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1. INTRODUCTION

1.1 Background

Fixed and rotary wing civilian aircraft have used digital flight control and
avionic systems since the late 1960s. One of the earliest digital systems was
the Inertial Navigation System. Subsequently, other digital systems were added
(Spradlin 1983). As multiple systems were introduced into aircraft there arose
a need for digital communications between systems. In the early 1970s, many
different digital data bus designs were used to provide this communication.
Because these digital systems proved to be reliable and cost effective, their
popularity increased.

Proliferation led to standardization, particularly in the air transport category
of aircraft. In 1976, the air transport industry approved the Aeronautical
Radio, Incorporated, (ARINC) Mark 33 Digital Information Transfer System (DITS)
for digital data bus communications between Line Replaceable Units (LRUs) that
conformed to the ARINC 500-Series Equipment characteristics. In the early
1980s, the General Aviation (GA) industry began using two data bus standards
unique to its requirements.

Standardization of digital communications allowed communications between LRUs
to become more complex. LRUs began to rely more heavily on each other to reduce
the amount of equipment required. Sensor data and systems data could be shared
among multiple systems, rather than each system requiring its own private
source. The tighter coupling of systems led to the introduction of systems that
were previously too complex or too cumbersome to produce. Complete Automatic
Flight Control and Flight Management systems were implemented. Cockpits
produced in the 1980s consisted of flight control electronics and avionics
composed primarily of digital systems.

Although today's aircraft primarily use digital systems, the issue of whether
digital systems can be relied upon for the safety of the aircraft, crew, and
passengers has been avoided. Modern aircraft are certificated as safe for air
transport use based on the assumption that any computer system may fail without
producing a life threatening hazard. This is true because modern aircraft
continue to rely on conventional mechanical, hydraulic, and analog electronic
back-up systems to provide the minimum performance necessary to ensure safe
flight and landing.

Civilian aircraft presently being developed can no longer be certificated on
this basis. Complex digital systems are being used to implement essential and
critical functions that cannot be sufficiently reproduced by conventional means.
The X-29 military aircraft, with forward swept wings, is an example of what lies
ahead for commercial aircraft. This aircraft is an inherently unstable design
that requires computer control to keep it stable; a pilot could not fly it by
standard means. It would be pointless to provide conventional back-up systems.
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The safety of such aircraft is highly dependent upon the computer software,
hardware, and the data buses connecting the systems. These aspects of digital
systems have undergone, individually, much study and improvement over the years.
The newest concerns relate to the problems that are unique to complex, highly
integrated, systems. In particular, the modern bidirectional data buses will
be heavily relied upon, yet at the same time, become more complex. There is no
standard with which to assess the possible impact of these bus-based systems on
aircraft safety. These and other advanced flight control and avionic systems
will result in specific safety assessment problems when the appropriate data
packages are submitted to the Federal Aviation Administration (FAA) during the
certification process.

1.2 Scope

This handbook chapter addresses the concerns related to reliable communication
on the serial digital data buses used to integrate digital systems in civilian
aircraft. The reliability needed for buses used in essential and critical
systems is particularly addressed. The communication on the parallel backplane
buses used within LRUs is not addressed. Topics discussed include the
following:

"* The process followed by the FAA to certify that aircraft digital systems
are safe.

"* The formal and informal regulations that aircraft digital systems must
satisfy.

"a Safety concerns related to system integration based on current avionic data
bus standards for air transport and GA aircraft.

"* Safety concerns related to system integration based on new avionic data bus

standards for air transport and GA aircraft.

"* How data bus software-hardware interaction relates to aircraft safety.

" Data bus protocol specification and verification methods for ensuring
proper operation.

" The extent to which data bus integration is controlled by data bus
standards.

"* Safety lessons that can be learned from current and new avionic data bus
standards for military aircraft.

"* The relationship of data bus standards to the certification process and
regulatory standards.

This handbook chapter is provided to serve as a guide to Certification Engineers
(CEs). It should help the CEs evaluate the material submitted for review when
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they are asked to approve bus-integrated systems. For additional details on
specific avionic standards and protocols, see the technical report, "Avionic
Data Bus Integration Technology" (Elwell et al. 1992).

1
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2. BUS-INTEGRATED AVIONIC SYSTEMS

2.1 Avionic System Architectures

An avionic system may perform a major cockpit function, like flight control,
flight management, navigation, communications, autopilot, or autoland. Each
system consists of a suite of electronic units that each perform a particular
function needed by the system. These electronic units are usually called LRUs.
(Entire systems are not considered replaceable units under routine maintenance.)
LRUs typically transfer digital information among themselves and other systems
on serial data buses. Each LRU, or bus user, usually consists of a host Central
Processing Unit (CPU) interfaced to the bus by a Bus Interface Unit (BIU). The
configuration is shown in figure 2.1-1.

Host CPU
LRU or

BIU Bus User

Bus Stub

Serial Digital Data Bus

FIGURE 2.1-1. DATA BUS COMPONENTS

There are two primary types of bus-integrated avionic systems: those based on
unidirectional data buses and those based on bidirectional data buses. A
typical unidirectional bus architecture is shown in figure 2.1-2. The
transmitting LRU controls the bus protocol and provides the bus message data.
The protocol is very simple; it primarily consists of a standard message format.
When the transmitting LRU broadcasts its messages onto the data bus, each of the
other LRUs connected to the bus monitors the broadcast messages in order to
detect and read the messages required.
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RRe ceiving LRU Receivi ng LRU 4

Transmitting LRUI I I
nReceiving LRU 72] ao Lv=oU4

FIGURE 2.1-2. UNIDIRECTIONAL BUS ARCHITECTURE

When unidirectional data buses are used to integrate a system, the bus network
is usually complex and requires large amounts of wire. Every LRU that needs to
transmit data must have a unique data bus for its messages. Each LRU may need
to have several bus interfaces to receive messages from multiple buses. For
example, the navigation system shown in figure 2.1-3 requires five buses.

Air Data System

VOR Navigation

DME

Graphics Processor Displaysl

FIGURE 2.1-3. AVIONIC SYSTEM USING UNIDIRECTIONAL BUSES
(Hitt 1986)

Since each required message is made available by a direct connection, a system
level design of the data bus network is unnecessary. The final bus network in
an aircraft could be simply the configuration that results after every LRU has
individually satisfied its information requirements.

A typical bidirectional data bus architecture is shown in figure 2.1-4. All
LRUs can transmit and/or listen on one bus. Messages are time multiplexed.
Each LRU only needs to have one bus interface and the bus network is reduced to
a single data bus.
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Receiving LRU Receiving LRU[

I T

= Receiving LRU [1Transmitting R

FIGURE 2.1-4. BIDIRECTIONAL BUS ARCHITECTURE

When bidirectional data buses are used, the physical network is usually simple,
as shown in figure 2.1-5. On the other hand, the bus control is quite complex.
The protocol must not only provide standard messages, but also arbitrate data
bus transmissions to ensure that only one LRU transmits at a time and that
listeners are listening at the proper time. The communication for LRUs
integrated into a single system by a bidirectional data bus requires a system
level design for successful operation. If each LRU attempted to independently
satisfy its information requirements, the bus communications would never work.

SAir Data SystemI

O Navigation

DME

SGraphics Processor Displays

FIGURE 2.1-5. AVIONIC SYSTEM USING A BIDIRECTIONAL BUS

Because bus control is much more complex for bidirectional data buses, many
different architectures may be employed for bus control. The two fundamental
approaches in these architectures are central and distributed control. Figure
2.1-6 shows the bus control provided by a central Bus Controller (BC). The BIU
portion of each LRU is explicitly shown.
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Transmitting and
Receiving LRU Receiving LRU

BIU BIU

BIU BIU BIU

Bus Controller

Receiving LRU Transmitting LRU

FIGURE 2.1-6. BIDIRECTIONAL BUS ARCHITECTURE, CENTRAL CONTROL

The main advantage of central bus control is that only one bus component ever
has control of the bus operation. All data bus users can only use the bus as
directed by the BC. The controller can be a tightly coupled system, with
minimal interaction with outside influences. Another advantage is that when the
data bus configuration cb-nges, only the BC must be changed to support the new
configuration. Other 1RUs usually remain unaffected. Furthermore, system
integration issues are necessarily addressed explicitly when the BC is designed.
The main disadvantage of a bus which is centrally controlled is that the BC
represents a single point of failure. Advanced designs attempt to solve this
problem by using redundant controllers and redundant data buses.

Figure 2.1-7 shows a bidirectional data bus that relies on distributed control.
The BIU of each transmitting LRU must recognize when it is its turn to control
the bus. It then transmits its messages and relinquishes control.

Transmitting and
Receiving LRU Receiving LRU

BI/U/BC BIU

BIU I BIU/BC

Receiving LRU Transmitting LRU

FIGURE 2.1-7. BIDIRECTIONAL BUS ARCHITECTURE, DISTRIBUTED CONTROL
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Typically, a bus that uses distributed control has the primary advantage that,
if an LRU controls the bus improperly, the remainder of the bus users can
continue to communicate unaffected. However, distributed control is weak on
the very points that are advantages for central control. Since every BIU is a
BC, bus control must be coordinated among LRUs. Also, changes to the bus
configuration may require a change to every BIU. Distributed control can cause
the designer of a BIU to take a narrow approach, concentrating on bus control
during the window available to the one LRU. System design becomes an indepen-
dent task that must be delegated, rather than an inescapable task, as it is for
central control.

The implications of these architectural variations for the safety of data bus-

integrated systems is discussed in detail in subsequent sections.

2.2 Avionic Data Buses

Currently, three digital data buses predominate in civilian aircraft. One is
used in the large transport aircraft and two in the smaller business and private
GA aircraft.

Transport category aircraft primarily use the unidirectional data bus standard-
ized by ARINC. It is defined in ARINC Specification 429, "Mark 33 DITS" (1990).
Data on the Mark 33 DITS are transmitted, at a bit rate of either 12.5 or 100
kilobits per second, to up to 20 LRUs monitoring the bus messages. Nearly every
transport aircraft has a large network of ARINC 429 data buses connecting
avionics within and between the major systems.

