgraph of the object of interest: the
"Radon Transform" of the three-dimensional optical density distribution.' 9 These
can be used to mathematically reconstruct the three-dimensional object thus shad-
owed (e.g., the inside of one's brain, to study the shape and connections of a tumor
without ever opening the head). The mathematical procedures involve "projection"
(photography), Fourier transformation of those projections, convolution filtering of
those transformations, and "backprojection" to assemble a three-dimensional array
of optical density values in computer memory. 1,19, 20 ,21,22 The computational aspects

of this procedure have been tested. We have three-dimensional vortex filaments in
the CRAY-YMP, obtained by solving the pertinent partial differential equations of
chemical reaction and molecular diffusion. By projecting one of these in 50 direc-
tions, research assistant Chris Henze obtained "photographs" that were delivered
as input to the numerical procedures that will later accept real photographs for
reconstruction of the original object. This worked beautifully,2 26 with little loss of
resolution, even when various experimentally realistic noises were introduced. For
example, we let the waves move while the reaction-diffusion equations were solved
into forward time between one photograph and the next, as they will do in the
real gel while the table turns and the camera scans. While rotating the gel on a
turntable, 50 views spanning 1800 can be harvested into a video recorder within
2 seconds. Meanwhile the spiral waves move three-dimensionally. With the chosen
BZ recipe at room temperature, they move about 2/100 cycle (and much less if
chilled). Returning to the numerical backprojection algorithm, we allowed the par-
tial differential equation solution to progress this fast (or several times faster) while
consecutively projecting the three-dimensional array in 50 directions. Backprojec-
tions obtained from these "smeared" pictures were not seriously degraded until the
two rotation speeds became comparable.
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Tomographic resolution is theoretically limited mainly by the number of projec-
tions taken (small relative to the number of distinguishable pixels in each scan line).
One theoretical estimate, presupposing perfect optics, perfect resolution in the two-
dimensional projections, optimal filtering, perfect alignment of all projections for
the backprojection, etc. is resolution = field width times 7r divided by the number
of projections. "Resolution" here refers to the central disk in Fourier space con-
taining unattenuated harmonics corresponding to the longer wavelengths. Shorter
wavelengths outside this disk are unrepresented or underrepresented. Of course, if
there are none (if the object is smooth), nothing is lost, so "resolution," though
limited in this sense, is nonetheless perfect. Supposing a BZ recipe with wavelength
3 mm, a 10-mm cube would suffice to present typical organizing centers; viewed
from 100 directions, resolution would be 1/10 wavelength. Nothing more refined
than this may be necessary since wave fronts are visibly quite smooth; the only
detail lost would be the sharp cusps where wave fronts collide obliquely. Our nu-
merical dress-rehearsals do indeed indicate that for smooth objects the theoretical
worst-case estimate of resolution given above is unduly pessimistic.

This result is a three-dimensional array of optical densities corresponding, in
this case, to [ferroin]. This array, like those now obtained from PDE solvers, can
then be fed to graphics display programs and geometrical analysis programs. There
is one fundamental difference however: data acquired by tomography represent only
the single colored reactant, whereas PDE solutions provide the spatial distributions
of all reactants. In the case of the Oregonator model of the BZ reaction, "all"
are just two: the concentrations of bromous acid and of ferroin. The wave tip or
the rotor consists of those places where both concentrations simultaneously take
on average values, inside the cycle of ups and downs experienced anywhere else
during the passage of periodic waves. Thus we need pixels (x, y) with ([bromous
acid], [ferriin]) (x, y) within a small window inside the excitation-recovery loop... but
distressingly, only [ferriin] is visible to the camera (as a logarithmic transform). Or
is that all that is visible? The spatial distribution, thus its Laplacian, is implicitly
visible. And the local time derivative is implicitly visible. Both can be made explicit
in real time if the experiment is run under the attention of a video camera attached
to an image processor. 226 The reaction-diffusion equation says that the difference
between the time derivative and the Laplacian is the source term, the local kinetics
as described by the ([bromous acid], [ferriin])-dependent net rate of oxidation or
reductiojn. If we know that rate law and we know [ferriinj, then we can infer [bromous
acid]. So I set up that experiment and took the appropriate derivatives, using the
biologist's standard image processor, NIH Image on the Macintosh. According to
the two-variable Oregonator with Tyson's parameters, the needed rate equation is
quite simple: d/dt[ferriin] = [bromous acid] - [ferrinin. Then in reaction-diffusion
context we can solve two successive images for [bromous acid](x, y), taking the
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optical density ferriin-color(x, y, t) as linear indicator of [ferriin] where the contrast
does not change too much:

[bromous acid] (x, y) =d/dt ferriin_ color(x, y, t)

+ ferriincolor(x, y,t)

- DV2 ferriin -color(x, y, t)

with appropriately scaled discrete approximations to the two linear operators. [Bro-
mous acid](x, y) is a squarish pulse about 1/2 mm wide riding somewhat ahead of
the [ferriinj pulse. Near the wave tip (in fact, defining the wave tip) iso-concentration
contours of ferriin cross transversely through those of bromous acid. Everywhere
else, all the contours are parallel spirals. But near the tip, the steep transverse
gradients of two substances create unique combinations of the two which occur
nowhere else. This range of combinations defines wave tips or rotors. This method
should work as well in three-dimensional context as shown here in two-dimensional.

Now, given that such data can be obtained straightforwardly, what good are
they? First of all, there is now a substantial volume of (often contradictory) theory
about the motion of activation fronts and their sources (twisted vortex filaments) in
three-dimensional excitable media. 25 ,44,74 ,75 ,104,105 ,108 0 9,110,145 ,158,1 64,165 ,194 Much

of this is not testable due to a profusion of undetermined parameters, and much of
the rest has been tested only in a vague way, to order of magnitude, so it remains
to be tested quantitatively. Four distinct kinds of test are needed:

1. Test of the topological essentials predicted by Winfree and
Strogatz. 194,230 ,231,2 32,233' 234 Are the mutual linkages and knottedness of vor-
tex filaments related as foreseen to the integral twist along each filament? Do
filaments fuse and hybridize, or do they pass through one another (or resist
such passage), and do the results in any case conform to the "understood"
topological transmutation rules?

2. Another piece of quantitative theory that can be tested by experiment is the
dependence of activation front speed on local front curvature, expected to be
linear when the activation front's radius of curvature greatly exceeds its thick-
ness. (If it does not, there is too much ambiguity involved in defining "front"
and "curvature.") This rule has important consequences in cardiology; for ex-
ample, the coefficient involved determines the threshold stimulus or critical size
of a nucleus of depolarized cells sufficient to initiate an ectopic beat. 2 19' 220 The
dependence has been confirmed two-dimensionally in BZ reagent and in the
slime mold 62' 6 3' 64' 65 by experiments which seem to exhibit its accuracy even
at curvatures far tighter than intended in its derivation and perhaps even too
tight to permit definition of "wave front" and "curvature." Its three-dimensional
generalization has not been experimentally tested, even numerically.

3. Tests of the various putative laws of motion of vortex filaments which partly
determine the stability or instability and the periodicity (in milliseconds and in
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centimeters) of reentrant activations. Candidates can be tested by careful nu-
merical experiments, e.g., Henze et al.,80 and Henze and Winfree.8s However,
existing theory is not really about vortex filaments of the kind that can be
reliably computed within a grid of manageable size. Such filaments have sub-
stantial curvature and twist. Rather, existing theory is about transients (not
stable periodic steady states) in barely curved (huge) and barely twisted fila-
ments which evolve very slowly. But these cannot be economically investigated
numerically even in the best contemporary supercomputers, except by using a
computational mesh too coarse for believable quantitation. Most such compu-
tations have been too coarse and we find that such computations are reliable
only in the absence of twist.8 1 This is where the chemically excitable "ana-
log computer" provides a usefully complementary perspective. We can image
a much larger volume at resolution adequate for measurement of wave front
and filament motions on a long time scale, without having to manage the high-
resolution mechanics ourselves: that part becomes Mother Nature's job, leaving
us the part of the computational job that is within the capacities of the CRAY.
Then existing mathematical theories can finally be tested.
Limiting-case theories (of which Keener's10 4 still seems the best) for transient
processes in large nonmeandering vortex filaments dominate the theoretical
effort at present and should be tested before progress can be made toward un-
derstanding more realistic situations. Jahnke et al., 9 1 Winfree and Jahnke,229

and Agladze et al.4 experimentally determined the curvature-dependent inward
motion of such curved filaments, and it agrees nicely with theory. The perpen-
dicular "drift" of the filament has been observed 92' 2 29 but not yet measured
outside computer simulations. As theory is in excellent shape for this motion
and all theorists agree, this should be the second test case for experiment after
verifying the known rate law for inward motion. Various versions of theory di-
verge when it comes to nonzero twist, and no experimental test has been done.
The chemical medium is a convenient source of transient and slowly moving
vortex filaments of slight curvature and twist. Techniques for initiating them
were outlined in Winfree213 and in Pertsov et al. 166 Some of these techniques
have been shown to work well in the laboratory.9 1,9 2,166,229

4. Tests of the bottom line: are there persistent organizing centers in three-
dimensions? They might not be "stable" in any simple sense, e.g., if they glide
and tumble through the medium, if their component filaments are meander-
ing, if waves of twistedness circulate along the constituent rings. But do they
persist? Does any version of the BZ medium support persistent particle-like so-
lutions even vaguely resembling those anticipated by theorists?12- 37' 75'8 0' 8 1 ' 222

Such laboratory set-up has another possible application. Since 1952 theoreti-
cal biologists and some experimentalists have vigorously pursued the idea of Alan
Turing that biological pattern formation might be a consequence of the spatially
unstable interplay of local reaction kinetics with local transport processes, notably
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molecular diffusion or its larger scale equivalent in turbulent convection of cyto-
plasm. A malonic acid/chlorite/iodide reaction with a starch indicator recently
produced the first Turing patterns. 13,3 1' 46 ,130 ,156'1 57 Their three-dimensional aspect
has not been explored, but might be, using optical tomography.
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Quenched Disorder: Understanding Glasses
Using a Variational Principle and the Replica
Method

OUTLINE

1. Introduction and Elements of Statistical Mechanics

A. Introduction: the goal of these lectures is to learn about the new techniques
that have been developed to compute thermodynamic properties (such as
the free energy, specific heat, and correlation functions) of physical systems
with quenched disorder.

B. Physical Systems: a physical system is characterized by the states it can
be in, and the observable quantities which are a function of the state. The
Hamiltonian (energy function) is a very important observable quantity. The
partition function, if known exactly, gives complete information about the
thermodynamics of a physical system.

C. Two Exactly Soluble Models: we compute the free energy exactly for two
kinds of physical systems: noninteracting Ising spin systems, and particle
systems with quadratic interactions.

D. The Variational Approach: we can define a "trial free energy" which is
a quantity that will be greater than the true free energy for any "trial
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Hamiltonian," and which will approach the true free energy as the "trial
Hamiltonian" approaches the true Hamiltonian.

E. Trial Hamiltonians: our exactly soluble systems provide a source of trial
Hamiltonians which permit the analytical computation of trial free energies.

F. Toy Example of the Variational Approach: we use the variational approach
for a simple one-dimensional model, and interpret the results.

2. Variational Approach Applied to Proteins and Magnetic Spin Systems

A. The Protein-Folding Problem: we want to predict the shape of a protein,
knowing only the sequence of amino acids. We assume that the energy
function is known and is a sum of two-body terms.

B. Quadratic Trial Hamiltonian: we assume a trial Hamiltonian in which every
monomer is linked to every other monomer by a spring, and try to optimize
the spring constants to minimize the trial free energy.

C. Heteropolymer Self-Consistent Equations: we derive a set of self-consistent
equations which, when solved, predict the position and correlated fluctua-
tions of all the monomers, given the temperature and two-body potentials.

D. The Ising Spin Glass Hamiltonian: this is a model of Ising spins on the lat-
tice in which the interactions between neighboring spins can be either fer-
romagnetic or antiferromagnetic. The interactions are chosen from a prob-
ability distribution, and are quenched.

E. Mean-Field Theory: when applied to ferromagnetic spin systems, the vari-
ational approach generates a self-consistent equation (mean-field theory)
which becomes exact when the number of dimensions of space approaches
infinity.

F. Corrections to Mean-Field Theory: an alternative derivation of mean-field
theory (an expansion in powers of the inverse temperature at fixed mag-
netization) provides a way to systematically approach the true free energy.
The first term correcting ordinary mean-field theory is particularly impor-
tant for spin glasses, and gives the Thouless-Anderson-Palmer free energy
for the Sherrington-Kirkpatrick model.

3. Averaging over Disorder and the Replica Method

A. Averaging over Disorder: we are interested in computing the average free
energy for an ensemble of systems (or samples) where each sample has a
Hamiltonian which is chosen from a probability distribution.

B. A Very Simple Toy Model: we compute directly disorder averages for a
very simple ensemble of systems, one in which each sample consists of a
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single quadratic well, with its center at a random position. We distinguish
between correlation functions measuring thermal and disorder fluctuations.

C. The Replica Method: we explain the mathematical identities underlying
the replica method, and work out some interesting results for n x n replica-
symmetric matrices.

D. Check of the Replica Method: we rederive disorder averages for our very
simple toy model using the replica method. The replica method involves
averaging over disorder first, and leaving any additional computations for
later. A quadratic effective replica Hamiltonian with a replica-symmetric
Green's function has a straightforward interpretation in terms of the orig-
inal ensemble of samples.

E. Random Potentials: we learn how to mathematically describe rough ran-
dom potentials in terms of Gaussian probability distributions. The first
two moments of the probability distribution provide complete information
about it.

F. Averaging over Random Potentials with the Replica Method: we derive
an effective replica Hamiltonian resulting from an average over a random
potential.

4. The Variational Replica Approach and Replica Symmetry Breaking (RSB)

A. Variational Approach to a Toy Model: we derive the replica-symmetric,
trial free energy for a toy model of a particle in a rough random potential.
The result for the average fluctuations is pathological; the explanation is
that a replica-symmetric trial Hamiltonian describes a particle in a sin-
gle well, and the toy model describes a particle in a potential with many
metastable minima.

B. One-Step RSB: the idea of one-step RSB is that the off-diagonal elements
representing correlations between different replicas need not be identical.
The replicas can be grouped into families, and intrafamily matrix elements
will have different values than interfamily matrix elements.

C. Mathematics of One-Step RSB: we show how to manipulate one-step RSB
matrices, starting with their multiplication.

D. Physical Interpretation of One-Step RSB: one-step RSB has a straight-
forward interpretation in terms of an ensemble of samples which have in-
trasample disorder including metastable minima.

E. Full RSB: the infinite-step generalization of replica symmetry breaking ac-
tually has a very convenient mathematical form in terms of a function of
a variable which ranges from 0 to 1. It can be interpreted in terms of each
sample being constructed as a infinite hierarchy of wells within wells.



302 Jonathan S. Yedidia

F. The Full RSB Solution of the Toy Model: we show how the full RSB so-
lution of the toy model cures its pathologies, and describes a "freezing"
phenomenon as the temperature is lowered.

5. The Variational Replica Approach to Impure Superconductors in a Magnetic
Field

A. Type-II Superconductors and the Abrikosov Crystal: a type-II supercon-
ductor in a magnetic field will exhibit an intermediate phase in which the
magnetic flux penetrates the sample as a triangular lattice of flux lines.

B. Perfect Elastic Crystals: the Abrikosov Crystal of flux lines can be de-
scribed in terms of a perfectly quadratic classical Hamiltonian. We discuss
the microscopic and continuum versions of this model, and introduce the
most general Hamiltonian consistent with the triangular symmetry.

C. Random Pinning Potentials: we discuss oxygen vacancies in cuprate super-
conductors as an example of a quenched defect which could give rise to a
rough random potential.

D. Trial Free Energy and Self-Consistent Equations: we average over disorder
and introduce a quadratic trial Hamiltonian, with full RSB. The solution
for the Green's function is a function of both momentum and the replica
variable.

E. Physical Correlation Functions: we compute various physical correlation
functions using the variational replica method. The agreement with Bitter
pattern decoration experiments is good.

1. INTRODUCTION AND ELEMENTS OF STATISTICAL
MECHANICS
In this chapter, I will be discussing the statistical mechanics of various disordered
physical systems which have been called "glasses" because of some similarities of
their properties to those of more familiar glasses. I will only cover a small portion
of the subject, governed partly by my own personal idiosyncratic tastes and mainly
by a desire to give a pedagogical introduction to some remarkable theoretical ideas
which may at first sight appear overly intimidating. This chapter will concentrate
on some general methods of calculation that have proven to be especially useful for
systems with quenched disorder. The advantage of focusing on general methods is
that when one understands them, one can use them on many different problems
in the future. This chapter will be unashamedly technical-we will be striving
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for a mathematical understanding of the physical problems we consider. On the
other hand, because this chapter was delivered at a summer school where many
of the students were not physicists, it will also be unashamedly pedagogical and
will assume no mathematical background beyond calculus and matrix algebra. I
will discuss technical subjects, but I will try my best to introduce all the technical
matter in as gentle and comprehensible a way as possible, assuming no previous
exposure to the subject of this chapter at all. As you shall see, it will still be possible
to address problems at the frontiers of current research.

The general goal in this chapter will be to learn how to compute thermody-
namic properties of disordered physical systems. Physicists have long understood
how to compute properties like the specific heat of a classical crystal or the mag-
netic susceptibility of a ferromagnet, or long-distance correlation functions in either
system, as long as the crystal or ferromagnet is perfectly regular. They have taken
advantage of the symmetries in these systems to invent such important theoret-
ical concepts as phonons and spin waves. In a glass, however, the randomness is
intrinsic; each atom in the system is in a different complicated environment, and
it seems at first like an impossible goal to compute, say, the specific heat or cor-
relation functions, as precisely as we are used to for ordered systems. Fortunately,
since 1975, there has. been substantial progress in learning how to make analytical
computations for glasses; this chapter is devoted to teaching you about some of the
exciting new ideas and concepts that have been invented.

We will make combined use of two major tools for these computations: a vari-
ational principle and the replica method. In the first two sections, we will introduce
the variational principle without using any replicas, and then in the remaining
sections explain, in order of increasing complexity, the ideas behind the replica
method. Variational principles are very well established in physics, but the power
of the replica method is still not as generally appreciated. For a nontechnical in-
troduction to the history of the replica method and its manifold applications, the
reader can consult P. W. Anderson's series of articles on the spin glass in Physics
Today.1 For a much more technical treatment, together with a collection of reprints
of the more important replica articles up to 1987, see Mdzard et al. 17 In this chap-
ter, I will not cover the many interesting applications of the replica method to a
variety of problems like neural network theory or optimization problems. Instead,
I will concentrate on trying to explain the method itself as simply as possible.

In this first section we will review some fundamentals of statistical mechanics
and solve exactly two completely trivial models. The reason that we care about
these models is that as we go on, we will be studying much more complicated
models which we have no hope of solving exactly. The trivial models will prove useful
as building blocks for powerful methods which give us approximate results about
the more complicated models. We will also introduce one of these approximation
methods in this first section. Even experienced physicists should find it worthwhile
to review these simple models, because I will be presenting them in a way that
will ultimately make esoteric theories like the TAP equations for spin glasses and
Gaussian replica field theory much more transparent. In future sections, we will
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be applying the approximation techniques to such complex physical systems as
proteins, spin glasses, and impure superconductors in a magnetic field.

Enough generalities; let's begin studying the statistical mechanics of some phys-
ical systems. A physical system will be characterized by the different states it can
be in, and various "observable" quantities which can be measured and which are a
function of the state of the system. One very important observable quantity is the
energy, or "Hamiltonian." Our first trivial example of a physical system is a single
Ising spin in a magnetic field. An Ising spin, denoted by the variable S1, can be
in two states: "up," when S, = 1, or "down," when S = -1. (The subscript 1 in

"S," is just there to indicate that it is our first spin. If we had two spins, we would
label them S, and S 2 .) For a system consisting of a single Ising spin in a magnetic
field, the Hamiltonian is

H = -h1 S1  (1)

where h, is a magnetic field which tends to align the spin to point "up" if the

field is positive, and "down" if the field is negative. The fundamental principle of
statistical mechanics is that the probability that a system in each possible state
is proportional to the Boltzman weight e-gH(state)/T of that state, where T is the
temperature. The central object of study in statistical mechanics, from which we
can compute all thermodynamic quantities of interest, is the partition function Z,
which is the sum of the Boltzman weights of all the states of the system:

Z--z ~ H €-(state)/IT.

Z e (2)
states

For the model of a single Ising spin with Hamiltonian given by Eq. (1), we easily

find that
Z = e-h/ + eh/ (3)

As I mentioned, when one knows the partition function exactly, as we du for this

trivial model, one can then calculate all the thermodynamics exactly. Thus, the free

energy F is defined by
F = -TlnZ, (4)

the entropy S is given by

s = (5)

the internal energy U is given by

T2 OZ

UV - = F + TS, (6)Z OT

and the specific heat C is given by

a 092 FC = T=T6T2" (7)
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Notice that if we add an overall constant to the Hamiltonian, it is also added to the
free energy and the internal energy, but does not affect the entropy or the specific
heat.

The probability that the system is in any of its states is just equal to the
Boltzman weight of that state divided by the sum of the Boltzman weights of all
the states:

Pat - ±cH(state)/T (8)Pstate ý- 8

We can define the thermal expectation value of any state-dependent quantity as the
average (weighted by the state's probability) of that quantity. For example, you
can check that the internal energy is actually just the thermal expectation value
of the Hamiltonian itself, while the entropy is the thermal expectation value of the

negative of the logarithm of the probability of the state, and is thus a measure of
how "spread out" the system is between its possible states:

U Z 1 PstateH(state) - (H) (9)
states

S = E -Pstate ln(Pstate) - ( ln(pstate)) (10)

states

where the angular brackets are a convenient short-hand notation for the thermal
expectation value.

There are other thermal expectation values that we might be interested in. For
example, the magnetization ml of the spin is just the average value of the spin.
which for this model we can easily relate to the magnetic field and temperature:

ml =_ (SI) = tanh(h1 /T) . (11)

Finally, the susceptibility X, is defined as the response of the magnetization to a
change in the magnetic field:

Wre (12)

So far, it has been natural to think of the free energy and all the other ther-
modynamic quantities as functions of the magnetic field h,. But Eq. (11) gives
"a simple relation between the field and the magnetization, so if we prefer, it is
"a simple matter to replace the magnetic field by the magnetization and define a
magnetization-dependent free energy. We will see later that this is often a conve-
nient thing to do.

Now let us introduce another trivial model. In this model, we consider a particle
which moves in one dimension and which can be located at any position rl from
negative to positive infinity. (The subscript "1" is again a label indicating that this
is the first particle.) The Hamiltonian will be a function of the position rl. The

partition function is

Z = e-eH(r)/T• (13)
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To make this model exactly soluble, we restrict ourselves to a Hamiltonian function
H(rl) which is quadratic in rl:

H(ri) = - a,) 2 . (14)

Using the well-known formula for Gaussian integrals (in the appendix, I give a table
of Gaussian integrals which will be useful in this chapter), we find that

Z = V/ -G . (15)

Using formulae (4)-(7), we can again compute the free energy, entropy, internal en-
ergy, and specific heat. We can also compute (again using the appendix) a couple of
thermal expectation values which are particularly relevant for this model. Namely,
the average position is given by

(r) j- drrie-(rl-al)2/2GT = a, (16)

while the average fluctuation in the position is given by

((r, - a,) 2) = j dri(ri - a,)2e-(ri-al) 2 /2GT = TG. (17)

Physically, one can imagine that the particle described by this model is attached
to a spring which is nailed to the position a,. The amount that it bounces around
its average position al is determined by the combination of the temperature T and
the softness of the spring G.

In statistical mechanics, we are usually most interested in systems which have
a very large number of degrees of freedom, rather than just one as in the examples
given. So how can we generalize these models so that they are still exactly soluble
but concern a large number of spins or particles? For the Ising spin system, there
is not much that we can do beyond considering the system of many noninteracting
spins, each under the influence of its own private magnetic field, for which the
Hamiltonian would be:

N

H =- hiS, (18)

where N is the total number of spins. The free energy for this model is just the
sum of the free energies for all the individual spins.

We can generalize the other model in a somewhat more interesting way. A
Gaussian integral over many interacting degrees of freedom will still be soluble as
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long as all the interactions are quadratic. Thus, we can consider the generalized
Hamiltonian for N particles:

1 N N

H = 2 E E(ri - aj) (G- 1 ),, (rj - aj) (19)
i=l j=l

where (G- 1)ij is a symmetric matrix of the spring constants connecting all the par-
ticles together. We have written this matrix as an inverse matrix to agree with the
common convention. This generalized model represents N particles, each attached
with a spring to a nail at its own position, but now also connected by springs to
every other particle. We have left the values of all the spring constants as gen-
eral parameters. The wonderful thing about Gaussian integrals is that we can still
compute our partition function; we find, using a formula from the appendix, that

Z = V(27rT)detG (20)

where det G is the determinant of the G matrix. Another extremely useful result
is that the expectation value of the correlated fluctuations of two particles around
their average positions is simply related to the G matrix:

((ri - ai)(rj - aj)) = TGij. (21)

The G matrix is often referred to as "Green's function."
Now you may be thinking that these exactly soluble models are great, but most

interacting systems we know of do not have these Hamiltonians, so what use are
they? We shall see that these models can actually be used as inputs for a couple of
different approximation schemes.

The first of these approximation schemes is based on a general mathematical
inequality. Assume that we have some arbritrary physical system which can be
in, say, K different states. The probability of each state is some number pa (a
1, 2, ... , K) where

K

Ep. =(22)

Let us also imagine that there is some observable quantity X (like the energy) which
depends on which state the system is in. We label the different possible values of
the quantity by Xa. By our previous notation, the thermal average of X is

K

(X) = I

The mathematical inequality that I will assert (without proof) is that

(e-x) > e-("V, (24)
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or written out more explicitly

KK

SPe-Xo > e-ZoE PoXo. (25)
at=l

You can check for yourself that this inequality follows from the convexity of the
exponential function.

Let us now return to our model of a single particle whose energy depends upon
its position. We want to compute the partition function

Z = j drre-H(rl)/T. (26)

Before, we had an especially convenient quadratic function for H(rl), but imagine
that we now have some more complicated function which makes the integral difficult
or impossible to compute analytically. We can use our inequality to obtain an
approximate solution as follows. The partition function is obviously equal to

00 f 0 drl e- Ho(rl)/T

o jdri e-H(r)T' )/T (27)Zrie- 0 -f0 drje-Ho(r1)/T

where Ho(ri) is any function at all. We can rewrite this as

0f0-o drje-[H(ri)-Ho(rj)1/Te-Ho(r)/T j dre-Ho(r)/T (28)
fdre 0drie-Ho(r)/T (8

or

Z = (e-(H-Ho)/TI drje-Ho(rt)/T (29)

where the notation (X)0 means the thermal average of X using the function HO(rj)
as a so-called trial Hamiltonian. We can now use our inequality to assert that

Z >_ e-((H-H°)/T)o drje-HO(rl)/T (30)

for any function Ho(rj). In terms of the free energy F =-TIn Z, we can equiva-
lently assert that

F _ - fTn 0 drie-HO(r1) + (H - Ho)0 - (31)

where we define the quantity on the right-hand side of the inequality as the trial
free energy . corresponding to the trial Hamiltonian H0 . This is our fundamental
variational principle. (R. P. Feynman was one of the first physicists to make use of
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this principle in his famous treatment of the polaron problem."0 Another interesting
application of the variational principle is to the excluded volume problem in polymer
physics. 3' 7) It says that the true free energy will always be less than the trial free
energy no matter what trial Hamiltonian we choose. Thus, if from some class of
trial functions HO(rl), we find one that gives a minimal trial free energy, we know
that that is our best estimate of the free energy. Note that if H0 is equal to H, the
trial free energy is automatically equal to the true free energy.

To be able to use this variational principle in practice, of course, we must restrict
ourselves to a class of trial functions H0 for which we can analytically compute F.
The best trial Hamiltonian will be the one in this class which is closest to the real
Hamiltonian. Finding a class of analytically tractable trial Hamiltonians is precisely
where our previously analysed exactly soluble models become useful. Let us look
at a relatively simple example. Consider the Hamiltonian function (we drop the
subscript "1" on r, for brevity)

H(r) = Cr 2 + r4 . (32)

If C > 0, then the function has the form of a "single well" potential, while if
C < 0, H(r) has the form of a "double well" potential with a barrier of height C 2 /4
separating the two valleys. In either case, the free energy F = -T ln f_', dre-H(r) is
some perfectly well-defined function of T and C, but this function is rather difficult
to compute analytically. We will compute the function approximately using our
variational principle with a class of trial Hamiltonian functions of the now familiar
form 1

Ho(r) = -(r - a)2 (33)
2G

where G and a are now arbitrary variational parameters that we will vary in order
to minimize the trial free energy.

The trial free energy is

FP = - Tin dre-HO(r)/T + (H - Ho)o (34)

= - T 0n dre-(r-a)2 /2GT + C (r 2) 0 + r -4 (r - a) 2) 0  (35)

= - Tin dre--(r-a) 2 /2T + Cj drr2e-(r-a)2 /2GT

+ drr4e_(ra) 2/2GT f dr(r - a)2e-(r-a)2 /2GT. (36)

Now comes the key step, where we take advantage of the fact that our trial
Hamiltonian has such a convenient form. Because it is quadratic, all these integrals
are simple to compute. Using the integrals in the appendix, we find that

F T=_-T ln(27rTG) + C(a2 + TG) + (a 4 + 6a 2TG + 3T 2 G 2) _ T (37)
2 2
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It is interesting to note that adding a constant to the trial Hamiltonian would
not change the trial free energy. The constant would have been added in the

-Tin J dre-HO(r)/T

piece of the trial free energy but subtracted in the (-Ho)0 piece.
Minimizing the trial free energy with respect to a, we find that a = 0 or

a 2  C ( + 3TG) (38)

while minimizing with respect to G gives

-12 + C + 6a2 + 6TG = O. (39)
2G

Let us examine the solution in more detail. When C > 0 (the single-well case),
we find that the only solution is a = 0 and

G I vC 2 +12T- .C]. (40)
12TL

Returning to the trial free energy, which is our estimate for the true free energy, we
finally find that

P• = - T G+ 2 In(6) -- In ( +12T - C)

C /NC
+ C 2 + 12T- C) (41)

On the other hand, in the double-well case when C < 0, there can be two
possible solutions, depending on the temperature. For temperatures higher than
some critical temperature T,, we have a functionally identical solution to that for
C > 0, with a = 0, G given by Eq. (40), and P given by Eq. (41). For temperatures
below T,, there is another solution with a lower trial free energy. The variational
parameters corresponding to this other solution are

S81 (5C + V C 2 + 12T) (42)

and

G 1 + 12T +C], (43)
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and the trial free energy is5 1
P -T (8+ll n 12 2 In (lC2+ 1T+C

5C C2+12T+ C) - (44)
48 4

The critical temperature itself is simply determined by setting the high-temperature
trial free energy of Eq. (41) equal to the low-temperature trial free energy of
Eq. (44).

What is the physical meaning of this transition between two solutions? First,
it should be made clear that the real free energy does not have the "cusp" that our
trial free energy exhibits, so that is an artifact of our approximation. Nevertheless,
it is not a stupid artifact, because there really are two temperature regimes for the
true free energy-it is just that the crossover between them is a gradual one. The
Hamiltonian represents a ball in a double-well potential, and that ball is jiggled
around by random hits from some background "stuff." When the temperature is
high, the jiggling is strong, while when the temperature is low, tile ball will just sit
at the bottom of the potential, as the jiggling will be weak. Clearly, there will be
a high-temperature regime, when the particle bounces back and forth between the
two valleys easily, because there is enough thermal energy to gpt over the barrier.
There will also be low-temperature regime, when the particle tends to spend a very
long time in one hill before it bounces over the barrier. These two regimes are
represented in our solutions. In our low-temperature solution, the ball has some

average position at a, with a fluctuation G which represents how much the ball
jiggles around that. In the high-temperature solution, a = 0 which means the ball

is bouncing back and forth between the two wells, and G is much larger than in the
low-temperature solution, which again corresponds to the larger fluctuations.

In general, one should be aware that in any variational method, the results
one gets for the quantity one is minimizing over (in our case, the free energy) can
be very accurate, but the results for other quantities which one deduces from the
minimization (like in our case, the size of the fluctuations) will not be as accurate.
To understand this, let us imagine that we are minimizing the quantity F over
some multidimensional space which we represent by the vector i. The minimum
of F(Y) will always be quadratic in Y. That means that if we miss the optimal Y
by some small amount &F because we have restricted ourselves to a certain portion
of £-space where we can compute F(Y) analytically, our estimate for the value of

F will only be wrong by (by)2. This does not mean that one should ignore the
variational solution except for the upper bound it gives for the free energy (unless

you are a rigorous mathematical physicist, in which case it means precisely that),

as it is still true that the best Y found will be closest in the subspace chosen to the
optimal Y. It just means that one should beware that a poorly chosen subspace (or
class of trial functions) can produce misleading results.
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2. VARIATIONAL APPROACH APPLIED TO PROTEINS AND
MAGNETIC SPIN SYSTEMS
In this section, we will begin by applying the variational method we learned about
in the last section to the important problem of protein folding. The work that I
will describe was done in collaboration with Jean-Philippe Bouchaud and Marc
M~zard 4 at the Ecole Normale Sup~rieure in Paris. I will be discussing a highly
simplified model of "proteins" in this section, but the ideas presented here could
be generalized to a more realistic model.

A protein is a polymer which can be specified by the sequence of amino acids
which make up its monomeric units. This sequence is stored biologically in the
DNA segment which is ultimately translated into the protein. The sequence of
amino acids determines the three-dimensional shape of the protein, and that shape
in turn determines how well the protein performs its biological function. The "pro-
tein folding problem" is the problem of predicting the three-dimensional shape of
a protein given only the sequence of amino acids. It is attracting considerable in-
terest because present technology makes it much easier to sequence proteins than
to determine their shape.

The shape of a protein can be specified at varying levels of precision. One
could, for example, specify bond angles between neighboring amino acids, or one
could specify the position of every atom in the protein. Let us, for the purposes of
simplicity, consider a generic model of an N-monomer linear heteropolymer in which
the position of the ith monomer in the chain is given by the D-dimensional vector
r1j. (In ordinary space, D = 3 of course, but there is no particular difficulty caused
by keeping the dimension of space arbitrary.) We will make the huge assumption
that the Hamiltonian for our heteropolymer is known and can be reduced to a sum
of two-body monomer-monomer potentials; i.e.,

H = E VYf,(1 - Fj1). (45)
I<i<j<N

The effect of the solvent is taken into account in this Hamiltonian only insofar as
the two-monomer potentials are affected by it.

Now suppose that at the temperature we are interested in (physiological tem-
peratures for a protein) the heteropolymer has a shape that is well defined. That
is, up to global rotations and translations, each monomer has an average position
and some typical fluctuation around that position. This is certainly the case for
globular proteins at physiological temperatures, although it is interesting that the
physiological temperature is usually not much less than the temperature at which
proteins undergo a transition to a fluctuating "coil state" with no definite shape,
which suggests that thermal fluctuations are rather significant. If the heteropolymer
does have a definite shape, it should not be too bad an approximation to consider
a quadratic trial Hamiltonian which assumes that each monomer has some average
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position with Gaussian fluctuations around that position. Thus we reintroduce the
trial Hamiltonian that we first mentioned in the last section:

I N N

Ho = 2 7 Z(G-')ij(Fi - di).(t - aj) (46)

where d, and G1j are two sets of variational parameters which have straightforward
interpretations: from our discussion of this Hamiltonian in the first section, we know
that di is the average position of the ith monomer, while G~j is proportional to the
correlated fluctuation of monomer i and monomer j. As usual, we will eventually
choose these variational parameters to minimize the trial free energy. Because we
have so many variational parameters to vary, and because our trial Hamiltonian
describes a system which is physically close to the true state of our system, the
results we derive from our variational approach should be rather reliable. In fact,
one can introduce an even more general and realistic trial Hamiltonian with a
tensorial structure for G:

1 N N D DH0 = ZZ Z(G')?0 (r, a~)r •- a) (47)H= (47
i=- j=1 a=1 --=1

where a and fi are spatial indices. Such a trial Hamiltonian allows the protein to
have anisotropic fluctuations, which is obviously desirable. For the sake of simplicity,
we shall keep here to the form of Eq. (46) which is isotropic in space.

We now compute the trial free energy. The following derivation may seem com-
plicated, but keep in mind that it is actually a straightforward generalization of the
example from the last section. We have

P - Fo + (H - Ho)o (48)

where

Fo = -TInZo = -Tln dfldf 2 ,...,dFNe-HO/T (49)

and (X)0 denotes the expectation value of the observable X with respect to the
Boltzman measure -L exp(-Ho/T):

-.1 00faTX
(X)O = T dFjdF2,. dFNe-H /e x (50)x0 T "" f"0

Some of these integrals can actually be done very easily. Using the appendix,
we find that

Fo = -TIn ([(21rT)N detG]D/2). (51)
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Using the matrix identity In det G = Tr In G, we find

NDT DTF N = ln(21rT) - D-Tr In G. (52)
2 2

For (-Ho)o, we have

(-Ho)0 = -1 (G-'x 3 ((Fi - d1)-(Fj - d (53)

_ -- T- Zc')1 jG13  = 2 (54)

Finally, the most interesting and difficult integral to compute is

(H)o = (Vij(Ir - r3l)>o. (55)
I<i<j•5N

To compute it, it helps to first learn a general fact about Gaussian integrals. We
clearly need to be able to compute quantities like (f(F' - Fj)) 0 , where f is some
arbitrary function. Z =- e, - fj is a Gaussian variable, which technically means
that you can determine all of its higher moments from the first two. Its first two
moments are

and = di - di (56)
and

= DT(Gii + Gjj - 2Gij). (57)

The important general fact that we need to know is that when one computes the
average of some function of a Gaussian variable over all the original N variables
in the problem, one can replace the measure over all the original variables with a
new measure over only the Gaussian variable, as long as the new measure gives the
same first two moments. Perhaps it is clearer if I just write it in equations; if Y is
a D-dimensional Gaussian variable with first two moments A 1 and DM2 , then

( = di [ (z - 91 ) 2 1 V) (58)

f. 0 [27rM 2]D/2 exp 2M 2  I

Similarly, although we will not need it here, an average of a function of two Gaussian
variables can be reduced to an integral over just those two variables if one uses
a measure which gives the same first two moments. By the way, we know Y is a
Gaussian variable because linear combinations of Gaussian variables are themselves
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Gaussian and the original variables of a quadratic Hamiltonian are always Gaussian
variables.

Given the general fact described above, the computation of (H) 0 follows im-
mediately. We find

(H) 0 = (59)

- 0[27rT(Gii + Gjj - 2Gj)]D/2 e 2T -Z +-Gj - 2G)j) (iz1).

To summarize our computations, we have found that

P =
NDT (ln(27rT) + 1) - -DTr lnG (60)

+ 1 (0 ( diT exp (Z*-(d 2 -d-j) 2  1 0)
J f [21rT(Gi + Gjj - 2Gij)l/2 [_2T-•Gi + G• j - 2Gij)(I

Minimizing the trial free energy with respect to all the di, we find that for all
i = 1,2,...,N

d;F[• (D/ +1)l - dj)]X di
= (27r)D/ 2 [T(G1 , + Gjj - 2Gij)](D/2+l)

j=l,N(j~i) o

exp 2T(G-• + G --Go) VJ(Ilz1) (61)

while minimizing the trial free energy over all the Gij tell us that for all i # j,

f= 2.-f (27r)D/ 2[T(Gii + Gjd - 2Gj)J(D/2+ 1)

exp V[ - K - d jd))2  1y (i- (a, - )) 2  (62)
L 2T(G2 i + C,, - 2Gij) J DT(G2 , + C1, - 2Gij)J

and for i = j,
(G = - Z(G-1 )i, . (63)

These equations are obviously complicated, and the only way to solve them for
some arbitrary set of two-body potentials V~j would be numerically on the computer.
(They simplify considerably and can be dealt with analytically in the case when
the potentials V1j are identical, corresponding to an ordinary homopolymer. 3 ,7 ) At
a given temperature, there may well be more than one solution to these equa-
tions, which would correspond to the different possible metastable states of the
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heteropolymer. The advantage of this approach is that it naturally acounts for
thermal fluctuations while giving a great deal of useful information: given the input
of the temperature and the two-body potentials, one gets as output the positions
and correlated fluctuations of all the monomers. It would certainly be interest-
ing if someone went ahead and used these equations for a relatively small system,
and then compared the results to a more conventional, but time-consuming, Monte
Carlo simulation.

The protein is our first example of a system with "quenched disorder." The
disorder in this case simply comes from the two-body potentials, which depend in
some complicated way on the precise amino acids that the chain is made out of.
The disorder is "quenched" in the sense that the two-body potentials are fixed once
and for all for any given protein. Of course, different proteins will be made out
of different amino acids, and therefore will have different two-body potentials and
ultimately different shapes, but for a given protein, the potentials are quenched.
The concept of "quenched disorder" is easy to understand, but it is important to
continue to learn how to deal with it on a technical level, as it is an intrinsic aspect
of many physical systems. For our next example, we will first apply our variational
approach, and then introduce a new and potentially even more powerful technique.

The next system that we will consider for which quenched disorder is important
is the Ising spin glass. Imagine that we have some attuie (for concreteness we will
restrict ourselves to D-dinensional hypercubic lattics-'!ike the linear, square, or
cubic lattice) of N points, and on each point of the lattice, we put an Ising spin
which can point up oi down. In the first section, we only considered Ising spin
systems in which each spin was independent of every other spin, but let us now
consider what happens if each spin influences its nearest neighbors. In a ferromagnet
each spin will tend to make its nearest neighbors point in the same direction that
it is pointing. A commonly used Hamiltonian for the ferromagnet is

H = -JZ S1 S, (64)
(tj)

where J > 0 and the (ij) notation means that the sum is over nearest neighbors
in the lattice. This Hamiltonian clearly favors configurations in which all the spins
point in the same direction. In an antiferromagnet, each spin will tend to make its
nearest neighbor point in the direction opposite to its own. The same Hamiltonian
as the one used for the ferromagnet will also describe an antiferroniagnet if J < 0. A
spin glass is a system in which the interaction between any pair of nearest neighbors
is fixed and randomly chosen to be either ferromagnetic or antiferromnagnetic. The
canonical Hamiltonian for a spin glass is

H =-Z JjSSj (65)
(ij)

In practice, if one wants to make a computer simulation of a spin glass, for example,
one chooses each Jj to be equal to +1 or -1 with equal probability, or chooses
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the Jij's from some other probability distribution. One very popular probability
distribution is the Gaussian one, for which

(J)-(J -Jo)2/(2J2)

P(gi-) j, _/2 r/j2) (66)

where J 0 is the average value of a bond and i is the standard deviation in the

bond strengths. Once the Jij's are chosen form whichever probability distribution
being used, they are quenched and cannot be changed. They play a role analogous
to that of the Vij's in the protein Hamiltonian, while the Si's play a role analogous
to the ri's as the degrees of freedom in the problem. The ferromagnetic and antifer-
rom.agnetic Hamiltonians are obviously just special cases of the more general spin
glass Hamiltonian, although in practice, a system is only called a "spin glass" if
the Jij's are chosen at random and from a probability distribution which contains
both positive and negative J's. (In 1975, Sherrington and Kirkpatrick introduced
their famous model of a spin glass with the above Hamiltonian on the very special
lattice in which each spin is a nearest neighbor of every other spin.2 4 A spin glass

on such a lattice turns out to have thermodynamic properties that are identical to
those of a spin glass on a D = oo-dimensional hypercubic lattice.)

Faced with this Hamiltonian, I would hope that you would first consider trying

the variational approach on it. Let's see how that would work. We are interested in
computing

F = -TIn Trexp(-H/T) (67)

where Tr is a shorthand notation for a sum over all possible states of the system:

Tr--Z...Z. (68)
S 1 =: 1 S 2 =±1 SN=±l

We know that we can make exact computations with a trial Hamiltonian consisting

of noninteracting spins, so we take

N

Ho -Z hiSi (69)
j=1

where the hi variables are now variational parameters that we will try to optimize.

The trial free energy is as usual

S=- Fo + (H - Ho)0  (70)

where
F0 = -T In Z0 - -T In Tr exp(-Ho/T) (71)
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and the expectation value (X)o is taken with respect to the trial Hamiltonian Ho:

(X) 0 - 1oTrXexp(-Ho/T). (72)

We did the trivial computation of Fo last section:

Fo = -TE In cosh(hi/T). (73)
i

The other pieces of P are almost as simple to compute:

(-Ho)o = E hi (Si)o = E hi tanh(hi/T); (74)
i i

(H) 0 = - E J¾j (SS-3 )0

(ij)

= - E J (Sj) 0 (Sj)0 = - E Ji, tanh(hi/T) tanh(hj/T). (75)
(ij) (ij)

We have used the fact that the spins are independent in the trial Hamiltonian to
factorize the correlation function (SSj)o.

Putting it all together, we find

f = -T In cosh(hi/T) - 1 Jij tanh(hi/T) tanh(hj/T) + E hi tanh(hi/T).
i (zJ)

(76)
Minimizing the trial free energy with respect to hi, we find

- tanh(h1 /T) - ZJij tanh(h3 /T)(1 - tanh2 (h,/T))

j(i) (77)

+ tanh(hi/T) + •hi(l - tanh2 (hi/T)) 0

or
hi= Jij tanh(hj/T). (78)

j(i)

where the notation j(i) means all spins j neighboring spin i.
Notice that these self-consistent equations are considerably simpler than the

corresponding equations we derived for the protein problem. We can rewrite them
in a different and slightly more conventional way by changing variables to the local
magnetizations mn =- (Sj)o = tanh(h1 /T). In terms of the magnetizations, we have
the trial free energy

F'-TZ 1 ImIn + ' In +Z J'jrnmj. (79)
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(The first term on the right is the entropy, while the second term is the internal
energy of the system in this approximation.) In these variables, the self-consistent
equations are

m,= tanh (zJ~ 1 )(80)
Let us now consider the special case of the ferromagnet where all J,, are equal.

We will choose the particular scaling Jij = 1/(2D), where D is the dimension of our
hypercubic lattice, in order that the ground state energy density (when all spins
point in the same direction) will be E/N = -1 irrespective of the dimension. Since
all Jij's are equal, we expect the magnetization at each site to be equal, since there
is nothing to distinguish one site from another. Setting mi = m, we find the famous
mean field equation for the magnetization of an Ising ferromagnet:

m = tanh(m/T). (81)

According to this "variational," or "mean field," approximation, the ferromagnet
will have a transition at T = 1. For T > 1, m = 0, but for T < 1, the magneti-
zation is nonzero, with a magnitude approaching 1 at T = 0. We shall eventually
see that the mean-field approximation becomes exact for the ferromagnet when D
approaches infinity.

To demonstrate this fact, we will need to develop a new and different technique
for calculating the free energy. This technique is conceptually very simple-it is
based on the idea of expanding the magnetization-dependent free energy in powers
of the inverse temperature. We shall see that the form for the trial free energy given
in Eq. (79) actually corresponds to just the first two terms in such an expansion.
Thus, by computing the higher order terms in this expansion, we can systematically
approach the true free energy. My collaborator on the work that I am about to
describe was Antoine Georges at the Ecole Normale Sup~rieure in Paris.

The starting point of this technique is the magnetization-dependent free energy.
As I have defined it so far, the free energy is just the logarithm of the partition func-
tion, and the magnetization will have some equilibrium value at any temperature.
The magnetization has not been a free variable-we have been given the tempera-
ture and we have computed the magnetization. One can turn the magnetization into
a free variable and define a magnetization-dependent free energy by adding to the
physical system a set of external auxiliary fields which are used to insure that the
magnetizations are at their desired values. Of course, when the magnetizations are
at their equilibrium values, no auxiliary fields will be necessary. Let's see how this
works in equations, using our spin glass Hamiltonian. The magnetization-dependent
free energy is

-OF(3, m) = ln Tr exp ± JS S+ Z A,(o)(Si - in) ) (82)
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where /3 = 1/T is the inverse temperature. The A(O3) are our auxiliary fields (or
Lagrange multipliers). Note that they depend explicitly on the inverse temperature,
which is just a reflection of the important (and obvious) fact that the fields necessary
to fix a certain set of magnetizations will change as the temperature changes. As
usual, the magnetizations mi are defined as (Si), where the expectation value is
taken with respect to an effective Hamiltonian which is the sum of the original
Hamiltonian and the auxilary fields: if X is some observable, then

(X) - TrX exp(O3 E(i)Ji3 SlSj + Z A() )(Si - mi)) (83)
Trexp(0 E(ij) JijSiSj + >j, A'i(0)(Si - mi)) *

Eventually, we are going to minimize the free energy with respect to the magneti-
zations (set OF/Om. = 0). You can work out that this condition, when combined
with the constraint that mi = (Si), ensures that the auxiliary fields Ai(/) = 0,
precisely as they should at equilibrium.

We are going to expand -i3F(f3, mi) around 3 = 0 using a Taylor expansion.
You can already see that this trick will be useful because at / = 0, the spins will
be entirely controlled by their corresponding auxiliary fields, and we will thus have
again reduced our problem to one of independent spins. Since mi is fixed equal to
(Si) for any inverse temperature /, it is in particular equal to (Si) when /3 = 0,
which gives us the important relation

m= (Si) 0 = TrS• exp(A (0)Si) = tanh(Ai(O)). (84)
rni= (i>•0 =Trexp(A2 (O)Si)

We now expand the -/OF(/o, mi) around / = 0 using a Taylor expansion:

- ) -(3F)=o O(3F) 02 (/3F) /32
a03 = 0)3 2 2(8

where we have temporarily suppressed the dependence of F on mi. From the defi-
nition of -/3F(3, mni) given in Eq. (82), we find that

-/3F(/, mi)zo =Z ln[cosh(Ai(0))] - Ai(0)mi. (86)

At this point, we can choose to work with either the variables mi or the variables
A,(0), which are directly related to the mi through Eq. (84). We will choose to
eliminate the \i(0) (note that the formal manipulations are very similar to some of
those we did previously when using the variational approach, but the meanings of
our variables are somewhat different), and thereby recover

-OF(O3,m•,o =-Z [1 i In (1+ Mm) + 1-m' In (87)
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which is the entropy of noninteracting Ising spins constrained to have magnetiza-
tions mi. (Compare with the formula

S E -Pstate ln(Pstate) (88)
states

from last section.) Considering next the first derivative in Eq. (85), we find that

_Oa(F) = 3( X, ,,sSSj)O=o + 3 (S, - mi) 0 a, (89)

a3 0=0 (ii) of=

At )3 = 0, the spin-spin correlation functions factorize so we find that

a(/3 = F f1 Jijmtmj. (90)

a , 3= 0 (it )

This is, of course, the "variational" internal energy, so we see that as claimed, the
first two terms in our expansion give the variational trial free energy.

Naturally, we can continue our expansion, and to arbitrarily high order. If you
are interested in some formal details and tricks which make the computation easier,
you can refer to Georges and Yedidia.1 1 To order /34, one finds that

-3F(,3, mi) + - I [12m- 2 in (1 mi-) + 1- m In (1 - ]mi

+ 23 2, mm 3

(2)

(ij)o23

(ijk)
34

12 Z J•(1 - m•)(1 - mff)(1 + 3m2 + 3,n• - 15m~rnf)

(ij)
+ 2 /34 E JjJjkJkimi(1 - ml)m,(1 - m2)(1 - m2)

(ijk)

+ E34 J gjJ j kJkiJi(1 - mi)(1 - raM)(1 -M2 )(1 -M2 ) ±..
(ijk)

(ijkl
(91)
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where the notation (ii), (ijk), or (ijkl) means that one should sum over all distinct
pairs, triplets, or quadruplets of spins.

For the ferromagnet on a hypercubic lattice, all these terms can be reorga-
nized according to their power in 11D. It is easy to show that only the zeroth-
and first-order term contribute in the limit D -+ 00, and to generate 1/D expan-
sions for all the thermodynamic quantities, including the magnetization." In 1977,
Thouless, Anderson, and Palmer (TAP) pointed out that the "mean field" theory
for the Sherrington-Kirkpatrick spin glass model should include also include the
second-order term (in i3).25 Unfortunately, solving the N equations obtained from
minimizing the TAP free energy is still no easy task for the spin glass problem,
although they were nevertheless able to make a number of interesting deductions
based on their equations. The interested reader is referred directly to their paper
for the details. In the next section, we will finally begin studying an even more
powerful technique for dealing with quenched disorder, the famous replica method.

3. AVERAGING OVER DISORDER AND THE REPLICA METHOD
In this section, we will introduce a new subject, averaging over the disorder of a
physical system, and a technique to do it, the replica method. The idea of averaging
over disorder may have already occured to you when you saw the results of the
variational method for the spin glass Hamiltonian. For N spins, there were N
self-consistent equations to solve! This compared very unfavorably to the single
self-consistent equation that we needed to solve in the ferromagnetic mean-field
theory. Of course, if one is interested in some very specific system, for example the
shape of a specific protein, then it makes sense that one will have to solve a lot of
equations to get the answers-if you want a lot of detailed information, you need
to do a lot of work. But, if instead, one is satisfied to know the average value of
thermodynamic quantities for some typical system with quenched disorder *hosen
from some probability distribution, then it makes sense that one can simplify the
problem. Sam Edwards and Philip Anderson were the first to attempt to compute
such average quantities using the replica method for the spin glass in 1975,8 and
Giorgio Parisi first gave the correct solution of the replica mean-field theory for spin
glasses in 1981.19,20,21,22 We will introduce the replica method on models which are
somewhat simpler than the spin glass, so that the ideas will be clearer. In fact, we
will begin with a model which is sufficiently simple that the average over disorder
can easily be done without replicas, so that we can check that the replica method
does indeed give the correct answer.

Suppose that we have a single particle governed by the Hamiltonian

H =-r f r (92)
2
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where f is a quenched random force field. Or, rather, we actually have an ensemble

of such physical systems, each with a different value of f. A single examplar system
from the ensemble is called a sample. Suppose that the samples are assigned values
of f chosen from the probability distribution

Se-f
2 /2f17

For this ensemble of systems, we can compute thermodynamic quantities like the
free energy FI for any particular sample with a certain value of f, but what is
more, we can compute the free energy F averaged over the entire ensemble, with
each value of f weighted by its probability:

F j df p(f) Ff. (94)

Let's see how this works. We have

r 2 _ 1 _f2 f2

H = - f r = -(r- f)2  - (95)
22 2

so we see that if the force field is f, the particle will actually be in a quadratic well
centered at r = f with minimum H = -f2/2. We have

0.

ZI = dr e-3'[(r-f)2
-f

2
] (96)

00

= ef2/2T dr e- (r-f)2 = ef 2/2Tv/-i-T. (97)

The free energy Ff for a sample with force field f is

F2 = -TInZr = - f _Tln(27rT). (98)F! -TIn ! = 2 2

This is as we would expect: the free energy is shifted from the f = 0 free energy by
the same amount as the Hamiltonian was shifted. Now we can compute the desired
average free energy:

/df •_ ln(27rT) , (99)

- o2 2- ln(21rT). (100)
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We can compute other disorder-averaged quantities. For example, the thermal
average of the position for a given force field f is

fE dr r e-,"(r2-2!r)
(r)1 = f•_•fo dr e-r(r 2-2fr) = f. (101)

Again this makes sense given that our quadratic well is centered at r = f. If we now
do the disorder average, we find that the disorder average of the thermal average
of the position is zero:

-00 df p(f) (r)f = 0. (102)

This result is the consequence of the fact that our probability distribution for f is
even, so that the samples with negative and positive force fields cancel each other
out. Nevertheless, the disorder average of the square of the average position will be
nonzero: n-e:f =- f i = f2. (103)

You can easily work out other averages; for example, the disorder average of
the thermal average of the squared position is

r-2)= T + f2. (104)

Note that this correlation function, which measures how much the particles fluctuate

around the origin, actually has two contributions. The disorder contribution, (r)2 
=

f02 , does not depend on the temperature and is proportional to the strength of the
disorder. On the other hand, the thermal part of the fluctuation, given by

((r - (r))2) = (r2) - (r)2 = T (105)

does not depend on the disorder and is proportional to the temperature. This
thermal part has the form of a so-called connected correlation function; note how
it automatically subtracts away the shift in the average position caused by the
random force field.

We will now rederive these results using the replica method. For this problem,
using replicas is certainly overkill, but, of course, the point of the method is that it
will work for many other problems where a direct computation is impossible. Our
direct computation relied on the fact that we could compute the free energy for
any particular sample. Of course, we have seen previously that for other problems,
computing the free energy of a particular sample meant solving a large number of
self-consistent equations. The idea of the replica method is to reverse the order of
the computations-we want to average over disorder first, leaving any additional
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computations for later. The additional computations may still be possible, or even
actually simpler, if we do them in this reverse order. In our example, we have

-T 10-T df e-f 2 /2f2 In odre-+(f-fr). (106)

Instead of doing the r integration first, we want to start with the disorder average
represented by the f integration. This would be possible if the logarithm were not
there-the f integral would then be a soluble Gaussian. The replica method is
based on the mathematical identity

In Z = lim Z 1 (107)
n-O nl

which enables us to pull the logarithm out of the way. Let us rewrite our average
free energy as

"F = -T j df p(f) lnZf. (108)

We use the mathematical identity

x = lim 1 ln(1 + nx) (109)
n-O n

to rewrite this as

P=-Tlim -In(l+n df p(f)nInZ). (110)

n-.o n __0

Using the fact that fL df p(f) = 1, we have

F=-Tlim -1 In dfp(f) (1+nlnZf). (111)
n-0, n .- 00

Finally, using the identity (107), we have

F=-T limr I nj df p(f) Zf7 (112)n---0 n f-00

which is a form that we can work with; we now will be able to perform the f
integration. One way to think of the term Z7 is to imagine a new physical system
consisting of n identical replicas of the old system; then Zf is just the partition
function of the new system. If we label the replicas by the index a, where a can run
from 1 to n, then

zf=j-f dra exp (a ( -fra)) (113)

z7_ E_ 2
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Finally, we have transformed our original Eq. (106) for F into the mathematically
equivalent expression

- f df0022 0  1 n lf ./2 V
F=-Tlim IInf draexp -- - -/ fr .2

n-0 fl -cf a-IX .2 1r

(114)

The advantage of this horrible-looking expression is that we can now complete the
square, perform the Gaussian f integration, and arrive at the formula

-1 fcxa l
F=-Tlim -ln dr. exp -_1_ rarb . (115)

n---0 n Q = a=l a=1 2 b= )

By averaging over disorder, we have converted our original problem into the
mathematically equivalent problem of a system of n particles with no disorder, and
interacting according to the effective Hamiltonian

n= 2 2-T b=n rb
H!f f = La _ L0_ rarb. (116)

a=1 a=1 b=1

Now we have to do the "additional computations" that we have postponed-that is,
we have to compute the free energy for this new system. Fortunately, in this case
the integration over the ra variables is Gaussian so it can be performed exactly.
(For other problems this next step can only be done approximately, for example,
by a variational approximation; we shall see how this works in the next section.)
We write the effective Hamiltonian in the form

He = ZZ(G ) rarb (117)
,a=I b=1

where (G-1)aa = 1 - fO/T and (G-')a#b = -f 2 /T. Doing the Gaussian integral,
we find

=-Tlim lln(v4(27rT)ndetG) =- In(27rT) -T lim 1Tr ln G. (118)n--- O 2 2 n-0 it

Now we have to take to logarithm of the determinant of our G matrix, or
equivalently the trace of the logarithm of that matrix. At this point, it is worthwhile

to make a digression to study some needed matrix algebra. We are interested in

n x n matrices of the form

a D
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We call these matrices replica-symmetric matrices, and we will adhere to the con-
vention that the diagonal elements of the replica-symmetric matrix Aab will be
denoted by a, while the off-diagonal elements will be denoted by a. We want to
derive rules for multiplying such matrices which are correct for arbitrary n, so that
we can take the n --+ 0 limit. We will then be able to formally deal with 0 x 0
matrices!

If we multiply two replica-symmetric matrices Aab and Bab, the result is a new
replica-symmetric matrix Cab with

E = a& + (n - 1)ab (119)

and
c = ab + ab + (n - 2)ab. (120)

Notice that we derive these formulas by thinking of n as an integer, but that we
can then extend their validity to all real n. By requiring that a = 1 and c = 0, we
get the conditions which must be satisfied if Aab is the inverse matrix of Bab. In
the n -- 0 limit, these conditions are

1 -b b-25
-a- a=- , a - (121)

b - b (b - b) 2  b)2

Applying these formulae to our Gab matrix, of which we only knew the inverse until
now, we find that § = 1 + f0/T and g = f02 /T.

The trace of the logarithm of a replica-symmetric matrix can be worked out
using the Taylor expansion

In~l+ X)= X X +X X(122)
2 3 4

in its matrix form. We leave it as an exercise for the reader to work out that for
the replica symmetric matrix A

lim 1 TrlnA = ln(a - a) + a (123)
n-0 n a

Using this result in Eq. (118), we finally obtain

T -T ln(21rT) - (124)

in agreement with our previous direct computation.
Other disorder averages can also be worked out using the replica method. Again,

one does the average over disorder first, leaving any additional computations until
the end. In this way, one can show that

rr (125)
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where the "effective" expectation value is taken with respect to the replica Hamil-
tonian: we define an effective partition function

Zef J _= j draexp ( T-) (126)

and the effective expectation value of some observable X is then

1 1 - n (_ H-ff

(X)nflim--T- fdra X exp . (127)
n-0 ne a=1

Completing the computation, we find

(r2) = im TGaa = T = T + f2. (128)n---0 na=

This result is very important-it tells us that the diagonal element of our
Green's function matrix in replica space is proportional to the correlation func-
tion measuring the combined fluctuations caused by thermal and disorder effects.
Similarly, we can show that

(r 2 ) - (r) 2 = • rarb lim 1 (n TGaa + n(n - 1) TGa#b)(ttn---0 n
a=1 b=1 )efft=

= T(§ - g) = T. (129)

This tells us that the purely thermal fluctuations given by the "connected" cor-
relation function are proportional the difference of the diagonal and off-diagonal
elements of the Green's function matrix.

We can summarize what we have learned by saying that an effective replica
Hamiltonian of the form

Hef = !ZZ (G-)rrb (130)
a=1 b=1

with a replica-symmetric G matrix represents an exact description of an ensemble
of physical systems, each one of which is a particle in a quadratic well with identical
thermal fluctuations equal to T(Gaa-Ga#b), but with the center of the well assigned
a different position in each sample, with fluctuations in the position of the well
equal to TGa#b. The total combined fluctuations in the position averaged over
temperature and from sample to sample will be equal to TGaa.

We will now move on to a much more challenging example of averaging over
quenched disorder, for which a direct computation is impossible. Our first example
was not really so "disordered," as each sample was still just a single particle in
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a perfectly quadratic well. The disorder was just sample-to-sample disorder, not
disorder within a given sample. Much more interesting would be an ensemble of
physical systems such that even within a given sample, there exists intrinsic disor-
der. This is really what most physicists have in mind when they think of glasses.
To be specific, let us imagine an ensemble of systems, each one again consisting of
a single particle in a potential. The Hamiltonian for the particle will again consist
of a quadratic piece plus a random term:

H = -r + V(r), (131)

but now the random term V(r) represents a whole random potential landscape,
looking something like the profile of a one-dimensional mountain landscape, or
perhaps the graphical history of a (purely random) stock market. A particle in such
a potential will certainly feel intrinsic disorder within the sample, and if each sample
has a different random potential, we will still have sample-to-sample disorder. Before
we can try to solve for the average thermodynamics of such an ensemble of systems
(which we will eventually do), we first have to understand how one can even describe
such random potentials in a mathematically precise way, which is the problem we
turn to now.

One convenient (and realistic) way to make an ensemble of random potentials is
to imagine a potential landscape which is actually very slowly fluctuating according
to some Hamiltonian at the effective temperature Teff, so that the potential chosen
for a particular sample is just a snapshot of the fluctuating potential at some time.
We assume that the fluctuations of the particle on the potential are very much
faster than the fluctuations of the potential, so that on time scales relevant to the
particle, the potential still appears quenched. Technically, this means that we do
the thermal average over the Hamiltonian of the particle first, and only afterwards
do the disorder average, which is interpreted as a thermal average over the slow
Hamiltonian of the potential. One reasonable "slow Hamiltonian" is

H8 0,,o. = T dr -vr (132)
2Jo

Such a Hamiltonian favors potential landscapes for which nearby points are corre-
lated. A more general quadratic slow Hamiltonian is

Tewff oo dr' (K-l)rr, V(r)V(r'). (133)
S.slow w g0-

This slow Hamiltonian will give us a Gaussian probability distribution

p(V(r)) = 0exp f-2 dr dr' (K-1)rr V(r)V(r') (134)

zo 2 00 or
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where Zo is a normalization constant. (To make sense of these expressions, it may
help you to think of discretizing space so that the number of points where the
particle can sit is finite. Then, for example, Kr,, will become a finite matrix. At
the end, one can go back to the continuum limit.) One can take this probability
distribution as a starting definition of a random potential-the description in terms
of a slow Hamiltonian was merely to help give some qualitative understanding. This
Gaussian probability distribution has for its first two moments

V(r) = 0 , V(r)V(r') = Krr'-. (135)

Clearly, the specifications of a Gaussian probability distribution by its slow Hamil-
tonian or by its first two moments are equivalent, as one can switch from one to
the other by simply inverting the K matrix.

Normally, Krr' is just a function of Ir - r'l:

Krr, = K(Ir - r'l). (136)

In that case,

(V(r) - V(r')) 2 = 2 (K(0) - K(Ir - r'l)) • (137)

It is reasonable that K(IrI) should monotonically decrease from its value at In = 0,
as that implies from Eq. (137) that the closer two points are, the more closely their
potentials are correlated. One very reasonable and technically convenient form that
for K(Irl) is a Gaussian decay:

K(Jr - r'I) = Wexp ((r2r-)2). (138)

Such a form describes a random potential with typical magnitude W and correlation
length A. In the "mountain landscape" analogy, W corresponds to the typical height
of the mountain peaks, while A is the typical distance between mountain peaks.
Another very popular form is a linear decay:

K(jr - r'l) = W - fir - r'I. (139)

In contrast to the Gaussian decay, the linear form has no characteristic spatial or
energy scale. Instead, the typical squared difference in potential will grow linearly
with distance at all scales; such a form corresponds to a Brownian random walk for
the potential.

We will now begin the computation of the average free energy for an ensemble
of systems with a Gaussian random potential by averaging over the disorder with
the replica method. In this case, we have no hope of succeeding with the "direct
approach" of computing the free energy for an arbitrary sample, and then averaging
over the disorder. We must try to average over the disorder first, and leave any
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additional computations for later. I will first tell you the result of the average over
disorder, and then give a derivation of this result.

The result is: if we have an ensemble of systems with Hamiltonian

H = r2 + V(r) (140)
2

where V(r) is a Gaussian random potential with first two moments V(r) = 0 and
V(r)V(r') = Krr', then

F = -T lim- In fldra exp - (141)
n---* nta a=1l

where

Heff = ra---n (142)
a=1 a=l b=1

The derivation: we have (all the initial steps are the same as our previous

example)

F = -T lim 1 inZ- (143)
n--O0 

n( 

4

where Zv represents the partition function of the system with a given potential
V(r). We take the nth power of the partition function by replicating the system n
times:

-n H r, exp La (44J = 1 T dra 2 + V(ra))) (144)

Since we have n identical replicas of the system with potentials V(ra), the correla-
tion function of the disorder will not depend on which two replicas we choose, so
that

V(ra) = 0 , Y(ra)V(rb) = Krr' (145)

and we find

-Tim 1 In -L 0 DV(r) exp n n j-dr. drb (K-'),,, V(ra)V(rb))
- TliZl n 2 DVor exb

n O n z" a=lb~

0 A dr. exp ( n (L'2. + V(r.))) (146)

where the notation DV(r) represents a functional integral over the function V(r).

(Again, if you have trouble with this, just imagine that space is discretized into a

finite number of points. The functional integral then becomes a multiple integral
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over the values of the potential at the discretized points.) The integral over V(r) is
Gaussian and can be done (using the functional integral extension of the formulae in
the appendix) yielding the desired result of Eqs. (141) and (142). In the next section
we will start from this point and use the variational method to try to complete,
at least approximately, the calculation of the average free energy of an ensemble of
systems with Gaussian random potentials. We shall discover that very interesting
problems will arise in such a computation.

4. VARIATIONAL REPLICA APPROACH AND REPLICA
SYMMETRY BREAKING
In this section we shall attempt an approximate computation of the average free en-
ergy of the ensemble of physical systems consisting of a single particle in a Gaussian
random potential. To be specific, we choose the Hamiltonian to be

r2
H =--i + V(r) (147)

where V(r) = 0 and
V(r)V(r') = W - fir - r'. (148)

As we learned in the last section, the average over disorder can be done by the
replica method, yielding the expression

F= -T lim-1 In n1dra exp -H'l (149)
n-0Ofn J7 i \ TJn•0 Tt cx a= 1

where in this case, the effective replica Hamiltonian is

H 1 ff,= 2 E I 2W -fra -rbl. (150)
e=lI a=l b=1

Notice that the average over disorder induces an effective attractive interaction
between particles from different replicas.

Unfortunately, the form of the interaction makes an exact integration over the
ra variables impossible, so we must resort to approximate methods. Fortunately,
our variational method can still be applied (although because of the n -- 0 limit,
the trial average free energy becomes a lower bound on the true average free energy
rather than an upper bound). Recalling the formalism that we learned in the first
two sections, we define a trial average free energy P by

P =_Fo + (Hef - Ho)0 (151)
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where H0 is a trial replica Hamiltonian and the thermal average ( )0 is taken with

respect to it:

Fo -T rim In Zo; (152)
n--0 n

oTdrae (153)
00 a=1

(X) 0  linimL fadra X exp (154)

As the class of trial replica Hamiltonians, we use the quadratic form that we solved

exactly in the last section:

H0 = 2 E(G1).b'arb (155)
a=1 b=1

where G is a replica-symmetric matrix with diagonal elements ý and off-diagonal
elements g. These matrix elements are now the variational parameters which we
will vary to optimize the trial free energy.

(The idea of using quadratic trial replica Hamiltonians [with a more general
replica-symmetry-broken form which we will learn about later] in a variational ap-
proach was first suggested in a paper by Shaknovich and Gutin 23 on the replica
approach to the heteropolymer problem. MN•zard and Parisi 15 significantly devel-
oped the ideas of this approach and, in a recent preprint,16 applied it directly to
the problem we are studying today. I have chosen to discuss their work because it
is a particularly illuminating example of the replica method from the pedagogical
point of view.)

Fortunately, we have already done most of of the work necessary to compute the
various pieces of the trial average free energy. For example, from our computation

of the free energy in the last section, we have (see Eq. (118))

- T T 1
F0  -T ln(21rT) - - lim -Tr In G (156)

2 2 n-0 it

and using the result we derived last section for the trace of the logarithm of a
replica-symmetric matrix (Eq. (123)), we find

FO T-ln(27rT)-2T - (ln -g)+ (157)

2 2 (ýc -! g)
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For (-Ho)o, we have

(-Ho)o = -• KZ -G)brarb) (158)
a=1 b=l1

lim E E (G-1).bGab - (159)
2 n- 1i 2

(Heff)o is itself composed of a few pieces:

I-' n ) T lm1 n T-

= -- lim- Gaa = (160)22 •-•o E
al 0 a=l

The a = b piece of the interaction term is

SW• n Wlim W
.... .lim n- n (161)

2T a=1 )Of2T n-0 n 2T

For the a j b piece of the interaction term, we note that z ra - rb is a Gaussian
variable, with

(Z)o = 0, (z 2 )o = Bab =- T(Gaa + Gbb - 2Gab) 2T(j - g). (162)

Using what we learned about Gaussian variables in the second section (see the
discussion around Eq. (58)), that means

fo r b - -- 0 d z exp ( - z 2 ) z (163)
2T ~~2T n-. n .aý2-7b2

exp - IzK164)

2T --, V/2ir[2T(§ - e)] 2([2T(j - )]

S /E--T-g) (165)
V rT

Note that the sign of this term switched when taking the n --* 0 limit because there
are n(n - 1) off-diagonal matrix elements. Collecting all the terms, we find the trial
free energy

F= -- (ln(27rT) + 1)- - ln( -g) + + L f - .

2T 2 §-- r
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Setting the derivatives with respect to ý and g equal to zero, we find the two
equations

T 1 g +- 1) =0; (167)7 +•_g ( g)22VrT _)
T2 1 - gýfr( 1 g)

T -g . + f =0. (168)
2 g (§_-g)2  -g 2 - g)

Adding these two equations, we find § - g = 1, and plugging that back into the
second equation, we find g = f /•Vi--. We recall from the last section (Eq. (130))
that the physical correlation function corresponding to the thermal fluctuations is

(r2) - (r)2 = T(§ - g) = T (169)

which tells us that the thermal fluctuations are proportional to temperature, as
we expect. The correlation function measuring the average of both thermal and
disorder-induced fluctuations is

(r 2 ) =T=T+ (170)

which is... a disaster! Our result suggests that the typical displacement caused by
disorder diverges as the temperature approaches zero, which makes no sense. We
know, in fact, that at zero temperature, the particle will sit at the bottom of
the lowest well in each sample, and the lowest well should always be some finite
distance from the origin, given the quadratic term we have included in the Hamil-
tonian. Therefore, we should have gotten a finite answer for the fluctuations at zero
temperature.

What went wrong? In fact, it should have been obvious that we were headed
for trouble given what we learned in the last section about the physical mean-
ing of the replica-symmetric trial Hamiltonian. As we learned, a replica-symmetric
Hamiltonian gives an exact description of an ensemble of systems, each consisting
of a particle in a single quadratic well, with the position of the well distributed
from sample to sample according to a Gaussian distribution. This is very far from
our ensemble of systems, for which every sample has many metastable minima. We
should not be surprised that we get nonsense from an approach which approximates
rough random potentials by a single quadratic well. Garbage in, garbage out.

What is not so obvious is how to make a better approximation. We need an
approximation which includes the possibility of disorder within a sample, as well as
sample-to-sample disorder. In fact, such an approximation is possible, even retaining
the quadratic form of our trial replica Hamiltonian, using an amazing idea due
originally to Giorgio Parisi, which he proposed in the context of a replica approach
to the spin glass problem.1 9'20 ' 2 1' 22 The idea, called replica symmetry breaking,

technically amounts to widening the class of n x n replica matrices Gab considered in
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the trial replica Hamiltonian to include matrices for which the off-diagonal elements
are not necessarily equal. We will first explain how to do this technically, and then
describe the physical meaning of an ensemble of systems represented by a trial
quadratic replica Hamiltonian with replica-symmetry-broken matrices. As we will
see, replica symmetry breaking is the key ingredient to describing ensembles of
systems in which each sample has many metastable states.

We will begin our description of replica-symmetry-broken (RSB) matrices with
the simplest such possibility, called one-step replica symmetry breaking. In a one-
step RSB matrix, the n replicas are grouped into n/m families of m members
each. There are three kinds of matrix elements: the diagonal elements, off-diagonal
elements for which the row and column replicas belong to the same family, and
off-diagonal elements for which the row and column replicas belong to different
families. For example, in the following one-step RSB matrix Aab, n = 4, while
m = 2: ( a a, ao ao

a1  • ao a0

ao ao d al
ao ao a, ad

We have adopted the convention that for a one-step RSB matrix Aab, the n diagonal
elements are denoted i, the n(m - 1) "intrafamily" matrix elements are denoted
a,, and the n(n - m) "interfamily" matrix elements are denoted by ao.

