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The Modified Cram6r-von Mises Goodness-of-Fit Criterion
for Time Series

T. W. Anderson and M. A. Stephens

1. Introduction

P. C. Mahalanobis may be best known among mathematical statisticians for the

"Mahalanobis distance," which in one form is* (p10 - 1 2)'E'1 (p 1 - P2), where 1 1 and

p2 are the vectors of means in two populations or distributions and X is a covariance

matrix common to the two. It is considered a measure of the difference between the

two distributions. When Z is known and p1 and p2 are unknown and estimated

by sample means tj and f2, respectively, (t, - t2), also known as a

Mahalanobis distance, is an estimator of the first form. If tj and t2 are normally

distributed and hence tj - 22 is normally distributed, the Mahalanobis distance is a

quadratic form in normal variables. When ti and -2 have covariance matrices E and

Al = -p 2, the Mahalanobis distance is proportional to a X2 variable with number of

degrees of freedom equal to the number of components of A, 1 02, *j, and t2. Another

Mahalanobis distance is (. - p2)' 1-'(t - p2), which is appropriate if an unknown

p1l is estimated by a sample mean tj.

In this paper we consider somewhat analogous quadratic forms in normal variables

when the dimensionality is infinite. Then the quadratic forms are distributed as

infinite weighted sums of X2-variables. These come about as goodness-of-fit criteria

for a hypothesis that a cumulative distribution function is a specified one or that two

cdf's are the same. Such criteria also arise for goodness-of-fit tests for standardized

spectral distributions.

As examples, we give tables of the distribution of the criterion for testing the

hypothesis that a stationary stochastic process is a given moving average process of

*The quadratic form should be called "Mahalanobis distance squared", but the third word is
usually omitted.



order 1 and for testing the hypothesis that it is a specified autoregressive process of

order 1. Two methods are described for calculating the distribution. Either method

is appropriate for calculating the distribution of the criterion for testing the hypoth-

esis that a process is a stationary process whose standardized spectral density or

distribution is a specified one.

Test for a given probability distribution. Let zx, .- , x, be n observations from

a distribution with cdf F(z) and let the empirical distribution of the sample be

F.(x) = k/n if k of the xi's are not greater than x. To test the null hypothesis

F(x) = Fo(x), where Fo(x) is specified, the Cramir-von Mises statistic is

(1)W = nfL [F.(z) - F(z)]2dFo(X).

When Fo(x) is continuous and F(x) = Fo(x), vfnt[Fu(x) - Fo(x)], considered as a

stochastic process with time parameter x, converges weakly to a Gaussian process with

covariance function min[Fo(z), Fo(y)]-Fo(z)Fo(y), and Wn2 has a limiting distribution

as a quadratic functional of the process. If we make the monotonic tansformation

u = Fo(x) and ui = Fo(zi), i = 1, ... , n, then the ui can be considered as observations

from the uniform distribution on [0,11. Let Hn(u) = Fn [F-1 (u)]. Then v/'i[H,(u)-u]

converges weakly to a Gaussian process, say J(u), with covariance function

(2) CJ(u)J(v) = h(u, v) = min(u, v) - uv.

In fact, the limiting process 1(u) is the Brownian bridge.

Suppose Fi(x) and F2(x) are two cdf's, and Fn, (x) and Fn2(x) are the empirical

cdf's of samples of size nj and n2 obtained from the two populations, respectively.

Then
n(l2 J [Fm (-)- Fn(x)]2d[niFF,(x)-I- n2F,(x)]

(3) (n, + n2)2 -

is a criterion for testing the hypothesis FI(x) = F 2(x). When the hypothesis is true,

(3) has the same limiting distribution as (1). The statistic (3) might be considered

as analogous to the Mahalanobis distance (tl - t 2)S-(t 1 - ;2), where S is an

estimator of Z.

Test for a given spectral distribution. Cramer-von Mises tests can be given for

testing hypotheses about spectral distributions of stationary stochastic processes. In
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many situations questions arise about the pattern of dependence; these questions

pertain to the autocorrelations or equivalently to the Fourier transform of the auto-

correlations, which we term the standardized spectral density.