GA aircraft use the unidirectional Commercial Standard Data Bus (CSDB),
developed by the Collins General Aviation Division of Rockwell International,
and the bidirectional Avionics Standard Communications Bus (ASCB), developed by
Honeywell, Incorporated. The bus used in a particular aircraft is determined
by which company the airframe manufacturer chooses to supply the avionics. Both
companies are major contributors to avionics today. However, in 1989, only
about one-third of the GA fleet used guidance and control avionics that likely
used data buses ("Avionics Market Data," 1991).

A CSDB can be either a low- or high-speed bus. Data are transmitted at a bit
rate of 12.5 kilobits per second on a low-speed bus and 50 kilobits per second
on a high-speed bus. Up to 10 receivers can be attached to one bus.

The ASCB is a centrally controlled, bidirectional bus. The basic configuration
consists of one BC directing the operation of two, otherwise isolated, buses.
Each bus can support up to 48 users. Data are transferred at a bit rate of two-
thirds of a megabit per second. LRUs may transmit on one bus and listen to
either bus. This isolation allows less critical systems to receive data from
more critical systems without being able to affect their operation. The BC
synchronizes the activity of the LRUs on both buses. The ASCB pair may also be
fitted with a standby controller whose operation is coordinated with the active
controller.

In military aircraft, one data bus predominates. Since about 1970, military
aircraft have used the MIL-STD-1553 Digital Time Division Command/Response
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Multiplex Date Bus. Because the bus has been used extensively for so long, and

in critical systems, many important lessons have been learned that should be

applied to data buses used in civilian aircraft. This data bus is being fully
relied upon in fly-by-wire aircraft, like the X-29. It has found its way into
civilian aircraft only in isolated cases.

The MIL-STD-1553 data bus is a bidirectional, centrally controlled data bus.

This bus can support 31 users and data are transmitted at a bit rate of 1

megabit per second. Many implementations use it in a dual, fully redundant,

configuration. All activity can be replicated on either bus since each bus is

controlled by identical controllers.

A fiber optic implementation of the MIL-STD-1553 bus has been defined. It is
the MIL-STD-1773 (1983) bus. It has not been used in commercial aircraft.

The predominant data buses in use are summarized in table 2.2-1. These buses

are analyzed in this chapter with regard to their use in integrating digital

systems.

TABLE 2.2-1. CURRENT AVIONIC DATA BUSES

Data Bus Usage

ARINC Specification 429-12, "Mark 33 Digital Air Transport

Information Transfer System (DITS)"

Commercial Standard Data Bus (CSDB) General Aviation

Avionics Standard Communications Bus (ASCB) General Aviation

MIL-STD-1553, "Digital Time Division Command/Response Military

Multiplex Data Bus"

MIL-STD-1773, "Fiber Optics Mechanization of an Military
Aircraft Internal Time Division Command/Response
Multiplex Data Bus"

Some recent experimental air transport aircraft have used a new data bus
developed by the Boeing Commercial Airplane Company (BCAC). The BCAC version
is known as the Digital Autonomous Terminal Access Communication (DATAC) data
bus. This bus has been made an air transport standard under ARINC Specification
629, Part 1 (1990). It will be used in the Airbus 340 and Boeing 777, as well
as iubsequent air transports.

The ARINC 629 bus is a bidirectional bus utilizing distributed control. This
bus can support up to 120 users. Data are transmitted at a bit rate of 2
megabits per second. It supports the higher data rate and large message

18-10



. transfers needed in highly integrated digital systems. It is intended that this
bus will be relied upon in essential and critical systems.

Two other data buses are being developed and standardized, primarily for
military aircraft. They are targeted to be the primary buses used in military
aircraft, replacing the MIL-STD-1553 bus. Because they are very high-speed
buses, they may also find application in civilian aircraft that require a
greater data bus throughput than an ARINC 629 bus can supply. These buses are
the Society of Automotive Engineers (SAE) AS4074.1 Linear Token Passing Bus
(LTPB) and the AS4074.2 High Speed Ring Bus (HSRB). Both transfer data at a bit
rate of 50 megabits per second. They are multi-transmitter buses that operate
under distributed control. Messages can be sent bidirectionally, but not in the
conventional sense.

The LTPB is a linear bus and bus users can either transmit or receive, but
messages are passed in a logical ring. The HSRB is configured in both a
physical and logical ring. Bus users can either transmit or receive, but
messages are passed around the ring until they reach their destination.

The prominent data buses being newly used or developed are summarized in table
2.2-2. These buses are also analyzed in this chapter with regard to their use
for integrating digital systems.

TABLE 2.2-2. NEW AVIONIC DATA BUSES

*Data Bus Usage

ARINC Specification 629, "Multi-Transmitter Data Bus" Air Transport

SAE AS4074.1, Linear Token Passing Bus (LTPB) Military

SAE AS4074.2, High Speed Ring Bus (HSRB) Military

2.3 Aircraft Implementations

This section gives a sample of the mix of data buses and the aircraft in which
they are installed. The list in table 2.3-1 is not comprehensive.
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TABLE 2.3-1. DATA BUSES, LISTED BY AIRCRAFT

Aircraft Data Bus Reference

Airbus A310/A320 ARINC 429 Shaw and Sutcliffe 1988
Clifton

Airbus A330/A340 ARINC 629 ARINC Specification 629

(being developed) Part 3, 1989

Bell Helicopter ARINC 429 Clifton

Boeing 727 CSDB has been used in Rockwell International
retrofits (Collins Division)

Boeing 737 ARINC 429 Clifton

DATAC was retrofitted to Shaw and Sutcliffe 1988
the NASA TSRV 737 Holmes 1986

CSDB has been used in Rockwell International
retrofits (Collins Division)

Boeing 747 ARINC 429 Clifton

Boeing 757 ARINC 429 Shaw and Sutcliffe 1988

Boeing 767 ARINC 429 Shaw and Sutcliffe 1988

Boeing 777 ARINC 629 Bailey 1990
(being developed)

Cessna Citation ASCB FAA, Atlanta ACO

Dassault Falcon 900 ASCB FAA, Atlanta ACO

DeHavilland-8 ASCB FAA, Atlanta ACO

Gulfstream IV ASCB FAA, Atlanta ACO

McDonnell-Douglas DC-8 CSDB has been used in Rockwell International
retrofits (Collins Division)

McDonnell-Douglas MD-11 ARINC 429 Spitzer' 1986
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3. CERTIFICATION PROCEDURES FOR BUS-INTEGRATED SYSTEMS

Certification is tie process of obtaining FAA approval for the design,
manufacture, and/or sale of a part, subsystem, system, or aircraft, by
establishing that it complies with all applicable government regulations. The
purpose of certification is to demonstrate and record that the total aircraft
is suitable and safe for civilian use. The FAA does this by requiring that
aircraft products (aircraft, engines, and propellers) be Type Certificated
(TCed). Major avionic systems that are to be manufactured for use in an
aircraft are certificated individually under an aircraft type certification
program. The requirements for the certification of avionic systems are covered
in the Federal Aviation Regulations (FARs), as follows:

"* Part 21, "Certification Procedures for Products and Parts"

"* Part 23, "Airworthiness Standards: Normal, Utility, and Acrobatic Category
Airplanes"

"* Part 25, "Airworthiness Standards: Transport Category Airplanes"

a Part 27, "Airworthiness Standards: Normal Category Rotorcraft"

"0 Part 29, "Airworthiness Standards: Transport Category Rotorcraft"

"* Part 33, "Airworthiness Standards: Aircraft Engines"

"* Part 91, "General Operating and Flight Rules"

"* Part 121, "Certification and Operation: Domestic, Flag, and Supplemental
Air Carriers and Commercial Operators of Large Aircraft"

"* Part 135, "Air Taxi Operators and Commercial Operators of Small Aircraft"

Data buses, on the other hand, are not explicitly certificated because they have
been viewed simply as the connectors of the systems. Certification procedures
need to be expanded to include reviews and tests for data buses used by digital
systems.

3.1 Types of Certification

There are two approaches to approving an avionic system, depending on whether
the system is an original design or an independent design of a previously
approved product. When a major design effort is required to develop a system,
the integrity of the aircraft into which it will be installed is in question.
Thus, one of two "type certification" processes must be followed to receive a
certificate. For totally new designs, or changes that are so extensive as to
require a complete reinvestigation of the design, the developer must follow the
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process required to obtain a TC for the aircraft. For major changes (as defined
in FAR Part 21, section 93) to a system previously approved under a TC, the
developer can follow a simpler process to obtain a Supplemental Type Certificate
(STC). In either case, after the certificate is issued, the manufacturer may
also obtain a Production Certificate approval to manufacture additional systems,
whose type certification is based on conformity to the type design rather than
tests of each system.

When a manufacturer wishes to produce modification or replacement parts (i.e.,
parts not previously approved by a TC or an STC) for sale or installation on a
TCed aircraft, simpler approvals are sufficient. The manufacturer who holds
the TC or STC for the design can request an amendment to their certificate. A
manufacturer who wishes to produce such a part for an aircraft, but does not
hold the TC or STC, can obtain a Parts Manufacturer Approval (PMA). Such a
second party manufacturer can also apply for a Technical Standard Order (TSO)
Authorization. The FAA publishes TSOs that establish the minimum performance
requirements for such interchangeable parts. Any manufacturer can obtain this
specification and build a part that satisfies it. If the manufacturer is given
a TSO Authorization, the parts may be stamped with the TSO number, showing
compliance with the requirements of the TSO. The parts can then be legally sold
or installed in aircraft. It is the responsibility of the installer to ensure
that they are used in an application that does not exceed performance require-
ments.

The system to be certificated can be a component or several components. It can
be simple or complex. The FARs stipulate which process must be followed in each
case. Although the manufacturer may refer to the FARs to decide which approval
should be sought, often a CE recommends which application the manufacturer
should submit. The authority for determining whether a change constitutes a
modification or a redesign, and whether a redesign is minor or major, rests with
the Aircraft Certification Office (ACO).