If we multiply 2 one-step RSB m-trices which share the same values of n and
m, the result is also a one-step RSB matrix with the same n and m values. In fact,
it is easy to work out that if

n

Cab - ZAacBcb , (171)
c=1

then

Z = &b + (n- m)aobo + (m- 1)albl, (172)

co = dbo + (m - 1)albo + bao + (m - 1)blao + (n - 2m)aobo, (173)

cl = abi + a l b + (m - 2)albl + (n - m)aobo. (174)

We derived these equations thinking of n and m as positive integers with n > m,
but we can consider the equations to be valid for arbitrary real n and in. We can
take the n -+ 0 limit of these equations, and then use them as we did last section
to find the set of conditions that must be satisfied if Aab is the inverse of Bab. We
can also use them to compute the trace of the logarithm of a one-step RSB matrix
Aab; the result is

1a 0  in-1In t- a1 (75

lim ITrlnA = ln(a- (a)) + - i n a, (175)
n--0 _n(a (d a)
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where
(a) =_ mao + (1 - m)aj. (176)

We recover our previous replica-symmetric results in either of the limits m -- n
or m -* 1, corresponding to all the off-diagonal elements being "intrafamily" or
"interfamily" respectively.

We have developed enough "replica technology" to be able to use a trial Hamil-
tonian of the same quadratic form as in Eq. (155) but with a one-step RSB Gab
matrix. The one-step RSB trial Hamiltonian has four variational parameters: 4,
go, gl, and m, and must give a trial free energy at least as good as the replica-
symmetric Hamiltonian, because it is more general. When we compute thermal
replica expectation values and encounter sums over off-diagonal elements, we must
remember to break the sum into intrafamily and interfamily parts. This has im-
plications for the computation of disorder averages. For example, the connected
correlation function measuring thermal fluctuations is within a one-step RSB trial
Hamiltonian (compare Eq. (155))

(r)- (r)2 = (Ži t rarb
a=1 b=1 >0

= lim -(nTý + n(n - mn)Tgo + n(m - 1)Tgl)
n--O n

= T(§ - (g)), (177)

In the computation of the trial free energy, the only terms that change from
their replica-symmetric forms are the term giving the trace of the logarithm of
the Gab matrix and the term from the a 5 b piece of the interaction expectation
value. The average square of the Gaussian variable z - ra - rb depends on whether
replica a and b are in the same family or not; (z 2)0 = 2T(j - gi) if they are in the
same family, and (z2)0 = 2T(4 - go) if they are in different families. We thus find
(compare with the replica-symmetric result of Eq. (165)) that

ffmo (- go) _ (-g)
2 T\ E Ira - rbI r m -_T f(1 - m) V t •rT (178)

If we collect all the pieces together, the one-step RSB trial free energy is

T (ln(27rT)+l-,p+ln(4- (g))±+ g + n - In II
-2 (- W M. U- (g)

W f (4- go);( ),,-•n) g-i• (179)2TW YV ;T f(- __ z rT' (79

Now, of course, we can optimize the free energy with respect to the variational
parameters §, go, gi, and m. It is important to realize that in the n - 0 limit, the
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optimal values of the parameters will give a maximum of the free energy, rather
than a minimum. 17

The physical meaning of these variational parameters has been worked out by
M6zard and Parisi in their paper.' 5 It can be understood in much the same way
that we understood the physical meaning of the variational parameters j and g in
the replica-symmetric case: by comparing results of a "direct" computation of some
disorder average with the results of the replica computation. Specifically, Meiard
and Parisi showed that if we have an ensemble of physical systems for which the
average free energy is given by the expression

F=-T lim dra exp Hrica (180)
n•0 Y, --o a=1

with n n

Hroplica = E (G-1)brarb (181)
a=l b=1

with a one-step RSB Gab matrix, then the ensemble is equivalent to one constructed
in the following way:

1. For each sample we determine a "central point" r0 by choosing it from the
probability distribution

p(ro) -0exp 1- (182)21g 2g0

2. Around the central point of each sample, we generate an infinite number of
quadratic wells. The positions ra chosen for the center of each quadratic well are
uncorrelated with each other; they are chosen from the probability distribution

( ep (ro-r)2)

p(r,) = - exp (oq - ro )2 (183)
V12i-r(gig) (2g -go))

The potential V, at the minimum of each well is also a random variable uncor-
related with the position r•, or with any of the other wells. The V, are chosen
from a probability distribution such that the average fraction of wells with inin-
ima below the level V is emV. (That is, all the wells have minima below V = 0:
while a fraction e-m have minima below V = -1, and so on. m is normally
between 0 and 1.) In the total Boltzman sum for the sample, each well will have
a weight

W, = (184)Ea -V"/1T"
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3. The thermal fluctuations within each well are equal to T(j - 91); that is, the
effective well Hamiltonian is

1 (r -r,)2
gweii = 2 ( - g) (185)

As I mentioned, this "interpretation" was arrived at by Mdzard and Parisi15

by demonstrating that the disorder averages that one computes using the interpre-
tation agree with those obtained from the replica method.

An ensemble such as that described above clearly exhibits the kind of intrasam-
ple disorder that we want. The many quadratic wells mimic the many metastable
minima in our original problem, and our various variational parameters give a clear
quantitative measure of the disorder.

Nevertheless, one can do better than the one-step RSB scheme. In the one-
step scheme, the replicas are organized into a very simple hierarchy of families.
Parisi19' 20,2 1,22 proposed an even more general scheme called k-step replica sym-
metry breaking in which the n replicas are organized into n/mi "l-families" of Mn
elements each. The m, replicas in a "1-family" are then further organized into
ml/m 2 "2-families" of m 2 elements each, and so on until we reach the level of
"k-families," which are ordinary families consisting of mk elements, and "k + 1-
families" which are simple elements. We use the convention that all replicas belong
to the same "0-family" so that mo = n and ?nk+l = 1. Off-diagonal elements of the
k-step RSB matrix Aab for which replicas a and b belong to the same "i-family"
(the maximal I being chosen) are labeled al.

As an example, we give a two-step RSB Aab matrix, with m0 - = 8, in, 4,
and m 2 = 2:

d a 2 al al a0  a0  a0  a0

a 2  & al al a0  ao ao ao
al al a a 2 ao a0  a0  a0

al al a 2  a a0  ao a0  ao
ao ao ao ao & a 2 al al
a o ao ao ao a 2  a al at

ao ao a0  ao al al & a2
ao ao ao ao al at a 2  d

Two k-step RSB matrices with the same values of m, will, when multiplied
together, give another k-step RSB matrix with the same values of rn,. As we did
above for one-step RSB matrices, we can write down the multiplication rules for
k-step RSB matrices, and then derive formulas for the inverse and the trace of the
logarithm of a k-step RSB matrix. We can thus compute the trial free energy, and
optimize it with respect to all the variational parameters in the problem (.4, the
k+ 1 off-diagonal elements g, and the k parameters mi). Clearly, a trial Hamiltonian
based on a k-step RSB matrix will always be more general than one based on a k - 1-
step RSB matrix, and should thus provide a trial free energy that is at least as good.
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The physical interpretation of a such a Hamiltonian is a rather straightforward
generalization of the interpretation of a one-step RSB Hamiltonian. For example,
in the case of a two-step RSB Hamiltonian, in each sample, one first determines a
"central point" from a Gaussian probability distribution. Around that central point
one distributes an infinite number of "wells" as as we did in the one-step case. Now,
however, the position of the center of each well is just a "central point" around which
one distributes an infinite number of quadratic "sub-wells," again with spatial and
energy displacements determined by probability distributions using the gi and mi
parameters. Finally, the particle fluctuates thermally in the sub-wells. In three-step
RSB, the sub-wells are further broken down into sub-sub-wells, and so on. For more
details, see Mizard and Parisi. 5

The best we could do within the k-step RSB scheme would be to take the
k -- oc limit. Incredibly enough, this limit can be taken and is referred to as full
replica symmetry breaking. Actua ,-, in order to make sense of this limit, we need
the following fact, which has been empirically observed in all known examples of
k-step replica symmetry breaking with finite k. The parameters mi should, in the
n -- 0 limit, obey the inequalities

0 _< m! 77m21<_ .... ! mk-m _ mk <1. (186)

We can "justify" these inequalities in the following way. In each row of a RSB
matrix, there are n - 1 off-diagonal elements, which in the n - 0 limit, equals
-1. Say, for example, that we had the two-step RSB matrix Aab. Then n - m, of
the off-diagonal elements on each row would equal a 0 , mi - m 2 of the off-diagonal
elements would equal a,, and m2 - 1 of those elements would equal a 2. If we want
a certain fraction of the elements to have each of the possible values, and if all the
fractions should be between 0 and 1, then we require, for example, that n - in
should be between 0 and -1 (so that the number of elements equal to a0 be a
fraction of -1), which means (for n -- 0) that 0 < mi < 1. The other inequalities
similarly follow. If the above inequalities are obeyed, then we can represent all the
parameters mi and ai in terms of a single function a(x), where x ranges from 0 to
1. We construct the function piece by piece, with a(x) = a1 for in, < x < m,+,. For
any finite k, the function will a(x) will thus consist of a series of steps.

The variable x in the function a(x) is a measure of the relatedness of the two
replicas denoted by the row and column indices of a matrix element of Aab. When

x - 1, the relatedness is high, while when x -- 0, the relatedness is low. x is
the generalization of the one-step variable m, which you recall was physically inter-
preted in terms of the difference in potentials between the different wells. Physically,
therefore, the small x regime refers to correlations between wells that have a big

potential difference.
The rules for multiplying two full RSB 0 x 0 matrices Aab and Bab to get a

new matrix Cab can be written in terms of the parameter representing the diagonal
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element and the function representing all the off-diagonal elements. 19
,
20 ' 21' 22 The

following formulae are taken from Mizard and Parisi,"5 Appendix II:

S= i, - (ab) (187)

c(u) = (b - (b))a(u) + (d - (a))b(u) - j dv (a(u) - a(v))(b(u) - b(v)) (188)

where

(a) - du a(u). (189)

In order that Bab be the inverse of Aab, we require that E = 1 and c(u) = 0. The
resulting conditions are written out in detail in reference M~zard and Parisi.' They
have also worked out the formula for the trace of the logarithm of a full RSB matrix:

lim 1TrlnAYn A =n(d - (a)) + a (a)± -,1 d In (a) - [ - (u) (190)
n-0nii -(a)Io U

2  d1

where
[ - j dv a(v) + ua(u). (191)

You can check that our previous formulae in the replica symmetric or one-step RSB
cases are just special cases of these more general formulae.

We can now employ a quadratic trial Hamiltonian with a full RSB Gab ma-
trix. The variational parameters will be j and the full function g(x). Note that
whenever we encounter a sum over off-diagonal elements, the sum can be replaced
by an integral over x (with a minus sign to account for the fact that there are
-1 off-diagonal elements per row.) For example, the connected correlation function
measuring thermal fluctuations is

(r2) _(r)2 = ~ rr" 2 (r +Zrr'
4 1l b=1l 0 a=1 a9b )0

.'= T f _x =( - ().(192)

With this information, it is easy to recompute the trial free energy assuming a
full RSB G matrix; the final result is

F=

T (ln(27rT) +1- 4 + ln(§ - (g)) + g(2) -f In §- ()-1- (u)))
-i \ - M(g)

W 2T Id - g# ) (193)iT- V du T
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We can now optimize this free energy with respect to ý and g(u). Actually,
Mdzard and Parisi used the equivalent and technically simpler procedure of differ-
entiating with respect to the Gab matrix first, before taking the n --+ 0 limit, and
then breaking replica symmetry on the saddle point equations. Because the inverse
of G naturally arises in this procedure, they chose to write the trial Hamiltonian in
terms of the "self-energy" matrix aab:

Ho = Era --- E E abrarb (194)20 2
a=l a=1 b=1

so that
Gab = ((1 - a)-)b (195)

Mizard and Parisi16 found the following solution: For t > 1, where t is the "reduced
temperature"

t T T (196)

the replica-symmetric solution given previously is valid, with g(u) = a(u) = 2/t 3/ 2.
For t < 1, the result is

2/t, 0 < u < 3t/4,
a(u) = 32u 2 /9t 3 , 3t/4 < u < 3/4, (197)

2/t 3 , 3/4 <u< 1,

and
C - =I(198)

Their final result for the average of combined thermal and disorder-induced
fluctuations is

T(_±2- 3 / 2 ), t >1,
_r2) T (1+_2t 2/3 (199)-3- = 3 4• t < 1,

which makes much more sense than our previous replica-symmetric result. Ac-
cording to this solution, the system "freezes" at the critical temperature T, =

(f/(2v/i-))2/3 into its low-temperature configuration, and at zero temperature, the
fluctuations are finite. Of course, we learned in the first section that we should not
trust a variational approach to the extent of believing that there is actually a sharp
transition as described here. Indeed, Mdzard and Parisi 16 performed numerical sim-
ulations of this system and showed that in the true system, the crossover from the
low- to high-temperature regimes is actually smoothed out. Nevertheless, their com-
parison does show that the predictions of the full RSB variational approach are not
too far from reality.
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5. REPLICAS AND THE IMPURE SUPERCONDUCTOR IN A
MAGNETIC FIELD
In this last section, we will apply the ideas we have learned about to a real physical
system which has attracted considerable experimental interest, especially in the
last five years-the impure superconductor in a magnetic field. The work that I
will describe was done in collaboration with Jean-Philippe Bouchaud and Marc
"M6zard at the Ecole Normale Sup6rieure in Paris.5 ,6

As you may know, a superconductor has the property that sufficiently small
magnetic fields cannot penetrate inside of it. Nevertheless, for all superconductors,
there is a critical magnetic field (which will depend on the temperature) above
which the superconductor cannot maintain itself. In type I superconductors, there
is a single transition from low magnetic fields when the sample will superconduct,
to high magnetic fields when it will not. In type II superconductors, the type which
we will discuss today (the new high-T, superconductors are all type II), there exists
an intermediate regime in which the magnetic field partially penetrates into the
sample. In this intermediate regime, the magnetic field inside the superconductor
is organized into a triangular lattice of flux lines (called an "Abrikosov lattice")
parallel to the direction of the external field. As the magnetic field is increased
from zero in a type II superconductors, two transitions occur. At the first transition,
called Ha 1 , the magnetic field first begins to penetrate and the Abrikosov lattice

is formed. As the magnetic field is further increased, the density of flux lines will
continually increase, until at a second transition called He2 , the superconductivity
is finally destroyed.

The Abrikosov lattice can be experimentally identified in a Bitter decoration

experiment. The experimenter lays nickel filings on the superconductor, and they
are attracted to the flux lines. A photograph is taken of the filings, and they in-
dicate the structure of the lattice. A striking feature of the new high-temperature
superconductors has been the extent of the disorder in the Bitter patterns of some
samples, disorder which perhaps is caused by intrinsic quenched impurities in the
sample. In this section, we will be using our replica methods to compute the prop-
erties of a model that assumes such impurities, and we shall see that one can make
detailed predictions that can be compared to the Bitter decoration experiments. We
will begin, however, by constructing a model of an Abrikosov lattice in a perfectly

pure superconductor.
An Abrikosov lattice is much like any other classical crystal, except that it is

constructed from flux lines rather than atoms. Nevertheless, it will have thermal
fluctuations which can be understood using classical statistical mechanics. The
simplest model that describes a classical crystal is the perfectly quadratic elastic
solid. One can think of an elastic solid in terms of either a microscopic atomic
picture or a more macroscopic continuum picture. In the two-dimensional version
of the microscopic atomic picture, the atoms are arranged in a triangular array, with
a lattice spacing a, and each atom is linked to its nearest neighbors by a spring.
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The springs are taken to be perfectly quadratic harmonic oscillators, with possibly
different spring constants for longitudinal and transverse fluctuations. Each atom
has some unperturbed equilibrium position i. You can call Y the "label" of the
atom, because no matter how much it jiggles around, its unperturbed equilibrium
position Y will never change. At any given time, each atom will actually be at
some position F(Y). The displacement of each atom from its equilibrium position
is it(F) =_ F(i) - x. The energy of the system is just the sum of all the two-body
terms corresponding to stretching each spring.

This microscopic picture is useful to keep in mind, especially when discussing
experiments that can measure the microscopic structure of the lattice. But it is
often more useful and general to think in terms of a continuum description-such a
description will be appropriate when we work at length scales very long compared
to the atomic spacing. In this description, we imagine following some point Y in the
solid as we stretch it-again it gets displaced by an amount id(F) to the new position
F•(). Quite generally, we know that when we make a perturbation of a system
around its minimum, the energy will grow quadratically with the perturbation-in
this case, id(Y). In fact, we expect that the continuum generalization of the atomic
Hamiltonian will look like

Helastic Zd +C66Z Ixl C 66) (200)

( a 9x, Q0 x,3,i)

The Greek indices a and /3 refer to the x and y directions, and the derivatives
are the generalizations of nearest-neighbor energy cost terms. This is actually the
most general quadratic form consistent with the symmetries of a triangular lattice.
C11 is called the "bulk modulus" and tell you how hard it is to squeeze the solid;
C6 6 is called the "shear modulus" and tell you how difficult it is to shear the solid.
For a solid like rubber which is easy to shear, C66 «< C1l. This will also be true for
superconductors in the regime that we are interested in.

For a three-dimensional solid of triangular lines, the continuum elastic Hamil-
tonian is

Helastic = (201)

( )Z(ouo c2+44 (1ucJ ~d (Cl1 - C66) O" +C6 1X3F

where C'44 is the "tilt modulus" which measures how hard it is to tilt the lines as
they travel in the z direction. This is the standard Hamiltonian used to describe
the Abrikosov lattice of vortex lines in type II superconductors. It should generally
give a good description when the displacements df are not too large-that is, when
the temperature is low enough.
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Because these Hamiltonians are quadratic, we can solve for all the thermo-
dynamics exactly. In particular, we can calculate any correlation function that we
want. One interesting example is the "translational correlation function" or "Debye-
Waller factor"

gg -f) (202)

where ? is some reciprocal lattice vector. We can calculate this correlation function
exactly; in two dimensions we find the interesting result' 8

ggR(- V X-,R(T) (203)

where 7/K(T) is a temperature-dependent exponent:

(T) T(2C66 + C,)1k2(
C(T = 4 6rC 6 (C66 + C1) (204)

In three dimensions, this correlation function does not decay to zero for large i,
but only goes to a constant. This correlation function measure density-density cor-
relations; it can be related to the probability that if we have an atom at some
position, there is an atom exactly x lattice spacings away. The fact that it goes to
a constant at long distances in three dimensions means that the crystal has "long-
range order." We will be able to compare the above results with our computations
in the disordered case. Even more interestingly, we will be able to compare with
experiments where these correlation functions are measured in real systems.

So far, our Hamiltonians have described the Abrikosov lattice in a perfectly
pure superconductor. We will now add a term which models the effect of defects
through a random pinning potential. I will motivate the form of this potential using
the example of a thin film cuprate superconductor in a magnetic field that points
in a direction perpendicular to the film. In this example, the triangular lattice of
flux points (flux points in two dimensions; flux lines in three dimensions) will sit
on square lattice of copper and oxygen attoms. These atoms never move, but the
flux points do. The spacing of the lines will be on the order of 1000 lattice spacings
of the square copper oxide lattice. We assume that there are some "point" defects
in the copper oxide lattice, like oxygen vacancies. We assume that whatever the
defects are, their typical correlation length A.y will be much less than the lattice
spacing of the flux lines a. Note that while the flux points move around, the defects
in the copper oxide lattice are "quenched": they are frozen in and never move.

The defects in the copper-oxide lattice will attract flux points. To properly
describe the lattice of flux points including their attraction to the defects, we should
add to our elastic Hamiltonian a pinning potential

H =/HeIatic + E V(y(i)). (205)

. ... ..... .. .....
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We idealize the pinning potential a little by assuming that it is given by a Gaussian
probability distribution similar to those we have been using in the last two sections;
in the two-dimensional case, for example, the first two moments are chosen to be

V =p0 , =uin exp 2A 2  (206)

Such a form implies that the typical magnitude of the potential is the pinning
energy Upin and the correlation length is Ax.

The reasonableness of our assumptions is, in fact, bolstered by a quick ex-
amination of the results of some recent Bitter decoration experiments on three-
dimensional cuprate superconductors.12 In the 69 Gauss experiment of the Bell
Labs group, one can see that a perfect triangular topological structure is main-
tained within the camera's field of view. The physical idea behind our calculation is
that the visible local distortions of the triangular lattice are caused by the attrac-
tion flux lines feel for microscopic defects like oxygen vacancies. This hypothesis can
be checked by comparing the quantitative predictions that we derive for correlation
functions with those obtained by the experimentalists for their samples. We shall
see that the agreement is quite good.

We are interested in computing the average free energy of an ensemble of sys-
tems described by the above Hamiltonian, and we begin by averaging over the
disorder using the replica method. As usual, the average over disorder converts
our problem into a mathematically equivalent one of n identical crystals, for which
the atoms no longer feel the random potential, but instead feel an inter-replica
attraction. In particular, we have

F=-Tlim -exp -TI (207)
n-0O n/

with (in two dimensions)

H eff = 1d2 [ (C1C6)(-C 
+ C6  ( )

2 ~ ~ ~ ~ , a=1,• ( xm 9

-wTEEE iaV -Fb (:)V (208)
a=1 b=1 ff'

where we have taken the limit A,, < a to convert our Gaussian into a delta-
function and where now all distances are written in units of the lattice spacing a.
We define

27rU'2 A2

W Upin Ay (209)
W - a2

and
C, =- C1 1a2 , C6 = C66a 2 • (21G,)
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The first part of the effective Hamiltonian is just the elastic crystal replicated n
times. In the other part, one has an effective attraction between all the atoms in
the system. Of course, they will not all sit on top of one another because the elastic
term keeps them apart.

We cannot compute the average free energy exactly because the effective Hamil-
tonian is not quadratic. As usual, we will use the variational approach with a trial
quadratic Hamiltonian which is as general as possible. Thus, we choose

Ho = -1 E E)E (G-t)a(f(1 (211)
ab aO 59'

Physically we are coupling the fluctuation of every atom (or flux point) in the
system with every other atom, taking into account with the a and /3 indices the
difference between longitudinal and transverse fluctuations. Because the system is
translationally invariant, we can diagonalize the spatial part of the G matrix by
going into Fourier space, so that

Ho a U . (212)
2ab aO 2r) k)

We can diagonalize the spatial indices of the Green's function by breaking it down
into longitudinal and transverse fluctuations

G0 (b.,3 - q")GT (q) + ( -q GL (q). (213)

Finally, we can compute the trial free energy P and try to optimize it with respect
to the Green's functions Gab,(q). I will not write out the trial free energy or the
saddle-point equations here; they are long and not too enlightening and you can
find them in Bouchaud et al. 5 Of course, when we optimize with respect to the
replica indices, we use a full RSB matrix. That means that we ultimately optimize
with respect to the Green's functions GL,T(q, v), where v is a real number ranging
from 0 to 1. In fact, if one is lazy and tries to use a replica-symmetric ansatz, one
runs into precisely the same type of trouble as we saw in tlw last section with a one-
particle problem-all the fluctuations seem to diverge at -, temperature. Again
a full RSB approach is necessary to account for the fa( it the many possible
metastable configurations of the atoms.

The final form of the Green's functions are (for C66 << C1 t, which is reasonable
for the superconductors)

GLT ( ) (214)GLT 2+2------•L,T L
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where w = 2v in two dimensions (w = 2v + 1 in three dimensions) and gL,T(X)
is a complicated function given explicitly in Bouchaud et al.5 v is an exponent
whose value and physical significance we will discuss shortly. Of course, the Green's

function in and of itself is not too interesting. We are more interested in using the
Green's function to compute various disorder averages which have a more obvious
physical and experimental significance.

Imagine, for example, that we take two atoms some distance x apart along the
x axis and look at their typical squared longitudinal and transverse fluctuations.
These are given by the disorder average correlation functions BL(x) and BT(X):

BL(X) = ((ux(!) - uX(6))2 , (215)

BT(XW = ((U,,(yD - Uý,(6))2). (216)

We find that these correlation functions increase with distance with a power-law
form (with possible logarithmic corrections)

f3 ~ x2v. (217)

In particular, a full variational calculation gives the result (in two dimensions)

3 3F(2/3) 2 (X)2/3 (X)2/3

BL(X) = -BT(r) = -' -- 0.25 (218)
5 87r2/ 3 21 / 3  - .1

for 1 <<x << = C6/v/'W and

1T(X) = T(Z) - -r 21 /-0.32 (219)2T(X -BT (X/) = __ 0.32~n V~ (219)

for x >> ý. In three dimensions, we find

biL(X) = BT(X) -=3 3) 1/3 0.27 ( 1/3 (220)

for 1 <3 /2 = C 1/2 C3/ 2 /W and

2L(X2 ) (221)

3 31/45 -l • i

for x >> ý. Notice that the ratio of transverse to longitudinal fluctuations is always

equal to 2v + 1. Of course, we do not expect these variational results to he exact,

but there are various arguments, including other more qualitative approaches, 13,14,9

which indicate that these results are reasonable.
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The correlation length ý is the distance at which fluctuations become equal to a
full lattice spacing. Until that length scale, all the atoms see essentially independent
potentials, but beyond that length scale, two different atoms can take advantage
of the same attractive pinning potential. ý can actually be quite large, so that for
many experiments, the relevant result is intermediate distance regime 1 < x <«f

Finally, we get to the promised density correlation function gR(x). We find

gg(Y) exp K-(f3L(W)cos 2 9 + B3T(X) sin 2 9)) (222)

where 9 is the angle between k and Y. Compared to the behavior in a pure system-
power law in two dimensions or decay to a constant in three dimensions-the decay
of gR(:F) is quicker; it is a stretched exponential with

gk(y) e- (223)

radial behavior. This prediction appears to agree quite well with experimental
results,12 with values of v that are also consistent with our predictions.

For a much more detailed account of these results, the reader is again referred
to Bouchaud et al. 5 Some extensions of these ideas to more complicated physical
situations have also been worked out.2 The main message of this section is that the
replica technology that we have learned about in previous sections really can be a
working tool of physicists, who can thereby make theoretical predictions which can
be compared with experiment.
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APPENDIX
Some useful Gaussian integrals:

Ii=1 dxi exp 1 1E xi (A-'),, xj + •xiJiV/'(27r~nde~tA 2i=1 j=1 =

-exp 2 E EJiAijJj (224)

i=1 dxi ixj exp 1 i(A- 1)jx Atj (225)

SV(27r)2detA -5 i=1 (= A)1 3  =

/:•dx ex2 /2A=1

-, - e- "-7 = 1 (226)

dx /2A = 0 (227)

f dx Vlxl"1 - A (228)

f: x e = A (229)

dx x4e-X212A = 3A 2  
(230)
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Department of Physics, Princeton University, Princeton, NJ 08544Complexity in Biological Molecules

1. INTRODUCTION
I was terrified when Dan Stein asked me to give a series of lectures at the Santa
Fe summer school on complexity because I regard myself as a blue-collar exper-
imentalist-a yeoman's work-trying to figure out the dynamics of these complex
biomolecules. By some bizarre twist of fate, I am at Princeton University, the Land
of Eternal Theory, and I am fully aware of how difficult it can be to communicate
with students who only do abstract theory and are proud of it. I stumbled through
my lectures and I still haven't worked up the courage to look at the student evalu-
ations which I am sure were not exactly rave reviews. But I tried to communicate
some of the excitement I feel as I do experiments that probe the complex dynamics
of biomolecules, and I listened to many student comments and insightful obser-
vations. I don't think I communicated much to the students, but I learned some
things from them. The following summary of some of the topics I discussed may
prove useful.

1992 Lectures in Complex Systems, Eds. L. Nadel & D. Stein, SFI Studies in
the Sciences of Complexity, Lect. Vol. V, Addison-Wesley, 1993 353
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Typically, when people talk about complexity in biological systems, they talk
about the complexity that occurs at relatively high levels of organization, such as
the immune system or neural networks. The individual molecules that make up
the system are regarded as bits that form the system, but one need not concern
oneself with the details of how they work; it is only necessary to know their basic
transfer function, as it were, between input and output. In fact, it is sort of low
class to worry about how the molecules actually work-details, details, details!
But, I am well aware of my virtues and my weaknesses. I am pretty good in the
lab and have an ability to pull off experiments because I can speak to the little

people in the equipment who like to screw up experiments (a talent many theorists
definitely don't have because of a bad attitude!), while my mathematical abilities
are definitely second rate. I can't imagine myself living up on the theorist's floor in
a physics department in a spartan office nervously wrestling with a set of coupled
differential equations, trying to ignore the pipe smoke from the bearded, brilliant
but caustic mathematical physicist next door. Give me the lab and good rock-and-
roll.

However, it is possible that good physics can be found in trying to understand
how a complex biological polymer goes about its business. I suspect that it is
important to have people who worry about high-level complexity and people who
worry about low-level complexity, and hopefully insights will come from both kinds
of endeavors.

2. A WHIRLWIND INTRODUCTION TO PROTEINS AND
NUCLEIC ACIDS
I have noticed, as has my biophysicist wife Shirley Chan, that many physicists do
not know the difference between a protein and a nucleic acid, literally. This has
always surprised me-you would think that there would be a bit of interest in
how the incredible miracle "life" works. Here is a thumbnail sketch of some basic
ingredients for life.

What does a generic protein look like? It starts out as a polymer consisting
of strings of amino acids; the amino acids come in 20 different chemical flavors.

I am no chemist and I will leave it to you to read a good textbook like Stryer's
Biochemistry to get a good overview of the amino acids. However, it is important to
note that, chemically, the 20 different amino acids cover a full spectrum of chemical
properties, from highly hydrophobic aliphatic groups such as alanine to strongly
negative hydrophilic groups such as aspartic acid. Since most water-soluble proteins
use the full range of amino acids, one could expect that the problem of predicting
the structure formed by a given sequence of amino acids could be a formidable
problem.
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We will discuss-I am by no means an expert in the field-the protein folding
problem a bit later. Instead, we will assume that in fact the protein has folded
into a three-dimensional structure consisting of some complicated trists and turns
of the polymer. In fact, proteins seem to form reproducible structures and diffract
to subangstrom resolution in the best of cases. The crystal structures show that
the protein molecules are close-packed and have nearly the same density as simple
crystals of single amino acids. However, the question remains if the protein folds to
a unique structure or if there is a distribution of conformational configurations that
are thermally accessible. The answer to the last question is probably "yes," since
one can easily reduce the definition of a thermally reachable conformation to any
very small displacement of an amino acid group. A more interesting but not easily
answered question is can a protein be "put" into a metastable conformation that is
thermally very unlikely to occur yet has a very large activation energy separating
it from a deeper lying conformation?

DNA is also a polymer although structurally very different from a protein. In-

stead of 20 different amino acids, a DNA polymer is composed of only 4 different
nucleotides (Adenine, Guanine, Cytosine, and Thymine) that are similar to each
other chemically. The nucleotides are strung together in a chain separated by a
phosphate-ester bond that produces a negative charge between every base. Ordi-
narily you wouldn't expect such a negatively charged polymer to bind to another
similar negatively charged line, but the single-stranded DNA molecule actually lines
up with another DNA single-stranded molecule because of the very unexpected way
in which the adenine base can form hydrogen bonds with a thymine base and the
guanidine base can form hydrogen bonds with a cytosine base. This only works
if the single-stranded molecules (which are chiral and therefore have a sense of
direction) run antiparallel to each other.

The DNA double-helix molecule is very stiff because the negative charges im-
part a large internal tension. The persistent length of the molecule, roughly defined
as the mean radius curvature induced by thermal fluctuations, is known to be about
60 nm for DNA so, unlike a protein, DNA forms a very opei, structure. In the ab-
sence of proteins DNA forms a classic semi-stiff polymer which can be treated ana-
lytically. Of cQurse there are complications: the basepairs are not identical and the
hydrogen bonding that occurs across the bases is not the only interaction. Basepair
stacking interactions strongly influence the thermodynamics of double-helix forma-
tion and possibly hydrogen bonds form diagonally across thc basepairs to adjacent
ones. These nearest-neighbor interactions can also have a major influence on DNA
structure. Further, in closed circular DNA and when DNA is being processed by
proteins, major topological considerations seem to play an important role in the
way that DNA expression is controlled. This is the end of the whirlwind tour. It is
time to look at experiments.

The choice of topics will basically be historical in nature, hopefully paralleling
my growth in biophysics. I am slowly moving away from trying to understand

detailed microscopic aspects of biological molecules and toward more global aspects
for a practical reason: life is short, and these molecules are so large and intricate
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that I suspect that only a more global view will lead to some insight into how the
system integrates itself.

3. A SPIN GLASS ANALOGY TO PROTEIN DYNAMICS

Via some rather indirect physical probes, it is possible to measure the recombination
of small molecules such as carbon monoxide in a protein such as myoglobin after a
photon is used to break the bond between CO and an iron atom. These experiments
allow one to ascertain how rapidly the molecule moves through the protein and the
rate at which the small molecule recombines with the iron atom.

I want to explore the complexities of living systems, not some physical chemistry
remotely connected to the diffusion of small molecules. My mentor Hans Frauen-
felder would make a distinction between biophysics and biological physics. If you
do biophysics, then you explore the fundamental physical questions concerning the
dynamics of complex molecules as proteins. If you do biological physics, then you
use the tools of physics to explore biological systems, but you don't expect or look
for new insights into physics in the work-you look for new insights into biology.

The idea behind the biophysics of the ligand recombination experiments is
that after photolysis the ligand can diffuse from the original binding site and either
escape from the original protein where it was bound or rebind. If these proteins have
a complex conformational landscape in the sense that within a given sample many
molecules with different conformations exist, then the kinetics of recombination
might be quite different in different protein conformations.

My early recombination work was done at the University of Illinois, under
the guidance of Hans Frauenfelder and with my fellow crew of terrific graduate
students.7 '8 '9 This was a simple experiment involving the observation of a chemical
reaction in myoglobin at cryogenic temperatures, from 300 K to 4.2 K. We observed
that below 200 K in a glass of glycerol water the rate of the reaction-i.e., the
recombination of carbon monoxide with iron-could not be characterized by a single
rate constant but, instead, seemed to be due to a spectrum of rates.

That is, if a reactant has to surmount a single, mono-energetic barrier of height
E., then the rate k for the reaction should proceed as:

k = Aexp ( -j ) (1)

and the actual number of molecules N(t) surviving after a time t is given by:

N(t) = N(O) exp(-kt). (2)

Please note that the deviations from an exponential are basically believed to be
due to: (1) a heterogeneous distribution of occupied states and (2) the distribution
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in sites is continuous and not discrete. This is a supposition at this point-do the
data stand up to these two critical requirements?

The next question is: can we understand the functional form of the distribu-
tion? Three major attempts have been made to understand the form of the distri-
bution; one by Stein93 directly used the spin glass analogy. The other two come
from rather different camps. The model of Bowne and Young10 5 explicitly uses an
adiabatic formulation to model the low-temperature recombination process43 and
assumes anharmonic potential wells based upon the temperature-dependent x-ray
scattering data of Petsko and coworkers. 44 From Agmon and Hopfield' the third
model, used an ansatz based upon a distribution arising from Franck-Condon fac-
tors and harmonic potential vells. In any event, all models do agree on one thing:
there is a distribution of activation energy barriers!

Casual inspection of the data indicates about 6 exponentials would be needed to
fit the data; expanded data by Frauenfelder's group that covers 12 decades of time
would need on the order of 12 exponentials. As the number of exponentials goes to
infinity, we arrive at a continuous distribution of states. We thus assume that the
activation energies for recombination are given by a probability distribution g(E)
for finding a molecule with activation energy E or, equivalently, a distribution g(k)
for finding a molecule with rebinding rate constant k. The kinetics then become:

N(t) = N(O) f g(k)e-ktdk. (3)

Basically, this experiment revealed that at low temperatures the protein seemed
to have a time-invariant and temperature-invariant spectrum of activation energies.
Other workers have proposed that the distribution of rates is due to internal dy-
namics of a single molecule2' or that a small number (four or less) of exponentials
can be used to fit the data,80 but several experiments have ruled out those possibil-
ities. Acceptance of the continuous distribution explanation of our data is critical
for the following material.

In the previous section we have seen that at least myoglobin reveals a complex
kinetic recombination pattern at low temperatures. Other physical systems show
such kinetic complexity; in particular, spin glasses show glass transitions and dis-
tributed kinetics at low temperatures. Dan Stein has edited a book on the subject
of spin glasses and their analogy to biological systems.9 4 In the spirit of the Santa
Fe "Lecture Notes," I have included an abbreviated account of my contribution to
Dan's book,94 Spin Glasses in Biology.

Now, let's see if we can contrast a spin glass with a globular protein and find
similarities. Twenty different amino acids commonly found in a globular protein
are of highly variable chemical composition in contrast with another common bi-
ological polymer, DNA, which is chemically much more homogeneous (although,
structurally, it reveals considerably more variety than has been assumed). Thus,
while under physiological conditions DNA is in a B-helix form, under physiological
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conditions proteins assume a staggering variety of conformational shapes, depend-
ing upon the amino acid composition.

Even within one configuration of N amino acid sequences, there are probably
exponentially (e"N) many ways to fold the protein into a globular configuration.
Even in the absence of the elastic interaction mentioned above, perhaps one can
say that, because of the complex array of amino acids present, the interaction Jij
between the ith amino acid and the jth amino acid is likely to be random in sign,
in analogy to the RKKY potential in spin glasses, if that is a legitimate thing to
say.

Of course, the x-ray crystallographers present very nice pictures of "the struc-
ture" for a given protein. While proteins have a unique structure and don't look like
a glass at all, we are more concerned with the small structural variations within the
broad set of a given framework. These variations can be hidden within the highly
massaged structures that computers spit out. Possibly crystallization of a protein
selects out a subset of the total protein structures in solution, and crystallization
forces can drive the system into a common structure. Computer folding simulations
indicate that the structures fold into many separate energy minima that are quite
distinct from one another. Thus, even at present, we do not know if "the structure"
seen by x-ray crystallography is a global minimum structure or a selected one. The
level to which the reader wishes to draw the spin glass analogy resides on several
possible levels.

At this point it is appropriate to raise the question of the size of the protein
molecule. As Fisher et al. made very clear in a review article, 42 theory in the
true spin glass systems assumes an infinite size sample. In proteins, the molecules
are definitely of finite size. For example, a small protein such as myoglobin has a
molecular weight of approximately 18,000 daltons and a radius of approximately
25 A. Such a small radius immediately says that many of the approximations used
by the theorists will not work.

Does this then mean that there are no phase transitions in proteins? Even small
proteins have well-defined denaturation temperatures where, over the range of only
a degree or so, the globular protein changes to a random coil. 2 6 These changes of
state, in my opinion, are sharp enough to merit the label of a "phase transition."
As is always true in the biological physics of macromolecules, we must work by
analogy and try to accommodate the physics as best we can. To demand perfect
rigor is to abandon the field altogether.

Below this denaturation temperature we believe that the globular protein can
be in a very large number of structurally different spatial configurations. At room
temperature in solution (that is, fully hydrated), the protein is believed to jump
rapidly between the thermally accessible conformation states. We would expect
(hope) that below some temperature T, the protein molecules no longer can jump
between these conformational states, and each protein molecule becomes "frozen"
in some particular conformation. Note that there is no good reason from what we
have said so far that (a) a conformational distribution exists, (b) the protein can
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rapidly jump between these conformations, or (c) a glass transition can occur. The
evidence for this will come later.

However, if such a glass transition can occur, then the entire conformational
space formed by the ensemble of protein molecules with a given amino acid sequence
and general structure and once rapidly sampled by each protein molecule is now
time invariant in the sense that the protein molecule can no longer sample the
states. The space can be considered to be a glass in the spin glass sense if the two
criteria of randomness and frustration have been satisfied. We hasten to point out
that to our knowledge no one has ever cleanly demonstrated that frustration occurs
in a protein structure.

A great deal of theory has been written concerning the consequences of frus-
tration and disorder on the magnetization M of a spin glass vs. temperature T
When kT is considerably greater then the mear interaction energy (J 2)'1 2 between
the spins, we expect that the magnetization of the spin glass should obey a simple
Curie-Weiss law63 : 1

M(t) X• -. (4)

T
This simple temperature dependence is called free-spin paramagnetism and, of
course, is due to a single spin S interacting with the magnetic field B. Imag-
ine, however, that there is spin-spin interaction. If the interaction is of a ferro-
or antiferro-magnetic type, then below the Curie temperature the magnetization
becomes very large due to the net alignment of the spins along some K vector.
Since all the spins point in the same direction, the system can be said to be in one
macroscopic state.

However, for a spin glass there is no net alignment of the spins although the
spins are no longer free to point any direction given the statistics of the Boltzmann
relation. Since there is no structural change in the system if any thermodynamic
phase transition exists, we would expect that the transition will not be like a simple
first- or second-order phase transition. Indeed, while above the critical temperature
in spin glasses the magnetization does follow a 1/T susceptibility below the glass
transition there is a cusp in the magnetization followed by a roughly linear T-
dependence of the magnetization vs. temperature.7 4

The presence of a cusp in the susceptibility followed by a decline is evidence
that the spins are no longer free but, instead, have been constrained in some di-
rection. However, since there can be no net alignment of the spins in a frustrated
system, the magnetization falls to zero at low temperatures, unlike a ferromagnetic
or paramagnetic system.

As Binder and Young express it, 22 we can characterize a spin glass at low
temperatures by two equations. A spin has some orientation in space that when
averaged over time t, is not zero,

S Iý 0 (5)
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but there is no net alignment of thb entire spin ensemble,

N Z(Si)t exp(iK'!fi) = 0. (6)

Presumably, at the critical temperature T, the spins undergo a glass transition
to a time-invariant disordered phase. The actual definition of the glass transition
T, is rather murky, since there is no discontinuous change in any thermodynamic
properties such as susceptibility or specific heat, and the value at which the cusp in
the susceptibility is reached depends on the frequency f at which the measurements
are made. In general the higher the frequency, the lower the temperature at which
the kinetic arrest seems to occur. However, a plot of the cusp vs. frequency f usually
yields a well-defined extrapolated Tc at f = 0.40

Since the temperature Tc can only be obtained by extrapolation to f = 0, it
is a matter of controversy as to whether a spin glass undergoes a true thermody-
namic phase transition or, instead, simply experiences a kinetic runaway where the
relaxation times to the true ground state become unreasonably long.

The above reasoning would seem to indicate that the "glass transition" is just a
trivial freeze-out of relaxation. However, Kauzmann pointed out quite a while ago61

that, as the glass transition is approached, the entropy of the system falls so steeply
with temperature that at some temperature Tk the entropy of the liquid is less than
the entropy of the crystal, which is disturbing. However, the glass transition seems
to arrive in the nick of time like the cavalry to keep the entropy of the glass greater
than the entropy of the liquid. As Stein has pointed out in a popular article, 96 it is
unclear at present if this result means that there really is a thermodynamic glass
transition or just a kinetic arrest. Of more general concern is the metastability of
glasses: if there is no true underlying thermodynamic phase transition, then all
glasses can be viewed as metastable systems out of equilibrium.5 9 When it comes
to "living" molecules, this is matter of supreme importance.

Up to this point we have discussed how frustration in spin-spin interactions can
give rise to a glass transition below which the spins are no longer able to respond
to the applied magnetic field, and we have very briefly discussed how the relaxation
times of the system seem to diverge below the glass transition temperature and
are given by a distribution of relaxation times. The most interesting analogy to be
drawn to biological systems still awaits us, however. A protein in a glass state is
effectively a dead protein. We would like to know the dynamics of the relaxation
of the system above the glass transition. It is not enough then to state what the
distribution of ground state energies are, since the very existence of a glass transition
implies that there must be very large barriers between the local minima in free
energy. In any kinetics problem one wants to know the pathway by which the
system can relax to other local minima. We will now show, one would suspect, that
this issue is also quite deep in spin glass physics and new concepts as important as
frustration emerge.
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The first "new physics" we want to very briefly discuss is the concept of a
hierarchical space, which is a form of evolutionary tree. You can "prove" that a
set of states forms a hierarchical space if a reasonable definition of distance (not
Euclidian!) can be found to characterize the path one must take between different
spin states. If the distance is very large, then "yuh can't get thar from here." If any
state can be reached by crossing one barrier, then the system is not hierarchical
since there is no distance.

Intuitively, one way to explain hierarchical states is to look at a Rubik's cube.
Suppose you have some random color distribution (state V)r) and would like to
go back to the ordered color state ?P. If you could arbitrarily change any color,
going back to the desired state would be trivial and quick. However, because of the
construction of the cube, large free-energy barriers exist between states that are
not "close" to the one you are in: you must flow back over the allowed states in
some very slow process in order to arrive where you want to be. This distribution
of allowed states close in "distance" and forbidden states, separated by a large
"distance," can give rise to a hierarchical distribution of states.

Now, consider a particular spin glass configuration a. The individual spins in
the a configuration can be labeled by Sq, which in a one-dimensional case can
be viewed as a series of +1 (up) or -1 (down). Consider how you would change
the spin state to another state /3. One could compare the two spin configurations
inside randomly flipping spins, and leave alone the spins that pointed in the same
direction, but flip spins that point in opposite directions. For example, suppose
that we found that we had to flip the fourth spin of state a. Flipping that spin
up or down oscillates between two "nearby" lying states. The bifurcation between
these two "nearby" states can be seen as a branch point above the two states. If
we restrict ourselves to single spin flips, it is possible to construct an "evolutionary
tree" via single spin flips to a common ancestor from which we could descend to
the state 0. Flowing from a common ancestor via intermediate states this structure
is called a hierarchy.

As we stated, in any hierarchy you must have some quantitative way to cha~ac-
terize the distance between different states in the hierarchy. In a spin glass, a con-
venient way to parameterize the similarity between the two different states might
be given by the overlap q'1 between two states:

q = (7)

Essentially this definition of similarity is a measure of the probability that two spin
configurations match. States that are close to one other will have a value for q'o
that is close to unity, while states that are far away will have a value near zero.
Thus, the "distance" between two states would be given by:

d.( = nq.nb. (8)

(We do not distinguish between states related by a global spin flip.)
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Next, in a big leap of faith, we also would expect that the energy barrier between
the states would be related in some way to the distance between the states. The
actual quantitative relationship must depend on the functional form of the spin-
spin interaction. It is reasonable, though unjustified, to assume that they should
scale together.

It is believed that the Sherrington-Kirkpatrick (SK) model of a spin glass9"
forms a hierarchical space.7" This seems fairly certain since, for infinite-ranged spin
interactions, it is easy to calculate both distances and barriers. Unfortunately, this
case may be pathological because of the infinite range of the spin-spin interaction.
In fact, ise and Fisher 57 questioned whether a real spin glass could have any of
the quahies that the SK model has. The more physical Edwards-Anderson type
of spin glass involves finite-ranged coupling constants between the spins and also
has been proposed to form a hierarchical system,39 but the issue is unfortunately
unresolved.

The pay-off from all of these musings comes when we start to consider the
orin in of observable, nonexponential time dependence of things like remanent mag-
n ,zation in the spin glass below the phase transition temperature. We explained
this in the above by assuming that a multitude of energy barriers existed, but we
did not really justify the existence of the distribution. In the hierarchical scheme,
it is possible (but necessary) for a distribution to arise from the many branches of
the tree and, by considering diffusion from branch to branch, one also has hopes of
actually doing a dynamical calculation on this lattice.

For example, Palmer, Stein, Abrahams, and Anderson"7 (hereafter PSAA) have
performed an interesting examination of hierarchically constrained dynamics, in an
attempt to understand why some sort of power law was often seen in such systems.
hi hierarchically constrained dynamics all of the states are assumed to have the
same ground state energy, but we wish to observe the diffusion of the probability
density P(t) give that we start in one particular state. PSAA were able to show that
in various situations kinetics could be observed that fit a variety of nonexponential
curves, including power-law decays, as we discussed in the relaxation rate section,
or the Kohlrausch decay law:

OaR (x exp(-t3) (9)

v .iere 13 is less than 1. As we have pointed out, relaxation dynamics in disordered
systems often seem to fit such a decay law.

Given that the spin states of at least some spin glasses form a hierarchy, we can
finally ask what are the mathematical and physical consequences of this hierarchy.
Suppose we ask how one can pass from one spin state to another? Since the spins
act in a cross-coupled way, with attendant frustration "clashes" occurring between
certain configurations, randomly flipping the spins is likely to move along high-
activation energy paths that are unlikely to occur.

A consistent and logical approach would be to work through the hierarchical
tree of states from one state to another. In this way one always goes through states
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that are closely related to another, and hence presumably travels over minimum
energy routes.

If we define the "distance" D between any two states as the number of gen-
erations that one must go back to find a common ancestor, then the concept of
distance takes on a decidedly non-Euclidian turn. In fact, in such a space the dis-
tance between any three points x, y, and z satisfies the inequality:

d(x, z) < max[d(x, y), d(x, z)] . (10)

A space which satisfies this relationship is called an ultrametric space. 82 In this
simple expression lies a great deal of subtle mathematics. It is not our purpose in
this brief review to go into the complexities of these mathem"-'tical ramifications,
since, in fact, the purpose of this paper is to draw the analog. v.f spin-glass physics
to proteins. We will try to address aspects of ultrametricity that may help us
understand the dynamics of protein conformational relaxation and the ordering of
protein conformational states.

One striking effect of ultrametricity is the granular nature it gives to different
spin configurations. For example, one of the major differences between an ultra-
metric space and a Euclidian metric is its lack of intermediate states. You can't
have three points on a straight line since, if points A, B, and C are on a straight
line with one meter separation between A and B and one meter between B and C,
we will violate our inequality stated above: A and C can be no more than 1 meter
apart in an ultrametric space rather than the two meters needed here.

A consequence of the above section is an important theorem, important to us
in the protein section, where a ball is defined as all those sets of configurations that
are closer than some distance D from each other. The theorem is: any two balls
must be either disjoint or contained within the other; that is, no ball can have parts
of itself contained in other balls. In the tree analogy, no branch can belong to two
separate trunks. This also implies that any two balls of equal radius must be either
disjoint or identical. Consider a ball of unity radius. Let point A be at the center
of the ball and point B be on the sphere surface. There can be no point outside the
ball less than 1 unit from B, because then it would also be at most 1 unit from A,
and thus in or on the ball by our definition of distance. Thus, the sets of spheres
are necessarily disjoint. We will return to this important point in the section on
proteins.

As we mentioned above, it is not yet clear that the metastable low-energy
states of a finite-range, three-dimensional spin glass forms an ultrametric space. The
criterion for ultrametricity is quite formal and mathematical; hence, even thinking
of applying such a concept to a protein must seem like sheer folly and may well
be. However, as we will see, there are veral aspects of ultrametricity that can be
"tested" in protein dynamics simulat •as.

Finally, we will discuss briefly the question of diffusion in an ultrametric space.
In our discussion of diffusion in a hierarchical space, we found that we expect to
get nonexponential kinetics. It should come as no surprise that the nonexponential
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kinetics are also expected in the more confined ultrametric space. The paper that

most directly addresses this question is by Ogielski and Stein.7 5 They assumed that

the bifurcation in the space is formed by a hierarchy of activation energy barriers
Aj which can be ranked in order of increasing magnitude:

Al _< A 2 ... <_ Ak. (11)

In this scheme the ultrametric distance between two sites is related to the total

activation energy that must be surmounted in going from one site to another.
Several different activation energy rankings in the ultrametric space were studied.

The simplest case of equal barriers 6 gave the simple result in the limit of an infinite

number of sites
Po(t) " tr~ln2/A (12)

where Po(t) is the probability of finding site 0 occupied at time t, assuming that

Po(O) = 1. Note that we expect a temperature-dependent power law in this case,
with the slope of the power law linearly dependent on temperature.

We are walking the reader from the cool and abstract beauties of the spin glass

to the wet and wild world of the protein. To ease the reader into this cultural

shift, we want to discuss how the dielectric glasses resemble spin glasses in terms

of experimental observables.
We believe Dan Stein was the first to draw the analogy between the low-

temperature distribution of states and the predictions of the spin glass model.93 ,95 .

In some sense what Stein did was to sense intuitively the physical similarities be-

tween th- two systems and use an ansatz to map the distribution in energy states

seen in one system over to another system. Thus, while what he did was not rigorous,
it provided inspiration for others in the field. Stein simply noted the correspondence

between spin glasses and orientational glasses, assumed a Gaussian distribution of
activation er ergies arising from a Gaussian distribution of energies within most spin

glass models, and used this reasonable approximation to fit the low-temperature
recombination data.

Stein used a Gaussian coupling constant between spins:

P(Jo,) - 1 exp(-(Jij/2J
2 )) (13)

and then supposed that the result that the probability distribution of the metastable
spin states of energy E is

P(E) 1 exp (E- E,)2 (14)P(E) rj (_ NJ )x /• ]

This Gaussian distribution in energy levels was then "frozen" at some temper-

ature Tf, presumably the glass transition temperature of the protein, to yield the

final energy distribution:

D(E) = exp N - )2 x exp (15)
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This distribution, "predicted" from spin glass physics, was used to fit the recom-
bination data of T-state Hb. Stein's paper showed a comparison of a Gaussian
distribution with the actual data. The fit was reasonably good, although the model
by Bowne and Young10 5 claimed to achieve substantially better x2 It is not clear
that the two models clash with one another; probably there are a variety of ways
to express phenomena in complex systems, although a Gaussian is an exptected
functional form for a random process. Indeed, although it does not explicitly use
any concepts from spin glasses, the model by Agmon and Hopfield' also arrives at
a Gaussian distribution.

Actually, although Young and Bowne ruled that the simple Gaussian distribu-
tion of activation energy barriers did not fit the recombination data, recent results
using the so-called "A" state infrared CO stretch bands, split in myoglobin, seem
to reveal that the recombination kinetics on a single b~nd are actually quite well fit
by a Gaussian distribution!19 The story doesn't seem to be over yet. Probably the
main point is simply that a straightforward application of the Edwards-Anderson
spin glass model to the barrier distribution in heme proteins gives a "reasonable"
fit to the data.

In Protein Structure: Molecular and Electronic Reactivity,'" there are a number
of experimental articles showing how a protein shows glasslike properties at tem-
peratures below the glass transition. The most direct evidence is from Gol'danskii
et al. 49 and Finegold, 38 who studied the specific heat of hydrated proteins at low
temperatures. As Gol'danskii points out, the data is unfortunately spotty in the
temperature range of interest. 38 '4 1 ' 10 2 Although the early measurements by Fine-
gold and colleagues attempted to fit the low-temperature specific heats to either
a varying-dimensionality model or to computer simulations, the "modern" view of
this data is to fit Cp to a semi-empirical formula:

Cp(T) = CIT + C 2T 3 
+ CE (9) (16)

where Cl is the specific contribution due to amorphous states as we discussed in
the spin glass section, C 2 is a T 3 contribution empirically tied to a Debye rela, xation
process in three dimensions, and CE is the Einstein coefficient contribution. With
so many variables, it is not too surprising that the above equation fits the limited
data rather well. The complexity of the equation should not detract from the fact
that the interesting term Ce is dominant at low temperatures.

The conclusion that one can draw from this is that at low temperatures pro-
teins do indeed seem to resemble disordered glasses in analogy to the spin glass or
the orientational glasses in at least one respect: the dominant linear-specific heat
dependence. Anderson et al. 5 and Phillips79 would say that the structure is charac-
terized by a large number of two-level tunnuling states, which is closely related to
the conformational states we have been talking about. Probably more detailed work
should be done in this area. The complexity of the equation used to fit the data

causes some discomfort, and we wonder if some of the more recent ideas concerning
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phonons on disordered lattices 10 3 might be applicable here. More experimental and
theoretical work to be done here, but we have to confess it is not exactly the kind
of thing to make the blood hot. Best left to graduate students who like to keep
tidy and neat desks. The low temperature-specific heat of proteins doesn't give too
much information about what happens up at higher temperatures!

A dynamic picture of the glassy state of a protein at low temperatures can
be found by using the technique of flash photolysis, as we discussed in the earlier
part of this section. Glass transitions can be identified by dramatic changes in both
dynamic and thermodynamic quantities.

The time course of rebinding gives important information about the dynam-
ics of the protein myoglobin. In particular, even if the spin glass analogy allowed

us to confidently predict that the protein had many conformational states, if the
myoglobin freely sampled all of its states oil a time scale much faster than the
mean recombination time, then the recombination will be a simple exponential, as
is indeed observed at room temperature. Now, as tile protein is cooled we might
hope that a glass transition will occur, as happens in spin glasses and in orienta-
tional glasses. Below the glass transition temperature the system will no longer be
ergodic: the dynamical divergence of the relaxation times will keep various protein
molecules in various states for effectively infinite times. We should then see devia-
tions from simple exponential recombination. Depending on the solvent, the kinetics

change from the temperature-invariant distribution of rates at low temperatures to
a quasi-narrow single rate at high temperatures. This change occurs over a narrow
temperature range that seems to be linked to the glass transition of the solvent,58 a

fact that has given rise to the concept of a "slaved glass" transition in the protein.

Recently, some exciting work by Hans Frauenfelder and his colleagues has re-
sulted in direct measurements of a nuclear coordinate in the vicinity of the "slaved"
glass transition.58 Frauenfelder has exploited the fact that the CO stretch band
of iron-ligated CO in most hemie proteins is split into a number of sub-bands, 6

called "A" states by Frauenfelder in his historical identification of tile bound CO.
These bands are sensitive to many external parameters, including temperature and
pressure.

Observation of the ratio of the A 0 to A 1 states as a function of temperature at a
static atmospheric pressure revealed that the temperature dependence of tile ratio
of the states stopped at the glass transition temperature of the solvent. Thus, the
ability of the conformational distribution to adjust to temperature seems to halt at
the external glass transition temperature, as we would expect from the experiments
discussed above. Of greater interest is the question: what is the rate at which the
protein is able to approach equilibrium as the glass transition is app)roached from
above?

Actually, this is a rather (feel) question, especially when recast into some of
the language we used to discuss the transition in a spin glass. In other words, is

there a true thermodynamic plhase transition underlying the kinetic slowdown of t he
glass transition, or do we mlerely observe a thermally driven fall out of equilibrium'?
Frauenfelder was able to look at, conforinational relaxation by cooling the protein
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under hydrostatic pressure to a given temperature T and then suddenly releasing
the pressure. The ratio of the A states relaxes to a new value appropriate to the
equilibrium value at the lower pressure. He observed that, as the glass transition
was approached, the relaxation kinetics were nonexponential and highly tempera-
ture dependent. A loose analogy to this experiment in spin glass lore would be to
suddenly decrease the magnetic field on the spin glass sample at some temperature
T and observe the relaxation of the magnetization, although the closer analogy of
actually changing the hydrostatic pressure on the sample in a fixed magnetic field,
to my knowledge, has not been done.

The interesting parameter that Frauenfelder et al. measure here is the temper-
ature dependence of the relaxation process near the glass transition. Frauenfelder
et al. choose to fit the relaxation to a Bassler-Zwanzig function

k(T) = kexp [- (17)

rather than the Vogel-Tamman-Fulcher (VTF) relation

k(T) = koexp [(kb(TE T.)) (18)

to fit the data. The question of which function to use maps back to the question of
whether the glass transition is some sort of hydrodynamic arrest or has underneath
it some sort of a phase transition. A clear summary of the differences between
these two pictures can be fount. in a paper by Bassler."6 The argument we have
is that the VTF relation has a singularity at the critical temperature To rather
than the continuity everywhere of the BZ function. Both curves give adeqL te fits
to the relaxation data, but the extrapolation into lower temperatures is, of course,
completely different. Unfortunately, both equations give impressively good fits to
data over nine orders of magnitude!60

In the case of glass relaxation work of Frauenfelder the relaxation of the ratio
of the peaks was given by a power law

4Z,(t) = (1 + kr(T)t]- (19)

and fits were done with n as a variable and k, was fit to the hydrodynamic law.
It is clear that proteins at present offer no clear test of the troubling question of
whether phase transitions do or do not exist in glasses (in general) or proteins
(in particular). These are excellent experiments, and intriguing results, but the
fundamental questions are still not tested.

However, it seems clear that the protein shows kinetic aspects that glasses and
spin glasses show: significant slowing down near some sort of a fixed temperature.

Does a protein show hierarchical relaxation? Frauenfelder's group at Illinous
wrote the one paper that made a real stab at using these terms to explain some
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experimental aspects of protein behavior. 6 In this paper the authors attempted a
synthesis of experiments from a large range of physical techniques to show that the
structural relaxation of the protein myoglobin could be characterized as a hierarchal
diffusion through connected states. The main thrust was to show that the sets of
states through whicb the protein relaxed after photolysis could be characterized
within a hierarchicai scheme of progressively large motions.

Frauenfelder coined the phrase conformational substates, abbreviated as CS,
to describe these hierarchically connected substates. Thus, CS0 would be the set of
substates closest to the iron atom, while CS4 would be the substates associated with
conformationally distinct protein substates that might have different surface config-
urations. It is a little strained to connect these CS levels with particular spin glass
states since the three-dimensional topology of a protein has no easy analog with a
spin glass. Instead, the analogy should be to the "distance" between a particular
protein conformation and another one. We defined a distance for one particular spin
glass state from another one that made sense, yet no one (except maybe Karplus
and Elber, as seen later) has really come up with a way to systematize the concept
of distance clearly in proteins-and we must keep in mind that distance may not
have the intuitive meaning that we are used to. That is, two protein configurations
may be rather close to one another as viewed by x-ray diffraction yet the folding
path between the two conformations could be very large. This lack of a clear defini-
tion of distance in the protein systems will cause us much grief later in the dreaded
ultrametric section.

The next step removes us from any idea in spin glasses and separates the
physicists from the biophysicists. No one has ever spoken about a functionally
important motion in a spin glass and, probably, would be driven from the high holy
temple of condensed matter physics if they did. However, in a proteinlike myoglobin
there exists two different sets of conformational substates: those associated with no
bound ligand and those that are associated with the bound ligand. The connection
between these two sets is via what Frauenfelder called a functionally important
motion, or an FIM. We can't think of an analogy in the spin glass system that
would be physically realizable. Frauenfelder viewed the recombination process as
consisting of relaxation between the CS's and lateral movements over via the FIM's.

The paper was possibly flawed by the interpretation of the shift in a near-
infrared charge transfer band at 760 K. The evolution of the maximum of this band
vs. recombination at low temperatures (less than 180 K) was interpreted as evidence
for conformational flow of the structure within the CS 2. Several workers 2

,
25 have

subsequently pointed out that in fact what was occurring was a form of reactive hole
burning. That is, each different conformational state of the protein has a particular
band near 760 nm and, as recombination proceeds, the band appears to shift as the
long-wavelength sub-bands combine. The effect of this hole burning is to make the
maximum of the band appear to "move," although no conformational relaxation is
occurring. Thus, rather than relaxing, the substates in CS 2 are actually temperature
invariant, along the lines of a glass transition.
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In our view this flaw in no way invalidates the basic ideas of Frauenfelder; in
fact, the existence of hole burning would seem to give strong support to the idea
of a dist! bution of conformationally distinct substates! It would be interesting in
our opinion to continue pushing on the hierarchical concept especially in the light
of kinetic theories to determine the rate of flow of the substates in the protein and
verify that hierarchical complexity serves as a kinetic bottleneck in the process.

In general, to us the analogy of hierarchal structures in the protein seems apt,
since the compact folding of the protein in what seems to be a directed sequen-
tial manner would imply that the structure must flow through different layers of
organization to undergo an arbitrary relaxation.

Questions arise as to whether a real three-dimensional spin glass is ultrametric,
so things in the protein arena will be much worse. However, we believe that the
question is important, since ultrametricity in proteins reflects upon both how the
protein is folded into its structure and on the overlap of adjacent structures. As yet,
we cannot predict the folding of a protein given the sequence, so even as abstruse
a concept as ultrametricity could help us to codify the problem. Perhaps a clean
way to put it is: if ultrametricity is operative in protein conformation space, then
the conformational substates of a protein do not arise from a "kicking, screaming
stochastic walk" as Gregorio Weber has characterized it but, instead, evolve from
paths determined by the previous history of the folding of the polymer.

We'll put our cards on the table right here: it is clear since that proteins form
history-dependent conformations, the ultrametric idea is of great importance68 and
full credit should go to Frauenfelder for pushing this concept.

In their paper6 Frauenfelder and his coworkers also were bold enough to claim
that the protein space could be ultrametric as well; they also discussed this concept
in several review papers.4 5' 46 The concept of ultrametricity is of very little use unless
a very crisp definition of distance exists by which to address the ultrametricity
question. On the basis of computer simulations, Karplus and Elber 36 attempted
to come up with a workable definition of distance between protein conformations.
They decided that ultrametricity was of little use, but the paper was flawed so the
issue not so clearly dead.

In their paper, they did a 300-picosecond simulation of myoglobin structural re-
laxation. A set of randomly chosen structures consistent with x-ray crystallography
were allowed to relax over this time range, and the root-mean-square differences be-
tween the structures were compared before and after relaxation to determine if two
nearby initial structures converged to a common structure or diverged to separate
structures separated by an energy barrier. In essence, this is equivalent to the test
within spin glass physics for the presence of nearly iso-energetic ground substates
separated by energy barriers.

The basic concept of a glasslike structural space was verified by the observation
that the configuration space seemed to be made up of many minima with small
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energy differences. A test was then made to see if the space was ultrametric. The
"distance" between different stable configurations K and K' was defined by:

DK, K' = Z A1 (K, K') = Z R,(K) - Rij(K') (20)
i~j iI

where Rij(K) is the distance between the amino acid units i and j in configura-
tion K Similar structures have small DK,K', while dissimilar structures have large
DK,K'.

How we can use this matrix to test for ultrametricity? Suppose we look at,
say, N = 50 different stable conformations (denoted by K from 1 to 50). If two
structures are closer than some given distance apart, then we can define them to be
in the same cluster. Ultrametricity occurs if the grouping of similar structures via
the distance matrix results in disjoint clusters. Of course, the size of the clusters is
dependent on the amount of overlap defined for similarity. What does ultrametricity
mean physically for the protein substates? It means that protein structures within a
cluster evolve like a species, retaining their identity and not blurring into a structure
that could arise from another disjoint cluster.

Now, in Elber and Karplus' paper one of us (CC) noticed a mistake in the
logic. As the paper was written, the authors confused "distance" with "overlap":
overlap is effectively 1-distance. Thus, their statement that "There is a rather sharp
transition between the range (DK K' _> 1.5 A) when all structures are disjoint, and
the range (0 < DK,K' < 1 A) when all the structures belong to the same cluster."'36

This --atement makes no sense as we hope we made clear in the above discussion:
if all the structures have less than 1 A difference, there surely will be none with a
difference greater than 1 A! In a personal communication with Dr. Elber, we received
the clarification that the offending sentence should have read: "All the clusters form
disjoint clusters for 0 < DK,K' <_ 1 A and a single cluster at 0 < DK.K' K_ 1.S';
that is, there are no structures greater than 1.5 k apart. The corrected statement is
the logical inverse of the originr tatement. This clarification makes the ultrametric
nature of the conformational .. ostates not as useless a concept as it appeared!

To see why this is true, let's refer to some data from the actual distance matrix
that Dr. Elber sent us. Elber and Karplus picked out, presumably at random, 28
converged conformational substates after 300 ps of relaxation. The matrix elements
DK,K' were evaluated for all the possible combinations and scored a 1 if DKK, was

less than some value, and a 0 if it was greater than some value. For a value less

than some small number, such as 0.5 A, we expect only the unit matrix and this

indeed is seen. As the distance cut-off increases, we begin to obtain disjoint groups,

for example, as seen at DK.K' < 1.5A. There was a problem: the system was not

rigorously ultrametric. For distances greater than 1.5 A, we get one large group

ball. Should Elber and Karplus have thrown out ultrametricity? We feel not. The
fundamental ultrametric nature of the grouping is actually quite impressive, 1inuls
a few problems.
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As stated in the introduction, our goal in biophysics is not to prove mathemnat-
ical theorems! Our goal is to take ideas from some of the powerful and beautiful
work that has been done on "clean systems" and try to apply these concepts to help
categorize the complex molecules we study. To close, one of the most sophisticated
ideas to arise from the study of spin glasses-ultrametricity--was shown to be po-
tentially useful when attacking one of the most nagging problems in biophysics:
what is the nature of the conformational heterogeneity of protein structure?

4. ENERGY FLOW IN BIOMOLECULES
We have studied to some depth the conformational complexity of proteins and
their thermally driven dynamics. But, proteins aren't just little balls that vibrate
in solution. They are molecular machines: they perform chemical feats of magic,
transforming chemical potential energy in one molecule into highly directed and
specific reactions somewhere else. The question is: are there general physical prin-
ciples to be learned? Let's examine the issues at hand. Proteins are large, highly
condensed polymers that are roughly spherical in shape. If we ignore their im-
portant structural roles, their mission is to catalyze chemical reactions in living
organisms. The catalyzed reactions often run uphill in free energy and hence re-
quire an external source of energy such as adenosinetric-phosphate (ATP). Usually
these reactions are extraordinarily slow to proceed in the absence of the protein.
Thus the proteins act as marvelous mesoscopic reactors of highly specific reactions.
If we were chemists, which we most assuredly are not, then our approach might
be to treat each protein as a wonderful puzzle, complex and quite unique, to be
carefully unraveled and explained based on detailed chemical mechanisms. But, we
have this training as physicists where we are taught to look for global mechanisms
of unifying importance.

In principle, computers might be able to model the dynamics of proteins. The
basic problem in any computer dynamics simulation is how to get an overriding view
of the dynamics of the process. If you look at a single atom in the biomolecule, it
would appear to be oscillating in some random manner with very little correlation
with atoms some distance away. Basically, the whole object seems to a quivering
chaotic mass of atoms. The question is, as we discussed above, whether there is a y
collective aspect to the motions in the molecule. Since Bill Bialek is an enthusiastic
promoter of neural processing in organisms, we could make the analogy to study-
ing one neuron firing versus looking for a collective response in the entire neural
network.

Angel Garcia pointed out in a provocative paper4 7 that collective inotions in
condensed polymers such as proteins cannot be viewed as an analysis problem:
the interactions between the (different amino acids are highly nonlinear with the
distance between the groups and the polymer held together very weakly so that
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the nonlinearities are strongly present. The result is that the complex motions
are highly anharmonic and metastable in nature: the protein can be expected to
reside in some particular conformation for some time 7 and then to switch to
another conformation. Note that, because of the metastability expected of these
conformations, even if the system is highly overdamped and dissipative, it is still
possible for the system to display anomalously long "excited state" lifetimes.

The protein was simulated in an aqueous environment of 1,315 water molecules.
The temperature of this simulation was 300 K. The most striking thing in this
simulation was that the motions of the amino acids were not distributed in a simple
Gaussian manner around an average position, nor was the motion a random walk
in phase space. Rather, the motions were netastable in nature, characterized by
confinement to a particular angular range 'or an extended time followed by a very
rapid jump to another metastable minimum. The motions were also correlated, as
one would expect in a highly condensed molecule: as one amino acid moves one way,
others must move the other way to make room. Interestingly, the average lifetime of
these metastable states is on the order of 100 picoseconds, although the transition
to a particular state takes about a picosecond, indicating that the actual structural
transition time is quite rapid.

Such a simulation is done in a fluid solvent, and no attempt has been made
to calculate the oscillator strength connecting the states, so it may be that these
collective modes are in no way correlated with the broad continuum of absorbance
observed in protein thin films. However, it is intriguing to note t.he correlation
between the metastable lifetimes and the saturation recovery times observed in the
experiment discussed here.

We have explored using far-infrared (FIR) photoexcitation of perhaps func-
tionally important collective modes in proteins. FIR is defined in different ways:
we will take the semi-arbitrary cut-off of FIR as those excitations lying below 400
cm-. Looking back at these experiments, we would say that they definitely put
the horse before the cart: we tried to see if a change in a reaction rate could be
observed when we pumped. the FIR. One rationale for doing this reverse-order
experimentation is simply to see if there is anything going on: if not, then forget
it!

In our case we have seen that FIR pumping at 50 cm 1 to 80 cm- does seem
to influence reaction rates in an athermal way. What does athermal mean anyway?
It means that if you pump energy into some particular state, then the energy resides
in that state for a "substantially" long period of time. While the energy is in that
state and not in other states, the system is not in thermal equilibrium. Hence, it is
athermal. A thermal change in the rate would occur if the energy of the absorbed
FIR photon thermalizes very rapidly, on the order of picoseconds, into all the degrees
of freedom of the system. Thus, while a specific mode may be heated to an effective
"temperature" 100 K in the absorption of a 100-cm- 1 photon instantaneously, after
relaxation the amount of energy/mode increase is on the order of 10-2 ix in the end.
This is what one of our skeptical colleagues at Bell Labs meant when he characterize
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the FIR excitation as a blowtorch, quickly heating all modes. However, one can do
experiments to find out how long these FIR mode. live.

Bacteriorhodopsin (bR) is a very interesting protein that has many important
properties. The molecule has a molecular weight of 26,534 daltons and consists of
a single polypeptide chain consisting mostly of seven a-helical stretches which re-
peatedly span the membrane in which the protein is found.5 1 bR has a chromophore
(retinal), a linear conjugated polyene, which is covalently linked to lysine-216 in the
backbone of the protein. The retinal undergoes conformational cis-trans transitions
when photo-excited by a visible photon98 and ultimately the pumping of a pro-
ton (a positive charge, that is) across the membrane "uphill" against the chemical
potential gradient.

The trans-cis conformational transition of the chromophore in bR leads to con-
formational transitions in the protein itself.14' 34' 70 Usually, these conformational
transitions are monitored indirectly by observing the perturbations that structure
makes upon the chromophore absorbance. The visible work has been very impor-
tant: it has shown (a) that the trans-cis isomerization occurs very rapidly, in less
than a picosecond71 and (b) the protein cycles through a series of metastable states
that can be characterized by the absorbance of the chromophore.2 4 The lifetimes of
these states are highly temperature dependent and show freeze-outs over a range
of temperatures, some as low as 100 K. 76 Since this temperature corresponds to
energies on the order of 100 cm-1, it has been speculated that, in fact, collective
protein motions are involved in this kinetic freeze-out. 72 It is interesting that at
low temperatures the K state (bR 6 30) and the light-adapted bR trans ground state
(bR 568 ) can be created reversibly by absorption of the appropriate color photon. 106

The presence of these intermediate states tells us something interesting: in
these large structures, metastable conformational states are separated by energetic
barriers. It is impossible to tell from either the optical spectra or mid-IR spectra
what exactly is the conformation of the macromolecule in these metastable states,
but the relatively low energy barrier of the state suggests that the state is a "soft"
state consisting of the perturbation of many atoms over small distances rather than
a highly localized deformation.

As interesting as these optical measurements may be, ultimately one really
wants to probe the protein conformation as a function of time. One way to do this
is to probe directly in the infrared where the local vibrational transitions of the
molecular elements of the protein are evident. In fact, there is a substantial amount
of work in the mid-IR (3000 cm- 1 to 500 cm- 1) of structural changes in bR, 48 using
time-resolved FTIR. Although many of the features are dominated by chromophore
changes and, in fact, can be compared to the resonance Raman results,62 protein
features also can be ascertained. In particular, the backbone amide stretch from
1671-1650 cm- 1 , which is a sensitive indicator of the a-helix conformation, shows
the same time-dependent changes as the chromophore bands do. This seems to
indicate that, as Gerwert et al. stress, "all reactions in various parts of the protein
are synchronized to each other and no independent cycles exist for different parts."
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Although the amide stretch band is a good place to look for semi-local confor-
mational changes, it would be better if indicators could be found for truly large-scale
motions in the protein. It would be nice if we had information about the FIR por-
tion of the spectrum where one would hope that the collective modes might have
some oscillator strength variations with conformation, but none exists.