Consider a stationary stochastic process {yt}, t = ... , -1, 0, 1,..- with 6yt = 0,

autocovariance function Cytyt+h = o(h), h - ..- ,-1,0, 1,... and autocorrelation

function p^ = -(h)/l(0), h -. ,-1,0, 1,.... We define the standardized spectral

density as
1=00(4) f(,) = a _-0

Note that the coefficients of the trigonometric functions are the autocorrelations, not

the autocovariances. The Fourier transform of the standardized spectral density is

(5) Ph = f(\) cos \h, =h

Knowledge of the standardized spectral density is equivalent to knowledge of the au-

tocorrelations. Since f(A) = f(-A), we define the standardized spectral distribution

as

(6) F(A)=2 f(v)d(v)- (s+2 Ph
h--1

Note that F(r) = 1; the standardized spectral distribution has the properties (non-

negative increments) of a probability distribution on [0, ir].

If the sample is y1, YT, the sample autocovariance sequence may be defined as

T T-h
(7) Ch = C-h = T -K Yt+h, h=O,1,",T-1,

t=1

Note that ch here is an unbiased estimator of o(h). The reason for using the unbiased

estimator instead of the biased estimator (that is, £Th ytyt+h/T as in Anderson

(1993)) is that then the asymptotic theory serves as a better approximation to the

small sample behavior. The sample autocorrelation sequence is defined as rh = rh =

chIco, h = 0,1,..., T - 1; the standardized sample spectral density is

(8) IT(A) = = -1 rhcos Ah, -7r < \ < 7r;
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and the standardized sample spectral distribution function is

(9) FT(A) = 2 IT(v)dv = - (A 2 E sin Ah)

To test the hypothesis that F(x) = Fo(z), where Fo(x) is completely specified,

one can use the Cramer-von Mises statistic

T f0[FT(\)-_ F0()2(~A
(10) 2ixG 2(r) o 0 -)dA.

Consider the discrepancy

(11) V\r[FT(A) - F(A)]= 2V T sinAh 2\/T sin Ah
-7 ---1 -T ( r h- P~h -r h -T h P h

h&=1 =

as a stochastic process over [0, 7r]. The monotonic transformation u = G(A)/G(r),

where

(12) G(A) = 2 jf2(v)dv,

can be made from A to u to obtain a process on [0, 1]. Then (11) is transformed to

(13) YT(U) = vrT [FT{G-1[G(lr)u]} - F{G-'[G(w)u]}],

and YT(u)/[2\/7r(7] converges weakly to the Gaussian process with covariance func-

tion

(14) k(u, v) = h(u, v) + q(u)q(v),

where

(15) q(u) = u- F{G-IG(r)u]},

and h(u, v) is given by (2). If B(u) is the Brownian bridge [that is, EB(u) = 0 and

&6B(u)B(v) = h(u, v)], then the limiting process above is B(u) + q(u)X, where X has

the standard normal distribution N(0, 1).

Test for a probability distribution: composite hypothesis. Suppose {F(xIO)} is a

family of probability cdf's indexed by the scalar parameter 0. If 6 is an estimator of

0, then

(16) n [FG(x) - F(xli)J dF(xiO)
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can be used to test the null hypothesis that the cdf sampled belongs to the class

{F(xze)j. Let the density of F(xlO) be f(xlO); let

(17) [Olojf( ] i;

and let
(18) m(U) = alogF[F-1 (tiO)IOj

ae
If 0 is an efficient estimator such as the maximum likelihood estimator, the pro-

cess V•i{F,[F-1 (tjO)] - F[F-'(tlO)ji]} converges weakly to a Gaussian process with

covariance matrix h(u, v) - m(u)m(v)/I.

In this paper we are interested in finding numerically the distributions of the lim-

iting Cram&r-von Mises statistic when the covariance function has the form h(u, v) ±

r(u)r(v). In the case of a standardized spectral distribution the covariance function

has this form with r(u) = q(u) and the + sign; in the case of probability distri-

butions with one estimated parameter the covariance function has this form with

r(u) = m(u)/vfW and the - sign.