By way of example, the all new Boeing 777 is being developed under a TC program.
On the other hand, the FAA has required that the entire fleet of commercial
aircraft (all aircraft that operate under FAR Part 121 rules) be retrofitted
with a Traffic Alert and Collision Avoidance System (TCAS). This system was
developed under STC programs.

Whenever an applicant presents a situation that is not covered by the existing
rules, the ACO can request direction from the Directorate by using an Issue
Paper. The Directorate may need to rule on an issue because the applicant
believes they are in compliance, but the ACO does not. In this case, the
Directorate gives their conclusion on the Issue Paper, sustaining the ACO's
position, overruling the ACO's position, or presenting an alternative position.

The ACO submits an Issue Paper when an applicant claims to provide an equivalent
level of safety by means other than provided in the regulations. If the claim
is substantiated, the FAA Directorate issues a Finding of Equivalent Safety.

An Issue Paper may also be presented when an applicant's design is sufficiently
new that no regulation seems to apply. In this case, the request for action by
the Directorate results in a Special Condition (SC) being issued.
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3.2 Conducting Certification Testing

In th past, to certificate an airplane, inspectors and engineers had to
understand avionics based on analog electronic systems driving mechanical,
pumawtic, and/or hydraulic system. Today's digital systems are more complex.
Data biwes within these systems perform their own functions and could be
considered separate systems, not simply wires. Existing requirements do not
cover the expanded functions that data buses perform.

The environmental tests described in "Environmental Conditions and Test
Procedures for Airborne Equipment" (RTCA/DO-160C, 1989) address electronic

I e--nat tests, such as magnetic effects, voltage spikes, and induced voltages.
These general tests can be performed on any electronic component. For example,
the hRINC 429 bus has been subjected to these tests because it has been used to
coneiet electronic components. While these tests are necessary, they are not
suflolont. Bidirectional data buses require new tests that should be addressed
in 3TCA/DO-17$. The ASCB, for example, allows signals to be both transmitted
and received over the same wire. This two-way communication requires complex
digital electronics to control bus transmissions. BCs, software in the
controllers, and protocols must now be tested.

The FAA relies on the manufacturer to conduct testing. If the FAA adopts new
bus tests, the manufacturer must comply with them. In general, to show
compliance with the FARs, a component must be subjected to environmental tests,
software tests, and failure analyses.

For certificating systems containing data buses, the manufacturer should test
the bus to ensure that it is reliable and performs its intended function. If
the bus relies on a back-up system, it also should be tested.

FAR Part 25, section 1309, shows the objectives the tests are designed to meet
for transport category airplanes. The airplane systems and associated
components considered separately and in relation to other systems must be
designed to ensure that the following conditions are met:

"* The occurrence of any failure condition which would prevent the continued
safe flight and landing of the airplane is extremely improbable.

" 7he occurrence of any other failure condition which would reduce the
capability of the airplane or the ability of the crew to cope with adverse
operating conditions is improbable.

For electrical systems and equipment design (and thus for the subset of digital
avionic systems containing data buses) critical environmental conditions must
be considered. Digital avionic equipment must comply with this section, unless
the equipment is already covered by TSOs that include environmental test
procedures and test designs for meeting the two requirements above.

Section 4 addresses related standards for testing, as provided in the Advisory
Circulars (ACs) and SCs published by the FAA. These documents address testing
for lightning and High Intensity Radiated Frequency (HIRF) susceptability.
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3.2.1 Approaches to Bus Reliability

For certificatLng systems that will be used for flight-critical functions,
designers can take one of two approaches. The first approach, "safe-life,"
mans the component is designed to keep its strength and integrity throughout
its life. The second method, "fail-safe," means safety is assured by having a
redundant or back-up part that will work if the first component fails (12RroxiUn
Aircraft Safety, 1980).

The fail-safe approach has been adopted for digital avionic systems containing
data buses. Because of the risk of applying complex technology to critical or
essential functions, data buses used to support either category usually consist
of a pair of redundant buses, and the entire digital system has a back-up.

In the Gulfstream IV airplane, for example, the ASCB ties together a sophisti-
cated navigation system that drives navigation displays and provides steering
inputs to a digital autopilot. The ASCB is controlled by redundant BCs
(Jennings 1986). For this aircraft, the controllers are built into the two
fault warning computers. By design, if one computer fails the other takes
control, so the system still operates correctly. The entire digital system is
backed up by an electromechanical system.

Eventually, if redundancy can ensure that the probability of an unsafe event
occurring is acceptable (not greater than 1xl0" for critical functions), digital
systems may supersede older ones and may not need mechanical back-ups. In the
new F-16C and F-16D, the current Advanced Fighter Technology Integration F-16's
triple-redundant digital computers, each with analog back-up, will be replaced
by quadruple-redundant digital computers (Spitzer' 1986) without back-up. Pilots
will rely solely on the digital systems in the cockpit. Hence, redundancy
becomes more important, and testing the redundant systems to ensure that they
will operate as intended becomes critical.

3.2.2 Testing Data Buses

A manufacturer who plans to use an existing data bus differently, or would like
to certificate equipment that uses a new bus, should thoroughly document any new
tests. For example, while the ASCB has been in the field for over a decade, it
has not been used on flight-critical systems. Also, in many cases, it has not
been used to its fullest capability, i.e., bidirectionally. This function may
need to be tested during integration testing. When no regulations and standards
"exist to create the tests, the manufacturer must devise them and submit them in
the test plan.

As data buses are being designed to carry more functions than in the past,
low-level considerations, such as the message formats, become important. Also,
depending on the architecture of the data bus, other components may need to be
tested. For example, National Semiconductor is developing a bus controller
Integrated Circuit (IC) that will be installed in the BIU of an ARINC 629 data
bus user. The controller interfaces a linear, serial bus with a parallel,
16-bit subsystem bus. The manufacturer must develop tests for the IC using
RTCA/DO-178A and RTCA/DO-160C for guidance. In addition to normal factory tests
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of the IC, the ARINC 629 BIU, data buses, and connected equipment should all be

tested as a system at a validation or simulation facility.

3.3 Certification Concerns

The TSO Authorization method of approving components was developed to allow
manufacturers to substitute equivalent components "off-the-shelf" without
Jeopardizing the existing TC. Since a TSO Authorization request must be
processed within 30 days and does not require integration testing, manufacturers
use this method rather than Type Certification whenever possible.

In the days of simpler aircraft design, TSO Authorizations were adequate. Now,
however, digital avionics systems are more complex and require involved
integration testing procedures. In some cases, if a manufacturer substitutes
one black box for another (by using the TSO method), the FAA risks having a
system certificated with potential safety risks. While the new black box may
function perfectly in a laboratory setting, it may not have the required
protocol to interact effectively with the rest of the digital system. Hence,
this failure could result in a system failure.

To improve the TSO approval process. ACOs are becoming more involved in
approving new digital systems. They are reviewing Verification and Validation
(V&V) plans for TSO packages, and are working more closely with the manu-
facturers. The ACOs are suggesting that system integration test plans be
required for substitutions in integrated digital systems. Additionally,
sections of RTCA/DO-178A addressing certification issues are being rewritten top address these integrated systems.

As data buses become more complex, the manufacturer must ensure that the data
bus will function as intended within its operating environment. Manufacturers'
validation facilities will play a greater role in establishing the requirements
for integration testing, since the functions of digital avionic systems will be
simulated there. The certification requirements will expand for such systems
to reflect the FAA's concern that they safely perform their functions once the
systems are installed in an aircraft.
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4. RELATED REGULATIONS AND STANDARDS

The CE's job has become more complex due to rapid growth in the microelectronics
industry. Breakthroughs in hardware and software technology have made it
difficult for CEs to determine what avionic data bus standards are permissible.
For example, the CE must ensure that both the data bus and the method for
testing the bus (e.g., simulation, fault analysis) meet predetermined regula-
tions.

Because few specific certification procedures exist, the CE has only a general
approach for certificating new and upgraded digital data buses. As a result,
the CE must consult many sources for certification information.

Fortunately, associations like the American Institute of Aeronautics and
Astronautics (AIAA) and the Institute of Electrical and Electronics Engineers
(IEEE) hold conferences and produce publications addressing certification
issues. These publications often state requirements that a specific data bus
should meet. Other articles presented by aircraft associations list standards,
guidelines, and test procedures which may be adopted by individual manufacturers
or federal agencies.

ARINC and the General Aviation Manufacturers Association (GAMA) publish data bus
standards. They include descriptions of specific bus topologies and protocols.
Subcommittees within these associations often publish guidelines that an avionic
system manufacturer can follow, like ARINC Project Papers 617 (1990) and 651
(1990). Although these two guidelines have not been formally accepted by the
FAA and are currently in draft form, manufacturers may refer to them for
guidance during a system's design process.

Associations like the SAE and RTCA publish analysis and test procedures. They
address failure analyses (SAE Aerospace Recommended Practice [ARP] 1834) and
environmental testing (RTCA/DO-160C). These procedures are used by manufac-
turers to demonstrate their system's reliability and functionality.

Before the above standards are applied in certification, they are compared with
federal regulations. The only regulations applicable to digital data buses and
integrated avionic systems are the FARs, ACs, and SCs. The relevant FARs are
Parts 23, 25, 27, 29, and 33, while ACs and SCs are means of showing compliance
with the FARs.

4.1 Relevance of Formal Guidelines to Bus-Integrated Systems

The following sections present FARs applicable to the certification of data
buses and integrated avionic systems. Additional FAR sections, which address
HIRF requirements, are forthcoming. When they take effect, they should also be
considered. ACs and SCs, and their relationship to the FARs, are then
discussed.
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4.1.1 Bus-Integrated Avionic Systems and Federal Aviation Regulations

FARs are published by the U.S. Government to regulate civil aviation activities.
They range from Part 1, "Definitions and Abbreviations," to Part 189, "Use of
Federal Aviation Communication Systems." Each FAR part is separated into
sections. Within some of these sections are rules that avionic system
manufacturers must follow during a system's design process.