The most interesting and experimentally accessible states are the light-adapted
bR 568 and the first excited-state K 6 3 0 states, easily isolated at low temperatures (be-
low 70 K). So-called light-adapted bR 568 , that is, bR which has been continuously
exposed to light levels on the order of milliwatts/cm 2, will have its chromophore
in the trans configuration at low temperatures if cooled quickly in the dark. As
mendioned above, if green light is shone on the sample, the chromophore makes a
trans-cis isomerization 98 and the protein is now in the K state, with chromophore
absorbance maximum at 630 nm. This trans-cis isomerization is actually photore-
versible at low temperatures: illumination with red light drives the system back to
the trans state. Both states seem to be very stable at temperatures below 40 K:
the thermal relaxation rate between the two states seems to be very slow. However,
at 70 K the relaxation rate is quite fast, on the order of milliseconds.

It is known that the trans-cis photo-driven energy storage is highly effective: of
the 2 eV carried by the visible photon, about 1 eV is stored as chemical energy.52

There is something important and puzzling in this last fact: somehow the protein
absorbs 2 eV and stores 1 eV by effectively transferring a charge over at least 50
A. One would guess that maybe energy could be stored locally by the trans-cis
isomerization, but how can energy be transferred over a large distance without
losing it?

One possibility is that the energy is stored "mechanically" in a strained con-
formation of the protein. In fact, this is the essence, we think, of John Hopfield's
obvious but subtle idea of how the R-T free difference is stored in hemoglobin.

Such an idea still has problems, however. A strained conformation implies that
many atoms over a large volume of the protein are slightly moved relative to the
conformation before the "event" to a metastable configuration. At least initially,
this conformational shape change must occur fast enough to compete with thermal
and viscous relaxation, since the pre-event state is a local minimum in free energy
by definition. It is easy to see how 2 eV photons could use the Franck-Condon 17

effect to snap a protein into a metastable state, but how can soft energies on the
order of hundreds of cm- 1 do such a thing? Remember that the protein doesn't
stay in the initial metastable state after the "event"; it moves to other metastable
states with high retention of the initial energy deposition. It stays cocked.

There is one highly disputed answer to this puzzle, namely that the energy
is transferred in the same way water waves transfer energy over large scales in a
highly viscous medium: by excitation of large-scale collective motions whose group
velocity carries energy faster than the relaxation process can remove it. The key is to
make the wavelength sufficiently long so that the diffusive relaxation time becomes
very large compared to the wave period. Of course, the longest possible wavelength
in a protein is its diameter, about 50 A typically. If the speed of sound c in a protein
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is about 1O0 cm/sec (typical for liquids), the frequency of the wave is approximately
1011 Hz. Can such a wave travel across a protein without attenuation?

What sets the time scale for that relaxation? We f uughlý can guess this criterion
in a protein. Let's imagine that again we have a protein 50 A in diameter. We
assume again that the sound group velocity c in a protein is roughly the same as in
water, 1.4 x 105 cm/s.4 Attenuation (relaxation) of acoustic waves occurs through
two basic mechanisms: viscous damping and thermal diffusion. Of course, it isn't
clear that the macroscopic equations that came from the Navier-Stokes equation are
applicable at the length and frequency scale we wish to discuss: we are at the murky
line between mesoscopic and atomic scale phenomena. However, it is interesting to
see what the predictions of continuum mechanics are.

The attenuation coefficient Cithermal for an acoustic wave due to thermal diffu-
sion is "-y- 1  w2K

athermal (21)
-y 2pc3cv 21

where -y is ratio of specific heat at constant pressure to constant temperature, w is
the frequency of the wave, . is the thermal conductivity, p is the density of the fluid,
and c, is the specific heat/gram at constant volume. If the attenuation length is set
to the diameter of the protein and we assume that a protein macromolecule physical
properties is approximately like water is, we find that the maximum frequency Wmax

at which we can expect acoustic transmission of energy is roughly 2 x 1012 Hz.
Incorrectly assuming a linear restoring potential, we find that the corresponding
phonon energy, is equal to hWmax = 1.1 x 10-3eV or 10 cm- 1 . This corresponds to
FIR frequencies if these oscillations are excited by absorbed photons, and we would
expect that 10 cm- 1 photons could excite acoustic modes which could propagate
across the molecule. The attenuation coefficient ceviscous for viscous damping is given
by

2w2 r]

a~viscous = 32cw 2(22)

where il is the viscosity of the medium. For illustration, we will do the calculation for
water at 20'C. Our experiments are mostly done at cryogenic temperatures where
the protein is undoubtedly a solid, in which case this expression is meaningless. In
any event, we find again that if we want transmission across 50A, the maximum
frequency Wmax is 3 x 1011 Hz. This would indicate that viscous damping would
strongly attenuate FIR modes; in fact, this may be why we observed no signal with
FIR excitation at 50 cm- 1 above approximately 180 K in myoglobin.11 However,
the decoupling frequency of the solvent from the molecule (mid-IR transitions in
solution of course are quite sharp) and the internal viscosity of the protein leave
many questions unanswered.

In sum, what we have in mind is in this frequency range, collective modes, can
have a long enough attenuation length and can live long enough to move the protein
to a collectively strained state. These stress-carrying waves should propagate in
picoseconds across the 50 A protein and move it to a strained configuration. They
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are not solitons, Davydov or otherwise2
1--they carry very small amounts of energy.

Nor do our ideas agree with a model proposed by Bialek and Goldstein, 2 1 which
basically proposed the idea of a distribution of metastable conformational states.
The strained metastable states are the source of reaction-rate heterogeneity at
low temperatures. Further, we wish to point out that what we are proposing here
is in some sense a version of Hans Frauenfelder's brilliant idea of conformational
substates in proteins that have a corresponding distribution in reaction rates.1 2 We
simply claim here that we can pump between Hans' states with FIR radiation. Can
it be done?

The first experiment we did was simply to find if pulsed FIR radiation had any
effect on the bR photocycle bR 56s-K 630 at low temperatures. (See our papers on
FIR effects in electron transport13 and ligand recombination" for details about the
technique.) In the case of the bR experiments, thin films of hydrated bR films were
deposited on a plastic disk (TPX, a common plastic, has excellent transmission
in the optical and FIR regions) via careful deposition of a solution containing bR
vesicles. The final optical density of the films was quite high, on the order of 10
optical density units (OD) at the 568-nm absorbance maximum of light-adapted bR
(an OD is the base-ten absorbance: I = Io10-OD). The bR thin films were held in
a copper sample holder mounted in a Janis flow cryostat with z-cut quartz optical
windows. A quartz-halogen lamp with a 3-inch water filter to remove IR was used to
maintain the bR in a cycling state: the green portion of the spectrum drove the bR
to the K state, and the red portion of the spectrum drove the K-to-bR cycle. The
basic idea is that the system will settle down into an equilibrium concentration of
K and bR. If it does allow some of the protein to leak out of the K state pulsed FIR,
will leave a perturbed amount of bR and K states immediately after FIR pulse. If
the ratio of the bR-to-K is monitored at an appropriate wavelength sensitive to the
amount of (in our case) the K state present, then we would expect a prompt change
in the absorbance of the signal. Prompt means that, since we expect that any sort
of reasonable lifetime for FIR excitations will be less than a nanosecond, the FIR
sets up a new quasi-equilibrium set of rate constants during the laser pulse. When
the FIR laser pulse is over, the rates relax back to the normal rates in nanoseconds.
In our case, we used a 650-nm filter of 20-nm bandwidth to monitor the amount of

K-state absorbance.
Since we have length constraints, we won't go into a detailed description of the

experiment. The results show that the absorption changes occur during the 5-,isec
duration of the FEL pulse and, in fact, the change rises linearly with time during
the pu!se Other than FIR-induced reaction rate changes the only reasonable expla-
nation that we have for such a signal would be a change in the absorption spectrum
due to sample heating. However, unlike the case of the reaction centers where the
860 special pair band turned out to be surprisingly temperature dependent,13 the
temperature dependence of the absorption spectra of bR is far less than the 860
band' 8 and the same analysis we applied to the reaction center system will show
that we cannot explain the observed signals in bR. The FIR-induced absorbance
change seen at 70 K has a changed sign and now indicates an absorbance increase
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with FIR irradiation. In fact, we find that the FIR-induced bR signal for a particular
hydrated sample has two temperatures where no signal is seen, at approximately 50
K and 150 K. It is unlikely that any simple temperature induced broadening could
give rise to such a complex scenario, but it is possible that the thermal occupation
of further states of the bR photocyle and subsequent FIR perturbation of the rates
could give rise to a complex signal compared to temperature. Because of this com-
plexity, we will restrict our comments to the signal observed at temperatures below
50 K, where we presumably know the state of the protein. We also have to point out
that the sign of the signal seen at room temperature (data not shown) is a function
of the hydration of the sample: highly dried samples show an absorbance decrease
with FIR, while highly hydrated samples show an absorbance increase. Again, a
simple thermal broadening is probably not responsible for this behavior.

A last and highly informative piece of data can be found in a "double pulse"
experiment. In this experiment only steady-state red light (650 nm) and no green
light illuminated the sample; hence, the sample should be predominantly in the
bR 568 state. A 532-nm doubled YAG pulsed laser (10 nsec) was used to transiently
drive the system to the K 630 state and to increase the absorbance. That was in-
deed observed. Then, a fixed delay after the 532-nm pulse, the FIR FEL was fired
and resultant absorbance change observed. If our analysis of the signal at low tem-
peratures is correct, an increase in transmission should be seen-and it is. If the
Nd:YAG laser is not fired, then no signal is seen, consistent with the claim that at
least at low temperatures the FIR signal comes exclusively from the K state. Both
the K-state signal induced by the 532-nm laser pulse and the FIR-induced change
are eventually lost due to optical pumping of the red light of the monitoring beam.

It is informative from the Nd:YAG experiment to estimate the quantitative
influence of the FIR pulse. Since no signal is seen when the Nd:YAG laser does
not fire, there is effectively no base of K state molecules present in the absence of
the Nd:YAG laser pulse. At the time of the FEL pulse, the "amount" of K state
is approximately 50 mV in terms of AL. The FIR shot removes about 4 mV of K
state in 12 Jsec. Since we have confirmed (data not shown) that the signal is linear
with FEL energy, we get simply that the rate of K state loss is (4/50) x 1/12 x 10-6

sec- 1, or 7 x 103 sec- 1 . If we know the lifetime of the collective modes and the
pumping rate of the FIR photons, we can convert this number to a true transition
rate in the excited state.

Suppose that collective modes can be excited and that in the excited states
the reaction rates are different. The most important question to be answered is:
what are the lifetimes of collective modes in proteins? If the lifetime is on the
order of period one (about 10 picoseconds from our calculation above), then there
is a possibility of significant kinetic steerage of a reaction. Lifetimes on the order
of 100 ps to 1 nanosecond would represent considerably less damping and greater
efficiency. A one-nanosecond lifetime would be fantastic. What are the relaxation

rates?
The brute force way to measure the lifetime of an excited state is to do a pump-

probe experiment: put in enough energy to equalize the populations in the ground
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and excited states, then probe with a weak beam the resulting loss of absorbance
with time after the pump. The relaxation rate K1r of the excited state, also known
as the longitudinal relaxation rate or 1/T, in analogy to NMR jargon, is obtained
by measuring the recovery of the initial ground-state population. Unfortunately,
the UCSB FEL has a 10-jpsec FIR pulsewidth T, much too long to do direct time-
resolved work. The next best thing is to make a quasi-equilibrium pump-probe
experiment: assume that the relaxation rate is fast enough (that is, 1/K1r < T) and
a steady state saturation is obtained during the FIR pump pulse. Measurement of
this bleach then can be indirectly back-calculated to obtain the K- 1 .

There is a clever way to compose an experiment that doesn't require the sepa-
ration of the FIR beam into a separate pump and probe beam and doesn't require
great linearity in the FIR detectors. Let the FIR beam be focussed onto a spot
of diameter D in the material of interest. The material is assumed to have an ab-
sorbance A. (the absorbance is the same as OD, as we mentioned above). Let there
be an absorbing filter of absorbance A at the frequency of interest. Let the incoming
FIR pulse have total energy E and pulse duration T. A FIR detector is placed after
the sample. A beam splitter in front of the entire apparatus is used to measure the
(possibly variable) beam energy in a separate detector.

If the filter is put in front of the sample, then the energy incident on the sample
is E x 1 0 -A and the energy incident on the detector is E x 1 0 -(A+A.ý). Let the filter
now be put in back of the sample. The sample now sees the full pulse energy E, but
the detector still has incidently the same attenuated energy E x 10 -(A+A..). Clearly,
if the incident power P = E/T is insufficient to cause appreciable saturation, the
ratio of incident energy to detected energy will be the same, independent of the filter
position. However, if the FIR power is sufficiently high to saturate the system, then
the detector will record greater energy transmission when the filter is placed after
the sample than when it is placed before the sample. Call this ratio 1?:

1Z - Eafter/Ebefore • (23)

Since we know the OD of the sample at the illuminated FIR wavelength,
the number of molecules of the absorbing molecule from the visible OD, the en-
ergy/photon, the energy of the FIR laser pulse, and the pulse width, we know the
rate at which FIR photons are hitting the protein molecules. Call that rate /Cp.
Further, we assume that the relaxation rate of the excited state is an unknown
number KIr. If the laser pulse is much longer in duration than the mean excited-
state lifetime, then the sample will come into a steady-state value of ground Ng
and excited-state population Ne. In equilibrium we have

dN = ICpNg + KgpNe + KCrNe = dNr = +KlpNg - KApNe -krN O = 0. (24)dt dt

This yields

Krr, (= i). (25)
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Finally, we note that
R• Ng (6Ng - Ne (26)

in the limit where Ne < Ng. We finally have

'Cr = kP 1 R (27)

The experiment to determine PC, was carried out recently at the UCSB FEL.
The protein sample on which we made measurements was essentially the same bR
thin film as that used in the above experiments. The bR sample was light adapted
before cooling to 7 K. A FIR absorption spectrum of the BR sample was measured
to have an absorbance at 100 cm-1 of 1.0 OD. The sample was mounted in a
cryostat so that the temperature could be easily varied. Since we expect that the
Tl's for proteins will be rather short, we need the highest possible intensities for
the FIR pump beam to see appreciable saturation. The highest flux FIR source at
the UCSB CFELS is a CO 2 pulsed laser which drives an alcohol vapor column to
produce stimulated Raman emission off the rotational levels of alcohol molecules.
The FIR output from this laser is quite intense: typically 1.0 millijoules in a 50-
nanosecond pulse width, photon energy 100 cm-1. The FIR beam was focussed
to a spot size of 4 x 10-2 cm 2 on the sample. This corresponds to about 1019
photons/cm2 The sample OD at 563 nm was 10 and, using a c of 60 mM-lcm- 1,
gives about 4 x 1015 molecules in the illuminated spot. We then find that the pump
rate K1P is 2 x 109 sec- 1. That is, every 0.5 nsec, a bR molecule absorbs a 100-cm- 1

photon.
After some false starts due the nasty ability of FIR radiation to bounce all over

a lab, we found that the ratio of the signal detected on the pyroelectric detector
with a 1.0-OD filter in back of the sample (Ib) and 1.2 ± 0.05 in front of the sample
(If)-with the sample at 7 K. Note that the ratio of Ib/If is greater than 1, as
expected for a saturation of the absorbing levels in the FIR. Simple tests, such as
the use of just the TPX plastic sample holders, yielded nulls with R = 1.00 ± 0.01.
The saturation was only evident when the sample BR film was present.

A value of 7Z = 1.2 then yields our desired result, namely that the relaxation
rate .Cr - 10 1 0sec- 1 at 100 cm-l! Now you know. You may recall that this is
roughly, within an order of magnitude, of what we guessed would be the relaxation
rate from simple Navier-Stokes equation noodling.

The reader should be aware that a 100-ps lifetime for a 100-cm- 1 mode is
pretty heretical. That is a reasonably long time for energy to bounce around the
protein before it becomes thermalized.

Now that we have K,., we can continue our calculation to get the excited-state
reaction rate. The pump rate Cp in the Nd:YAG laser experiment has to be modified
since the [CO 2 laser was not used, but instead the CFELS FEL was used instead
of the CO2 laser]. The pump rate is modified by the increased pulse energy (16 mJ
vs. 1 mJ) and the increased pulse width (12 pisec vs. 0.05 psec). The net effect is
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that the pump rate in the Nd:YAG experiment should have been approximately
108 sec 1 . Thus, FIR photons excited the bR molecules only every 10 nsec in that
experiment, and we believe the excitation rattled around the protein for about 0.1
nsec after excitation. The effective rate then has to be multiplied by a "duty factor"
of 100. Finally, when excited by 100 cm- 1 photons, the rate of K to "something" is
approximately 7 x 105 sec- 1. This number isn't totally crazy: the rate of decay of
the K state at room temperature is approximately 106 sec-1.

Recently we have become aware of some work concerning the effects of "reso-
nant" activation over a fluctuating barrier. 32,97 Here, if an activation barrier fluc-
tuates at the same rate as the characteristic crossing rate, then the true rate of
crossing can be enhanced greatly. Perhaps the FIR oscillations that we create in
the protein act as resonant activators, if we assume that the characteristic fluctua-
tions of the barrier are also in this terahertz range. I don't know, but I believe that
the signals are real.

5. DNA ELASTICITY
DNA is equally as fascinating as proteins in biological systems-and then there
are the RNA's, the lipid systems, the list goes on. For lack of superhuman or even
human strength, we will confine ourselves to some studies on DNA that we have
carried out.

Of interest is the flexibility of DNA. Since B-DNA consists of stacks of almost-
flat basepairs to first order, we can imagine that the flat planes of the basepairs are
basically rigid and that the bending of DNA is caused by increasing the distance
between adjacent basepairs, and furthermore that the twisting of DNA is due to the
shearing, or sliding, of adjacent basepairs over each other. In this model all of the
rigidity of DNA is due to basepair stacking interactions and not the Watson-Crick
hydrogen bonding between the basepairs. If, on the other hand, deformation of
the helix also strains the Watson-Crick hydrogen bonding pattern of the basepairs,
then the Watson-Crick hydrogen bonding will also play a role. Finally, the negative
charge of the phosphate groups on the backbone imparts a substantial contribution
to the rigidity, which is most evident at low (less than 1 mM) salt concentrations.

It is not convenient to give the DNA stiffness as a spring constant, since that
is an extensive parameter that varies with the length of the spring and the strained
area. One characterizes the intrinsic rigidity of an elastic material by the elastic
moduli of the material, which are intrinsic parameters independent of the size or
shape of the material. There are two elastic moduli that are of interest here-the
Young modulus E and the shear modulus G. The Young modulus is responsible for
the restoring forces that are felt when an object is simply stretched or bent, while
the shear modulus is responsible for the restoring torque that is felt when an object
is twisted. Of course, what is actually measured in a material is the net effective
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stretching spring constant k, and twisting spring constant kt. The stretching spring
constant k, of a material of length L and cross-sectional area A is:

EA
k.,= - -- "(28)

L

Bending an object is a considerably more complex deformation than stretch-
ing or twisting an object. Internal restoring torques originate from the differential
stretching and compression of sections of the material above and below the un-
strained neutral plane of the object. The internal torque 7 which exists in an object
bent into an arc of radius R is EJA

7- : E(29)
R

where IA is the surface moment of inertia measured in the x-y cross section of the
rod:

IA X2dxdy. (30)

If the rod is of length L, the energy U stored in the rod is:

-EIAL B B
U(R) - 2R 2  

-2R2 (31)

where we have defined B = EIAL as the bending spring constant. It is interesting
to recast this expression in terms of the angle 0 that is formed by tangents to the
ends of a rod of length L bent into an arc of radius R. Since R x 0 = L we have
simply

U() EIA 2 (32)
2L

which is, of course, the expected harmonic response. In thermal equilibrium the an-
gle 0 will be distributed therefore in a Gaussian distribution with width depending

on temperature.
Now consider twisting the rod of length L through an angle a. The restoring

torque r applied at the free end of the rod is

GIP(33)

where G is the shear modulus and IP is called the polar moment of inertia

I, = Jr22lrrdr (34)

where r is the distance from the center of mass of the cross section of the object,
It is convenient to define the quantity C as the torsional rigidity of the rod:

C = GIp. (35)
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The torsional spring kt is then CIL. It is important to distinguish between extrinsic
spring constants and intrinsic rigidities when reading the literature! One last point:
the potential energy term for strain as a function of angle is quadratic in a, so
the torsional angles will have a Gaussian distribution by the Boltzmann relation at
temperature T.

The two quantities E and G are related to each other by Poisson's ratio a:
E

G =- E(36)2(1 + a

Typical values for a seem to be about 0.5 (negative values of a occur if objects
expand when stretched). The coupling between G and E is a deep subject that
needs to be explored since it seems to be clearly related to the complex structures
formed in super-coiled DNA.

Finally, we need to define the very important intrinsic quantity called the
persistence length P which is related to the bending rigidity of a material. As the
name implies, P is a statistical length over which vectors tangent to the symmetry
axis of a polymer are correlated. If one wants to make a simplified calculation of the
RMS radius of gyration of a very long polymer (length L) and persistence length
P', then the standard random-walk arguments can be used if you let the length of
the random step be the Kuhn random flight length, 21'. The relation between the
persistence length P and the Young modulus E is

Ela
1' k (37)kbT

where I, is the surface moment of inertia, as before.
Schurr has written a wonderful paper85 that summarizes his work with Alli-

son and concerns the anisotropy decay of a deformable molecule with mean local
cylindrical symmetry.3 The rotational diffusion equation has three degrees of free-
dom corresponding to the three Euler angles. It is possible to write the solution
to the diffusion equation in terms of eigenfunctions to the diffusion equation which
of course are nothing more than the spherical harmonics Ylm. When the excited
state is a simple dipole transition, only the spherical harmonics Y2 .,, have nonzero
eigenvalues and the anisotropy decay must have the form

2
r(t) = 1 m:~ )I•t (38)

m=-2

where Im is a factor containing the Y2m spherical harmonics, Fm(t) is a function
related to the bending of the polymer, and Tin(t) is related to the twisting of the

lpolymer. A more specific expression is:

2 /47r 2Ar r(t) 5= 5)0 (y;*m(WR(O))y2.(QR(t))

m=-2 (39)

< exp [1 (6 - l2 )(A 2 MR) exp 1

1- 2n
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where (in Schurr's words) WR(0) = (/i(O), v(O)) is the instantaneous orientation in
polar coordinates of the absorption dipole in the frame of the binding site on the
molecule at time t = 0; QR(t) = (E(t), ((t)) is the instantaneous orientation of the
emission dipole at time t; and the angular brackets ( )R imply an average over
the dye molecules in the body frame of the molecule. Most importantly, A2(t) and
A2(t) represent the fixed mean squared angular displacements of the body along the
transverse and symmetry axis, respectively. An intuitive way to view these terms
is to ,.il the A2(t) the bending terms and the A2(t) the twisting terms as we
state(, above. As Schurr points out, the determination of the A 2 (t) functions is a
separate statistical-mechanical and hydrodynamic problem that has by no means
been solved. In fact, they will occupy us for the remainder of this paper.

It often is the case that the absorption and emission moments are parallel
to one another in fluorescence work: in the case of singlet depletion techniques,
they necessarily are so. In that case the spherical harmonic functions become the
Legendre harmonics. The angle 0 is the angle that the transition moment makes
with the symmetry axis of the polymer. Our expression becomes:

Io = (3cos
2 0- 1)2

2

I, = 3 cos 2 0 sin 2 0, (40)

12 = 3 sin4o0

4

Fm = exp [-(6 - m2)A2(t)] , (41)

Tm=exp[--•Az(t)1 , (42)

where we have listed the separate angular, bending, and twisting functions respec-
tively. The problem is to compute the bending and twisting functions.

The major complication is that DNA is not a rigid molecule. Thus, while the
anisotropy decay of rigid objects is well known, the anisotropy decay of flexible
objects is very difficult to compute and no analytical solutions exist.

The dynamics of a semi-flexible molecule such as DNA as viewed by an inter-
calated dye is a formidable problem that has not yet been solved analytically. One
way to handle such a problem is semi-brute force: do a Brownian dynamics simula-
tion. We will compare the Brownian dynamics simulation to the analytical theories
that have been developed but, to our mind, it is probably the Brownian dynamics
that have the greatest chance of being "right." Unfortunately, the sheer magnitude
of the computing problem precludes using a computer to model dynamics from the
sub-nanosecond to the millisecond time scale, which one would really want to do in
order to capture the full dynamics. First I will discuss the analytical theories.

We need to compute the A2 functions. Barkeley and Zimm' 5 made a serious
attempt to model the dynamics of DNA over appropriate time scales. They treated



384 Robert H. Austin

the DNA molecule as a continuous, isotropic elastic rod. The fundamental idea of

their theory is to compute the angular position of an arbitrary dipole moment as a

function of time after excitation by photoselection. Since one deals with an ensemble

of dipoles, the problem boils down to calculating the probability Vb(a, t; a,, 0) of

finding a dipole with orientation a at time t when the initial orientation is a, at

t=0.

The basic equation for twisting motions is

O• ( )02•(43)

where C is the torsional rigidity of the rod (given by Eq. 8 in terms of the shear

modulus), a(z, t) is the dipole angle in the cross-sectional plane of the polymer as a

function of position z, and p is the rotational frictional coefficient per unit length,
such that

kbT 87r?7b2 (44)
DparL

where Dpar is the twisting diffusion constant used in the rigid-rod discussion above.

Note that since twisting around the symmetry axis is essentially a one-dimensional

problem, the diffusion constant per unit length is independent of length!

The equation of motion for bending motions is much more difficult to write

down since the bending motions can be strongly coupled together by hydrodynam-

ics. This can be seen in the tumbling diffusion constant Dperp which is dependent

on the cube of the length, meaning that, unlike in the twisting motion, no frictional

coefficient per unit length exists which is independent of the length of the rod. It

is "straight forward" to write down the restoring force F(x) per unit length acting

on a rod bent in the x-y plane:

4 Y
F(x) = -EIax4 (45)

Note that since bending is effectively a two-dimensional displacement, the differ-

ential equation is more complex. If we wanted to be simple-minded, the damping

force per unit length Po would be expressed in terms of the diffusion constant for

tumbling of a rigid rod:
kBT 4

Po = 2DperpL 3ir77L 2  (46)

It still really bothers me that there is an explicit L term in the frictional force term

per unit length. In reality the Oseen-Burgers tensor must be used.

It is good to pause here and reflect upon the complexities and simplicities of

our problem, especially the bending equation. The twisting equation is relatively

straightforward and at short times represents diffusion in a harmonic (parabolic)

potential. However, while on a harmonic surface, the bending equation of motion,

however, while on a harmonic surface is nonlinear due to hydrodynamics. Note
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also that inertial terms play no role since we assume that the motion is totally
overdamped.

We still have Gaussian distributions for the angles because of the harmonic
surface that the diffusion occurs in. This means that the basic solution of Schurr,
which assumes Gaussian distribution functions, should still be correct. The time-
dependent width a of our Gaussian distribution function of angles will not go as
t01 2 because the diffusion is now constrained by the harmonic surface and would
be expected to go with some lower power of time due to that constraint. Although
the problem of one-dimensional diffusion in a harmonic potential has been solved
by Chandrasekhar long ago,2 7 I see no obvious way how his solution for small t has
a simple limiting expression. As we will discuss, the limiting values of the decay
functions seem to go as t-', where n must be less than 1.0 since free diffusion
gives a value of 1.0, as we discussed above. Because some sort of "kinking" of the
helix for example, true nonlinearities in the system will make even the Gaussian
approximation for the distribution of angles incorrect.

Our attempts to understand the bending solutions have been a failure. The
bending potential is quadratic in the angle of bending 0, so we can guess that
the distribution of bending angles should be a Gaussian distribution. However,
the higher orders of the derivatives in the equation of motion makes the time-
dependent width of the distribution A2 very difficult to understand intuitively.
I have yet to come up with an intuitive explanation for the dependence of the
squared width of the distribution on the fourth (1/4) power of time. The derivation
comes from throwing out the odd terms in an expansion using boundary value
arguments, I know, "but" the physical origin behind this eludes me. Unfortunately,
the bottom line here seems to be that we have to trust the incredible mathematics
that are thrown at this problem to get the time-dependent second moments of the
distributions.

We have made enough attempts to understand the solutions intuitively; let us
be mindless robots and write down the solutions. Barkley and Zimm calculated
the time-dependent probability distributions for both bending and twisting. The
probability 0(a, t; a,) of finding a segment at the body fixed angle a when time
t = 0 and the segment was at angle a, is

S1 [ ° (aa,)2'
((rr) 1/2 exp- r(t) (

where the width of the distribution, the twisting decay function F(t), is

kBT 4kBT ( 0A0
)=+ CLZ 1- exp[ - I) (48)

k=l k
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where Ak = kir/L and o = C/87rrqb2. This is pretty awful; fortunately, in the limit
of Ct/81rnb2 < 1, this simplifies to a mercifully useful expression:

r(t) = 4kBT (8t21b2t ) 1/2 (49)

where the time constant rt is

= 2r 2 GIpb2rq (50)

(kBT)
2

This is good-we have a direct expression for the torsional rigidity in terms of the
width of a Gaussian distribution of angles which is increasing with the square root
of time.

The distribution of angles for bending motions is once again a Gaussian:
1

I'(/3, t; 0 .) - exp(-(/ -/3 0)2 /A(t)) (51)

where A(t) is the bending decay function, a measure of the width of the Gaussian
distribution. I won't give the full expression for A(t) because it is just too depressing
(read: complicated and requires solving ugly transcendental equations). However,
if EIAt/L 4r7 <« 1, the expression sort of simplifies to

A(t) - B(t)t'/ 4  (52)

where unfortunately B(t) is

B(t) = A ]kBT(3) x (something) (53)

where (something) is supposedly a slowly varying function of time (I have not been
able to confirm this with my own calculation). If we ignore (something), we can
write the bending function as

AMt) 1/4 (54)

where
wTb [EIA7] 3 X 4 (55)

Now, in reality, both bending and twisting motions occur. Barkley and Zimm
used an Euler transform, also used to find the anisotropy decay for arbitrary motions
of the helix, but in order to solve the equations they were forced to use a small angle
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approximation in the Euler angle transform. The result was that the final expression
for anisotropy was incorrect since linearization of the equations forces the result to

not extrapolate properly to the rigid rod limit.
Schurr not only derived the correct form for the anisotropy decay in terms of the

twisting and bending functions as we have discussed but, with Allison, also derived
twisting angle distribution functions. 3 For their model, Allison and Schurr used a

discrete model of DNA consisting of rigid cylinders connected by torsional springs,
rather like the Rouse model of polymer dynamics.s4 Because of the discrete nature

of the diffusing object, the solutions to the diffusion equation break up into certain

time domains which have quite different functional dependences on time. The trou-

bles lie in the actual functional form of the mean angular displacements-- they are

extremely complex and always involve some simplifications. The relative simplicity

and intuitive feel of the continuum rod solution by Barkley and Zimm is the reason
we stress their result. Also see the excellent paper by Shibat, Fujimoto and Schurr 91

which has carefully and thoughtfully addressed the issue of the comparison between

the theories of Barkley and Zimm versus Shurr and his colleagues. Further, presum-

ably because of the complexities associated with the Oseen-Burgers hydrodynamic
tensor, Schurr et al. have not attempted to derive the actual functional dependence

of the bending decay function, although they know how to use the form once it

has been found as we have discussed. The twisting function of Allison and Schurr,

as we mentioned above, is quite complex (amazingly so, in fact) and split, up into

various time ranges. Of most interest to us, the intermediate zone is

[M2 A,(2] - 72kBTtl/2]

Tm(t) = exp K--Ax(t)2] = exp [ -)- k " (56)

Translation: Barkley and Zimm used C as the torsional rigidity while, in Schurr's

notation, a is the effective spring constant between two adjacent basepairs, sepa-

rated by a distance h. Thus, in terms of the shear modulus I can write:

GIp C
_ -- -- (57)hi h

The prameter y is the frictional coefficient of one basepair of length h and radius
b:

-y - ph = 47rm7b
2 h. (58)

We can rewrite the equation as

[ e n2 kBTt / 2  exp M 2(t/.t)1/2] (59)T , n = -ex p [j = expp) /2

where the twisting time constant is

4r2-GIpb 2 ?7 (60)

= (kilT)
2
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Finally we see that the twisting anisotropy decay functions derived by both
Barkley and Zimm and Schurr are the same, outside of a factor of two which I
assume is due to Barkley and Zimm's incorrect use of linearized Euler transforms for
Barkley and Zimm. The expected anisotropy decay is a sum of stretched exponential
decays for both the bending and twisting anisotropy decay. A stretched exponential
is an equation of the form

s (t) = s (0)exp [()j.(61)
The twisting modes have a /3 of 0.5. Schurr and his colleagues did not attempt to
find a functional form of the bending function A2(t); the Barkley-Zimin stretched
exponential with /3 0.25 remains the only model used by Schurr and his colleagues.
However, since electric birefringence decay is also essentially due to the bending

modes, Schurr and his colleagues have utilized some birefringence data derived from
the work of Eden and his colleagues 37 for 600-bp-long DNA fragments as empirical
sources of twisting decay functions. As Schurr himself has pointed out however,
birefringence is a coherent phenomena since the phase is first summed over the
entire molecule and then squared while, in emission anisotropy, the signal is due
to the incoherent sum over the intensities of excited states. One would expect that
the forms of the decay laws to be different so it is somewhat of a miracle that the
two decay functions should overlap. Further, as we point out in a recent paper 5 6

the field-free electric birefringence decay is strongly dependent oil the width of the
aligning pulse so it is somewhat of a dicey situation to mix birefringence with
excited optical anisotropy.

At tile fastest time scale of 0 to 1 nanosecond, the characteristic length scale of
motions is on the order of 1 basepair, so that strictly local events are observed in
this range unless it is possible for the DNA molecule to decouple from the viscous

solvent; that is, one would guess that the motions are highly overdamped and that
our equations presented above should still work.

However, since the times are very short a possibility of decoupling hydrody-
namically from the solvent exists. This whole story has a very controversial history,
with several apparently false starts. One unsolved problem that has not been ex-
plored very much is the question as how strongly the dye (or the DNA) is coupled
dynamically to the solvent. That is, does the characteristic time of motions on the
sub-nanosecond timescale scale with the viscosity, as we would expect from our hy-
drodynamic expressions, or not? For a while this was not a moot point since there
was a flurry of excitement about the possibility that underdamped, high-Q acoustic
modes could propagate along the helix backbone at frequencies in the 2 10 GHz
range (0.5 to 0.1 nanoseconds) 35 ; in fact, an editorial in NaturceI'" included a warn-
ing to molecular biologists that physicists just might "high jack" DNA and soon
no molecular biology lab would be complete without microwave plilinbing. Unfor-
tumnately the early tantalizing resillt, were not supported by later experiments.,5:

and it would seem that damping turns on at shorter times than 100 p)icoseco(nds.
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It is interesting that while the earlier theoretical calculation had predicted over-
damping, the theory was quickly modified to accommodate these new results.1"'
The motions of intercalated dyes should be sensitive probes to the onset of high-Q
acoustic modes if the mode involves tilting or twisting of the basepairs, but no one

seems to have explored this.
There really have been only three techniques that probe in any systematic way

the dynamics of the double helix in this time range: dynamical light scattering,
electric birefringence/dichroism, and triplet anisotropy. The first two techniques do
not require a label and thus can claim to look at "native" dynamics, especially
dynamical light scattering.

If we look once more at the twisting and bending functions, it is clear that out
beyond 1 microsecond or so the anisotropy decay is totally dominated by the FO
bending decay function, which corresponds to the end-over-end tumbling mode if
the molecule is a rigid rod. Further, just as the rotation time of the rigid rod is
highly sensitive to length, going as 1/L3 , so too does the decay rate of the bending
motions become more sensitive to variations in the rigidity of the helix.

The Barkley-Zimm theoretical derivation of the bending decay function took
the Oseen-Burgers tensor into account to find the bending decay function. The
long-range nature of the tensor force matrix makes the bending motions strongly
dependent on how close segments of the rod are to each other, a hand-waving
explanation for why the microsecond bending motions would be more sensitive to
the rigidity of the helix than the twisting motions. However, the approximations
used in deriving the bending expressions Fm invalidate the expression for large
times. As we move into the microsecond time domnain the relaxation times are for
a length scale on the order of the persistence length of the polymer, which would
imply that the nature of the problem shifts over from a local bending problem to the
kind of statistical mechanics problem that the Rouse model of polymer dynamics
addresses. The Rouse model views the polymer as a collection of spheres that are
of diameter b and connected by "springs" of strength 3kBT/b 2. These "springs"
really are a convenient place to store entropic free energy and are not the internal
enthalpic energy springs in Schurr's model. The Rouse model incorrectly throws out
the hydrodynamic interaction between spheres; Zimm corrected this by including
the Oseen-Burgers tensor. The final step to be taken is to include the Rouse-Zimm
formalism, the elastic energy terms due to bending. We are working on this problem
at present and it appears that a closed-form expression for the F, bending function
at long wavelengths is possible.

For the truly long modes, with wavelength greater than about 10 persistence
lengths, the purely entropic Rouse-Zimm modes without rigidity are the dominant
modes. The result of the analysis of the Rouse-Zimm model is that the rotational
relaxation time r-p of the pth mode is

rr(N' /2b) 3

(37rp 3 ) 1/ 2 kBT (62)
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where N is the number of beads in the polymer. We can recast this, ignoring
the numerical factors to convert from beads to rods, by noting that b is P and
N = L/2P (L is the length of the polymer). We get

(2LP) / 2  (63)

so that the rotational relaxation times go as p3/2. Or, by the fundamental relation
between the persistence length P and the Young modulus E, it follows that the
rotational relaxation times go as E 3/ 2. The progression should now be clear: twist
times go as the G1/2, internal bending relaxation goes as E3 /4, and the Rouse-Zimm
tumbling relaxation goes as E 3/ 2. It then follows that the most sensitive region to
look for variations in the elastic properties of DNA is the long, many-microsecond
time domain.

Qualitatively this is exactly what the triplet data look like: the anisotropy de-
cay data for different sequences are very similar at the shortest times (nanoseconds),
spread apart with increasing time, and are strongly apart in the time range beyond
10 microseconds. Unfortunately, we haven't yet properly mixed in the Rouse-Zimm
bending modes with the Barkley-Zimm internal modes in Schurr's equation so there
are no solid fits.

It seems somewhat senseless at this point to analyze further our best single
depletion anisotropy data in terms of shear and bending rigidities given that Schurr
vigorously disputes any sequence dependence to the shear modulus and no adequate
bending theory exists at present by which one can fit the data. The best, and
most honest thing to do, is to report our "best" triplet data at present. These
DNA samples were rigorously fractionated to a common length of 450 bp-still
too short to get the internal bending modes of dG-dC but long enough to see the
inte-nal modes all the way out for A-T sequences. These are best sets of data, and
a clear difference exists between AT and GC sequences as well as a strong difference
between dA-dT and d(AT)-d(TA).

It is most interesting to look at the overlap of the nonpathological d(AT)-
d(TA) data and compare it to the d(GC)-d(CG) data, especially at short times.
It is very difficult to observe differences between the GC and AT sequences over
the range 0 to 100 nanoseconds while, at times greater than a microsecond, a clear
difference exists between the two sequences. Does this mean that we were incorrect
in our previous statements that both G and E are strongly sequence dependent?
In my opinion the jury is still out on this issue.

We mentioned earlier that, when the DNA helix forms, the basepair interactions
are not strictly across the helix to the neighbor on the other side. Since the bases
sit on top of one another in Vander Wall's contact (the spacing between bases is
only 3.4 A) ample opportunity exists for nearest-neighbor interactions between the
bases directly above and below a given base and next-nearest neighbor interactions
with bases that are diagonally across from a given base.
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These interactions can give rise to sequence-dependent conformations of the

DNA that involve more than the simple counting of basepairs that we mentioned
earlier. Further, one would expect that due to the nonlocal nature of the interactions
that structural phase transitions will occur in the system since the strength of the
nonlocal interactions will be a function of what has proceeded it. For example, in
the Zimm-Bragg theory of the thermodynamics of the helix-coil phase transition
a zippering aspect to the phase transition exists: once a single hydrogen bond is
formed between the first and third amino acids, the coil is positioned so that it is
much easier for the next hydrogen bond to form. Zimm and Bragg long ago were able
to derive a partition function that was able to reproduce the observed temperature
dependence of the formation of the a helix from a denatured polymer chain. In
the case of internal structural changes that occur in DNA, their analysis cannot
be applied, since it assumes that the system changes from a disordered polymer to
a internally linked polymer. In the case of DNA we have something like a solid-
state phase transition or, actually since the system is essentially one-dimensional,
something like an Ising spin transition. We don't know.

6. SYNTHETIC COMPLEX ENVIRONMENTS
There is a fascinating possibility that by using the nanotechnology of the semicon-
ductor industry we will be able to develop the ability to manipulate and modify
single biological molecules. Visionaries such as Drexler have proposed a brave new
world where nanotechnology will produce micromachines that enter the body and
do repairs. We have a much more limited but more achievable contribution to the
field of nanotechnology here.

We have used optical microlithography to fabricate capped quasi-two-dimon-
sional obstacle courses in SiO 2 . We have made observations using epi-fluorescence
microscopy of the electrophoresis and length fractionation of large (100 kbase)
DNA molecules confined in arrays. Biased reputation theory, based on the work of
deGennes, 29 predicts that at low-electric fields, for a polymer of length L much
greater than the persistence length p the electrophoretic mobility scales inversely
with L.8 3 However, elongation of the coil in the matrix at sufficiently strong electric
fields92 results in a length-independent electrophoretic mobility.54' 66 The applica-
tion of suitably timed pulsed electric fields8 7 restores the fractionating power of
gels for long molecules, 33 but the protocols of pulsed field electrophoresis are of
necessity semi-empirical because the complex and ill-understood gel matrix plays a
critical role in fractionation. With their low dimensionality, small volume, and ex-
tremely reproducible topography, microlithographically constructed obstacle arrays
will make it possible to understand the motion and fractionation of large polymer
molecules in complex but well-characterized topologies.
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The persistence length of DNA under normal buffer conditions is approxi-
mately 0.06 jI,50 so the DNA is confined to a vertical space slightly more than

two persistence lengths or one Kuhn random flight length. DNA molecules were
stained by ethidium bromide and then imaged in the array by epi-fluorescence
video microscopy.73,23

In our epifluorescence work the DNA molecules are in focus over the entire field
of view because they are confined to two dimensions. Note that the longer fragments
all show substantial elongation, and that many of the longest fragments are clearly

"hooked" by single posts. Typically, a 100-kbase fragment hooked three times on

crossing the 1l0-p-long field of view. Surprisingly, the amount of elongation in this
coarse array'is comparable to that observed in gels, which are much finer grained. 8"

A 100-kbase molecule comes in as a distorted coil, drapes around a post, hooks, and
then slides off. The hooked DNA molecule actually is stretched to nearly its full

contour length since the observed stretched length (30 p) is the expected contour
length of a 100-kbase molecule. The molecule has greater fluorescence intensity at

its ends farthest from the post. This is presumably due to the randomization of the
ends of the molecule where the internal tension is very small.86

Our arrays correspond to "unphysical" agarose gels. The effective pore size
of 1.0 p corresponds roughly to a physically unstable 0.05% agarose gel. 55 Such
a large pore spacing is comparable to the 1.5 p radius of gyration of the largest
DNA molecules. The amount of elongation and hooking that occurs in the arrays

is encouraging but not explained by simple models in such an open lattice. Of
course, the applied electric field of 1 V/cm is not responsible for the alignment of
the polymer in the absence of the lattice, as is quantitatively seen by evaluation

of the dimensionless number Ka = -QEp/kT (k is Boltzmann's constant, T is the

absolute temperature, and Q is the net charge of a persistence length). 3 1 If a, is less

than 1, than the entropy of the polymeric chain dominates and the coil is random
while, if ,,, is greater than 1, the potential energy gained in translation of the
persistance length along the field direction dominates and the chain is elongated.

Since the applied electric field E is 1 V/cm and the net charge per unit length

should be 0.1 e- per 3.4 A,67 we have Ka = 0.005.

This small value for n, is not consistent with the observations of the elongation

of the hooked molecules. The characteristic distance L' over which this thinning

from random coil at the ends to fully stretched polymer has been calculated by

Schurr and Smith to be L' 2p 2 p/K. In our case , = 0.005 gives a value for L' of

approximately 30 p or 100 kbases, while the measurements reveal a much smaller

L' of approximately 5 kbases (about 1.5 p). This may be due to electroosmosis 6 4

in our relatively open array. The hydrodynamic drag from electroosmosis causes a

larger force per unit length on the molecules, effectively increasing K,. The influence

of two-dimensional statistics in the array may also play a significant role in the

dynamics of the polymers.

The binned data indicate for up to a length of approximately 100 kbases the

array is capable of length fractionation in a DC field. This is at the limits of frac-

tionation for conventional DC electrophoresis in agarose gels,8 9 giving hope that
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our arrays can extend the present hard-won limits on gel electrophoresis. Noolandi
first suggested the importance of hooking in gels65 and Song and Maestre99 have
done a preliminary analysis of unhooking times. We believe that fractionation in
our arrays occurs because of dispersion in the time it takes a hooked polymer to
thermally free itself from a post.

In fact, it is rather easy to compute the motion of a polymer as it moves off the
post. Consider a fully stretched polymer hung over a single post. Let x represent
the difference in lengths for a polymer of contour length L hung asymmetrically
over a post, and we assume zero coefficient of friction over the post contact region
for simplicity. We will show that the present experiments within our error bars are
adequately fit without assumption of a coefficient of friction.

The net force acting along the polymer due to the applied electric field is yEx,
and the polymer thus moves on an inverted harmonic potential surface of the form
U(x) = -I-yEx 2. In the absence of any frictive forces due to the contact of the
hung polymer on the post, the damping force acting on the polymer is simply the
viscous drag FD on a rod of length L and diameter a moving along its length in a
solvent of viscosity v:

FD=Vm21r7L (64)
ED Vcvn ln(L/a)

where vem is the velocity of the center of mass of the polymer.
We first examine the dete-ministic motion of the polymer in the absence of

any thermal fluctuations. Since the viscous drag forces are much larger than any
inertial terms (the Reynolds number' 8 1 = pvL/rh, where p is the mass density
of the polymer, is exceedingly small, ,-• 10-10), the equation of motion for the
stretched polymer as it slides off the post determined by the combination of the
electric and viscous forces is:

-7rL dx

yEx = ln(L/a)kBT dt (65)

where it should be understood that electro-osmotic hydrodynamic forces may sup-
plement or even be greater than the columbic force "yEx. Eq. (3) yields the simple
exponential solution:

X(t) = Xoexp ) (66)

where xo is the position of the particle at t = 0, when it becomes fully extended
after uncurling on the post. Since a is on the order of 20 A and L >> a in all of our
samples, the simple conclusion is that the polymer should slide off tile post with X
increasing exponentially with a time constant r proportional to L:

27rilL
= Eln(L/a) (67)
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In reality, the predicted linearity of T with length L is good as long as the
length L is much greater than n. We predict from our value of yE = 7 x 10-gN/m,
assuming 77 = 1 x 10-3 Pa-s, that a rod of length 30 should have a time constant
T of approximately 5 seconds, compared to our measured value of 7 ± 1 seconds.

The above analysis ignores thermal fluctuations. Consequently, Eq. (4) incor-
rectly predicts that, if x, = 0, the system is infinitely metastable; thus, Eq. (4)
cannot be used to correctly predict polymer retention times on a post for arbitrary
starting positions. In the high-friction limit, the correct description of the Brownian
motion of the molecule is provided by the Smoluchowski equation. 27 This equation
states that for a system diffusing in a potential U(x) (here, - YEx 2 ) with diffusion
coefficient D (here, kBTln(L/a)/27r17L), the probability density p(x, t) satisfies the
following equation 100 ' 10 4 :

apx~~t - TX D( TxO + --- OxkBT px .(8

The second moment x2(t) has been shown°0 0 to be

(x 2(t)) = x2(O)e2t/r + _ 1 2) (69)

where A2 = yE/kBT This result can be used to find a useful estimate for the mean
first passage time- (to) for x(t) to reach a value of ± L. The limits x = ± L represent
perfectly absorbing boundaries because the DNA irreversibly falls off a post when
x - ± L if (AL) >> 1; i.e., U(+L) >>> kBT The mean first passage times (t,) for a
particle initially at x, to reach ± L must satisfy the following equation:

D= -e U(I/kIIT (70)dxo, dxo

For an inverted potential it is straightforward to show that:

(t(xo)) = 2r[I(AL/21/ 2 ) - I(Axo/2 1 / 2)] (71)

where

I(w) = e-Z 2  e e, dzdy (72)

f e-a 2 sin 2 (wa)-d_ (73)
Jo0 a

1In(1 + 2w 2) + . (74)
4~r( + w4)

The simple approximate expression is exact as w - 0 or x --+ oc and errs by less

than 7% for all w. Note that aside from a weak logarithmic dependence on L, the
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mean first passage time is proportional to L for small x. with no singularity at
x. = 0. For x, = 0,L = 30p,,A = 1.3x10 6 m- 1 , r = 7 seconds we predict that

(t(0)) --. 30 seconds, in comparison to our measured value of 40 ± 10 seconds.

Further, work will be necessary to test some of the conclusions of this anal-
ysis, since at present our statistics are constrained by the small number of DNA
molecules that have been studied. Further, the matrix has enough other posts along
the length of the molecule to possibly perturb the motion. However, we believe that

this work has demonstrated that a key aspect of electrodiffusion of very long poly-
mers in a synthetic lattice can be understood quantitatively and that the prospects

are excellent that this new environment can be understood and optimized for any
desired molecular-processing task.

7. OPEN SPECULATIONS
We usually aim wide of our targets and we are sure that once again we have missed

one. Instead of giving some achingly formal and elegant view of the way that biolog-

ical molecules interact to form complex biological structures, I have instead gotten
pretty well buried in the chemical physics of individual molecules.

Is it necessary to know any of this stuff? Can young mathematical types, assured

by all how very brilliant and clever you are, safely ignore the nasty and unclean facts

about how these molecules actually work? We would guess yes and no. Yes, you can
probably ignore their internal complexity if you are content to treat them as black
boxes with arbitrary properties. No, you probably cannot ignore the facts if you wish

to do something really useful. We suppose the best analogy is to Hopfield's original
neural network model: it assumed symmetrical Jj = Jjj neuronal couplings. His

model made an enormous impact, but real neurons I have been told do not have
symmetrical couplings, throwing many aspects of the biological relevance of the
model into doubt.

In the area of proteins, the one area where all this talk about conformational

complexity may be useful some day will be understanding the immune system,

particularly how antibodies can be directed with high specificity towards a partic-

ular antigen. How does that happen? Can an antibody change with timei, Can it

be directed in a given ammino acid sequence towards a different antigen'? I don't

know.
In the area of DNA elasticity, it is clear that we are only beginning to under-

stand the connection between basepair composition and DNA structure and the

control of information flow in the cell. We know very little, and much more quanti-
tative work along the lines we have outlined will be essential in learning the rules.
We suspect that many aspects of the DNA sequence, particularly the 90% of the

genome that is not expressed and sometimes considered to be obsolete evolutionary
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baggage, may turn out to be coding for the structure of the chromosome and may
be very important.

The microlithography work will have a rich future. We will learn how to ma-
nipulate single DNA molecules, how to perform specific chemical reactions on DNA
molecules, separate the parts, and proceed to do other operations on the molecule
like a little microfactory. Further uses of two-dimensional arrays will be to move
micro-organisms through molecules, challenge them with different environments,
and find out the rules by which they navigate, find food, or solve puzzles. Ulti-
mately one could also imagine using three-dimensional lithographic structures to
realize true neural nets.

There is much to do in biophysics. Almost anything you grapple with is in-
teresting and involves dealing with highly complex, nonlinear systems. What you
really should do boils down to a matter of talent and taste. We hope that the really
powerful people out there, the creative ones, may find something useful in the stew
we presented here.
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Nonlinear Dynamics of Pattern Formation
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This chapter summarizes recent work on the dynamics of pattern forma-
tion in dissipative and Hamiltonian systems in two dimensions carried out
in collaboration with S. A. Langer, D. P. Jackson, and D. M. Petrich.
Some unifying geometric aspects are illustrated in the context of three
distinct problems: the motion of shapes governed by bending elasticity,
labyrinthine pattern formation of dipolar domains, and vorticity dynam-
ics in ideal two-dimensional fluids. Following a discussion of perhaps the
simplest dynamical formalism for shape evolution with global geometric
constraints, the dynamics of some simple two-dimensional systems are con-
sidered, with emphasis on the complex configuration space which exists
when short-range and long-range interactions compete in the presence of
constraints. We review recent experimental and theoretical work on pat-
terns formed by quasi-two-dimensional drops of magnetic fluid in a mag-
netic field, again illustrating that the space of configurations has a large
number of local minima and that kinetic and energetic effects compete in
selecting patterns. Finally, the mathematics of integrable systems related
to the Korteweg-de Vries equation are shown to be fully equivalent to a

1992 Lectures in Complex Systems, Eds. L. Nadel & D. Stein, SFI Studies in
the Sciences of Complexity, Lect. Vol. V, Addison-Wesley, 1993 401



402 Raymond E. Goldstein

hierarchy of chiral shape dynamics of closed curves in the plane, a result
shedding light on the geometry of Euler's equation.

INTRODUCTION
In fields as diverse as developmental biology and fluid dynamics, there is a recurring
notion of a link between form and motion. The present section is a summary of
recent theoretical'3,14, 19 and experimental work6 which has endeavored to shed
light on this general question of the interplay of geometry and dynamics of pattern
formation in a class of systems. It is a common feature in nature that patterns arise
from a competition between thermodynamic driving forces and global topological
and geometrical constraints. While much is known concerning the static aspects of
problems of this type (e.g., the elastic basis for the shapes of red blood cells), little
is known about the dynamics by which arbitrary shapes and patterns relax to the
global or local minimum of free energy under such constraints.

In the first section, we elaborate on a central theme for this investigation, the
notion that patterns of interest are often well represented as d-dimensional surfaces
(or interfaces) which are governed by a configurational energy and remark on the
rather general occurrence of a competition between short-range and long-range
interactions between points on the surface. The necessary differential geometry
for discussing the simplest problems, those involving curve motion in the plane,
is then described, followed by a variational principle for the d;qsipative evolution
of boundaries of two-dimensional domains subject to global geometric constraints.
The formalism is then applied to the motion of incompressible domains which relax
to an accessible energetic minimum driven by line tension, elasticity, or nonlocal
interactions as found in polymers, amphiphilic monolayers, and magnetic fluids. We
seek to answer such questions as: Is an observed time-independent shape a unique
energetic ground state or does the energy functional contain multiple metastable
local minima? Are these minima roughly equivalent in energy? How can they be
organized and classified? What kinetic considerations force a relaxing system into
a metastable local minimum instead of the true ground state? Such questions are,
of course, not confined to these particular examples of pattern formation but also
arise in systems such as spin glasses3 and in protein folding.9

Finally, we close with a very brief discussion of how aspects of the differen-
tial geometry of' kui ve dynamics are shown to provide a new interpretation of tile
mathematic-, of integrable Hamiltonian systems. In particular, certain hierarchies
of integrable systems are shown to be equivalent to a hierarchy of chiral shape
dynamics of closed curves in the plane. These purely local dynamics conservc an
infinite number of global geometric properties of the curves, such as perimeter and
enclosed area. They in turn are related to the motion of iso-vorticity surfaces in
idcal incompressible flow in two dimensions.
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ENERGETICS AND CONSTRAINTS OF SURFACES
Here we describe some typical examples of patterns defined by surfaces and their
energetics and constraints. Perhaps the simplest is a drop of incompressible fluid
surrounded by a second immiscible fluid. The energy of interest is just that associ-
ated with surface tension -y, written as

E- = f P(1)

where dS is the differential of surface area. Such a drop moves with conserved
volume, but nonconserved surface area. A lipid membrane, like that of a biological
cell or artificial vesicle, is described by an elastic energy of the form 16

4k = fdS kc (H - Ho) 2 + fdSkcK, (2)

where H = 1/R1 + 1/R 2 is the mean curvature and K = 1/R 1R 2 is the Gaussian
curvature, where R 1 and R 2 are the local principle radii of curvature of the surface.
By hypothesis, this surface moves with fixed total area and may be impermeable
to the flow of fluid (and hence have conserved enclosed volume) or leaky (with a
volume determined by the osmotic pressure difference across the membrane).

More complicated and nonlocal potential energies arise when surfaces are al-
lowed to interact with themselves. For instance, a membrane may have a long-range
van der Waals attraction which leads to adhesion, described by some pairwise in-
teraction 0 between points on the surface,

£ = 4k + 1 dS dS'0(Ir(S) - r(S')I). (3)

Such two-body interactions may be more complex, involving not just the positions
of points on the surface but also their orientation. Indeed, we shall see below both

for two-dimensional dipolar domains and ideal fluids that these interactions may
involve the tangent vectors t to a curve in the plane,

E = 9-ý ± ids fds'i(s) - i(s')'' (Ir(s) - r(s')j). (4)

If we turn to a molecule like DNA that has an internal helical structure, an
additional internal degree of freedom must enter the energy,

& = fds [kC,2 + g(w-wo)2] (5)

where K is the local curvature, w describes the local rate of twist of the helix, and

"wo, the natural twist rate. A closed (e.g., circular) DNA molecule may adopt a
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complex three-dimensional supercoiled shape as a consequence of internal elastic
strains associated with an excess or deficiency of windings of one edge of the helix
about the other, a conserved topological quantity known as the "linking number
deficit." The length is, of course, fixed and, barring the action of certain enzymes,
so is the knottedness of the molecule.

Finally, turning to hydrodynamics, and in particular ideal inviscid flows, we

find again the appearance of surface motion. Classical examples are the dynamics
of vortex lines 2 and patches. 28 The important conservation laws in such systems

include, of course, energy and momentum but also quantities related to the vorticity
through the Kelvin circulation theorem,

J dl v = const., (6)

where C is a contour in the fluid flow and v is the local velocity.
With these examples in mind, the central question we would like to address is:

Given some energy functional £, what is the motion it determines for the shape?
More specifically, we may ask how a shape relaxes to some local (or global) minimum
of that energy if it is prepared initially in some nonequilibrium state. To begin, we
require some basic results from differential geometry and Lagrangian mechanics.

DYNAMICS OF CURVES IN THE PLANE
GEOMETRICAL PRELIMINARIES

For the remainder of this discussion, we will restrict our attention to motion of
the simplest kind of surfaces, closed curves in the plane. Such geometrical objects,
along with space curves, possess "arclength" as a natural parametrization unlike
their generic higher dimensional counterparts. Nevertheless, it is often pedagogically
useful to imagine an arbitrary variable a E 10, 1] labelling points r(Q) along the
curve. Using a subscript to denote differentiation, the metric factor /g- = Jr0 [ is
the Jacobian of the transformation between a and distance along the curve. Thus,
for the arclength parameterization s(a) of the curve, there is the differential relation
ds = vlg/da. The primary global geometrical quantities of interest, the lengt h L and
area A, are then given by

L= dce /g, A= ] da r x r. (7)

Here, a x b • cjaibj.

At each point along the curve, there is a local coordinate system defined by

the unit tangent vector i and normal fi. The former is defined as t(a) =g-1 /2 r,
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the latter is rotated by -7r/2 with respect to it. Traversing the shape in a counter-
clockwise direction, the curvature , is defined through the arclength derivatives of
these vectors by the Frenet-Serret equations,

a(1~) =(0 -) (1). (8)f

The curvature in turn is related to the angle 0(s) between the tangent vector and
some arbitrary fixed axis by K = 08.

KINEMATIC CONSTRAINTS

A dynamics for the shape may be specified in terms of the components of the
velocity in the local Frenet-Serret frame as

rt = Ufi + Wt, (9)

where normal and tangential velocities U and W are arbitrarily complicated local

or nonlocal functions of r(a). For closed curves, these functions must be periodic
functions of s. Constraints such as length or area conservation now may be recast
as constraints on the velocities U and W. Let us remark, however, that whatever
the particular forms of U and W, the time evolution of n and 0 follow from Eq. (9)
as

4

Ot = -U 8 + nW, (10)

"and
K - (a ss +K• 2 ) U + KsW. (11)

The intrinsically nonlinear nature of these evolution equations reflects the interde-
pendence of the internal coordinate s and the vector r(s).

If we consider length first among the global conservation laws, we observe that
it may be conserved either globally or locally, the latter implying the former but not
vice versa. Local conservation means that the distance along the curve between two
points labelled by a and a' remains constant in time. Since this distance is deter-
mined by the metric, local length conservation means Ot IrIl = 0, or, equivalently,

t. Osrt = 0. Using Eq. (9) we obtain the local arclength conservation constraint in

differential form, W, = -KU, or integral form,

W(s) = - J ds'KU =_ -W- 1 KU (local). (12)

If we demand only the global conservation condition Lt = 0, then only the

integral over s of Ot Fg need vanish. This can be shown to yield the global constraint

ids KU = 0 (global). (13)
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Note that the local constraint relates both components U and W of the velocity,
whereas the global constraint leaves the tangential component free. Given a normal
velocity U, the local constraint determines W only up to an additive time-dependent
function independent of s. A nonzero value of this function simply reparameterizes
the curve, without changing its shape.

We appeal to reparameterization invariance to choose a convenient tangential
velocity W. For systems with conserved total arclength the natural choice would be
one which conserves local arclength, i.e., the metric vlg/. When the total arclength is
not constant, a useful choice is still that which maintains uniform spacing of points
on the curve, the relative arclength gauge. The condition lh (s/L) = 0 determines
Was

W(s) = - jds' KU - jds'IU. 
(14)

The surface of an incompressible two-dimensional domain moves with fixed
enclosed area, a constraint which is again nonlocal in U,

i dsU = 0, (15)

the form of which is clear on an intuitive level. In general, a local normal velocity
U(s), that is, one that depends only on the local geometry of the curve at the point
s, will not satisfy these global integral constraints, so the motion will be intrinsically
nonlocal (and mathematically complex!). Exceptions to this occur if, for instance,
U and KU are total derivatives with respect to s. In the dissipative dynamics for-
mulation, just as in equilibrium statistical mechanics, the mathematical freedom to
satisfy these constraints arises from Lagrange multipliers present in an augmented
free energy, as we now describe.

DISSIPATIVE DYNAMICS
A VARIATIONAL FORMALISM

In many of the systems of physical and biological interest, the surface motion is
dominated by viscous drag-inertial effects are unimportant. Thus, we shall focus
on strongly overdamped dynamics and, hence, seek first-order equations of motion
that relax a shape to a minimum of an energy functional E. It is convenient to derive
the motion from an action principle using Lagrange's formalism for dissipative
processes."2 In constructing a Lagrangian C, the generalized coordinates q,, are the
positions of the points r(a) on the curve and the potential energy is just the energy
functional E. In general, the equations of motion are

-q 0, 8qj (16)Wt- _4qý - q,, = q'a'
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where the Rayleigh dissipation function .Fd is proportional to the rate of energy
dissipation by the viscous forces. For the typical viscous forces linear in the velocity,
.Fd is quadratic in rt, and so its derivative is linear in rt.

In order to study the interplay of geometry, dynamics, and constraints, we make
a model for .Fd that assumes local dissipation urith isotropic drag, and write

'd = 1 7Jdav/- Jr, - E(at)i 2, (17)

where 77 is some friction coefficient. For motions that must be invariant under ar-
bitrary time-dependent reparameterizations, we need the "gauge function" 8(a, t)
to ensure that the reparameterizations do not contribute to the dissipation. Under
the transformation a -- a'(a, t), the velocity transforms as rt --- rt + -ra,, and
the dissipation function is unchanged if we let E -- 9 + 'V/a-

In the viscous limit, we neglect the kinetic energy terms in the Lagrangian, so
£ = -E[r] and, by absorbing 77 into a rescaled time, we may rewrite Eq. (16) in
terms of functional derivatives as

1 6.6rt . . . T -+ r (18)

The gauge function ( is a tangential velocity, showing that it is indeed a reparam-
eterization of the curve. Equation (18) has the appearance of the time-dependent
Ginzburg-Landau equation17 of dynamic critical phenomena and is also a version
of the Rouse model of polymer dynamics.7

CONSTRAINED DYNAMICS

To include the possibility of imposing global conservation laws, we introduce time-
dependent Lagrange multipliers H and A conjugate to the area and length in an
augmented energy functional

, = E0 - j dav',A(a) - HA, (19)

where 60 is the energy of the unconstrained system. II and A are determined as
follows. Let U0 and W0 be the velocities derived from eo,

1 eo = UO(at)f + wo(a,t). (20)

Differentiation of the augmented free energy in Eq. (19), with L and A given in Eq.
(7), yields dynamics with

U(s) = Uo + AK + H and W(s) = Wo - A, + E. (21)
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It is now necessary to consider two classes of motion, distinguished from each
other in the way in which the unknown functions E and A are determined. In the
reparameterization-invariant (RI) class, only the curve itself has physical meaning;
the points a are simply labels. Given dynamics that conserves global arclength, we
may always find a reparameterization e so that local arclength is conserved as well.
A consistent value of A(s) is then the constant determined at each instant of time
by the global length constraint. This implies

JdsnUo + A fds2 + 27r1rI = 0, (22)

where we have used f dsi, = 27r. In the nonreparameterization-invariant (NRI)
class, we require e = 0 and local arclength conservation is accomplished by choosing
A to satisfy a differential equation

2- 2) A(s,t) = KUo + asWO + Kn. (23)

If area is also conserved, then A and H also satisfy

idsUo + fdsKA + IIL = 0. (24)

We can see from Eqs. (22) and (24) that even though the dissipation function was
taken to be local, global constraints ultimately do lead to nonlocality through the
Lagrange multipliers.

EXAMPLES

Here we illustrate the dissipative dynamics formalism developed above in the con-
text of three systems: tense interfaces, elastic polymers, and dipolar domains. In
the discussion of the third class we will also summarize the salient results from
recent experiments.

TENSE INTERFACES. Consider again the incompressible fluid drop mentioned in
the introduction. In the two-dimensional problem, the motion is driven by the line
tension -y. The energy 60 = yL is clearly minimized by shapes having the smallest
perimeter consistent with the prescribed area, i.e., circles. We find, by functional
differentiation, that the normal velocity is Uo(s) = --yn, and W0 vanishes. Since
the perimeter is clearly not conserved, we need only determine the area Lagrange
multiplier H. It is H = (27r/L)-y. The entire dynamics reduces to two coupled
differential equations for the length and curvature,

L, (27r) 2  dsK 2, Kr = K58 + 3 _ 27r 2 + K'W, (25)L -jL
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with W given by Eq. (14), U = UO + H, and r = y-t. Apart from the nonlocality
associated with the tangential velocity, Eq. (25) is an area-conserving version of
the well-known "curve-shortening equation."11 If we neglect the tangential velocity

and the area constraint, the dynamics is just

rr = r.., (26)

a diffusion equation. This linearity is deceptive since, as mentioned earlier, r and
s are not independent. The full dynamics in Eq. (25) relaxes the shape to one
of uniform curvature , = 1/Ro, with L = 21rRO, where 7rR02 is the area of the
initial shape. This is illustrated in Figure 1, where we see the curvature evolution

associated with an ellipse relaxing to a circle. The corresponding shape evolution
is shown in Figure 2, along with the perimeter relaxation. In this simple example,
it is plausible that the circle is the unique minimum in the energy functional and
that all initial conditions will relax to it.

0.8

0.6

S0.4

0.2

0.0 ,
0.0 0.2 0.4 0.6 0.8 1.0

FIGURE 1 Curvature evolution, for the relaxation of an ellipse to a circle, according to
the dissipative dynamics formalism.
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FIGURE 2 Shape evolution, associated with Figure 1, and perimeter relaxation.

ELASTIC MEMBRANES AND CLOSED POLYMERS. If we now endow the planar

curves with an elastic energy, we have a simple model of two-dimensional vesicles or

ring polymers. Those with constrained enclosed area are "impermeable," whereas

permeable vesicles have an area set by specifying an osmotic pressure El. We may

then ask the question: How does a closed polymer or vesicle in two dimensions

"fold" itself into an energetic minimum without self-intersections?

The conventional elastic energy is simply quadratic in the curvature 16 :

Ecur= l ke i ds r, (27)

where kc is the rigidity of the membrane. The functional derivative of Eq. (27)

combines with the Lagrange multipliers to provide the normal velocity

U = k 8 + I.3) + AK + H, (28)
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and the bare tangential velocity W 0 vanishes. Interestingly, the dynamics in Eq. (28)
appears as an expansion in the curvature and its derivatives, like the "geometrical"
models of pattern formation used in the study of crystal growth.a Its presence
here, however, is a consequence of a variational formulation not envisioned in the
nonequilibrium crystal growth process.

In the presence of pairwise interactions as in Eq. (3), the normal velocity has
an additional contribution

U0 = fi(s) ds' (r(s) - r(s'))jrS s r (r(s) - r(s) (')) (29)

which is simply the (nonlocal) normal force at point s due to the rest of the chain.
A repulsive core to the potential 0 will prevent self-crossings and combines with
the attractive tail to produce a minimum in ¢.

Figure 3 illustrates how a random initial shape relaxes under these dynamics
to a local energetic minimum. We note the appearance of "hairpin loops." These
are the natural compromise between the attractive membrane interactions, favoring
local parallelism of the chain segments, and the curvature energy, which disfavors
the bends necessitated by the constraint of closure.

FORMATION OF HAIRPIN LOOPS

FIGURE 3 Intermediate stages in the "folding" of a closed elastic polymer in two
dimensions.



412 Raymond E. Goldstein

- I I I I III I I I I I I I I I I I I

EPISODIC SHAPE RELAXATION

-0.2

S-0.3

- o I , , I , , , I , , , I , , , ,

0 50 100 150 200

time
FIGURE 4 Episodic relaxation of the energy corresponding to the shape evolution in
Figure 3.

The time evolution of the energy, shown in Figure 4, is found to be rather
episodic, with periods of rather gradual decay interrupted by rapid relaxation in-
tervals. These may plausibly be associated with configurational "bottlenecks" in the
relaxation process. It is of great interest that such complex dynamics can emerge
from such a simple energy function. Figure 5 shows how a different initial condition
relaxes to the same local minimum in configuration space, albeit by a quite different
path. Finally, by reducing the elastic constant kc, the polymer can tolerate more
bending, and fall into a branched local minimum like that shown in Figure 6.
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MORE HAIRPIN LOOPS

FIGURE 5 Convergence of a different initial condition to the same local minimum as in
Figure 3.

MAGNETIC FLUIDS AND DIPOLAR DOMAINS. Motivated by the appearance of
"labyrinthine" patterns in several quite distinct physical systems, thin magnetic
films, 26 amphiphilic "Langmuir" monolayers, 20 ' 23' 25 and Type I superconductors in
magnetic fields, 18 we have been led to investigate both theoretically and experi-
mentally the patterns formed by magnetic fluids24 ("ferrofluids"). These materials
are colloidal suspensions of microscopic magnetic particles. When placed between
closely spaced parallel glass plates and magnetized by an external magnetic field
normal to the plates, they are macroscopic examples of two-dimensional dipolar
domains. As such, they constitute a convenient system in which to study the com-
petition between short-range and long-range forces.

We are interested in understanding whether the similarities found in the pattern
formation of such distinct physical systems, as mentioned above, do actually reflect
a common mechanism. To the extent that the observed patterns reflect the under-
lying energetics of the shapes, the similarities are indeed understandable. In each
case, the labyrinth is formed of the boundary between two thermodynamic phases
(up- and down-magnetized domains, expanded and condensed dipolar phases, nor-
mal and superconducting regions, and magnetic fluid against water), and has an
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associated surface tension that favors minimizing the contour length. Each system
also possesses long-range bulk interactions of various origins. In the ferrofluid ex-
ample studied here, the dipole-dipole force between suspended magnetic particles
aligned with the applied field is repulsive, tending to extend the fluid along the
plates. Similar interactions exist in amphiphilic monolayers, the dipolar molecules
of which are aligned perpendicular to the air-water interface. In solid-state mag-
netic systems the spontaneous magnetization produces the long-range interactions,
while in superconducting thin films the in-plane Meissner currents interact via the
Biot-Savart force.

Figure 7 illustrates the shape evolution of a ferrofluid domain after the magnetic
field is brought rapidly to a fixed value. The pattern evolution lasted approximately
60 s after the application of the field; the figure at the lower right is essentially
time-independent and locally stable to small perturbations. In general we find that
the branching process displays sensitive dependence on initial conditions in the
sense that two initially circular shapes, indistinguishable to the eye, evolve under
identical applied fields to trees differing in the shapes, lengths, and connectivity of
their branches. There is thus a vast number of topologically different minima that
may be reached by the system. The relaxation of the tree to a circular shape during
a gradual decrease of the applied field to zero is shown in Figure 8.

A BRANCHED LOCAL MINIMUM

FIGURE 6 Relaxation toward a branched local minimum at lower rigidity.
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FIGURE 7 Snapshots of the fingering instability of an initially circular ferrofluid domain.

It has been recognized for some time, especially in the context of amphiphilic
systems,' that the competition between these long-range forces and surface tension
can result in a variety of regular patterns, such as lamellar stripe domains, hexagonal
arrays, etc. The more widely encountered irregular, or disordered, patterns such as
those in Figure 7 are, however, poorly understood.

These shapes may be classified according to their topology. All observed trees
have n free ends and n - 2 three-fold coordinated nodes, at which branches meet at
nearly 1200. The patterns may be arranged in the hierarchy shown in Figure 9 by
grouping together trees with a given number of free ends (or, equivalently, a given
number of nodes) into a single generation and by linking those members of adjacent
generations that are related by the addition or subtraction of a single node. These
relationships are shown by the lines in Figure 9. A compact labeling schemel° for
these is achieved by first labeling the free ends of the pattern in a cyclic fashion
(1,2,... ,n). Then, one may construct a vector v = (a 1 ,... ,a,) of n integers such
that, between the free ends of the pattern labeled i and i + 1, there are a, three-fold
coordinated nodes. Apart from cyclic permutations depending on choice of the first
free end, this vector uniquely identifies the topology. This hierarchical arrangement
is reminiscent of proposed phase-space geometries of spin glasses and proteins, which
have the additional property of ultrametricity. 22 We observe that the arrangement

here is not ultrametric, since there are closed loops in the hierarchy.
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FIGURE 8 Relaxation of the final state in Figure 7 as the magnetic field is ramped
slowly back to zero.

Despite the fact that the patterns observed are so different in numbers of arms
and in connectivities, they share two very basic geometric quantities: the perimeter
L and radius of gyration RG, defined as R' (1/L) fds (r(s) - r,) 2, where r,
(I/L) fds r(s) is the center of mass of the boundary of the pattern and s is the
arclength. A convenient method for summarizing the shape evolution is to consider
its trajectory in the L - RG plane, with time varying parametricall,. Figure 10
displays trajectories in this space for four shapes found following a rapid ramp to
a large field. The scales of the two axes have been normalized by the perimeter
L 0 and radius Ro of the initial circular state. We see that patterns which differ in
the details of their branching nevertheless may exhibit a high degree of overlap,
both during the evolution and in their final states. This similarity suggests the near
energetic equivalence of these patterns.