2. Use of integral equations

First we sketch the general theory of finding the distribution of a quadratic

integral of a continuous time parameter Gaussian stochastic process with a given co-

variance function by the example of the Cram&r-von Mises criterion (1). Any function

k(u, v), 0 <_ u, v < 1, that is symmetric in u and v, continuous, and square integrable

(in one and both variables) can be expressed as

(19) k(u,v) = f _ ufj)

j=I .7

where Aj is an eigenvalue and fj(u) the corresponding normalized eigenfunction of

the integral equation

(20) f(U) = A1j k(u,,v)f (t)dt,

and

(21) 1 f,(u)fi(u)du = b,



where 6,= I and 6, = 0, i 6 j. If k(0,0) =k(l,1) = 0, then fi(0) = fi(1) = 0. If

k(u, v) is the covariance function of a stochastic process Z(u), 0 < u < 1, then k(u, v)

is positive definite and Aj > 0. The series (19) converges absolutely and uniformly in

the unit square. If Z(u) is Gaussian and &Z(u) = 0, then it has the representation

00 1

(22) Z(U) = E--mXjfj(u),
j=1

where X 1 , X2,-.. are independent N(0, 1) variables. With probability 1,

(23) Jo Z 2 (u)dA = X0 £ -- Xjf,(u)-!-•Xjf,(u)du =

10 Jo10 j 3 ~ =1 .

The characteristic function of (23) is

(24) C=exp (i -X J ) (1 _2it- -/ 2

The function D(A) = ri• 1 (1 - A/Ai) is known as the Fredholm determinant of the

integral equation (20).

The Brownian bridge with covariance function h(u, v) = min(u, v) - uv has the

representation (22) with Aj = 7r2j 2 and fj(u) = vr2sinjiru. The characteristic func-

tion (24) is (sin v/r2/v/2it)- [Anderson and Darling (1952)].

Now consider k(u, v) - h(u, v) + q(u)q(v). We define the Fourier coefficients

(25) aj = jq(u)fi(u)du

2vr f sin [. G(A) [G() -)F(A) f2(A)dA.
- G(r) Jo s[inr-- .[G-5()

Then q(u) = • a~jf(u). The process B(u) + Xq(u) has the representation

(26) B(u) + Xq(u) = ( xn + i)x Mu(u),

and the Cram&r-von Mises criterion has the representation

(27) S = j[B(u) + Xq(u)] 2dU
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j=1 \

Alternatively, there is a representation

(28) k(u,,v) = .-g3 (u)gj(v),

where k(u, v) is given by (14) and vj and gj(u) are the eigenvalues and eigenfunctions

associated with the integral equation

(29) g(u) = V k(u, v)g(v)dv.

The Fredholm determinant of (29) is

(30) D*(v)=8sin VY 1- v,2 j c(U t;v)q(u)q(t)dudt - vJ q2(u)du},

where

()-7sin(vi•u)sin/i•(t - 1)), U < t,(31) c(u, t; V) .1 .- ut ,-7--sin[V(v - 1)] sin(Vv•0 u > t.

The eigenvalues of k(u, v) are the values of v (# Ir2j 2) that satisfy D (v) = 0. The

function c(u, t; v) is the resolvent or resolving kernel of the kernel min(u, t) - ut. The

characteristic function of S is [D*(it)]-1.

Let Xi/v/- 3 + acX = Yi, j = 1,2,... Then (27) is

00

(32) s=zy .
j=1

The Yj are normally distributed with £E- = 0, EYj2 - 1/Aj + ac, and EY"Y 1 -

ajaj, i 6 j. Then S can be approximated by a finite sum SN = j yj2. The

difference S - SN has expectation

00 00 /i

(33) E(S -SN)= Z y2 =1 + a?,
j=N+' j=N+l
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which can be made arbitrarily small by taking N sufficiently large. Hence, as N --

oo, the distribution of SN converges to the distribution of S and the characteristic

function of SN approaches the characteristic function of S.

Let YN be the N-vector with Y1 as the jth component. The covariance matrix

of YN is CYNYk = AN + aNa'N, where AN is the diagonal matrix with 1/Ai as the

jth diagonal element and aN is the vector with aj as the jth component. Then the

characteristic function of SN is

N(34) -e"Wyky, = IIN - 2it(AN + aNa'N)I 1-/2 - fl(1 - 2it4jN)-1 / 2,

j=1

where 'kjN (OIN > 02N > "'" > 'kNN) is the jth characteristic root of AN + aNO/N,

that is, the jth zero of

(35) IAN + aNaN - OINI = IAN - OINkb(4'),

where N

(36) =1

for 0 34 1/Ai. If aj 34 0 (as is the case for the MA(1) and AR(1) tests tabulated
below), 1/Aj is not a zero of (35). Let

(37) DN(v) = IN - v(AN + aNaGN)I
,21 -Ea"- -' 1 1-2E j_ 2

i=1_~ Nj=l

Since Ej°fi A;1 < 0o and Et= a2 = fJ q2(u)du < oo, D,(v) converges to D*(v), the

Fredholm determinant, as N --, oo. The characteristic function of S is 1/V/•7-t).