Whether the system is used in an airplane or rotorcraft will determine which of
the sections the system must satisfy. For example, if an avionic system is to
be put in a normal category rotorcraft, it must satisfy FAR Part 29, section
1309. On the other hand, if a system is to be installed in a transport category
airplane, it must satisfy FAR Part 25, section 1309. Table 4.1-1 shows which
sections within these FARs should be considered during an avionic system's
certification. Additional sections, which address HIRF requirements, are
forthcoming. When they take effect, they should also be considered.

TABLE 4.1-1. FEDERAL AVIATION REGULATIONS APPLICABLE
TO DIGITAL AVIONIC SYSTEMS

Regulation Title

FAR 23.1309 Equipment Systems and Installations

FAR 23.1431 Electronic Equipment

FAR 25.581 Lightning Protection

FAR 25.1309 Equipment Systems and Installations

FAR 25.1431 Electronic Equipment

FAR 27.610 Lightning Protection

FAR 27.1309 Equipment Systems and Installations

FAR 29.610 Lightning Protection

FAR 29.1309 Equipment Systems and Installations

FAR 29.1431 Electronic Equipment

FAR 33.75 Safety Analysis

FAR 33.91 Engine Component Tests

FAR Parts 23, 25, 27, and 29, section 1309, require that systems and equipment
be designed to perform their intended functions under any foreseeable operating
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. conditions. These sections also address failure conditions by defining how many
failures are allowed throughout a specified time period. A failure is any
condition that could inhibit the continued safe flight and landing of the
aircraft. As stated in section 23.1309:

"The occurrence of any failure condition that would prevent the
continued safe flight and landing of the aircraft must be extremely
improbable,"

and

"the occurrence of any other failure condition that would reduce the
capability of the aircraft or the ability of the crew to cope with
adverse operating conditions is improbable."

An AC provides the failure rates for these requirements. Extremely improbable
failures have a probability of lxlO-' or less. Improbable failures have a
probability of 1xl0 5" or less, but greater than 1xlO'.

FAR Parts 25 and 29, section 1309, state similar requirements for their related
aircraft. FAR Part 27, section 1309, however, does not go into as much detail;
this section merely states that "the equipment, systems, and installations of
a multi-engine rotorcraft must be designed to prevent hazards to the rotorcraft
in the event of a probable malfunction or failure," and "equipment, systems, and
installations of a single-engine rotorcraft must be designed to minimize hazards
to the rotorcraft in the event of a probable malfunction or failure."

These requirements have a direct impact on the design of data buses and avionic
equipment because the manufacturer must develop a scheme to satisfy them.
Usually, manufacturers employ laboratory, ground, flight, and simulator tests
to meet section 1309.

FAR Parts 23, 25, 27, and 29, section 1309, also contain short statements of how
to comply with certain requirements in those FARs. Section 25.1309 states that
one must use environmental tests to evaluate the electrical system's design and
installation, except when the component is authorized under a TSO. Part 23 also
states that environmental testing must be used for compliance, and additional-
ly, that it should include analyses for radio frequency (RF) energy and
lightning effects. In addition to environmental, laboratory, ground, flight,
and simulator tests, manufacturers can show compliance by referencing previous
comparable service experience on other aircraft.

FAR Parts 23, 25, and 29, section 1431, discuss requirements for electronic
equipment. In sections 23.1431 and 29.1431, the requirements deal strictly with
radio communication and navigation systems. FAR section 25.1431, however,
discusses radio and electronic equipment. This particular section says that
"radio and electronic equipment, controls, and wiring must be installed so that
the operation of any one unit or system of units will not adversely affect the
operation of any other radio or electronic unit, or system of units".

FAR Part 25, section 581, also must be considered during the avionic system

design process. It expresses a need for lightning protection, and is more
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specific than FAR Part 23, section 1309. Part 25, section 581, states that
equipment should be designed so that a lightning strike will not endanger the
aircraft. It also suggests eliminating the threat of lightning damage by
diverting the electrical current. FAR Parts 27 and 29, section 610, describe
lightning requirements for transport and normal category rotorcraft. Both parts
recount the same requirements as FAR Part 25, section 581.

Electronic Engine Controls (EECs) using data buses are addressed differently.
FAR Part 33, section 75, requires a safety analysis to determine that no
probable failure or improper operation of an engine can cause an engine to catch
fire, burst, generate excessive loads, or lose its ability to be shut down.
EECs certainly require this analysis. Furthermore, section 33.91a requires
additional tests for those components for which reliable operation cannot be
adequately substantiated by the endurance tests of section 33.82. The FAA has
followed the recommended Notice of Proposed Rulemaking, No. 85-6 (1985), as
guidance for the safety analysis and tests of EECs, including Full Authority
Digital Electronic Controls.

All systems which employ data buses and avionic equipment are subject to these
requirements. However, no test or design procedures for data buses or
integrated avionic equipment are directly mentioned in the FAR sections listed
in table 4.1-1.

4.1.2 Bus-Integrated Avionic Systems and Advisory Circulars

To assist the manufacturer in meeting the requirements of certain FAR sections,
the FAA publishes ACs. ACs address specific sections of the FARs, and "describe
various acceptable means for showing compliance" with the FARs (AC 25.1309-IA,
1988). The ACs are not mandatory; manufacturers may opt to meet the FARs by
different means. This decision, however, requires that the manufacturer's
techniques be validated by the FAA.

Table 4.1-2 shows ACs which may be used to help manufacturers comply with the
FAR sections listed in table 4.1-1. A new AC is being developed which is also
of interest: AC-XX-XX, "Certification of Aircraft Electrical/Electronic Systems
for Operation in the High Intensity Radiated Fields (HIRF) Environment" (1991).
A user's manual will accompany the AC ("User's Manual for AC-XX-XX," 1992). A
similar user's manual is being developed for AC-20-136.

AC 20-115A describes how RTCA/DO-178A is used in connection with TSO, TC, and
STC authorizations. The AC says that since future avionic equipment will rely
heavily on software and microcomputer techniques, a manufacturer may use
RTCA/DO-178A to secure approval of computer software. The AC also says that if
other ACs, which better outline the relationship between the criticality level
and the software level, are published by the FAA, those ACs take precedence over
RTCA/DO-178A. RTCA/DO-178A's primary use is to satisfy FAR Parts 21, 23, 25,
27, 29, and 33.
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TABLE 4.1-2. ADVISORY CIRCULARS APPLICABLE
TO DIGITAL AVIONIC SYSTEMS

Advisory Circular Title

AC 20-i15A RTCA/DO-178A

AC 20-136 Protection of Aircraft Electrical
and Electronic Systems Against the
Indirect Effects of Lightning

AC 21-16C RTCA/DO-160C

AC 23.1309-1 Equipment, Systems, Installations
in Part 23 Airplanes

AC 25.1309-IA System Design and Analysis

To help manufacturers satisfy all FAR Parts that address the need for lightning
protection, AC 20-136 was published, and an accompanying user's manual is under
development. The AC describes how a manufacturer can cope with the hazards
inherent in a lightning environment. Methods pointed out by the AC include the
following:

* a Determining the lightning strike zones for the aircraft

6 Establishing the external lightning environment for the zones

W Establishing the internal lightning environment

2 Establishing transient control and design levels

Manufacturers who wish to achieve compliance with the FAA's lightning require-
ments should begin by submitting a certification plan to the appropriate ACO.
An outline and explanation for the lightning effects certification plan are
presented on pages 5, 6, and 7 of AC 20-136. Once the plan is approved, the
manufacturer may begin analysis. Since RTCA/DO-160C contains test criteria for
evaluating the indirect effects of lightning, it may be employed in this step.

AC 21-16C describes how RTCA/DO-160C is used in conjunction with TSO authoriza-
tions. RTCA/DO-160C describes environmental test procedures that can be used
to satisfy AC 25.1309-lA and AC 23.1309-1. RTCA/DO-160C also satisfies criteria
presented in FAR Part 25, section 1309. Since data buses and related digital
equipment are sometimes certified within a TSO, this document can be applied
during a certification procedure. No procedures or guidelines are pointed out
in this document; it only states that RTCA/DO-160C should be considered.
AC 25.1309-IA describes design procedures and failure analyses for meeting the

requirements of FAR section 25.1309. Techniques such as redundancy, isolation,
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and error tolerance improve the safety of the system (more techniques are listed
on page 3 of the AC). Usually, at least two of these techniques are needed.
Also included in AC 25.1309-1A is the FAA's Fail-Safe Design Concept, as
follows:

"In any system or subsystem, the failure of any single element,
component, or connection during any one flight should be assumed.
Such failures should not prevent continued safe flight and landing,
or reduce the capability of the airplane or crew to cope with the
resulting failure conditions." (AC 25.1309-lA, 1988).

Examples of failure condition analysis and design procedures are provided in
appendix A of the technical report, Avionic Data Bus Integration Technology
(Elwell et al. 1992).

The ultimate goal of AC 25.1309-1A is to ensure that all failure conditions for
all systems are considered. AC 23.1309-1 discusses similar, scaled down
procedures for meeting the requirements in FAR Part 23, section 1309.

4.1.3 Bus-Integrated Avionic Systems and Special Conditions

Requests for SCs are submitted to the FAA in accordance with FAR Parts 11 and
21. One purpose of an SC can be to supplement the FARs when the FARs do not
explicitly define adequate safety measures for "novel and unusual design
features on aircraft" (SC 23-ACE-49, 1990). This section does not discuss why
SCs are adopted; it merely states what an SC is and gives examples of SCs which
have been applied to integrated avionic equipment. SCs for one aircraft can be
considered for another aircraft, if the other aircraft uses similar components
or systems.

SCs which are published for integrated avionic systems usually do not mention
data buses. However, because data buses can be a part of the system that
requires the SC, buses are implicitly subject to the SC's criteria.