Turning to the means by which patterns are selected, we find that the degree
of branching (and hence the level to which the hierarchy in Figure 9 is descended)
is highly correlated with the rate at which the magnetic field is ramped to its final
value. Figure 11 shows how the initial mode number of the instability depends on

dH/dt, as the rate is varied over three orders of magnitude. Note that the selection
has occurred long before the ramping was complete. A detailed understanding of
this effect is not yet at hand.
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FIGURE 9 Hierarchical arrangement of topologically distinct local minima. Numerical
labels distinguish the topologies.

In the simplest theory of this pattern formation, we obtain an energy functional

like that in Eq. (4), where the nonlocal term represents the field energy associated
with the oriented dipoles. The calculation of this is presented elsewhere. 19 Its form

is understandable from the usual association between magnetization and current

loops; it is just the self-energy of a ribbon of current flowing around the boundary

of the domain. Viewed this way, the scalar product in the energy reflects the at-

traction (repulsion) between parallel (antiparallel) current-carrying wires. The pair

interaction has a complex form which reflects the finite height h. of the sample:

I(P) = -- L! {sinh- (I/o + V1 - v}. (30)

Here, R/h, where R = JRI = jr(s') - r(s)l is the in-plane distance between

points at positions s and s' on the boundary and I is the dipole density per unit

area. For ý >> 1, the function ýD is essentially Coulombic (1D -_ 1/2ý), whereas for

ý <- 1 it is less singular, varying as In (2/a). This crossover to logarithmic behavior

occurs because of the finite thickness h of the slab, and prevents the integrals from

diverging without additional cutoffs.
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FIGURE 10 Radius of gyration and perimeter evolution for four trees, illustrating the
near equivalence of the local minima.

From these results we deduce that the full energy is determined by one dimen-
sionless parameter, the "magnetic Bond number" 24 NB. = 2i 2/py, and by the shape
of the dipolar region.

The velocity arising from the functional derivative of the total energy is

Uo(s) = -- yr. + " ds'Rx i 1 + (hlR)2 1] , (31)

where 1• = R/R is the unit vector pointing from the point s towards sý The nonlocal
term is essentially a Biot-Savart force due to a wire (of finite height) carrying an
effective current I = Eohc/4ir around the boundary. The tangential force Wo(s)
vanishes.

Analytic progress can be made in the linear stability analysis about a cir-
cular shape, 19' 27 but the nonlinear regime requires numerical study; some results
are shown in Figure 12. This simple dynamics satisfactorily reproduces the essential
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FIGURE 11 Observed mode of instability as a function of magnetic field ramp rate.
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FIGURE 12 Theoretical pattern formation of a dipolar domain,' 9 with time increasing
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features of the experimental pattern formation, most notably the existence of many
local minima, sensitive dependence on initial conditions, and the gross geometric

features of the trees.

CURVE DYNAMICS AND SOLITONS
The problems in pattern formation considered thus far have been strongly dissipa-
tive. Quite remarkably, however, many of the mathematical issues and techniques
brought to bear on those problems also have application in integrable Hamiltonian
dynamics, as we now describe.

Returning to the integral constraints required by perimeter and area conser-
vation, Eqs. (13) and (15), one notices that such conservation is automatic if U
and KU are total derivatives with respect to arclength of any periodic functions.
Moreover, with the tangential velocity determined by local arclength conserva-
tion, W is then determined locally from U. It follows then that the curvature
evolution is determined entirely from the normal velocity as Kt = -QU, where

S= 9,O + K2 + Ks0-r.. The simplest pair of velocity functions which conserve
length and area is (U(1 ) = 0, WO) = -c), with c a constant. The motion is simply
a reparameterization, as can be seen by the curvature evolution

Kt = crK. (32)

A second choice,5 (u( 2) = -,, w(2) = -(1/2)K 2), due to Constantin, yields

Kt K88 8  3 -K 2Ks (33)
2

These two curvature dynamics happen to be the first two members of a hierarchy of
integrable systems,8 an infinite set of 1+ 1-dimensional partial differential equations,
each with a common infinite number of conserved quantities. Equation (33) is known
as the "modified Korteweg-de Vries (mKdV) equation" related to the KdV equation
which describes solitons in narrow channels of fluid.' Each of these dynamics is
chiral, breaking the symmetry between s and -s which we saw in the dissipative
dynamics in earlier sections.

In addition to conserving length and area, by construction, the additional con-
served quantities of Eq. (33) are of the form Hk = fds hk with hk obeying a
continuity equation athk + aOjk = 0, for some currents jk. For mKdV, which is
already in the form of a continuity equation, the successive conserved quantities
are

Hi = dsK, H 2 = -• dsK 2, H3 = ids {_'K4 + I -2 _ s s} (34)
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etc. For k > 2 these are just the tangential velocities of the hierarchy, while H, is
just the "winding angle"-the angle through which the tangent vector rotates as the
curve is traversed. Thus, starting from the conservation of perimeter and enclosed
area, we have ended up with dynamics with an infinite number of conservation laws!

The mKdV hierarchy parallels the more familiar KdV hierarchy which is based
on the KdV equation itself, ut + u,,, - 3uu8 = 0. The two hierarchies are connected
by the Miura transformation21

12
u =-n - is, (35)

2

such that if K(s, t) satisfies the nth-order mKdV equation, then u satisfies the nth-
order KdV equation. Since the variable of the mKdV hierarchy is the curvature,
it is natural to inquire about the geometrical significance of u. Consider then the
curve in the complex plane given by z(s, t) = x(s, t)+ iy(s, t), with z, (s, t) = eio(s,t)

being the tangent vector. Using the associated representation of the curvature,
=-iz,/z,, we find

Z38 2z -{z, s}. (36)

We recognize the quantity {f, x} as the Schwarzian derivative of a function f with
respect to its argument x. This quantity has the property of being invariant under
fractional linear transformations in the complex plane; that is, {z, s} = {w, s} under
transformations of the form z -- w = (az+b)/(cz+d), which takes circles to circles.
Thus, not only do the KdV curve dynamics have an infinity of conservation laws,
they also have very strong invariance properties under mappings of the complex
plane.

In addition to the conservation of enclosed area, which we naturally associate
with an incompressible fluid, a second aspect of the KdV dynamics suggests that
the curves whose motion is described by them are associated with ideal fluid flow,
and hence with solutions of Euler's equation. Among the conserved quantities for
each member of the hierarchy is the tangential velocity W. This is actually just the
Kelvin circulation theorem in Eq. (6).

We have found"4 that the relationship between the KdV dynamics and the mo-
tion of ideal fluids with vorticity mirrors a well-known result in three-dimensional
ideal fluid flow, the connection1 5 between the nonlinear Schrbdinger (NLS) equa-
tion, i~pt = -V), - (1/2) IVI12 V, and the motion of a vortex filament. The NLS is the
geometric evolution equation in a local approximation to the full nonlocal dynamics
governed by the Biot-Savart law. Unlike the Euler equations themselves, the NLS
is an integrable system with an infinite number of conserved quantities.

In two dimensions, the idealized distribution of vorticity analogous to the fil-
ament is a vortex patch, a bounded region of constant vorticity surrounded by
irrotational fluid. The known exact equation of motion2" for the boundary of such
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"a domain is very nonlocal (again reflecting an underlying Biot-Savart law). Under
"a local approximation like that used in the NLS, the evolution equation for the
curvature of the boundary is the mKdV equation.

Among the most interesting features of these results is that the integrable curve
dynamics obeys a variational principle of the form

remarkably similar to the dissipative dynamics result in Eq. (18). This suggests
that it may be possible to develop a common language with which to describe both
dissipative and Hamiltonian pattern formation.

CONCLUSIONS
Our emphasis here has been to illustrate issues and techniques that arise in the
study of pattern formation in biological and physical systems. Whether for dissipa-
tive or Hamiltonian systems, some common aspects of these systems are emerging,
including the stucture of variational principles, the competition between short- and
long-range interactions, and the unifying point of view stemming from the differen-
tial geometry of surface motion. It is hoped that these investigations may provide a
framework for deeper study of particular systems of physical or biological interest
and for addressing the striking complexity of the patterns seen in nature.
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On the Mathematical Biology of
Arms Races, Wars, and Revolutions

This chapter and the next one will appear as Lectures 2 and 3 in Nonlinear
Dynamics, Mathematical Biology, and Social Science by Joshua M. Epstein,
to be published as a lecture notes volume in the Santa Fe Institute Studies
in the Sciences of Complexity series (Addison-Wesley, 1994).

In the preceding lecture, we developed some powerful mathematics.['I In sub-
sequent lectures, we will use it to delve more deeply into the dynamics of war,
arms racing, and revolution. In this chapter, I attempt a unifying overview of these
social phenomena from the perspective of mathematical biology, a field which, in
my view, must ultimately subsume the social sciences.[2l Unfortunately, few social

[llSee Lecture 1, "An Introduction to Nonlinear Dynamical Systems," in Joshua M. Epstein.
Nonlinear Dynamics, Mathematical Biology, and Social Science, forthcoming (Addison-Wesley,

1994).
[21 Edward 0. Wilson, in his book Sociobiology, has advanced a closely related view. The perspective
taken here, however, is quite distinct from that taken by Wilson. Specifically, I do not discuss
the role of genes in the control of human social behavior. Rather, the argument is that macro
social behaviors such as war, revolution, arms races, and the spread of drugs may conform well
to equations of mathematical biology-ecology and epidemiology in particular. That, ultimately.

1992 Lectures in Complex Systems, Eds. L. Nadel & D. Stein, SFI Studies in
the Sciences of Complexity, Lect. Vol. V, Addison-Wesley, 1993 425
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scientists are exposed to mathematical biology, specifically the dynamical systems
perspective pioneered by Alfred Lotka, Vito Volterra, and others. In turn, math-
ematical biologists-with such notable exceptions as John Maynard Smith and
Marcus Feldman-have not considered the application of mathematical biology to
problems of human society.

Particularly in areas of interstate and intrastate conflict is there a need to
explore formal analogies to biological systems. On the topic of animal behavior and
human warfare, the anthropologist Richard Wrangham observes,

"The social organization of thousands of animals is now known in con-
siderable detail. Most animals live in open groups with fluid membership.
Nevertheless there are hundreds of mammals and birds that form semi-
closed groups, and in which long-term intergroup relationships are therefore
found. These intergroup relationships are known well. Ill general they vary
from benignly tolerant to intensely competitive at territorial borders. The
striking and remarkable discovery of the last decade is that only two species
other than humans have been found in which breeding males exhibit sys-
tematic stalking, raiding, wounding and killing of members of neighbouring
groups. They are the chimpanzee (Pan troglodytes) and the gorilla (Pan go-
rilla beringei) (Wrangham, 1985). In both species a group may have periods
of extended hostility with a particular neighbouring group and, in the only
two long-term studies of chimpanzees, attacks by dominant against subor-
dinate communities appeared responsible for the extinction of the latter.

"Chimpanzees and gorillas are the species most closely related to hu-
mans, so close that it is still unclear which of the three species diverged
earliest (Ciochon & Chiarelli, 1983). The fact that these three species
share a pattern of intergroup aggression that is otherwise unknown speaks
clearly for the importance of a biological component in human warfare."
(Wrangham,14 p. 78)

Although man has engaged in arms racing, warring, and other forms of orga-
nized violence for all of recorded history, we have comparatively little in the way
of formal theory. Mathematical biology may provide guidance in developing such
a theory. Wrangham writes, "Given that biology is in the process of developing a
unified theory of animal behavior, that human behavior in general can be expected
to be understood better as a result of biological theories, and that two of our clos-
est evolutionary relatives show human patterns of intergroup aggression, there is a
strong case for attempting to bring biology into the analysis of warfare. At present.
there are few efforts in this direction." 14 1 would like to see more effort, specifically
more mathematical effort, in this direction and hope to stimulate some interest
among you. To convince you that there might conceivably be some "unified field

there is a genetic component to all of this seems beyond doubt. But I do not attempt to gauge it.
Perhaps "socioecology" would be a suitable name for this level of analysis.
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theory" worth pursuing, I want to share some observations with you. To set them

up, a little background is required.
The fundamental equations in the mathematical theory of arms races are the so-

called Richardson equations, named for the British applied mathematician and so-
cial scientist Lewis Frye Richardson, who first published them in 1939.9"10 The fun-

damental equations in the mathematical theory of combat (warfare itself, as against

peacetime arms racing) were published in 1916 by Frederick William Lanchester. 7

The formal theory of interstate conflict, to the extent there is one, rests on these
twin pillars, if you will. Meanwhile, the classic equations of mathematical ecology
are the Lotka-Volterra equations.

In light of the remarks above, I find the following fact intriguing: The Richard-

son and Lanchester models of human conflict are, mathematically, specializations
of the Lotka-Volterra ecosystem equations.

Before proceeding, I must make one point unmistakably clear. I do not claim
that any of these models is really "right" in a physicist's sense. They are illumi-
nating abstractions. I think it was Picasso who said, "art is a lie that enables us to
see the truth." So it is with these simple models. They continue to form the con-

ceptual foundations of their respective fields. They are universally taught; mature

practioners, knowing full-well the models' approximate nature, nonetheless entrust
to them the formation of the student's most basic intuitions. And this because, like

idealizations in other sciences-idealizations that are ultimately "wrong"-they ef-

ficiently capture qualitative behaviors of overarching interest. That these ecosystem

and, say, arms race equations should look at all alike is unexpected. That, on closer

inspection, they are virtually identical is, to me, really quite interesting. Let me go

a bit further.
Under yet other parameter settings, the Lotka-Volterra equations yield stan-

dard models of epidemics. And, in other Lectures, I will argue that social revolu-

tions, riots, and illicit drugs may well spread in a strictly analogous way or-at the

very least-that an epidemiological perspective on such social processes is promis-

ing. Once more, the point is simply that social science might learn a lot from

mathematical biology and, conceivably, might inherit some of its apparent unity.
Let me now introduce the Lotka-Volterra equations and show how the classic

arms race and war models fall out as special cases. Then, I will explore the analogy

between revolutions and epidemics. In subsequent Lectures, we will move beyond

these simple-too simple-models.

THE LOTKA-VOLTERRA WORLD

The Lotka-Volterra equations are as follows:

:i = x1(r, - a1lzx + ai 2x 2 ),

±2 = X2 (r2 + a 2 1X1 - a 22X2 ).

I-
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In discussing these equations, I will freely invoke nonlinear dynamical systems
terminology presented in the preceding lecture. Turning now to Eqs. (1), xi(t) is
the species i population at time t; the a's and r's are real parameters.

If all aij's equal zero and rl, r 2 > 0, we have unbounded exponential-so-called
Malthusian-growth. Since, ultimately, there are limits, for instance, environmental
carrying capacities, the terms aI,, a22 > 0 are preceded by a negative sign. Then,
in the language of the preceding lecture, the species are self-inhibiting. Leaving r1

and r 2 positive and still assuming a 12 = a 21 = 0, this assumption yields a logistic
approach for each species to the positive phase plane equilibrium

(all a 2 2 ,'

a node sink.
Now, life really gets interesting only when species interact, and this involves

the cross-terms a12 and a2l.

MUTUALISM
Leaving everything else as is, let us now assume a 12 , a 21 > 0. In that case our
species are said to be in a relationship of mutualism, or reciprocal activation: the
population level of one feeds back positively on the growth rate of the other. Bees
and flowers-pollinators and pollinatees, if you will-provide examples. There are
many others.

Setting ±1 = -2 = 0, the interior equilibrium conditions are

rl - a 1 lxl ± a12x2 = 0, (2)

r 2 + a21xl - a 22x 2 = 0.

Of course, these are also the equilibrium conditions for the linear system:

±1 = r, - a, 1 x, + al 2x2 , (3)

-t2 = r 2 + a 2 1x 1 - a 22x 2.

But this is exactly the famous Richardson model of an arms race! The more bees,
the more flowers, and vice versa. It's the same in Eqs. (3), but not quite as idyllic.
The more weaponry my adversary has, the more I want, and vice versa, up to some
economic--or ecological-limit or carrying capacity.

Richardson's basic idea is that a state's arms race behavior depends on three
overriding factors: the perceived external threat, the economic burden of military

competition, and the magnitude of grievances against the other party. These are
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discussed at greater length in Lecture 4. Suffice it to say here that rl, r*2 > U repre-
sent fundamental grievances; a12, a21 > 0 are the reciprocal activation coefficients
(the rates at which each arsenal grows in response to the other); and all, a22 are
the self-inhibiting, or damping, terms which Richardson identified with economic
fatigue.

Mathematical biologists have long asked how mutualistic populations avoid ex-
ploding in what Robert May called an "orgy of mutual benefaction."' Likewise, we
can ask what mechanism damps the upward action-reaction military dynamic rep-
resented in the Richardson model. In each case, self-inhibitory effects must somehow
dominate reciprocal activation effects if a stable species equilibrium-or military
"balance of power"-is to emerge. Stability analysis bears this out.

Clearly, we can write (2) in matrix form r + Ax = 0, x E R2 The positive (or
interior) equilibrium of Eqs. (1) and the sole equilibrium of Eqs. (3) is therefore
given by - = -A-'r. For each model, the stability of X can be evaluated by the
methods of Lecture 1.

By a simple translation, the Richardson equations (3) are globally asymptoti-
cally stable at Y if and only if 9 = Ay is globally asymptotically stable at the origin,
where y = x - Y. From Lecture 1, we have the well-known stability criterion

TrA < 0 and detA > 0. (4)

Now, Richardson's economic fatigue means a, 1, a22 > 0. So, we have

Tr A = -all - a22 < 0.

And we will have det A > 0 precisely when alia22 > a1 2a 21 , which is to say that
inhibition (alla22) outweighs activation (a12 a2l), confirming our intuition.

One can demonstrate 4 that the eigenvalues of the Jacobian of Eq. (1) at Y have
negative real parts (indeed, are negative reals) when the same condition is met.
An isocline analysis is also revealing. You recall that an isocline is a curve-here
a line-where one side's rate of growth is zero; clearly, an equilibrium is a point
where isoclines intersect. From Eq. (2), the isoclines are given by:

all rl

€1(xl) 2- 1xl - -L (the xl-isocline),
a12  a 12  (5)a21  (5)

02(X) I= ýx 1 + _- (the x2-isocline).
a2 2  a 2 2

For loca' stability of the equilibrium Y, we require the configuration of Figure
1. But, this occurs only if the slope of 01 exceeds the slope of 02, which is to say
all/al2 > a 2 l/a22, or

alla22 > a 2 la12 .

Our intuition is again confirmed: stability requires self-inhibi-ion to exceed recip-
rocal activation in this sense.
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r 2 fa%2

FIGURE 1 Mutualistic
-r~la,2  stability.

The main point, however, is that the classic Lotka-Volterra model of mutualistic
species interaction embeds, in its equilibrium behavior, the classic Richardson arms
race model.

AN ASIDE ON COEVOLUTION
In the models above, of course, the "phenotypes" do not change. In fact, ecosystem
dynamics select against certain phenotypes. Roughly speaking, phenotypic frequen-
cies and population levels have interdependent trajectories. This is very clear, for
example, in immunology, where antigens and antibodies coevolve in a so-called
"biological arms race." But, of course, real arms races work this way, too. Ballistic
missiles beget antiballistic missile defenses, which beget various evasion and defense
suppression technologies. The machine gun makes cavalry obsolete, giving rise to
the "iron horse"-the tank-which begets antitank weapons, which beget special
armor, and so on. Michael Robinson's analogy between moth-bat coevolution and
the coevolution of World War II air war tactics is apposite.

"Moths and their predators are in an arms race that started millions of years
before the Wright brothers made the Dresden raids possible. Butterflies ex-
ploit the day, but their 'sisters' the moths dominate the insects' share of the
night skies. Few vertebrates conquered night flying. Only a small fraction
of bird species, mostly owls and goatsuckers, made the transition. Bats, of
course, made it their realm. Many species of bats are skilled 'moth-ers':
they pursue them at speed after detecting them with their highly attuned
echolocation system. Some moths, however, have developed 'ears' capable
of detecting the bat's ultrasonic cries. When they hear a bat coming, the
moths take evasive action, including dropping below the bat's track. The
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parallels of the response of Allied bombers to the radar used by the Ger-
mans in World War II are interesting. If we visualize the bombers as the
moths, and radars on the ground and in the night-fighter aircraft as bats (a
reversal of sizes), the situation is similar. Bombers used rearward-listening
radar to detect enemy night fighters. When they detected a fighter, they
took evasive action. But heavy bombers, heavily laden, were not very ma-
neuverable. They couldn't dodge about quite as well as moths. Some pilots
tried to drop their aircraft into a precipitous dive. Moths also do this; it is
easy for them to fold their wings and drop. The next stage in the night-
battle escalation is predictable. The night fighter's radar was eventually

tuned to detect the bomber's fighter-detector, and thus the bomber itself.
Bats have not yet tuned in on moths' ears.

"Bombers also used technological disruption. Night fighters came to be
guided to bombers by long-distance radars on the ground. The fighters
started winning. But nothing remains static. The ground radars could be
jammed by various kinds of radio noise. The technological battle swung
the other way. Then the fighters acquired radar. Much like a bat, a fighter
emitted and listened to radar signals of its own. These, too, proved to be
susceptible to countermeasures, however. The RAF could jam the fight-

ers' radar or 'clutter' it with strips of aluminum foil. Each bomber in a
formation dropped one thousand-strip bundle per minute, so that huge
clouds of foil foiled the radar. Amazingly, there may be a similar counter-
weapon among moths. Some moths can produce ultrasonic sounds that fall

within the bats' audio frequency. The moths' voice boxes are paired, one

on each side of the thorax; double voices must be particularly confusing.
Alien sounds in their waveband could confound the bats, exactly in the
same way the foil confounded the fighters.

"The next steps in the bat-versus-moth war may simply be awaiting dis-

covery by some bright researcher; after all, we did not know a lot about
echolocation in bats until after World War II. My guess would be that the
detector will get more complex to meet the defenses. This may already
have happened; bats specializing in moths with ears may have moved to a
higher frequency sound outside the moths' hearing range!" "

Quite clearly, levels of armament (in the international system) and levels of

population (in an ecosystem) interact, as in the Lotka-Volterra and Richardson
models, but phenotypes themselves are also changing. In biology, there is a mathe-
matical theory of coevolution.1 2 In social science, there isn't. There probably could
be, so I simply mention it as a promising direction.

Now, let's shift gears from the mutualistic/arms race variant of Eqs. (1). Specifi-
cally, instead of assuming that all a 12 a 21 are positive, assume that they are negative.
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COMPETITION
Rearranging slightly, Eqs. (1) take the form

xl = al2XIX2 + rixl (l - X(6 kl) (6)

't2 = a2 lXlX2 + r2X2 (X2

where ki - (r1 /aii) > 0 is the carrying capacity of the environment for each species.
These equations were published in 1934 by the great Russian mathematical biologist
G. F. Gause in his book The Struggle for Existence. Indeed, he termed a 12 and a21
"coefficients of the struggle for existence."' 3

Now, examining Eq. (6), each species would exhibit logistic growth to its respec-
tive carrying capacity but for these interaction-struggle---terms. Including them,
Eq. (6) gives a picture of uniform mixing of the populations x, and x2, with contacts
proportional to the product XIx2. Now, however, since the interaction coefficients
are negative, each contact kills species 1 at rate a12 and species 2 at rate a21 . Quite
clearly, a parallel to combat is suggested. But more is true.

In fact, unbeknownst to Gause, Eq. (6) is an exact form of the famous-and to
this day ubiquitous-Lanchester 7 model of warfare!

The transition from arms race to war, then, might be seen as a transition from
the case of a12, a21 > 0 to the case of a12, a 2 l < 0. In the latter context, the well-
known biological "principal of competitive exclusion" simply maps to the military
principle that, usually, one side wins and the other side loses. Both these competitive
exclusion behaviors reflect the mathematical fact that the interior (xl,X2 > 0)

equilibrium of Eq. (6) is a saddle. The stable equilibrium in the mutualistic-
peacetime arms race-case was a node. To the extent these models are correct,
then, we can say (pacem Poincar6) that war is topologically different from peace;
the outbreak of war is a bifurcation from node to saddle.

Thus far we have been exploring a mathematical biology of interstate relations;
what about intrastate dynamics? Is there a Lotka-Volterra perspective on revo-
lution, for instance? And, to what biological process might such social dynamics
correspond?

REVOLUTIONS AND EPIDEMICS
Consider the following specialization of Eqs. (1):

al2= a2l > 0; rl = r2 = all = a22 = 0.
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Then Eqs. (1) become
-t: = - al2x Ix2, (8)

-t2 ý a12xlx2,

which is the simplest conceivable epidemic model. Now, rather than armament
levels, x, represents the level of susceptibles, and x 2 the level of infectives, while the

parameter a 12 is the infection rate, expressing the contagiousness of the infection.
Ideal homogeneous mixing, once more, is assumed. If population is constant at P0,

then x1 = P0 - x 2 and we obtain

t2 = a12X2 (Po - X2 ), (9)

our familiar friend the logistic differential equation. Here, x2 = 0 is an unstable

equilibrium; the slightest introduction of infectives, and the disease whips through

the whole of society.
A traditional tactic for combatting the spread of a disease is removal of infec-

tives. Sometimes, nature does the removing, as with fatal diseases; often, society

removes infectives from circulation by quarantine. The simplest possible assump-
tion is that removal is proportional to the size of the infective pool, yielding the

following variant of Eqs. (1):

±1 = - a 1 2xIx2 , (10)

i2 = a12X1X 2 - r2X2,

with r 2 > 0. This is the famous Kermack-McKendrick (1927) threshold epidemic

model,' so-called because it exhibits the following behavior.

By definition, there is an epidemic outbreak only if ±2 > 0. But this is to say

a l 2 XlX2 - r 2 X2 > 0, or r2
x, 1 > (11)

a 12

The initial susceptible level x,(0) must exceed the threshold p =_ r 2 /a 1 2, some-

times called the relative removal rate, for an epidemic to break out. The fact that

epidemics are threshold phenomena has important implications for public health

policy and, I will argue below, for social science.
The public health implication, which was very controversial when first discov-

ered, is that less than universal vaccination is required to prevent epidemics. By

the threshold criterion (1), the fraction immunized need only be big enough that

the unimmunized fraction-the actual susceptible pool-be below the threshold p.

"Herd immunity," in short, need not require immunization of the entire herd. For

instance, diphtheria and scarlet fever require 80 percent immunization to produce

herd immunity.' Hethcote and Yorke argue that "a vaccine could be very effective in

controlling gonorrhea... for a vaccine that gives an average immunity of 6 months,

the calculations suggest that random immunization of 1/2 of the general population

each year would cause gonorrhea to disappear."'
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Mathematical epidemic models are discussed more fully in Lecture 5. With the
above as background, let us now consider the analogy between epidemics (for which
a rich mathematical theory exists) and processes of explosive social change, such as
revolutions (for which no comparable body of mathematical theory exists). Again,
a more careful and deliberate development is given in Lecture 5. Here, we simply
offer the main idea. It will facilitate exposition to re-label the variables in Eqs. (10).
If S(t) and I(t) represent the susceptible and infective pools at time t and if r and
,y are the infection and removal rates, the basic model is:

S= - rSI,
= rSI--1 '1, 

(12)

with epidemic threshold
S >-=p. (13)

r

The basic mapping from epidemic to revolutionary dynamics is direct. The
infection or disease is, of course, the revolutionary idea. The infectives I(t) are
individuals who are actively engaged in articulating the revolutionary vision and
in winning over ("infecting") the susceptible class S(t), comprised of those who are
receptive to the revolutionary idea but who are not infective (not actively engaged
in transmitting the disease to others). Removal is most naturally interpreted as the
political imprisonment of infectives by the elite ("the public health authority").

Many familiar tactics of totalitarian rule can be seen as measures to minimize r
(the effective contact rate between infectives and susceptibles) or maximize y (the
rate of political removal). Press censorship and other restrictions on free speech
reduce r, while increases in the rate of domestic spying (to identify infectives) and
of imprisonment without trial increase y.

Symmetrically, familiar revolutionary tactics-such as the publication of un-
derground literature, or "samizdat"--seek to increase r. Similarly, Mao's directive
that revolutionaries must "swim like fish in the sea," making themselves indistin-
guishable (to authorities) from the surrounding susceptible population, is intended
to reduce -y.

GORBACHEV, DETOQUEVILLE, AND THE THRESHOLD
Interpreting the threshold relation (13), if the number of susceptibles So is, in fact,
quite close to p, then even a slight reduction (voluntary or not) in central authority
can push society over the epidemic threshold, producing an explosive overthrow
of the existing order. To take the example of Gorbachev, the policy of Glasnost
obviously produced a sharp increase in r, while the relaxation of political repression
(e.g., the weakening of the KGB, the release of prominent political prisoners, the
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dismantling of Stalin's Gulag system) constituted a reduction in -y. Combined, these
measures evidently depressed p to a level below So, and the "revolutions of 1989"
unfolded. Perhaps DeToqueville intuited the threshold relation (13), describing this
phenomenon, when he remarked that "liberalization is the most difficult of political
arts."

As a final element in the analogy, systematic social indoctrination can produce
herd immunity to potentially revolutionary ideas. We even see "booster shots" ad-
ministered at regular intervals-May 1 in Moscow; July 4 in America-on which
occasions the order-sustaining myths ("The USSR is a classless workers' paradise";
"Everyone born in America has the same opportunities in life") are ritually cele-
brated.

Now, as I said before, all these analogies are doubtlessly terribly crude. I cer-
tainly do not claim either that any of the models are right or that the dynamical
analogies among them are exact. Yet, the very fact that a single ecosystem model-
the Lotka-Volterra equations-could specialize to equations that even caricature,
however crudely, such basic and important social processes as arms racing, warring,
and rebelling is, I believe, very interesting and serves to reinforce the larger point
with which I began: social science is ultimately a subfield of biology.

Finally, let me conclude with an admission. I was surprised when I began to no-
tice these connections. But why should we be surprised? In certain non-Western cul-
tures, where our species is seen as a "part of nature," where gods-like the sphinx-
can be part man and part lion, all these connections between ecosystems and social
systems might appear quite unremarkable. But in Western cultures shaped by the
Old Testament, where God creates only man-not the fishes, birds, and bushes-
in his own image, man is seen as "apart from nature." And, accordingly, we are
surprised when our models of fish-or worse yet, of viruses-turn out to be inter-
esting models of man. Perhaps we are true Darwinians more in our heads than in
our hearts. Creatures of habit, we are captive to a transmitted and slowly evolving
culture. But, of course, this too is "only natural."
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This chapter will appear as Lecture 3 in Nonlinear Dynamics, Mathematical
Biology, and Social Science by Joshua M. Epstein, to be published as a
lecture notes volume in the Santa Fe Institute Studies in the Sciences of

Complexity series (Addison-Wesley, 1994). All lectures referred to in the
present chapter are from this forthcoming book.

In this chapter I would like to give an introduction to some simple mathemat-
ical models of combat, including my own Adaptive Dynamic Model. Here, we are
concerned with the course of war, rather than the arms races or crises that may
precipitate war. Before discussing specifics, it may be well to consider the basic
question: What are appropriate goals for a mathematical theory of combat at this
point?

First and foremost, we need to be humble. Warfare is complex. Outcomes may
depend, perhaps quite sensitively, on technological, behavioral, environmental, and
other factors that are very hard to measure before the fact. Exact prediction is
really beyond our grasp.
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But, that's not so terrible. Theoretical biologists concerned with morphogenesis
-the development of pattern-are, in some cases, situated similarly. For the par-
ticular leopard, we certainly cannot predict the exact size and distribution of spots.
But, certain classes of partial differential equations-reaction diffusion equations-
will generate generic animal coat patterns of the relevant sort. So, we feel that this
is the right body of mathematics to be exploring. The same sort of point holds
for epidemiologists. Few would claim to be able to predict the exact onset point
or severity of an epidemic. Theoreticians seek simple models that will generate a
reasonable menu of core qualitative behaviors: threshold eruptions, persistence at
endemic levels, recurrence in cycles, perhaps chaotic dynamics. The aim is to pro-
duce transparent, parsimonious models that will generate the core menu of gross
qualitative system behaviors. This, it seems to me, is the sort of claim one would
want to make for a mathematical theory of combat.

Now, in classical mechanics, the crucial variables are mass, position, and time.
In classical economics, they are price and quantity. War, traditionally, is about ter-
ritory and, unfortunately, death, or mutual attrition. A respectable model, at the
very least, should offer a plausible picture of the relationship between the funda-
mental processes of attrition and withdrawal (i.e., territorial sacrifice). I will discuss
attrition first.

LANCHESTER'S EQUATIONS
The big pioneer in this general area was Frederick William Lanchester (1868-1945).
The eclectic English engineer made contributions to diverse fields, including auto-
motive design and the theory of aerodynamics. 6 He is best remembered for his
equations of war, appropriately dubbed the Lanchester equations. First set forth in
his 1916 work, Aircraft in Warfare, these have a variety of forms, the most renowned
of which is called-for reasons that will be given shortly-the Lanchester "square"
model. 7 With no air power and no reinforcements, the Lanchester square equations
are dR-- = -bB,

dt (1)

dB
T=-rR.dt

Here, B(t) and R(t) are the numbers of "Blue" and "Red" combatants-each of
which is an idealized fire source-and b, r > 0 are their respective firing effectiveness
per shot. Qualitatively, these equations say something intuitively very appealing,
indeed, seductive: The attrition rate of each belligerent is proportional to the size
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of the adversary. The system (1) is, of course, soluble exactly. With B(O) = B0 and
R(0) = Ro,

R(t) =~[(Ro - VFB)e"'t + ±R + FBo) ] (2)t

B(t) =~[(Bo - ý/Ib~o) ev;rb + (Bo + ~/Ro) -,/rt]

with various trajectories for R and B over time. In the phase plane, the origin is
obviously the only equilibrium of (1) and the Jacobian of (1) at Y is

DF(Y) = 0 -r

-b 0 ) .

The eigenvalues are clearly -v'•. Hence, the origin is a saddle, though the positive
quadrant is all we care about. Clearly, depending on the parameters (b, r) and the
initial values (B 0, RO), either side can start ahead and lose, or start behind and
win, as is observed historically.[']

The most celebrated result of the theory is the so-called Lanchester Square
Law, which is obtained easily. From (1), we have

dR bB (3)dB-- = r-R" '3

Separating variables and integrating from the terminal values (R(t), B(t)) to the
higher initial values,

Ro /Bo

r RdR = b BdB,
J(t) J (t)

we obtain the state equation

r(R 2 - R(t) 2 ) = b(B2 - B(t)2 ) (4)

or, after a bit of rearranging,

bB(t) 2 - rR(t)2 = bB2 - rPN.

I'lIndeed, the numerically smaller force was the victor in such notable cases as Austerlitz (1805);

Antietam (1862); Fredericksburg (1862); Chancellorsville (1863); the Battle of Frontiers (1914);

the fall of France (1940); the invasion of Russia (Operation Barbarossa, 1941); the battle of Kursk
(1943); the North Korean invasion (1950); the Sinai (1967); the Golan Heights (1967 and 1973);

and the Falklands (1982), to name a few.
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The left-hand side is a Hamiltonian of the system. Of course, stalemate occurs when
B(t) = R(t) = 0, which yields the Lanchester Square Law:

bBo=rN or

B 0 = \ bRo. 
(5)

This equation is very important. It says that, to stalemate an adversary three times
as numerous, it does not suffice to be three times as effective; you must be nine
times as effective! This presumed heavy advantage of numbers is deeply embed-
ded in virtually all Pentagon models. For decades, it supported the official dire
assessments of the conventional balance in Central Europe, giving enormous weight
to sheer Soviet numbers and placing a huge premium on western technological
supremacy. That, of course, had budgetary implications. But, the presumption of
overwhelming Soviet conventional superiority also shaped the development of so-
called theater-nuclear weapons and produced a widespread assumption that their
early employment would be inevitable, which drove the Soviets to seek preemptive
offensive capabilities, and so on, in an expensive and dangerous military coevolution
(see the preceding chapter).

The whole dynamic while driven by myriad political and military-industrial
interests on all sides, was certainly supported by Lanchester's innocent-looking
linear differential equations, (1). But, the linearity itself implicitly assumes things
that are implausible on reflection and it mathematically precludes phenomena that,
in fact, are observed empirically. Moreover, anyone exposed to mathematical biology
would have found the Lanchester variant (1) to be suspect immediately.

DENSITY
The equations, once again, are

dB- = - rR, (6)
dt
dR- = _ bB. (7)
dt

In this framework, increasing density is a pure benefit. If the Red force R grows,
a greater volume of fire is focused on the Blue force B, and in Eq. (6), the Blue
attrition rate dB/dt grows proportionally. At the same time, however, no penalty
is imposed on Red in Eq. (7) when, in fact, if the battlefield is crowded with Reds,
the Blue target acquisition problem is eased and red's attrition rate should grow.

In warfare, each side is at once both predator and prey. Increasing density is a
benefit for an army as predator, but it is a cost for that same army as prey. The
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Lanchester square system captures the predation benefit but completely ignores the
prey cost of density. The latter, moreover, is familiar to us all. For instance, if a
hunter fires his gun into a sky black with ducks, he is bound to bring down a few.
Yet if a single duck is flying overhead, it takes extraordinary accuracy to shoot it
down. For ducks, considered as prey, density carries costs.

And, as any ecologist would expect, the effect is indeed observed. Quoting
Herbert Weiss, "the phenomenon of losses increasing with force committed was
observed by Richard H. Peterson at the Army Ballistic Research laboratories in
about 1950, in a study of tank battles. It was again observed by Willard and the
present author [Weiss] has noted its appearance in the Battle of Britain data."8

The work referred to is D. Willard's statistical study of 1500 land battles. 9

To his credit, Lanchester actually offered a second, nonlinear variant of these
equations, which is much more plausible in this ecological light. Here,

dR
dR = (-bB)R, (8)

dB-y- = (-rR)B. (9)

In parentheses are the Lanchester square terms reflecting the "predation benefit"
of density, but they are now multiplied by a term (the prey force level) reflecting
"prey costs," as it were. The Red attrition rate, dR/dt in Eq. (8), slows as the
Red population goes to zero, reflecting the fact that, as the prey density falls, the
predator's search ("foraging") requirements for the next kill increase. Equivalently,
red's attrition rate grows if, like the ducks in the analogy, its density grows. In
summary, a density cost is present to balance the density benefit reflected in the
parenthesized term.

If we now form the casualty-exchange ratio

dR b

separate variables, and integrate as before, we obtain the state equation

r(Ro - R(t)) = b(Bo - B(t))

and the stalemate requirement
rRo bB0 .

Now, as against the Lanchester Square Law, it does suffice to be three (rather than
nine) times as good to stalemate an adversary three times as numerous.
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AMBUSH AND ASYMMETRY

Further, asymmetrical, variants of the basic Lanchester equations have been de-
vised. For example, the so-called ambush variant imputes the "square law" fire
concentration capacity to one side (the ambushers) but denies it to the other (the
ambushees). Here,

dB

dt
dR

-= -bBR,dt

so that
dB r

dR bB

b(B2 - B(t)2) = r(Ro - R(t)).

Now assuming a fight to the finish (R(t) = B(t) = 0) and equal firing effectiveness
(r = b), a Blue force of B0 can stalemate a Red force numbering B02--a hundred

can hold off ten thousand. It's Thermopolae.

REINFORCEMENT
Thus far the discussion has concentrated on the dynamics of engaged forces. Often,
however, there is some flow of reinforcements to the combat zone proper. But, there
are limits to the number of forces one can pack into a given area-there are "force

to space" constraints. One might therefore think of the combat zone as having a
carrying capacity and, accordingly, posit logistic reinforcement. Attaching such a
term to the Lanchester nonlinear attrition model produces

dR =- bRB~ aR 1-R)N

dt -bB±R 1 K) (10)
dB = _ rBR+B IB B)( -

where a, #i, K, and L are positive constants. As observed in the preceding chapter,
this is exactly Gause's (1935) famous model of competition between two species,
itself a form of the general Lotka-Volterra ecosystem equations.

Equations (10) admit four basic cases, corresponding to different "war histo-
ries," These are shown in the phase portraits in Figure 1.

Cases (a) and (b) are clear instances of the biological "principle of competi-
tive exclusion," or military principle that one or the other side usually wins. Case
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(a) B (b) B

\B=0 A=o
\ =o\

K

(c) 3 (d)
A•=o \A o

0=
~ B=0

_ _ _ _ _ B_ 0_ _ _ _ _ R

K

FIGURE 1 Phase portraits for Lanchester/Gause Model. Adapted from Colin W. Clark's
Mathematical Bioeconomics (New York: John Wiley, 1990), p. 194.

(c) shows the horrific stable node-the "permanent war" that neither side wins.
Finally, we have case (d), a saddle equilibrium. Any perturbation (off the stable
manifold) sends the trajectory to a Red or Blue triumph. There is, however, the
interesting and important region below both isocl•nrs. Each side feels encouraged
in this zone; reinforcement rates exceed attritior '"s so the forces are growing.
But, for instance, as the trajectory crosses the i3 socline, matters start to sour
for Blue; b goes negative while Red forces continue to grow. Expectations of Blue
defeat may set in, Blue morale may collapse, and, as a result, the Blue force can
"break" long before it is physically annihilated. Indeed, the general phenomenon of
"breakpoints" is common.
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BREAKPOINTS

Literal fights to the finish are actually rare. Normally, there is some level of attrition
at which one belligerent "cracks." Suppose Blue breaks if B(t) = 3Bo and Red

breaks if R(t) = pRo, with 0 < p, 13 < 1 and p not necessarily equal to 3. Clearly,
breakpoints divide phase space into four zones, as shown in Figure 2.

In Zone III, each side exceeds its breakpoint, so there is combat. Red wins if a

trajectory crosses from Zone III to Zone II. All's quiet in Zone I, and so forth.
Substituting the stalemate conditions, B(t) = fBo and R(t) pRo into, for

illustration, the Lanchester square state equation (4) yields
r[P• - (pRo)2 ] = b[B' - (,3Bo)2],

which implies the (with breakpoints) stalemate condition

ROy/r(1 - p) 2 = Bov'b(1 - 0
2).

B t)

Red Breakpoint

Zone IV: Zone III:
Blue Combat

Victory

P3Bo P Blue Breakpoint

Zone I: Zone II:
All Red

Quiet Victory

R R(t)

pFo

FIGURE 2 Breakpoints.
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GENERALIZED EXCHANGE RATIO
As discussed in Epstein2' 3 these variants are all special cases of the general system

dR

dB
dT -rRC BC4. (12)

The corresponding casualty-exchange ratio is

dR b Bcl-c4
dB r RC3-C2

where c-values are simply reals in the closed interval [0, 1].
Clearly, from Eq. (9), cl is Blue's predation benefit from increasing density

while from Eq. (10), C4 is Blue's prey cost of increasing density. Hence the exponent
C1 - C4 might be thought of as the net predation benefit of increasing density, which
is net fire concentration capacity in Lanchester's sense. The Red exponent c3 - c2

is analogously interpreted. Therefore, let us define

Ab =Blue's net predation benefit = c - ,

Ar =Red's net predation benefit = c 3 - c 2.

Then,
dR b ( Blb (dB -r \-R•] (3

Again separating variables and integrating from terminal to (higher) initial values,
we have

b B B'\hdB r /r RArdR.
J B(t) , R(t)

With stalemate defined as B(t) = R(t) 0, we obtain the stalemate condition

b B0+'h _ ror

l+Ab 1 +A, or

B0 =b \ Ar

which specializes to all the cases discussed earlier (e.g., Ad = A, = 1 implies square
law), and many more.

Equation (13) is the algebraic form of the exchange ratio p(t), used in my own
Adaptive Dynamic Model. On separation of variables and integration, it also yields
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the measure of net military advantage used in the nonlinear arms race models of
Lecture 4.1[1 For further discussion of the \s, see Epstein.3

Of course, mere casualty-exchange ratios do not necessarily determine actual
outcomes. Even defenders with favorable exchange ratios in engagements may run
out of room or run out of time (e.g., popular support may collapse before the
attacker's breakpoint is reached). Duration and territory-space and time-can
loom every bit as large as physical attrition in determining outcomes. And this
brings us to the topic of movement.

MOVEMENT
Historically, war has been about territory. On a map of the modern world, the
jagged borders are often simply the places where battle lines finally came to rest. It is
interesting to compare these with the straight borders arrived at more contractually,
peacefully-say, the borders between Nebraska and Kansas or between the U.S.
and Canada. This is the reason that mountain ranges are such common borders:
they were natural lines of military defense. The Alps, Himalayas, Pyrenees, and
Caucases are examples. The same obviously holds for major bodies of water, like
the English channel, and rivers, like the Yalu. In short, political borders reflect
military technology. In any event, movement is a central aspect of war. And, as I
argued at the outset, a plausible model should capture the basic connection between
the fundamental processes: attrition and movement.

Lanchester himself had nothing to say about this and offered no model of
movement. Contemporary extensions of Lanchester all handle it in essentially the
same way: they posit that the velocity of the front-that is, the rate of defensive
withdrawal-is some function of the force ratio. So, if

R(t)

these models posit a withdrawal rate, a velocity, W(x) with W(1) = 0; W'(x) > 0
if x > 1 and eventually W"(x) < 0, implying some asymptote. (The direction of
movement is always "forward" for the larger force.) One published example5 is

W(x) = Wmax

The basic setup, then, is this: forces grind each other up via the attrition equations;
the force ratio changes accordingly; and, as a function of that changing force ratio,
the front's velocity changes, as depicted in the flow diagram of Figure 3.

(21See Epstein, Nonlinear Dynamics, Mathematical Biology, and Social Science.

...........
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SInitial Atztri~on Force Withdrawal

SForces: Equations: Ratio: Velocity:

Ro R =(RB) "==l=D R(t) WX
j ~Bo B=g(R,B) x=B-•t)x

FIGURE 3 Flow diagram for the standard model.

The framework is very neat indeed. The only problem is that any combat model
with this basic structure is fundamentally implausible, and for one basic reason:
movement of the front-defensive withdrawal-is anomalous! For a given pair of
attacking and defending forces, the course of attrition on the defender's side, as
calculated in this framework, is exactly the same whether he withdraws or not. The
course of attrition on the attacker's side is also unchanged whether the defender
withdraws or not. In short, defensive withdrawal neither benefits the defender nor

penalizes the attacker. So, why in the world would the defender ever withdraw?
The framework itself mathematically eliminates any rationale, or incentive, for the
very behavior-withdrawal-it purports to represent. Movement is influenced by

attrition, but not conversely. The movement of the front (withdrawal) is not fed
back into the ongoing attrition process, when the entire point of withdrawal was
presumably to affect that process-in the prototypical case, the point is to reduce

one's attrition. Surely, it is contradictory to assume some benefit in withdrawal
(otherwise, why would anyone withdraw?) and then to reflect no benefit whatsoever
in the ongoing attrition calculations. Yet, all the contemporary Lanchester variants
of which I am aware suffer this inconsistency.(3l

In turn, because defensive withdrawal cannot slow the defender's attrition (or.
for that matter, the attacker's), the sacrifice of territory cannot prolong the war.
And so, the most fundamental tactic in military history-the trading of space for
time-is mathematically precluded. But, this tactic saved Russia from Napoleon
and, later, from Hitler. A plausible model should certainly permit it.

[3lit is interesting to note that the battle of Iwo Jima--an island, where movement of the front

was all but impossible-is the only case (to my knowledge) in which there is any statistical
correspondence between events as they unfolded and as hypothesized by the Lanchester equations.
Even if the statistical fit were good, there would be no basis for extrapolation to cases where
substantial movement is possible. And, in fact, the fit is marred by insufficient data. On t his issue,
see Epstein.

2
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THE ADAPTIVE DYNAMIC MODEL[3 ]

So, how do I fix it-how do I build in a feedback from movement to attrition?
As simply as possible. The key parameters are the "equilibrium" attrition rates,

OdT and aaT. The first, adT, is defined as the daily attrition rate the defender is
willing to suffer in order to hold territory. The second, caT, is defined as the daily
attrition rate the attacker is willing to suffer in order to take territory. I assume
0 < adT, aaT < 1.

War, in addition to being a contest of technologies, is a contest of wills. So it

is not outlandish to posit basic levels of pain (attrition rates) that each side comes
willing to suffer to achieve its aims on the ground. If the defender's attrition rate
is less than or equal to adT, he remains in place. If his attrition rate exceeds this
"pain threshold," he withdraws, in an effort to restore attrition rates to tolerable

levels, an effort that may fail dismally depending on the adaptations of the attacker.
a similar creature. If the attacker's attrition rate exceeds tolerable levels, he cuts
the pace at which he prosecutes the war; if his attrition rate is below the level he
is prepared to suffer, he increases his prosecution rate.1i 1

It is the interplay of the two adaptive systems, each searching for its equilibrium,
that produces the observed dynamics, the actual movement that occurs and the actual
attrition suffered by each side. Indeed, in its most basic form, withdrawal might be
thought of as an attrition-regulating servomechanism. The pain thresholds adT and
aaT play the roles of homeostatic targets, in other words. The introduction of these
thresholds struck me--and still strikes me-as the most direct mathematical way to
permit defensive withdrawal to affect attrition and, thus, to permit the trading of
space for time. Their introduction also generates the fertile analogy between armies
and a broad array of goal-oriented, feedback-control (cybernetic) systems.

Before delving into the mathematics, one possible misconception about these
"pain" thresholds should be addressed. I do not claim, nor does my model imtply.
that battlefield commanders are necessarily aware of the numerical values of OdT'
and CaT. Humans in the eighteenth century were not "aware" that they were sweat-

ing and shivering depending on the error: "body temperature minus 98.6 degrees,
Fahrenheit." But the homeostatic behavior was there nonetheless.

OVERVIEW OF THE MODEL
Let me now turn to the Adaptive Dynamic Model itself. The full apparatus includes
air power as well as air and ground reinforcements, factors I will not discuss here.:3

13] For earlier versions see Epstein.23

1If]These parameters represent daily rates of attrition, not total or cumuzlative attrition levels, aLs

discussed above in connection with breakpoints.
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The model is a system of delay equations where the unit of time is usually inter-
preted as the day. If A(t) and D(t) are the attacker's and defender's ground forces
surviving at the start of the tth day and a,(t - 1) is the attacker's attrition rate
over the preceding day, we have the accounting identity

A(t) = A(t - 1) - aa(t - 1)A(t - 1). (15)

The attacker's force on Tuesday is his force on Monday, minus total losses Monday.
Likewise, it must be true that

D(t) = D(t - 1) - (Defender's losses on day (t - 1)).

What are these losses? Well, if we define the casualty-exchange ratio as

) Attackers Lost on day t - I

p(t -1) (�cers Lost on day t -

the defender's losses must be

aa(t - 1)A(t - 1)

p(t - 1) 1

since the numerator is the attackers lost on (t - 1). Thus, we have the second
accounting identity

D(t) = D(t - 1) - cka(t - 1)A(t - 1) (16)
p(t - 1)

Obviously, once we attach specific functional forms to Ca(t) and p(t), we no
longer have accounting identities; we have a model. Above we discussed p(t) and
argued that a plausible and relatively general functional form is

P D=(t)A (17)p At =PO ,\

where A,, Ad E [0, 1] are parameters. The real action-all feedback from movement

to attrition-is inside aa(t). Here is where the interplay of adaptive belligerents

unfolds. As mentioned, this interplay is between the attacker's prosecution rate

(reflecting the pace at which he chooses to press the attack) and the defender's

withdrawal rate, both of which are attrition-regulating servomechanisms, in effect.

The defender is, in some respects, simpler. We discuss him first.
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ADAPTIVE WITHDRAWAL AND PROSECUTION
The defender's withdrawal rate for day t is assumed to depend on the difference
between his actual and his equilibrium attrition rate for the preceding day, day
(t - 1). The functional form of that dependence should satisfy some basic require-
ments:

1. As the actual attrition rate for day (t - 1) approaches 1, the withdrawal rate
for day t should approach the maximum feasible daily rate, Wmax.

2. If the actual attrition rate for day (t - 1) is greater than the equilibrium rate
OdT, the withdrawal rate for day t should be greater than for day (t - 1).

3. If the actual attrition rate for day (t- 1) is less than or equal to the equilibrium
rate adT, then the withdrawal rate for day t is zero.

It may not be correct, but the simplest functional form I can think of that satisfies
these requirements is

0 if ad(t-- 1) _< adT,
W(t) = W(t - 1) + ( -n,,t ] (ad(t - 1) - adT) otherwise,

(18)
where

Mdt =D(t) - D(t + 1)
D(t) (19)

While in particular cases, there may be departures, exceptions, 3 and so forth, as a
first-order idealization, the notion that, ceteris paribus, the aim of withdrawal is to
reduce one's attrition rate seems fairly compelling. It also enjoys a certain biological
plausibility. If the heat is too great, we yank our hand from the fire; Ashby's cat
comes to min !. Surely, flight is a basic mechanism of defense for all species. One
of the more famous experiments in this connection was conducted by our friend
Gause and is known as his "flour beetle" experiment. He began with two beetle
species compei ing in an environment of flour. He found competitive exclusion to
be operative; left alone, one species consistently exterminated the other. But, when
Gause insertea small lengths of glass tubing into the flour, the weaker species was
able to retreat into the tubing, establish refuges, and survive-they could "trade
space for time," as it were. So can the defenders in the Adaptive Dynamic Model.
As we will see, they may choose to forego that option. But, a reasonable model
should not preclude it.

Turning to the attacker, the model assumes that the pace at which he presses
the attack, his prosecution rate for day t, which we denote P(t), depends on the
difference between his actual and his equilibrium attrition rates for the preceding
day, day (t - 1). The functional form of that dependence should satisfy some basic
requirements:
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1. As the attacker's actual attrition rate for day (t - 1) approaches 1, the prose-
cution rate for day t should approach zero.

2. If the actual attrition rate for day (t - 1) is greater than (less than) the equi-
librium rate a.T, the prosecution rate for day t should be less than (greater
than) for day (t - 1).

3. If the actual attrition rate for day (t - 1) equals the target, or equilibrium, rate,
then there is no change in the prosecution rate.

It may not be correct, but the simplest functional form I can think of that
satisfies these requirements is[61

P(t) = P(t- 1)- (P(t -1) (a.(t -1)- aT). (20)

As I said earlier, it is the interplay of these adaptive agents that shapes the
dynamics; they are linked in the formula for aa(t), the attacker's attrition rate for
day t. This functional form should satisfy some basic requirements:

1. Ceteris paribus, the higher is the attacker's prosecution rate, the higher should
be his attrition rate;

2. Ceteris paribus, the higher is the defender's withdrawal rate, the lower should
be the attacker's attrition rate.

3. As the defender's withdrawal approaches full flight (W(t) -* Wmax), the at-
tacker's attrition rate should approach zero.

It may not be correct, but the simplest functional form I can think of that
satisfies these requirements is

SP~t)W1t"

aa(t) =P(t) (i -~ t (21)

Once the initial conditions and parameter values are specified, these equations
produce the dynamics. And, as noted above, it is the coadaptation of these agents,
each searching for its equilibrium, that determines the actual movement that occurs
and the actual attrition that is suffered by each side.

In a nutshell, the attacker makes an opening "bid" on the pace of war, the rate
at which his own forces are consumed (of course, he can set his rate at zero by not
attacking). He may want to press the attack at an extremely high pace and may
be willing to suffer extremely high attrition rates, if-for operational, strategic, or

1611 am grateful to Mike Sobel for pointing out to me that the functional form for P(t) that I
originally published in Epstein 2 actually fails requirement (2). Subsequent to our discussion, I
noticed that it also fails (1).
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political reasons-a quick decision is paramount.[!7 Via the casualty-exchange ratio
(defenders killed per attacker killed), this imposes an attrition rate on the defender.
The latter may elect to hold his position and accept this attacker-dictated rate, or
he may choose to reduce his attrition rate by withdrawing at a certain speed.

The mathematical mechanism whereby the defender's withdrawal reduces his
attrition is not obvious. From Eq. (16), the attacker's attrition rate over day t,

,a(t), produces, via the inverse exchange ratio l/p, a defensive attrition rate over
day t, ad(t). If this exceeds the defender's movement threshold adT, then on the
next day the defender withdraws at a rate W(t + 1). This action reduces (that
is, feeds back negatively on) the attacker's attrition rate a,(t + 1). In turn, this
decrease in the attacker's attrition rate produces (again via l/p) a reduction in
the defender's attrition rate ad(t + 1), whose size relative to adT determines the
rate of any subsequent withdrawal. If Qd(t + 1) is less than adT, no subsequent
withdrawal occurs. The front then remains in place unless and until the attacker-
by attempting to force the combat at his chosen pace-imposes on the defender an
attrition rate exceeding his withdrawal threshold, and so on. One might think of the
defender as an adaptive system, with withdrawal rates as an attrition-regulating
servomechanism.

All the while, the attacker, t..o, is adapting; the prosecution rate P(t) is his
servomechanism. Just as there is some threshold adT beyond which the defender
will withdraw, so the attacker possesses an "equilibrium" attrition rate ckaT. If on
day (t - 1) he records an attrition rate exceeding aaT, the attacker reduces the pace
at which he prosecutes the combat. If he records an attrition rate lower than OkaT,
he accelerates by raising P(t). The magnitude of these changes in P(t) approach
zero if the attacker's attrition rate approaches aaT, the equilibrium rate. Each side's
adaptation may damp or amplify, penalize or reward, the adaptation of the other.

The adaptations are perhaps more sophisticated than meets the eye. Specifi-
cally, a primitive type of learning can occur. Suppose that on Monday, the defender's
attrition rate exceeds his threshold adT by some amount X. In response, the de-
fender withdraws at a rate W(t) on Tuesday. Suppose, however, that-because his
own attrition rate on Monday was below his threshold aaT-the attacker increases
his prosecution rate on Tuesday and that, as a result, the defender's attrition rate
on Tuesday again exceeds his threshold by the same amount X. Only a defender
unable to learn would withdraw at W(t) again, since that rate already failed to solve
his problem. A more deeply adaptive defender would withdraw at a rate greater
than W(t); in the Adaptive Dynamic Model, he does. To me, this makes a certain
amount of biological sense. If walking slowly away from a swarm of attacking bees

[7]As an operational matter, a quick decision can circumvent logistical problems that could prove
telling in a prolonged war. Strategically, the attacker may seek a decision before the defense has a
chance to mobilize superior industry, superior reinforcements, or superior allies. An attacker with
unreliable allies of his own may seek a quick win lest they begin to defect. An attacker may also
choose to press the attack at a ferocious pace to secure a decision before the defender's nuclear
options can be executed. A classic strategy of states facing enemies on multiple fronts has been
to win quickly through offensive actions on one front and then switch forces to the second.
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does not reduce the sting rate, we try jogging. If jogging doesn't reduce the sting
rate, we run, and so on, until we are running as fast as we can (WmNax). Of course, in

the bee case we actually are free to pick something close to Wmax as a first "trial re-
treat rate" because we are not concerned with territorial sacrifice. Analogous points
apply to the attacker and his learning behavior in adjusting his prosecution rate,
P(t), as we will illustrate in the simulations below.

By setting the two fundamental thresholds QdT and aaT in various ways, the

model will generate a reasonable spectrum of war types-bellotopes--from the war

of entrenched defense, h la Verdun, to guerrilla war. I will discuss the four extreme
settings and then present some simulations.

CASE 1: a.T l 1

The British at the ' omme (1916) offer perhaps the great example of an attacker

with no apparent pain threshold. Considering the extraordinary pain involved, we

can ask with Jack Beatty, "What made them do it?"

"'It' was to march, in an orderly way, rank by rank, column by column,

to their death. That is what 20,000 British soldiers did on July 1, most of

them falling between 7:30 and 8:30 A.M., the taste of tea and bacon still

fresh on their lips. They got out of their trenches and marched to their

death, or to some other form of mutilation.... Methodically, these [German]

gunners raked the British formations. Methodically new formations set out,

were shot down in no-man's-land, were replaced by other formations, and

so on, turn and turn about, through the long day." (Beatty,1 p. 112-114)

Long indeed. Here, perhaps, is a case of aaT ;1. Along similar lines, one thinks

of the fateful Argonne Forest offensive of 1918 and, in particular, of Pershing's order

to "push ahead without regard to losses and without regard to the exposed condition

of the flanks." Surely, for Pershing, aat was close to 1. And, as Beatty notes, "It is

no wonder that the cemetery at Romagne-Sous-Montfaucon, deep in the Argonne,

is the largest American military cemetery in Europe, containing the remains of

14,246 soldiers." I

CASE 2: OdT ,zz 1

The defensive analogue of the British at the Somme is undoubtedly the French at

Verdun, also in 1916-not a good year, as Beatty recounts:

"The French rotated seven tenths of their army though the meat grinder

of Verdun. A colonel's order to his regiment gives the death-heavy flavor of

the battle: 'You have a mission of sacrifice.... On the day they want to, they

will massacre you to the last man, and it is your duty to fall.' The losses
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on both sides were appalling-perhaps a million and a quarter casualties in
all. (The ossuaire at Verdun is full of the bones of the 150,000 unidentified
and unburied corpses.) In short, Verdun was a demographic catastrophe
for France. Yet, following P6tain's famous order, 'Its ne passeront pas!' the
French Army held Verdun for the ten months of the battle-an epic of
courage and endurance but not of victory. The standoff of Verdun, in the
words of Alistair Horne, 'was the indecisive battle in an indecisive war; the
unnecessary battle in an unnecessary war; the battle that had no victors
in a war that had no victors."' (Beatty,' p. 117)

Perhaps this is the terrible stable node I spoke of above-the sink of all sinks and,
I would argue, a case of adT ; 1.

CASE 3: OadT ;:: 0

Diametrically opposed to the French at Verdun are guerrilla defenders; their with-
drawal threshold adT is close to zero. In guerrilla wars, like Vietnam, larger "supe-
rior" forces seeking direct engagements find themselves frustrated by defenders who
withdraw- "vanish into the brush"-at the slightest attrition, the extreme case of
trading space for time. Indeed, the entire strategy of the guerrilla-his only real
hope-is precisely to prolong indecisive hostilities until domestic support for the
war disintegrates, as it did for the United States in Vietnam.

CASE 4: aaT ;, 0

The fourth and final "pure" variant is the case where the attacker's equilibrium rate
,aT is close to zero. The natural example here is the so-called "fixing operation."

The classic case is where an attacker is attempting a concentrated breakthrough in
some sector of the battle front. He wants to prevent the defender from shifting forces
from neighboring sectors to reinforce the breakthrough sector. Standard procedure
for the attacker is to "pin," or "fix," these neighboring defensive forces by applying
some pressure, but not enough to incur serious losses.

By specializing these two parameters, adT and aaT, the model will produce the
"pure" forms, shown in Table 1, as well as myriad mixed cases.

TWO SIMULATIONS
For illustrative purposes, I offer two simulations representing mixed cases. The nu-
merical settings are given in Table 2. In the first, I posit a ferocious attacker, with
an equilibrium attrition rate of OaT = 0.6. The defender's withdrawal threshold
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attrition rate is set at adT = 0.3, respectably stalwart.-Though not shown in Fig-

ure 4, the forces are initially equal (at half a million). What coadaptive story, then,

is this picture telling?

TABLE 1 Adaptive Dynamic Model

Thresholds

adT Defender's Threshold

adT Attacker's Threshold

Qualitative Range

(tdT --- 1 Trench War (Verdun)
adT ` 0 Guerrilla War
aaT - 1 The Somme

aaT -- 0 Fixing Operations

TABLE 2 Numerical Settings for
Figures 4 and 5.

Setting
Variable Figure 4 Figure 5

aaT 0.6 0.1
adT 0.3 0.1
P(1) 0.1 0.2
A(1) 5 x 10' -

D(1) 5 x 105  -

W(1) 0 -

Wmax 20.0 -

p(t) 1.1

1 Dash indicates "same as in

Figure 4."
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FIGURE 4 High unequal thresholds.

The attacker's opening "bid" on the pace of war, his opening prosecution rate,
is P(1) = 0.1. At this low level, the resulting attrition rate for the attacker is well
below the 0.6 level he is, in fact, prepared to suffer. And so, as shown, he begins
raising his prosecution rate. But, this must climb to around 0.4 (on day 3) before
it produces a defensive attrition rate above the defender's threshold of OkdT = 0.3,
which induces withdrawal.[") Both curves then rise to day 6. In this phase, the
defender's withdrawals (partial disengagements) are thwarting the attacker's effort
to attain his "ideal" attrition rate of IaT = 0.6, so the attacker prosecutes with
increasing vigor, which efforts induce successive withdrawals at increasing rates.

Now, all the while in this simulation, the casualty exchange ratio (attackers
killed per defender killed on day t) has been constant at a rate favoring the defender.
And, by day 6, he has whittled down the attacker to such an extent that, even at.
high prosecution, the attacker cannot exact defensive attrition sufficient to induce
withdrawal-so, withdrawal stops, the defender halts, on day 7.

Sl The computer has simply connected the dots in these pictures.
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FIGURE 5 Low equal thresholds.

In effect, the attacker "slams into" the now stationary defender on that day,
producing attacker attrition well in excess of the attacker's tol-rance aaT; "ouch," in
other words. The attacker reacts to this extraordinary pain by cutting his prosecu-
tion rate sharply on day 8-too sharply, it turns out. He has overshot, as evidenced
by his subsequent increases in P(t) which ultimately levels off at around P(t) = 0.6.

A rather different history is portrayed in Figure 5. The prosecution rate de-
creases monotonically, while the withdrawal rate rises and falls twice. Itn this case,
the attacker's equilibrium, and defender's threshold, attrition rates are set equal at

aaT = adT = 0.1, considerably lower than in the preceding case. Initial force levels
are as before.

Here, the attacker's opening prosecution rate exceeds his equilibrium rate:
P(1) = 0.2. This opening rate imposes on the defender an attrition rate that exceeds
his withdrawal threshold. Over the first six days, both sides are above tolerance;
the defender withdraws at a growing (though diminishing marginal) rate, while the
attacker decreases his prosecution rate.

These coadaptations (plus a casualty-exchange ratio favoring the defender)
gradually depress the defender's attrition rate to a level below his withdrawal
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threshold; so, on day 7, he halts. Though the attacker is steadily reducing his
prosecution rate, the weight of his impact on the stationary defender is sufficiently
painful to drive the latter from his position once more until, on day 10, the front
stabilizes. The attack nonetheless persists, though at a declining level of ferocity.
P(t).

SUMMARY
In Lanchester Theory-by which I n- 'an the original equations and their contempo-
rary extensions-these behavioral dimensions of combat are ignored. Mere oppos-
ing numbers and technical firing effectiveness completely determine the dynamics:
there is no adaptation. In the Adaptive Dynamic Model, tile )arameters (,IT and
OaT allow one to reflect the different ways in which given forces can behave. As we
have seen, with a given force, an attacker may prosecute the offensive at a ferocious
pace, virtually unresponsive to losses. The British at the Somme in 1916 come to
mind. Or, an attacker may operate the same forces at a more restrained pace, as
in fixing operations. A high value of 0aT will produce the former type of attacker:
a low value of OaT will generate the latter.

Similarly, the tactical defender may be more or less stalwart in holding his posi-
tions. Guerrilla defenders may withdraw- "disappear" when even slight attrition
is suffered. For such tactical defenders, tile withdrawal-threshold attrition rate arr
is close to zero. At Verdun, by contrast, no attrition rate was high enough to dis-
lodge the defenders froom their entrenched lpositions. Pbtain's famous order-- "Ils lie
passeront pas!" effectively set OdT equal to one.

These strategic and human realities are captured, however crudely, in the Adap-
tive Dynamic Model. And they are captured by a mechanism that permits move-
mnent to affect attrition, a feedback that is not possible in any version of Lanchester's
equations. So, I feel some confidence in claiming that my equations p)resent a hcss
crude caricature of combat dynamics. But, given the complexity of tile process,
that is all I claim.

ACKNOWLEDGMENTS
I am grateful to Robert L. Axtell for his thoughtful comments.



The Adaptive Dynamic Model of Combat 459

REFERENCES

1. Beatty, Jack. "Along the Western Front." The Atlantic Monthly 258 (1986):
112-115.

2. Epstein, Joshua M. The Calculus of Conventional War: Dynamic Analysis

Without Lanchester Theory. Washington, DC: Brookings, 1985.
3. Epstein, Joshua M. Conventional Force Reductions: A Dynamic Assessment,

92-93, 98-99. Washington, DC: Brookings, 1990.
4. Gauss, G. F. The Struggle for Existence, 47. Baltimore: Williams & Wilkins,

1934.
5. Kaufmann, William W. "The Arithmetic of Force Planning." In Alliance Se-

curity: NATO and the No-First-Use Question, ited by J. D. Steinbruner
and L. V. Sigal, 214. Washington, DC: Brookings, 1983.

6. Lanchester, F. W. "Mathematics in Warfare." In The World of Mathematics,
edited by James R. Newman, vol. 4, 2136-2137. New York: Simon & Schus-
ter, 1956.

7. Lanchester, F. W. Aircraft in Warfare: The Dawn of the Fourth Arm. Lon-

don: Constable, 1916. The same model was apparently developed indepen-
dently by the Russian M. Osipov in 1915. See "The Influence of the Numer-
ical Strength of Engaged Forces on Their Casualties" by M. Osipov. Orig-
inally published in the Tzarist Russian journal Military Collection, June-
October, 1915. Translated by Robert L. Helmbold and Allan S. Rehm, U.S.
Army Concepts Analysis Agency, CAA-RP-91-2, 1991.

8. Weiss, Herbert K. "Combat Models and Historical Data: The U.S. Civil War."

Oper. Res. 14 (1966): 788.
9. Willard, D. Lanchester as Force in History: An Analysis of Land Battles of

the Years 1618-1905. Technical Paper RAC-TP-74. Bethesda, MD: Research
Analysis Corp., 1962.



Seminars



E. Atlee Jackson
Santa Fe Institute and Department of Physics, Center for Complex Systems Research,
Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, IL 61801

Chaos Concepts

The term "chaos" has become a much-used word in recent years, appearing in
numerous articles, and on the cover of books in a variety of fields. It is a term that
catches the imagination of people in general, and students in particular. It may well
be that your interest in complex dynamic systems was sparked by this term.

Like any term that attempts to deal with the complex dynamics in the real
world, "chaos" actually represents a variety of distinct features. Presumably we all
know that it has something to do with "sensitivity to initial conditions," but there
remains a general lack of appreciation concerning its fundamental significance to
science, and how this relates to the future studies of "complexity." This search
for the fundamental aspects of complexity is illustrated by the recent article that
appeared on the editorial pages of Physics Today,2 where Philip Anderson, a Nobel
Laureate and External Faculty Member to SFI, wrote the article "Is Complexity
Physics? Is it Science? What is it?" I recommend that you read this article, to see
the point of view of an enlightened physicist 1 to this changing scene in science. He
referred to it as "this infinitely quiet revolution," and indeed this would have been
so if people like Joe Ford had not been beating a lonesome "chaos .Arum" for over
ten years.', 19 Even with these efforts, it certainly has been a very quiet revolution,
whose significance remains largely unrecognized. I will attempt, in this very short
time, to discuss some of the basic issues.

1992 Lectures in Complex Systems, Eds. L. Nadel & D. Stein, SFI Studies in
the Sciences of Complexity, Lect. Vol. V, Addison-Wesley, 1993 463
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This very quiet revolution began a century ago, led by Poincar6, and was totally
overshadowed by the quantum revolution in the first half of this century. Only the
mathematician Birkhoff kept the enquiry of chaotic dynamics alive until around
1950, when Cartwright and Littlewood 7 and Levinson3" proved that chaotic so-
lutions exist in simple equations related to physical systems (Poincar6 correctly
conjectured, around 1890, that this occurs in astronomical systems but could not
prove it). Around that time the digital computer was invented, opening an entirely
new method for uncovering the wonders of our dynamic world. However, as Ander-
son's article illustrates, there is great confusion about where science is going with
these new concepts. This issue goes much deeper than just the topic of chaos, but
I do not have time to explore these more general aspects of this metamorphosis of
science. In any case, chaos occupies a special position in the general area of complex
behavior because it is readily appreciated on one level, yet it contains some funda-
mental messages for science that are appreciated by very few scientists. Moreover,
chaos has many possibly practical applications in chemistry, medicine, neurology,
and engineering.

Before discussing aspects of chaos, I need to make some general remarks about
the study of any complex phenomenon in dynamic systems. We always need to
keep in mind that we know what we know only when we know how we know (or, at
least, think we know!). This is an obvious statement, but great confusion exists in
the areas of chaos and complexity simply because the bases of statements are not
clearly defined. I suggest that you keep asking "How do I know this is true?"

Presently we use three distinct operational methods for obtaining quantitative
information about phenomena in Nature. They are:

1. Physical Experiment (PE): yields finite data, over a finite duration of time, and
with finite accuracy. In such experiments one seeks to establish correlations
between a few observables.

2. Mathematical Model (MM): operates in the formal world of real numbers, with
the infinite precision of variables, infinite time durations, and various infinite
limiting processes. In this formal world, logical rules of inference are applied to
arrive at deductions.

3. (Digital) Computer Experiment (CE): yields finite data, as in the case of phys-
ical experiments, but operate by the same logical rules that apply to mathe-
matical models.

These operational methods do not form a scientific method until they are linked
together by various inductive processes (e.g., the invention of differential equations,
or algorithms, that are intended to predict new physical situations), and the encod-
ing and decoding of the finite/infinite precision numbers, required to connect the
physical observations with the MM or CE results. This is obviously a very large
topic, and I only have time to sensitize you to these issues. I need to do this be-
cause the more profound messages that chaos has to offer to science can only be
understood in the above context. I will return to this point after we see some of the
technical features of chaos.



Chaos Concepts 465

While chaos is one of the least structured components of complex dynamics,
it has considerably more structure than the name may convey. "Chaos," in the
nonscientific context, is often considered to be any condition of "total, utter, and
extreme disorder and confusion." Let's refer to this concept as "total chaos," and
denote it by TC. Commonly such terms as "noise," "stochastic process," or "random
process" are also used to describe this TC. Whatever terminology is used, it is meant
to convey the total lack of any known deterministic feature. This contrasts with the
modern studies of deterministic chaos (DC), to be discussed here. But it should be
kept in mind that yesterday's TC, or noise, may become tomorrow's deterministic
chaos!

Before considering deterministic chaos, consider the following idea:

TC + constraints may yield "structures" of scientific interest.

There is possibly no more impressive application of this idea than in equilibrium
statistical mechanics. When all of the sophistry is distilled away, the basis of this re-
markably successful model of equilibrium molecular behavior (the Boltzmann-Gibbs
probability structure) rests upon our nearly complete ignorance of the detailed dy-
namics of this system (TC), save for our knowledge of a few additive constants
of the motion of the assumed basic equations of motion for these molecules (the
constraints). An elementary presentation of how these ideas can be joined to yield
the Boltzmann-Gibbs distribution can be found in my 1968 book on equilibrium
statistical mechanics. 29 It is a grand example of the above idea, and surprisingly it
works for many systems.

The first dynamic applicr ion of this principle may well have been Boltzmann's
use of TC in his assumption of statistical independence prior to the collision of
molecules, which yielded his famous Boltzmann equation, and irreversibility pre-
dictions. While Boltzmann had to continually defend his insights against iummerous
attacks (based on faulty understanding of the limitation of the operational methods
of PEs and MMs), the proper defense of his insight can only be understood on the
basis on modern chaotic theory, as I will point out later.

