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The Modified Cramér-von Mises Goodness-of-Fit Criterion
for Time Series

T. W. Anderson and M. A. Stephens

1. Introduction

P. C. Mahalanobis may be best known among mathematical statisticians for the
“Mahalanobis distance,” which in one form is* (g, — ps,)' X~ (ps, — s,), where g, and
#, are the vectors of means in two populations or distributions and X is a covariance
matrix common to the two. It is considered a measure of the difference between the
two distributions. When X' is known and p; and p, are unknown and estimated
by sample means &, and Z;, respectively, (£, — £;)' X '(2; — &), also known as a
Mabhalanobis distance, is an estimator of the first form. If #, and Z; are normally
distributed and hence &, — Z; is normally distributed, the Mahalanobis distance is a
quadratic form in normal variables. When Z, and #; have covariance matrices X' and
#, = H,, the Mahalanobis distance is proportional to a x? variable with number of
degrees of freedom equal to the number of components of u,, #,, Z;, and #;. Another
Mabhalanobis distance is (2, — u,)' £~ (2, — p,), which is appropriate if an unknown
M, is estimated by a sample mean Z,.

In this paper we consider somewhat analogous quadratic forms in normal variables
when the dimensionality is infinite. Then the quadratic forms are distributed as
infinite weighted sums of x?-variables. These come about as goodness-of-fit criteria
for a hypothesis that a cumulative distribution function is a specified one or that two
cdf’s are the same. Such criteria also arise for goodness-of-fit tests for standardized
spectral distributions.

As examples, we give tables of the distribution of the criterion for testing the

hypothesis that a stationary stochastic process is a given moving average process of

*The quadratic form should be called “Mahalanobis distance squared”, but the third word is
usually omitted.




order 1 and for testing the hypothesis that it is a specified autoregressive process of
order 1. Two methods are described for calculating the distribution. Either method
is appropriate for calculating the distribution of the criterion for testing the hypoth-
esis that a process is a stationary process whose standardized spectral density or
distribution is a specified one.

Test for a given probability distribution. Let z,,---,z, be n observations from
a distribution with cdf F(z) and let the empirical distribution of the sample be
Fo(z) = k/n if k of the z;’s are not greater than z. To test the null hypothesis
F(z) = Fy(z), where Fy(z) is specified, the Cramér-von Mises statistic is

8y Wi=n [ [Fi(z) - Fo(=)PdFo(a).

When Fy(z) is continuous and F(z) = Fo(z), /n[Fa(z) — Fo(z))], considered as a
stochastic process with time parameter z, converges weakly to a Gaussian process with
covariance function min[Fo(z), Fo(y)]— Fo(z) Fo(y), and W2 has a limiting distribution
as a quadratic functional of the process. If we make the monotonic tansformation
u = Fy(z) and u; = Fo(z;), : = 1,---,n, then the u; can be considered as observations
from the uniform distribution on [0,1]. Let Hn(u) = F,[F~(u)]. Then /n[Hn(u)—u]

converges weakly to a Gaussian process, say J(u), with covariance function
(2) EJ(u)J(v) = h(u,v) = min(u,v) — uv.

In fact, the limiting process J(u) is the Brownian bridge.

Suppose Fi(z) and F;(z) are two cdf’s, and F,,(z) and F,,(z) are the empirical
cdf’s of samples of size n; and n; obtained from the two populations, respectively.
Then

nl n2

(3) T o [ (@) = Fau(@)Pdlm Foy (2) + oo o)

is a criterion for testing the hypothesis Fy(z) = F»(z). When the hypothesis is true,
(3) has the same limiting distribution as (1). The statistic (3) might be considered
as analogous to the Mahalanobis distance (2, — 2,)S~!(2; — &), where S is an
estimator of X

Test for a given spectral distribution. Cramér-von Mises tests can be given for

testing hypotheses about spectral distributions of stationary stochastic processes. In

2




many situations questions arise about the pattern of dependence; these questions
pertain to the autocorrelations or equivalently to the Fourier transform of the auto-
correlations, which we term the standardized spectral density.