SC 25-ANM-35 (1990) includes two special conditions, each with two subparts,
that concern the McDonnell-Douglas MD-11 aircraft. Following is a summary of
each subpart:

* Lightning

Each electronic system that performs flight-critical functions must be
designed and installed to ensure that the operation of these functions is
not affected when the airplane is exposed to lightning.

Each essential function, carried out by new or modified electronic
equipment, must be protected to ensure timely recovery of the function
after a lightning strike.

Systems that perform essential functions must be protected to ensure that
failures, due to a lightning strike, will not result in an unacceptable
cockpit crew workload.
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• Protection from Unwanted Effects of RF Fields

Electronic systems that perform flight-critical functions must be designed
and installed to ensure that the operation of these functions is not
adversely affected when the airplane is exposed to High Energy Radio
Frequency (HERF) fields.

SC 25-ANM-35 is meant to supplement the FARs because the FARs do not contain
adequate safety standards for protection from lightning and the unwanted effects
of RF fields.

To meet the requirements of SC 25-ANM-35, the MD-11 must undergo specific
analyses for lightning and RF fields. (One such analysis is presented in
RTCA/DO-160C, section 22.) A need for lightning effects analysis is pointed
out in FAR Part 23, section 1309.

The subparts of SC 25-A1M-35, discussed above, can be indirectly applied to data
buses. If the bus were to be exposed to lightning effects or RF fields it could
lose data, produce erroneous data, or fail completely. The bus could also act
as a path for current, and that current could adversely affect LRUs connected
to the bus.

SC 23-ACE-49 (1990) is similar to SC 25-ANM-35, and is published on the SOCATA
Model TBM-700 Series aircraft. The TBM-700 aircraft is required to meet SC
23-ACE-49 because it contains an Electronic Attitude Director Indicator and an
Electronic Horizontal Situation Indicator, in place of the original mechanical. and electromechanical displays. SC 23-ACE-49 contains the same special
conditions as SC 25-ANM-35, but adds a special condition which requires failure
analysis.

SC 23-ACE-49 amends the FARs on the installation of electronic displays which
could be adversely affected by a single failure or malfunction. It also
provides requirements for verifying that these flight-critical systems are
adequately designed.

This SC is similar to the one issued for the MD-11 airplane. The following
special conditions are issued as part of the type certification basis for the
SOCATA TBM-700 airplane:

* Electronic Flight Instrument Display (EFID)

The systems using EFIDs must be examined separately, and in relation to
other airplane systems, to 'determine if the airplane is dependant on the
system's function for safe flight and landing. If so, the system must
satisfy the following requirements (SC 23-ACE-49, 1990):

"It must be shown that there will be no single failure or probable
combination of failures under any foreseeable condition that would
prevent the continued safe flight and landing of the airplane, or it
must be shown that such failures are extremely improbable."
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"It must be shown that there will be no single failure or probable

combination of failures under any foreseeable condition that would
significantly reduce the capability of the airplane or the ability of
the crew to cope with adverse operating conditions, or it must be

shown that such failures are improbable."

- "Warning information must be provided to alert the crew to unsafe
system operating conditions and to enable them to take appropriate
corrective action. Systems, controls, and associated monitoring and
warning means must be designed to minimize initiation of crew action
that would create additional hazards."

Electronic Flight Instrument System (EFIS) Lightning and HERF Protection

"Each system that performs critical functions must be designed and
installed to ensure that the operation and operational capabilities
of these critical functions are not adversely affected when the
airplane is exposed to: (1) lightning and (2) high energy radiated
electromagnetic fields external to the airplane."

"Each essential function of the system must be protected to ensure
that the essential function can be recovered after the airplane has
been exposed to lightning."

The descriptions above show how integrated digital avionic systems can be
addressed by SCs. They also show how guidelines like RTCA/DO-160C could be used
to satisfy the SCs, and indirectly, FAR Parts 23, 25, 27, and 29, section 1309,
as well as FAR Part 33, sections 75 and 91.

4.2 Relevance of Informal Guidelines to Federal Regulations

This section shows what documents are used by data bus and integrated avionic
equipment manufacturers to meet the requirements of FAR Parts 23, 25, 27, and
29, section 1309. For the purpose of this section, these documents are termed
"informal guidelines."

The FAA has informally adopted RTCA/DO-160 as a means of complying with the
environmental requirements of FAR Parts 23, 25, 27, and 29, section 1309. For
example, in 1978, systems using the ARINC 429 data bus were submitted to the
tests in RTCA/DO-160A. Today, systems that use the ARINC 429 bus are still
subject to RTCA/DO-160, now called RTCA/DO-160C. Integrated systems and data
buses that need to satisfy FAR Parts 23, 25, 27, and 29, section 1309, usually
meet the requirements in RTCA/DO-160C.

If a data bus or an avionic system involves software, the software can be
validated using the procedures in RTCA/DO-178. RTCA/DO-178 was published in
1982 specifically for the purpose of assisting with certification of complex
avionic software. It was updated in 1985 and renamed RTCA/DO-178A. Again, data
bus software and avionic software are usually submitted to the procedures in
RTCA/DO-178.
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* Another informal guideline is the SAE's ARP 1834. It defines fault and failure
analysis (F/FA) techniques for digital hardware. Since digital systems are
fault prone, the FAA has decided that fault analysis should be employed during
the certification process. FAR Parts 23, 25, 27, and 29, section 1309, and AC
25.1309-1A express the need for fault analysis, and ARP 1834 has provided a
means for conducting such an analysis.

Even though FARs do not specifically mention these informal guidelines, their
procedures are useful to manufacturers during the design of their systems.
These informal guidelines address the appropriate regulations and have been well
researched by organizations such as ARINC, SAE, and the FAA. Manufacturers may
use the informal guidelines to evaluate complex parts within their systems, like
data buses and their associated circuitry.

A data bus system must undergo many tests and analyses to meet the FARs. These
tests are designed to ensure integrity and quality; help define redundancy and
back-ups; help isolate systems, components, and elements; verify reliability;
meet designed failure effect limits; and define error tolerance. Any document
that addresses tests of this nature may be used as an informal guideline to
satisfy the FARs. These include RTCA/DO-160, RTCA/DO-178A, and SAE ARP 1834.

4.2.1 Radio Technical Commission for Aeronautics DO-160C

Electromagnetic Emission and Susceptibility (EES) tests are conducted in
accordance with RTCA/DO-160 to determine if certain waveforms are maintained in
an electromagnetic interference environment. These tests were initially needed
to satisfy AC 25.1309-IA, which describes a means of complying with FAR section
25.1309. With the addition of section 22, the tests also address the require-
ments of AC 20-136. EES testing should prove that certain environmental
conditions which can adversely affect the aircraft will not cause single-point
failures.

There are four sections in RTCA/DO-160C that may be used to satisfy FAR Parts
23, 25, 27, and 29, section 1309, and FAR Part 33, sections 75 and 91: Section
19, "Induced Signal Susceptibility," Section 20, "Radio Frequency Susceptibility
- Radiated and Conducted," Section 21, "Emission of Radio Frequency Energy," and
Section 22, "Lightning Induced Transient Susceptibility." Each section, and the
tests contained therein, is described in Elwell et al. (1992). Although these
tests can be used, others may be developed. Any other test should yield results
that parallel RTCA/DO-160C, section 1, "Applicable Equipment Performance
Standards." Further information about EES tests can be found in RTCA/DO-160C,
or acquired from RTCA Special Committee 135.

4.2.2 Radio Technical Commission for Aeronautics DO-178A

Avionic systems that utilize software should be subjected to the procedures in
RTCA/DO-178A, "Software Considerations in Airborne Systems and Equipment
Certification." This document was developed by the European Organization for
Civil Aviation Electronics, Working Group 12, and helps satisfy the FARs and
ACs. RTCA/DO-178A presents procedures which verify that software failures in
digital equipment and systems will not affect the aircraft in which they are
installed. RTCA/DO-178A also shows specific methods and techniques to help the
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designer with software design, testing, configuration, and documentation.
Alternative methods for complying with RTCA/DO-178A can be used if the
manufacturer shows that the techniques are parallel to the ones in RTCA/DO-178A.

It is beyond the scope of this paper to explain every aspect of RTCA/DO-178A.
This section only covers procedures which can be used with FAR Parts 23, 25, 27,
and 29, section 1309, and their associated ACs, AC User's Manuals, and SCs, as
well as FAR Part 33, sections 75 and 91. The procedures are discussed below;
only a brief description of each is provided since most are system dependant.

4.2.2.1 Developing a System which is Software Based

Two steps should be followed when defining a system that is to be certified and
is software based. First, establish the system's criticality category; second,
translate the criticality category to the software level.

To determine a system's criticality category, the manufacturer should assess the
system's application and all failures which could result from a system
malfunction. Flight-critical, flight-essential, and flight-nonessential are
the accepted categories. A system is defined by its most critical function.
The manufacturer may use simulations, similarity tests, ground and flight tests,
and/or other appropriate methods to ascertain this information.

Software levels adopted by RTCA/DO-178A are Levels 1, 2, and 3. Generally,
Level 1 corresponds to software used in flight-critical functions, Level 2 to
that in flight-essential functions, and Level 3 to flight-nonessential
functions. Once the software level is established, system development can
begin.

System development begins with extracting the software requirements from the
system requirements. This involves defining what the software should do, rather
that how it should do it. Since this section of the development process is
unique to the system, the manufacturer must be sure that the system requirements
are well understood.

After software requirements are extracted and defined, software development can
continue. See RTCA/DO-178A, section 5, for more information.

4.2.2.2 Software Development, Verification, and Validation

Once the software requirements are established, the manufacturer should develop,
verify, and validate the system's software. The first part of this procedure
requires that the manufacturer submit a software development plan to the
regulatory agency. The plan should define the software functions; the
criticality of each function and software level; hardware and software
interfaces; microprocessor characteristics; built-in test (BIT) and monitoring
requirements; what functional losses could occur as a result of software
failure; and timing, test, and partitioning requirements (RTCA/DO-178A, 1985).
An approach to help formulate the software development plan is shown in
RTCA/DO-178A, figure 6-1.
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* After the software is developed according to the approved plan, the manufacturer
can begin to verify the software through testing. Discussed in RTCA/DO-178A are
module tests, module integration tests, and hardware and software integration
tests. Because these tests can be lengthy and are all system dependent, only
an explanation of module testing is provided below. Module integration testing,
hardware and software integration testing, and assurance of each are described
on pages 24 through 30 of RTCA/DO-178A.