Other examples of this principle can be found in many physical systems that
exhibit "order out of chaos" ("chaos" = TC), as has been expressed in the title of
a book by I. Prigogine and I. Strenger.4 7 Famous examples involve the formation
of coherent vortices in both the Taylor and Rayleigh-B1nard fluid systems. Here,
despite the TC of the molecular motion, when appropriate constraints are imposed
at the boundaries (momentum and energy, respectively), these orderly structures

can appear.
Finally, it might be remarked that a variant of the above idea has been applied

to the area of the basic laws of physics by John Archibald Wheeler. In an article

"Law Without Law," 12,58 lie expressed this principle as

"higgledy-piggledy" + regulating principles , LVERYTHING
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(no "law" required).
If you would like to discover an interesting structure for yourself, generate

the numbers (1,2,3) randomly on a computer (your TC). Construct an equilateral
triangle with vertices labeled (1,2,3) on the computer screen. Start a point anyplace
in this triangle, and when you generate the number k, move the point half the
distance toward the vertex k (the constraint). Continue this process for a large
number of steps. You will see a structure emerge (an attractor) that has some
intt.. ,mg "fractal" properties (EAJ; 2.6; Schroeder4 9 ), and which you should be
able to predict (in retrospect at least!).

Fortunately, we do not need to search for the concept of Chaos (i.e., deter-
ministic chaos) in the complicated systems noted above. The first surprise was that
Chaos can be found in "simple" deterministic systems (MMs). Please note carefully
that "determinism" in this context is a mathematical concept; it decidedly does not
apply directly to PEs, as will be made clear in what follows. Historically (around
1890) the first example, where Poincar6 correctly suspected this phenomena occurs,
was the system of three bodies that gravitationally attracted each other. Since this
three-body system had defied all the efforts of mathematicians to obtain analytic
solutions, Poincar6 invented a variety of new and general methods to extract some
information about the dynamic properties of such complex systems.

To appreciate the concept of Chaos at a MM level, it is necessary to outline some
of Poincar6's tools. For more details on these points, let me suggest my friendly set
of books, Perspectives of Nonlinear Dynamics.31 I will reference topics in them by
"(EAJ; section)." For the real devotee, perhaps the most extensive, and generally
accessible presentation of chaos and fractals can be found in Peitgen et al. 45

We begin with the MM of dynamical systems, given by the differential equations
for some dynamic variables, say (X ItM, X2(0):

dxl dx 2- F, (xI, X 2 , t), - = F2 (xI, X 2 , t).

When there are more variables, it is useful to use the vector notation

dxS= F(x, t) (x, F E R').

If F(x, t) = F(x) (i.e., does not depend explicitly on t), the system is called au-
tonomous (otherwise, nonautonomous). For the present we will consider only au-
tononmous systems,

dx- = F(x) (x, F E R"). (1)
dt

The solution of such an equation, x(t) = g(t; xo), depends on the initial conditions
x(O) = x 0 , and at any time it can he l)ictured as a point in an n-dimensional spa",:.
whose coordinates are (xI, x 2 ,..., x.). This space was introduced by Poincar6, and
is ('ailed the phase space of the system. As time changes, the point .r(t) traces
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FIGURE 1 (a) A solution, x(t), traces out a curve in phase space as time increases.
(b) The dynamics of a region R(t), representing a continuum of solutions.

out a curve in this space, passing through x0 . If we attach an arrow indicating its
direction as time increases, we get its orbit in this space, as illustrated in Figure 1 (a).
If we consider a collection of solutions passing through different initial points, then
we obtain a "family of such orbits (EAJ; 2.1), and none of them intersect if the
solutions are unique (EAJ; 2.2). The idea of considering the properties of families of
solutions, rather than only individual solutions, was another important contribution
of Poincar6. Its importance will become clearer as we explore chaos.

But first consider a region, R(t), in the phase space which moves in such a
way that all the initial points in the region, R(O), remain in the region R(t) at
time t, when their dynamics are given by Eq. (1). This is illustrated in Figure 1(b).
Poincar6 considered the volume of this region as a function of time

V (t) = /... I dxtdx 2 ... dxn. (2)
JJ R(t)

Actually he considered more general integrals of this type (EAJ; 2.4), but we will
limit our discussion to Eq. (2). One can show without much difficulty (EAJ, Ap-
pendix C) that the time derivative of V(t) is given by

dV(.) J f V - F(x)dx 1.dr2 ... dxv. (3)
dt R(t)

To illustrate what this tells us, consider a damped nonlinear oscillator.

"i = 1), i = -lily - X.
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We find that

'ý + -= -/A,OX .+v(-,uv- X)
and substituting this into Eq. (3), we obtain

dV(t)
dt

In other words, the volume is decreasing at an exponential rate. What this tells
us is that all of these solutions are crowding together as time increases-they are
being attracted toward each other. Since the volume is not conserved in time, this
is called a nonconservative system (in the present case it is caused by the damping,
perhaps due to friction). By contrast, a conservative system satisfies

dV(t) = 0 (conservative). (4)
dt

Now what has all this to do with chaos? Well, as I pointed out, chaos comes
in several forms. Chaos in a conservative system is quite different from that in a
nonconservative system, so we need to distinguish these types of systems. More on
this later.

First, it is useful to know a little about constants of the motion. K(x, t) is a
constant of the motion of dx/dt = F(x), provided that

dK(X, t)
dt 0 (for all solutions). (5)

If K(x, t) does not depend explicitly on time, it is called a time-independent con-
stant of the motion.

A simple example illustrates these points. Consider a particle acted on by a
constant force, F. Its equations of motion are

dx dv
dt = v and - = F (unit mass),

with the solution

v=vo+Fxt; x=xo+voxt+O.5xFXt 2 .

Two constants of the motion are the two initial conditions

K, =vo=v-Fxt; K 2 =xO=x-vxt+0.5xFxt2 .

We can obtain a time-independent constant of the motion by eliminating t between
these, yielding

K3 = K2 K? = x- 0.5 x T(2 xF)f
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K 3 is, of course, a multiple of the total energy of this system. The importance of
time-independent constants of the motion is that equations of the form

K(x) = Ko (a constant)

define a fixed "surface" (manifold) in the phase space that has a dimension (n - 1).
An initial state, which begins on this manifold, remains on the manifold for all time.
Thus, in the above example, K3(x, v) = Ko defines a line in the two-dimensional

phase space (x, v).
The knowledge of such "integral manifolds" is very useful in assessing some

the characteristics of the dynamics of a system. In particular, if the dynamics of a
system move on a smooth two-dimensional integral manifold, it cannot be chaotic.
In other words, in order to exhibit chaotic behavior, a system needs to have more
dynamical freedom than a smooth two-dimensional "surface" provides. It needs at
least three dimensions.

Now returning to the three-body problem, around 1890, no general solutions
had been found. Indeed, no convergent perturbation methods could be found (that
is, methods where one could systematically get better and better approximate so-
lutions). The only time-independent constants of the motion that were known were
ten classic results, despite the fact that there are 3 x 6 = 18 constants, corresponding
to the 18 initial conditions. Indeed, it was proven in the 1890s that the remaining
unknown constants of the motion could not be any rational functions of the vari-
ables. This strongly suggests that they must be complicated functions that do not
represent "smooth' and "predictable" forms of dynamics. Thus, it seems likely that
most constants of the motion of most MMs (not just the three-body problem) are
inherently "uncontrollable" from the point of view of the finite accuracies of PEs.
As we will see, this is also one of the hallmarks of chaotic systems, and the need to
distinguish between MMs and PEs.

Fortunately Poincar6 introduced a variety of new methods to help science ex-
tricate itself from this quagmire. Building again on the above picture of orbits in a
phase space, he introduced the idea we should not look at the details of an orbit;
instead, we consider it only when it passes through a surface in the phase space
(EAJ; 2.5). Let So be such a surface, through which an orbit passes an infinite
number of times. This surface is called a surface of section, and it is illustrated in
Figure 2(a) for two different orbits. One orbit is a periodic orbit that passes through
the point po, over and over again. The other orbit passes through So at the point
x0 and the next time at point x1 . Because x, is the first return after the point x0 ,

the association of x0 - xt is called Poincar's first return map. In other words, all
of points near po "map" to other points in their first return to the surface So. This
concept of a map has become one of the staples for the study of chaos.
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(a) SO

(b) FIGURE 2 (a) The

intersection of a periodic
orbit, and a nearby orbit,
with a surface of section,
So. (b) The dynamics
near an elliptic (left) and
a hyperbolic fixed point.

Now the three-body system is a conservative system, and as a consequence it
turns out that any little region near P0 will have a first-return region that has the
same area as the original region (EAJ; 6.1, 6.12). Thus these maps are called area-
preserving maps, and that property turns out to be crucial in proving that such
systems are generally chaotic. The reason that this is so is due to the very limited
repertoire such maps possess near fixed points. They can either rotate around the
fixed point of map, or else they can map inwards in one direction and outward in
another direction (to preserve the area of any region). These are called elliptic and
hyperbolic fixed points respectively, and are illustrated in Figure 2(b).

All of these ideas of Poincar6 are readily applied to the so-called restricted
three-body problem. Ti this system two heavy masses rotate around each other in
some plane, under the influence of their gravitational attraction. A third very light
mass is set into motion along this same plane, attracted by the other heavy masses
but not influencing them. The phase space for this light mass is four-dimensional,
with axes (x, y, dx/dt, dy/dt). Since the total energy is conserved, and since the
small mass doesn't change the energy of the large masses, the energy of the small
mass is also conserved. This constant of the motion defines a three-dimensional
manifold in this phase space along which the mass moves (just enough room for
Chaos!). If now one can find a surface of section in this manifold, it will have only
two dimensions, and it will be "relatively easy" to study the first-return map in
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FIGURE 3 (a) When k = 0, each circle around an elliptic fixed point is mapped onto
itself by the standard (or Chirikov8 ) map, S. (b) When k # 0 those circles that had a
rational rotation rate (at k = 0) break up into a finite number of hyperbolic-elliptic pairs
of fixed points of Sl. See the text for details.

this plane. That's what Birkhoff did around 1913, proving a theorem that Poincar6
had conjectured but was unable to prove.

To appreciate some of the aspects of this chaos in a conservative system, as un-
covered by the Poincar&-Birkhoff theorem, consider again the Poincar6 first-return
map near an elliptic periodic point, P0 . This is illustrated in the Figure 3(a), where
different rotation rates typically occur at different distances from P0 . Moreover,
an essential feature is that the map is area-preserving. Such a map is frequently
referred to as a twist map, because of the different rotation rates (EAJ; 6.6).

An explicit example of such a map, which is widely referred to these days, is
the so-called Standard (or Chirikov) Map, S:

r(n + 1) = r(n) + K x sin(O(n)); 0(n + 1) =0(n) + r(n + 1). (6)

This is an area-preserving map for any value of K. When K = 0, the collection
of points on a circle simply map along this circle at a rotation rate denoted by p
(and equal to r, the radius of that circle; see Figure 3(a)). This type of dynamics
is, of course, vpry boring, and one might think we are a long way from discovering
Chaos. But, when K is not zero, all of the circles that correspond to a rational
rotation rate break up into a most remarkable collection of dynamics (depending
on the initial state). A few points remain periodic after n iterations (denoted Sn).
They are illustrated by a cross and a circle on the dashed curve in Figure 3(b).
However, most points are no longer periodic. Around the elliptic fixed points of
S', the dynamics are again of the form (6), but on a much smaller scale (having
their own periodic point of S`m!). The dynamics around the "cross" points are
that of the hyperbolic fixed points, noted above in Figure 2(b). Those orbits that
tend inward and outward at the hyperbolic points can be traced further away and
generally intersect (remember this is a map, so that's okay). This implies that there

I
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are an infinite number of intersections, because these intersection points both came
about from being mapped outward and mapped inward to the fixed point (think
about it, or see EAJ, 6.6). The final hooker is that the loops that exist because of
two intersections enclose some area, and this area must be preserved when the loop
area is mapped, and there's an infinite number of these, all getting "squeezed" by
intersection points that have the hyperbolic point as their limit point! Wow!! It is no
wonder that Poincar6 refused to attempt to illustrate this complicated situation.
Only much later, less cautious individuals attempted to illustrate this "Poincar6
tangle," as shown in Figure 4(a). This is a caricature of the mathematical results.
Figure 4(b) illustrates what one obtains from a CE, with its finite data set (here
K = 1.2), and this difference from that inferred from an MM is noteworthy. Note
that in Figure 4(b) the axes are the cylindrical coordinates of Eq. (6), whereas
Figure 4(a) is in the (x, ±) space. It appears in this figure as the chaos is localized in
the phase space, since some circles (distorted as they may be) remain intact. These
come from the set of circles that had irrational rotation rates when K = 0 in Eq. (6).
They are called KAM surfaces, after Kolmogorov-Arnold-Moser, who proved that,
as K --+ 0, the measure of these "preserved tori" (in the three-dimensional manifold)
goes to one--in other words, "most" of the dynamics remain nonchaotic. On the
other hand, since the rational circles are dense, the chaotic dynamics is also dense
for any nonzero K. All very mathematical!!

To obtain results which are more significant for physical phenomena, with their
finite-K nonlinearities, it requires careful CEs to determine finite-K effects, such
as when there is no longer any preserved regular dynamics. Indeed, CEs have been
essential for exploring Chaos with finite nonlinearities (e.g., studies by Greene 22

and ChirikovS).
The Poincar6 tangle is the Chaos of classic conservative systems. The Poincar6-

Birkoff theorem expresses this Chaos in approximately the following form:

THEOREM In any neighborhood of a periodic point of a nonintegrable conservative
system, there are an infinite number of periodic points with different periods, and
an uncountable number of aperiodic solutions.

Now what does this tell us as scientists? It tells us that there are mathematical
solutions of our MM that are not related to any PE in a predictable manner for
long periods of time. There are solutions of our MM that are physically "forever
unusable," in the sense that we cannot set up a physical system with initial con-
ditions that will yield any specific periodic solution. This expression was used by
Duheiml 4 in 1914 in connection with a rather abstra- dynamical result obtained
by Hadamard. Indeed, there are many physical systems whose dynamics are related
to the standard map, some of which are illustrated in Figure 5 (EAJ: 6.5). When
one finds these results in these much more physically realistic MMs, it makes it
very clear that it is necessary to pay attention to the reasons we believe we know
something. The world of solutions of MMs is a metadynamic world that transcends



Chaos Concepts 473

what we can observe in our PEs, and we must pay attention that we give it scien-
tific credence only after careful examination of the quantitative encoding/decoding
possibilities.

(a)

(b)v '-... .. . . . . .

. 4 '.-,. FIGURE 4 (a) A
, . caricature of the

0- Poincar tangle.
(b) What one obtains
from a CE, with its finite

Se data set (here K = 1.2)

FIGURE 5 Examples of three physical systems whose dynamics are related to the
standard map.
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One of the important physical examples of such conservative Chaos is found in
the chaotic motions in our solar system. A nice discussion of these effects can be
found in Wisdom's article.59 What is also of interest, considering the long history
of these results, is how slow their recognition has been (e.g., see Sir J. Lighthill,
FRS36 ). Indeed, there apparently has not been a careful re-examination of Boltz-
mann's stosszahlansatz in light of our new appreciation of the sensitivity of molecu-
lar dynamics to arbitrarily small perturbations. In 1914 Borel pointed out this sen-
sitivity, as discussed in Brillouin's book.6 He noted that if a 1-gram mass is moved
1 cm on the star Sirius, the gravitational field on the Earth's surface changes by 1
part in 10100. !f there is a relative error in the initial conditions of 10-1°°, then the
trajectory of a gas particle cannot be accurately followed for more than a nanosec-
ond (a very conservative estimate). In light of such sensitivity, it is clear that the
statistical assumption made by Boltzmann in deriving his famous equation is the
only defensible assumption that can be made. The classic Zermelo (recurrence) and
Loschmidt (reversibility) "paradoxes" (e.g., see Kac34 or Tolman54 ), which Boltz-
mann had to fight against all his life, have no physical relevance. They are examples
of confusing the (assumed!) results of MMs and the observations in PEs (i.e., both
the lack of appreciation of chaotic effects, and the all-important encoding/decoding
connections). But I don't have time to digress down this important road.

The above deterministic chaos that occurs in conservative systems has a very
"delicate" (unpredictable, uncontrollable) nature to it. Fortunately that is not true
of many systems, because they are not conservative. This is due to some strong
interaction with their environment; simple examples are friction and metabolic
processes in biological systems. The essential feature of nonconservative systems
is that they have dynamic attractors. This means that many initial states can tend
to behave in the same dynamical manner as time goes on; they may all go to the
same equilibrium state, or oscillate in the same fashion, or become chaotic. The set
of initial states that all end up doing the same thing is called a basin of attraction of
that ultimate dynamics. A basin of attraction in dynamics is somewhat analogous
to a river basin, namely, all of the initial locations where the raindrops end up in a
particular river.

Let's consider an example that is easy to understand. Figure 6(a) illustrates a
double-well surface on which a point mass can slide, being pulled down by gravity
and acted on by the friction. The motion is rather simple; depending on where the
mass is started, it will ultimately end up at the bottom of one well or the other.
We say that this system has two "fixed-point" (equilibrium-point) attractors, and
the basins of attraction of these fixed points are illustrated as shaded and unshaded
regions in the Figure 6(b). It should be noted, once again, that this is a MM. Do
you think that either a PE or a CE can determine these basins of attraction far
from the origin? Just a little thing to think about (you don't know until you know
how you know!). This system certainly is not chaotic, but what would happen if a
large periodic force were applied to this system? One might visualize the resulting
"indecisive" motion by sliding Figure 6(b) periodically up and down, and trying to
see where the particle might go (which "basin" is it in?).
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(a) '4(x)

Ix

FIGURE 6 (a) A double-well surface on which a point mass can slide, being pulled
down by gravity and acted on by the friction. (b) The system in (a) has two 'fixed-
point" (equilibrium-point) attractors, and the basins of attraction of these fixed points
are illustrated as shaded and unshaded regions.
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As I already mentioned, chaos cannot occur in two-dimensional motion, but if
we take systems and shake them like this, with some applied periodic force, chaos
can often result. An illustration of this is shown in Figure 6(a) (CE), which comes
from a CE of the forced nonlinear oscillator

I + k +x3 = Bcost

studied by Ueda (EAJ; 5.14). While this clearly appears chaotic, it also does not
convey much insight into its structure. Taking a leaf from Poincar6's notebook, we
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(a)
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FIGURE 8 (a) Moon's experiment. (b) Moon's Poincard maps. Copyright © 1987 by
John Wiley; reprinted by permission.

can generate a new type of Poincar6 map, using a so-called extended phase space.
This is illustrated in Figure 6(b). The idea is to make use of the periodicity of the
force, to extend the phase plane (x, dx/dt) along the time axis, and reconnect it
after one period (because then the equations of motion repeat). We can either use
one Poincar6 surface of section, or several surfaces around this "toroidal" space,
which allows us to capture more details of this highly complex motion.

In some very pretty physical experiments made by Moon,4 ° he studied the mo-
tion of a metal strip, attracted by two periodically displaced magnets (Figure 8(a)).
Three of his Poincar6 maps at 00, 900, and 180' in the phase of the periodic force are
illustrated in Figure 8(b) (so each picture is the map of one dynamic state, pass-
ing many times through each of these surfaces in succession). The highly complex
character of this fractal attractor is much more clearly seen than in the usual phase
plane (e.g., Figure 7(a)). Such fractal attractors are known as strange attractors,

being very different in character from simple fixed points, or periodic attractors
(limit cycles. EAJ; 5.6). For many other nice experimental results involving chaos
and fractals, see Moon.41

Perhaps the most famous strange attractor, which we will not have time to
explore, is the Lorenz attractor (EAJ; 7.3-7.9). Edward Lorenz is a meteorologist
at MIT, and his interests in the difficulties in weather prediction led him to his
famous discovery of the first strange attractor in 1963. The discovery was only
made possible with CEs. It may be that the PEs carried out by van der Pol and

van der Mark around 1927, involving a periodically forced relaxation oscillator, was



478 E. Atlee Jackson

the first physical strange attractor, but they described it as noise, and simply "a

subsidiary phenomena" (EAJ; 5.14). In any case, it was Lorenz who first appreciated

the novelty of this strange-attractor dynamics. Since then many other examples

have been found. One physical example that is presently widely studied is Chua's

electrical oscillator.9

Now let me describe some ways that we can characterize chaos:

"* The information that we can "predict" about the future of the system in a PE

is essentially the same amount of information that we know about its initial

state. Is that a "prediction"?
"* The fact that one can find a solution of an MM that can be put into correspon-

dence with any sequence of coin tosses (a Bernoulli sequence).
"• The sensitive dependence of the solutions to their initial conditions. On the

average this can be measured by the system's "Lyapunov exponents"; a concept

that is not identical in a PE, MM, or CE.
"* The fractal dimension of the points in some Poincar6 map; again dependent on

the operational basis.
"* The "stretch-fold-squeeze" view of the dynamics of stra1hge attractors.

In the limited time remaining, let me outline these ideas with the help of several

maps, beginning with the famous logistic map. One of the simplest contexts in which

to think of this map is in the area of ecology. Let x(n) be the fractional population

of some bugs at generation n, normalized by their maximum value, so 0 < x(n) < 1.

This population at the next generation, x(n + 1), will change due to reproduction,

but it will be limited by the finite resources in its environment. A simple model
incorporating these ideas is

x(n + 1) = cx(n) (1 - x(n)), (7)

where c is a reproduction rate, and the factor (1 - x(n)) limits the population. For

very obscure reasons, Eq. (7) is called the logistic map (EAJ; 4.2-4.7).
The dynamics of the logistic map can be very complicated. A classic introduc-

tory discussion of some of these wonders can be found in May's article.37 We do

not have time to discuss most of this, but will focus on some of the chaotic feature,

of Eq. (7). One of the most revealing cases is when c = 4, where Eq. (7) has its

most chaotic behavior. It also can be solved exactly, with the help of a famous

transformation due to Ulam and von Neumann. Let z(n) be given by

x(n) = sin 2 (7rz(n)). (8)

Substituting this into Eq. (7) (c = 4), and using a little trigonomctry, we obtain

sin 2 (7rz(n + 1)) = sin 2 (27rz(n)).
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From this we conclude that z(n + 1) equals 2z(n) + (any integer). But any integer
part of z(n) doesn't change x(n) in Eq. (8), and hence can be ignored. Thus we can
write the dynamics of z(n) in the form

z(n + 1) = 2z(n) mod (1), (9)

where mod (1) means that we discard any integer part of z(n + 1). If z(0) is the
initial value of z, the solution of Eq. (9) is simply

z(n) = z(0) 2n mod (1), (10)

and this can be substituted into Eq. (8) to give the general solution of Eq. (7)
(c = 4)

x(n) = sin 2 (irz(0)2n). (11)

Note again that this is an exact solution of an MM of chaos-an uncommon event.
Now the solution, particularly in the form (10), sheds a lot of light on the

nature of this extreme chaos. To see this most clearly, assume that we represent the
number z(n) in binary notation, so

00

z =E a(k) 2-k (12)
k~l

where the a(k) = (0 or 1). Note that the sum starts at k = 1, since we only need
to consider numbers less than 1, because of the mod (1) in Eq. (10). We can then
represent z(n) in binary notation as

.a(1)a(2)a(3)a(4)... (a(k) = 0 or 1). (13)

If we multiply z(n) by 2, as in Eq. (9), it can be seen from Eq. (12) that the new
binary representation of z(n + 1) is

.a(2)a(3)a(4) ....

In other words, the a(k)'s in Eq. (13) are simply shifted to the left one space, and
the left-most a(k) is discarded (due to the mod (1)).

So much for the beautiful, infinite world of the MM. Now consider a PE such
that, at n = 0, we know z(0) to some finite accuracy involving N terms a(k), so

z(0) -. a(1)a(2) ... a(N)???????. (14)

Here the ? indicates our ignorance about these higher terms. Then, after five steps
(for example), we would have

z(5) - .a(6)a(7) ... a(N)?????,
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and after N steps,
z(N) -, .????????.

Hence, after N steps we have no way to predict the value of z(N). Chaos has limited
the duration of prediction to times proportional to the initial information we had
about the system. One might say that we have "information output is proportional
to information input" in chaotic systems. This is a basic lesson to be learned from
chaos-mathematical determinism (such as the solution (11)) is totally distinct
from the question of physical predictability (as Boltzmann sensed, and Poincar6
pointed out)! It is not a solution of the MMs (like Eq. (11)) that is important; it is
the behavior of a FAMILY of solutions (like Eq. (14)) that has physical significance.
This is why the regions R(t) in Figure 1(b) are so important.

We can also see that the above dynamics are as random as a coin-toss dynamics,
in the sense that we can find solutions of Eq. (9) that can be related to ANY infinite
sequence of (Heads,Tails). Note that now we are back in the arena of mathematics-
we cannot accomplish this in a PE for the reasons just discussed. Nonetheless, it
is interesting to see how this correspondence can be made. To do this, note that
Eq. (9) can be represented by a "Bernoulli map"

S2z(n) (if 0 < z(n) < 1),z~ +1)= 2(z(n) - ½) (if ½ n) I ),

where, given z(n), we can represent z(n + 1) by the graphical method shown in
Figure 9(a). In this method, we plot z(n + 1) vs. z(n) for the function (15), and
then draw a 450 line along which z(n + 1) = z(n). A few minutes of thought will
show that the map dynamics, given by Eq. (15), can be constructed in a manner
illustrated in Figure 9(a).

Now divide the z-axis into two regions as shown in Figure 9(b),

H (Heads) if z < 1/2, T (Tails) if z > 1/2.

If z(O) is in the region H, z(1) will also be in H if z(O) < 1/4; otherwise, z(1) will be
in T. Therefore, we have found two regions, such that if z(O) is in these regions, we
can associate the sequence HH or HT to them. The same can be done for sequences
TT and TH. Specifically we have the association

HH if 0 < z(O) < 1/4;

HT if 1/4 < z(O) < 1/2;

TH if 1/2 < z(O) < 3/4;

TT if 3/4 < z(O) < 1.
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FIGURE 9 (a) A graphical method for representing z(n + 1) for a Bernoulli map.
(b) Same as (a), but the z-axis has been divided into (H, T) regions.

These regions are shown in Figure 9(b). We can proceed in this fashion to find
regions in which z(0) will yield any finite sequence of (H,T). For example, HTH is
produced by 1/4 < z(0) < 3/8, and so on. Thus the chaotic dynamic system (9)
has solutions that are just as diverse in character as those obtained from a fair coin
toss! That's pretty random! This is a symbolic dynamic way of representing chaos
(by showing that the dynamics can be put into correspondence with any so-called
"Bernoulli sequence"). The first person to introduce this representation of chaos
for physical systems was Levinson, 35 and it subsequently led to the introduction of
"horseshoe" maps by Smale~l (EAJ: Appendix K).

A quantitative method of measuring how nearby solutions diverge from one
another (on the average) is given by Lyapunov exponents. Say we have two solutions
of some map, x(n + 1) = Flx(n)), that are separated by a small distance DX about
the point x(0). As we see from Figure 10, the separation after one step is given by

D l)=(dF) DX(O), (16)
DX(1)= x X(o)

After the next step, we similarly obtain

DX2) dF )DX (1) = F =(J) (dF X(o) .
DX2= -x X (I) dT d 0

After n steps, the separation distance is

D (n) dF),(_)... (dF) dDX(O). (17)
DX~ T) = d ~-) -x x(0)
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Now if we assume that this separation distance is ir.creasing exponentially as n
increases, then

IDX(n)I = IDX(0) 1exp(nA).

If we take the logarithm of this, we obtain

A = (!log fDX~oiI']n I OX(0)l

and, if we substitute Eq. (17), we obtain the final result

A = log dF (18)
W dxk=O(k

A is therefore the average separation rate (per iteration), over n iterations. If one
takes the limit of infinite n, this yields the so-called Lyapunov exponent. In all CEs
we can only obtain an approximation of this exponent (limited to a finite number
of steps), and usually obtained by another approximate method (EAJ; 7.10). In the
case of PEs yet other methods must be used to obtain an estimate of the Lyapunov
exponents (see Eckmann et al.15 ).

If A > 0, nearby orbits rapidly separate from one another (on average). However,
if their motion is confined to a bounded region of phase space, then there must be
"converging" periods of their motion (for limited times). When these two ingredients
are put together, we have chaotic behavior. Thus, in the case of Eq. (15), the slope
at every iterated point has magnitude 2. Hence, from Eq. (18), we obtain the
Lyapunov exponent A = log 2 > 0, and chaos. Similarly one can see that Eq. (15)
is the same dynamics as Eq. (9), with the same chaotic Lyapunov measure. On
the other hand, the Lyapunov exponent in the dynamics of Eq. (7), whose solution
is Eq. (11), is different (does it depend on x(0)?). I do not have time to discuss
the fractal dimensions of strange attractors, but an introduction can be found in
(EAJ: 2.6). The relationship between these fractal dimensions and the Lyapunov
exponents is discussed in (EAJ: 7.12).

This chaos can be usefully visualized by various forms of "stretch-fold-squeeze"
dynamics in phase space, as schematically illustrated in Figure 11. This shows
a region in phase space going through such a process. If solutions are attracted
toward such a region, they continue to "mix," yielding a strange attractor. For other
examples see (EAJ; 4.5) (logistic map) and (EAK; 7.11) (Rossler attractors). If more
than one Lyapunov exponent is positive, the dynamics are called "hyperchaos." The
knowledge of negative Lyapunov-exponent dynamics, and converging regions in the
phase space, can be put to good use in influencing/controlling such complex motion
(as I'll discuss shortly).
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/ ,!
I FIGURE 10 The separation of

nearby solutions, given by Eq.
•X~o) t•X() X(n (16). The average value of thisO -separation rate is measured by

the Lyapunov exponent, Eq. (18).

2

FIGURE 11 Chaotic dynamics visualized as a result of "stretch-fold-squeeze" dynamics
in phase space.

Let me make one final comment on chaos as predicted by MMs, particularl
when the systems are not conservative, Not all MM chaos is observable, either in a
PE or a CE. A famous example is the mathematical result for some one-dimensional
maps (e.g., the logistic map), which proves that if the system has a period 3 solution,
then it has solutions with any period. This is known as the "period 3 implies chaos"
theorem (EAJ; 4.5). However, when one observes period 3 solutions of the logistic
map, there is no observable chaos; all observable solutions tend to the attracting
period 3 solution. This is another example where we have to be nware of the source



484 E. Atlee Jackson

of our information. MMs do not necessarily give ther same information as PEs or
CEs. Moreover, there are many situations (e.g., in the Lorenz system and others),
where all solutions may tend to a nonchaotic behavior, but they have very long
periods of transient chaos from the point of view of a PE or a CE. Such "transient"
chaos may be just as important, because it may persist over the entire observational
period.

Let me close with some brief comments concerning a number of other topics
which I do not have time to discuss in any detail, but can give you some references.

"* One very interesting area concerns spatio-temporal chaos. This occurs in many
physical systems, but perhaps most PEs have been done in systems with
Rayleigh-B6nard (thermally driven) "turbulence" or Taylor (momentum-driven)
"turbulence." Many beautiful experiments have been done by Swinney and
Gollub, 52 and other talented people. See the references for some surveys of
spatio-temporal chaos.17' 2 1,60 ,6 1,56, 57 Some MM exploration of these phenom-
enia have been attempted with coupled cellular dynamics, and more abstractly,
using coupled map dynamics. The former research attempts to maintain some
direct connection with physical principles, while the latter is more abstract.
What is badly needed in this area are some good quantitative measures that
relate to physical concepts.

"* There are many suggestions that chaos may be an important positive aspect of
the dynamics of living systems. One idea is that chaos may be an effective way
for a system to explore sensory inputs from the environment. In other words,
chaos may be part of a search/response mechanism in systems, a way for a
system to most readily acclimate to changing environmental situations. Thus,
for example, the heartbeat, while quite periodic, has a chaotic component to its
rhythm. Is this so that it can better respond to stresses? Neural networks have
highly complex EEG patterns. Is this similarly caused?2 3 5" The eye constantly
makes erratic "searching" motions, obviously for some beneficial purpose. Not
all chaos is beneficial, of course. Fluttering airplane wings are not reassuring.
nor are fibrillations of the heart. Just as chaos (TC) can give rise to order.
order can give rise to DC. If a system is in a DC state, it may be easier for
it to "internally recognize" changes in its dynamics caused by environmental
changes, and to make adjustments which "improve" its well-being, performance,
or whatever---exactly how, generally speaking, is anybody's guess. Said differ-
ently, if a system is in a DC state, its dynamic change may be more easily
internally decipherable for purposes of adjustment. One idea along these lines
has been suggested by W. J. Freeman 2" (also see Conrad' 0 ).

"* An important aspect of DC is that, since we know something about its origins,
we can use this knowledge to influence it in various fashions. Several methods
have been proposed. The first direct attack on chaos was done by Huibler in
1989,27 and this idea has been generalized and refined in several respects since
then.46 Many of these ideas (and others) are discussed by Hubler in his extended
article. 2 8 Another approach, which draws a chaotic system to one of its unstable
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periodic orbits, has been used extensively by Ott, Grebogi, and Yorke,43 and
implemented experimentally by Ditto et al."3 and others. Other applications
have focused on the permanent transferral of a chaotic system to another stable
attractor (this can, of course, only be done if the system has multiple attractors,
as is frequently vhe case). Thus, knowledge of the features of DC can be used
in a variety of important applications in the future. Many of these applications

do not depend on explicit MMs, but can be accomplished by the combined use
of PEs and CEs (e.g., see Breeden 5 or Hubler2

8). One of the main points to
note is that DC is not uniformly chaotic in the phase space, and this can be
used to many advantages. 3 1' 32 ,33

" The subject of quantum chaos, even its very existence, is not one where there
is general agreement. The eigenfunction/eigenvalue formalism of bounded sys-
tems, with their almost-periodic structure, does not seem to offer the dynamic
freedom required of chaotic motion. 2

0 On the other hand, it does not appear
that anybody has done a general, finite-time analysis of localized particle sepa-
rations, which are the hallmark of classical chaos. I suspect that the mathemnat-
ical formalism is again being confronted with physical observations in which the
encoding and decoding is more sophisticated than presently recognized. We'll
have to wait and see!

"* A very active area of research, to which Santa Fe is no stranger. concerns ex-
tracting predictable components from chaotic dynamics. 5' 39 The "components"
may involve very time limited and very time specific predictions, which one tries
to differentiate from the total chaos (TC) discussed at the beginning. Such pre-
dictions necessarily involve bounded and selective aspects, some of which can
be gleaned from the references. Typically it takes a considerable amount of data
to distill out some deterministic component, and if the system is not stationary
during this collection period, then all bets are off. It's all very exciting, and
possibly quite profitable when applied to financial markets (we hope so for our
friends!). There have been careful studies searching for DC in economics, but
the search may require considerable "filtering." Modifying my opening remarks,
I should probably say "yesterday's TC may have at least some small component
of DC."

And so we have come full circle! Hopefully I have conveyed the message that
distinct forms of "chaos" arise in each of the operational methods of science (PE.
CE, and MM). The clarion call of chaos is that it is necessary to evaluate carefully
how these methods can be joined in a scientific method of the future, in order to
understand complex systems. This is your great challenge and excitement! Thank
you for your attention.
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Combining Generalizers
by Using Partitions of the Learning Set

For any real-world generalization problem, there are always many gener-
alizers that could be applied to the problem. This chapter discusses some
algorithmic techniques for dealing with this multiplicity of possible gener-
alizers. All of these techniques rely on partitioning the provided learning
set in two, many different times. The first technique discussed is cross val-
idation, which is a winner-takes-all strategy (based on the behavior of the
generalizers on the partitions of the learning set, it picks one single gen-
eralizer from the set of candidate generalizers and tells you to use that
generalizer). The second technique discussed, the one this chapter concen-
trates on, is an extension of cross validation called stacked generalization.
As opposed to cross validation's winner-takes-all strategy, "stacked general-
ization" uses the partitions of the learning set to combine the generalizers,
in a nonlinear manner, via another generalizer (hence the term "stacked
generalization"). This chapter ends by discussing some possible extensions
of stacked generalization.
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1. INTRODUCTION
This chapter concerns the problem of inferring a function f from a subset of Rn

to a subset of RP (the target function), given a set of rm samples of that function
(the learning set). The subset of Rn is the input space, labeled X, and the subset
of RP is the output space, labeled Y A question is an input space (vector) value. A
generalizer is an algorithm that guesses what the target function is, and bases that
guess only on a learning set of m Rn+p vectors read off of that target function. It
guesses an appropriate output for a question via the target function that it infers
from the learning set. Colloquially, we say that the generalizer is "trained," or
"taught," with the learning set and then "asked" a question.

For any real-world generalization problem, there are always many possible gen-
eralizers. Accordingly, one is always implicitly presented with the problem of how to
address the multiplicity of possible generalizers. One possible strategy is to simply
choose a single generalizer according to subjective criteria. As an alternative, this
chapter discusses the objective (i.e., algorithmic) technique of "stacking." However,
to provide some context and nomenclature, we first present a cursory discussion
of the cross-validation procedure, the traditional method for objectively addressing
the multiplicity of possible generalizers.

2. CROSS VALIDATION
Perhaps the most commonly used "objective technique for addressing the multi-
plicity of generalizers" is cross validation.4, 8 ,9,1°0 13 It works as follows:

Let L = {(xi, yi)} be the learning set of m input-output pairs. The (leave-one-
out) cross-validation partition set (CVPS) is a set of m partitions of L. It is written
as {Lj}, 1 < i < m, 1 •< j ! 2. For fixed i, Li2 consists of a single input-output pair
from L, and L1i consists of the rest of the pairs from L. The input component of
Li 2 is written as in(Li2 ), and the output component is written as out(Li 2 ). Varying
i varies which input-output pair constitutes Li2 ; since there are m pairs in L, there
are m values of i.

We have a set of generalizers {Gj}. Indicate by Gj (L'; q) the guess of generalizer
Gj when trained on the learning set L' and when asked the question q. For each
generalizer Gj, use the CVPS to compute the (leave-one-out) cross-validation error,
ZE_ [Gj (Li,; in(Li 2))- out(Li2 )]2 /m. This is the average (squared) error of Gj for
guessing one pair of L (Li 2) when trained on the rest of L (Lil). If we interpret the
cross-validation error for GC as an estimate of the generalization error of GC when
trained on all of L, then the technique of cross validation provides a winner-takes-
all rule: choose the generalizer that has the lowest cross-validation error on the
learning set at hand, and use that generalizer to generalize from the entire learning
set.
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There are other partition sets besides the leave-one-out cross-validation parti-
tion set. Two of the most important are the J-fold cross validation partition set
and the bootstrap partition set. In J-fold cross validation, i ranges only from 1 to
J. For all i, Li2 consists of m/J input-output pairs from L, and L•i consists of
the rest of L. The input-output pair indices comprising Li2 are disjoint from those
comprising Lj 2 for i # j (so, if no input-output pair is duplicated in L, L,2 n Lj 2 = 0

for i # j). Accordingly, the set of all Li2 covers L, assuming J is a factor of m.
Using this partition set, one computes the cross-validation error exactly as in leave-
one-out cross validation, and then chooses the generalizer with the lowest error.
Since it only requires the training of a generalizer J times (rather than m times,
as in leave-one-out cross validation), J-fold cross validation is less computationally
expensive than leave-one-out cross validation. Sometimes it is also a more accurate
estimator of generalization accuracy.2

As another alternative to leave-one-out cross validation, one can use a boot-
strap partition set.4 Such a partition set is found by stochastically creating the
Lij: each Lil is formed by sampling L, m times, in an i.i.d. manner (according
to a uniform distribution over the elements of L). Other variations of these basic
ideas exist, e.g., generalized cross validation,6 stratification, etc. For a discussion of
(some) such variations, see Weiss-Kulikowski."

Although it is not based on subjective judgments for addressing the multi-
plicity of generalizers, cross validation (and its variations) would be pointless if it
didn't work well in the real world. Fortunately, it does work, usually quite well. For
example, see Wolpert13 for an investigation in which cross-validation error almost
perfectly correlates with generalization error for the NETtalk data set.

3. STACKED GENERALIZATION
Cross validation is a winner-takes-all strategy. As such, it is rather simpleminded;
one would prefer to combine the generalizers rather than choose just one of them.
Interestingly, this goal of combining generalizers can be achieved by exploiting the
partition sets employed by cross validation and its variations. Consider Figure 1. We
have a learning set L and a set of two candidate generalizers, G, and G2 . We want
to infer (!) an answer to the following question: if G1 guesses gi and G2 guesses 92,
what is the correct guess?
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The full learning set. L

( L - (x, y)

output

*? °

= -G G(foamning set; input)

G2 (learning set; input)

FIGURE 1 A stylized depiction of how to combine the two generalizers G1 and G2
via stacked generalization. A learning set L is symbolically depicted by the full ellipse.
We want to guess what output corresponds to the question q. To do this we create a
CVPS of L; one of these partitions is shown, splitting L into {(x, y)} and {L - (x, y)}.
By training both G1 and G2 on {L - (x, y)}, asking them the question x, and then
comparing their guesses to the correct guess y, we construct a single input-output pair
(indicated by one of the small solid ellipses) of a new learning set L' This input-output
pair gives us information about how to go from guesses made by the two generalizers
to a correct output. The remaining partitions of L give us more of such information;
they give us the remaining elements of L' We now train a generalizer on L' and ask it
the two-dimensional question {G, (L; q), G2 (L; q)}. The answer is our final guess for
what output corresponds to q.

To answer this question we make the same basic assumption underlying cross
validation: generalizing behavior when trained with proper subsets of the full learn-
ing set correlates with generalizing behavior when trained with the full learning set.
To exploit this assumption, the first thing one must do is choose a partition set Lj
of the full learning set L. For convenience, choose the CVPS.111 Now pick any par-
tition i from L1,. Train both GI and G2 on L,1 and ask them both the question
in(Li 2). They will make the pair of guesses gi and 92. In general, since the general-
izers were not trained with the input-output pair Li2 , neither g, nor g2 will equal
the correct output, out(L, 2). Therefore we have just learned something: when G,
guesses g9 and G2 guesses 92, the correct guess is out(L, 2).

From such information we want to infer what the correct guess is when both
C, and G2 are trained on the full learning set and are asked a question q. The most
natural way to carry out such inference is via a generalizer. To do this, first cast
the information gleaned from the partition i as an input-output pair in a new space

[111n general we will want to pick a partition set in which Lil is a proper subset of L, lest we
"generalize how to learn" rather than "generalize how to generalize" (see Wolpert1 6 ). Indeed, one
could make a case for the opposite extreme, in which one picks the partition set so that as few as

possible of the actual input-output pairs in Li2's are also found in Li 's.
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(the new space's input being the guesses of G, and G2 , and the new space's output
being the correct guess). Repeat this procedure for all partitions in the partition set.
Different partitions gives us different input-output pairs in the new input-output
space; collect all these input-output pairs and view them as a learning set in the
new space.

This new learning set tells us all we can infer (using the partition set at hand)
about the relationship between the guesses of G, and G2 and the correct output.
Now we can use this new learning set to "generalize how to generalize"; we train
a generalizer on this new learning set and ask it the two-dimensional question
{Gi(L; q), G 2(L; q)}. The resulting guess serves as our final guess for what output
corresponds to the question q, given the learning set L. Using this procedure, we
have inferred the biases of the generalizers with respect to the provided learning
set (loosely speaking), and then collectively corrected for those biases to get a final
guess.

Procedures of this sort where one feeds generalizers with information from
other generalizers are known as "stacked generalization.""1,15 The original learning
set, question, and generalizers are known as the "level 0" learning set, question, and
generalizers. The new learning set, new question, and generalizer used for this new
learning set and the new question are known as the "level 1Y learning set, question,
and generalizer.

Some important aspects of how best to use stacked generalization become ap-
parent when the learning set is large and the output space is discrete, consisting
of only a few (k) values. Assume that we are using the architecture of Figure 1 to
combine three generalizers, using a bootstrap partition set. Assume further that all
k3 x k possible combinations of a level 1 input and a level 1 output can occur quite
often (i.e., assume the learning set consists of many more than k4 elements).

View the level 1 learning set as a histogram of (number of occurrences of the
various possible) level 1 inputs and associated outputs. Assuming the statistics
within the level 0 learning set mirrors the statistics over the whole space, this his-
togram should approximate well the true joint probability distribution Pr(output,
guesses of the three generalizers). (In particular, since the learning set is large, fi-

nite sample effects should be small.) Therefore, if we guess by using that histogram,
we will be guessing according to (a good approximation of) the true distribution
Pr(output I guesses of the three generalizers). In general, such guessing cannot give
worse behavior than guessing the value of any single one of the three generalizers.
(Leo Breiman 3 has proven a more formal version of this statement.) Therefore, one
should expect that for large learning sets, the error of stacking with a "histogram"
level 1 gcneralizer is bounded below by the error of any winner-takes-all technique
like cross validation.

Even when the learning set is large enough that we can ignore finite sample

effects, so that the statistics inside L mirrors the statistics across the whole space
etc., it might still be that stacking with a histogram level 1 generalizer will not

do better than using one of the level 0 generalizers by itself. For example, this is

the case if the following condition always holds: no matter what the guesses by



494 David H. Wolpert

the three level 0 generalizers, the best guess (i.e., the made output value of the
histogram for the given level 1 input) is always equal to the guess of the same one
of those three level 0 generalizers. For such a scenario, the stacking is simply telling
you to always use that guess.

A somewhat more illuminating example arises when the three generalizers not
only have the same cross-validation error, but actually make the same guesses
when presented with the same Lil and Li 2 . When the generalizers are synchronized
this way (synchronized as far as L is concerned), combining them gains nothing;
one might as well run the stacking using only a single one of the generalizers, as
described by Wolpert.15 (Intuitively, if the generalizers behave identically as far as
(partitions of) the data are concerned, then combining them gains nothing.) This
example suggests that when combining generalizers one should find generalizers that
behave very differently from one another, which are in some sense "orthogonal,"
so that their guesses are not synchronized. Indeed, if for a particular learning set
the guesses are synchronized even for generalizers that are usually considered to
be quite different from one another, the suspicion arises that this is a data-limited
situation; in a sense, there is nothing more to be milked from the learning set.

For these kinds of reasons, it might be that best results arise if the {Gj } are
not very sensible as stand-alone generalizers, so long as they exhibit different gener-
alization behavior from one another. (After all, in a very loose sense, the {Gj } are
being used as extractors of high-level, nonlinear "features." The optimal extractors
might not make much sense as stand-alone generalizers.) As a simple example, one
might want one of the {Gj } to be a shallow decision-tree generalizer and another
one a generalizer that makes very deep decision trees. Neither generalizer is particu-
larly reasonable considered by itself (inter-,-ediate depth trees are usually best), but
they might operate quite well when used cooperatively in a stacked architecture.

A good deal of evidence supports stacking in several scenarios. It appears to
systematically improve upon both ridge and subset regressions.' Moreover, after
learning about stacked generalization partitions, Zhang et al. have used it to create
the current champion at protein folding. 17 See also Gustafson5 and Wolpert.15

In addition, it should be possible to use stacked generalization in combina-
tion with other schemes designed to augment generalizers. For example, one might
use stacking to improve the "boosting" procedure developed recently in the COLT
community. 7 The idea would be to train several versions of the same generalizer,
exactly as in boosting. However, rather than training them with input-output ex-
am1ples chosen from all L as in conventional boosting, one trains each of them with
examples chosen from one part of a partition set pair (i.e., from an L,1). One then
uses the other part of the partition set pair (Li 2 ) to see how to combine the gener-
alizers (rather than just using a fixed majority rule, as in standard boosting). This
might improve performance more than boosting used by itself. It also naturally ex-
tends boosting to situations with nonbinary (and even continuous-valued) outputs,
in which a simple majority rule makes little sense.
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4. VARIATIONS OF STACKED GENERALIZATION

There are many variations of the basic version of stacked generalization outlined
above. (See Wolpert' 5 for a detailed discussion of some of them.) One variation
is to have the level 1 input space contain information other than the outputs of
the level 0 generalizers. For example, if one suspects a strong correlation between
{the guesses of the level 0 generalizers, together with the level 0 question} and {the
correct output}, then one might add a dimension to the level 1 input space (several
dimensions for a multidimensional level 0 input space), for the value of the level 0
question.

Another useful variation is for the level 1 output space to be an estimate for
the error of the guess of one generalizer rather than a direct estimate for the correct
guess. In this version of stacked generalization the level 1 learning set has its outputs
set to the error of one generalizer rather than to the correct output. When the
level 1 generalizer is trained on this learning set and makes its guess, that guess
is interpreted as an error estimate; that guess is subtracted from the guess of the
appropriate level 0 generalizer to get the final guess for the output that corresponds
to the question.

There are some particularly nice features of this error-estimating version of
stacked generalization: (1) Rather than use it to (try to) improve a guess, one can
use it simply to get a confidence estimate for that guess. (2) This estimate can be
multiplied by a real-valued constant before being subtracted from the appropriate
level 0 generalizer's guess (when one is trying to improve that guess). When this
constant is 0, the guessing of the entire system reduces to simply the use of the
level 0 generalizer by itself. As the constant grows, the guessing of the entire system
becomes less and less like the guess of that level 0 generalizer by itself, and more
and more like the guess of a full stacked generalization architecture; that constant
provides us with a knob determining how conservative we wish to be in our use
of stacked generalization. (3) With such an architecture the guess of that level 0
generalizer often no longer needs to be in the level 1 input space, since its infor-
mation is already incorporated automatically into the final guess (when one does
the subtraction). In this way one can reduce the dimensionality of the level 1 input
space by one.

Another variation of stacked generalization is suggested by the distinction be-
tween "strong" cross validation and "weak" cross validation. 12 ' 16 The conventional
form of cross validation discussed so far is "weak" cross validation. Using it to judge
amongst generalizers is equivalent to saying, "Given L, I will pick the Gj that best
guesses one part of L when trained on another part of it." In strong cross validation,
one instead says, "Given a target function f, I will pick the Gj that best guesses
one part of f when trained on (samples from) another part of it." Intuitively, with
strong cross validation we are saying that we don't want to rely too much on the
learning set at hand, but rather want to concern ourselves with behavior related to
the target function from which the learning was sampled (presumably randomly).
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We want to take into account what would have happened if we had had a different
learning set chosen from the same target function.

There are a number of ways to use strong cross validation in practice. One
entails using decision-directed learning to create guesses for f, and then measuring
strong cross validation over those guessed f. This procedure starts by training all
the generalizers on the entire learning set L. Let the resultant guesses for the input-
output function be written as {h3 } (the index of a generalizer Gj and of its guess
hj have the same value). For each h., (1) randomly sample hj according to the
distribution 7r(xfX) to create a "learning set" and then a separate "testing set";
(2) train the corresponding generalizer Gj on that learning set; and then (3) see
how well the trained Gj predicts the elements of the testing set. For all j one does
this many times, and tallies the average error. The j that gives the smallest average
error for this procedure is the one picked (i.e., one generalizes from L with hi, where
j is the index giving the smallest average error). Other variations involve observing
the behavior of generalizers Gj when they are trained on learning sets constructed
from function hi&j. Note that the whole procedure then can be iterated: one uses
the original L to create h's which are used to create new L's, then use those new
L's to create new h's, and so on.

Strong cross validation makes the most sense if one is in a noise-free scenario.
It also does not view cross validation (directly) in terms of generalization error
estimation and makes most sense how to use L to perform such estimation. Instead
the idea is to view it as an a priori reasonable criterion for choosing amongst a set of
{GA}: choose the Gj that is, loosely speaking, most self-consistent with respect to
the learning set. In other words, take the generalizers at their word. If a generalizer
guesses hj, one calls its bluff, and then sees what the ramifications are, what kind
of cross-validation errors would have arisen if the target function were indeed hj
and one sampled it to get a different learning set from L.

Such a viewpoint notwithstanding, when using strong cross validation in prac-
tice, it often makes sense to bias the distribution 7r(x) used for sampling the hj-
perhaps strongly-in favor of the points in the original learning set. In the extreme,
when the (level 0 input space) sampling only runs over the input values in the
original L, strong cross validation essentially reduces to the bootstrap procedure
(assuming the sampling is done without any noise, and that each Gj acts appro-
priately and perfectly reproduces the elements of the learning set on which it is
trained).

One might use the idea behind strong cross validation to construct a kind of
"strong" stacked generalization. For example, one might start by forming the (hj },
and then forming learning and testing sets by sampling the {hj}, just as in strong
cross validation. For each such learning and testing set, one forms new level 1 input-
output pairs which are added to the level 1 learning set (i.e., one treats the newly
created learning set as an Lil and the newly created testing set as an LO2). As with
strong cross validation, in practice one should probably have the sampling used
to create the new learning and testing sets heavily weighted towards the points in
the original learning set. In the extreme where the sampling only runs over the
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input values in the original L, one essentially recovers stacked generalization with a
bootstrap partition set (assuming the sampling is done without any noise, and that
each Gj acts appropriately and perfectly reproduces the elements of the learning
set on which it is trained).

Other variations of stacked generalization are based on using the level 1 learning
set differently from the way it is used in Figure 1. As an example, one might never
train the level 0 generalizers on all of L, but rather use only the guesses of the
generalizers when trained on the L2i, those level 0 learning sets directly addressed
by the level 1 learning set. (The idea is that the level 1 learning set only directly
tells us how to guess when the training is on subsets of L, so perhaps we should
try to use it only in concert with such subsets.) To guess what output goes with
a question q, one uses a "cloud" consisting of a set of points in the level 1 input
space. Each element of the cloud is fixed by a partition set index i and is given by
the level 1 input vector {Gj(L1 i; q)} (j indexes the components of the vector). In
other words, each such point is the vector of guesses made by the generalizers when
trained on Lij. The "cloud" of such points is formed by running over all i, i.e., over
all elements of the partition set. Given this cloud, there are a number of ways to
use the level 1 learning set to make the final guess. For example, one might make
a guess for each level 1 input value in the cloud, by using the level 1 generalizer
and the level 1 learning set. One then could average these guesses over the elements
of the cloud, where each guess is weighted according to how close (according to a
suitable metric) the associated level 1 input is to an element of the level 1 learning
set. (In other words, we would weight a guess of the level 1 generalizer more if we
had more confidence in it, based on how close the associated level 1 question is to
elements of the level 1 learning set.)

There are a number of possible schemes for automatically optimizing the choice
of generalizers and/or stacking architecture. It is easiest to consider them in the
context of the architecture of Figure 1. One of the most straightforward of these
schemes is to use minimal cross-validation error of the entire stacked generalization
structure as an optimality criterion, perhaps together with genetic algorithms as a
search strategy.12l It should be noted that besides minimal cross-validation error of
the entire system, there are many other possible optimality criteria, some of which
are much more computationally efficient. One of the simplest is the mean-squared
error of a least-mean-squared (LMS) fit of a hyperplane to the level 1 learning set.
In a similar vein, one might use as criterion the degree to which the guesses being
fed to the level 1 input space are not synchronized (see above), or more generally
the degree to which the level 1 learning set is both single-valued and spread out
in the level 1 input space. (This last criterion is quite similar to the idea behind

12] As an aside, it is interesting to view such use of a genetic algorithm from an artificial life per-
spective. Both the constituent level 0 generalizers and the full stacked structure perform the same
task (generalization). However, whereas the full structure will be "fit" (have low cross-validation
error), the level 0 generalizers in general need not be. The situation is somewhat analogous to

forming a fit eukaryote out of not-very-fit prokaryotes.
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error-correcting output codes, except that rather than changing the way an output
vector is coded, here we are changing the level 1 input space.)

The basic idea of searching over stacking structures is not restricted to changes
in discrete quantities like network topologies or choices of generalizers. For exam-
ple, consider the case where each level 0 generalizer is parametrized by a constant
specifying the degree of regularization (or depth of a decision tree, or some such).
One could keep the topology and choice of generalizers constant and vary the level
0 generalizers' parameterizing constants (so as to maximize the value of an optimal-
ity measure). This might result in level 0 generalizers with very different behavior
from one another, a property which, as mentioned above, is often desirable.

As a practical note, if one uses schemes like those just mentioned with cross
validation as one's optimality criterion, it is important to bear in mind that one
can "over-cross-validate" just as one can "over-train." 14 Accordingly, one might try
either to stop the search process early or to "regularize" the cross-validation error
somehow (e.g., penalize use of those level 0 generalizers that have many degrees of
freedom which the search-over-cross-validation-errors can vary). Similar considera-
tions often apply to other optimality criteria besides cross validation.

As a final point, note that it might be possible to use stacking profitably for
purposes other than generalization. For example, consider combining a set of gen-
eralizers, as in Figure 1, where each of those generalizers is a Bayesian generalizer.
The differences between the generalizers lies in their choice of prior. In other words,
there is an implicit hyperparameter a, and, rather than a known prior P(f), there
is a known conditional prior, P(f 1a) (a indexes the different generalizers). One
might want to know P(a). (This is needed, for example, to perform a Bayesian
generalization, since P(f) = U f daP(fla)P(a).)

How does one find P(a)? One could be a pure Bayesian and (try to) derive P(a)
using first-principles reasoning. Or one could be an empirical Bayesian: loosely
speaking, one "cheats" (i.e., uses less than fully rigorous reasoning) and sets priors
using frequency count (i.e., maximum likelihood) estimates based on past expe-
rience. Or one could cheat a different way, by using stacked generalization. One
version of this idea is to use a level 1 generalizer that is an LMS fit of a hyperplane
to the level 1 learning set, with all the coefficients of the hyperplane restricted to be
non-negative. Given such a fit, one might, as a crude heuristic, take the resultant
guessing of the full stacked structure to give the maximum a posteriori P(f IL).
Since P(f IL) = E'],[P(fIL,a ) x P(alL)], and since the guesses of the level 0 gen-
eralizers give P(fIL, a) as the coefficients of the hyperplane fit one might estimate
P(aJL). (Loosely speaking, for large enough L and a leave-one-out CUPS, one might
presume that P(aIL•i) ý- P(alL).) One might then estimate P(a) from P(fIL),
using the (assumed known) likelihood P(Llf) and conditional prior P(f I•a). The
idea would be that all the Bayesian generalizers use the same likelihood, so the
difference in their utility (as measured by the hyperplane coefficients) must reflect
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differences in a. Just as with empirical Bayesianism, one is setting priors by means
of the data.[31
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[3]This idea had its genesis during a discussion I had with Peter Cheeseman and Leo Breirnan
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Large Fluctuations in
Stochastically Perturbed Nonlinear Systems:
Applications in Computing

1. INTRODUCTION
Nonlinear dynamical systems often display complex behavior. In this lecture I shall
review the behavior of stochastically perturbed dynamical systems, which is a field
of its own. I shall use this as an opportunity to discuss applications to computer
science, though applications to statistical physics, chemical physics, and elsewhere
in the sciences are also numerous.

If a deterministic dynamical system has an attractor, by definition the system
state approaches the attractor in the long time limit. But if the system is regularly
subjected to small stochastic fluctuations (random kicks, or noise), this approach
will only be approximate. In the long time limit the system state will typically
be specified by a probability distribution (a "noisy attractor") centered on the
attractor proper. In the limit as the noise strength tends to zero, this distribution
will converge to the attractor.

Even if the system has a single globally stable point as its only attractor, one
can pose an interesting question: if the noise strength is very small, what is the
probability of finding the system in a specified state macroscopically distant from
the attractor? How long must one wait before this occurs? If the system has more

1992 Lectures in Complex Systems, Eds. L. Nadel & D. Stein, SFI Studies in
the Sciences of Complexity, Lect. Vol. V, Addison-Wesley, 1993 501
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than a single stable state, each with its own basin of attraction, one can similarly ask
for the time scale on which transitions between the two basins occur. Such questions
are really questions about the character of the extreme tail of the noisy attractor
and can be answered only by quantifying the probability of large fluctuations of
the system. The mathematical field dealing with such matters is known as large
deviation theory.4,26

In scientific applications one would usually like to know not only how frequently
atypical fluctuations occur, but also along which trajectory the system state moves
during transitions from one stable state to another. It turns out that, in most
stochastically perturbed dynamical systems, a single trajectory in the system state
space, or at most a discrete set, is singled out in the limit of weak noise as by far
the most likely.

This phenomenon has long been known to chemical and statistical physicists,
but its importance in other fields that make use of stochastic modeling, such as
ecology and evolutionary biology, has only recently become clear.8,'20 In chemical
physics the most likely transition trajectory is interpreted as a reaction pathway,
since chemical reactions are modeled as transitions from a metastable state to a
more stable state. 25 But the mathematical approach I shall sketch is much more
general: the dynamical system can be continuous or discrete, and the system dy-
namics need not obey detailed balance. Some of the strongest results on systems
without detailed balance have only recently been obtained.'4 '15 The system can
even be distributed, with nontrivial spatial extent; this includes stochastic cellular
automata and those systems specified by stochastic partial differential equations
rather than stochastic ordinary differential equations.

The quasi-deterministic phenomena (optimal trajectories, well-defined reaction
pathways, etc.) which arise in stochastically perturbed dynamical systems can be
viewed as emergent. They are determined by the stochastic dynamics, but in a
rather complicated way, and they manifest themselves only in the weak-noise limit.
Their appearance in computer science applications is not well known; I hope the
two examples treated in this lecture will correct that. Attempts have recently been
made to interpret the behavior of computers, or interacting networks of computers,
in dynamical system terms or even ecological terms. 7 But stochasticity is, I think,
a crucial part of any such interpretation.

2. A SIMPLE STOCHASTIC MODEL: ALOHAnet

As a first example drawn from computer science, consider a stochastic model that
attempts to capture the essential features of a large number of computers communi-
cating with each other across a data network, such as an Ethernet. The model will
be idealized, but it will be typical of ("in the same universality class as") models in
which a large number of agents share occasional access to a single resource. Here
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the resource will be the network bus: the ether, which only one computer can use
at a time.

You are no doubt familiar with such application programs as telnet and ftp,
which allow a user of one machine to communicate with another. Behind the scenes
("at a lower protocol layer," in telecommunications jargon) these programs work as
follows.24 A connection between two computers consists of a stream of data packets,
each typically containing between 10 and 103 bytes. (A data packet is simply a train
of square waves.) An interactive log-in program like telnet normally transmits a
packet whenever the user presses a key; the packet contains the typed character.
Less interactive programs like ftp, which transfers whole files, employ larger pack-
ets. There is a scheme known as TCP/IP (Transmission Control Protocol/Internet
Protocol) for specifying the destination of packets and for keeping the two com-
municating computers synchronized. This last task may involve the transmission of
additional packets.

Let us suppose that a computer is making substantial use of the network: sev-
eral users are running ftp simultaneously, for example. In this situation a statistical
treatment is possible. In the context of a particular stochastic model, it is possible to
estimate mean network usage and the probability that data packets are transmitted
successfully. That is what I shall now do.

A slight digression is necessary on the issue of successful transmission. Ether-
net, besides being a trade name, is a multiaccess protocol: a scheme for sharing
access to the cable connecting two or more computers. Normally when a computer
wishes to transmit a packet, it does so immediately. Therefore it is possible for two
machines to transmit colliding packets, in which case both packets are corrupted:
the information in both is lost. The Ethernet protocol (a CSMA/CD [Carrier Sense
Multiple Access/Collision Detect] protocol) embodies a heuristic for minimizing the
probability of collisions, i.e., of unsuccessful transmissions.

A description of the protocol may be found in the book by Bertsekas and
Gallager.1 On grounds of simplicity, I shall model a conceptually similar but simpler
protocol known as ALOHAnet. ALOHAnet was one of several Ethernet precursors,
developed at the University of Hawaii during the 1970s. Although it has long since
been superseded, it lives on in the form of a tractable mathematical model. The
stochastic ALOHAnet model is a discrete-time model or Markov chain, unlike the
continuous-time models that must be employed in the performance analysis of real-
world Ethernets. The following description is standard.5,'9 13 ,19

Suppose that N computers are attached to the network; N will eventually be
taken to infinity, yielding a continuum limit which (if proper scaling is imposed) can
be viewed as a weak-noise limit. At each integer time j = 1, 2, 3,..., a packet of data
originates with probability P0 on each computer not currently blocked. When is a
computer blocked? When a previously generated packet has failed to be transmitted
successfully, and the packet is awaiting retransmission.

Newly generated packets are always transmitted immediately but, of course,
they may collide with packets transmitted by other computers at the same integer
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time. Such collisions are immediately detected, and each of the transmitting com-
puters enters a blocked state (if it was not blocked already). While in the blocked
state, at each subsequent integer time a computer will attempt a retransmission
with probability Pl. In other words, each of the blocked computers backs off a ran-
dom amount of time and tries again to transmit its packet. The back-off time is
geometrically distributed, with parameter pl. This random back-off policy facili-
tates the breaking of the deadlock: if the blocked computers each backed off a fixed
amount of time, they would simply run into each other again.

This ALOHAnet model has only three parameters: p0, Pi, and N. If yj is the
number of computers blocked at time j, then Yi, Y2, Y3 ... is a Markov chain on the
discrete state space {0, 1, 2,..., N}. Let us analyze this Markov chain.

At any time j, the number of retransmitted packets is binomially distributed,
with parameters p, and yj. Similarly, the number of newly generated (and trans-
mitted) packets is binomially distributed with parameters P0 and N - yp. If X1 and
X 0 denote these two random variables, the total number of packets transmitted at
integer time j is X1 + X 0 , and

-1, ifXO=0, X,=1;

-Yj+l1-Yj= XO, ifXO+X 1 >1; (1)
0, otherwise.

yj will decrease by 1 if a previously unsuccessfully transmitted packet (and only
that packet) is retransmitted. It will increase by X0 in the event of a collision, and
so forth. From Eq. (1), it is easy to work out the density of the random variable

-Ay.
Since we wish to construct a continuum large-N limit, we define the normalized

network state x at any time to be y/N, the fraction of computers that are currently
blocked. Necessarily 0 < x < 1. Besides scaling the state space in this way, we scale
time by defining normalized time t to equal j/N, so that x, if viewed as a function
of t, jumps at t = 1/N, 2/N,... by a random quantity N-'I. The density of the
random variable • is specified by the current normalized state x; we write C as C(x)
to make this clear.

To get a nontrivial large-N limit, we need to scale the probabilities P0 and p1
as well; we take Po = qo/N and p, = q1/N, for some N-independent qo and q1. So
qox is the expected number of newly generated packets, and q, (1 - x) the expected
number of retransmitted packets, at any specified normalized time j/N. It is an
easy exercise to verify that in the large-N limit

(ý(x)) = q0(1 - x) - [q0(1 -- x) + qlx] exp [-q0(1 - x) - qlx] (2)

is the expected change in the number of blocked computers, at any specified time
j/N. Equation (2) gives us an explicit expression for (Ax), the mean amount
by which the normalized state x changes at any specified time j/N; it is sim-
ply N- (C(x)). So in the large-N limit the dynamics of our network model are on
the average completely specified by Eq. (2).
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We now can see how the ALOHAnet model can be viewed as a stochastically
perturbed dynamical system. In expectation, the large-N ALOHAnet model looks
very much like a one-dimensional dynamical system

± Wt = (•(x)), (3)

defined on the closed interval [0, 11. Such an associated deterministic dynamical
system is called a fluid approximation by network performance analysts. Although
(as we shall see) it cannot answer the questions about large fluctuations in which
we are interested, the fluid approximation says quite a bit about the stability of the
network. In Figure 1, the drift field (ý(x)) is plotted as a function of x, for q0 = 0.43
and q, = 5.0 (parameter values originally chosen by GCnther and Shaw5 ). It is clear
that for this choice of parameters the system has two point attractors: x0 ;Z 0.150
and x, - 0.879. Each has its own basin of attraction and, in the fluid approximation,
the network state flows deterministically to one or the other. The two attractors
are interpreted as follows. Networks, in particular heavily loaded networks, are
prone to congestion, and the two attractors are respectively a low-congestion and
a high-congestion state.

The presence of more than a single attractor, for certain parameter values, is an
unfortunate feature of the ALOHAnet protocol. If at time zero all computers begin
unblocked, with these parameter values the fraction of blocked computers will rise
swiftly to ; 0.150. If, on the other hand, at time zero the computers all begin in the
blocked state, the fraction will decrease to ; 0.879 and no further. In the latter case
very few packets are successfully transmitted or retransmitted, since the probability
of more than a single computer transmitting a packet is always very high. (Since
q, = 5.0, when x ; 1 about 5 computers, on average, attempt to retransmit a packet
at each time j/N.) The ALOHAnet protocol makes no provision for breaking the
deadlock by sharing the network in a sequential or round-robin fashion: in the event
of extreme congestion, the computers get in each others' way.
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q,

FIGURE 2 An impressionistic sketch of the
parameter space of the stochastic ALOHAnet
model. Within the horn-shaped region, the
network is bistable; outside it, monostable.
The tip of the horn is analogous to a statistical-
mechanical critical point.

The appearance of more than a single point attractor is actually a bit atypical;
it will occur only for certain values of the scaled parameters. (See Figure 2.) The
(qo, qj)-plane is divided into two regions: a monostable (one-attractor) region and a
bistable (two-attractor) region. The equilibrium blocking fraction is a single-valued
function of (q0, qj) in the former region, and a double-valued function in the latter.
Nelson18 has shown that this phenomenon, which is so suggestive of statistical-
mechanical critical behavior, generalizes naturally to multidimensional parameter
spaces. The Ethernet protocol modifies the packet retransmission probability each
time an unsuccessful retransmission occurs, so a more realistic ALOHAnet model
would be specified by a vector (Po,P1,P2,...) of probabilities, with Pk, k > 1, the
probability of transmitting a packet that has failed to be successfully transmitted
exactly k times. The corresponding normalized system state would be a vector
(x('), x(2 ),...) of blocking fractions: x(k), k > 1, would be the fraction of computers
that are blocked and that have failed to transmit a stored packet exactly k times.
The analogue of Figure 2 would be a multidimensional phase diagram, some regions
in which would be characterized by the presence of multiple point attractors in the
multidimensional normalized state space.

The preceding treatment has been entirely in the context of the determinis-
tic fluid approximation. The network state does not actually evolve deterministi-
cally, except in expectation. The expected increment (Ax) equals N-'(ý(x)), but
the standard deviation of Ax is also proportional to N-'. Ax equals (Ax) plus
Ax - (Ax), and the latter term can be viewed as a stochastic perturbation super-
imposed on the dynamical system. These stochastic perturbations will broaden the
point attractors into noisy attractors and occasionally induce transitions between
them.

These transitions are of considerable practical interest, since they are sudden
changes in network congestion. A heavily loaded network can suddenly shift from
a low-congestion state to a high-congestion state, in which almost no packets are
transmitted successfully. (This has rather drastic effects on the computers attached
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to the network!) But to model such transitions, a fully stochastic treatment is
necessary.

3. THE WENTZELL-FREIDLIN THEORY
The techniques employed to estimate the transition time between metastable states,
and in general to estimate the probability of unlikely events in the weak-noise limit,
go under the name of Wentzell-Freidlin theory.26 The Wentzell-Freidlin theory is
simply the large deviation theory of stochastically perturbed dynamical systems.
Many results in this area are due to physicists and chemists,6,23 ,2 5 but Wentzell
and Freidlin were the first to put the subject on a sound mathematical footing.4,27

I shall summarize their main results, and extensions.
Consider a multidimensional random process x(t) similar to the normalized

ALOHAnet process. x(t) is assumed to jump at times t = N-, 2N-, 3N-1,...,
and the jump magnitude is N-1 times a random vector whose distribution depends
on the current state x. We write this random vector as ý(x), so Ax = N-`(x).
The N --+ oo limit will be a weak-noise limit.

This random process strongly resembles a diffusion process with drift. In fact
the expected drift velocity at any point x is u(x) - (ý(x)), and the diffusion tensor is
N-` times D1j(x) - Cov(& (x), ýj(x)), the covariance matrix of the components of
ý(x). A continuous-time diffusion process x(t) with these parameters would satisfy
the stochastic differential equation

dx2(t) = u1(x(t)) + all(x(t))dwj(t) (4)

where dw(t) is white noise, and the tensor a o (aij) is related to the tensor
D = (Dij) by D = aa. But this continuous-time "diffusive approximation" to the
underlying jump process is not especially useful for our purposes: the large fluctu-
ations of the jump process turn out to depend crucially on the higher moments of

Suppose that x0 is an attractor for the expected drift field u(x). Then in expec-
tation x(t) will tend to flow toward xo if it begins in the basin of attraction of Xo.
Thereafter, x(t) will tend to wander near x0 for a long time. But statistical fluctu-
ations of all magnitudes will occur; the stochastic perturbations N-'[C(x) - u(x)]
will eventually push x outside any specified region U surrounding xo. In other
words, the noise will eventually overcome the drift.

Since the effective diffusion coefficient decays as N-1, one expects that the time
to exit any specified region U grows (in expectation) exponentially in N. That is
correct, and the Wentzell-Freidlin theory provides a technique for computing the
asymptotic exponential growth rate. Of course, this will depend on the choice of U.
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In most applications U is the entire basin of attraction of the attractor x0 , though
a smaller region could be chosen.

The technique is as follows. According to theory the expected exit time (t.xit)
has weak-noise asymptotics

(texit) -• exp(NSo), N --+ 0o, (5)

where

So = inf J L(x(t), k(t)) dt (6)

is a minimum action for exiting trajectories. The infimum is taken over all trajec-
tories x(t) which begin at xo and terminate on the boundary of U. The transit time
is left unspecified. Here L(x, x) is a Lagrangian function, dual to a Hamiltonian or
energy function constructed from the distribution of C(x) by the formula

H(x, p) = log(exp(p • C(x))). (7)

It is clear that the higher moments of C(x) enter into the computation of the function
H. In fact, H(x, .) is the cumulant-generating function of the random variable C(x).

The sudden appearance of a classical Hamiltonian and its dual Lagrangian is
quite remarkable. They are not mere mathematical auxiliaries. The trajectory x* (t)
minimizing the action (it usually exists, and is unique) is interpreted as the most
probable exit path (MPEP) in the limit of weak noise. It is not difficult to check,
using standard methods of classical mechanics, that the optimization of the action
over transit times yields an MPEP which is a classical trajectory of zero energy. So
the "momentum" p, which has no direct physical interpretation, as a function of
position x along the MPEP must satisfy

(exp(p . C(x))) = 1. (8)

If the state space is one-dimensional, this zero-energy constraint alone will deter-
mine the MPEP.

The MPEP x* is not only a most probable exit path: it is also an exit path
of least resistance. Although x(t) will remain in U for an exponentially long time,
it will fluctuate out along the MPEP (and in other directions) an exponentially
large number of times before the MPEP is traversed in full and U is exited. The
final fluctuation will follow x* quite closely in the large-N limit. One can view
the equilibrium distribution of the system state x (the noisy attractor) as being
concentrated near Xo but having a tubelike protuberance stretching out toward the
boundary of U along the trajectory x. In the large-N limit the tube is exponentially
suppressed, and the noisy attractor converges to the point attractor xo.

(t.xit) grows exponentially in N, but the limiting distribution of texit has not yet
been specified. It turns out to be an exponential distribution. This is very typical
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of weak-noise escape problems, where the probability of any single escape attempt
is small. (The same exponential distribution is seen in radioactive decay.)

So, the weak-noise growth rate of the expected exit time, can be viewed as a
barrier height: a measure of how hard it is to overcome the drift driving x toward x 0

and away from the boundary of U. In fact, if extended to conservative continuous-
time processes described by Eq. (4), the Wentzell-Freidlin framework yields the

familiar Arrhenius law for the growth of the exit time in the limit of weak noise.

For such systems So is simply the height of the potential barrier surrounding the
attractor.

What is not clear from the Wentzell-Freidlin treatment (and is still not rigor-
ously clear, though numerous nonrigorous results have been obtained 14' 16 ' 17 ) is the
subdominant large-N asymptotics of (texit). In general, one expects

(texit) - CN' exp(NSO), N -* oo, (9)

for some constants C and a, but the Wentzell-Freidlin theory yields only the expo-
nential growth rate So. The preexponential factor in Eq. (9) remains to be deter-

mined.