When the explicit form (30) of the Fredholm determinant is intractable or cannot
be inverted, it can be approximated by D,(v) given by (37). For this we turn to the

numerical evaluation of the 4',N, the characteristic roots of AN + aNaC/ and the zeros

of (35). These approximate the reciprocals of the first N eigenvalues of k(u, v). The

first derivative of 0k(0) is

N aý
(38) >,'(4')=Z J ) >0.8 0)2
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As 1 -- 1/Aj from above, tk(o) -+ -oo, and as 4 - 1/Aj from below, •(4) -- oo.

Since 0'(0) is continuous except at 0 = 1/Aj, j = 1,.. , N, there is one root in the

interval (1/Aj, 1/Aj_1 ), j = 1,..., N, where

N
(39) 1/Xo =0 .

j=1

3. Calculation of the distributions of test statis-

tics

In this section the theory given above is employed to provide tests for two time

series models, the MA(1) and AR(1) processes. Asymptotic points are given with the

tests; the procedure for calculating these points follows closely the methods employed

by Stephens (1976) for obtaining asymptotic points for goodness-of-fit statistics in

connection with tests for distributions. We first find approximations to the vj, or

more precisely, the values wj = 1/1j, in the representation (28). These are the zeros

4 of (36). They were found by two methods, one used to check the other, and in each

case asymptotic points were calculated.

Method of Fourier coefficients. Recall that when the covariance of the Gaus-

sian process is h(u, v) in (2), the eigenvalues are Aj = r 2j 2 and the eigenfunctions are

fi(u) = vr/sin(7rju). I order to apply the results of Section 2 above, we need values

ai as defined by (25), where the functions q(u) depend on the asymptotic Gaussian

process for the time series model. Anderson (1993) gave explicitly the functions F(A)

and G(A) for the MA(1) and AR(1) models. The values of aj defined by the second ex-

pression in (25) were calculated by numerical integration for j = 1, ... , 40; they are all

nonzero, but rapidly become very small (of the order of 10-i for j = 40). Note that if

the first expression in (25) is approximated by v/ E' q(i/n) sin(j ri/n)/n, obtained

by straightforward application of the trapezoidal rule, the Fast Fourier Transform can

be used to obtain values of aj for many j. For this calculation, q(u) given by (15)

must be found. This was done by calculating a table of values of G(A) at intervals

small enough to obtain a first approximation to G-1 [G(7r)u] by linear interpolation;
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the approximation was then refined by Newton's method.

The zeros of (36) can be found by search since (38) indicates that 0,(0) is always
increasing between vertical asymptotes at 1/Aj. The wj for j = 41,..., 100 were

approximated by observing that wj/j 2 --+ k, a constant which is determined from the

last calculated values.

Method of discretization With modern computing resources we can find approx-

imate values of wj by creating a matrix K with entries k,, = k(ui, vj); k(u, v) is given
by (14) and ui = i/(n + 1) and vi = j/(n + 1), for i,j = 1,...,n. The characteristic

roots and vectors of K then approximate wi and the corresponding eigenfunctions

gi(u) of (29). This computation was done for n = 50,100 and 200.

Calculation of asymptotic points When the set of n values of Wi is found, the

distribution of S given by (23) or (32) is approximated by the distribution of

n
(40) T= EwiXA +c,

j=1

where Xj are independent standard normals, and c is a constant, obtained from the

fact that

(41) ES= k(u, u)du = ET - wi + c.
JO j=1

The integral f~o k(u, u)du = 1/6+fos q2(u)du, and the last integral is found numerically,
thus determining c. It might be thought that c should be replaced by a random

variable, say w,., but the difference in CT and E.=, wi is sufficiently small that the

variance of wo, is negligible.