Consider a stationary stochastic process {y:},t =---,-1,0,1,--- with £y, = 0,
autocovariance function £yyiep = o(k), h =---,-1,0,1,--- and autocorrelation
function p, = o(k)/e(0), h=---,—1,0,1,---. We define the standardized spectral
density as

] =
(4) ) =52 3 prcosdh, —x<A<w

h=-00
Note that the coefficients of the trigonometric functions are the autocorrelations, not

the autocovariances. The Fourier transform of the standardized spectral density is
(5) p,.=/'f(,\)cosxh, h=-y=1,0,1---.

Knowledge of the standardized spectral density is equivalent to knowledge of the au-
tocorrelations. Since f(A) = f(—A), we define the standardized spectral distribution
as

(6) F(O)=2 /o * fw)d(v) = % (A +2 g Ph

Note that F(x) = 1; the standardized spectral distribution has the properties (non-

negative increments) of a probability distribution on [0, x].

sin Ak )

If the sample is y1, - - -, yr, the sample autocovariance sequence may be defined as
T-h
(7) Ch = Ch = Eytyt+h, h=0,1,---,T -1,

T-h

t=1

Note that c, here is an unbiased estimator of (k). The reason for using the unbiased
estimator instead of the biased estimator (that is, ©7" y,y:41/T as in Anderson
(1993)) is that then the asymptotic theory serves as a better approximation to the
small sample behavior. The sample autocorrelation sequence is defined as ry = r_; =

cn/co, h=0,1,---,T —1; the standardized sample spectral density'is

T .
Z e eu\t

=1

T-1
Z: rhcos \h, —w <A<

1 1
8 Ir(A) = — = —
® =g w2




and the standardized sample spectral distribution function is

) Fr(3) =2 * In(v)dv = ( A42 Z‘ rhsxnhAh)

To test the hypothesis that F(z) = Fy(z), where Fy(z) is completely specified,

one can use the Cramér-von Mises statistic

(10) 27(';’7(,—) [ 1Fr) = R 200
Consider the discrepancy
T T=
@) VIE) - Py = 2D Sy DT § sindh,

as a stochastic process over [0,7]. The monotonic transformation u = G(})/G(x),

where A
(12) GO =2 [ f(w)do,
can be made from ) to u to obtain a process on [0,1]. Then (11) is transformed to

(13) Yr(u) = VT [Fr{G™[G(x)u]} - F{G'[G(x)ul}],

and Yr(u)/[2\/7G(7)] converges weakly to the Gaussian process with covariance func-
tion

(14) k(u,v) = h(u,v) + q(u)q(v),
where
(15) g(v) = u = F{G'[G(m)u]},

and h(u,v) is given by (2). If B(u) is the Brownian bridge [that is, EB(u) = 0 and
EB(u)B(v) = h(u,v)], then the limiting process above is B(u) + q(u)X, where X has
the standard normal distribution N(0,1).

Test for a probability distribution: composite hypothesis. Suppose {F(z|0)} is a
family of probability cdf’s indexed by the scalar parameter 8. If 8 is an estimator of
0, then

(16) n [ [Fu(e) - F(slf)dF(zld)
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can be used to test the null hypothesis that the cdf sampled belongs to the class
{F(x|0)}. Let the density of F(z|0) be f(z|0); let

and let dlog F[F-(1|6)|0
(18) m(u) = og [ao ( l ].

If § is an efficient estimator such as the maximum likelihood estimator, the pro-
cess \/n{F.[F~1(t|0)] — F[F~'(t|0)|]} converges weakly to a Gaussian process with

covariance matrix h(u,v) — m(u)m(v)/I.