The current status of the prefactor problem can be summed up as follows. If

U is taken to be the entire basin of attraction of x 0 , a is typically zero and C
can be obtained by a method of matched asymptotic expansions, i.e., a method of
systematically approximating the equilibrium distribution of x. However in mul-
tidimensional models there is an entire zoo of possible pathologies, including the

appearance of caustics and other singular curves in the state space,2"14' 15 which can

induce a nonzero a or hinder a straightforward computation of C. This is the case,

at least, for continuous-time diffusion processes defined by stochastic differential

equations. The situation for jump processes is expected to be similar.

4. APPLYING THE THEORY
The Wentzell-Freidlin theory, with extensions, can be applied to the stochastic

ALOHAnet model, and to other stochastically perturbed dynamical systems arising

in computer science. The quantity most readily computed is So, the exponential

growth rate in the weak- ,oise limit of the expected time before the system leaves

a specified region surrou:,ding a point attractor in the system state space. Recall

that in the ALOHAnet riodel this region is the basin of attraction; a departure

from it signals a drastic (hange in network congestion.

If the system state space is one-dimensional, as in the ALOHAnet model, the

classical-mechanical intel pretation of So facilitates its computation. So is always

the action of a zero-ener,.y trajectory, with energy as a function of position and

momentum given by Eq. (7). This Hamiltonian is a convex function of p at fixed x,

so if the state space is on3-dimensional (and (ý(x)) # 0, which will always be the
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case within the basin of attraction), the equation H(x, p) = 0 will have only two
solutions for p, = p(x). One of these is p _ 0, which is not physical. This solution
is not physical because, if p = 0,

-5p = (ý(x) exp(p -(x)))/(exp(p. -(x))) = (C(x)) (10)

and the p =_ 0 trajectory simply follows the mean drift, which points toward the at-
tractor rather than away from it. The MPEP must be a classical trajectory emanat-
ing from the attractor, so in a one-dimensional system it is uniquely characterized
by the condition that p = p(x) must be the nonzero solution of H(x, p) = 0. Actu-
ally there are two such trajectories, one emanating to either side of the attractor;
the true MPEP will be the one with lesser action.

In general, to compute So, even in higher-dimensional models, one needs only
the MPEP and the momentum as a function of position along it. This is because
the action of any zero-energy classical trajectory may be written as a line integral
of the momentum, so that

So f p(x), dx, (I1)

the integral being taken along the MPEP from the attractor to the boundary of
the region. But only in one-dimensional models is Eq. (11) easily applied. In d-
dimensional models, merely finding the MPEP requires an optimization over the
(d - 1)-dimensional family of zero-energy trajectories extending to the boundary.
Except in models with symmetry, this optimization must usually be performed
numerically.

4.1 THE ALOHANET APPLICATION

In the ALOHAnet model, the expected drift (ý(x)) as a function of normalized
network state x is given by Eq. (2). But to study large fluctuations and compute
the MPEP, one needs the Wentzell-Freidlin Hamiltonian log(exp(pý(x))). In the
large-N limit the random variables X, and X0 , in terms of which ý is expressed
by Eq. (1), become a Poisson random variable with parameter qlx and a Poisson
random variable with parameter qo(1 -x), respectively. A bit of computation yields

H(x,p) = log +eqo(-)(eP-1) + qo(1 - x)e-qo(1z-)-Q1z(1 - ep) + q1 Xe-qo(l-=)-q1l(e-P - 1)]
(12)

as the Hamiltonian.
If the parameters qo and q1 are known, it is easy to compute the momentum

p = p(x) along the MPEP, by numerically solving for tL. nonzero solution of the
implicit equation H(x,p(x)) = 0. But the MPEP, and hence So, will depend on
the choice of basin of attractor. With the parameter valhes q0 = 0.43 and q, = 5.0
of Figure 1, the two attractors x0 ; 0.150 and x, ; O.F79 have respective basins
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of attraction [0, x,) and (x,, 1], with x, ,z 0.278 the intermediate repellor. MPEPs
extend from x0 to xc, and from xi to x,. Numerical integration of p(x) gives

So[xo -x x 0.00177 (13)
So[xi -+ xc] ; 0.014 (14)

as the growth rates of the expected transition times.
We see that for the stochastically modeled ALOHAnet, in the large-N limit a

reduced description is appropriate. Asymptotically, it becomes a two-state process.
The network is either in a low-congestion state (the basin of attraction of x 0 )
or a high-congestion state (the basin of attraction of x1), and the transition rates
between them (the reciprocals of the expected transition times) display exponential
falloffs

exp (-NSo[xo --* x,]), exp (-NSo0[xl --+ x]), (15)

respectively. With the above choice of parameters, for reasonable-sized N the latter
transition rate is much smaller than the former. Once congestion has interfered with
the proper performance of the back-off algorithm, the network gets "stuck" for a
potentially long time. This is clearly not a good choice of network parameters!

In a real-world N-computer ALOHAnet implementation, q0 would be the total
network load and would be determined by the level of interprocessor computing
taking place on the network. The back-off parameter q, = Npl, however, would
probably be fixed, with p, in hard code in a data communications chip installed in
each computer. So the Wentzell-Freidlin approach could be employed to determine
the likelihood, as a function of network load, of irreversible (or all but irreversible)
congestion occurring.

Of course the bistability of the system is itself a function of q0 and q1 . As noted,
for many values of the parameters the network is monostable: there is only a single
attractor, which may be characterized by a comparatively low level of congestion.
For such a network, one could compute an action So for any specified maximum
tolerable congestion level. The associated optimal (i.e., most probable) approach
path would be computed much as the MPEP is computed in the bistable case.

4.2 A COLLIDING STACKS APPLICATION

There have been several applications of large deviation theory to the stochastic
modeling of dynamic data structures. 11, 11,12 The memory usage of a program or
programs being executed by a computer can be modeled as a discrete-time jump
process. In many cases this process may be viewed as a finite-dimensional dynamical
system, subject to small stochastic perturbations. Of interest is the amount of time
expected to elapse before a particularly large fluctuation away from a deterministic
point attractor occurs. This would correspond, in real-world terms, to an atypical
string of memory allocations leading to an exhaustion of memory.
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The following two-dimensional "colliding stacks" model was first studied by
Flajolet,3 having been first suggested by Knuth. Suppose that N cells of memory,
arranged in a linear array, are available for use by two programs. Suppose that at
any given time, the programs will require y(') and y(2 ) cells of memory respectively.
It will be most efficient for them to employ respectively the first y(1) and the last
y(2) cells of the array, so as to avoid contention for memory. It is necessary that
y(1) + y(2) < N; if this inequality becomes an equality, the two-program system
runs out of memory.

A natural model for the evolution of y(I) and y(2 ) is as follows. At any integer
time j = 1,2,3,..., there are four possibilities: y(l) may increase by 1, y(') may
decrease by 1, y( 2) may increase by 1, and y(2 ) may decrease by 1. These are assigned
probabilities p/ 2 , (1 - p)/2, p/2, (1 - p)/2, for p the probability of a net increase
in memory usage. Let us take 0 < p < 1/2, so that deallocations of memory are
more likely than new allocations. (Note that, if y(l) = 0 or y(2) = 0, the assigned
probabilities must differ, since neither y(') nor y(2) can become negative.)

Just as in the ALOHAnet model, it is natural to scale both time and and the
state space as the amount of memory N tends to infinity. However, we shall not need
to scale the model parameter p. Let x = (xI, x2 ) = (y(1, y(2 ))/N be the normalized
state of the two-program system, and let t = j/N be normalized time. x jumps
at t = 1/N, 2/N, 3/N,... by an amount N-1 ý, where ý is a random variable with
discrete density {p/21 ifz = (1,0);

PP 2 ifZ (0, 1); (16)
( -p)/2, if z=(-1,0);
(l-p)/2, if z = (0, -1).

As defined, the density of • is essentially independent of x. It is useful to relax this
assumption, so as to permit more realistic stochastic modeling of dynamic data
structures. Let

p(xl)/2, if z = (1,0);

P {W(x) = z} p(X2)/2, if Z = (0, 1), (17)
(1 -p(xi))/2, if z = (-1,0);
(1 - p(x2))/2, if z = (0, -1).

This is a natural generalization. Here p(x) (assumed to take values between 0 and
1/2 exclusive) specifies the probability of an increase in memory usage by either
program, as a function of the fraction of available memory which that program is
currently using. We now write ý as ý(x), to indicate the dependence of its density
on x.

The normalized state x is confined to the right triangle with vertices (0, 0),
(1,0) and (0, 1). The expected drift

(ý(x)) = (p(xj) - ½,p(x2) - 2) (19)
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may be viewed as a deterministic dynamical system on this two-dimensional nor-
malized state space. Clearly, the vertex (0, 0) is the global attractor. In this model
the two programs tend on the average not to use much memory.

Since there is only a single attractor, the quantity of interest is the expected
time which must elapse before a fluctuation of specified magnitude occurs. Fluctua-
tions that take the system state to the hypotenuse of the triangle (where x1 +X2 = 1,
or 9(l) + y(2) = N) are fatal: they correspond to memory exhaustion. The rate at
which they occur can be estimated in the large-N limit.

This is a two-dimensional system, so the optimal (least-action) trajectories are
not determined uniquely by the zero-energy constraint. However, we still have

(texit) •- exp(NSO), N , oo, (20)

with So the action of the least-action trajectory that exits the triangle through the
hypotenuse. The action is computed from the Lagrangian dual to the Wentzell-
Freidlin Hamiltonian

H(x, p) = log(exp(p • .(x)))
= - log 2 + log{coshpx - [1 - 2p(x)] sinhp. (20)

+ cosh py - [1 - 2p(y)] sinh p},

which follows from Eq. (17).
The zero-energy trajectories determined by Eq. (20) are studied at length in

Maier 1 ' where he shows that the MPEP depends strongly on the behavior of the
function p(x). (See Figure 3.) If p(x) is a strictly decreasing function, so that the
model is "increasingly contractive," with large excursions away from the attractor
strongly suppressed, then the MPEP turns out to be directed along the line segment
from (0, 0) to (1/2, 1/2). Its action is

So = 4 tanh'[1 - 2p(x)] dx. (21)

If, on the other hand, p(x) is a strictly increasing function, so that the model is
decreasingly contractive, with large excursions less strongly suppressed, then there
is a twofold degeneracy. MPEPs are directed outward from (0, 0) to the two other
vertices of the triangle, and

So = 2 L tanh- I1l - 2p(x)] dx (22)

is their common action.
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(0,1)

T2

(1/2,1/2)
FIGURE 3 The triangular normalized

Tstate space of the colliding stacks model.
TTrajectory TI is the most probable exit path

when the function p(x) is strictly decreasing,
T3 but, if p(x) is strictly increasing, then T2 and

T2' T2' are both MPEPs. Trajectory T3 is one
of the uncountably many MPEPs that arise

(0,0) (1,0) when the function p(x) is constant.

So when p(x) is strictly increasing, there is a "hot spot" on the hypotenuse of
the triangle at (1/2,1/2). When the two-program system runs out of memory, as
N -+ oo it is increasingly likely that each program will be using approximately N/2
memory cells. If, on the other hand, p(x) is strictly decreasing, there are hot spots
at the vertices (0, 1) and (1, 0). Exhaustion increasingly tends to occur when one
or the other program is using all, or nearly all, of the N memory cells.

If p(x) is neither strictly increasing nor strictly decreasing, the large-N asymp-
totics may become more complicated. The most easily treated case is that of
p(x) - p, a constant, i.e., the model of Eq. (16). In this model an infinite degen-
eracy occurs: any trajectory that moves some distance (possibly zero) from (0,0)
toward (0, 1) or (1,0) and then moves into the interior of the triangle at a 450 angle
until it reaches the hypotenuse is a least-action trajectory. Large fluctuations away
from the attractor may proceed along any of this uncountable set of MPEPs. As
a consequence, there is no hot spot: in the large-N limit, the exit location is uni-
formly distributed over the hypotenuse. Flajolet 3 first discovered this phenomenon
combinatorially, but it has a natural classical-mechanical interpretation. However,
it is a bit counterintuitive: it says that when memory is exhausted, the fractions
allocated to each program are as likely to be small as large. This is a very sensitive
phenomenon.

5. CONCLUSIONS
We have seen that the Wentzeii-Freidlin results on scaled jump processes throw
considerable light on the fluctuations of stochastically perturbed dynamical sys-
tems, in the weak-noise limit. Even if the unperturbed dynamical system is in nio
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sense Hamiltonian, the appearance of a classical Hamiltonian and Lagrangian is
quite striking. So is the central importance of zero-energy trajectories.

In this chapter I have focused on jump processes since they are the most rele-
vant to computer science applications. (Computing is inherently discrete.) But they
also occur in chemical physics: there is always an integer number of molecules in
any given region of space. Attempts are now being made to interpret the stochas-
tic aspects of chemical reactions in terms of optimal trajectories. 2 1 This is very
reminiscent of our focus on most probable exit paths (MPEPs).

There is also a large deviation theory of continuous-time processes,4, 26 such as
the diffusion processes specified by the stochastic differential equation k4). .Asso-

ciated to each such process is a Fokker-Planck equation (a parabolic partial dif-
ferential equation) describing the diffusion of probability. The zero-energy classical
trajectories of continuous-time large deviation theory can be viewed as the charac-
teristics of this differential equation. Normally one expects only hyperbolic equa-
tions to have characteristics, but these characteristics are emergent: they manifest
themselves only in the weak-noise limit.

A large deviation theory of spatially extended systems would be an interesting
extension but is still under development. Such systems include stochastic partial
differential equations and stochastic cellular automata. In such systems an MPEP
would be a trajectory in the system state space, describing the most probable
spatially extended fluctuation leading from one metastable state to another. Much
work has been done on this by statistical mechanicians and field theorists (who call
such fluctuations "instantons" 22 ), but the theory is less complete than the theory
I have sketched in this chapter. The theory of extended fluctuations in particular
has not been applied to distributed computer systems. There is clearly much work
left to be done!
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On the Structural Complexity
of Designed Systems

1. INTRODUCTION
Biologists occasionally state that a certain system or phenomenon "is very com-
plex indeed." What exactly does that mean? Does it mean merely that no real
understanding of the system concerned is available, or can the term "complex" be
assigned a positive and precise meaning? We can consult a dictionary; in addition
to unhelpful definitions like "Complex: An irrational attitude (Psych.)" or a "non-
real number (Math.)," we also find "Composed of many interconnected parts" or,
"Of intricate design."I The latter two definitions sound intuitively appropriate be-
cause most biosystems are composed of many parts, or components, and certainly
have an intricate design. These components are atoms or molecules on the ultimate
level, and can be molecular assemblies on the intermediate level, and cells organs
on the higher levels of bio-organization. The intricate details of these bioassem-
blies are coded for, at least partly, by the genome of the organism concerned. This
coded information has been accumulated during evolution, is faithfully transmitted

1992 Lectures in Complex Systems, Eds. L. Nadel & D. Stein, SFI Studies in
the Sciences of Complexity, Lect. Vol. V, Addison-Wesley, 1993 519
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from generation to generation, and is decoded precisely (expressed) within each
generation.

All this is well known. The questions to be addressed here are whether these
complex aspects of biosystems can be given a precise definition suitable for quanti-
tative evaluation, and what such an evaluation can contribute to the understanding
of these systems. Several formal approaches to the quantitative definition of com-
plexity are available (for a critical evaluation, see Bennet 2 ).

The first approach is based on the tacit assumption that behind many complex
phenomena hides a simple mathematical relation, like a set of differential equations
or a rule of a cellular automaton. The solution of these within a range of real
conditions manifests the complex behavior or pattern observed. The task of the
biologist, or biophysicist, is to detect the generating function giving rise to that
complex pattern. This approach gives little weight to the fact that bioentities have
many of their properties specified by the vast repertoire of instructions encoded
in their genome. An example is the generation of biological form-morphogenesis.
While a certain amount of symmetry-related features can be beautifully explained
by simple growth mechanisms,7 even quite simple creatures like viruses cannot
be generated unless dozens of genes produce their precisely coded product. For
instance, in bacteriophage T4, at least 49 genes must be precisely expressed in
order to generate the three structural components of its virion form-head, tail,
and tail fibers-and to produce an infective virion. 12

A second approach does not insist on the presence of a simple generating func-
tion but tries to evaluate complexity by estimating the information content of the
states that a biosystem realizes in relation to the information content of all possible
states of the system. The complexity of a system is expressed in terms of informa-
tional entropy, employing Shannon-Weaver related expressions.5' 1 This approach
is particularly suitable for the description of stochastically determined features of
processes but, so far, it has not been able to incorporate those aspects of life where
a high input of genome-coded instructions is involved.

The third approach, formulated by Solomonoff,10 Kolmogorov,s and Chaitin,3

characterizes the complexity of a string of symbols by the minimal size of the
program that will compute that string; in a real system this means the minimal
size of the set of instructions required to obtain a complete description of that
system. This approach neither presumes a mechanistic understanding nor requires
complete knowledge of all possible states that a system can assume. Complexity
thus evaluated has been called algorithmic complexity and has been shown to be
able to account for the entropic properties of physical systems.' 5

This last approach is particularly suitable for the characterization of biosys-
tems, because it has the ability to evaluate long sets of coded information inherent
in biosystems. For a beautiful descriptive exposition, see Dawkins. 4 Examining (so
far) sequenced genomic DNA, it does not seem that we shall discover simple func-
tions that can generate most of the the many million bits of information present in
the genetic code. This implies that the complexity of a substantial part of biolog-
ical information is more likely to be described by approaches that just enumerate
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features than by approaches that calculate probabilities or presume simple underly-
ing processes. Consequently we have adopted the Kolmogorov-Chaitin approach to
the evaluation of the structural features of biocomplexity, applying it to molecular
assemblies of interest in biosystems. 13

2. STRUCTURAL COMPLEXITY
In this section the formalism designed to evaluate the structural complexity of bio-
and other systems is described and applied in detail to some fairly simple examples.
The basic idea is to express the structural complexity of a system in terms of
the size of the shortest instruction set leading to that structure. The formalism
was developed for typed point systems, i.e., for sets of points that may have a
different composition each. Simple molecules and biomolecules and their assemblies
can be regarded as typed point systems. In previous papers 13 we analyzed two
very simple molecules (methane and ethane) as well as several macromolecules and
bioassemblies,1 4 and showed a connection between the resulting complexities and
the coding requirements of the biomolecules treated.

In this paper, the complexity of three simple organic molecules is described,
clarifying both the procedure employed and the assumptions inherent in the pro-
posed treatment. To analyze a molecule, the composing atoms are numbered, and
the molecule is put in a suitable coordinate system. Next, each coordinate is exam-
ined as to whether it has the same value in every molecule (is ordered), or whether
it assumes different values at different times (is random). Complexity of the ordered
coordinates then is evaluated by the following set of rules (essentially the same as
in Yagil13 ):

1. Structural complexity of a system C is the size of the set of specifications
describing that system.

2. A specification can be the assignment of a numerical value to one or more
spatial coordinates of a point in the system or the declaration of the type of
that point. A type may be a chemical element, a nucleotide base, a cell type,
or any other compositional element e.

3. Coordinate values that can be correlated by a mathematical expression are
counted either as a single specification when a single numerical value is involved
or by as many new numerical constants as are present in the expression.

4. An ordinal number is not counted as a separate specification.
5. The declaration of the range of atom numbers over which an expression is valid

is not counted as a separate specification.
6. A simple numerical coefficient like ir or (-1)' is not counted as a separate

specification (this rule makes tetrahedral and planar coordination spheres, for
example, equally complex).
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7. A transformation of the coordinate system adds to the complexity specifica-
tions equal in number to the previously unspecified constants present in the
transformation matrix; only a single (dummy) transformation can accompany
a specification statement.

The criteria by which these rules have been formulated are the extent to which
they lead to consistent descriptions using different coordinate and numbering sys-
tems. A formal justification is not attempted at present. The crucial rule in deter-
mining structural complexity is rule 3, which reduces the number of specifications
needed for each k-fold regularity from k statements to a single one:

k= k, - l C 1

where c(k) is the number of coordinates sharing a k-fold regularity and c' is the
number of the coordinates necessary for placing the system in the external space
(usually 5 or 6). Equation (1) represents the intuitive idea that the more regular,
repetitive features a system has, the lower its complexity will be.

The C(1) term of Eq. (1) gives the contribution of uniquely specified coordi-
nates, while all other terms represent coordinates of some repetition or regularity.
These uniquely specified coordinates are not random but ordered, because random
coordinates have been excluded on the grounds that they are indeterminate and
it therefore cannot determine whether they obey any regular relationships. Most
natural DNA templates are uniquely specified rather than random, because DNA
in every cell of the same organism will have the same base sequence. In summary,
the total coordinates of P system c are composed of the random coordinates Cran
and the ordered coordinates cord; Cord is in turn composed of the regular (creg) and
the uniquely specified coordinates (cu,), as follows:

C = Cran + Cord C eran + Creg Cus. (2)

Soon we shall see how this distinction between random and ordered elements can
be implemented.

3. THE NEOPENTANE MOLECULE
The simple hydrocarbon molecule of pentane will serve as an example. A pentane
molecule is composed of n = 12 atoms, 5 carbons and 12 hydrogens. Three noncyclic
isomers exist: n-pentane, isopentane, and neopentane; the structural formulas are
shown in Figure 1. Each pentane molecule is fully specified when its 68 coordinates
(one coordinate for type and three in space for each atom) are specified. The values
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TABLE 1 Specification Table of Neopentane, C(CH3)4; n = 17.1

i E r 9 0 T

1 C 0 0 0 TO
2 C Rcc 0 Ecc/2 To
3 C Rcc ir/4 -Ecc/2 TO
4 C Rlc 27r/4 ir - Occ/2 TO
5 C Rcc 37r/4 7r + ecc/2 TO
6 H RCH Any, OCH T,
7 H RCH Anyl + 27r/3 ECH T,
8 H RCH Any 1 + 47r/3 OCH T,
9 H RCH Any2  eCH T2
10 H RcH Any2 + 27r/3 eCH T2

11 H RCH Any2 + 47r/3 eCH T2
12 H RCH Any3  e)CH T3
13 H RCH Any3 + 21r/3 e)CH T3

14 H RCH Any3 + 47r/3 eCH T 3

15 H RCH Any4  ecH T4

16 H RCH Any4 + 27r/3 OCH T4

17 H RCH Any4 + 47r/3 eCH T4

I Rcc, RCH are C-C and C-H bond lengths; Occ, e)CH are

the C-C-C and C-C-H bond angles, respectively. The listed
coordinate values in each row are valid for the coordinate
system T shown in the last column of the row. System To
has its origin on the central carbon, with its z-axis bisecting
the C 2-CI-C 4 angle, and the x-axis in the plane of that
angle. Systems T, to T4 have their origins on carbons C 2 -
C5 , with their z-axis along the C-C bonds and their x-axes
in planes rotated successively by 7r/2. To relate the listed
coordinates values (x) to a single system, for example to To.

The following orthogonal transformation has to be applied 6 :

(x') =R(x) + D =(sin~coso -cos~coso sin 0
sinOsin¢ -cosOsin4 -cos0 +

cos 0 sin 0 0
(2)
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TABLE 1 (cont'd.)

1 here 0 = 0 when successive z-axes are trans. R is the

rotational angle matrix and D is the displacement vector
(polar coordinates). The column vector (x') represents the
coordinates based on CI and (x) is the vector based on the
system listed. For T 1 to T4 of neopentane, 0 and 0 values are:
Oj = (i - 1)7r/2; Oi = 7r(i - 2) - (-1)19cc. 7r/2, eCC are pre-
specified in rows 1 and 5 and therefore, by rule 7, are not
counted as separate specifications for rows 6-17. Rule 7
requires, in addition, that only a single set of €i, 6j, Rcc
values is shared by transformations associated with a state-
ment; otherwise, an increase in complexity is involved. In
neopentane, unlike isopentane, only a single set is involved

z 3CH3 4 CH3 1 2- 14
5.7 9-11 / 9-11 H4

4 CH3  2 CH3  2 CH2 7-8 2 C

y IH H
I H 6

CHr
O-X 1i WH 7

3 CH2 10-11

3 CH3  5 CH3  4CH3  5CH 3
12-14 15-17 12-14 15-17 5 CH 3

neopentane isopentane n-pentane

FIGURE 1

that the coordinates of neopentane assume are listed in the specification table for
neopentane (Table 1). This table contains 68 numerical entries; 68 is consequently

an upper limit for the complexity of a pentane molecule.
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The actual structural complexity of neopentane is, however, considerably lower
than 68, for three reasons:

1. The placement coordinates, cd = 6 (four zeros and ±ecc/2), should not be
counted, because they fix the position of the molecule in the external space,
independent of the internal complexity.

2. More significant, four coordinates in each pentane molecule have no fixed value
(at high enough temperatures) bec".use of the free rotations around four of the
bonds. This results in four 0 angles having indeterminate values, designated
"Any1 " to "Any4 " in Table 1. In other words, the values of these 0 angles are
different for each molecule in a molecular ensemble as well as at any particular
time point. These coordinates cannot be considered as ordered features and, as
said, do not contribute to the complexity of the system.

3. Many entries in the table are redundant because of the many specifications
that are either equal or inter-related. These specifications can be correlated
by short statements like: ri = RcC, i = 2 - 5 (or: r 2- 5 = RCc) for the four
methyl carbons (i = 2- 5 is a range statement; RCC, is the carbon-carbon bond
length). These four ri values thus form, by rule 3, a single c(4) contribution to
Eq. (1).

Points 1 and 2 imply that the maximal complexity Cmax that a pentane analogue
with no regular feature can attain is: Cmax = 4n - c' - Cran = 68 - 6 - 4 = 58.
An examination of Table I (and of analogous tables constructed with different
coordinate or numbering systems) leads to the conclusion that polar coordinates
give the most concise instruction set for neopentane, comprised of the following
minimal set of statements:

1. EI = C
2. 62-5 = Cpri

3. 66-- 17 = H
4. r, = 0
5. r2-5 = RCC

6. r 16 _17 = RCH (T = Tk); k = INT(i/3) - 1 (i.e., 1, 2, 3, or 4)
7. 1 = 0
8. €2-5 = ir(i - 2)/2

9. 06-17 = Anyk + 27r(i - 6)/3 (T = Tk)
10. 01 = 0

11. 02-5 = +I + (-1)'ecc/2
12. 06-17 = OCH (T = Tk)

Cpri is a primary methyl carbon. Rcc; RCH are carbon-carbon and carbon-hydrogen
bond lengths. Occ; ECH are CCC and CCH bond angles.

These 12 statements provide all the information needed to construct a neopen-
tane molecule. Statements 4, 7, and 10 are, however, placement statements, which
do not contribute to the complexity of the molecule. The remaining nine state.-
ments are required and lead to a value of C = 9 for the structural complexity of
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neopentane. If we want to relate this value to the maximal complexity available
for a 17-atom system with four random coordinates, we obtain a relative complex-
ity Cr = CICm., of 9/58, i.e., Cr = 0.155 for neopentane. The four indetermi-
nate "Any" are included in statement 9, which in addition contains the constant
2/37r. Relative complexity values can help to relate complexities of differently sized
systems.

4. n-PENTANE AND IsoPENTANE.
Is neopentane more or less complex than n-pentane (OH 3 . CH2 . CH 2 . CH 2 . CH 3 )

4 2 1 3 5
or isopentane (CH3 . CH2 . CH . (CH 3)2 )? An effort to answer this question was the

3 2 1 4,5
incentive to analyze the pentanes. To this end, the specification tables for n- and
isopentanes were set up and examined. The following minimal sets of statements
resulted (the student is encouraged to do that).

For n-pentane (for numbering see Figure 1):

1. 61- 3 =C

2. e 4 -5 - Cpri

3. 66-17 = H
4. r, = 0
5. r2-3 = RCC, (TO)
6. r4-5 = Rcc, (T 1 ,2 )

7. r 6 - 1 1 = RCH' (TO, 1 ,2 )
8. r 12- 1 7 = RCH" (T3,4)

9. 01,2 = 0
10. 03 = Ir
11. 04 = Any
12. 0 5 = Any
13. 06-11 = Anyk + (-1)'ir/2 k - INT(1/2) - 3 (i.e., 0, 1, or 2)(T = Tk)
14. 012-17 = Anyk + 27ri/3 k = INT(i/3) - 1 (i.e., 3 or 4)(T = Tk)
15. 01 = 0
16. 02-5 =(-1)'E),/2

17. 06-11 = OCH (T = Tk)
18. 012_17 = 71 - eCH (T = Tk)

C..c is a secondary methylenic carbon. Rcc,; Rcc,, are the distances between
primary-secondary and secondary-secondary carbons, respectively. Statements 4,
9, and 15 are placement statements; statements 11 and 12 refer to random coordi-
nates only. This leaves 13 statements to describe the ordered part of the molecule.
Consequently, the complexity of n-pentane is C = 13 and Cr = 13/58 = 0.225,
more complex than neopentane on both absolute and relative scales.
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For isopentane:

1. 61 - Cter

2. 6 2 - Csec

3. 63- 5 - Cpri

4. 66- 17 = H
5. r, = 0
6. r2 = Rcc"
7. r 3 = Rcc' (Ti)

8. r 4- 5 - RCC'
9. r 6 = RCHP,,

10. r7 -8 = RCH" (T1 )
11. r 9 _ 17 = RCH' (T 2 ,T 3 ,4 )

12. 01,2 = 0

13. 03 = Any, (TI)
14. 04,5 = -CC

15. 0= 0
16. ¢7-8 = Any1 + (- 1 )i 4ICH" (T1 )
17. 09-17 = Anyk + 27ri/3; k = INT(i/3) - 1, i.e., 2, 3, or 4 (T 2 , T3 ,4 )
18. 01,2 = 0
19. 03 = 7r - EOcc", (Ti)
20. 4-5 = Ecc,
21. 06 = 'CH"'

22. 07-8 = E)CH" (T 1 )
23. 09-17 = ecH' (T2 ,T 3,4 )

Statements 5, 12, 15, and 18 are placements and 13 is random. On the other
hand, statements 11, 17, and 23 have to be counted twice, because they each involve
two different transformations (T2 , which transforms from C3 to C1 , is different from
T3 , T4 ). This results in 21 necessary statements; i.e., the structural complexity of
isopentane is C = 21 (Cr = 0.36). Isopentane is thus the most complex of the
three noncyclic pentanes, as intuitively expected. Note that both isopentane and n-
pentane have a plane of symmetry at certain values of "Anyk." Symmetry relations
so far have not been too helpful; further analysis, nevertheless, might be rewarding.

CONCLUSIONS
The examples analyzed demonstrate that:

a. A value for the structural complexity of a typed point system can be assigned.
This assignment is based on a somewhat arbitrary set of rules. Practice shows,
however, that changing these rules leads to inconsistencies when the same sys-
tem is analyzed in different ways. A more rigorous mathematical analysis is
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needed to determine whether the assignments are indeed unique and whether
algorithms can be devised leading uniquely to these assignments.

b. An important step in the complexity analysis of any system is the determina-
tion of which coordinates are random and which are ordered (whether regular
or uniquely specified). The test is. in principle, simple: Let us examine a certain
number of systems in an ensembie, for example, molecules in a specimen. If a
certain coordinate assumes the same value in each molecule of the ensemble,
then it belongs to the ordered repertoire. On the cellular level, one can com-
pare, for instance, tubuli cells in the kidney to red blood cells. Tubuli cells
are arranged in a radial fashion around the kidney tubuli, so that they repre-
sent an ordered, fairly regular set, and their contribution to the complexity of
the organ can be assessed. In contrast, an erythrocyte (red cell) can be found
anywhere in the blood stream; its positional coordinates are random, and no
complexity value can be assigned to the arrangement of the erythrocytes in the
organism. This randomness test has to be applied for each coordinate before
the complexity of any element can be assessed.

c. The formalism permits the assignment of a value not only to the complexity
but also to the degree of ordering for a system. This can be done by simply
subtracting those coordinates that are indeterminate in the system; for instance,
order = 58/62 for each of the three noncyclic pentanes. In cyclopentane (n =
15), order = 52/54, because the ring constraints leave only two indeterminate
angles, the "pseudo rotation" and one torsion angle. 9 The distinction between
random and ordered coordinates is important because not only biosystems, but
most real-world systems, have indeterminate coordinates; consider a point on
the rim of a car wheel or the number of twigs on a tree. Most real systems are
only partially ordered, just like the pentanes. Structural complexity is relevant
and assignable only to the ordered part of a system. The distinction between
ordered and random coordinates of a system is a fundamental feature of the
treatment presented, separating it from all previous treatments of the subject.

d. Structural complexities are extra thermodynamic quantities, because the struc-
tural complexities are determined by the stable molecular bonds and not by
the occupancy of internal energy levels (except for possible rotational levels
associated with random coordinates). Complexity differences persist at O0K.
where all internal energies are in the ground state and where, according to
the third law of thermodynamics, all crystalline (ordered) compounds have a
physical entropy of zero. Further, while conventionally measured entropy is an
extensive property of systems, structural complexity is an intensive property,
the complexity of a single pentane molecule being equal to that of a mol.

e. Structural complexity is low for most natural systems but will assume high val-
ues in designed systems-systems that are created with the help of instructions
specifying their pattern and composition. In the primitive molecular Fystenis
tackled here, instructions are provided by specific catalysts that can direct a
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chemical reaction towards one isomer (that is, select one pentane isomer in pref-
erence to others). The degree of complexity thus achieved is, as we have seen,
not too high. Higher degrees of complexity can be achieved when, in addition
to a catalyst (enzyme), template molecules participate, like in DNA or protein
biosynthesis. The high degree of complexity attained in the bioworld would be
unthinkable without participation of replicable templates. In contrast to simple
catalysts, templates can store and transmit large amounts of information, and
their active presence accounts for the high complexity found in bio-organisms.
Even higher degrees of complexity are achieved in artificial systems created by
intelligent beings: The creation of a template, blueprint, or a design (all syn-
onyms for the present discussion), whether in the mind of the designer or on
paper, is an essential step in making complicated instruments or works of art.
Therefore we can expect that the concept of structural complexity will reach

its full utility in the physical and chemical analysis of templated and otherwise
designed systems.
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Global Information Systems and Nonlinear
Methods in Crisis Management

Crisis management can be seen as one of the major problems of sustain-
able development in the post-Cold-War world order. Traditional modeling
approaches, based on closed descriptions of more or less abstract global
systems, do not appear to be adequate for the new challenges. We sug-
gest that new evolutionary, integrated models will make extensive use of a
rapidly growing global computer network that will permit direct commu-
nication and efficient exchange of information as well as quantitative and
conceptual sub-models and simulations.

We present a very incomplete overview of some of the information and
modeling tools available today on the internet. We discuss some recent
network discussions on the current regional crises in the Balkans and how
distributed integrated models on the internet might help to prevent the
violent escalation of future crises.
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INTRODUCTION
In this chapter we want to discuss some limited aspects of the development of
better tools to evaluate policy decisions in a globally connected, complex world (see
Brecke3 and Isard 11 for an overview of existing tools and problems2 1 ). Recognizing
that a solution to all problems is not feasible in the foreseeable future, we take
a pragmatic perspective. Under the assumption that we have access to a well-
developed, global computer network,['] we identify the following steps:

i. Define targets for the solution of important problem areas (population, CO 2
level, violation of human rights, etc.) and assign a relevance weight to each of
the problem areas;

ii. Acquire qualitative information on the current status of the problem;

iii. Define sub-areas where a quantitative approach appears to be promising;

iv. For those areas in iii, obtain current quantitative data and identify models that
deal with the solution of any of the sub-problems;

v. Create a conceptual model of the integrated system;

vi. Link data and simulation models to an interdependent, distributed network;

vii. Perform simulation, sensitivity analysis; and

viii. Compare the results with the updated information from ii and iii and evaluate
them with respect to the targets specified in i (see Hasselman8 and Forrest et
al. 5 for a similar discussion).

From the study of nonlinear and chaotic systems, we know that only short-term
predictions are possible if the system exhibits chaos (see, for example, Grossman, 6

Abraham et al.,1 Campbell et al.,4 and Mayer-Kress 13
,14,1

5 ). Therefore, a typical
five-year time scale between formulation and verification of a global model appears
to be too long in a world where time scales of, say, eastern Euopean regional con-
flicts are significantly shorter than one year. Future models will have to be object-
oriented with links to other models and information systems and they will have to
be adaptive to changing basic conditions. Here we mainly focus on items ii, iv, and
v in the above list.

First, we have to realize that we are faced with vast amounts of quar.titative
data such as that from satellite-based Earth Observing Systems (EOS). EOS will
transmit daily an amount of data equivalent to about 100,000 complete works of
Shakespeare. But we also have to use less quantitative knowledge based on wis-
dom and insights that cannot be easily described in tera-bytes. Future modeling

[ilToday this assumption is valid to a degree that depends strongly on factors like geographical

location or affiliation with an academic institution.
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approaches will have to tap into the global wisdom of informal, anecdotal, and de-
scriptive knowledge as well as into the results of extensive quantitative analysis and
supercomputer computations. [21

Many quantitative models suffer when researchers jump too abruptly from an
unspecific conceptual analysis to a highly complicated formal model, a move some-
times impossible or very difficult to justify in detail. This is true especially in disci-
plines with a tradition of quantitative models, for example, in econometrics where
routines of mapping concepts onto categories of models have been developed which
make it tempting for the user to focus on mathematical details and the model's
implications without questioning thoroughly the validity of its assumptions and
approximations. Therefore, we suggest using conceptual models as completely as
possible and then using quantitative simulations as necessary.13) The development
of intuitive human-computer interfaces, visualization, and audification of complex
structures and processes can be helpful in developing more realistic models and
rapidly detecting their problems which would be hidden in a purely quantitative
description.

For a successful global modeling approach it is not sufficient to have a good
interface with a local computer and database. One of the main challenges will be the
interconnection between all distributed computational and informational units. This
also includes efficient communication among the researchers who work jointly on a
distributed project. Conference calls and fax machines are fairly limited methods
of scientific collaborations. We believe that multimedia electronic mail is a more
appropriate way to exchange and distribute information within a geographically
separated team.!41 The Sequoia 2000 project of the University of California[51 uses
distributed data management tools to make about 100 Tera-bytes of global change
data available to researchers on the internet. 25

In a few years we expect to approach a world population of 10 billion (= 1010),
about the same number of neurons in a brain. It has been speculated that if global
communication and the connections between human "units" improves, at some
point the qualitative nature of the global human network will change and something
like a "global brain" will emerge. 22 While we should not take this analogy too

(21For example, "Project Gutenberg" transfers classic literature into digital form and makes it

available on the internet-from fairy tales to government documents (more information is available
from hart @vmd.cso.uiuc.edu).
13]The use of conceptual models has a long tradition, for example, at IIASA; see, for example,
Shaw et al. 24

[4] Arbitrary documents of formatted text, directory folders, executable programs, graphics, and
sound can be sent by modern mail programs (for example, NeXT mail) by simply dragging and
dropping the corresponding icon into the mail document. The recipients access the documents in
the same way by either dragging the icon into a storage folder or by simply double-clicking the
icons.
[l5Reports and graphic materials describing the project are available from a central ftp server
(postgres.berkeley.edu).
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literally, nevertheless it can serve as a useful paradigm for conceptualizing the nature
of future simulation and global modeling approaches.

Today we experience the emergence of a technology that allows an unprece-
dented degree of communication and information exchange (but also very intimate,
person-to-person, conversational discourse)[6] between people located anywhere in
the world (that has a connection to the network).[7 ] In this short paper, we want
to give a necessarily incomplete description of some of the information, communi-
cation, and simulation tools that are already available.

ELECTRONIC INFORMATION SERVERS

While it is foreseeable that all information will be stored in digital form on some
(opto-)electronic media, the breathtaking developments in storage capacity and the
dramatic reduction of storage cost per giga-byte need not be discussed here. We will
mention a few examples of the electronically stored information systems available.
In Figure 1 we present schematically a cross section of different services that are
available today on the internet. In Appendix A we list the electronic mail addresses
of those services.

ELECTRONIC LIBRARY CATALOGS

Electronic library catalogs allow us to get information about literature relevant
to our problem directly from our desk. The time and effort it takes to answer a
question is directly related to the probability that this question will be answered.
Electronic catalogs have decreased the delay between asking a question, finding a
relevant publication, and having access to that publication. This is especially true
when the library can provide the publication via electronic media: either by fax or
by scanning in the text and mailing it electronically.

In Table 1 we have a list of library catalogs currently available through in-
ternet; hence, the physical location of the catalog becomes irrelevant. Networking
among libraries to optimize service by reducing work duplication poses a consider-
able challenge. Today the familiarity and convenience of the user interface of the
library seems to be one of the determining factors in the choice of a library catalog.

[6]It is interesting to observe the emergence of notation among net users that allows the efficient
expression of emotions. For a while, expressions like (smile), (frown), etc. were inserted or appended
to messages. More recently a more iconographic notation, such as ":-) 8-) :-) !-)," has become quite
popular. The availability of multimedia mail (such as NeXT mail) will increase these possibilities
(for example, through sound or personal picture icons).
[7)Psychological resistance to new information technologies is apparent. The enormous spread of
fax machines is a phenomenon that probably will be the subject of future psychological/sociological
studies.
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NEWS GROUPS, MAIUNG LISTS, AND INTERNET RELAY CHAT (IRC)

It is a well-known fact among scientists that direct personal interaction is a tremen-
dous source of information and inspiration. The ability to walk down the hallway
and chat with an expert colleague used to make a difference between a first-class
research institution and the academic province, where the information from that
short conversation has to be painfully retrieved from the literature instead. An
electronic analog of this research environment is represented today in the form of
network news groups and mailing lists.

In news groups, discussions take place through submission to either a news
group or a mailing list of contributions covering a specific topic. In the first case, the
message will be posted to an electronic bulletin board and then retrieved through
special news software that connects a personal computer or workstation with a
news server, i.e., a computer that stores a subset of the news items. Probably the
most relevant criterion for the usefulness of net news (besides the transmission
speed) is the quality of the user interface: the amount of available information is
often overwhelming, and the fraction of really interesting items can be very small.
Therefore the speed at which one can identify a message with respect to its value
can be crucial in deciding if this service will be accepted or not. Filter options are
essential since often news groups are dominated by contributors who flood a news
group with irrelevant (or worse) contributions. Other time sinks can be discussions
on very popular topics that "1nue over a long stretch of time. Tools that allow the
user to filter out messages according to author or topic can dramatically increase
the productivity of news sessions.

Mailing lists are a very efficient and flexible way to create the spontaneous,
informal exchange of information and ideas by a group of people. While net news
groups require a certain amount of administration (there are regulated procedures
for setting up new groups, their content is archived, etc.), mailing lists only use
electronic mail for the organization of the information exchange. For example, tem-
porary mailing lists can be set up by individual groups as an alternative to telephone
conference calls. They have the advantage that an arbitrary large number of readers
can be reached within minutes; i.e., quasi-interactive discussions are possible. As
opposed to conference calls, mailing lists automatically provide the means for docu-
mentation of the discussion. While small mailing lists can be set up very quickly by
just collecting the names of users into one mail alias, this is certainly infeasible for
large international or global mailing lists. In those cases, automated mailing lists
handle most of the administrative work: subscription and cancellation of mailing
list memberships is done by sending a "subscribe" or "unsubscribe" note to a mail-
ing list server. Some mailing lists provide not only discussions among participants
but also act as a news service and distribute news from UPI, RFE, ClariNet,!18 as

[S1 The UPI sources that we quote were available via a mailing list. Problems arise when news from

commercial services are redistributed through internet mailing lists.
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well as often detailed news from local sources, for example, VREME, a Belgrade-
based weekly.[9l

Internet Relay Chat (IRC) is a tool that allows continuous conversation, on se-
lected topics, in a virtual lounge (see, for example, Reid' 9 for an extensive report).
It is very efficient for rapid answers to simple questions since there is a good chance
that someone who knows the answer is listening to the conversation. Also, in this
informal environment, people get to know each other and can create a community
which is loosely connected all over the world. Physical location becomes less rele-
vant; the fellow from Australia or Finland might turn out to be the better expert in
some areas than the colleague from MIT or Berkeley. One problem is the continuous
demand for attention from the chat channel, which has led to the development of
cyber-friend&--programs that chat on the net while the real person is busy doing
something else.

This raises the issue of misinformation. It is relatively easy to post messages to
the network with wrong references to sources, apparently originating from different
geographical locations. This will become a serious problem and procedures need
to be developed to protect users against planted fake news and data. Users need
to develop a critical approach to information from the net. For example, potential
sources of abuse might be quotes, from reputable newspapers or wire services, easily
falsified for the mailing list. But this seems to be a general problem of public
information. On network-based systems, we have the advantage of immediate public
questioning of the author and requests for confirmation or alternative opinions.

ANONYMOUS FTP SITES AND WIDE AREA INFORMATION SERVERS

Quantitative information as well as software, sound, images, etc. can be accessed
through anonymous ftp sites[l°0 -- storage media on some computer systems that can
be publicly accessed through the internet. The number of those publicly accessible
sites is so large that manual searches are basically hopeless. Therefore, network tools
have been developed that allow searching across the internet for relevant items. To
our knowledge the first such tool was "Archie," a network tool that searches through
listings of all ftp archives. More sophisticated hyper-text and hyper-media search
tools were developed recently. The most common ones are Wide Area Information
Servers (WAIS), Gopher, and World Wide Web (WWW). Information servers can
be indexed for each of these network tools; i.e., information about the structure
and contents of a specific information source can be reported to the information
servers.

For these three network tools, we give a brief description and references for
more information.

19JDistributed as "Vreme" News Digest Agency by Croatian-News~bumrll.bu.edu.
1lOIThe term "ftp" stands for File Transfer Protocol, an internet standard that is used primarily

for data transfer.
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GOPHER.

The Internet Gopher client/server provides a distributed information deliv-
ery system around which a world/campus-wide information system (CWIS)
can readily be constructed. While providing a delivery vehicle for local
information, Gopher facilitates access to other Gopher and information
servers throughout the world.

(from: pit-manager.mit.edu:/pub/usenet/news.answers/gopher-faq, QO:

What is Gopher?!["])

Gopher provides an efficient browse capability for a large number of different
network services. Search capabilities, if applicable, are embedded in each of the
sub-areas.

WAIS.

Users on different platforms can access personal, company, and published
information from one interface. The information can be anything: text, pic-
tures, voice, or formatted documents. Since a single computer-to-computer
protocol is used, information can be stored anywhere on different types of
machines. Anyone can use this system since it uses natural language ques-
tions to find relevant documents. Relevant documents can be fed back to
a server to refine the search. This avoids complicated query languages and
vendor-specific systems. Successful searches can be automatically run to
alert the user when new information becomes available.

(B. Kahle, "Overview of Wide Area Information Servers," April 1991,

quake.think.com:wais/doc/overview.txt.[121)

A search request can be addressed to a sub-list[131 of WAIS servers. The search
result is a list of servers and documents with a quantitative indicator about their
relevance to the request. Unfortunately, the exact nature of the search algorithm
is not evident, making it difficult to precisely control the search or anticipate the
results.

[111More Gopher information is available via e-mail: gopher~boombox.micro.umn.edu.
[12] More WAIS information is available from the mailing list "wais-talk@think.com."

[13]A list of all WAIS servers and information about WAIS itself can also be obtained as a search
result.
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WWW. The World Wide Web has a distributed hyper-text structure; i.e., documents
have links attached to specific regions in the text that allow access to new documents
anywhere on the network. It seems that many of its general functions have been
taken over by WAIS or Gopher, and WWW has concentrated on providing hyper-
text information to the worldwide high energy physics community.[14]

These information servers are linked together; i.e., information that is accessed
through one server is also available on the others. Since all the systems are still
under development, it is not clear how well this works in daily use. Very recently,
meta-search tools have been developed, where the search is not done on the ftp-site
level but on the level of indexed sites.

VERONICA.

Very Easy Rodent-Oriented Net-wide Index to Computerized Archives,
Veronica offers a keyword search of most gopher-server menus in the en-
tire gopher web. As Archie is to ftp archives, Veronica is to gopherspace.
... Veronica was designed as a response to the problem of resource dis-
covery in the rapidly-expanding gopher web. Frustrated comments in the
net news-groups have recently reflected the need for such a service. Addi-
tional motivation came from the comments of naive gopher users, several
of whom assumed that a simple-to-use service would provide a means to
find resources "without having to know where they are."

(fosteracs.unr.edu (Steve Foster), November 17, 1992)

We should also mention the network tools Prospero, Knowbots, and Netfind.
Details are available in Schwartz. 23 Besides the internet, there are, of course, many
other specialized network and information systems. We only mention the electronic
mail system that was installed recently for the member countries of the Conference
on Security and Cooperation in Europe, and the Telecom Information Exchange
Service of the United Nations (TIES). It seems that these systems have evolved in
parallel and only were integrated recently into a globally interconnected network of
networks. This parallel and decentralized evolution of sub-nets also resembles the
evolution of nerve connections in biological brains.

[14) More information about WWW can be obtained via e-mail from the mailing list
"www-talk~nxoc01.cern.ch."
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INTEGRATION OF VIDEO AND TELEVISION WITH COMPUTER
NETWORKS
A second, parallel development in communication networks can be observed in radio
and television networks. In spite (or because) of their popularity, they have several
drawbacks with respect to the requirements of information systems: some main
disadvantages of television systems are the lack of interactivity and the difficulty in
searching for specific information. Efforts exist to make television more interactive
through a variety of call-in options. Interactivity would be especially important for
"Global Townhall" types of projects, where citizens are encouraged to more actively
participate in political discussions and even decisions. Integration of computers in
the interactive aspects of television seems to be a natural perspective. The second
problem of the current television system is its inefficiency in conveying relevant
information according to the individual viewer's needs.

A multitude of television channels allows for multiple choices by the viewer,
which is relatively unspecific, like the choice between sports and politics.

If we focus on television news, for example, as provided by CNN, then we
observe a vast inefficient information server. This inefficiency could be measured
as the ratio between the amount of information that is uploaded via satellite to
the television headquarters to the amount of air time that is given to specific news
items. From a viewer's perspective, a strong imbalance exists between the news
provided by the news service and the fraction of the news items that are actually
of interest. Many, if not all, news items are broadcast repeatedly, and viewers who
are specifically interested in details of a specific topic will spend too much time
scanning the news for new information.

Specifically, scanning and individual storage of relevant news could be handled
effectively by an efficient integration of television (TV) and computer networks.
We can envision a geographic information system (GIS) that can be programmed
to scan television news according to a specific topic and a specific geographical
location. For the viewer this would mean that, at any time, (s)he can get an in-
stant overview from the GIS about where new developments in regional crises have
arisen during the last 24 hours. By selecting a specific region and topic, the com-
puter then could play back the recorded accumulation of news clips. In Figure 2(a)
we show a simple configuration which allows a very easy and efficient example of
how such an integration could take place. The main interface is the infrared (IR)
receiver/transmitter[I5J shown in the figure. It can record IR code from any audio-
visual (AV) or TV unit that can be controlled by IR remote control. The computer

(151Produced by Edmund Ronald, Paris, after some weeks of e-mail exchange based on a message

that we had posted to comp.sys.next. Except for one night in Paris (for prototype testing), the

entire collaboration took place electronically.
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FIGURE 2 (a) Infrared interface and hardware configuration with NeXT monitor, laser
disk player, and VCR. (b) Diagram interface that is linked to a node in a network
diagram of global problems (see Campbell and Mayer-Kressd for a description).

car transoit control sequences frot t the saine aptlication (for example, tpe dia-
,grain in Figure 2(Ib)) to different. AV or TV units. In the configuration shown in
Figure 2(a), we control a laser disk p~layer and a VCR simultaneously foi'om a shell

script that is linked to a diagrai interfaace (Figure 2(b)). In this example the script
will show a computerized animiated inap of the world fr'om the laser disk player and
then will present a video oin population growth data.

Note that m he integration of computdrs with the telepholte/ax syste( i is already
mputch esore advanced and will show some breakthrough develodments i the very

near future.

SIMULATION SERVERS

Modern computer workstations are used increasingly as mail, information access,
i and local storage tools. Computation tends to be done remotely oil large comlputers

that are accessed throughi somle network. Software b~ecoumes mlore modularized anld

object-oriented suich that inany codles either in compliledl or in source forin arte
I shared through anonymous lip sites onl the internet. Relatively generic' trogranis

I like, algorithmns of a mathematical library are mainly shared as source codes. Other
: ~software is more specific and depends oil the tylpe of comp~uter (mnainly for p~ersonal

computers). More recent software has b~een categorized according to the window
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system that is used for the front end: X-windows and NeXTStep are examples.(16 1 As
long as these programs run locally and are not dependent on a special environment
(libraries, data, etc.), they can be transferred easily and installed. Mailing lists
that discuss different aspects of simulations and global computer networks provide
a good source for the most recent developments in that area.[7l1

In more complicated cases, the installation of software on a new computer can
be considerable work. For those cases, where a port for the software to a different
computer is difficult, an alternative seems to be software that can run a computer
"kernel" on a remote machine with a "front end" local workstation. Today we have
mathematical software available that organizes the "program" in a "notebook"
that contains the software and the corresponding documentation as well as the
results of the computation in multimedia format.['ls Multiple notebooks can be
launched, for example, from a NeXT workstation, each of them linked to a kernel
on a computer server anywhere on the network. From the remote kernel, one can
then access remote data and libraries without the need for a port to the local
machine. Future implementations of distributed models will have to provide similar
integrated capabilities.

We should mention that there are already simulation servers on the network
with traditional command-line interfaces: the user connects to the simulation server
and then follows an interactive command menu. The desired parameters can be in-
serted, a batch job submitted, and the results of the simulation will be sent out
via electronic mail. One elaborate system for geophysical problems1 191 can be ac-
cessed together with the corx'sponding data bases. These more traditional simula-
tion servers can be linked to integrated front ends, which could make the connections
automatically and could send the appropriate commands to the server. The con-
cept of having computer servers completely transparent to the user on the network
is discussed in a meta-computer context.2 3 In that scenario, specific programs can
be run from any personal computer or workstation connected to the network and
can be executed on any computer or supercomputer without the interference of the
user who runs the program. For the user the appearance would be that of a single,
powerful computing environment.

[16] Standard ftp site is export.lcs.mit.edu for X-based software and cs.orst.edu for NeXTStep-based
software.
[17]We just mentioned Simulation in the Service of Society (available from <mcleodOsdsc.bitnet>

and also published in the comp.simulation usenet news group). A project that integrates computer
mailing lists with satellite links for global lectures is discussed in the Electronic Bulletin of the
GLObal Systems Analysis and Simulation Association in the U.S.A. (GLOSAS l.mcgill.ca).
[1SIThe address of one mathematics mailing list is mathgroupOyoda.physics.ur, i; a collection
of notebooks is archived at mathsourceOwri.com. Sending any message to the latter address will
result in a response with instructions.
[19]The geophysical models of the National Earth and Space Sciences Data Center (NESSDC) are
accessible via nssdca.gsfc.nasa.gov.

I
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COMPLEX ADAPTIVE MODELS FOR CRISIS MANAGEMENT

In the previous sections we gave an overview about methods to access global in-
formation, data, and simulation tools. Now we would like to speculate how these
tools might be used to develop computational tools for crisis management. In the
tradition of Richardson 20 and Lancaster, 12 we used quantitative models to attempt
to understand the arms competition among nations or the dynamics of battle. The
models are characterized by a small number of global variables (arms expenditures
of nations, attrition rates of armies in battle, etc.). Thus, as long as we have well-
defined countries and armies, those models will have a chance to describe some
relevant aspects of the system. For example, operational planners of NATO forces
used Lanchester-type models to estimate the requirements (troops, firepower, logis-
tics, etc) needed to achieve a well-specified military goal, such as how to get Hussein
out of Kuwait. One of the main problems for military planners in the Balkan is that
there are no well-defined military objectives between the extremes "Drop nuclear
bombs onto the area until the fighting stops!" and "Send in enough troops to protect
any civilian against any aggressor." In the case of weakly coherent military units,
partisans, militias, independent terrorist gangs, and robbers, those concepts do not
work. Since it is unlikely (and the UN and EC attempts confirm this assumption)
that a complete solution will be found, one can apply the concept outlined in the
beginning of this chapter-identify global goals that, in a vague formulation, could
include:

* discourage violation of international, humanitarian law,
* minimize suffering of civilians,
* discourage snipers and use of heavy arms,
* encourage and support the supply of humanitarian aid to civilian populations,
a etc.

This would mean a quite different approach to current UN strategies which could
be described by these objectives:

n coordinate "peacekeeping" operations,
* provide humanitarian aid to civilians in occupied territories,
* protect refugees,
• avoid confrontations that might endanger the personal safety of UNPROFOR

troops,
* etc.

The main difference between the two approaches concerns the basic division
of responsibilities between local authorities and the representatives of global in-
stitutions like the UN, NATO, and EC. In the latter case the UN, say, takes very
low-level responsibility, namely transporting food and medicine, blankets and cloth-
ing directly to individual children, even in violation of high-level, international
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sanctions.[201 The authority regarding police and security issues lies with the local
groups that are in power, even when they are without any international or demo-
cratic legitimization[21] or even any form of government. The paradox arises that the
representatives of the world community have to bribe local gangs for their permis-
sion to fulfill humanitarian tasks (like feeding and sheltering their children), tasks
traditionally handled by the family or the lowest order of organization like a clan or
tribe. This strategy, on a UN level, leads to a very rapid adaptation on the lowest
level of anarchistic self-organization: aggressive behavior is rewarded; compliance
with international law and civilized behavior dies out since it is not protected by a
higher authority or it finds support outside the UN.[221 This local adaptation can
even go so far that the result of a specific action is worse than the situation without
any intervention. For example, a trade embargo against a whole country that is
announced together with the assurance that it will not be enforced sends a very
clear and strong message: it will be very profitable (since no risks are attached) to
violate the sanctions while it will be very costly for established businesses to honor
the sanctions and stop trading. Any business that will not violate the sanctions will
go bankrupt and lose the business to black market organizations. Other, probably
unintended, effects of the sanctions are described in the following UPI message,
quoted as it was posted to cro-news@mph.sm.ucl.ac.uk:

... But the U.N. sanctions against Serbia have not forced Milosevic to agree
to compromise in the ongoing internationally brokered search for peace.

Instead, import taxes on the embargo-evading flood of fuel has been a
major source of badly needed hard currencies by a regime drained by last
year's Serb-Croat war in Croatia and the conflict in Bosnia-Herzegovina.
The multi-million-dollar trade has also created a new class.. .experiencing
the rapid growth of a syndrome of "the ever-greater bonding of the state
power with the economic underground and mafia."

The spread of the underground economy has been accompanied by a
massive surge in violent crime. Belgrade's murder rate has hit an all-time
high of at least two per day as gangsters armed with machine guns, hand
grenades and shoulder-fired rockets vie for control of the lucrative black
market.

UPI - Nov, 15 (de2j@uva.pcmail.Virginia.EDU)

(201 "The Bosnian government Monday prepared to return clothing and children's shoes delivered
by UNICEF over the weekend because the items came from Serbia, in violation of a U.N. embargo"
(UPI, November 1, 1992, per Davor <de2jguva.pcmail.Virginia.EDU>).
(21]In a similar, or perhaps even more extreme, situation, Somalia has local clans that determine

the fate of international aid shipments..
[221 In the case of Bosnia-Herzegovina, this would naturally be Islamic countries, which then could

lead to an escalation of the conflict.
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Thus we have the interesting situation that, for the population under sanction,
the supply is much better than the supply in cities, for which the UN has organized
relief efforts. A similar situation occurred in Somalia: by stealing unprotected UN
aid supplies and selling them, overpriced, in the markets, local gangs could afford
to buy Qat, which is relatively expensive since it has to be flown in from Kenya.
Although many factors contribute to this situation, some researchers speculate that
it is more efficient to create an economic incentive for a humanitarian effort rather
than organizing that effort on a UN level. The recommendation then would be to
use global or international organizations like the UN or NATO to provide global
parameters for the actors in the conflict region: Increased risks for snipers[23] or
for crews of heavy weaponry near protected areas, with incentives for, say, private
organizations who risk transporting aid into designated areas in response to eco-
nomic incentives. These general principles of incentives and risks should be applied
equally to each of the fighting parties and they should be enforceable without the
need for assistance from the local group in power.

Independent of the specific situation, efficient information systems can be used
to obtain data for dynamical models that are not integrated representations of
nations in an arms race or of armies in a battle but that contain individual actors
as elementary units. Especially with the help of supercomputers, the simulation
of a few million simplified agents should be feasible and should capture essential
elements that would lead to different types of collective behavior. The norms model
by Axelrod 2 as well as the educational software toys "SimCity" 26 and "SimEarth" 27

use similar concepts for models of individual interacting agents that exhibit global
emergent behavior of coherent dynamical structures. (The application of nonlinear
mathematics and chaos theory to control complex and chaotic systems has been
discussed in Hiibler 9' 10 and Ott et al. 17 ) In our case these dynamical structures
would correspond to collective behavior of aggression, flight, breaking of sanctions,
smuggling, etc.

The empirical basis of such a model could be polls on the issues related to indi-
vidual conditions for behavior (see Figure 3 for a simplistic schematic). In the case
of the Serbo-Croat conflict, a psycho-cultural analysis can be found in Grossarth-
Maticek.7 In Figure 3 we have tried to summarize some of the findings of that
study. Information systems of the type described in the first part of this chapter
could make it possible to monitor those polls over time and use the inputs (in
combination with results from more traditional fact-finding missions) for updating
the models. The results from the model then can be checked against conditions that

1231 Modern electronic equipment makes it possible to return fire accurately and automatically
within a fraction of a second. Snipers whose locations-for example, in Sarajewo-are generally
known would experience a strong risk increase if such devices were installed in populated civilian

areas.
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FIGURE 3 Simple diagram of categotes for actors in the Balkan conflict.

would indicate, for example, the outbreak of a conflict. There seems to be empir-
ical evidence for indicators that are highly predictive regarding the outbreak of a
conflict. Some that were discussed by the German planning staff are1S:

• image of an enemy
• national identificationl
• charismatic leader
• regional tensions
• gradient in wealth

* organizational capabilities
* dissatisfaction with the standard of living
* domestic repression
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With the help of modern tools, we can go much farther: the data presented in
Figure 4 integrate across individuals for each of the questions. Thereby we lose most
of the information that was gathered in the interviews, namely all the correlations
between the answers to different questions by the same person. It is well known, for
example, that the person who has strong negative feelings against the Serbs/Croats
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might often feel this way because (s)he thinks that they are anti-Christian, etc. With
modem simulation and information tools, we can start exploiting this information
on a large scale. Instead of integrated simple statistics, one could have a mapping of
a population sample onto a highly structured (possibly low-dimensional) manifold
embedded in a high-dimensional feature space. Exploration of these manifolds (for
example, with genetic algorithms) can be used to design very specific, integrated
pathways to sustainable solutions of, say, crisis problems. Even with very modest
quantities of data with limited accuracy, it is easy to see that such an approach
promises to be more successful than global, unspecific methods like economic sanc-
tions against a whole nation.

We think that the integration of the nonlinear science of complex, adaptive
systems with modern computers and information networks will create a new era
of global modeling for policy evaluations in many different areas, especially in the
domain of global change. We think that these methods will provide powerful tools
and thereby the potential for misuse. Thus we need to encourage early discussion
of these upcoming developments in a wide community.
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APPENDIX A: ELECTRONIC MAIL ADDRESSES OF SERVICES
REFERRED TO IN FIGURE 1
We are aware that this list is very incomplete and we apologize for all omitted
services.

Global Change Information
ECIX CLIMATE DIGEST larris@igc.apc.org
Weather information sdm@madlab.sprl.umich.edu
Ecosystem theory and modeling ECOSYS-L@vm.gmd.de
National Earth and Space Sciences

Data Center jcooper@nssdca.gsfc. nasa.gov
Sequoia 200 claire@postgres.berkeley.edu
EOSDIS Earth Observing System Data

Info System dozier@crseo.ucsb.edu
National Environmental Data Referal

Service (NEDRES), Earth Science
Data Directory (ESDD) tgauslin@ridgisd.er.usgs.gov

Global Information
Telecom Information Exchange
Service (TIES) helpdesk@itu.arcom.ch
Simulation in the Service of Society mcleod@Sdsc.Edu

(S3)
GLObal Systems Analysis and GLOSAS@vm2.mcgill.ca

Simulation

Mailing Lists of Events in Eastern Europe
Discussion of Middle Europe topics MIDEUR-LOubvm.cc.buffalo.edu
Central European Regional Research

Organization <CERRO-L2AEARN.BITNET>
Radio Free Europe/Radio Liberty
Daily Report, Inc. RFERL-L@UBVM.cc.buffalo.edu
Bosnet saiti@mth.msu.edu
Croatian-News/Hrvatski-Vjesnik Croatian-News@andrew.cmu.edu
Cro-News/SCYU-Digest Cro-News-Request(mph.sm.ucl.ac.uk
VREME Dimitrije@buenga.bu.edu

Economic Data
Intelligent Systems for Economics IE-list@cs.ucl.ac.uk

Digest
EconData (info.umd.edu) news@umd5.umd.edu
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Network Information Tools
Internet Resource Guide info-server@nnsc.nsf.net
World Wide Web (WWW) www-talk~nxocO1.cern.ch
Wide Area Information Server (WAIS) wais-talk~think.com
Gopher gopher@boombox.micro. umn.edu
Internet Resource Guide info-erver@nnsc.nsf.net

Libraries and News Services
Library of Congress catalog~dra.com
MELVYL-University of California melvyl@dla.ucop.edu

Catalog
Digital Library info@next.com
ClariNet News, a live electronic info~psi.com

newspaper
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Excursion Sets and
a Modified Genetic Algorithm:
Intelligent Slicing of the Hypercube

The genetic algorithm (GA) represents a powerful class of search and opti-
mization techniques developed in analogy to genetic laws and natural selec-
tion. A consistent picture of GA dynamics and convergence is reached here
using ideas central to random field theory. Excursion sets are introduced
to parameterize the GA's implicit parallelism and exponential elevation
of subthreshold solutions toward optimum. Simulations on trial functions
demonstrate this connection between a strong variant of the schema theo-
rem and set theoretic concepts.

INTRODUCTION

In the last fifteen years, many interesting varieties of genetic algorithms (GA) have
been designed and implemented.2'3 The understanding of GAs can be represented
on two dimensions: (1) the way user-defined objective functions map to the fitness
measure and (2) the way the fitness measure is used to assign offspring to parents.

1992 Lectures in Complex Systems, Eds. L. Nadel & D. Stein, SFI Studies in
the Sciences of Complexity, Lect. Vol. V, Addison-Wesley, 1993 555
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Along these two dimensions, almost all genetic algorithms exhibit some form of
multiple sampling and implicit parallelism. The present work reports the results of a
slightly different approach to understanding GA dynamics. By mediating selection
through the introduction of excursion sets and random field theory, we achieve
stronger conditions for implicit parallelism and simulate better GA performance.We
call this new GA the excursion-set-mediated genetic algorithm (ESMGA).

In general, if the excursion sets arise in the fitness function space, then it should
appear internal to the problem and remain hidden to the user; in contrast, if the
excursion sets arise in the objective function space, then it becomes transparent to
the user. Because one can generate excursion sets equally well, either in the objective
function space or in the fitness function space, excursion levels introduce a natural
hierarchical structure on the hypercube of available genomes. At increasingly higher
excursion levels, population is forced to rise up in fitness above the excursion level,
while at the same time distributing the evolved population among the possible
solutions in the excursion set. Thus, by introducing the concept of excursion sets,
we are able to judiciously balance both internal and external representations and
thus to preserve a stronger condition for implicit parallelism. 4 This condition arises
directly from the EMSGA's conservative attitude towards disrupting the higher
order building blocks. In the remainder of this paper, we describe briefly the notion
of excursion sets and explain the ESMGA in detail. Using simple mathematical
arguments, we provide a theoretical justification for a strong version of schema
theorem from excursion sets. We discuss the application and performance of the
ESMGA using a trial function and conclude by indicating the direction of future
research.

EXCURSION SETS AND OBJECTIVE FUNCTIONS
Excursion sets provide a natural basis to control the adaptive GA performance in
terms of objective functions. We define an excursion set A, at a given excursion
level parameter u for any arbitrary objective function f(x) as followsi:

Au = {xi: f(x) > u}. (1)

Excursion sets induce a nontrivial hierarchy in search space that is represented in
the evolving GA population. Excursion sets and local optima above the level u are
closely related entities. For example, if only local optimal solutions of importance
turn out to be those above the given level u, then these optimal solutions certainly
lie within the excursion set Au. However, an excursion set need not be in one
single connected piece but, in general, it tends to be composed of finitely many
components. The sum total of all excursion sets generated from a finite number of
increasing excursion levels, uo < ul < ... < uk, form a hierarchical space. Excursion
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sets at higher levels are contained in the excursion sets of the immediately lower
level and so on. Thus we obtain the following strict inclusion:

A,, < A,1 < A•,2 < ... < Au• '

However since the excursion set at any level contains finitely many disconnected
components, we can write

. = (2)

where B1 represents the m components of the excursion set at level u0 .
From the preceding, we observe that in terms of their objective function values,

excursion sets at higher levels strictly dominate their counterparts at lower levels.
While schemas can be thought to subdivide solutions in the genome space, the
excursion sets alternatively subdivide the solutions in a hierarchical way within the
objective function (/ fitness) space.

EXCURSION SETS AND MODIFIED GA DYNAMICS
FORMULATION OF ESMGA WITH EXCURSION SETS

Figure 1 schematically represents the various stages of the excursion-set-mediated
GA dynamics. The procedure involves the following steps: (1) We generate a ran-
dom population of genomes for an arbitrarily chosen excursion level u, and we
partition the possible genome space into upper and lower portions. The upper set
contains individuals whose fitness is greater than or equal to the exc.-..ion thresh-
old (equivalently, the excursion set at that level). (2) During the selection stage,
we retain the upper, excursion set component and fill the lower portion by per-
forming tournament selection upon the entire population (excursion set plus its
complement). This step introduces a certain bias against mating similar individ-
uals (incest prevention). (3) The modification stage which follows this selection
proceeds by applying the crossover and mutation operators only to the lower com-
ponents. These operations produce the new population at generation 2. Finally,
(4) the new population is evaluated; individuals scoring above the excursion level
get pushed up into the excursion set and, subsequently, are preserved for future
generations.
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FIGURE 1 Basics of excursion sets and schemata. (a) The plot of the trial function
y = x + sin 32x along with an excursion level at y =3.0. Note the portions of the
function lying in the excursion set. (b) The same trial function as in (a) but amplified
and restricted to the excursion set. The 16-bit sample schema 111 .* *.- is
indicated by the sparsely filled dots. The densely filled boxes lying on the x-axis show
the disconnected components of the excursion set (4 in number). The combined effects
of .e excursion set and schema results in the area marked by double-dot density. This
region corresponds to the subspace of this schema cut by the excursion set.
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FIGURE 2 Algorithm schematic of the modified GA (ESMGA). The diagram shows the
various operational stages of the algorithm. At each intermediate stage, the excursion
sets are indicated by the hatched box. The crossed arrows indicate the operation of
crossover. On the top, the functional variation of the stochastic promotion rate, A, is
sketched. The indices Ik, Gk, fk represent the index, genome string and the fitness of
the kh individual.

The three stages of selection, modification, and evaluation complete one cycle
of operations and in practice correspond to a single generation. The same cycle is
repeated iteratively until all the members in the population get pushed up above the
excursion level. Subsequent experiments repeat the internal GA dynamics for higher
and higher excursion levels. The entire modified protocol is represented within the
generational model of the ESMGA by the following pseudo-code:
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procedure ESMGA
begin

t-0
initialize n(t);
evaluate structures in n(t) and identify fitnesses

greater than the excursion level, ne(t);
while termination condition not satisfied (A<I) do
begin

tmfyt+l ;
select n(t) from n(t - 1) using excursion set

mediation and tournament selection;
modify structures in n(t) -n,.t) by applying genetic operators;

evaluate structures in n(t)
end

end.

Qualitatively the modified GA with excursion sets can be understood to act
similarly to variable elite selection within a given generation, but differs in its
multigenerational behavior. Any individuals scoring fitnesses above the excursion
level get passed to the next generation without alterations. For those individuals
scoring fitnesses below the excursion level, however, the modified GA applies the
stochastic operators of crossover and mutation. In this way, an increasing number
of less-fit individuals are improved, then promoted above the excursion level during
subsequent generations.

By not ol:iy favoring the best individual, generation after generation (as in the
conventional GA), we favor solutions within the excursion set and thus maintain
the population's diversity as members in the excursion set distribute themselves
over various solutions (i.e., disconnected components of the search space). At the
same time, this procedure drives the less-fit population towards successively higher
excursion levels.

CONVERGENCE AND A STOCHASTIC A PARAMETER

Let some stochastic parameter A represent the probability that an unfit individual
(one whose fitness rates below the excursion level) will improve enough through
crossover and mutation to get carried above the excursion level. Further split the
total population, n, into two subsets: the number n, of fit individuals rating above
the excursion level, E, and the number nl-,(= n - n,) of unfit individuals rating
below the excursion level. For any generation, a population balance follows the
stochastic recursive form

n,(t + 1) = nE(t) + A[n - ne(t)], (3)
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where A gives a measure of the convergent attraction toward fitnesses that exceed
the excursion level, e. Solving for A yields

A = n. (t + 1) - n,(t)
n - n,(t) (4)

The A parameter can be understood to act in three ways: (1) to give the stochastic
rate of initially unfit individuals that receive promotion above the excursion level;
(2) to measure the normalized converging difference between intergenerational steps
in the gene bank above the excursion level (as an increasing function of [n,(t + 1) -
ne (t)]; and (3) to provide the probabilistic variable of an AR(l) process which follows
the recursion

ne(t + 1) = pn,(t) +±6 = (1 - A)n,(t) + nA (5)

for A = 0/n.
In these ways, the excursion set parameter A acts as a general measure of con-

vergence into suboptimal solutions. Thus at higher and higher excursion levels, the
modified GA will reach successively better suboptimal solutions. It is this funda-
mental stepping-up which serves as a signature for the excursion set modifications.

SCHEMA THEOREM IN LIGHT OF EXCURSION SETS

The physical meaning of schemas and excursions sets is apparent: schemas sub-
divide the solutions in the genome space, while the excursions sets subdivide the
solutions in the objective function space. These two entities act to partition the
search space orthogonally using independent rules.

Holland's schema theorem5 arises from the observation that the fitness evalu-
ation of a given bit string also provides implicit knowledge about the more gen-
eral schemata that describe that string (genome). Naturally, the amount of knowl-
edge available depends on the specificity (order) of the given schemata; lower or-
der schemas carry less specific information about the fitness of a best individual.
Thus while the GA's microlevel search takes place within the space of strings, the
essence of the schema theorem maintains that GA can likewise view the changing
populations as a search through the set of schematas. Holland calls this implicit
parallelism, and this feature of the GA is thought to account for much of its search
and optimization power.

Excursion sets introduce further necessary conditions for using implicit par-
allelism within the schema theorem. In order to give the schemata processing its
maximum leverage, the GA should minimize the disruption of above-average fitness
schemata (the terms shown within square brackets of Eq. (6)), by allocating trials
which satisfy the inequality:

n(H,t+ 1) > n(Ht) f [1 - PC (L 1 O(H)Pm
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where H represents the schemata, L is the genome length, 6H is the crossover
length, f is the fitness, and the Pi's correspond to the crossover probability (i = c)
and mutation probability (i =- m). In general four arguments affect the scale of
disruption: (1) the probability for crossover, Pc, (2) the defining length of a schema,
6H; (3) the probability for mutation, Pm, and (4) the order of the schema, O(H).
Among these, mutation and crossover represent the most disruptive components. In
this view, excursion-set-mediated selection can be seen to greatly reduce disruptive
effects, because the ESMGA necessarily protects and preserves those schemas that
are already above the excursion level. In other words, the excursion level maintains
a stronger condition of implicit parallelism. The ESMGA additionally favors and
preserves the higher order building blocks that score above the excursion level, thus
maintaining a more robust variant for applying the building block hypothesis.