Module tests include logic and computation tests which verify that the module
performs its intended function. Logic testing is used to detect illogical
sequences and constructs. Typical errors that logic tests detect are halted
execution, executions trapped in a loop, incorrect logic decisions, lack of
logic to handle certain input conditions, and missing input data.

Computation tests are used to detect errors. The errors can appear in a
computational sequence or numerical algorithm. A computational test may
consider an algorithm's reaction to data within a specified range, data outside
a specified range, and data that is on the border of a specified range. For
example, an altitude-measuring algorithm may produce results based on digital
data from a flight computer. If, for some reason, the algorithm receives data
that is not within the specified range, should the algorithm assume a zero value
or should the algorithm repeat its function again with the next data? These are
typical questions which a computational test should address.

Many types of computational tests can be selected since they are dependant on
the system's parameters. It remains the responsibility of the manufacturer to

* properly define and execute these tests.

For flight-critical systems, all verification results must be retained and all
problems logged. For flight-essential systems, only a Statement of Compliance
is required as a summary of the verification process. No documentation is
required for nonessential systems.

Once a system's development and verification tests are complete, the system's
validation may begin. System validation usually includes an evaluation and
testing process, and may be done in accordance with system verification and
development testing. System validation should demonstrate the following:

"* System requirements comply with the appropriate regulations. (This can be
confirmed by simulations or environmental and performance analyses.)

" The system functions properly under adverse operating and failure
conditions.

As with system development and verification, system validation will vary in
complexity and extent depending on the system's characteristics and criticality
category.

4.2.2.3 Software Configuration Management and Software Quality Assurance

Systems involving software must also undergo Software Configuration Management
(SCM) and Software Quality Assurance (SQA). These methods describe how to
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improve identification, control, and auditing of software. SCM and SQA methods
in RTCA/DO-178A are drawn directly from proven methods of hardware control.

As with software verification, SCH requires the use of an SCM plan. This plan
may be part of the overall SQA plan. The SCM plan includes a description of how
SCM will be implemented and followed throughout the system's certification
process. It should further discuss how SCM will be applied during the service
life of the equipment.

The SCH should include documentation, identification, and change control and
status accounting. Documents which satisfy the documentation part of the SCM
are included in RTCA/DO-178A, section 8.

The SQA plan should identify and evaluate quality problems and ensure corrective
action (RTCA/DO-178A, 1985). An SQA plan should include the purpose; quality
assurance functions; documentation; policies, procedures, and practices; reviews
and audits; configuration management; medium control; testing; supplier control;
and appropriate records. A brief description of each is provided on pages 39
and 40 of RTCA/DO-178A.

SCM and SQA procedures are interrelated. Therefore, their plans should be
coordinated to eliminate unnecessary redundancy. The procedures outlined above
are fully explained in RTCA/DO-178A.

4.2.3 Society of Automotive Engineers ARP 1834

Failure analysis on data buses and integrated avionic equipment can be
accomplished using procedures in ARP 1834, "Fault/Failure Analysis for Digital
Systems and Equipment" (1986). The need for failure analysis techniques is
pointed out in AC 25.1309-IA and FAR Parts 23, 25, 27, and 29, section 1309, and
is implied by FAR Part 33, section 75. ARP 1834 has been adopted as an informal
guideline for meeting these requirements. ARP 1834's analyses are specifically
meant to identify digital equipment hardware faults.

ARP 1834 is not an exhaustive or universally accepted method for applying F/FA.
It is used merely to present cost effective, industry acceptable means for
identifying failure modes and failure effects.

Manufacturers who wish to use ARP 1834 as a certification guideline should
discuss their reasoning with the regulatory agency early in the process. This
is because variations of approaches presented in ARP 1834 will need to be
employed under different circumstances. For systems that are flight-critical
or flight-essential in nature, one approach might be to develop design
techniques for a fault tolerant system. Design techniques most often employed
in this situation are as follows:

" Similar or dissimilar redundancy, signal consolidation, and hardware
functional partitioning.

"* Fault detection and isolation that uses comparison monitoring of redundant
elements, along with in-line tests, monitoring, and reasonableness checks.
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Fault response with system reconfiguration and shutdown, and operational

mode changing.

It is the system designer's responsibility to establish the system's objective.

When selecting an F/FA, one must decide whether to employ a top-down or
bottom-up approach. The top-down approach begins at the system level and
proceeds down to the component design. Here, the failures that produce a
particular system malfunction effect can be found (SAE ARP 1834, 1986). Fault
Tree Analysis (FTA) is an example of the top-down approach.

The bottom-up approach begins at the part or component level, and moves upward
to the system level. This allows failure effects on the next higher level to
be identified. Failure Mode and Effects Analysis (FMEA) is an example of the
bottom-up approach.

Other factors that help the manufacturer select an F/FA approach are furnished
on page 14 of ARP 1834. Descriptions, as well as applications to top-down and
bottom-up approaches, are provided. For evaluating flight-critical or
flight-essential functions, both top-down and bottom-up approaches should be
used.

Certifying a digital avionic system for flight-critical or flight-essential
operation could require an F/FA such as FTA and FMEA. This is pointed out in
ARP 1834, but procedures for FTA or FMEA are not given. Section 5.4 of this
chapter describes these methods in detail, as well as chapter 3 (Curd 1989) of.this handbook. Also, MIL-STD-1629A presents steps for a military FMEA, from
which procedures can be drawn to satisfy AC 25.1309-lA.

ARP 1834 points out basic methods of F/FA, including analyses of digital,
processor-based systems. Pages 30 through 37 of ARP 1834 show a detailed F/FA
procedure for these systems. Special methods include fault insertion using
hardware, emulation, and computer simulation. Also, appendices A, B, and C of
ARP 1834 contain examples of top-down, bottom-up, and emulation F/FA approaches,
respectively.

4.3 Relevance of Manufacturer Testing to Federal Regulations

Most every manufacturer who produces data buses or integrated avionic equipment
follows RTCA/DO-160, and forms of RTCA/DO-178 and SAE ARP 1834. This is because
the FAA has dubbed them "acceptable means for showing compliance" with the FARs
(AC 25.1309-lA, 1988). When manufacturers run across something that has not
been addressed in the informal guidelines, they must develop their own
validation techniques to show compliance. These validation techniques are
usually chosen to satisfy FAR Parts 23, 25, 27, and 29, section 1309, as well
as FAR Part 33, sections 75 and 91.

This process was followed for the ARINC 429 data bus. Environmental tests on
the original bus were conducted by the BCAC in accordance with RTCA/DO-160A.
In addition to the test procedures in RTCA/DO-160A, BCAC conducted other tests
on the bus's components. This was necessary because RTCA/DO-160A did not
address all aspects of the data bus. The tests are outlined in ARINC Specifica-
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tion 429-12. Honeywell's Sperry Commercial Flight Systems Group and Rockwell's
Collins Division (both in conjunction with GAMA) have adopted similar procedures
for the CSDB and ASCB, respectively.

Other tests (like those performed by BCAC) are developed to address bus
requirements that the informal guidelines miss. For the purpose of this
section, these tests are broken into two categories: external and internal.
External tests could be either laboratory tests or computer simulations, while
internal tests are used by components to check themselves (e.g., verify data
words, labels, or characters). Internal tests include monitoring, error
detectior, and synchronization, and may go down to the bit level.

External and internal tests are not defined by the FARs, but are considerations
that help ensure that the bus performs its intended function. Without them the
bus may still function, but its integrity would be significantly decreased.

The following four sections discuss how the informal guideline tests and these
manufacturer's tests are applied to avionic data buses. Because there are many
of these tests, and some are proprietary to the manufacturer, only brief
discussions are provided.

4.3.1 ARINC 429 Data Bus

The ARINC 429 bus is a digital broadcast data bus made up of a transmitter,
receivers, and wire. It was developed by the Airlines Electronic Engineering
Committee's (AEEC) Systems Architecture and Interfaces (SAI) subcommittee. The
AEEC, which is sponsored by ARINC, released the first publication of ARING
Specification 429 in 1978. At that time, the specification contained the basic
philosophy of the bus, as well as data transfer and format characteristics.

Included in the original specification were tests of the bus and its interface
circuitry. Environmental testing was conducted in accordance with RTCA/DO-160
(this was the only informal guideline in this section that the ARINC 429 bus
satisfied). The ARINC 429 bus also underwent external tests such as receiver
data detection techniques, laboratory tests, and computer simulations to prove
that the bus was fully operational.

Laboratory tests and computer simulations were used to assess pulse distortions
on the data bus. For the laboratory tests, the bus was configured with Number
20 American Wire Gauge cable in a typical Boeing 747. A pulse was generated by
an ARINC 429 bus transmitter and viewed at the outputs of the transmitter and
at a receiver. The results were viewed with an oscilloscope. Computer
simulations modeled the whole bus, with the bus's model being drawn from the
wire characteristics. The computer simulation included analyzing voltage
waveforms and transmitter impedance. More detailed descriptions of these tests
are provided in appendix 1 of ARINC Specification 429-12.

Internal tests are done by the bus on itself (these are included in ARINC
Specification 429-12). The tests include data word counts, parity checks, and
cyclic redundancy checks (CRCs).
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S• Word counts are used by ARINC 429 LRUs to verify that the number of words at
the receiver is the number of words expected. If the number of words does not
match, the receiver notifies the transmitter within a specified amount of time.

Parity checks use one bit of the 32-bit ARINC 429 data word. Odd parity was
chosen as the accepted scheme for ARINC 429-compatible LRUs. If a receiving LRU
detects odd parity in a data word, it continues to process that word. If the
LRU detects even parity, it ignores the data word. (Parity checks are described
in detail in section 5.1 of this chapter).