00

In this paper we are interested in finding numerically the distributions of the lim-
iting Cramér-von Mises statistic when the covariance function has the form A(u,v) %
r(u)r(v). In the case of a standardized spectral distribution the covariance function
has this form with r(u) = ¢(u) and the + sign; in the case of probability distri-
butions with one estimated parameter the covariance function has this form with

r(u) = m(u)/vZT and the — sign.

2. Use of integral equations

First we sketch the general theory of finding the distribution of a quadratic
integral of a continuous time parameter Gaussian stochastic process with a given co-
variance function by the example of the Cramér-von Mises criterion (1). Any function
k(u,v), 0 < u,v < 1, that is symmetric in u and v, continuous, and square integrable
(in one and both variables) can be expressed as

oo

(19) Kw,v) = 3 - (@)fi(0),

i=1"2
where J; is an eigenvalue and f;(u) the corresponding normalized eigenfunction of

the integral equation

(20) 7 = [ ko) f(0)do
and .
(21) | fsiwdu =,
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where 6; =1 and 6;; = 0, i # j. If k(0,0) = k(1,1) = 0, then f;(0) = fi(1) = 0. If
k(u,v) is the covariance function of a stochastic process Z(u), 0 < u <1, then k(u,v)
is positive definite and A; > 0. The series (19) converges absolutely and uniformly in
the unit square. If Z(u) is Gaussian and £Z(u) = 0, then it has the representation

—=X;fi(u),
J=1 \/_

where X;, X3, - are independent N(0,1) variables. With probability 1,

(22) Z(u)=

i=1 3-1

(23) / Z*(u)du = / 3 er Silw) \/_x f,(u)du-Z—X’

The characteristic function of (23) is

X2\ = AN
(24) € exp (ztz v ) II (l - T) .
i=1 N j=1 j
The function D(A) = [132,(1 — A/};) is known as the Fredholm determinant of the
integral equation (20).

The Brownian bridge with covariance function A(u,v) = min(u,v) — uv has the
representation (22) with A; = #%j2 and f;(u) = v/2sin jxu. The characteristic func-
tion (24) is (sin v/2it/v/2it)~* [Anderson and Darling (1952)).

Now consider k(u,v) = h(u,v) + g(u)g(v). We define the Fourier coefficients

(25) o = [ awiilwds
_ 22 [ GOV [ER) .
= G ko rEes] [ - o]

Then q(u) = £, a;fij(u). The process B(u) + Xg(u) has the representation

(26) B(u) + Xq(u) =.§';: (%M,-x) fi{w),
= j

and the Cramér-von Mises criterion has the representation
! 2
(27) S = ./0 [B(u) + Xq(u)]*du
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- [ Lé (% +aX) f,-(u)]zdu

Alternatively, there is a representation

(28) K 0) = 3 o g5(u)g5(v),

=17

where k(u, v) is given by (14) and v; and g;(u) are the eigenvalues and eigenfunctions

associated with the integral equation

(29) o(w) = v [ ku,v)g(v)dv.

The Fredholm determinant of (29) is

30) D'(v)= Sh:/‘;/;{l - ' / * e(u, ; v)q(u)g(t)dudt — v i " (u)du),

where

(31) o, v) = { — Ay sin(VBu)sinlyE(t - ], u<t,

-—m sin[v/v(u — 1)]sin(y/¥t), u>t.
The eigenvalues of k(u,v) are the values of v (# 72j2) that satisfy D*(v) = 0. The
function ¢(u, t; v) is the resolvent or resolving kernel of the kernel min(u,t) — ut. The
characteristic function of S is [D*(it)]3.

Let X;/V)j+a;X=Y;, j=1,2,---. Then (27) is

(32) S=3 Y
Jj=1
The Y; are normally distributed with £Y; = 0, £Y? = 1/); + o}, and £Y}Y; =
a;a;, i # j. Then S can be approximated by a finite sum Sy = ;V:, Y?. The
difference S — Sy has expectation
o0 o d l

(33) es-sm=¢ ¥ vi= 3 (Lal),

j=N+1 j=N+1 \ A




which can be made arbitrarily small by taking N sufficiently large. Hence, as N —
0o, the distribution of Sy converges to the distribution of S and the characteristic
function of Sy approaches the characteristic function of S.

