Stability of Dynamical Systems in the Presence of Noise

Mark A. Pinsky and Elton Pei Hsu

Pinsky's research is concerned with the exponential growth rate (= Lyapunov exponent) of solutions of stochastic differential equations. In a paper to appear in the Annals of Applied Probability, a formula is obtained for the quadratic Lyapunov exponent of the simple harmonic oscillator in the presence of a finite-state Markov noise process. In case the noise process is reversible, the quadratic Lyapunov exponent is strictly less than for the corresponding white noise process obtained from the central limit theorem. An example is presented of a non-reversible Markov noise process for which this inequality is reversed. In another article, to appear in the volume "Stochastic Partial Differential Equations and their Applications" in the Springer Verlag Lecture Notes in Control and Information Sciences (Proceedings of the 1991 Charlotte NC Conference on SPDE, ed. B. Rozovskii), the Lyapunov exponent is computed for the solution of a hyperbolic partial differential equation with damping. In this case, one studies the exponential growth rate of the energy of the solution with Dirichlet boundary conditions. The detailed results depend on the size of the damping constant (overdamped vs. underdamped case). To our knowledge, this is the first study ever of the Lyapunov exponent for a partial differential equation. (cont'd on next page)
In a different direction, Pinsky has been studying the pointwise convergence of certain Fourier expansions of piecewise smooth functions in multi-dimensional Euclidean space. It has been discovered that there appears a new kind of Gibbs phenomenon—due to certain discontinuities of the functions on the boundary of the domain, and which affect the convergence at an interior point of the domain. This kind of non-localization is totally unknown in the case of one-dimensional Fourier analysis, but appears for the first time in three dimensions (and all higher dimensions). A paper detailing these results in the case of Fourier transforms has been accepted for publication in the Journal of Theoretical Probability.

Hsu's research involves asymptotic properties of Brownian motion in various settings. In the case of a two-dimensional manifold with Gaussian curvature satisfying a weak negative upper bound and no lower bound, he has shown (in joint work with W. Kendall) that the angular component has a limit for large time and that the limiting random variable has a distribution whose support is dense on the unit circle at infinity. In the case of reflecting Brownian motion on a Euclidean domain, a monotonicity property of the heat kernel with respect to the domain is established by probabilistic methods. In further work in progress, it is shown under what conditions the Brownian motion is a semimartingale.

LIST OF PUBLICATIONS:

2. (Elton P. Hsu) On the principle of not feeling the boundary for diffusion processes (preprint, 12/30/92).