Given wl, • .- ,wn, T is a sum of c and a weighted sum of X2's, each with 1 degree of
freedom. Then Pr{T - c < x} can be found by Imhof's method (for which computer

programs are available). For selected values of the probabilities the values of x were
computed for Tables 1 and 2. It was found that when x for a given probability was

plotted against 1/n (n = 50,100,200) in the second method the plot was linear and

hence could be extrapolated to 1/n = 0 to give the final percentage points at this
probability. The values obtained in this way agreed to those by the first method to
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4 decimal places in the upper tail (which is the tail used for significance points) and

differed by only 1 in the fourth decimal place in the lower tail. If only one method is

to be used, the method of Fourier coefficients seems to be preferable.

4. Test for the moving average model of order 1

For this model, the time series yt is given by yt = ut + aut. 1 , where the ut are

uncorrelated with mean zero and variance o2 . Let the autocovariance be tYtyt+h =

a(h); the autocorrelation is ph = a(h)/a(O). Then Po = 1, pi = p-i = p = a/(l +C2),

and Ph = 0 for h 6 -1, 0 or 1. The test below is for a moving average model with a

(or equivalently p) known. Suppose y1, Y2,... , YT is a sample of T successive values

of yt. The sample autocovariances are given by (7), and the sample autocorrelations

are rh = r-h = ch/co, h = 0,1,..., T - 1.

The test statistic The Cramer-von Mises criterion for a. time series process yields

a test statistic with computing formula [Anderson, (1993)]

T T -1 (r, - p9)(Pr+, -pP,)9
(42) Q=

?27r =T 9g=1

where G(.) depends on the process. In calculating Q from (11) the second sum on

the right-hand side of (11) has been omitted because it converges to zero. For the

MA(1) process, G(7r) = (1 + 2p 2)/(2ir) [Anderson, (1993)]. Also since ph takes values

only for h = -1, 0 and 1, the formula (41) simplifies considerably for this process: for

a given r, the sum over g can be divided into two sums for g from -r - 1 to -r + 1

and for g from r - 1 to r + 1. The test for the MA(1) process with known a, that is,

with known p, then consists of the following steps:

1. Calculate the r, for g = 1,..., T - 1;

2. Calculate Q;

3. Refer Q to the asymptotic points in Table 1 for the corresponding p. Reject the

MA(1) model at level p if Q exceeds the percentage point given for level p.

11



The poiuts are asymptotic, but extensive Monte Carlo studies indicate that they can

be used with good accuracy for T > 50, a reasonable length for most time series.

5. Test for the autoregressive model of order 1

For this time series, yt = pyt-I + uj, where the ut are as defined above. Then,

Ph = P-h = Ph, and G(7r) = (1 + p2)/ {2r(1 - p2 )}. Given a sample of length T, the
test for AR(1) with known p follows the three steps given in the previous section, but

Q is now referred to the asymptotic points in Table 2 for the corresponding p. Reject

the AR(1) model at level p if Q exceeds the percentage point given for level p.

Here again, the asymptotic points will be adequate for T > 50. For this process,

Q is more complicated to calculate and it is important to keep to the correct limits for

both r and g. For both models, a FORTRAN program to calculate the test statistic

and also to look up the appropriate table, is available from the second author.

The authors are very grateful to Dr. Richard Lockhart for valuable assistance

with the computational procedures in this paper.
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Table 1.: Asymptotic Points For MA(1) Test

p \ p 0.001 0.005 0.01 0.025 0.05 0.1 0.15 0.25

0.0 0.0170 0.0218 0.0248 0.0304 0.0366 0.0460 0.0543 0.0703

0.1 0.0170 0.0218 0.0248 0.0304 0.0367 0.0462 0.0545 0.0706

0.2 0.0171 0.0219 0.0250 0.0306 0.0369 0.0466 0.0551 0.0715

0.3 0.0172 0.0221 0.0252 0.0309 0.0373 0.0471 0.0558 0.0726

0.4 0.0173 0.0222 0.0253 0.0310 0.0375 0.0474 0.0561 0.0731

0.5 0.0172 0.0221 0.0252 0.0310 0.0374 0.0472 0.0559 0.0727

Table 1.: Asymptotic Points For MA(1) Test cont.