Let Yn be the N-vector with Y; as the jth component. The covariance matrix
of Yy is EYNYy = AN + analy, where Ay is the diagonal matrix with 1/); as the
jth diagonal element and ay is the vector with a; as the jth component. Then the

characteristic function of S& is
N
(34) ESVEIN = |Iy - 2it(An + analy)|™/? = T (1 - 2itg;n) /3,
j=1
where ¢;n (d1n = dan = -+ 2 ¢nn) is the jth characteristic root of Ay + analy,
that is, the jth zero of

(35) |An + analy — ¢In| = |An — $IN|Y(4),
where

N o2
(36) B =14 Y

J=1 A

for ¢ # 1/);.  a; # 0 (as is the case for the MA(1) and AR(1) tests tabulated
below), 1/); is not a zero of (35). Let

(37) Dy(v) = |In—v(An + anay)|
N N g2
= H(l——) 1-2% _uz;ag
=1 A P Ve i=1
Since 32, A;! < 00 and TR, o? = [J ¢*(u)du < oo, Dj(v) converges to D*(v), the

Fredholm determinant, as N — co. The characteristic function of S is 1/y/D*(2it).

When the explicit form (30) of the Fredholm determinant is intractable or cannot
be inverted, it can be approximated by Dy (v) given by (37). For this we turn to the
numerical evaluation of the ¢;n, the characteristic roots of Ax + anya)y and the zeros
of (35). These approximate the reciprocals of the first N eigenvalues of k(u,v). The
first derivative of ¥(¢) is

(38) Vo) =2 s >
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As ¢ — 1/); from above, ¥(¢) — —o0, and as ¢ — 1/}; from below, 1(¢) — oo.
Since ¥(¢) is continuous except at ¢ = 1/A;, 7 = 1,---, N, there is one root in the
interval (1/X;,1/);—), j=1,---, N, where

N
(39) 1/=3 ok

=1

3. Calculation of the distributions of test statis-
tics

In this section the theory given above is employed to provide tests for two time
series models, the MA(1) and AR(1) processes. Asymptotic points are given with the
tests; the procedure for calculating these points follows closely the methods employed
by Stephens (1976) for obtaining asymptotic points for goodness-of-fit statistics in
connection with tests for distributions. We first find approximations to the v;, or
more precisely, the values w; = 1/v;, in the representation (28). These are the zeros
@ of (36). They were found by two methods, one used to check the other, and in each

case asymptotic points were calculated.

Method of Fourier coefficients. Recall that when the covariance of the Gaus-
sian process is h(u,v) in (2), the eigenvalues are \; = 7?52 and the eigenfunctions are
fi(u) = V2sin(xju). Ia order to apply the results of Section 2 above, we need values
a; as defined by (25), where the functions ¢(u) depend on the asymptotic Gaussian
process for the time series model. Anderson (1993) gave explicitly the functions F())
and G(A) for the MA(1) and AR(1) models. The values of a; defined by the second ex-
pression in (25) were calculated by numerical integration for j = 1, - - -, 40; they are all
nonzero, but rapidly become very small (of the order of 10~ for j = 40). Note that if
the first expression in (25) is approximated by V2 ¥, ¢(i/n) sin(jxi/n)/n, obtained
by straightforward application of the trapezoidal rule, the Fast Fourier Transform can
be used to obtain values of a; for many j. For this calculation, g(u) given by (15)
must be found. This was done by calculating a table of values of G()) at intervals

small enough to obtain a first approximation to G~![G(x)u] by linear interpolation;

9




the approximation was then refined by Newton’s method.