In any genetic algorithm, the excursion sets at higher levels grow at least as
fast as the less dominant excursion sets at lower level. Using the language origi-
nated in multiobjective decision making,7 Baker and Grefenstette have proven a
more restricted version of the preceding generalization. As Grefenstette noted, the
effect of changing the selection algorithm (e.g., from proportional to a rank-based
selection) is not only to alter the relative magnitudes of their growth rates, but,
more importantly, to leave their relative order invariant. Thus by introducing excur-
sion sets, the modified GA method defines the salient features required for implicit
parallelism, namely that trials should be allocated in an exponentially differenti-
ated way into a large number of subsets which implicitly compete. This conclusion
follows because the process now represents a superposition of two events: (1) the
strictly increasing selection of fitter schemas and (2) the strictly increasing selec-
tion of excursion components having these fitter schemas. In this way, excursion
sets prepare the GA for a stronger version of what constitutes implicit parallelism
within the schema theorem.

THEOREM 1. If A,, and A,, are excursion sets such that ul < u 2 , then trials are
allocated in an exponentially differentiated way to a larger number of subsets of
Au 2 than A,,.

A simple mathematical proof for this theorem can be obtained directly from
Eq. (4). Solving formally for A(t) in the limit when the difference equation can
be written as a differential (valid for late convergence or many generations), one
obtains the variation in the number of individuals above the excursion level:

n,(t) = n - exp - A(t')dt' . (7)

The power of relation (7) is that for a given A (which characterizes the stochastic
rate of promotion), the total number of individuals rising into the excursion set
increases exponentially. The computational process acts to select increasingly more
preferred building blocks from the pool of favored schemata. Thus for the GA-
modified version with excursion sets, a simple formalism captures the essential
feature of the schema theorem in a particularly transparent way.
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RESULTS AND DISCUSSION
1. TRIAL FUNCTION AND ITS OPTIMIZATION

As a demonstration of the performance measures of the new GA, experiments were
conducted to optimize the trial function, y = x + sin 32x, on the interval [0, 7r].

The function is steeply graded with many local maximum and a global maximum

of Ymax = 4.09299342 for x = 3.09346401. Figure 1 shows the trial function and
excursion level, y = 3.0. In the lower exploded view, the same function appears but,
in the region of interest from x = 2.4 to x = 3.1, the excursion set components are
marked by the hatched boxes. The ESMGA was written using modifications to the
code supplied by Rialo.6 Figures 3, 4, and 5 show the results of the experimental
optimizations.

1.2
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FIGURE 3 Evolution of the stochastic promotion rate, A. The figure depicts the way

the promotion rate changes with generation and with excursion level as a parameter.
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2. EVOLUTION OF FITNESS ABOVE AND BELOW THE EXCURSION LEVEL

Figure 3 tracks the generational evolution of fitnesses above and below the excursion
level and compares the two subsets with the fitness evolution of both the average
population and the best individual. For a split population consisting of individuals
whose fitnesses rate either above or below the excursion level, the fitness dynamics
change initially, then saturate towards convergence. As seen in the GA simulations,
both the overall population fitness and the average fitness of individuals above
the excursion lev-" creases according to an "S-curve" which flattens after several
generations. In contrast, the average fitness of individuals below the excursion level
decreases and tends towards zero when all individuals get promoted. Less marked
changes are seen in the best individual's fitness as these schemas get well-conserved
across successive generations. The modified GA dynamics preserves this highly fit
genetic heritage without interbreeding or disruption, thus working like a genetic
bank.

3. VARIATION OF THE STOCHASTIC PARAMETER A WITH EXCURSION
LEVEL AND GENERATION NUMBER

Figure 4 shows the variation of the stochastic promotion rate with the generation
number for three given excursion levels. Higher excursion levels converge with a
less steep ascent; this slow increase corresponds physically to the larger diversity
maintained by higher excursion levels. Generally as the modified GA proceeds, the
stochastic parameter, A, increases until it equals unity near convergence; in this
case, all individuals carry a fitness which exceeds the excursion level, ne(t + 1) = n.
In the first generation, no promotion above the excursion level occurs and A = 0.
Figure 5 shows the variation of the the rate of increase in A is large if crossover
and mutation rapidly modify and promote previously unfit individuals.

4. INTELLIGENT SLICING OF THE HYPERCUBE

Standard GAs represent their search space on the hypercube. The usual hyperplane
partitions the hypercube into closely related bit segments or schemas; in contract,
the excursion level can be understood to partition the hyperplane into disconnected
niches which share an equivalent fitness value. The general shape of these niches
cannot be predicted. At higher and higher levels, the excursion set represents more
and more fit schemas. This induced disconnectedness on the hypercube contrasts
markedly with the behavior of hyperplanes. The underlying principle can be under-
stood as follows. While the excursion sets are defined in relation to the objective
function, the hyperplanes are defined in the entire space of all possible genomes.
"Thus for a given excursion level, the dynamic distribution of samples is related to
the number of hyperplanes being processed by the GA at that same level. Hence
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FIGURE 4 The functional variation of the stochastic promotion rate, A, as a function
of excursion level and generation.

while the hyperplane may belong to several decreasingly fit groups of schemas, the
excursion At cuts the hypercube in a quite unique way, such that disconnected
regions of the search space contain only those increasingly fit groups. It is these
fit groups of schemas which both represent the higher order building blocks and
whose " "3ctive function values rate them above the prescribed excursion level.
This ESMGA behavior contrasts markedly with the computational path followed
by a standard GA. Because of its biassed sampling within the hyperplane, the
traditional GA's view of competing hyperplanes may bear little relation to the un-
derlying mean values of their objective function. In the search space, excursion sets
thus represent a second level of shifting or sorting of schemas which intelligently
cuts the hypercube and henceforth describes a more robust selection criterion to
couple successive generations. In general, excursion sets introduce a fitness-based
subset into the search space, rather than merely restricting the search to the par-
ticular hyperplanes induced by a given binary representation. Hence, excursion sets
mandate that the two closely related features of implicit parallelism and multiple
sampling act forcefully throughout a GA simulation.
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FIGURE 5 Evolution of various fitness measure.5 The plot shows the evolution of
fitness above and below the excursion level, then compares the two subsets to the
evolution of total population fitness and the best individual's fitness.

CONCLUSIONS AND FUTURE WORK
In summary, a comparison betw t GA dynamics and excursion sets can:

1. transparently contain complex stochastic processes (such as crossover, mu-
tation, etc.) in a single parameter, A, which corresponds to the difference
in proportion of individuals above and below the excursion level for each
generation;

2. connect convergence of GA simulations directly to the generational evolution
of this stochastic parameter, A;

3. identify GA dynamics with an approximate AR (1) process for a given excursion
level, such that a recursion relation holds for the number of above-threshold
individuals, ntt+I = pnt + 3 , where/i varies stochastically and corresponds phys-
ically to the rate of promotion of substandard individuals above the excursion
level, p introduces the Markov chain character; and



Excursion Sets and a Modified Genetic Algorithm 567

4. link the standard GA version of variable elite selection to a broader interpre-
tation of implicit parallelism within the excursion set.

Future work will introduce the excursion parameter as a variable parameter
which can be adjusted to pressure the best individual's fitness continuously. Taking
advantage of this cycle of initial relaxation, followed by additional pressure, initial
experiments performed on sample functions have shown rapid convergence to near
global optima. The final aim is to push GA dynamics to its limits, thus guaranteeing
a strong version of implicit parallelism while also preserving higher-order building
blocks through excursion-set-mediated selection and relaxation.
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Applying Genetic Algorithms
to Improve EEG Classification and
to Explore GA Parametrization

A genetic algorithm (GA) is used to identify outliers in a sorting task where
human electroencephalographic (EEG) data are classified by stimulus type
using a Euclidean distance measure. To assist in selecting the GA param-
eter values and to probe the relationships among parameters, a GA is also
applied to the simpler theoretical task of maximizing the number of ls in
a bit string. Regarding the human EEG data, the GA with the Euclidean
distance fitness function dramatically improves classification, but it does
so by excluding records other than outliers; we devise a quantity by which
these unexpected exclusions can be explained. Using tuning curves from the
simpler problem, we demons- ate qualitative ways to assist in parametriza-
tion of mutation rate, number of generations, and population size, and to
provide insight into how these parameters change with the complexity of
the solution space.
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1. INTRODUCTION
The purposes of this research are: (1) to test whether a genetic algorithm (GA) can
improve classification of human electroencephalographic (EEG) data, by applying
the GA to identify outliers; and (2) to explore qualitatively the relationship among
several GA parameters, by running a simplified version of the above problem (the
maximization of l's in a bit string, called "max-ones"). The biological research to
which we apply the GA is a study of human somatosensory (touch) perception, to
determine how stimulus patterns are manifested in the brain and how the brain
recognizes sensory stimuli. The hypothesis being tested, based on previous exper-
iments with rabbits in olfactory (smell) perception,4 is that stimulus patterns are
manifested as a spatial pattern of amplitudes of a global waveform that extends
across the somatosensory area of the brain and lasts about 0.1 sec. Subjects are
trained to respond differently to two different stimuli, and we then try to classify
their EEG recordings by stimulus type. If the classification is successful, then we
hypothesize that perhaps the features of the brain's electrical activity that we used
are similar to those used by the organism in its stimulus recognition activity.

There are three parts to tUe data analysis for the somatosensory project:
(1) preprocessing, which includes editing and filtering; (2) application of the Fourier
transform to extract the global waveform by decomposing the data into cosh. s; and
k) classification using a Euclidean distance measure. The purpose of the GA is to
improve part 3 of the analysis-the classification-by identifying outlitrs.

2. EEG APPLICATION
2.1 METHODS

The EEG data are time series derived from an 8 x 8 array of voltage-recording
electrodes (with 1-cm spacing), located directly on the cortex of an epileptic subject
and straddling the somatosensory, motor, premotor, and temporal lobe areas of the
brain. Data are digitized at 256 Hz and band-pass filtered at 20-56 Hz. During data
acquisition the subject performs a somatosensory discrimination task in which she is
trained to respond to three different intensities of gentle electrical stimulation (low,
medium, and high) with three different responses (press softly, press hard, and no
press). Two data sets are formed from one day's experiments with one subject, with
each data set containing 20 low-intensity records and 20 high-intensity records.

The data are decomposed into Fourier components to yield matrices of gain
coefficients and, for each EEG record, the matrix for either the first dominant com-
ponent (the 64 x 1 Gain I matrix) or the second component (the 64 x 1 Gain2 matrix)
is classified. Both the standard and GA-optimized Euclidean distance procedures
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attempt to classify into two clusters of points in 64-space--one cluster for the low-
stimulus condition and one for the high-stimulus condition. In the GA-optimized
procedure, the GA is used to locate records within each cluster ("outliers") whose
exclusion improves overall classification. The standard procedure does not remove
any outliers. Both procedures classify points in 64-space by first calculating the
centroid (average) for each cluster and then calculating the two point-to-centroid
distances for each point. A record is "correctly classified" if that record's point in
64-space is closer to its own centroid than to the other.

The "chromosomes" or "individuals" for the GA are 40-character strings com-
posed of l's and 0's-one character for each EEG record (20 low-stimulus records
and 20 high-stimulus records). A "1" in position i of a string signifies that the ith
record is included in the calculation of the centroid and in the classification, whereas
a "0" signifies that it is excluded. The number of correctly classified records is to-
talled to give the fitness value for that string, with the maximum possible fitness
being 40. The GA parameter settings were selected empirically with insight derived
from the qualitative explorations with max-ones. The parameter values used were:
# generations = 200, population size = 100, mutation rate = 1/100, crossover
method = 2-point, with probability = .75, and selection method = tournament,
with probability = .75.

The EEG data were tested under several conditions: (1) using the Gainl versus
Gain2 matrices, (2) using all 64 channels of data versus using a subset of 31 channels
believed to be most relevant, and (3) including records that were known to be "bad"
(due to preprocessing artifacts) versus excluding them, in order to determine if the
GA was picking out the known bad records. For each combination of these data
conditions a set of ten GA runs was conducted.

2.2 RESULTS AND DISCUSSION

The GA-optimized classification results are compared with those from the standard
procedure in Table 1. The GA dramatically improves classification accuracy for the
human EEG data for both data sets under all experimental conditions (see "% Cor-
rect" columns, Table 1). The average accuracy with and without GA-optimized
classification is 93% and 78%, respectively, yielding an average improvement of 15
percentage points due to the GA.

We performed cross-validations in which the centroids from one data set (the
"training set") are used to classify the other data set (the "tesl -;et"). The cross-
validation results (not shown here) are mixed and, even where there is improvement,
the classification accuracies are still low (63% or less). Thus, although the GA
dramatically improves classification accuracy under the training set conditions, the
improvement does not carry over to the test set.

Six records were commonly excluded by the GA as outliers-three from data
set 1 and three from data set 2. They were analyzed to determine whether they
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shared a common characteristic that would: (1) provide insight into how the GA
was determining which records to exclude and (2) provide a biologically relevant
justification for their removal as outliers, and for outlier detection in future data
sets. The GA-excluded records are neither outliers in a distance sense with respect
to the cluster, nor are they unusual or distinguishable in any way from the rest of
the records using standard criteria (such as frequency or power of the dominant
component, or total power in the Fourier components).

To explain how the GA may be selecting the records it excludes we derived
a quantity, the Z value,1 which quantifies the conditions under which Euclidean
distance classification accuracy is maximized (in the one-dimensional case with two
distributions, for example, large inter-mean distance and small mean-to-inner-edge
distance). Thus it was predicted that the Z value will be greater for the GA-
optimized results than for the Standard results; in all but one of the 40 cases tested
this prediction was true. The GA, therefore, as an optimizer of one's fitness function
provides an excellent magnifying glass for examining that fitness function and its
subtleties, in addition to providing a tool for improving one's results.

3. SETTING THE MUTATION RATE AND POPULATION SIZE
PARAMETERS

The fitness function for the EEG application is the most computationally expensive
part of the GA, so we wanted to determine what parameter settings would allow
us to use a relatively small population size and still obtain reliable results. Since
a thorough investigation of all parameters was beyond the scope of this project,
we focused our explorations on the interplay among mutation rate, population size,
and number of generations. Mutation can be useful for generating new, and possibly
more fit, individuals in a population with low variability, which occurs when the
population size is small relative to the problem. We looked for a mutation rate that
would optimize the relatively small population to which we were restricted by our
hardware (SUN SPARC 4/330) and to give us confidence in our solution to the
EEG problem. For our measures of performance we use the highest fitness attained
and the number of generations required. We found the number of generations more
useful than the number of evaluations, because it explicitly gives the amount of
cro-Fjver that the population experienced, whereas the number of evaluations gives
only the raw measure of machine use. As population size increases the number
of generations needed decreases, giving an empirical representation of the solution
capacity of the original population that can be realized mostly through crossover.

Max-ones is a toy application which maximizes the number of l's in a fixed-
length string, over a binary alphabet. The EEG application also maximizes the
number of l's in the string, but subject to an additional condition (classification
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accuracy). We suspect that the fitness landscape for the EEG problem is very com-
plex as compared with that for the max-ones problem, because of the presence of
seemingly multiple solutions for the EEG application and its requiring a larger pop-
ulation and more generations to reach a satisfactory solution than does max-ones.
As for the EEG application, we ran max-ones ten times for each set of parameter
values studied.

The relationship between the number of generations needed to reach maximum

fitness and the population size is described by Figure 1 for string length 40, to
parallel the EEG application, and for other string lengths. Note that for populations
larger than a certain critical value-the point where the slope of the curve flattens
out-a large increase in population size gives only a marginal decrease in the number
of generations required to reach the solution. Thus, increasing the population size
past the critical value to decrease the number of generations may not decrease the
computational expense.

250- !string length 60:
--..... mut 1/100
- mut 1/1000

.• 200 - string length 40:
"m......... mut 1/100

E•- mut 1/1000

. 150- string length 20:a, • .-.. muti1/100
- mut 1/1000

.0 1000-
76

50 - ... ................. ...............