CRCs are used by ARINC 429 LRUs to verify groups of data words or data strings.
A description of the CRC is given in section 5.1.

This section described how some external and internal tests were used to verify
the ARINC 429 bus's operation, and, indirectly, satisfy FAR Parts 23, 25, 27,
and 29, section 1309. Today, many similar tests are being developed and
executed on the ARINC 429 data bus.

4.3.2 Commercial Standard Data Bus

The CSDB is GA's ARINC 429 bus. It connects avionic LRUs point-to-point to
provide an asynchronous broadcast method of transmission. More information
about the bus's operating characteristics is contained in the standard, which
is available through GAMA.

Before the bus could be used in an avionic environment, it was put through
validation tests similar to those used on the other buses. These included the
environmental tests presented in RTCA/DO-160 and failure analyses. Most
environmental tests were done transparently on the bus after it was installed
in an aircraft.

As with the other buses, Rockwell's Collins Division had to develop external
tests to show that the bus satisfied specifications in the standard. Test
procedures of this nature are not included.

Internal bus tests that the CSDB standard describes include a checksum test and
a parity check. Both of these are used to ensure the integrity of the bus's
data. Care should be taken when using these tests because their characteristics
do not allow them to be used in systems of all criticality levels. Further
information about both tests is provided in section 5.1.

These are not the only external and internal tests that the CSDB manufacturer
can perform. Many more characteristics which may require testing are presented
in the CSDB specification. Again, it remains the manufacturer's responsibility
to prove that exhaustive validation testing (VT) of the bus and its related
equipment has met all the requirements of the FARs.

4.3.3 ARINC 629 Data Bus

The ARINC 629 data bus is a high-speed, bidirectional data bus, which uses a bus
protocol that supports both periodic and aperiodic data. It was developed by
BCAC prior to 1981.
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Much information has been published on the ARINC 629 bus over the last 10 years
The data bus has been the focus of many technical papers and symposiums.
ARINC's SAI subcommittee, which published part one of the bus standard, is
currently working on parts two, three, and four. These drafts are called the
Applications Guide, Data Standards, and Test Plan, respectively. Each of these
parts has been distributed by ARINC in draft form.

Part four of the Test Plan contains a "complete" set of external tests for ARINC
629 bus components, or for groups of components within the data link and
physical layers of the bus. It also contains a section explaining the
environmental tests considered for the ARINC 629 bus.

External tests in the Test Plan address the bus's components. The Current Mode
Coupler (CMC), Serial Interface Module (SIM), and terminal are all components
considered by the Test Plan. The Test Plan also states that each of these
components will be subjected to different tests. A list of the component tests
is included in Attachment 1 of the Test Plan. Once the single units complete
their testing, they should be tied together and tested in conjunction with one
another. This hierarchial approach makes general test cases easier to identify.
No formal external test procedures are presented here because they are not
specified in the draft of the Test Plan.

Internal tests used by the ARINC 629 bus range from simple ones that verify
parity to complicated ones that ensure a bus user, or terminal, will not
broadcast out of turn. Since there are many internal tests which can be
performed, only a few examples are given.

One internal test involves monitoring performed by a BIU. There are three types
of terminal monitoring: receive data monitoring, transmission monitoring, and
protocol checking. Only the protocol check is discussed here.

A protocol check is used by a BIU subsequent to transmission. The purpose of
this check is to ensure that a transmitter will not place data on the bus at the
wrong time. In this way, orderly periodic and aperiodic transmission occurs
between terminals. The protocol check requires the transmitter to satisfy the
following three conditions between two transmissions (if these conditions are
not met, transmission is inhibited [Shaw and Sutcliffe 1988]):

" A Transmit Interval (TI) must have passed. This TI is common to all
terminals on the bus.

"* A quiet period called the Synchronization Gap (SG) must have passed. This
SG is also common to all terminals.

"* A quiet period called the Terminal Gap (TG) must have passed since the SG
and since the end of any other terminal's transmission. This TG is unique
to each ARINC 629 terminal.

Other internal tests that the ARINC 629 bus performs are parity checking, data
format, and modulation. These tests are performed in the data link layer, and
are done on each label and data word. Parity checking on the ARINC 629 bus
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. parallels the ARINC 429 bus's parity checking. The ARINC 629 bus parity check
is accompanied by a modulation check.

Two other internal tests that are performed are checksum and CRC. Since these
discussions parallel the one given in section 4.3.1, they are not restated here.

Many more external and internal tests are required for the ARINC 629 bus because
it is a complicated bus. They are pointed out in the ARINC specification,
technical papers, and symposiums. BCAC and associated manufacturers will
continue this type of testing long after the ARINC 629 bus specification is
complete. However, the point of the tests remains unchanged; both internal and
external tests are required to show the FAA that the ARINC 629 bus can be
reliably implemented.

4.3.4 Avionics Standard Communications Bus

The ASCB is primarily used on GA aircraft, such as business jets and commuter
turboprop aircraft. Because integrated avionic systems in these aircraft still
need to satisfy the FAA's requirements for airworthiness, testing similar to the
other buses must be performed.

There are three versions of the ASCB: A, B, and C. Version A was designed for
use in flight-nonessential systems, Version B for flight-essential systems, and
Version C for flight-critical systems. Only Versions A and B are implemented
on aircraft and covered in the current GAMA specification. Version C is
currently under development.. As with the ARINC 429 bus, the ASCB had to undergo tests outlined in RTCA/DO-
160, as well as others defined by the manufacturers. These tests are more
detailed than those of the ARINC 429 bus because the ASCB uses a bidirectional
(half-duplex) architecture. Tests that address the ASCB's BC and waveform tests
are examples of external tests that can be performed by the manufacturer.

The ASCB is controlled by a BC. Because the BC provides central bus control,
the ASCB incorporates a redundant BC in case the primary BC fails. An external
test that involves these BCs should verify that control is properly transferred
from one BC to the other in the amount of time specified by the standard, and
that the primary BC will relinquish control in the event of a failure (e.g.,
power interruption).

A waveform test should also be performed on the ASCB. Here, combinations of
stub lengths and unterminated stubs are subjected to bit-errors and signal
alterations. This external test shows whether bus data is affected by the
medium's characteristics.

Internal tests, like those pointed out for the ARINC 429 bus, are performed by
the BIU. These are applied to ensure that the bus conforms to the standard.
Tests of this nature include CRCs and Transmission Validation.

The tests discussed above are not the only external and internal tests that can
be performed by the manufacturer. Many more bus characteristics that require
testing are presented in the ASCB specification and throughout various technical
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papers. Whether a test is conceived by the manufacturer or drawn from another
document, an ASCB manufacturer must prove to the FAA that the bus and its
related equipment has met all of the requirements of the FARs.

4.3.5 Summary

Section 4 showed which FARs and ACs are applicable to the certification of data
buses and integrated avionic systems. It then discussed SCs and their
relationship to the FARs.

After the federal regulations were defined, section 4 discussed the informal
guidelines that showed what documents are used by data bus and integrated
avionic equipment manufacturers to meet the requirements of FAR Parts 23, 25,
27, and 29, section 1309, and FAR Part 33, sections 75 and 91. Tests presented
in these informal guidelines are designed to ensure the system's integrity and
quality; verify reliability; help specify redundancy and back-ups; help isolate
systems, components, and elements; and help define error tolerance. Documents
presented in this section included RTCA/DO-160C, RTCA/DO-178A, and SAE ARP 1834.
Other documents may be used (as informal guidelines) to satisfy the FARs if
their procedures meet the same ends.

Although civilian aircraft satisfy different requirements than military
aircraft, analyses for integrated avionic systems in civilian aircraft can be
drawn from military documents. For example, MIL-STD-1692A discusses an FMEA for
military avionic systems. Since FMEA is an integration standard for civilian
aviation, concepts from this document can be applied to the certification of
civilian aircraft.

If manufacturers run across something not addressed by the informal guidelines,
they must develop their own validation techniques to show compliance. These
validation techniques are usually chosen to comply with FAR Parts 23, 25, 27,
and 29, section 1309, as well as FAR Part 33, sections 75 and 91.

Developing proper validation techniques should be a main concern of the
integrated avionic system manufacturer. These techniques must consider all
failure modes of the system, even ones that are unique and infrequent. Failure
to do this could result in hazardous conditions, even if the system is mature.
Lessons can be drawn from the MIL-STD-1553 data bus and its associated equipment
(Earhart 1991).

For example, the MIL-STD-1553 has undergone extensive tests over the last
decade. Throughout this time period, the MIL-STD-1553 has been accepted as the
data bus for most military equipment. Even with all the testing and validation,
there is still some apprehension about validating MIL-STD-1553 and its
associated electronics. Much of this apprehension is the result of poor VT.

One reason errors occur is because some manufacturers feel that total system VT
is not necessary. Total validation requires testing single components first,
and then testing them in conjunction with each other. A manufacturer who tests
only the single components could easily overlook system-wide errors.
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Another reason errors occur is because some manufacturers only test a system
once and use the results for subsequent systems. Just because a system
functioned properly throughout the first tests does not mean that each similar
system will yield the same results. This is especially true if the system is
to be installed on a different aircraft or controlled by different software or
firmware. Some MIL-STD-1553 terminals tested by Test Systems of Phoenix,
Arizona, have been found to contain incorrect transformers and transceivers.

VT should also verify that operating LRUs satisfy the bus's standard. Just
because an LRU works in a system does not mean it meets the bus's standard.
Tests like this should be presented in each IRU's test plan; this plan helps
manufacturers verify results and defines the LRU's error margins and tolerances.
Tests should also check margins and tolerances that are not considered under
normal operation or operational testing (Earhart 1991).