The zeros of (36) can be found by search since (38) indicates that y(¢) is always
increasing between vertical asymptotes at 1/A;. The w; for j = 41,...,100 were
approximated by observing that w;/j? — k, a constant which is determined from the
last calculated values.

Method of discretization With modern computing resources we can find approx-
imate values of w; by creating a matrix K with entries k;; = k(u;, v;); k(u,v) is given
by (14) and u; = i/(n+1) and v; = j/(n + 1), for i, = 1,...,n. The characteristic
roots and vectors of K then approximate w; and the corresponding eigenfunctions
gj(u) of (29). This computation was done for n = 50,100 and 200.

Calculation of asymptotic points When the set of n values of w; is found, the

distribution of S given by (23) or (32) is approximated by the distribution of

n
(40) T=3) wX} +c,
i=1
where X are independent standard normals, and c is a constant, obtained from the

fact that . n
(41) £S = /0 k(u,u)du=ET =Y w; +ec.

j=1
The integral f3 k(u,u)du = 1/6+ f3 ¢?(u)du, and the last integral is found numerically,
thus determining ¢. It might be thought that ¢ should be replaced by a random
variable, say we, but the difference in £T and ¥°}_, wj is sufficiently small that the
variance of w,, is negligible.

Given wy, -+ ,wn, T is a sum of ¢ and a weighted sum of x?’s, each with 1 degree of
freedom. Then Pr{T — ¢ < z} can be found by Imhof’s method (for which computer
programs are available). For selected values of the probabilities the values of z were
computed for Tables 1 and 2. It was found that when z for a given probability was
plotted against 1/n (n = 50,100,200) in the second method the plot was linear and
hence could be extrapolated to 1/n = 0 to give the final percentage points at this
probability. The values obtained in this way agreed to those by the first method to
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4 decimal places in the upper tail (which is the tail used for significance points) and
differed by only 1 in the fourth decimal place in the lower tail. If only one method is
to be used, the method of Fourier coefficients seems to be preferable.

4. Test for the moving average model of order 1

For this model, the time series y; is given by y, = u; + au,_,, where the u, are
uncorrelated with mean zero and variance o2. Let the autocovariance be yiyipn =
a(h); the autocorrelation is pr, = o(h)/0(0). Then pg = 1, p1 = p_1 = p = a/(1+a?),
and p, = 0 for k # —1, 0 or 1. The test below is for a moving average model with a
(or equivalently p) known. Suppose y1,¥y2,...,yr is a sample of T successive values
of y;. The sample autocovariances are given by (7), and the sample autocorrelations

are ry =r_p = cyfco, h=0,1,...,T - 1.

The test statistic The Cramér-von Mises criterion for a time series process yields

a test statistic with computing formula [Anderson, (1993)]

T L (rg = 2 )(prig — Pr—y) 2
(42) Q= 8TiG?(7) ) {Z } ,

r=~T | g9=1 g

where G(-) depends on the process. In calculating Q from (11) the second sum on
the right-hand side of (11) has been omitted because it converges to zero. For the
MAC(1) process, G(7) = (1+2p?)/(27) [Anderson, (1993)]. Also since p;, takes values
only for h = —1,0 and 1, the formula (41) simplifies considerably for this process: for
a given r, the sum over g can be divided into two sums for g from —r — 1 to ~r +1
and for g from r — 1 to r + 1. The test for the MA(1) process with known a, that is,

with known p, then consists of the following steps:
1. Calculate the ry for g =1,...,T = 1;

2. Calculate Q;

3. Refer Q to the asymptotic points in Table 1 for the corresponding p. Reject the
MA(1) model at level p if Q exceeds the percentage point given for level p.

11




The poiuts are asymptotic, but extensive Monte Carlo studies indicate that they can

be used with good accuracy for T > 50, a reasonable length for most time series.