100 200 300 400 500

population size

FIGURE 1 The average number of generations to reach maximum fitness, for mutation
rates of 1/100 and 1/1000.
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4 2 .... ... .... ...------7

~~~~. ........ . . . . ........ ...... ••........... .

3 . ............. i..

(n

.) ................ I

Q) 3 4 2...............
3 2: ..... ... ... ...... . . ... .. ..... .....:...:...:

.. .. .. .. ....... . . . . . : , : o .: ..

28-

10000 1000 100 10

1/mutation rate

FIGURE 2 Average fitness reached in a set number of generations for varying
mutation rates. The top four plots, top to bottom, are max-ones results for population
sizes 100, 70, 50, and 40. Each was run 100 generations and the average maximum
fitness reached is plotted. The bottom plot is for the EEG application results for
population size 100, run for 200 generations. Note the similarity of shape to the
max-ones population size 40 plot.

However, one can decrease expense by using a smaller population size from the
steeper part of the curve and then adjusting the mutation rate. Four of the curves in
Figure 2 exhibit the relationship for max-ones between mutation rate and average
fitness reached in 100 generations. These curves suggest that for each population
size there may be a range of mutation rates that lead to good performance of the
genetic algorithm, where good performance here is defined as attaining fitness 40
in 9 out of 10 runs. The performance of max-ones for mutation rates larger than
for those in this range (critical value near 1/70) decreases dramatically. As the
population size increases, the range of good mutation rates grows to include lower
mutation rates.

In Figure 1 we also compare the number of generations needed by max-ones
to reach maximum fitness for two mutation rates as population size varies-the
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commonly used mutation rate of 1/1000 and the 1/100 rate that lies in the range
of good performance for all population sizes in Figure 2. For smaller populations
max-ones achieves the optimal solution in fewer generations with a mutation rate
of 1/100. What this suggests is that a higher mutation rate on a smaller population
decreases the threat of premature convergence, allowing the application to discover
a good solution less expensively for a given population size. Notice that with larger
populations a higher mutation rate leads to worse performance.

These conclusions may be generalizable to problems having a more complex fit-
ness landscape. We ran the EEG application with varying population sizes and mu-
tation rates and found that the best mutation rate for the EEG application (1/100)
is in the same range as for the smaller populations (40-70) in the max-ones experi-
ments (Figure 2). We also found that the performance for the EEG application (the
number of generations needed to reach maximum fitness) put the population size
of 100 in the steeper part of a curve comparable to those in Figure 1. We infer that
"a mutation rate of 1/100 allows a smaller than critically sized population to reach
"a satisfactory solution in fewer generations, and that the critical population size
and the number of generations needed increase with the complexity of the fitness
landscape.

4. CONCLUSION
The genetic algorithm improved EEG classification accuracy from 83% to 96% for
the training set by removing outliers, but did not improve test set classification.
The excluded records are not necessarily outliers in the distance sense; a quantity
was derived from the fitness function that may describe how the GA selects the
records it excludes.

For a complex problem we cannot know a priori the minimum population size
and the number of generations that will allow the genetic algorithm to effectively
search the solution space and to avoid premature convergence. We show that a
mutation rate higher than the commonly used 1/1000 can lower the minimum
population size needed in order to lessen the effects of hardware constraints.
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Symbiosis in Society and Monopoly
in Nature: Mixed Metaphors from Biology and
Economics

In a recent talk, Stuart Kauffman 4 used an Edgeworth box to point out the
similarities between two traders and two symbiotic species. Mixing these economic
and biological metaphors highlights their similar emphases on rivalry and coopera-
tion. Barter leads to symbiosis, then on to competition, cooperation, and monopoly.
Cultural strategies give human beings a monopoly position regarding other species.
Through culture, human beings influence nature and society both consciously and
unconsciously. The most important species to control (humanity itself) presents the
most difficulties.

1. SYMBIOSIS AS EXCHANGE
Imagine two traders arranging a barter transaction, perhaps two farmers, Smith
and Jones. For this trade, each has given preferences and endowments. Say Smith
grows wheat and Jones is a dairy farmer. To construct Edgeworth's model,6 draw
a box whose dimensions each represent the amount of a single farm product. One
dimension is milk, the other wheat. Each point in this rectangle represents a division

1992 Lectures in Complex Systems, Eds. L. Nadel & D. Stein, SFI Studies in
the Sciences of Complexity, Lect. Vol. V, Addison-Wesley, 1993 579
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of goods between the traders (see Figure 1), with their original position at upper
left-hand corner. If they exchanged all the milk for all the wheat, they would end
up in the lower right-hand corner. If Smith simply gave all the wheat to Jones, the
upper right hand corner would describe their situation.

Imagine each farmer drawing curves that represent allocations among which she
is indifferent (her indifference curves). Typically, there will be a wedge of alloca-
tions that both farmers prefer to their original situation. According to tile model.
bargaining continues until this potential vanishes. There is a locus (the contract
curve) where no gains from exchange exist. These consist of the points of tangency
between the two farmers' indifference curves. The final trading position of the farm-
ers will be one of these points. The location of the final agreement depends upon
the relative bargaining skill of the participants.

What does this model tell us? It depicts an artificial exchange. a thought ex-
periment illustrating the potential for mutual gain among traders. It does not allow
prediction but facilitates understanding.

Smith has wheat, Jones has
milk

Jones has
everything

Jones's in fferen
rves

Contract Curve
milk

Smith has wheat

everything

FIGURE 1 An Edgeworth box of a wheat farmers and a dairy farmer's exchange.
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Flowers keep nectar, bees
don't fly Bees have

everything

Bees' indi reno urves

Contract Curve
Pollen
carried

100%
Flowers nectar
have
everything

FIGURE 2 An Edgeworth box of the bees' and flowers' symbiosis.

We can draw an Edgeworth box for bees and flowers (Figure 2). Bees carry

pollen and flowers produce nectar. Isopopulation or isoenergy lines suggest them-
selves as analogs of indifference curves. Rather than maximizing as individuals.
bees and flowers come pre-equipped with a bargaining strategy that determines
their behavior. Symbiosis alters these species' chances to flourish and reproduce.
While the barter model said nothing about, what would happen after trade took

place, its analog demands iteration. Exploitation, where one species gains dispro-

portionately, no longer appears to be an equilibrium. The gains lead to relative

population increases, tending to reverse the disproportionality. If flowers over- or

underproduce nectar, the bees will die off, yielding the flowers only a temporary

gain. Evolution mediates their bargain, giving neither an advantage.

Perhaps bees learn to recognize flowers that tend to have more nectar. If so,
we may be using the wrong economic analogy. The absence of exploitation and the

feedback effect cause tle situation just described to resemble the economists' ioodel

of perfect competition.



582 T. David Burns

2. IS THERE NATURAL MONOPOLY IN NATURE?
Under perfect competition, entry or exit of firms from all industry adjusts the

level of profit. The resulting feedback guides the industry to the proper price and
quantity. As in the biological model, exploitation defeats itself. The assumptions
underlying this model are just as restrictive as those of the Edgeworth box. While
economists disagree on perfect competition's virtues as a first approximation of
reality, none would insist that it provides a literal representation of our world.

The standard model of monopoly shows that monopolistic markets achieve
higher prices and profits by restricting output. Assuming that market demand forms
a constant relation between quantity and price, the monopolist chooses the price
that gives her the most profit. By choosing price, the monopolist effectively chooses
quantity. The monopolist will produce fewer goods than they would under com-
petition (assuming the monopolist charges a single price). To restrict output, the
monopolist must restrict entry. Monopolists cannot make large profits if those prof-
its tempt new competitors into the market, increasing output and lowering price.
They must prevent the arrival of newcomers.

Monopolists may restrict entry by collusion, by government grant, or by exploit-
ing the characteristics of certain markets (natural monopoly). Natural monopoly
exists if some technological quirk of the market allows a single firm to exist and
prosper in a market where two firms could not coexist profitably. Market demand
cannot support both. Cutting each in half either would raise the price the customer
must pay or would simply make no sense. Local power utilities, phone companies.
and cable television outlets provide familiar examples. Could this occur in our bi-
ological analogy?

The economic monopolist maximizes profit by restricting output. How would
a monopolistic species act'? Above, I speculated that a population might form the
feedback link. Break this population link and a species may act as a monopolist.

When factors other than the symbiotic relationship form the binding constraint
on the population size of one or both symbiotes, then feedback will fail to occur. If
pesticides keep the bee population artificially low, the flowers will be disadvantaged
in their exchange. Taken to extremes, this arrives at parasitism. Bears steal the bees'
honey, providing nothing in return. Yet this factor does not determine population
size and could go on as long as the two species exist. So, monopoly can occur in

nature.
Can natural monopoly exist in nature? Natural monopoly requires a lumpiness

or discontinuity in the production or exchange of symbiotic products. While such
discontinuity might exist between symbiotes of an extreme degree of coevolution.
such a degree of interdependence seems to imply strong population feedback be-
tween the two species, precluding monopoly. For example, the bear's bargaining
strength lies in his independence from tile existence of bees or, neither of a lichen's

component species can live without the other. The commitment of coevolved species
is mutually enforcing. Selfish genesi must cooperate or die.
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While monopolistic interaction may take place between symbiotic species, Such
interaction depends on temporary circumstances that provide no lasting advantage.
Monopolistic species cannot exclude competitors; they can only take advantage of
their absence. The more each species depends upon symbiosis, the less they canl
afford to act as a monopolist. Monopoly depends upon an asymmetric dependence.
Selfish genes that attempt to arrange this asymmetry are vulnerable to competition
and risk their investment in coevolution. Where genes fail, however, culture may
succeed.

Cultural strategies have a time advantage over genetic strategies. They can
adapt to a change more quickly. Human beings have exploited this advantage,
forming a symbiotic network of domesticated plants and animals. Agricultural so-
cieties have shaped species through selective breeding and culling, forcing a biased
kind of coevolution. Our culture coevolves with the domesticated species. Human
practices, not human lives, depend upon their existence.

Humankind does not depend directly upon any single species. If a disease de-
stroyed every chicken on Earth, individual humans might lose fortunes, but human-
ity would continue. We depend upon the whole, but can live without any specific
part. Humans determine the bargain's terms and, so, act as monopolists.

3. ARM WRESTLING THE INVISIBLE HAND
Human influence takes an even more central role in society. Through science, engi-
neering, law, government, and business, human beings seek to articulate knowledge
of the world and to manipulate the world by using that knowledge. Humanity's
dilemma lies in our need to do more than we can know how.2 We must guide nature
and culture, although we cannot fully understand them. In both cases, humanity
must influence a global phenomenon through local action.

We cannot choose directly between emergent, global aggregates and outcomes.
Individual acts and intentions connect to their aggregate outcome indirectly. We
can only influence them indirectly, through choice of rules. But even rules cannot be
chosen directly. They emerge from a political process, transformed by social reality.

Economic aggregates and the wealth of peoples emerge from the interactions,
customs, and practices of individuals, "as if guided by an invisible hand."(-) The in-
visible hand selects social strategies as natural selection chooses genes. 'lhe visible

hand of organization and legislation influence social outcomes in the same way that
selective breeding influences nature. Each limits the action of the other. The two
hands sometimes work in harmony; other times, they wrestle. Evolution and ratio-
nality must cooperate in the development of culture. We must, breed institutions as
we bred domestic species. In doing so, we can never be confident of infallibility.
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Disordered Models of Chemical Reactions in
Complex Molecules

1. INTRODUCTION
The time dynamics of chemical reactions in complex molecules pos;sessing a large

number of atoms (> 10') and complex internal structure such as proteins and
amino nucleic acids is much richer in types of behavior than the dynamics of smaller
molecules (number of atoms • 102). The most challenging feature of the dynamics of
large molecules for theoreticians is the observation in experiments of noniexponential
reaction kinetics.3,

6',

It was found, apart from this, 3 6 that the solvent can qualitatively change the
shape of N(t), leading to plateaus or decay rate variations. In its simplest form.
solvent effect is taken into account in the Snioluchowski equation by assuming
that the solvent action on the reaction coordinate is broadband noise. It has beeni
shown 9 that in some cases it is possible to reduce the two-dimensional Smoluchowski
equation for protein and ligand coordinates y, xr

0
--P = DVYx(Vij + h•VjV(.z',y))P (1)Ot

1992 Lectures in Complex Systems, Eds. L. Nadel & D. Stein, SFI Studies in
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(here D is the diffusion constant andI h is the height of the potential barrier in units
of kBT) to a one-dimensional equation

i) P D I(- + It-V(.) P + k s(x) P (2)
Ox d~r d.1: 0 x:

for the ligand coordinate only. Here s(xr) is the coordinate-dependent rate of escape
from free-ligand state to bound-ligand state.

The same Eq. (2) naturally appears in a quasi-classical description of photo-
chemical reactions in which case V(x) is the mean potential surface of an exited
state and s(x) (called a -sink") is the transition rate to the ground state surface.
The Landau-Zener formula is used to describe the shape of the sink

.- .1) = exp (3)

Equation (2) has been extensively studied in the two above-mentioned contexts:
by Agmon et al.2.9 in the case of ligand binding and by Bagchi et al.''15 in the case
of barrierless photochemical reactions. Numerical simulation and analytical results
show that nonexponential behavior of the survival probability or population of the
exited state

N (t) dfdxP(,r, t) (4)

can be obtained in a transient region between the initial state and the long-time
exponential tail. Extensive numerical simulations of Eq. (2) made in Aberg et al.'
show that, although the slope of exponential part and the length of nonexponential
region depend on D and h, the shape of N(t) remains qualitatively the same and
becomes only biexponential when V(:) has a multi-well configuration with a sink
in each well, such that jumps between wells and escapes through the sinks become
competitive.

WVe therefore study Eq. (2), choosing several models of disorder for the poten-
tial V'(x) and sink s(x), and trying to find the most sensitive parameters in the
disorder model to describe a variety of time dependences of N(t). W\e have found
that, although relaxation rates are dependent quantitatively on D and h in this
model (temperature and viscosity of solvents in real experinients), the most dras-
tic qualitative changes are caused by a variation of distribution width of the sink

position and width and position of spectrum of the random l)otential V(x). First.
however, we describe briefly the nmnerical method we used in our simulations.
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2. BROWNIAN DYNAMICS SIMULATION OF THE FOKKER-
PLANCK EQUATION WITH A SINK FUNCTION
Equation (2) was studied in the past by eigenfunction expansion methods 4 5 and
by using special hybrid finite differences-tthe Galerkin technique. 2 We use here the
Brownian dynamics approach combined with the Feynmann-Kac formula as a fa-
more efficient method in application to disordered and multidimensional systems.

The Feynmann-Kac formula states that the solution of Eq. (2) is

P(x, t) = (exp{k dt*s(x(t*))})x(t.) (5)

where x(t) is a trajectory satisfying the Langevin equation

dx = -Dh---2V(x)dt + D1/2AW (6)
Ox

where AW is the standard Wiener process. The average in Eq. (3) is taken over all
possible realizations of Eq. (6) at all times except the last. The survival probability
is obtained by additional averaging at the last time t.

In the case of disorder of any type-either of the sink function or the potential
V'(x)-we add one more averaging operation with respect to realizations of the
disorder. So, in this case the quantity of main interest-the survival probability--
becomes

N(t) = ((exp k dt*s(x(t*)))x(t*))disorder. (7)

Eq. (7) gives a very flexible method to study Eq. (2) in the sense that it allows one
to carry out calculations in a unified way for different kinds of sinks and poten-
tial functions as well as various models of disorder, and it admits straightforward
multidimensional generalizations.

3. THE MODELS OF DISORDER

Since the model (1) has not been studied yet in a "disordered" setting, we start our
calculations from three basic cases separately: random sink position in a potential
well; spatial disorder (i.e., random potential curvature in the vicinity of sink); and
time disorder (motion in a potential with random variation of instant potential
slope).

To use these models for interpretation of, for example, ligand binding exper-
iments, one probably has to use a combination of both. We choose the potential
V•() as

V(x) = bcos(wx). (8)
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This gives a possibility of simple interpretation of the curvature fluctuations (w in
this case) in terms of the spectral properties of the potential Vý(x). It is known that
a spectral density of cos(wx) coincides with the distribution function of w - p(w -
wo). So, we can easily manipulate the type and position of the V'(x) spectrum by
changing that of p(w - wo).

To single out the net effect of disorder, we choose the constant b in Eq. (8)
large (-5 in all calculations) and a high magnitude of sink k (equal to 102). This
makes the contribution of jumps between different minima of cos(wx) to the survival
probability N(t) negligible, since the initial conditions for trajectories of x (Eq. (6))
have been chosen such that they start in the middle between maxima and minima
of V(x).

By "spatial disorder" we understand a random value of w for every single tra-
jectory of Eq. (6). We take p(w - wo) as a Gaussian distribution with average value
w0 and dispersion Aw which are, as mentioned, the position and the width of the
spectrum of Vý(x). By "time disorder" we understand random variations of W at
each time step for each trajectory (6). The same Gaussian function is chosen for
this model. Finally, we understand by random sink position the situation where
the position of the sink x 0 is chosen randomly in the period of cos(wx) for each
trajectory of Eq. (6). We assume this distribution to be Gaussian with zero mean.
So there is only one parameter of disorder in this case. In all results presented below
a value D = 0.1 has been used. Another value of D gives rise to only quantitative
difference in the time dependences of P(t).

4. RESULTS FOR THE SPATIAL DISORDER MODEL
Figure 1 represents typical results for the spatial disorder model. All curves have
been calculated for Aw = 2.5. The curves 1-7 correspond to different positions of
spectrum -w 0 = 0, 1, 2.5, 4, 5, 5, and 10, respectively. The closest elementary
function to the long-time asymptotic decay for this model is

exp(-O3et) forwo0<5 and (9)

exp(-3et'") for wo>5. (10)

The most remarkable feature of the curves is the "phase transition" with respect
to wo between the type of asymptotic behavior of Eqs. (9) and (10). Indeed, the
curves 1-4 and 7 have been obtained by using 104 trajectories and do not depend in
a noticeable way on the time step and seed number of the random number generator.
The curves 5 and 6 correspond to the same wo and differ only in their seed numbers.
This indicates the presence of long-lived time fluctuations, which are typical for the
near-threshold region, and requires very good statistics to be eliminated.
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5. RESULTS FOR TIME DISORDER
The curves 6-1 in Figure 2 correspond to fixed spectral position of V/(.r) (; = 10)
and Aw = 1, 2.5, 2.5, 2.5, 5, and 10, respectively. The same kind of phase transition
in Aw can be observed. In this case it takes place between long-time asymptotics

e-k, for A w_<2.5 and (11)

t' for Awt>2.5. (12)

The curves 3, 4, and 5 in Figure 2 correspond to Aw = 2.5. They illustrate the size of
fluctuations near the threshold. The curve 3 was obtained with 105 trajectories, and
curves 4 and 5 with 104 trajectories; they correspond to different seed numbers of the
random number generator. We note that for a narrow spectrum of disorder (curve
6) this result approaches the well-studied case of the nondisordered system. 1.4.6

6. RESULTS FOR RANDOM SINK POSITION
It is very difficult to propose an elementary formula to describe the long-time
asymptotic behavior of N(t) for this case. Results in Figures 3 and 4 show that
the most probable equation is

oe-t, (13)

a and f being smoothly dependent on Axo-the width of the distribution of the
sink position. In the family of curves 1-6 of Figures 3 and 4, we can observe pure
exponential decay for Axo = 0 (curve 1) (this is the nondisordered case studied
in Aberg et al.1 Bagchi et al., 4 and Beece et al.6 ), decay which is very close to a
pure power law (the curve 2. Axo = 0.1) and a sequence of mixed cases (of the
type given by Eq. (13))-curves 3, 4, 5, and 6 for Ax 0 = 0.15, 0.25, 0.5, and 1,
respectively.

CONCLUSION
The results obtained for three simple models of disorder show a very diversified pic-
ture of the time behavior of survival probability N(t) for Eq. (1). This suggests an
alternative approach to fitting of experimental data from experiments discussed in
the introduction. It is possible to describe complex disordered systems, like proteins,
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in terms of widths and positions of disorder spectra which can be determined from
molecular dynamics simulations along the line outlined by Elber and Karplus.7
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A Game Theoretic Interpretation
of the Spin Glass

INTRODUCTION
Game theory studies the strategic interaction of groups and individuals, and is
increasingly central to modern economic theory. This paper demonstrates some
game theoretic properties of the spin glass Hamiltonian and develops an approach
to the formal study of coalition formation. It is an addition to the small literature
that describes statistical mechanical models used to study economic processes. 3' 4' 5'6

Coalition formation is a relatively undeveloped topic in game theory. Typically,
coalitions are not thought of as actually forming. Instead, they implicitly bargain
over the division among all players of the worth of the all-player coalition. The
principal coalition formation model involves the sequential formation of bilateral
cooperation agreements. 1,2,11,

12

The spin glass game, as presented here, is a very restricted subset of the space
of cooperative games. However, because of its particular representation of the value
of association, and its explicit representation of the intrinsic interests of a player,

1992 Lectures in Complex Systems, Eds. L. Nadel & D. Stein, SFI Studies in
the Sciences of Complexity, Lect. Vol. V, Addison-Wesley, 1993 593
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it adds new dimensions to the cooperative game which may be useful in the study
of coalition formation. This approach both greatly simplifies the representation
and study of coalitional dynamics and also opens up the possibility of applying
contemporary statistical mechanical methods to the study of large games.

1. THE SPIN GLASS
The spin glass'4,15 model was originally developed to model complex magnetic
phenomena in alloys of atoms with and without magnetic moments, and elaborates
the simpler Ising model of ferromagnetism.s Spin refers to the magnetic moment of
the atom, glass to the irregular pattern of interactions between spins.

In the infinite range version, all spins interact with all other spins. A spin S1
can only orient itself up (S' = +1) or down (Si = -1). A spin "tries" to orient
itself so that it minimizes its frustration with respect to all other spins and an
outside magnetic field B, if present. The nature of the interaction is represented by
a symmetric random matrix J of quenched variables, where Jj is the interaction
between spins i and j. Jij > 0 means that the particles tend to align with each
other. Summing over all spin interactions yields the Hamiltonian for a spin glass
system:

H= - JjS + ± BS'.

Note that S'Si is positive whenever spins i and j have the same orientation.
In what follows, the interaction matrix will not be required to be symmetric or

random and, for notational convenience, will be denoted as Y The external field
will be taken to be a vector with independent values for every player and will be
denoted as Z.

2. COOPERATIVE SPIN GLASS GAMES
A cooperative game 1' 13 is represented by a characteristic function that assigns a
worth to all coalitions formable by a set of players N. The interpretation of the
spin glass as a cooperative game results first from viewing the quenched variables as
pairwise interaction effects between players which sum to the worth of a coalition.
In this section we develop the idea and relate it to some of the central concepts in
cooperative game theory. In Section 3 we introduce coalitional structures. Then, in
Section 4 we interpret the spin glass external field as the intrinsic preferences of the
players and introduce the idea of orientation.
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DEFINITION 1. A cooperative spin glass game v (N, Y) is a set of players N =
{1, 2,.... , n} together with an interaction matrix Y E Rf×•. The interaction matrix
defines the characteristic function v 2 N - R, v(0) = 0, which assigns a worth to
every coalition of players 0 # S C N as follows:

V(S) EZYij->EYik. 1
jES kVSN

We can think of Yij as being the worth of player j to player i. In a spin glass game
the worth of the interactions with players not in a coalition must be subtracted in

order to determine its worth.

DEFINITION 2. The marginal contribution of a player i E S to a coalition S, vt (S)
is v(S) - v(S\ {i}), or:

V1(S) ZY, Yk + 2 E Y,. (2)
jES kqS E

The Shapley valuel° of a cooperative game assigns to every player her average
marginal contribution to all coalitions she is a part of, giving equal weight to the

average contribution to all coalitions of a given size. Alternatively, the Shapley
value can be calculated as the average marginal contribution of a player over all n!
possible orderings of formation of the whole. The Shapley value can be axiomatically

derived from the assumptions of efficiency, symmetry, linearity, and zero value to
a player who contributes no value. It may be best thought of as the prospective

value to a player in playing a game given that all sequences of the formation of the

all-player coalition are equally likely.

CLAIM 1. The Shapley value for a player i in a spin glass game is

jEN

PROOF Think of the Shapley value as the average marginal contribution over

all orderings of entry of players into the formation of the all-player coalition.

Over all random orderings the likelihood that player j will enter before player i

is .5. Thus the first two terms on the right-hand side of Eq. (2) will cancel out

except for Yij and we are left with Eq. (3). w

The value of a player is the sum of her contributions to other players (and

herself).
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DEFINITION 3. A game has net positive (non-negative) interaction effects if

;j +Yji 0ŽV i 5j e N.

CLAIM 2. A necessary and sufficient condition for superadditivity in a spin
glass game is that it have net positive effects.

PROOF Superadditivity requires S n T = 0 =v v(S U T) >_ v(S) + v(T).

v(S UT) - {v(S) +±v(T)} =i - 1: Yik)

tijEST tEsT

iEVS

jET

Thus, net positive interaction effects guarantee superadditivity. The property
is necessary because, if there exists an i and j for which this condition is not
met, then there will be a at least one coalition, S {i,j}, that violates the
conditions for superadditivity. a

CLAIM 3. A necessary and sufficient condition for convexity in a spin glass
game is that it have net positive interaction effects.
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PROOF A cooperative game is convex if v(SuT) +±L(Sn'T) > v(S) + v(T) ileh
following demonstrates sufficiency, necessity follows front the same argument
used in the last claim.

V(S u T) + ,(S n IT) -,,(S) - v(T) = • Y'j + Z 1r§ - Z Y',
,jE'uT Z,JESf'T ,jES

+ ~3Y~, + Z~
=2 E (Y, +§,) Ž>0.

,N 1)T7

The core of a cooperative game is the set of all allocations to players that
sum to the worth of the all-player coalition and have the property that the suni
of allocations to players in any coalition S is at least as great as the worth of the
coalition. It is well known that every convex game has a nonemipty core but for a
spin glass gamne with net positive interaction the Shapley value is in the core as
well.

CLAIM 4. Every spin glass game with net positive effects has a nonenlty core.
In particular, p(v) E core(v).

PROOF For any S c N and any i E S,

ZPjl)) - ?S) =ZZY.t- EZY,,Z Y

= E-•(YEa + yj,)_>-0.zess

Since net positive effects 4* superadditivity €* convexity, any one of these
properties guarantees a nonetipty core and that the Shapley value will be a core
allocation. The spin glass formalism thus defines atn exceptionally well-behaved
cooperative game with well-understood properties under the regime of net positive

effects.
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3. COALITIONAL STRUCTURES
This section presents a simple approach to coalition formation where we imagine
that if the all-player coalition fails to form, then two coalitions will form in its place.
Net positive interaction effects are no longer assumed.

Example 1. Consider the following Y matrix for a game of four players:

4 4 -1 -1
-1-1 3 3
-1-1 3 3

v(N) = 20 and ýp(N) = (6,6,4,4) for this game. But if S = {1,2} and T =

{3,4}, then we have v(S) = 20 and v(T) = 16; hence, v(S) + v(T) = 36 >

v(N) = 20. The breakup of N into S and T is coalitionally rational in as much

as there are no other coalitions that can form and do as well or better for all

players. n

What then is the prospective value of playing this game for each player'?

DEFINITION 4. A coalition structure is an element w E Q - {(S: SC)IS C N}, the
set of unordered complementary subsets of N.

CLAIM 5. The value of a player relative to a coalition structure w is

7v) : yi •- 1: Yk. (4)

jES: iES kES'

PROOF Since the value of a player relative to the all-player coalition is the av-

erage marginal contribution over all orderings representing formation of the all-

player coalition, it is logical to extend the notion of value relative to a coalition

structure to be a player's average marginal contribution to a coalition over all

possible orderings of entry into that coalition. Since the players outside player

i's coalition never enter, their interaction value must always be subtracted.
These values fulfill the essential efficiency condition, -ZiES () = V(S). 1

Note that if w = {N, 0}, ýpW(v) = p(v). For the example described above, where

w = ({1,2},{3,4}), ow(N) = (10, 10,8,8).
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4. ORIENTATED SPIN GLASS GAMES
Orientation expresses the idea that coalitions are forming around a choice between

alternatives. In addition to the interaction matrix Y, we now consider an intrinsic

preference vector Z. Orientation can be used to study network externalities 9 in the
choice between two technological standards. Here, Z represents the intrinsic values

of one standard versus another to players and Y represents the externalities. Orien-

tation can also describe the legislative process, where Z can be taken to represent
the preferences of the representative's constituents while Y represents the personal,

ideological or political influences that legislators may bring to bear on each other.

DEFINITION 5. A spin glass game with orientation v = (N, Y, Z) is a set of players
N = {1, 2,..., n}, an interaction matrix Y E RnX", and a preference vector Z E R'.

Y and Z define a pair of characteristic functions v+ : 2N -* R,v+(0) = 0, and

v- : 2N -* R,v_(-) 0, such that:

v+(S)= E Y- E Yk ZZ , (5)
jE~q k¢S

E S• 'ES" iES
V_(S) = Yj - 1:Y~k ZZ (6)

, S iES
E S k" S

Clearly, if Z 0, v+(S) = v-(S) = v(S) for all S C N. The Z vector can be

thought of as the net intrinsic preference of player i for "+," the positive orientation

or up state. We can call "-" the negative orientation or down state, and think of

-Z, as the net intrinsic preference or utility to player i of negative orientation. Thus,

Z, = ui(+) - ui(-) where the utility function reflects intrinsic preferences prior to

the consideration of the interpersonal externalities represented in the interaction

matrix. Usually, the worth of a coalition is simply imagined as the best outcome

that the coalition can guarantee itself. Orientation introduces a representation of

what this coalition actually does.

Example 2. Consider the following game, a variation on Example 1.

(Y' Z) = 4 4 -I-1 5
-1 -1 3 W)
-1 -1 3 3 5

Again, let S = {1, 2} and T = {3,4}. We can quickly determine the follow-

ing results: v+(N) = 40, v_(N) = 0, v+(S) = 30, v+(T) = 26, v_(S) = 10,

v_ (T) = 6. In this game we should expect that all players will join the same

coalition, which will adopt the positive orientation. Orientation allows that
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intrinsic individual preferences may overcome centrifugal forces inherent in in-

dividual interactions. a

DEFINITION 6. An oriented coalition structure w is an element of the set of ordered
pairs of complementary subsets of N, w E Q = {(S, Sc)IS C N}, where the first
coalition in the pair has positive orientation and the second coalition has negative
orientation.

CLAIM 6. The value of a player i in an oriented coalition structure w in an

oriented game is

4i(v) = i - 1:Y + o(S: i ES)z,, (7)
jES: iES kESI:

where O(S: i E S) is the orientation of the coalition S E w that i belongs to.

PROOF This is the result if we consider the average marginal contribution of

a player given Eqs. (5) and (6). It is a simple extension of the argument in

Claim 5 to encompass orientation. Note again that the sum of the values of the

players in a coalition is equal to the worth of the cualition. w

Example 3. Consider now an example where orientation leads to coalition

formation. [ 441 i 51
( ', Z ) = 4 4 1 1 5

1 1 3 [ - /

1 1 3 -5J

The unoriented complete game based only on the interaction matrix Y clearly

has a core and there are strong benefits to formation of the all-player coalition.

With the preference vector Z, however, and with S = {1,2} and T = {3,4}. it

can be seen that v+(S) = 22, v_(T) = 18, and v+(N) = v (N) = 36. Given

the symmetries of the example, thus we should expect the oriented coalitional

structure w = (S, T) to arise. It is easy to see that ýpw(v) = (11, 11, 9, 9). E

There may be many possible individually rational coalitional structures in a

given game. Several approaches to determining which coalitions should arise in
small games based on the structure so far presented are possible depending on the
situation being represented. In the context of the formation of a parliamentary

governing coalition, the largest party is generally allowed to assemble the coali-

tion of its choice. This would be represented by allowing one player to choose the
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coalitional structure most favorable to it. In general, we might imagine a variety of
noncooperative sequential choice processes (similar to Aumann and MyersonI and
Bloch 2 ) based on an exogenously given ordering of players. For example, the first

player selects her most preferred set of coalitions, then the next player selects from

these his most preferred, and so on.

5. DISCUSSION
The cooperative spin glass game offers a simple method of both distinguishing
interaction effects from intrinsic preferences and studying coalition formation. The
concepts presented here can be developed in a number of directions.

Coalitional structures and orientation are presented here as a binary concepts,
as in the physical spin glass model, but it should be clear that they can be gener-
alized.

With an appropriate interpretation of temperature, 3 statistical mechanical
techniques can be used to evaluate the probability of a particular coalitional struc-
ture arising when many are possible. Under these circumstances the path depen-

dent and ultrametric 14 aspects of the spin glass phase space become relevant. The
prospective value of a game to a player then becomes a function of the initial con-
ditions. One perspective on the player's expected value of playing the game could
be derived from the partition function, 8,14,15 and would have the interpretation
as the sum over all coalitional structures of the probability of the coalition arising

times the player's value in it.
Finally, with strong assumptions, including constraints on the distribution of

the Y1,, the machinery of the replica method15 might be applied to examine aspects
of coalition formation in large games in a manner that extends Fbllmer's 6 scope

and results.
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Lattice Games with Strategic Takeover

1. INTRODUCTION
This contribution explores a topic of interest in a surprising number of physical
and social sciences, the iterated Prisoner's Dilemma game. We use this game to
construct a simple model of strategic interaction on a lattice.

The basic game describes two prisoners, accused of having committed a crime
together, who are unable to communicate. Each is told that, if he confesses (defec-
tion), he will get a lighter sentence, but that he will receive a very heavy sentence
if he does not confess and the other prisoner does. However, if neither confesses
(cooperation), each receives a medium sentence.

Both prisoners defecting is the only equilibrium in the game because they can-
not make a binding agreement to cooperate. In the basic game theoretic analysis,
cooperation can be sustained only by the indefinite repetition (iteration) of the
game. The expected future benefits of cooperation must be greater than defection,
and cooperation is difficult to sustain.

1992 Lectures in Complex Systems, Eds. L. Nadel & D. Stein, SFI Studies in
the Sciences of Complexity, Lect. Vol. V, Addison-Wesley, 1993 603
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Modifications of the basic two-player iterated game such as bounded rationality
and noisy communication channels have been studied."s,"12,' 5 Axelrod1, 2 studied
repeated play among different players in a well-known computational experiment
where researchers were invited to submit arbitrarily complex strategies (computer
programs) that played each other in a "round-robin" tournament. Rapoport14 con-
tributed the "Tit-for-Tat" strategy which started off by cooperating and then sim-
ply repeated the opponent's last move and became famous by beating all other
strategies.

The principal variation in our work is that we arrange agents on a lattice and
have them play the same strategy simultaneously, but only against their immediate
neighbors. The secondary variation in our work is that in most of our runs we
allow payoffs to accumulate and, if an agent goes bankrupt, he is "taken over" by
his most successful neighbor and adopts her strategy. Thus successful strategies
propagate spatially, in a simple representation of diffusion through economic and

social networks.
In our study there are four important factors to consider: (1) how many itera-

tions an agent can remember and what he can remember; (2) the relative advantage
to noncooperation; (3) the degree of "selection pressure"; and (4) the geometry of
the lattice. In some of our runs we introduce a low rate of mutation in strategies
which gives our work some of the quality of genetic algorithm methods. The work
reported here focuses primarily on the effects of selection pressure and variations
in the incentive to defect.

It is rare that two players would play only against each other or that all agents
would play all other agents in realistic economic situations. Typically, we expect a
network of connections between agents. One approach to studying such networks is
to model them as spatial behavior on a d-dimensional lattice. 2,4"13 Axelrod 2 already
reports on experiments similar to ours on a lattice, but, in his work, agents play
their neighbors separately. Most studies of evolutionary processes assume random
or uniform matching. Here we allow the diffusion of strategies to take place, but do
not make prior assumptions as to how complete "mixing" will be.

Local interaction is becoming a significant dimension of economic processes to
study. Blume 3 uses the Ising model to study simultaneous play on a two-dimensional
lattice without the possibility of "takeover." Durlauf5 studies production with local
externalities. Ellison6 finds that local interaction results in much quicker transitions
to dominant strategy equilibria than conventional assumptions.

2. OUR GAME
We start with a standard payoff matrix with positive payoffs. Each player has two
strategies, cooperate and defect. The payoffs are: 3 points each when two agents
cooperate; 0 points to an agent when she cooperates but her opponent defects; 1
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point each to agents when they both defect; and 5 points to an agent which defects
against another agent that is cooperating (our b parameter, which is varied). For
our simulations, the score of one round of the game for each player is the sum
of the payoffs of each individual encounter with each neighbor minus a constant r.
Typically, we set r = 8. It is easier to think of varying r than to change entries in the
payoff matrix. Thus, a cooperative agent with three cooperative and one defecting
neighbors would get 3 x 3 + 0 - r = 9 - 8 = 1 point according to the above rules. In
order to allow evolution of behavior, we designed a specific form of takeover: Sites
start out with a certain number of points. Unsuccessful sites which go bankrupt
can be taken over by the more successful strategy of one of its neighbors.

Our model can be seen as a variation on Kaufman's genetic model.11 For clarity,
our notation will be based on the one-dimensional case. N agents are positioned on
the N sites of a quadratic lattice of size N = Ld We denote the state of an agent at
site i and time step t with s(i, t). We take s = 1 for cooperate and s - 0 for defect.
The state of any agent at time t + 1 is determined by the states of his neighbors at
time t (cellular automata 16 ):

8(i, t + 1) = fi(s(i - 1, t), s(i + 1, t)).

There are 22 = 4 different configurations of 9 := (s(i - 1), s(i + 1)) at time t,
and two different ways to react (i.e., f(W) = 0 (cooperate) or f(.') = 1 (defect))
and thus 42 = 16 different strategies. Strategies can be numbered by their binary
representation: Strategy number 5 is 0101 in binary notation. The left-most bit
codes the answer (here "0" = D) towards a configuration 11 (i.e., both neighbors
cooperate), the next bit codes the answer towards a configuration 10 (i.e., left
neighbor C and right neighbor D), and so on. As we want to allow that different
agents follow different strategies, each agent may have its own strategy fi.

Following cellular automata methodology, lattice sites are updated in parallel;
i.e., every agent bases its time t action on the time t - 1 actions of other players.
This is computationally advantageous, but also seems realistic in some cases (see
below). Another numerically motivated decision was to take (in two dimensions)
helical boundary conditions in one direction, i.e., connecting agent (L, 1) to the
right with agent (1, 2) and so on. The other direction was periodic.

To understand this and the following in the context of economics, a simple
illustrative example in two dimensions (its idea taken from Cowan & Miller4 ) might
be helpful. Imagine a large city with streets on a square grid. At each crossing a
shop is situated, which may only be reached by people living in the four neighboring
street sections (a section of a street reaching from one crossing to the next). Thus,
when all the shops are open, they have the clients from 4 x 1/2 = 2 sections. But
if a shop closes, its clients can turn to the shop at the other node of their section,
but they cannot go beyond their two nodes.

Now imagine that the shops want to decide if to open on Sundays. If they all
stay closed, the clients have to do their shopping at another time. If all shops open,

there are not enough clients to cover the costs of the additional opening time. So,
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obviously, keeping the shop closed corresponds to the cooperate option and opening
to the defect option. And the fact that shop managers have to make their decision in
advance (organizing personnel, etc.) corresponds to the parallel update. Choosing
only one action in response to four neighbors adds an element of spatial frustration
to the game, reminiscent of spin glass theory: How should an agent react if he has
three usually cooperative neighbors and one that defects?

3. A GAME WITH ACCUMULATED PAYOFFS AND TAKEOVER
(GAME A)
On the two-dimensional lattice there are 216 = 65536 different strategies. To study
characteristics of successful strategies, we performed the following computer experi-
ments on a 40 x 40-lattice: Initially, each site obtained a randomly chosen strategy, a
randomly selected state (C or D), and 50 points. Then the game started, each agent
playing according to his strategy accumulating points according to the payoffs. But,
during each round of the game, the score of each player is at the same time reduced
by r points, r usually being 8 or 9 in our simulations. Thus, cumulative negative
scores are possible. Each time an agent crosses the threshold of 0 points, he is taken
over by the wealthiest of his neighbors. (No takeover takes place if all neighbors are
negative as well.) If, say, site i is taken over by site i + 1, site i now gets the strategy
from site i + 1. The debts of site i are subtracted from the current score of i + 1,
and the result (which might be negative) is equally distributed between i and i ± 1.
In order to keep this scheme consistent, it is performed by going through the lattice
sequentially, thus introducing some kind of anisotropy. An increasing r leads to a
higher number of "dying" agents. r is therefore reminiscent to the biological notion
of a higher selection pressure. It should be noted that-after the initialization-the
whole game is still totally deterministic. The idea of a takeover is the same as in
Nowak and May,' 3 but there only two strategies are allowed.

Figure 1 is a visualization of a run of such a game in one dimension (i.e., the
players are placed on a ring, like around a lake). For further details, the reader is
referred to the figure caption.

In the following, we describe some statistical properties of the strategy space
of the system after the simulation of 2,560,000 time steps, for r = 8 and r = 9.
Averages over about 100 runs are used for each of the parameters. We performed
most of the simulations on a net of five loosely coupled IBM RS/6000 workstations,
using PVM for the distribution of different Monte Carlo runs on different machines
and for recollecting the results. In some cases, to obtain results in shorter time,
we used in addition a 32-node INTEL iPSC/860 parallel computer with the same
technique. The perhaps most interesting result of our simulations is that there is a
clear difference between success and efficiency of a strategy. Figure 2 compares our
measure for success (i.e., the frequency of a strategy at the end of the runs) to the
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other measure, not less important in normal life: We define the effectiveness of a
strategy as the (normalized) average number of points a strategy scores per time
step. We observe that in order to have higher efficiency it is, contrary to intuition,
useful to have many C reactions to a mainly defecting neighborhood (at least for
lower r). The reason behind this is that a relatively good way to survive under the
circumstances of the game is to have a larger cluster of a chessboardlike pattern of
D's and C's. Then the D's get all the points from the scoring and, each time step
again, take over their C neighbors. For our example with the shops in a latticelike
town, it would simply mean that opening every second shop and paying the closed
ones out would be a good strategy.

Other results are that higher "selection pressure" (higher r) enforces a higher
degree of cooperation, and that directionality does not, contrary to our intuition,
play a significant role.7 (The idea was that strategies exploiting the possibility to,
say, answer a C offer from the right differently than a C offer from the left, might
be more or less successful than others, which behave in a more normal way like
"cooperate, when more than two neighbors cooperate, else defect.")

20
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tlme/2
t 60 50 score

80

20
100 10 3

X

FIGURE 1 This gives one example of the evolution of a one-dimensional lattice game
(game A, see text) over 200 time steps. It is a game of 35 players, placed on a one-
dimensional "x" array with periodic boundary conditions (i.e., on a ring). The height of
the surface illustrates the development of the score of each individual player during
time. Different gray shadings stand for different strategies. For t -+ oo, only three
strategies will survive.
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FIGURE 2 Success and effectivity as functions of the number of C answers to
configurations where only one neighbor cooperates. Game A (see text), 40 x 40 lattice
after 2,560,000 time steps, averaged over about 300 runs each). Dashed line: r = 8
(low selection pressure, see text). Dotted line: r = 9 (higher selection pressure).
Left: Frequency of strategies. Lower selection pressure (dashed line) favors defecting
strategies, whereas higher selection pressure does not change much here. The
broader gray line gives the initial distribution. Right: Effectivity of strategies, defined
as normalized "income" per agent. We see that in order to have higher effectivity
it is, contrary to intuition, useful to have many C reactions to a mainly defecting
neighborhood (at least for lower i").

4. A STRICTER GAME: SAVINGS FOR BAD TIMES NO
LONGER ALLOWED (GAME B)
In order to relate our game to the experiments of Nowak and May,13 we did some
more simulations with a simplified version of the above game: This time, the scores
are not accumulated, but, after each round, an agent is taken over by the strategy
of the richest one between his four nearest neighbors and himself. In addition, as
a consequence of our findings concerning directionality and our desire to make the
strategy space more manageable, we reduced the possible strategies to choosing
separate responses to 4, 3, 2, 1, or 0 cooperating neighbors. Therefore, a string of
5 bits is now sufficient, and only 32 different strategies remain.

Simulations with this model turned out to settle down relatively fast to only one
or two surviving strategies (on a 40 x 40 lattice), depending strongly on the initial
conditions. We therefore added a gentle mutation to the game: In each time step,
an agent is randomly selected, then a bit is randomly selected and inverted. For this
reason, game B is no longer totally deterministic. This rule led to configurations
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with many different strategies living together, independent of the initial conditions.
Even under a change of the environment during a simulation run, the system is able
to react: New strategies are formed by mutation, and they can diffuse by takeover.
This corresponds to the ability of an agent in an economy or social setting to find
new answers to emerging problems.

Following Nowak and May,13 we tried games with varying payoffs for the de-
fecting agent (to be exact, we varied the score a D agent gets against a C agent,
which was 5 in game A). We, too, will call this the b-parameter, although there are
some differences because we wanted to stay with the set of parameters given above
(i.e., a payoff of 1 point for each of two defecting agents and a payoff of 3 for each
of two cooperative agents).

An overview over the long-term behavior is given in Figure 3. The figure shows
the frequency of C agents in the game after 2,560,000 time steps. We find three
clearly marked different regimes: One for b < 2.25, a second for 2.25 < b < 3, and
a third one for b > 3. Except for the last regime, the systems equilibrate rapidly.

.. .. .. .... .. ....

0.9

S0.8
0)

p0.7

0.6

0.5

1 1.5 2 2.5 3 3.5 4

b-Parameter

FIGURE 3 Frequency of cooperating agents in game B (see text) on a 40 x 40-lattice
after 2,560,000 time steps for different values of the b-value, which gives the number of
points a defecting agent scores against a cooperative agent. For b < 2.25, all agents
always cooperate; for 2.25 < b < 3.0, there is a small portion of defecting agents; for
b > 3.0, more than one half of the agents defect.
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FIGURE 4 A snapshot at game B (b = 3.001, lattice size 400 x 400: much larger than
for the statistical results; and after 12,800 iterations: much earlier than for the statistical
results). White pixels are defecting agents, black pixels are cooperative agents. Note
the large areas of the chessboard pattern (which look gray at this resolution) and
the areas, where C and D agents are arranged in diagonal rows. Both are versions
of the anti-coordination ("chessboard") solution (see text). "Tentacles" fill the space
between incompatible chessboard regions (see Figure 5). The configuration is relatively
stationary; during the previous 10,000 time steps, there were only minor changes of
the overall configuration. Note the visual resemblance to the results of Nowak and
May 13, i.e., a uniform background, and patches on this background which seem to be
connected by a network.
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FIGURE 5 Magnification of the center region of Figure 4. It is clearly seen that

chessboard patterns on different sides of the dividing tentacles are incompatible.

The results clearly show that large-scale cooperation in this game emerges only

for b <ý 3, where it is trivial. In fact, simulation results show that the difference

between b < 3 and b > 3 is even more marked: The long-term average behavior

is independent of the initial conditions, which mneans that, for b > 3, cooperation

breaks down even if imposed initially: Starting from a configuration where all agents

cooperate, and where all agents have the same "CCCCC" strategy (i.e., wvhatever

you find, cooperate in the next move), we find that this state does not last forever.

After a certain time, one finds an "outbreak of defection" (due to one or more

successful mutation steps).
In order to further understand the system, we looked in detail at the strat-

egy distributions. The overall result is that the three different regimes of Figure 3
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correspond to three markedly different distributions of strategies; a more detailed
description can be found in Feldman & Nagel. 7

The states for b > 3 (Figure 4) look rather complex. In this regime, even after
2,560,000 simulated time steps, the frequency of C agents still increases further with
simulation time. This, together with the fact that a configuration like in Figure 4 is
relatively stable in its overall structure, seems to indicate that we have encountered
a slow relaxation process in this regime, like in spin glasses.

Nevertheless, combining the information from pictures and from the strategy
distribution, 7 we find that the preferred mechanism in this regime is a chessboard-
like pattern of C and D agents. The mechanism behind this is the same as already
explained above for game A. So this mechanism proves to be very important for
this specific class of lattice games. It should be noted that the exact version of the
chessboard pattern strongly depends on boundary conditions, at least for the very
small lattices of 40 x 40 and the boundary conditions we used. 7 Our experiences
with larger systems (e.g., Figure 4) suggest that larger systems should be studied.

The central organizing structure in regimes of practical interest is the chess-
board. Our observations indicate that, when "profits" can accumulate, high selec-
tion pressure will favor more cooperative regimes (game A) and that, when profits
cannot accumulate (game B), there is an abrupt transition from mostly cooperation
to the chessboard at b = 3.

A typical agent inside a chessboard region gets (4 x b)/2 = 2b per time step.
A typical agent inside a cooperating regions gets 4 x 3 = 12 every time step. Thus,
strict cooperation is always the Pareto-supenor strategy when b < 6 (everyone is
as well or better off).

The discontinuity at b = 3 when accumulation is not allowed (game B) reflects
the situation in which chessboard defectors bordering a cooperative region gain
more than their cooperating neighbors. When b > 3: 4 x b > 4 x 3. The inherent
limitation on the ability of cooperative regions to survive has to do with agent's
ability to distinguish between "deviant" or noncooperative agents and agents of the
cooperative region responding to these challengers. For example, a single "defector"
in a cooperative region can be defeated if its neighbors defect against it. But then the
neighbors of these agents must not defect against them. This means to defect against
one defection, but not against two. On the other hand, when a cooperative region
borders on a chessboard region, the bordering agents must often defect against two
agents defecting in order to stop the chessboard.

5. SOME CONCLUDING REMARKS
Simultaneous play of the Prisoner's Dilemma with neighbors on a a lattice did

not lead to dominance of the cooperation strategy. Large-scale defection, however,

did not occur either. Instead of strict cooperation, we observed widespread local
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coordination. This is what one often observes from the operation of decentralized
economic piocesses.

The issue of bounded rationality on a lattice is more complex than in the two-
person repeated game. The need to respond at the same time to cooperators and
defectors changes the nature of the problem. We argue that this is a more realistic
model of many economic environments.

Because agents play each other simultaneously, our results seem to contradict
Axelrod's 2 proposition that "it is no harder for a strategy to be territorially stable
than it is to be collectively stable" (Axelrod, 2 p. 160). However, to our knowl-
edge the "non-territorial stability" of simultaneous play against several randomly
matched agents has not been analyzed.

An important aim of our experiments was to display some aspects of the evo-
lution which is inherent in economic behavior. Especially game B seems to be quite
successful in this regard because of its capability to react to changes in the envi-
ronment due to the embedded mutation mechanism.

Finally, we believe that our local interaction approach has yielded useful insights
that would be difficult to develop otherwise and is a direction of work worthy of
further development.
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Is There Room for Philosophy
in the Science(s) of Complexity?

INTRODUCTION
A striking feature-if not the most striking-of the 1992 Complex Systems Sum-
mer School was the presence of at least 1.5 philosophers among the students. This
was sufficient to reach a critical mass and generate many discussions on philosoph-
ical aspects of the science(s) of complex systems (hereafter, "SoC"). In this short
manifesto, we make a summary of some very naive (experimental) observations we
made during one month in the midst of senior, prospective, irresolute, or repentant
complex systems scientists.

"What the hell is a complex system?" is a question often asked both by people
who sincerely believe that a satisfactory answer can be had and by those who believe

not. 1,2,3 ,5,9 ,
13 Unfortunately, there seem to be as many possible answers as there

are researchers in the new field of complex systems. The nonobviousness of any
answer to this question begins to open a little space within which philosophy can

dwell. At the very least, philosophy can perform the useful function of conceptual
clarification.

To begin with, an emerging discipline ought to be able to point: it ought to be
able to say: "We are interested in studying these phenomena. because they seem

1992 Lectures in Complex Systems, Eds. L. Nadel & D. Stein, SFI Studies in

the Sciences of Complexity, Lect. Vol. V, Addison-Wesley, 1993 615
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to share some interesting properties." Otherwise, why should we need to gather
numerous heterogeneous disciplines within one unified-looking field? Actually, the
epistemological aspects of this new science can be dealt with, to some extent, using
mostly sociological concepts, seemingly close to Kuhn's7 ideas, but far in spirit, since
we don't apply them to the acceptance or rejection of a new paradigm (cf. Kuhn's
notion of "paradigm shifts"), but rather to the deep motivations that helped consti-
tute SoC. References to other major epistemological works can only be marginal in
this context, because one of the key questions we should ask relates to how new con-
cepts can emerge from the interactions between very different disciplines, and we
believe these interactions-though they rely on very scientific foundations-take
place at the level of social relationships. In this way, this new discipline reflects
the changes in post-Kuhnian philosophy and sociology of science, which has seen
a shift from viewing science as a primarily linguistic phenomena to seeing it as a
social construction.4 ,8 This latter approach is the relevant level of description of
these interactions, and thus the right level for looking for clues. Note that this ap-
proach makes SoC itself part of its own object of study. (If SoC were to take this
self-referentiality seriously, would that make it the first postmodern science?1 1 )

We will elaborate on this idea very briefly and will try to evaluate the future
impact that SoC may have on science and philosophy at large. But first, we should
attempt to say something about what, in the sense above, SoC points at, and what
those phenomena are said to have in common. We will do this by presenting a series
of points, which might be considered candidate criteria, whose relationship to one
another is not altogether clear.

COMPLEX SYSTEMS?
1. A NETWORK OF INTERACTING ENTITIES

The most commonly shared definition of a complex system states that it is a network
of (relatively simple and similar) interacting entities, agents, elements, or processes
that exhibit dynamic aggregate behavior. The action of an object affects subsequent
actions of other objects in the network, so that "the action of the whole is greater
than the simple sum of the actions of its parts." In other words, a system is complex
if it is not reducible, in some sense. In exactly what sense complex systems resist
reduction is another question for philosophy. This resistance to reduction is usually
couched in terms of "emergence"; complex systems are those that exhibit some
property, or properties, that emerges from the actions of its components. 6 The
presence of emergent properties indicates that the level of explanation containing
these properties is in some way autonomous; even a complete account of a lower
level of description (which mentions only tile actions of individual components) will
fail to fully explain the behavior of the system. For example, if the phenomena we
call "life" is an emergent property of the action of interacting chemical molecules,
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then biology is autonomous of chemistry, while at the same time being compatible
with chemistry. But at the same time, it should be made clear that complexity (as
studied by SoC) is reductionist in the sense that what scientists try to do is describe
highly complicated phenomena in terms of simple(r) mathematical equations.

2. MANY DEGREES OF FREEDOM

One way of cashing out this resistance to reduction is to notice that since the
beginning of time, science has been very busy dealing either with systems whose
behaviors are reducible to a few degrees of freedom and thus can be character-
ized by low-dimensional deterministic equations, or with systems that have many
degrees of freedom but whose behavior is reducible to a statistical description.
A complex system has many degrees of freedom that strongly interact with each
other, preventing either of the two classical reductions. In a nutshell, it exhibits
what W. Weaver called organized complexity (as opposed to organized simplicity
and disorganized complexity).14 In this sense, complexity resists the reduction of
phenomena to low-dimensional descriptions. In particular, many complex systems
are not amenable to "pairwise" reduction-the traditional methodology of physics
which seeks to explain the behavior of large aggregates of interacting entities by a
simple linear extrapolation from the behavior of just two such interacting entities.

3. COMPLEX SYSTEMS VS. COMPLEXITY IN GENERAL

Yet, the idea of chaos has taught us that complex behavior can arise from low-
dimensional systems. Even systems that can be explained by simple equations can
show "sensitivity to initial conditions," such that their behavior is complex. Perhaps
then, the connection between complex systems and complexity in general is not as
obvious as it might at first appear. Some apparently simple systems can generate
complex behavior, while some complex systems exhibit simple behavior.

What, then, is the scope of SoC? What elements of complexity will it eventually
seek to explain and what will fall outside its ken? These important questions will
need to become clearer if this new endeavor is to develop and grow.

HOW TO MAKE A SCIENCE
The question now is: why should the previous characterizations of complexity be-
come a common basis for the constitution of an interdisciplinary field? Actually,
the answer may be very simple: systems such as those described as complex are by
far the most numerous in nature. The breadth of phenomena we saw described at
the summer school is a testament to this realization-spin glasses, computational
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ecologies, protein folding, disease epidemiology, nervous systems, automobile traffic,
and on and on. Since science has not yet been able to investigate (quantitatively
or qualitatively) many of these systems in a satisfactory manner, it seems a good
idea to look for laws, tools, and methods originating from any field that has to deal
with such systems, with no a priori restrictions on the scope of research. Disciplines
adopting this type of approach can only benefit from others' experience. Why SoC
did not emerge earlier also seems to have a simple reason: complex systems, be they
low-dimensional and chaotic, or high-dimensional with nonlinearly coupled degrees
of freedom, could not be studied before the last decades because they require high
computational power-far beyond the human brain's unaided capabilities. Com-
puter studies gave birth not only to quantitative results but also to theories. The
best example is the scientific activity that has developed around dynamical sys-
tems, 10 to 15 years after the discovery (on a computer) of the notion of sensitivity
to initial conditions in low-dimensional systems. "

Another essential aspect of the creation of SoC is related to the people them-
selves (yes, human beings). Of course, it is a good thing to discover the quark
and/or to be a Nobel Prize winner to have a chance to influence tie course of
science-not only in one's own field. But, as far as money is concerned, even if you
are a renowned scientist, you still have to spend a lot of energy to influence people.
(Consider the impact on the recent history of artificial intelligence of John Hop-
field's publicity campaign for neural nets in the early 1980s and of Hubert Dreyfus'
numerous forays to M.I.T. on the behalf of Heideggerianism.) SoC, we believe, owes
its current success to the people who participate in its development. This is not as
trivial a statement as it may seem at first glance: the scientific community can
be seen as a web, which can be locally densely connected, but mostl- with a very
sparse connectivity (though this is less and less true, due to the recent explosive
growth of new media of communication-electronic mail, mailing lists, newsgroups,
satellite conferences, etc.). Thus, the construction of a cross-disciplinary field ne-
cessitates a highly developed social life (from cocktails to parties without a rest).
One must not hesitate to attend conferences that (apparently) have nothing to do
with one's own field. Some other classical prejudices also have to be fought: most
universities in the United States and the world have well-established departments,
with little communication across these "artificial" barriers. Transversal motion of
concepts implies removing, at least partially, these barriers: this can be done only
by strong social interactions. While it is natural that irreducible systems have to
be studied, it is not at all obvious that it should be done in a unified manner. With
respect to this particular aspect, the people from the Santa Fe Institute (SFI) have
contributed greatly to the unification of SoC. This Summer School is another exam-
pie of the social foundations of the new science-it is part of a huge "marketing"
effort-though we won't complain for being the victims. It must be emphasized
that the social aspect is a highly characteristic feature of the development of this
science.

Finally, it should be noted that SoC is not alone in embracing such trans-
disciplinarity. The interdisciplinary field of cognitive science was born out of the
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realization that academics in a variety of fields (artificial intelligence, cognitive
psychology, linguistics, philosophy, and the neurosciences) were dealing with many
of the same issues, and that a general "science of the mind" was possible and
potentially fruitful. The emerging paradigms of cognitive and computational neu-
roscience have grown out of the interactions between neuroscientists, psychologists,
and computer scientists. In this new age of diversity and inclusion, we are even
beginning to see attempts to bridge the gap between science and the arts: Avant
garde artists like Survival Research Laboratories and Stelarc are invited to an ar-
tificial life conference or a cognitive science summer school; and a philosopher, a
computer scientist, a sociologist of science, and a post-modern painter join forces to
understand the concept of representation.13 Of the fruitfulness of such intellectual
liberalness, only time will tell; but, if it be a delusion, SoC will not be counted alone
in suffering it.

THE IMPACT OF THE NEW SCIENCE
There are many examples in SoC of successful interactions between disciplines, rang-
ing from the application of statistical mechanics to the study of neural networks,
to the generic use of concepts originating from theoretical physics to the study of
evolution (e.g., spin glasses, Boolean nets), economics, biology (e.g., "self-organized
criticality," a concept originating from condensed matter physics, has been applied
to economics, biology, cloud formation, earthquakes, etc.). It is worth noticing that
SoC (so far) seems to be somewhat dominated by theoretical physicists (do they
have a more intense social life; i.e., do they like to dance more than other ordinary
people?). It is true that physics carried along with it a bunch of new theoretical
concepts. Besides new opportunities offered in analytical treatment thanks to the-
oretical physics and mathematics, there is also a lot being done with computers:
Artificial Life is a good example of a field with no strong theoretical or empirical
basis-other than the computer-which nevertheless gives great insights into the
dynamical principles of life.

Complex systems are certainly changing the way scientists look at science, but it
also modifies the way non-scientists look at reality. The notion of sensitivity to initial
conditions has become popular-maybe too popular; emergence is more and more
accepted as something that happens in everyday life, that helps in understanding
sociopolitical concepts. On the other hand, sociopolitical projects can also lead to
unified scientific programs, as is illustrated by the SFI's Sustainable World project.
And, even as we write this, complexity is poised on the brink of the same kind of

l)opularity that has recently been showered on chaos and nonlinearity. 9,1:3

Finally, SoC should ultimately have an impact back on philosophy itself. The
intellectual exchange between these two fields will not be entirely one way. We have
already mentioned three possible important impacts. First, if by serving as a "case
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study" this new field can shed light on the notions of emergence and reduction, then
this alone will be of enormous help to philosophy, which has been struggling more or
less successfully with these topics for centuries. SoC's promise is to finally provide
us with a principled story of a nonreductionist scientific explanation; principled in
the sense that such an account does not make recourse to occult, metaphysical,
or "magical" essences. Such an account would hold out the possibility of similar
accounts of sociology, psychology, ethology, neuroscience, etc., whereby these classes
of explanation won't necessarily reduce to physics in some Laplacian image of the
world.

Second, SoC adds fuel to current work within Science Studies (a mass term
referring to the joint study of science carried out by philosophy, sociology, and
history-yet another contemporary interdisciplinary endeavor) focusing on the so-
cial aspects of sciences. As an epistemological endeavor, our new discipline seems
to be more adequately described in terms of who is conducting the work, rather
than in terms of any commonly accepted set of documents and theories.

Finally, the issue with which we began this paper, the proper analysis of the con-
cept of complexity itself, has potentially far-reaching effects through an understand-
ing of the complementary concept of simplicity. Simplicity is typically considered
a desirable pragmatic virtue of scientific theory; in the sense that all things being
equal (predictive and explanatory power, coherence with other accepted theories,
etc.), the "simpler" of two candidate theories is considered to be the preferential
one. However, cashing out what this pragmatic principle means in practice is no
mean feat. How does one measure simplicity? Occam's razor, a celebrated version
of this principle, opts for simplicity in terms of a theory's posited ontology. An in-
teresting open question then is: How does the Occam's razor notions of simplicity
and complexity relate to the SoC notions?

CONCLUSION
In these modest "philosophical investigations," we have tried to clarify the notion of
complex system, not from the scientific but from the epistemological point of view,
so as to suggest a real underlying unity of SoC. Once again, this unity does not
necessarily lie in the very resemblance of all the disciplines that share the field, but
rather on phenomenological relationships that allow the application of methods and
tools used in a particular field to another one. This is the idea of transdisciplinary
concepts, which do not imply the transdisciplinarity of meanings: one must always
be cautious with phenomenological resemblances.

The prospects are not at all gloomy for this type of approach: on the contrary,
the notion of transversal flows of ideas between disciplines should be generalized,
given the successes encountered. We know that cross-fertilization is not new, but,
it never occurred on such a scale as observed in the study of complex systems.



Is There Room for Philosophy in the Science(s) of Complexity? 621

We argued that this is so because (1) complex systems, as characterized above,
are everywhere in nature, (2) computers have allowed for the quantitative and

qualitative-leading to unsuspected advances in theory-study of systems which
otherwise could not be approached, and (3) social factors have greatly influenced
the constitution of the field (was it unavoidable?).

These were only a few philosophical and sociological observations about the
creation of a new field. We have admittedly affected an upbeat and relatively un-
critical attitude here, in the spirit of charity to a field still in its infancy. Of the

eventual success of the science(s) of complexity, only time will tell. This being the
case, we reserve deeper comment on the consequences of this field for a future

commniunication.
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Animal Aggregation:
Experimental Simulation by Using
Vision-Based Behavioral Rules

This paper describes a computer program that simulates the behavior of a

population of generic animals whose movement is controlled by vision-based
behavioral rules. This program was used to evaluate a set of hypothetical
mechanisms of animal aggregation. A number of the examined rules pro-
duce simulated animal aggregates that behave naturalistically.

INTRODUCTION
Many animals aggregate into organized groups such as flocks, herds, and schools. 3 4 6

These aggregates move as cohesive units and persist over time. This persistence im-
plies that the individual animals comprising the aggregation each possess efficient
means of both monitoring the movements of other animals, and behaviorally re-
sponding to change in a manner that maintains the cohesion of the aggregate. This
paper describes a simulation program that allows a variety of theorized mechanisms
of animal aggregation to be tested.

1992 Lectures in Complex Systems, Eds. L. Nadel & D. Stein, SFI Studies in
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The simulation program models a simple artificial world, containing a popu-
lation of animals who move according to specified vision-based behavioral rules.
Each simulation of a behavioral rule is an experiment, testing the simulated behav-
ior against actual behavior, and subsequently suggesting elimination, modification,
or further testing of hypothetical behavioral rules.

This paper includes a description of the structure of the simulation environ-
ment, a description of simulated aggregate behavior, and a discussion of the direc-
tions this research will take in the future.

SIMULATION ENVIRONMENT
The simulation environment described in this paper was developed to experi-
ment with hypothesized vision-based mechanisms of animal aggregation and con-
sequently, it is designed to explicitly model animal vision. This design results in a
simulation quite different from other investigations of animal aggregation. 5

Reynold's ground-breaking simulation of animal aggregation was developed
from a biologically inspired animation perspective, rather than a theoretical etholog-
ical perspective. Consequently, Reynolds focused on generating realistic aggregate
behavior, rather than discovering which realistic theoretical aggregation mecha-
nisms can generate realistic aggregate behavior. This alternative approach is a more
concrete form of Braitenburg's' thought experiments.

The simulation environment contains a population of simulated animals. These
animals have been named Zooids following the precedent set by Reynold's Boids.
The following sections will describe the physics of the model world, zooid environ-
mental perception, and behavioral rules.

SIMULATED PHYSICS

Currently, the simulated world of the zooids is two-dimensional, and time passes
in discrete increments. The world is governed by Aristotelian physics, so that a
zooid must continually exert force to remain in motion. Zooids are circle shaped, a
form that simplifies the simulation of vision. At every tick of the simulation clock,
each zooid views its environment, and then uses a behavioral rule to act upon its
perceptions.

Zooid motion is constrained by physical limits to their abilities. Zooids cannot
exceed a maximum velocity, nor drop below a minimum velocity. Zooid acceleration
and deceleration each cannot exceed fixed values. The rate of change of zooid ori-
entation is similarly constrained. This assortment of limits corresponds to abilities
of the zooids under the physical laws of the artificial world that they inhabit. The
modeling of specific animal aggregations, such as actual herring schools or flocks of
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Canada geese, would likely require a more accurate model of the specific physics of
their respective situations.

PERCEPTION

A zooid perceives its environment visually. Each zooid has a 1800 field of vision and
cannot recognize any object occupying less than 1/20 of arc. The field of vision for
actual birds, fish, or herd animals is larger than 1800, but Dill et al.2 suggest that
the central 120' of an aggregating animal's field of vision is the most important for
maintaining flock cohesion and, therefore, any field of view larger than that should
be adequate for aggregation. A 1800 field of view was chosen for its simplicity.

If a zooid can see other zooids, then that zooid will fix upon the zooid that
occupies the greatest amount of its visual field. It will consider this zooid its "leader"
and will attempt to follow it (see Figure 1). If after a time another zooid occupies
a greater proportion of a zooid's field of view than its leader does, that zooid will
become the following zooid's new leader.

A zooid monitors two characteristics of its leader, the angle its leader occupies
within its visual field (a), and the leader's heading (03). These measurements are
shown in Figure 2.

3 Visible

Visible

Not Visible

FIGURE 1 A zooid perceives a 1800 zone. Therefore, Zooid 1 can see Zooid 2 and
Zooid 3, but it is unaware of Zooid 4. In this case, Zooid 1 would follow Zooid 2 rather
than Zooid 3, because Zooid 2 occupies more of Zooid l's visual field.
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V2

V1  j FIGURE 2 Zooid 2 is Zooid
1's leader. Zooid 1 monitors two
characteristics of Zooid 2, (b) its
bearing /3 and (a) the amount of

1 Zooid l's visual field it occupies, a.
Loom da / dt Loom equals the rate of change of

"c = 2 * / Loom a, and T- is an optical estimate of thetime to collision.

A zooid's mind stores one parameter, the previous a angle. This angle and the
current a angle are used to calculate visual measurements of a zooid's movement
relative to its leader. Two measures are calculated, Loom and r. Loom is propor-
tional to the rate of change of a, which corresponds to the rate at which the zooid's
leader is growing, or shrinking, in a zooid's visual field. In the simulation envi-
ronment, Loom is approximated by calculating the difference between the current
and previous a. -r is proportional to the a angle divided by Loom. r provides the
predicted time to collision between a zooid and its leader. 2

BEHAVIORAL RULES

The visual cues a, /3, Loom, and T are used by a zooid's behavioral rule to produce a
behavior. The visual cues used in the simulated environment call vary, but currently
they are fixed and only the behavioral rules have been varied.

The exploration of possible behavioral rules has not been conducted in an
arbitrary manner; rather, we have attempted to construct biologically realistic rules
that contain a hierarchical structure. Hierarchical structure simplifies the decision-
making process by only requiring the necessary information at any level in the
process. An example of a rule and its hierarchical structure is shown in Figure 3.
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see nothing

cruise collision

turn &way far away

approach too close

turn away satisfied

yes

change nothing move towards

FIGURE 3 An example of a behavioral rule. The behaviors specified by the decision

tree vary based upon the values of a, /, Loom, and r.

FIGURE 4 The changing form of a zooid aggregate over time (units are arbitrary).

I
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DISCUSSION
The behavioral rules examined in this paper produced aggregations. Thus, when a
number of zooids are initially placed at random in the environment, they quickly
aggregate into several groups, generally consisting of four to five individuals. These
groups have a polarized structure, because all the individuals in the groups face
and move in approximately the same direction. The individuals in these groups
generally, but not always, avoid collisions with one another. Over time these groups
will themselves aggregate, if they are confined within a bounded area. Examples of
aggregate structure and its change over time are shown in Figure 4.

A group is lead by a leader that cannot see any other zooids and, therefore, is
following nothing. The other zooids in the aggregation follow each other and the
leader. Over time leadership of the group will switch from one zooid to another.
The most common leadership change occurs when a zooid approaching from behind
overshoots the group's leader, so that its former leader begins to follow it. This type
of change can be seen in Figure 4. Another common leadership change occurs when
a group leader sees another group and begins to follow one of that group's members,
bringing the two groups together.

Current aggregation structure ranges between two extreme types: a staggered
line and a clump. Over time, as aggregations move and encounter one another, they
will often change their forms. Clumpy and linear aggregations are opposing ends
of a continuum: linear flocks can become more clumpy as Y structures form (see
Figure 5), and clumps may stretch out into lines as is partially seen in Figure 4.
The linear form is generally stable, ill that its members maintain fixed positions,
while the lump experiences a lot of jostling between its members. This jostling will

(a) (b) (c)

FIGURE 5 (a) An example of a "Y" formation. (b) An example of a "Z" formation. (c)
An example of a carousel structure.
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occasionally become intense enough to split an aggregate into two or more parts.
When two groups meet, they will either join, shatter into smaller groups, or, most

commonly, avoid one another and continue intact.

Many types of bird flocks from "V' formations; however, none of the current

simulation rules has generated a V aggregate structure. The rules generate Y and

Z formations (see Figure 5). One interesting phenomenon that does occur is the

formation of mills. In this situation a group of zooids form a circle, where each

zooid follows the zooid in front of it. Mill structures are stable and require an
external disturbance, such as a passing zooid, to be broken apart. Mills also form
in many types of natural aggregations including flocks, schools, and herds.

FUTURE DIRECTIONS
To improve the breadth and realism of the testing environment the simulation

environment will be modified in several ways. These changes include expanding

the environment from two dimensions to three dimensions, experimenting with

alternative animal body forms, developing a better understanding of the effects

of physics upon aggregation dynamics, and adding predators and obstacles to the

simulation environment.
One further modification to the program, which is currently about half com-

plete, is the construction of a statistics collection module that will allow the detailed

comparison of simulated and observed aggregates. Aggregate characteristics, such

as the frequency distribution of an aggregate's nearest neighbor distances and its

bearings of nearest neighbors, will be calculated.

CONCLUSIONS
Simulated animals following simple behavioral rules can form aggregates. To test

a more complete repertoire of aggregate behavior will require an expansion of the

present simulation environment. Experimental computing provides a method for

testing the emergent properties of behavioral theories, allowing the set of plausible

theories to be reduced in number and to be refined in detail.
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Learning of Passive Motor Control Strategies
with Genetic Algorithms

This study investigates learning passive motor control strategies. Passive
control is understood as control without active error correction; the move-
ment is stabilized by particular properties of the controlling dynamics. We
analyze the task of juggling a ball on a racket. An approximation to the
optimal solution of the task is derived by means of optimization theory.
To model the learning process, we code the problem for a genetic algo-
rithm in representations without sensory or with sensory information. For
all representations the genetic algorithm is able to find passive control
strategies, but the learning speed and the quality of the outcome are sig-
nificantly different. A comparison with data from human subjects shows
that humans seem to apply yet different movement strategies from the
ones proposed. Regarding feedback representation, some implications arise
for learning from demonstration.
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1. INTRODUCTION
Despite research advances regarding human motor coordination and motor learning,
little understanding has been gained so far as to how these skills are accomplished.
From the perspective of control theory, 5 two major control approaches are distin-
guished. Closed loop control requires continuous sensing of the current state of the
system: if the planned state differs from the actually achieved one, a modification
of the next actuator command compensates for this error. In open loop control, on
the other hand, the spatio-temporal sequence of actuator commands is determined
before the movement starts and then is executed according to plan. Since no feed-
back is provided, there is no possibility of error correction. While closed loop control
can be considered (re-)active control, open loop control is essentially passive.

The central nervous system (CNS) possesses two control circuits with resem-
bling properties. On the spinal level, a short feedback loop takes care of fast-
movement regulation. Although feedback is involved, this control receives no input
of cortical areas and, in a figurative sense, can be considered passive. In addition
to this low-level regulation, higher brain areas may influence the low-level circuitry
at any time via long feedback loops through the cortical motor centers.

Passive control is appealing because of its low computational load during move-
ment. One could imagine that for movement initiation a "control package" could
be delivered to the spinal level which could trigger an autonomous control circuit
to sustain the movement afterwards. The higher brain functions would be free for
other tasks and only check for correctness and stability of the movement at discrete
events. Some evidence for the biological plausibility of such control procedures has
been shown in the work about central pattern generators. 6

Here we investigate the cyclic movement of juggling a ball on a paddle to find
out whether some form of passive control can be learned. An approximation of the
optimal solution of the task in Section 2 provides an evaluation criterion for a series
of learning experiments with genetic algorithms, presented in Section 3. Section 4
discusses the results of the experiments and compares them to empirical data from
human subjects.

2. ANALYSIS OF PADDLE JUGGLING
Figure 1 displays the setup and notation of paddle juggling. The ball bounces on
the paddle due to gravity, and the movement of the paddle tries to sustain a regular
bouncing motion. A coefficient of restitution a E [0, 11 models the elastic ball-paddle
impact. The system can be discretized with a Poincar6 section E = {(XB, xp) E
R

4
1xB - xp = 01. From the notation of Figure l(b), the discrete system equations

are:
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time

X I /'\ / /

X,, Xipi Uk-

Ik tk+l

FIGURE 1 (a) Sketch of the paddle juggling setup; (b) notation for the discretization.

±k+1 = - \/((1 + O)wk - a-k)
2 

- 2
guk,

Xk+I =Xk +Uk, (1)

tk+, = - (l,,)wk . l,

where (4k) denotes ball velocity and (Xk) the ball position immediately before
the impact at paddle velocity (wk), and (Uk) the vertical position shift between
consecutive impacts.

Paddle juggling was investigated by several groups in recent years. For the
vibrating paddle (high oscillation frequency with small amplitude), it could be
shown analytically and experimentally that the system exhibits period bifurca-
tions, strange attractors, and chaos-like motion.7 Systems that had to control and
learn this task (at a moderate juggling frequency) were examined in robotics. 1 2 8 '9

Depending on the control algorithm, the execution of this task does not necessarily
need feedback: driving the paddle with a sinusoidal motion results in a dynamic
system that has a trapping region and that exhibits stable bouncing patterns under
certain parameter settings.

2.1 PADDLE JUGGLING AS AN OPTIMIZATION PROBLEM

Paddle juggling can be formulated as an optimization problem. For these calcula-
tions, assume that the setpoint, at which the ball shall be juggled, is a given impact
state x, = (±" ,x8 )T, whose setpoint controls u, = (w,,u,) result implicitly from
a periodic paddle trajectory (xp(t)). The setpoint is entirely determined by one
parameter of the juggling motion, which can be the period (r), the maximal ball
height (h), or the impact velocity (Js). In this regulator problem, the task of the
controller is to keep the system at the setpoint. If a perturbation displaces the ball



634 Stefan Schaal and Dagmar Stemad

from its setpoint, it has to be guided back. By modeling the paddle motion as an
rth-order Fourier series:

Xp(t) = -' + a. cos(rwt) + br sin(raWt), (2)
i2 1

a multistage optimization problem 3 is formed, subject to minimizing the cost func-
tion:

n--

J =O(xnp) + Y L(Xk), where
k=o

Ir

O(x., p) = (x. - x8 )T'4i(x - X.) + C Z(iw)6(a 2 + b2), (3)
i=1

L(xk) = (Xk - xS)TQ(xk _ Xs)T, W = 27-

T

(Xk) denotes the ball state vector at stage (k) and the matrices ((, Q, R) are weight
matrices. The last term of the equation for terminal cost (0) in Eq. (3) represents
a so-called jerk term and is weighted by the factor (c). Jerk denotes the third
derivative (ip) of paddle position with respect to time, imposing a biologically
motivated smoothness constraint on the paddle acceleration. 4 Without this term
in the cost function, any optimization would minimize deviations from the setpoint
with unrealistically sharp movements. In sum, the formalism of Eq. (3) tries to
guide the perturbed ball smoothly back to the setpoint in an n-stage sequence:
given the initial conditions of the perturbed ball Xk=0 = (o0, x 0 )T, the Fourier
coefficients p = (ao, al,.... , a,, b2 . , b, b)T are to be calculated such that Eq. (3)
is minimized. Note that (Uk) and (wk) are not present in Eq. (3), meaning that
the paddle trajectory is independent of the ball motion; stability can only come
from an appropriate choice of the Fourier coefficients. The system is thus passively
controlled.

The numerical solution of Eq. (3) was obtained with the gradient method of
dynamic programming. 3 The optimization was done for a ten-stage task, a fifth-
order Fourier series, and a coefficient of restitution a = 0.7. Initial conditions
yielded:

±0 E [-0.12±s, +0.12±s] (4)

xo such that tiit E [--0.127, +0.12T1, where tiinit = --- (4)

and the weight matrices (4D, Q) were chosen according to a common heuristic:

1o 1 01 00 "11a
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velocity xP [m/si - pure sinusoid

. 5th order Fourier series

position xp [m)

-0. -0.05 0 0.0 0.1

. FIGURE 2 State space plot of an opti-
mal paddle trajectory (period -r = 0.57
sec).

The values (imax, Xmax) correspond to the maximal ranges of the intervals in Eq. (4).
A relatively large weight of (1) makes sure that the ball comes back to the setpoint.
A moderate choice of (c) in Eq. (3), in order to make the penalty of jerk terms to
be roughly one forth of the total cost, resulted in a paddle motion that was close

to a sinusoid but still had some power in the higher harmonics. Figure 2 shows one
result in comparison with a sine function in state space. Linear stability analysis of
Eq. (1) modified by Eq. (2) holds that for stable juggling the ball must be hit in
the first quadrant of Figure 2.

3. LEARNING EXPERIMENTS WITH GENETIC ALGORITHMS

The following numerical experiments will explore genetic algorithms (GA) (cf. con-
tribution of M. Mitchell in this book) to simulate a reinforcement learning process.
Similar to optimization analysis, reinforcement learning requires a performance in-
dex to evaluate the quality of the outcome. To apply genetic algorithms to paddle
juggling, the task must be encoded as a gene string, and an appropriate fitness
function has to be found.

In a first approach to the problem, the periodic paddle movement is divided
into a set of 20 real-valued position values (Figure 3), represented by the first
20 genes in the gene string. The 21st gene codes the period (r) and the 22nd

gene codes a scaling factor that multiplies each of the 20 position genes. Given a
population of randomized initial genomes, the task of the GA is to find a sequence
of position values to perform a paddle movement by which the ball is juggled in a
stable fashion. The scaling factor allows the movement in the spatial dimension to
stretch; the period value is the corresponding temporal stretch factor.
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XP

FIGURE 3 Discretized representation of periodic paddle movement for genetic
algorithm.

The performance (or fitness) of a paddle trajectory is determined by:
10.0

J = + 5(a'hl/h) + 5(:1p/Tb) + 0.8(T/-fb) (6)

where (A)denotes the mean jerk per period; (ah, ap) the standard deviation of maxi-
mal height of the ball and the standard deviation of the bounce period, respectively;
and (h, Tb) the mean maximal height and mean bounce period of the ball, respec-
tively. The distinction between bounce period (7b) and period (7) is necessary
because the ball can bounce several times on the paddle during one paddle period
(T). The cost function J penalizes jerk, irregular juggling height, irregular bounc-
ing period, and, with the last term in the denominator, a large number of bounces
during one period (7). By taking the inverse of the cost function, the minimization
problem of Section 2 becomes a maximization task in accordance with the usual
GA formulation.

The statistical parameters of Eq. (6) were derived by submitting the paddle
trajectory of each genome to a paddle-juggling simulation. The discrete trajectory
values were treated as the desired position values XP(desired) of a PD controller. 5 By
differentiating this trajectory with respect to time, the desired velocities XP(desired)
for PD control at each discrete time event were derived. With this information
and the specifications of the paddle mass, the PD controller is able to generate a
smooth pursuit of the encoded trajectory if the trajectory is smooth enough. The
paddle movement had a limited workspace of ±0.5 m, the maximal acceleration of
the paddle was restricted to 60 m/s 2, the paddle mass was 0.5 kg, and the ball's
coefficient of restitution was a = 0.7. The position and velocity gains were set to
constant values of Kp = 200 and KV = 20. At the start of the simulation, the
ball was dropped from 0.4 m above the paddle. After a transient time of roughly 5
periods, the statistical values of Eq. (6) were derived from 20 subsequent periods.
All GA experiments had a population size of 100 genomes, mutation probability
Pmut = 0.01 per gene, crossover probability Pcross = 0.8 using double-crossover, and
a proportional offspring reproduction mechanism allowing at most five offspring for
the best genome.
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3.1 REPRESENTATION WITHOUT PERCEPTION

In the setup of the first experiment all genomes where randomized within a rea-
sonable range of the individual genes. After about 400 to 800 generations, the GA
solution converged to a steady value. Figure 4(a) shows the phase portrait of the
best result that the algorithm developed.

Each zhart in Figure 4 contains a segment of a paddle trajectory over three
successive periods after the transient time had elapsed. To enable an assessment
of the solutions, the mean period (yb) was used to calculate an approximately
optimal paddle trajectory for each GA outcome. To make the setpoint of optimal
solution and GA solution align as well as possible, different position coordinates
of the setpoints were adjusted for; a shift in position coordinate corresponds to a
redefinition of the reference coordinate system and does not change the results. The
ideal paddle trajectory in phase space should be a smooth cycle. If the trajectories
of successive periods in the graph traverse each other, the PD controller was not
able to follow the discrete trajectory plan; i.e., the encoded trajectory was not
smooth enough. This is rather pronounced in the solution of the absolute coding
(Figure 4(a)). Such a juggling pattern would be vulnerable to perturbations.

The first coding of the paddle trajectory was based on the assumption that a
movement plan is based on a discrete position representation of one period. An al-
ternative representation would be in relative coordinates and the movement could
be described as an "up-up-up-up-down-down-down-down-up-up-up-..." plan. To
find out whether such relative position representation is more suitable, we have

velocity xi [m/s] - Result GA velocity xP [ra/s[ Result GA

approx. optimal. ..- approx. optimal

position x [m, , , 0positon X [ml

-10.1 '.0.05 0 00 0.1

FIGURE 4 Outcome of learning without feedback: (a) best result of absolute coding
(J = 3.8); (b) best result of relative coding (J = 4.2).
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the second simulation encode the relative change of position from step to step. The
genes were still continuously valued, but the permissible range of their values was
decreased appropriately. The spatial and temporal scaling as described above re-
mained unchanged. An exemplary result is displayed in Figure 4(b). This trajectory
applied a "one-leave-out" strategy which can be inferred from the high negative ve-
locity of the trajectory in Figure 4(b) (which is partly clipped). Instead of hitting
the ball in every cycle, it hit the ball every other cycle. Although this might be
considered cheating, it is a valid solution to the given problem and is particularly
rewarded by the last term in the denominator of the cost function. Therefore, the
seemingly high fitness of J = 4.6 does not reflect the real quality of this trajectory
and has to be corrected to J = 3.7. On the whole, this representation achieved a
significantly faster speed of learning (200 to 300 generations) as well as a higher
maximum fitness.

3.2 REPRESENTATION WITH VISUAL PERCEPTION

The third experiment addressed the questions: to what extent does perception im-
prove the speed of learning and the quality of the outcome and, in particular, with
perception can the passively stable control strategy of the other experiments still
be found?

To address this question, the representation of the problem had to be changed
again. It was assumed that in visual perception the absolute position (XB) of the
ball, its velocity (:iB), and the ball's relative distance to the paddle (XR) can be
perceived. These terms are multiplied by appropriate coefficients and summed up
to specify the next desired paddle position and the next desired paddle velocity:

±~pk] = (cll±B, + c12XB, + C13XRJ) s,

XPk+l = (C21±B, + C22XB, + C23XR,)

velocity xp [m/s] Result GA

1approx. optimal

0.5
Setpoint

0- position x~ [m ]

-0, *- 0 0 0.05 0.1

-0.5

FIGURE 5 Best result of feedback GA (J =
4.6) (for the optimal trajectory J > 4.8).
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The task of the GA was to optimize the "ball-paddle coupling factors" (czj) and
the scaling factor (s). This type of coding only requires seven continuously valued
genes. In contrast to the previous representations, the ordering of the genes in the
genomes was no longer essential.

Figure 5 depicts the best result out of five trials; the other trials were qualita-
tively the same. In the crucial impact region (1st quadrant) the GA solution comes
very close to what was calculated as the optimal solution, and its entire fitness
evaluation J = 4.6 differs only marginally from the score of the optimal (J > 4.8).
The optimal trajectory would score better if its initial phase was perfectly adjusted
to minimize the transient time to reach the setpoint. Learning speed was signif-
icantly improved by using this representation. Within 10 to 30 generations very
good trajectories were accomplished.

4. DISCUSSION
The goal of this paper was to study learning of passive motor control strategies
by using genetic algorithms. Passive control strategies do not need continuous re-
planning of the movement to compensate for perturbations during the movement
task, but accomplish the task by relying on a self-organized stabilization due to
special properties of the control method or other parameters. 9 Three different rep-
resentations of the task "to juggle a ball on a paddle" were compared with respect to
their learning speed and their quality of solutions, in particular, whether a passive
control strategy could be found.

4.1 SIMULATION RESULTS

The results of all three setups were positive in that they converged onto a passive
control regime. However, learning speed and the quality of the outcome differed
substantially between the three conditions. Figure 6 illustrates this by showing the
mean population fitness of representative runs as a function of the number of gener-
ations. The relatively poor results of the absolute position coding are not surprising.
This kind of coding had a large permissible range of values for each gene and was
thus able to jump from one extreme position to another in every single time step.
The initial trajectory coded by the randomized genonies looks like a zigzag line.
Since GAs do not make use of local information as given by gradients, it takes many
iterations until the zigzag line is smoothed to a trajectory fit to perform juggling.
The likelihood that the algorithm converges to a local minimum is large. On the
other hand, relative position encoding does not tend to have the same jaggedness
as absolute coding, because the jump from time step to time step is confined to a

rather small range. The crossover operator in GAs also will do less harmi to a relative

I
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FIGURE 6 Comparison of learning speed of the three different representations.

position coding. Swapping an absolute position gene with another genome will
always be detrimental if this gene codes anything but the position actually needed.
In contrast, exchanging a relative position gene will not destroy too much as long as
the gene retains an appropriate "up" or "down" information. The relative position
genes also facilitate the formation of building blocks. The essence of successful
juggling is an "up-up-up" sequence in the impact area of the ball. Via crossover,
this generally valid building block can easily be tested in several places on the
paddle trajectory. On the other hand, a building block containing absolute position
information is unlikely to be useful in other genomes: it is difficult to smoothly
integrate it into the already existing genes. In sum, if a genome represents a smooth
function, relative coding seems to be advantageous.

The quality of the results and of the learning speed was unexpectedly good

for the representation with perception. Whereas learning speed must necessarily
improve due to the comparatively short genomes, the almost optimal outcome was

by no means self-evident. A particularly interesting property of the resultant paddle
trajectory is that it still possesses the major characteristics of a passive juggling
strategy; i.e., the impact takes place while the paddle position still increases and
the velocity decreases. This passive stability property even allows sustainment of
stable juggling when perception is cut off (this requires a change to an open-loop-
control algorithm). Apparently, movement learning can profit from active control. If
the learned control scheme also allowed passive control, the system could gradually
switch from active to passive control at an advanced level; mechanisms for that shall
not be considered here. This seems to be plausible from monitoring the attention
humans devote to a task in the learning and skilled stages.

4.2 COMPARISON WITH HUMAN JUGGLING

To investigate the biological plausibility of the simulation results, the trajectory of
the feedback GA was compared with data collected from an experiment in which a

human subject juggled a tennis ball on a tennis racket. The phase plot in Figure 7(a)
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shows an average phase plot over a 30-second run. Since the coefficient of restitution
was different from that used in the GA simulations, the phase plots in Figure 7(a)
can only serve for qualitative comparison.

As the most noticeable difference in human juggling, the balls impacts with the
racket shortly after the positive paddle velocity peak while the optimal result and
the GA feedback result have the setpoint farther along the declining part of the

trajectory. Thus, the human juggling data stays very close to the limit of passive
stability, and it cannot be resolved whether this juggling strategy is more on the
passive or active control side. So far, not enough data has been collected from
human subjects to allow any generalization. One reason why the simulations did
not produce a juggling strategy more similar to humans' strategies may be that the
dynamic and kinematic properties of the human arm where not taken into account.
Another reason may be that the chosen performance criterion was inadequate.

An intriguing advantage of human motor learning over machine learning is that
humans do not start out absolutely "uninitiated." First of all, past experience seems
to play a non-negligible role. Secondly, humans often seem to extract an idea of how
to approach the task by watching somebody else's performance, reading a "how-to"
book, etc. These sources can partially specify the initial strategy and avoid long
and fruitless experimentation. An important question, therefore, is what the learner
extracts from a demonstration. The successful performance of the feedback GA may
suggest that picking up something like coupling coefficients could be advantageous.
Such a notion of coupling between perception and action also could be a promis-
ing route to transfer knowledge between different tasks. To test this hypothesis.

1 velocity xP Im/sIvelocity xp (rns]I-
p - Setpoints -

0.5 Selpoints

position x [mi] position X. tml

-0.1 -0.05'. 0 0.05 0.1 -0.1 -0.05 0 0.05 0.1

U.5. Human subject -0.5 Human Subject
approx. optimal Result seeded
Result feedback GA

-1 feedback GA

FIGURE 7 Comparison of results with data from human subject.
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the coupling coefficients of Eq. (7) were regressed from the human data, and the
feedback GA was seeded with random variations of these coefficients. The result is
shown in Figure 6 and Figure 7(b). As can be seen, the GA solutions converged
faster, although, as discussed before, human juggling produced different results to
the simulations and although the properties of tennis ball and tennis racket were
different to the ones in the simulation. Now, the juggling setpoint lies closer to the
peak velocity which is more similar to the human data. However, note that the un-
perturbed regression data could not be used for the juggling simulation right away.
It resulted in a paddle movement that was too large and continuously increasing.

In summary, this study showed once again the importance of how a motor
task is represented in terms of its structure and variables. Different representations
change the learning speed and the quality of results dramatically. So far we have
little knowledge of how appropriate representations can be developed to obtain
more insight into what should be learned.
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How to Get
"A Biologist's Guide to Internet Resources"

To answer some of the most frequently asked questions heard among biolo-
gists who use the Internet, I have written an Internet "FAQ" document titled "A

Biologist's Guide to Internet Resources" that is updated and distributed over the
Internet on a monthly basis. The guide contains an overview and lists of free Inter-
net resources that are of specific interest to biologists, such as

"* scientific discussion groups and mailing lists:
"* research newsletters, directories, and bibliographic databases;
"* huge data and software archives;
"* tools for finding and retrieving information: and.
"* a bibliography of useful books and Internet documents.

The current version of this free 30-page guide can be obtained via the Internet.

a In Usenet, look in sci.bio or sc.answers.

1992 Lectures in Complex Systems, Eds. L. Nadel & D. Stein, SFI Studies in
the Sciences of Complexity, Lect. Vol. V, Addison-Wesley, 1993 645
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a Gopher to sunsite.unc.edu, and choose this sequence of menu items:
Sunsite Archives

ecology and evolution
Or, from any gopher offering other biology gophers by topic, look for the menu
item "Ecology and Evolution at UNC and Yale." There you will find "A Biol-
ogist's Guide to Internet Resources" stored two ways: as a single file for easy
retrieval and nicely broken up in a meanu for browsing.

* FTP to rtfm.mit.edu. Give the username "anonymous" and your e-mail address
as the password. Use the "cd" command to go to the

pub/ usenet /news. answers/ biology/

directory and use "get guide" to copy the file to your computer. The file is
actually stored as "guide.Z," which is a compressed binary file, but, if you
specify "guide," it will be uncompressed and translated to readable ASCII
before it is transferred to your computer. You can also use anonymous FTP to
sunsite.unc.edu, where this guide is stored as

pub/academic/biology/ecology+evolution/FAQ.

M Send e-mail to mail-server@rtfm.mit.edu with the message "send usenet/
news.answers/biology/guide." Because the guide is long, you will probably re-
ceive it in several parts: save each part separately, delete the e-mail headers,
and merge them.
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A Genetic Algorithm for Evolution from
an Ecological Perspective

In the population model presented, we explore an evolutionary dynamic

based on the operator characteristics of genetic algorithms. Essential mod-
ification of genetic algorithms are dynamic boundary conditions and the
inclusion of a constraint in the mixing of the gene pool. The pairing for

crossover is governed by a selection principle based on a complementarity
criterion derived from the theoretical tenet of perception-action mutuality
of ecological psychology. According to Swenson and Turvey this mutuality

principle is a consequence when evolution is viewed from a thermodynam-
ical perspective. The second law of thermodynamics becomes a physical
selection principle by which increasing complexity produces an increase in
the rate of dissipation. The present simulation tested the contribution of
selective recombination on the rate of energy dissipation as well as three

operationalized aspects of complexity. The results support the predicted
increase in the rate of energy dissipation, paralleled by an increase in the
average complexity of the population. The spatio-temporal evolution of this

system, i.e., its frequency distribution of changes in population size, dis-
plays the characteristic power-law relations of a nonlinear system poised in

a critical state.

1992 Lectures in Complex Systems, Eds. L. Nadel & D. Stein, SFI Studies in
the Sciences of Complexity, Lect. Vol. V, Addison-Wesley, 1993 647
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1. INTRODUCTION
In Darwin's account of evolution the central principle for a species' successful adap-
tation and development is natural selection, a purely a posteriori fitness evaluation

for randomly created individuals. Our search for an a priori account to the pro-

totypical question of how a complex dynamical system evolves toward functional
efficiency has led to the theory of complexity which has provided a new perspec-
tive, largely based on results from molecular biology. Recently Swenson and Turvey9

adopted a somewhat unorthodox stance, which could be seen as a reaction to neo-

Darwinistic approaches in proposing thermodynamic principles for selection. 9' 10

Their argument combines two assumptions. Firstly, in accordance with irreversible
thermodynamics, the basic unit is conceived as an open system, embedded in a
global system that obeys the second law of thermodynamics. Secondly, in alle-
giance to the central tenet of ecological psychology, animal and environment are
believed to form a cyclically related system, in which perceiving and acting mu-

tually condition each other.2 '3 ' 7' 10 The relation between perceiving and acting is
lawful, and behavior is goal-directed. In contrast to neo-Darwinist theories that
focus on the genetic code as the analytic level of choice, this conceptual framework

chooses interactive behavior as the focus of analysis.
Swenson and Turvey's argument comprises four major points: (1) Thermody-

namic principles, as foremost expressed by the second law, are the fundamental
laws that govern the evolution of matter in the universe. (2) Highly ordered states,
which at first sight seem to defy the development toward final maximum disorder,
are factually in concordance with classical thermodynamics, because complex states
increase the rate of energy dissipation and, hence, entropy production. (3) Mat-
ter increases the rate of energy dissipation, by the assembly of living matter into

higher-order states via an active, goal-directed behavior. (4) The key unit in this

self-organizing process is the dual relation between organism and environment via

Gibson's notion of information and the mutual conditioning of perception and ac-

tion. Information from the environment is determined by the organism's action
which, in turn, creates the information.

The following population model applies mainly the operators from genetic al-
gorithms, but introduces the notions of open systems and intentional behavior. We

start with a brief outline of some assumptions of ecological psychology, followed by

the specific goals and the required modifications of genetic algorithms. The numer-
ical experiment presented here tests the effects of a goal-directed behavior in the

evolution of a population.
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2. SOME TENETS FROM ECOLOGICAL PSYCHOLOGY
In line with irreversible thermodynamics,," 1 2 the ecological perspective on adaptive
behavior, in particular its focus on the perceptual control of movement coordina-

tion, emphasizes that biological systems are open and constantly absorb energy
from, and dissipate energy to, the environment. 5 The central tenet of ecological
psychology is that an animal together with its environment constitutes such a dy-
namical system and is defined over their mutual relation, but is not reducible to its
two components. 9 The principle of the mutuality of perceiving and acting empha-
sizes that an animal's perception of the environment provides control constraints for
the animal's actions; in turn, the animal's actions provide constraints on the percep-
tual information from the environment. This is referred to as the perception-action
cycle. In this theoretical framework, the concept of information is reformulated. In
contrast to Shannon's concept of information as a quantity, neutral with respect to
its subject matter, ecological information is specific as to its subject and is symmet-
rically defined over perceiver and environment. Observables are defined for the dual
pair of perceiver and environment. The detection of information in the environment
controls the behavior, which in turn enables the detection of relevant information.
Two points will be picked up in the model: (1) the inexorability of goal-directed
behavior which is lawfully specified by information and (2) this information as mu-
tuaily defined over animal and environment. As a result, organisms evolve toward
states of higher complexity, the rate of energy dissipation increases and entropy
pro.luction in the whole system is increased.

3. GOALS OF THE MODEL AND DEFINITION OF OPERATIONS
AND THEIR DYNAMICS
In the following simulation, some modifications of the original idea of genetic algo-
rithms are introduced, which, in fact, transform the original optimization strategy
into an artificial population that displays complex behavior. Foremost amongst
these changes is the construction of individual units as open systems, which are
characterized by an inflow and outflow of energy. In total, the modifications can
be viewed as an emphasis of the deterministic aspect of the model. The major
modifications are:

1. The modeling of bit strings as open systems with energy flow, where inflow and

outflow are determined independently.
2. The notion of random selection of bit strings-where, in each generation, every

bit string can cross with every other string-is replaced by a goal-directed

selection of the crossing partner.
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3. The predetermined and static fitness function is replaced by dynamic boundary

conditions for the population's development.
4. The interactions between these open systems and their dynamic environment

are governed by nonlinear functions.

In a numerical experiment we want to show that these modifications lead to a

behavior in which:

1. Evolution towards a higher degree of complexity is achieved.

2. The rate of energy dissipation on the global scale increases with the rising

complexity in the individual strings.
3. This state of higher complexity displays the properties of a critical state with

a power-law distribution in the fluctuations of the population size.
4. The fractal characteristics, as predicted by the hypothesis of self-organized crit-

icality, are more pronounced when perception-action is included.

To aid the intuitive understanding of the algorithmic operators and parameters,

illustrative language is frequently chosen to describe the structural ingredients of

the model.

POPULATION. The individuals of the population are strings of binary units. These

units can be either M (for meat units) or V (for vegetable units). The initial

population consists of a random selection of such strings of equal initial length.

Each string is attributed a fitness value that is uniformly set for all individuals in

the beginning and that will become a function of energy flow and its complexity.

ENERGY INFLOW. Energy inflow, or "food uptake" by the individuals, is determined

by their present configuration. The minimal requirement for a string to absorb

energy is a sequence of adjacent M's or V's. Beyond a minimal length of this

"eating block," food of the same type as tile block can be eaten. The amount of

energy inflow is a weak power function of the actual length of this eating block.

Simultaneously, the same quantity of food is subtracted from the respective energy

resource. M's are subtracted from the "meat basket" and the stock in the "vegetable

basket" is reduced when V's are eaten. To account for the typical dynamic of supply

and demand, as known from market economy, an additional nonlinearity governs

the increase of the string's fitness value: tile greater the supply, the easier the

increase in fitness; the lesser the supply, the lesser the addition of energy to the

fitness balance. Subsequently, tile fitness value of each bit string is updated. The

length of the strings is not affected by this energy uptake. In the case when one bit

string has more than one eating block, of the same or a different type, its fitness

can be increased through all of them. Food depletion, on the other hand, is a linear

function of the available supply.
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ENERGY SUPPLY. An initial energy supply is provided by the two "baskets" of V's
(vegetables) and M's (meat), which are refilled at each iteration. To obtain the
nonconstant replenishment, observed in real market situations, the replenishment
is scaled by a Gaussian distribution function: If the food supplies are high or low,
filling up is relatively low, while in the midrange the replenishment is optimal. This
nonlinearity amplifies the situation when food is scarce, yet prevents unbounded
growth when food is available in abundance.

ENERGY DISSIPATION. The energy inflow is counterbalanced by an energy outflow.
This dissipation of energy is determined by the "effort" required for the string to find
the best mating partner. Thus, energy dissipation is closely linked to reproduction
and the goal of improving its offspring's fitness. This is the point where the principle
of the perceiving-acting cycle comes into play.

ENERGY FLOW ON A MICRO- AND MACRO-SCALE. For the individual, food intake
and energy dissipation determine a flow through the system, which is monitored
by the fitness index. Each flow is governed by different nonlinearities, but there is
a balance between energy uptake and consumption. Likewise, on the macro-level
of the ecosystem, which comprises the total population and the food resources,
an energy flow is set up through the replenishment of food and the summative
dissipation of energy of all the individuals.

MATING AND PERCEPTION-ACTION CYCLE. As the fitness index is a function of the
ability to eat, which itself is determined by the length of the eating block, a viable
search principle must lead to an increase in the length of this homogeneous block.
To implement a degree of directedness in the selection of a mating partner, a com-
plementary measure is introduced that attempts to capture information as a dually
defined concept. The degree of complementarity is quantified by the Hamming dis-
tance, defined as the sum of the differences between the genes at corresponding
locations in the sequence (identical genes yield zero; nonidentical genes count as 1).
The larger the H, the higher the probability that the (double) crossover will replace
the units of less favored type. In other words, given its own particular sequence.
the most complementary string is selected for crossover. However, this search is
not conducted over the whole population, but only over a subset. The size of this
subset is calculated as a linear function of the string's length and its fitness. This
takes into account the fact that the longer and fitter the bit string, the larger the
subset must be to provide an adequate choice. It also pays tribute to the fact that,
as the degree of heterogeneity increases, more choice is necessary to find a matching
partner that provides potential improvement. This advantage of a large subset is
counterbalanced by the disadvantage that, as the subset becomes larger, the search
lengthens and more energy is dissipated. Additionally, the dissipation of energy is
proportional to the string's length. As a result, the subset together with (lissipation
is a nonlinear function of string length. Consequently, energy outflow is the price
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the organism has to pay for a higher probability of increased energy inflow in the
next generation.

MATING AND CROSSOVER. Unlike the Mendelian view, the pairing for the crossover
is not random, but rather is directed by the individual's intention to increase the
chance of survival. Since fitness is a function of the ability to eat, i.e., the length of
the eating block, the search must lead to an increase in the length,,of this homoge-
neous block. In a first step, a partner for crossover is selected according to maximal
Hamming distance. Then double crossover, instead of single crossover, is used to
provide an operation that optimizes the possible gain from the selected partner.
To strike a balance between chance and self-directed improvement, the two points
of crossover remain random. Each string can partake in crossover only once per
iteration.

MUTATION. Stochasticity is incorporated at two instances. Firstly, the biological
principle of mutation is instantiated as the flipping of a single bit. In the situation
when the population of individuals has settled on an equilibrium with a predomi-
nantly meat-eating or vegetable-eating population, random mutation becomes the
source for change when the respective food resources are depleted. It also acts as
a disturbing factor to goal-directed development. Secondly, mutation can change
the length of a genome. Longer genomes have a higher chance to assemble a siz-
able eating block, but also dissipate more energy in the pairing process. Hence, the
advantages of eating ability and dissipation are counterbalanced.

REPRODUCTION. Reproduction is not linked to crossover, but is independently
regulated by the fitness index. When the fitness index reaches a critical threshold,
duplication of the genome occurs. The two identical offspring then start with half
of the parent's fitness value.

EXTINCTION. Reproduction is counterbalanced by extinction. When the fitness

value decreases to zero, the string dies. As reproduction and extinction are defined
individually, this leads to overlapping generations.

4. A NUMERICAL EXPERIMENT
The pivotal point of the present endeavor is an evaluation of the role of a purposive
search principle in the restructuring of components, in particular its effect on the
system's entropy production and degree of complexity obtained by the system's
individuals. According to Swenson and Turvey's hypothesis, the perception-action
principle is a necessary constituent to obtain an increase in the rate of entropy
production and an increase in complexity. Extending these suppositions we also
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expect that the system's spatial and temporal variables satisfy the characteristic
features of a system at its critical state.' In particular we anticipate power-law
relations with an exponent between -1 and -2.

4.1 METHOD

The population experiment was run with two conditions. The first condition in-
cludes the perception-action principle, referred to as the "Perception-Action Run"
(P-A run). In the second condition the selection of mating partners purely follows
chance, and will be called the "Random-Search Run" (R-S run). All other param-
eters and relationships are kept the same. For each condition, 25 runs over 10,000
generations were performed.

4.2 OPERATIONALIZATION OF COMPLEXITY (C) AND ENTROPY
PRODUCTION (EP)

COMPLEXITY. To express complexity in a single quantity poses practical and theo-
retical problems. To set apart our approach, based on combinatorial and probability
considerations, from more philosophically grounded definitions, the measure will be
called heterogeneity. Possible candidates are absolute length, the proportion of M's
and V's in the sequence, and the number of alternations from M to V within one
string. The complicating factor is the theoretical requirement that complexity, viz.,
heterogeneity, should correspond to fitness and constitute a fairly improbable state.
For instance, when looking at the number of alternations alone, the maximal num-
ber does express maximal heterogeneity, but it is not the most improbable state.
The most probable state lies between an uninterrupted sequence of alternations and
absolute homogeneity, and the probability follows the binomial distribution. A sub-
sequent comparison with the binomial distribution therefore can give an estimate
of its probability. Absolute length also has to be considered, because energy dissi-
pation, as defined, is directly proportional to absolute length. Rather than forcing
these aspects into one quantity, we opted to leave these interrelations transparent
and use three separate measures to describe heterogeneity:

1. Absolute Length: L = number of bits in the string.
2. Relative number of alternations: Arel = A/Ai,,ax (with Amax = L - 1).

3. Relative content of M's or V's: M,.ej = MIL, or Vrel = VIL
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RATE OF ENTROPY PRODUCTION. Within the confines of the model it seems vi-
able to operationalize entropy production with the total energy dissipation of the
individuals. The rate of change in the entropy production AEP is calculated from
the average change in energy dissipation per generation AEdiss over the number of
individuals Npop:

AEP - __dis

Npop

SELF-ORGANIZED CRITICALITY. To test for the predictions of self-organized criti-
cality, we chose the summative measure of population size Npop and its change to
capture the dynamic of the different effects. For the operationalization, Npop was
registered every ten generations and the consecutive measures were subtracted. The
data points were binned and displayed in a histogram. The exponent of the power
function was obtained from the double-logarithmic plot, in which the slope of the
linear regression yields the exponent.

PARAMETERS. The experiment was conducted with the following parameters: ini-
tial population (100), initial string length (10), initial fitness index (6.0), initial food
supply (300/300), food replenishment (50 per iteration, multiplied by a Gaussian
as a function of the current food supply), minimal length for an eating block (5),
reproduction threshold (15), crossover rate (50%), mutation rate for bit flip (.005),
and mutation rate for length change (.00002).

5. RESULTS
Two exemplary time series in Figure 1 and 2 illustrate the behavior of the popula-
tion over 2,000 iterations.

HETEROGENEITY. Figure 3 shows the time evolution of absolute length L of the
strings. In a P-A run the length increases markedly after about 2,000 generations
and rises by 3 bits to approximately 13 bits. Further increases, however, happen
very slowly. In a R-S run, length L increases after 1,000 generations, but then clearly
stays below the value obtained in the P-A run. The second measure of heterogeneity
is the average number of alternations in the sequence Arei, as displayed in Figure 4.
It starts from the value 0.5, the highest probable number according to the binomial
distribution, and decreases throughout the evolution. In contrast to length L, it does
not show a significant difference to the runs with random search and, therefore, i"
not separately shown in the figure. This decrease in both conditions indicates the
trend toward more homogeneity.
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FIGURE 1 Example of temporal evolution of meat and vegetable eaters in the
population.
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FIGURE 2 Example of temporal dynamics of meat and vegetable supplies.

The relative proportion of meat and vegetable units, Mrcl and Vr,, - the third
measure for heterogeneity--fluctuates around the value 0.5 in both conditions and
shows no significant trend.

RATE OF ENTROPY PRODUCTION. In Figure 5 the rate of energy dissipation is
plotted for both conditions. The dissipation rate visibly rises with increasing gen-
erations and the difference between the two search l)rinciples is evident for these
exemplary runs. The average slopes (not shown in the graph) of the linear regres-
sion over 10,000 generations is 3.46 x 106 in the P-A run, whereas in the R-S run
it is 1.84 x 10-6. The confidence intervals only slightly overlap.
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FIGURE 3 String growth over time for P-A and R-S runs.
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FIGURE 4 Change of alternations Are, and proportion of meat units Mrel over time.

FITNESS. The fitness index is graphed over 10,000 generations for the two runs
in Figure 6. In both conditions the average fitness value starts front 4.5 points
and reaches approximately 5.0 points, which is almost constant. The value shows
fluctuations between its 15.0 ceiling (the parameter value where reproduction sets
in) and a lower value (after reproduction). It is noticeable that in the P-A run this
oscillating dynamic spans about 100 generations, whereas in the control condition
it only stretches over about only 50 iterations.
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FIGURE 5 Energy dissipation over time for the P-A and the R-S runs.
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FIGURE 6 Comparison of mean fitness over time between P-A and R-S run,
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FIGURE 7 Power-law fit for the size of population change over all P-A and R-S runs.

SELF-ORGANIZED CRITICALITY. For the determination of the power-law function,
the data of the 25 runs of one condition were pooled to provide an adequate number
of data points. The change in population size between at every tenth generation
was recorded and grouped into integer bins. Their normalized frequency is plotted

in Figure 7. The logarithmic plot is approximated by a linear regression. The slope
of -1.76 in the P-A run conforms to the hypothesized slope between 1 and 2 at
the critical state (r 2 = .93, p < .0001). For the R-S trials the plot is slightly more
convex, but the linear approximation is still significant (r 2 = .93). The range in
which the linear approximation is satisfactory is also larger for the P-A runs than
for R-S runs.

6. DISCUSSION
To date, genetic algorithms have followed the Mendelian view on genetic transmis-
sion and rested on random crossover; i.e., individuals contact one another by mass
action alone. The preseni model was inspired by an advance made by Swenson

and Turvey and includes .e element of information-constrained behavior, thereby
cutting short pure probabilistic considerations. Such informational constraints were
implemented for the "choice" of crossover by using a comnplementarity criterion de-

fined over two individuals. The simulation experiment compared the evolutionary

dynamic of a population where an active search principle was implemented against
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conventional random search. The results yield a clear evolutionary advantage for the
P-A runs. The major phenomenon is the increase in the rate of entropy production
as hypothesized by Swenson and Turvey. Further support and some explanation
for this effect comes from the simultaneous increase in heterogeneity of the indi-
viduals. Looking at the three operationalized measures, the results showed that,
while the relative proportion of alternations and the relative proportion of M or V

units show no difference, string length grows significantly more with the intentional
component than without. These findings together suggests that the P-A condition
favors a chunking into eating blocks, which then leads to a higher inflow of energy
and, consequently, to an increase in fitness. Fitter and "more complex" individu-
als have a better chance of adaptation, but this also entails a longer search and
more energy dissipation. Here the link between energy dissipation and complexity
is established. It is still noteworthy, however, that it is the rate measure which is

sensitive to the active search principle.
The constant fitness average in both conditions is no real surprise. According to

the reproduction rule, fitness rises to the threshold of 15 points and then lapses back
to half of this value. As the average is also influenced by weaker strings, the value

fluctuates around 5 points. More interesting is the oscillation pattern: In the P-A
condition the cycles stretch over approximately 50 generations, compared to 100
generations in R-S runs. This can be interpreted as a more vehement dynamic in the
experimental condition, in the sense that there is a stronger tendency and readiness
to change, or adapt. Hence, the dynamic in the fitness value can be interpreted as an
indicator for the "fluidity" of the state. 6 A quantitative analysis of the fluctuation

pattern is in progress.
The results of the heterogeneity measurement also point to another aspect of

this dynamical system: the stratification into a micro- and a macro-level and the
competition between the "goals" on tie micro- and the macro-scale. On the level
of the individual, the P-A target is greater homogeneity in composition, because
homogeneity ensures the ability to eat and increase fitness. The long-term disad-
vantage is that the species cannot change between meat- and vegetable-preference

as readily and become prone to extinction when supply of their respective food is
low. On the other hand, heterogeneity ensures greater adaptability and exploita-

tion of the available food resources, but keeps the energy inflow at a lower level.

This discrepancy between the local, short-term goals, and global, long-term advan-
tages is captured in the size of population, which expresses the balance between

extinction and reproduction. In order to evaluate the balance between short-term

advantage and long-term adaptability, the data were tested for their 1/f properties

predicted by the theory of self-organized criticality. When adaptability is the bal-

ance between the readiness to change and more conservative properties, or between

short-term profits and long-term precautions, the present l)Ol)ulation reflects this

as the trade-off between the increase in eating blocks and overreliance oni one food

resource. Both aspects are cap)tured in the size of the population. In both coiditions

the data of the change in population size could be significanitly approximated by
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a power-law relationships. When the complementarity criterion guided the reshuf-
fling of the "genes," the exponent was slightly more negative than in the control
condition; however, the regression fit provided no basis for a differentiation between
the two conditions, although qualitative inspection shows more curvilinearity in the
R-S runs. In the P-A trials, the linear fit stretches over a wider range. This latter
result allows our tentative conclusion that the active search favors the organization
to a critical state. More variables will be tested to differentiate this conclusion.
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Bifurcation of Kidney Hemodynamics in
Hypertension

The tubular hydraulic pressure in rat kidney oscillates at around 35 mHz
because of the ope' -tion of an intrarenal negative feedback systeni-tubulo-
glomerular feedback. In a strain of rats (spontaneously hypertensive rats)
that develops hypertension at the age of 10-12 weeks, the periodic oscil-
lations of tubular pressure are replaced with irregular, rand -u-appearing
fluctuations. Similar patterns of fluctuations were also found in normal rats
made hypertensive by clipping one of the renal arteries. Since two different
models of experimental hypertension have similar changes in the tubular
dynamics. It was speculated that the development of hypertension resets
the operating parameters of tubuloglomerular feedback, and drives the sys-
tern to operate in the chaotic domain. Correlation dimension and Lyapunov
exponent spectrun estimated from these randon1-appearing time1 series sug-

gest that the measured time series were derived from determinuistic(' haos.
Surrogate data analysis substantiates this con(clusion.

1992 Lectures in Complex Systems, Eds. L. Nadel & D. Stein, SFI Studies in
the Sciences of Complexity, Lect. Vol. V, Addison-Wesley, 1993 663
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INTRODUCTION
The primary function of mammalian kidney is to maintain the volume and com-
position of body fluids within narrow bounds through the formation and excretion
of urine. The process of urine formation begins with the filtration of blood plasma
through the glomerular capillaries in each nephron, the functional unit of kidney.
TL. . iving force for the filtration is the arterial blood pressure, which is known
to exhibit the 1/f properties in their power spectra.6 The fluctuations in the ar-
terial blood pressure could easily cause the rate of glomerular filtration to vary
over a range so large that regulation of excretion becomes impossible. The primary
responsibility for limiting the variation in the glomerular capillary pressure rests
with a negative feedback system that senses flow rate-dependent changes in the
composition of the tubular fluid and adjusts the diameter of the arteriole feeding
the nephron. The structures comprising the feedback system are shown in Fig-
ure 1. The incoming blood in each nephron is carried by the afferent arteriole to
the glomerular capillaries and then leaves by the efferent arteriole. The glomerulus
acts as a filter through which low-molecular-weight blood constituents drain into
the tubule. The tubule forms a loop and makes contact with the afferent arteriole.

efferent arteriole glomerulus \J-{J proximal tubule

distal tubule

macula dens.

afferent artelole

loop of Henle

FIGURE 1 Anatomical structure of a nephron.
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FIGURE 2 Temporal variations of tubular pressure in (a) a normal rat and (b) a
spontaneously hypertensive rat.

A specialized collection of tubular cells, the miactila densa, is found at tile returning
point of the tubuile to the afferent arteriole. Tlhese cells mionitor the concentration
of NaCI in the tulbular fluid, which depends on tubular flow rate. and signal to the
afferent arteriole to adjust trhe dliameter. This negative feedback loop is known as
tubuloglomnerular feedback (TFGF).
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BIFURCATION OF TGF DYNAMICS IN HYPERTENSION
Because of time delays for the signal propagation along the feedback loop, the hy-
drostatic pressure, flow, and NaC! concentration in the tubule, as well as the blood
flow in the afferent arteriole of the same nephron, are found to oscillate sponta-

neously at around 35 mHz in anesthetized rats.3, " The dependency of this oscil-
lation on TGF has been confirmed with pharmacological intervention and imathe-
matical simulation.4, 5 In a strain of rats (Spontaneously Hypertensive Rat or SHR)
that develops hypertension spontaneously at the age of 10-12 weeks, the peri-

odic oscillations of tubular pressure are replaced with irregular, random-appearing
fluctuations9 (Figure 2). The power spectra of tubular pressure time series from
SHR are broadband with most of the power localized between 10-200 mHz. instead
of unimodal as in normal rats. Similar patterns of tubular pressure fluctuations are
also found in rats with renovascular hypertension,9 in which the high blood pressure
is induced by partial obstruction of one renal artery in normal rats for two weeks
or longer. These observations suggest that the changes of tubular dynamics from
periodic oscillations to irregular random-appearing fluctuations are not specific to
SHR, but are common among different models of experimental hypertension.

CHARACTERIZATION OF MEASURED TIME SERIES IN PHASE
SPACE
It is well known that in a dissipative physical system, nonlinearities might give rise
to deterministic chaotic behaviors. Since TGF is a feedback system with several
well-characterized nonlinearities, 4 it is possible that hypertension changes some of
the operating parameters in the TGF and thus drives the system to operate in
chaotic domain. In this study, two nonlinear measures were emp)loyed to quantify
the attractor . phase space reconstructed from tubular pressure time series to
determine whether they are due to stochastic processes or deterministic ('chaos. The
tubular pressure time series were recorded from the kidney strface of anesthetized

rats with a micropipette attached to a servo-nulling hydraulic p)ressure system.
The sampling rate was 12.5 Hz. The recorded tubular pressure time series were
filtered by a symmetric digital low-pass filter with a cutoff at 0.1 Hz to remove the

oscillations due to the respirator.') Ten titne series of 15 20 milutes from SHR were
used for the analysis.
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FIGURE 3 Estimated correlation dimension as a function of embedding dimension.
Error bar is S.E. (n = 10).

CORRELATION DIMENSION OF THE ATTRACTOR
The attractor for the measured time series was reconstructed in phase space us-
ing the lagging method introduced by Takens.' The algorithm of Grassberger and
Procaccia 2 was employed to estimate the cucrelation dimension from the recon-
structed phase-space vectors. The phase-space construction was performed with a
time lag of nine time steps, and only retaining those vectors whose first coordi-
nates were five time steps apart. Well-defined scaling regions were found routinely
in all measured time series. The estimated correlation dimensions are at the range
of 2.3-2.4, which are stable in the embedding dimension from 8-20 (Figure 3).
The calculated correlation dimensions are noninteger values, which indicates the
presence of fractal scaling in the attractor, and, hence, the attractor is a strange
attractor.

Correlated noise, which is induced by filtering on random noise, is also known
to have scaling phenomenon when correlation dimension is estimated. Scaling due
to nonlinear structure or correlated noise could be discriminated by surrogate data
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analysis as suggested by Theiler et al.' A surrogate data set with the same or
spectrum and autocorrelation function as the original experimental data set is gen-

erated by taking the Fourier transform of the original data set. The set of calculated

phase values is then randomized, and the inverse transformed is taken. No scaling
region was detected from the surrogate data set of the original time series in em-
bedding dimension 8-20. However, a scaling region is predicted to be conserved in
surrogate data set if the original time series is correlated noise.

LYAPUNOV EXPONENT SPECTRUM
Lyapunov exponent is a standard measure of divergetce or convergence in phase
space. Chaotic systems have at least one positive Lyapunov exponent in their Lya-
punov spectrum. The algorithm derived by Ecknmann and Ruelle' was used to esti-
mate the Lyapunov exponent spectra for the ten measured time series. One difficulty
in applying this algorithm to experimental time series was to build up the local map
for a specific point in the trajectory of the attractor. Tile solution is to take the
advantage of singular value decomposition to extract the local orthogonal basis at
tile specified point for the trajectory of tile attractor, and then project the vectors
from the specified point to its neighborhoods to this orthogonal basis. " An em-
bedding dimension of 3 and a time lag of 9 time steps were used to estimate the
Lyapunov exponent spectrum from the measured time series. The results are shown
in Table 1. In all ten measured time series, tile first exponent is absolutely positive,
the second is very close to zero, and the third is negative. The average for tile first
Lyaplunov exponent is 0.204 ± .015 (n = 10, p < .001), which is significantly greater
than zero. These are consistent with the notion that tie measured time series were
derived from deterministic chaos.

CONCLUSION
Periodic oscillations are found in the tubular pressure in normal rats because of
the operation of tubuloglomerular feedback. These regular oscillations are replaced
by irregular, random-appearing fluctuations in rats with hypertension. Scaling re-
gions were found and well conserved in different embedding dimensions during the
estimation of the correlation dimensions from the tubular pressure time series. The
possibility that the scaling p)henomenon is due to correlated noise induced by fil-
tering was excluded by the surrogate data analysis. Positive Lyapunov exponents
were found in all Lyapunov spectra estimated from the measure time series. All
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TABLE 1 Lyapunov Exponent Spectra of the Measured Time Series

Record No. 1st Exponent 2nd Exponent 3rd Exponent

1 0.259 0.06574 -1.08
2 0.191 0.02264 -1.11
3 0.262 0.05094 -1.23
4 0.205 0.00344 -1.18
5 0.235 0.00164 -1.13
6 0.236 0.00494 -1.22
7 0.181 -0.00164 --1.22
8 0.164 0.01574 -1.26
9 0.182 0.01394 -1.20

10 0.125 0.00424 -1.21

these analyses suggest that the development of hypertension causes a bifurcation of
tubular dynamics in the rat kidney from limit cycle oscillation to chaos. This is an
integrated physiological system that shows bifurcation in dynamics associated with
pathological conditions, while most of the claims for biological chaos are in isolated
systems or the results of pharmacological interventions. The exact parameters that
are altered by hypertension in TGF, and the effects of bifurcated tubular dynamics
on the whole kidney autoregulation dynamics, are not known and are still under

investigation.
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Measuring the Complexity of Attractors
from Single and Multichannel EEG Signals

We estimate the generalized fractal dimensions and the Lyapunov exponent
spectrum of EEG attractors reconstructed from single and multichannel
time series recorded from normal and epileptic subjects.

1. INTRODUCTION
In 1985, Rapp and Babloyantz's groups showed that neuronal activity in the
monkey14 and the human EEG during sleep2 are produced by deterministic chaos
rather than stochastic processes. Similar results were found for recordings from cat
and rabbit brain.7 In recent years, experimental and clinical EEG recordings have
been studied to quantify brain functions, 5

In this paper, we quantify the EEG attractors reconstructed from both single
and multichannel time series by estimating the generalized dimensions and Lya-
punov exponent spectrum. The EEG time series analyzed here are from a normal
and an epileptic subject.

1992 Lectures in Complex Systems, Eds. L. Nadel & D. Stein, SFI Studies in
the Sciences of Complexity, Lect. Vol. V, Addison-Wesley, 1993 671
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2. RECONSTRUCTION OF ATTRACTOR FROM TIME SERIES
The measured signal from a physical system is a time series, e.g., x(t), x(t +
r),. .. ,x(t + (n - 1),r), where -r is the sampling time interval. The reconstructed
state vectors in embedding space by the time delay method are 13' 15:

X(t) = [x(t),x(t + 7-),. .. ,X(t + (m - 1)7]T, (2.1)

where m is the embedding dimension. m and 7- need to be chosen.'
An alternative method is the multichannel method proposed by Eckmann and

Ruelle. 6 For m channels the time series becomes xi(t), xi(t+r).... + xi(t + ?T), i =

1,2, ... , m, which are recorded concurrently at m different sites. The multichannel
method consists in taking each channel as one component of the vector of x(t), that
is

x(t) = [x 1 (t),x 2 (t) .... , XM(t)] • (2.2)

The distance between recording sites influences the reconstruction. 4

3. GENERALIZED DIMENSIONS
For an rn-dimensional attractor in a phase space divided into a lattice of hypercubes
with size lm, each of the hypercubes is indexed by xi, i = 1, 2,... , N. The generalized
dimensions Dq are defined as1 °' 9 :

Dq = lim lim In Cq (1), (3.1)
I-ON--oo\ln/

where cq is the generalized correlation integral, and

Cq N N H(l - 1x, - xý 1) (3.2)

2=1 j=l

E(x) is the Heaviside function. With different order q, the Dq has different physical
meanings: Do is the Hausdorff dimension, D1 is the information dimension, and D 2
is the correlation dimension. q can also be negative. For an uniform attractor, the
Dq are equal for all q. For a nonuniform attractor, the Dq are ordered with Dq < Dq
if q' > q. The difference between Dq measures the nonuniformity of an attractor.
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We cannot calculate the D, directly from the above equations. After applying
Rolle's theorem, we have

Dr= n lim lim 1 - n [(-E) H(I- xi-x~I)] (3.3)1-O N--oo N i=1 j=l I

In terms of an experimental time series, x(1),x(2),...,x(N), from the time
delay method, a point on the reconstructed attractor is defined by Eqs. (2.1) or
(2.2). In numerical computation, we use the box-counting method.'° By using an
efficient algorithm, both the computation time and data space required can be
reduced. 

1 I 1 2

4. THE LYAPUNOV EXPONENT SPECTRUM
The divergence of two nearby trajectories on the attractor for a chaotic system is
quantified by the Lyapunov exponent spectrum. 3,6 ,16 For a dynamical system with
an n-dimensional phase space, an infinitesimal n-sphere on the attractor will evolve
into an n-ellipsoid. The average growth rate of the norm of the ith principal axis
ai(t) of this n-ellipsoid gives the ith Lyapunov exponent

=lim 1 Iog2 la(t)l • bits/s. (4.1)t 0 t ( la ( )l

In numerical experiments, it is hard to trace the evolution of an infinitesinial 11-
sphere on the attractor. We avoid this problem by working on the tangent space of
the trajectory on the attractor.

In the tangent space, an initial difference vector 6x(O) for a given point x(O)
on the trajectory can be mapped into 6x(t) at the point x(t) after a time interval
t by the tangent map Tt:

5x(t) = T t (x(0))6x(0). (4.2)

If we divide the time t into k intervals, that is, t = kAt, then according to the chain
rule,

T'(x(O)) = 7,kA1(x(0)) = TI'A(x(k - 1))TNt(x(k - 2))... Tat(x(0)). (4.3)

If e, is the ith base vector of the tangent space, then

A, limn (1) log 2 JJ'V(x(f))eh1 (4.4)
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and Ai is called the ith Lyapunov exponent of the system.
For a given time series, x(1),x(2),...,x(n), where x(i) = x(iT) (T is the time

interval), we start with the reconstruction of an attractor in an n-dimensional em-
bedding space. Mathematically we can think that the evolution of the state on the
attractor is produced by the tangent map matrix TA(x(i)) mapping the state x(i)
to x(i + 1). To calculate the Lyapunov exponent spectrum is to find the local tan-
gent map matrix TVt(x(i)). The method to find the local tangent map TAL(x(i))
is discussed in Eckmann et al.6 and Zhang and Holden."7

5. CASE STUDIES

We have estimated the generalized fractal dimensions and the Lyapunov exponent
spectrum of EEG attractors reconstructed from single and multichannel time series.
The EEG signals were recorded from a normal man and an epileptic woman, both
in the resting state.

The multichannel EEG time series are formed by grouping these 19 channel

recordings. To study the local and global behavior of the brain, we use multichannel
time series from both local area and the whole area. The electrode sites and groups
are given in Holden et al.12

The correlation dimension corresponds to q = 2 in Eq. (3.1). We calculate

the correlation dimension for 19 channel epileptic EEG time series using 50 s of
data sampled at 200 Hz. The results are compared with the estimated correlation
dimension for 19 channels of normal EEG recordings. We also give the first five
Lyapunov exponents for the EEG attractors in epileptic case. In all calculations.
we assume embedding dimension 7n = 10. The results are shown in Table 1.

In Table 1, we can see that in both cases the correlation dimension takes non-
integer values. The Lyapunov exponent spectrum for the epileptic case has two
positive definite Lyapunov exponents. The estimated correlation dimension in the
epileptic case is significantly lower than in normal case, which means the correlation
dimension could be used as a diagnostic index. For single time series the estimated
correlation dimension varies (standard deviation = 0.11 for epileptic subject. stan-
dard deviation = 0.08 for normal subject) from each other. When we use multi-
channel time series, the variability of the correlation dimension is smaller (standard

deviation = 0.02 for epileptic subject, standard deviation = 0.02 for nlormal sub-
ject). See Table 2.
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TABLE 1 The correlation dimension D 2 for 19 channels of EEG in both normal
and epileptic state. The first five Lyapunov exponents for A, - A5 19 channels of
EEG in epileptic state.

epileptic case normal case

channel D 2  A 1  A2  A3  A4  A5  D2
1 3.32 18.6 7.5 0.2 -21.4 -62.7 3.99
2 3.21 19.4 10.1 0.5 -26.4 -59.9 3.90
3 3.05 17.8 6.5 0.2 -25.4 -63.4 4.32
4 2.95 14.8 5.6 -0.1 -28.9 -63.1 5.16
5 3.15 17.5 7.6 -0.8 -24.7 -62.1 4.67
6 3.18 17.2 4.8 0.1 -22.4 -60.1 4.74
7 3.61 14.8 5.1 -0.5 -25.1 -55.6 4.32
8 3.26 15.1 4.6 -0.2 -28.4 -60.5 4.53
9 3.25 15.5 5.4 -0.8 -25.7 -57.7 4.63

10 3.17 15.0 5.1 0.3 -31.4 -62.9 4.82
11 3.25 17.8 8.2 0.5 -25.6 -59.7 4.68
12 3.54 19.6 9.2 0.3 -22.4 -62.8 4.51
13 3.73 14.9 5.1 -0.6 -20.9 -58.7 4.18
14 3.71 17.6 5.5 -1.2 -22.7 -57.9 4.58
15 3.62 20.1 8.7 -0.8 -30.5 -68.4 4.27
16 3.78 21.7 8.1 0.6 -24.9 -65.2 4.77
17 3.71 20.3 6.1 -2.1 -27.6 -67.8 3.90
18 3.84 21.1 10.1 0.7 -22.4 -57.6 4.49
19 3.72 14.9 5.3 -0.8 -20.1 -63.4 4.44

Since the brain is a complicated system composed of a number of local func-
tional subsystems, the EEG signals have many coexisting subattractors and the
EEG attractor is nonuniform.' The nonuniformity of an attractor is measured by
the difference between the generalized dimensions Dq. We calculate the Dq with q
changing from -2 to 2 for EEG attractors reconstructed from a single time series
and multichannel time series in epileptic case. The results are shown in Table 3.

The nonuniformity of EEG attractors is illustrated by the difference in Dq. III
the single channel case, the difference between Dq is more significant than the dif-

ference of Dq in multichannel case. The attractor reconstructed from multichannel

time series is more uniform than the one reconstructed from a single time series.

L .. .. .. . . .. .. ... .. .. . ... .. ... .. . ... .... . . . . . . ... . . . . .
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TABLE 2 The correlation dimension for EEG
attractors from multichannel time series in
epileptic and normal states.

epileptic case normal case

group D2 D2
1 3.42 4.19
2 3.53 4.27
3 3.40 4.14
4 3.34 4.18
5 3.31 4.11
6 3.46 4.30
7 3.36 4.20

TABLE 3 The generalized dimen-

sions for multisite recording.

multisite single site

D- 2  3.8 4.6
D-1 3.6 4.5
Do 3.5 3.4
D, 3.4 3.4
D2 3 3 3.2

7. CONCLUSIONS
Ideas from nonlinear dynamics have permeated experimental and clinical neuro-
physiology. Before we apply nonlinear dynamics to study a biological system, we
need to note that most biological systems are spatially extended systems with open
boundaries through which a biological system exchanges information with its envi-
ronment. Further, biological systems are nonstationary systems. When we use the
methods derived from nonlinear dynamics to quantify the attractor reconstructed
from experimental time series, we usually assume that the system is closed and

stationary.
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Strange attractors can be reconstructed and quantified; however, the signifi-
cance (biological or clinical ) of these measures requires extensive empirical evalu-
ation.
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