p \ p 0.5 0.75 0.85 0.9 0.95 0.975 0.99 0.995 0.999

0.0 0.1189 0.2094 0.2841 0.3473 0.4614 0.5806 0.7435 0.8694 1.1679

0.1 0.1198 0.2118 0.2878 0.3522 0.4684 0.5898 0.7557 0.8839 1.1879

0.2 0.1221 0.2172 0.2961 0.3630 0.4837 0.6099 0.7821 0.9152 1.2308

0.3 0.1244 0.2221 0.3034 0.3722 0.4966 0.6264 0.8037 0.9408 1.2657

0.4 0.1253 0.2238 0.3057 0.3751 0.5004 0.6313 0.8100 0.9481 1.2755

0.5 0.1244 0.2219 0.3028 0.3714 0.4951 0.6245 0.8011 0.9376 1.2611
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Table 2.: Asymptotic Points For AR(1) Test

p \ p 0.001 0.005 0.01 0.025 0.05 0.1 0.15 0.25

0.0 0.0170 0.0218 0.0248 0.0304 0.0366 0.0460 0.0543 0.0703

0.1 0.0170 3.0218 0.0248 0.0304 0.0367 0.0462 0.0545 0.0706

0.2 0.0171 0.0219 0.0250 0.0306 0.0370 0.0467 0.0552 0.0717

0.3 0.0172 0.0221 0.0252 0.0310 0.0375 0.0474 0.0562 0.0734

0.4 0.0174 0.0224 0.0256 0.0315 0.0382 0.0484 0.0576 0.0755

0.5 0.0176 0.0227 0.0259 0.0320 0.0389 0.0495 0.0590 0.0776

0.6 0.0178 0.0230 0.0263 0.0326 0.0396 0.0506 0.0603 0.0796

0.7 0.0180 0.0233 0.0267 0.0330 0.0402 0.0514 0.0614 0.0812

0.8 0.0181 0.0235 0.0269 0.0334 0.0407 0.0520 0.0622 0.0822

0.9 0.0182 0.0236 0.0271 0.0336 0.0409 0.0524 0.0626 0.0828

Table 2.: Asymptotic Points For AR(1) Test cont.

p \ p 0.5 0.75 0.85 0.9 0.95 0.975 0.99 0.995 0.999

0.0 0.1189 0.2094 0.2841 0.3473 0.4614 0.5806 0.7424 0.8694 1.1679

0.1 0.1198 0.2119 0.2880 0.3525 0.4688 0.5904 0.7567 0.8848 1.1891

0.2 0.1226 0.2188 0.2988 0.3666 0.4890 0.6168 0.7923 0.9263 1.2462

0.3 0.1267 0.2288 0.3140 0.3864 0.5169 0.6533 0.8393 0.9831 1.3242

0.4 0.1316 0.2399 0.3307 0.4079 0.5470 0.6924 0.8905 1.0439 1.4072

0.5 0.1364 0.2505 0.3465 0.4280 0.5749 0.7284 0.9378 1.0997 1.4831

0.6 0.1406 0.2595 0.3596 0.4447 0.5980 0.7581 0.9765 1.1453 1.5469

0.7 0.1438 0.2662 0.3694 0.4570 0.6150 0.7800 1.0051 1.1790 1.5901

0.8 0.1460 0.2707 0.3758 0.4651 0.6262 0.7943 1.0238 1.2010 1.6213

0.9 0.1472 0.2731 0.3792 0.4695 0.6321 0.8020 1.0337 1.2127 1.6388
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In this paper we consider somewhat analogous quadratic forms in normal variables

when the dimensionality is infinite. Then the quadratic forms are distributed as

infinite weighted sums of X -variables. These come about as goodness-of-fit criteria

for a hypothesis that a cumulative distribution function is a specified one or that two

cdf's are the same. Such criteria also arise for goodness-of-fit tests for standardized

spectral distributions.

As examples, we give tables of the distribution of the criterion for testing the

hypothesis that a stationary stochastic process is a given moving average process of
order 1 and for testing the hypothesis that it is a specified autoregressive process of

order 1. Two methods are described for calculating the distribution. Either method
is appropriate for calculating the distribution of the criterion for testing the hypoth-

esis that a process is a stationary process whose standardized spectral density or

distribution is a specified one.