5. Test for the autoregressive model of order 1

For this time series, y;: = py;-1 + u¢, where the u, are as defined above. Then,
pn = p-» = p*, and G(x) = (1 + p?)/ {27x(1 — p?)}. Given a sample of length T, the
test for AR(1) with known p follows the three steps given in the previous section, but
Q is now referred to the asymptotic points in Table 2 for the corresponding p. Reject
the AR(1) model at level p if Q exceeds the percentage point given for level p.

Here again, the asymptotic points will be adequate for T' > 50. For this process,
@ is more complicated to calculate and it is important to keep to the correct limits for
both r and g. For both models, a FORTRAN program to calculate the test statistic
and also to look up the appropriate table, is available from the second author.

The authors are very grateful to Dr. Richard Lockhart for valuable assistance

with the computational procedures in this paper.
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Table 1.:

Asymptotic Points For MA(1) Test

P\p

0.001

0.005

0.01

0.025

0.05

0.1

0.15

0.25

0.0
0.1
0.2
03
0.4
0.5

0.0170
0.0170
0.0171
0.0172
0.0173
0.0172

0.0218
0.0218
0.0219
0.0221
0.0222
0.0221

0.0248
0.0248
0.0250
0.0252
0.0253
0.0252

0.0304
0.0304
0.0306
0.0309
0.0310
0.0310

0.0366
0.0367
0.0369
0.0373
0.0375
0.0374

0.0460
0.0462
0.0466
0.0471
0.0474
0.0472

0.0543
0.0545
0.0551
0.0558
0.0561
0.0559

0.0703
0.0706
0.0715
0.0726
0.0731
0.0727

Table 1.: Asymptotic Points For MA(1) Test cont.

p\p

0.5

0.75

0.85

0.9

0.95

0.975

0.99

0.995 0.999

0.0
0.1
0.2
0.3
0.4
0.5

0.1189
0.1198
0.1221
0.1244
0.1253
0.1244

0.2094
0.2118
0.2172
0.2221
0.2238
0.2219

0.2841
0.2878
0.2961
0.3034
0.3057
0.3028

0.3473
0.3522
0.3630
0.3722
0.3751
0.3714

0.4614
0.4684
0.4837
0.4966
0.5004
0.4951

0.5806
0.5898
0.6099
0.6264
0.6313
0.6245

0.7435
0.7557
0.7821
0.8037
0.8100
0.8011

0.8694 1.1679
0.8839 1.1879
0.9152 1.2308
0.9408 1.2657
0.9481 1.2755
0.9376 1.2611
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Table 2.:

Asymptotic Points For AR(1) Test

p\p

0.001

0.005

0.01 0.025

0.05

0.1

0.15

0.25

0.0 0.0170
0.1 0.0170
0.2 0.0171
0.3 0.0172
0.4 0.0174
0.5 0.0176
0.6 0.0178
0.7 0.0180
0.8 0.0181
0.9 0.0182

0.0218
3.0218
0.0219
0.0221
0.0224
0.0227
0.0230
0.0233
0.0235
0.0236

0.0248 0.0304 0.0366
0.0248 0.0304 0.0367
0.0250 0.0306 0.0370
0.0252 0.0310 0.0375
0.0256 0.0315 0.0382
0.0259 0.0320 0.0389
0.0263 0.0326 0.0396
0.0267 0.0330 0.0402
0.0269 0.0334 0.0407
0.0271 0.0336 0.0409

0.0460
0.0462
0.0467
0.0474
0.0484
0.0495
0.0506
0.0514
0.0520
0.0524

0.0543
0.0545
0.0552
0.0562
0.0576
0.0590
0.0603
0.0614
0.0622
0.0626

0.0703
0.0706
0.0717
0.0734
0.0755
0.0776
0.0796
0.0812
0.0822
0.0828

Table 2.: Asymptotic Points For AR(1) Test cont.

p\p

0.5

0.75

0.85

0.9 0.95

0.975

0.99

0.995

0.999

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

0.1189
0.1198
0.1226
0.1267
0.1316
0.1364
0.1406
0.1438
0.1460
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