The above example shows how poor VT could impact certification of well-known
products. Often, proper tests for digital avionic equipment are not established
until unique failure conditions appear. This is one reason that implementation
of complex avionic systems usually follows years of design. Although the ARINC
429 data bus was developed prior to 1978, it has taken years to achieve the
current level of reliability. On the other hand, the ARINC 629 data bus was
developed prior to 1980 and is still not being used in production aircraft. To
breach this design barrier, the avionic system's manufacturer should collaborate
with the FAA early in the design process and thoroughly validate all aspects of
their systems. This type of process will represent a challenge for both the

system expert and the FAA.

0
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5. BUS-INTEGRATED SYSTEMS TECHNOLOGY

This section focuses on technical issues related to the use of data buses in
avionic systems. Particular emphasis is placed on issues specific to the
integration of systems using data buses.

Section 5.1 introduces data bus architectures and examines the integration
issues. ". ncerns relating to avionic system and BIU interaction are examined
in Secti., 5.2, Bus Hardware-Software Interaction. Methods for protocol
development and verification are presented in Section 5.3, Protocol Specifica-
tion and Verification Methods. Finally, the guidelines used for bus integration
are identified and examined in Section 5.4, Bus Integration Standards,
Guidelines, and Techniques.

5.1 System Integration Concerns

Factors such as weight, power consumption, maintainability, reliability,
flexibility, and the cost of ownership are just a few of the general concerns
when evaluating a system design. This section examines the specific concerns
relating to the use and integration of avionic data buses. Different bus
architectures and protocols are addressed first, then particular integrity
issues, and, finally, the issues of data bus monitoring and maintenance.

Data buses used in aircraft have distinct advantages over point-to-point wiring.
One advantage is the reduction in the number of wires and connectors, and
another is the flexibility gained when adding, deleting, or modifying the
system.

There are two basic types of data buses: unidirectional and bidirectional.
Although there are many areas of concern common to both types, a bidirectional
bus has additional areas of concern. These are related to the data bus access
protocol. This determines when and how often a transmitter may gain control of
the bus. A discussion of access protocols is contained in section 5.1.2. Tn
a unidirectional data bus, which has only one transmitter, there is no need for
control to be relinquished, hence, there is no concern over an access protocol.

Following are four major areas of concern that have been identified as relating
to bus interfaces (Hecht and Hecht 1985):

"* Address errors

"* Internal inconsistencies

"* Denial of access

"* "Babbling" transmitters
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Address errors are a corruption of the address field of a transmitted message.
On bidirectional buses there may be address fields in a message for both the
source and destination. This is especially true if the protocol requires an
acknowledgement message to be returned to the sender. In this case, an error
which occurs in a source address field will be easily detected since the
acknowledgement will not be received.

An internal inconsistency exists when the data passed between bus users fails
to adhere to the predefined format. These formats are given in detail by the
particular bus specification and should be tested by the receiver for conform-
ity. Data words may contain fields for error checking, sign bit, status bits,
address bits, data bits, etc. The receiver typically uses one or more forms of
error detection, such as a CRC or a parity check, as a basis for message
acceptance or rejection. A rejected message may be retransmitted, or a default
value or alternate data source used.

Denial of access is a problem associated with bidirectional buses that needs
careful attention during the design, implementation, and operation of a bus.
A bus user is denied access when the user has information to send but the bus
is not available due to an error. One such error could be another bus user
failing to terminate its bus transmission. A failure in this area renders the
bus useless to one or more bus users. Therefore, access protocols and bus
interface hardware need to be carefully designed.

Babbling transmitters are those that fail to abide by the access protocol rules.
Due to a failure of bus interface hardware or software, the transmitter is
activated during another transmitter's access time. If not terminated, this
type of failure denies all other users access to the bus.

These four concerns are not only data bus interface concerns, but specific
integration concerns as well. New bus users must be tested to ensure that if
they are incorrectly addressed because of an address error, they discard the
message. They must follow the predefined format of the data bus specification.
Users not in compliance due to an internal inconsistency problem will either
generate errors or not detect them when they occur. Denial of access can become
a problem for bidirectional data buses when new users are added. This can
happen if not enough bus capacity is allowed for new users. Babbling may occur
if new users are not configured with the correct protocol parameters.

Another concern is that of specification completeness. Integration of equipment
on the same data bus may involve equipment from separate manufacturers. When
this occurs, certain parameters which may be undefined or incompletely defined
in the bus specification are subject to differing interpretations. This
difference of interpretation may later cause a bus failure. This concern is
specifically addressed in section 5.3.

The areas of concern are addressed in the following sections as appropriate.
Protocols, although defined as part of a system architecture, are examined in
a separate section that deals more specifically with protocol concerns.
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. 5.1.1 Architecture Related Concerns

To understand data bus integration problems it is helpful to first understand
the different data bus architectures used. Data buses are increasingly referred
to as networks by those who work with and around them. There are fundamental
differences between avionic data bus networks and computer networks. These
differences are generally dictated by the intended use of the network.

Computer networks are designed for purposes such as database access, integrated
voice and data transmission, resource sharing, file transfer, process control,
and general communication. On the other hand, avionic data buses were viewed
only as a way to save wiring and weight and enhance system performance by
sharing common resources. The function of the bus was to transfer certain
variables from one bus user to another at a fixed update rate. With enhance-
ments in protocols and advancements in IC densities, data bus performance has
risen. So has the interest in using the data bus for purposes that resemble
computer networks. For example, ARINC Specifications 429-12 and 629 define
protocols for transferring files among bus users.

Networks use many different architectures. Some network architectures are
defined on the basis of response time; others are defined on the basis of
security, reliability, cost, or a combination of these. Where data buses are
used in flight-essential or flight-critical applications, the architecture is
designed with throughput and reliability as key factors.

5.1.1.1 Basic Bus Architectures

One technique useful in defining a bus architecture is the physical layout. The

physical arrangement of bus users in a network is called a topology. Various
methods have been used to connect bus users with data buses. Some common
topologies are illustrated in figure 5.1-1. In a linear topology, LRUs are
added by sequentially attaching them to the data bus. All LRUs can listen to
any transmission on the bus. For a ring topology, the ring must be broken to
add new LRUs. Messages are passed sequentially from one LRU to the next. In
the star topology, the LRUs are connected to a central hub. A message from an
LRU passes through the hub to any or all other LRUs on the hub.

Some of the possible topologies for connecting one data bus to another are shown
in figure 5.1-2. When one data bus is controlled by another it is called a
hierarchical topology. This is common in a military data bus topology, which
uses the MIL-STD-1553 bus. In civilian aircraft, it is common for buses to be
equal and share data as required ("MIL-STD-1553 Designer's Guide," 1982).
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Redundancy is used in a data bus architecture to provide continued operation on
one data bus if there is a failure on another, regardless of the cause of
failure and whether or not the error is a recoverable type. Redundancy is
implemented both physically and functionally. Physical redundancy requires two
or more of the same item. If one fails, the other is used. For this type of
redundancy to work successfully, a means of failure detection and system
reconfiguration is required. Functional redundancy requires that the function
be duplicated, but in a dissimilar way. The implementation of redundancy is
vital in systems that provide flight-critical functions. Redundant designs
require careful attention by the system designer.

5.1.1.2 Control Architectures

How a data bus is controlled has an affect on the bus architecture. There are
two types of control which dominate avionic data bus systems: distributed and
centralized. With centralized control, a single controller directs all the
activity of the data bus. There are no transmissions from any bus user unless
directed by the BC. This controller will have a list of the addresses of all
the bus users and will transmit a command to each user at the designated rate,
giving each user a chance to access the bus and send any data required by other
bus users. The ASCB and MIL-STD-1553 bus use centralized control.

Distributed control refers to a system that is not centrally controlled.
Instead of the access control being contained in a central controller, it is
programmed into each device which is connected to the data bus. Each user has
been programmed to follow an identical set of access rules without variation.
The ARINC 629 bus uses distributed control.

5.1.1.3 Functionally Partitioned Architectures

Another technique used in defining the bus architecture is functional partition-
ing. This means that data buses are defined by functions which they perform and
are grouped accordingly. For example, in the ARINC 629 bus implementation
(planned for use on the Boeing 777) systems are partitioned according to their
function, such as fly-by-wire, system, and display functions (Bailey 1990).
Data sharing among bus users is more easily accomplished when the users
requiring the data are on the same bus as the users supplying the data. When
this is not done, some method of linking the data buses together is required.
This can be accomplished with gateways and bridges.

5.1.1.4 Multiple Bus Architectures

The use of gateways and bridges is another facet of integration concerns
associated with a data bus architecture. Avionic systems that are required to
share data may use different data bus protocols. A gateway is used to connect
two or more data buses so that a user on a bus using protocol X may communicate
with a user of another data bus, which uses protocol Y. A gateway may be a
standalone interface or part of an LRU. The gateway functions as a protocol
converter, converting data packets, wordstrings, or frames from one format to
another. A gateway used between two buses is required to perform two data
conversions, protocol X to protocol Y, and protocol Y to protocol X.
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When it is necessary to share information between data buses which use the same
protocol but must remain isolated, a bus bridge is used. Figure 5.1-3 shows
examples of how buses may be connected by gateways and bridges.

An example of an avionic device which fits the gateway definition is found in
ARINC Specification 429-12, appendix 2, where it is referred to as a "data
exchange buffer." The specification describes an interface between the MIL-
STD-1553 command/response data bus and the ARINC 429 broadcast data bus. Some
of the possible conversions between these two buses could be changing the
destination label or address, changing the ordering of bits, or generating and
testing the error checking mechanism used on the particular bus.

One possible implementation of a gateway may require a conversion from parity
error detection to a CRC detection technique requiring the generation of a CRC
check word. A gateway may implement this conversion in hardware or software and
will have a throughput delay based on the particular implementation chosen. In
general, a software technique would produce a lower cost with a higher delay,
and a hardware technique would produce a lower delay, but at a higher cost.

A gateway is more complex than the user bus interface since it needs to deal
with protocols for two different buses and their associated data formats. Data
latency is increased in a configuration which uses gateways, due to the time it
takes a variable to pass from one bus to another through the gateway. If the
gateway or bridge causes data to be "momentarily stored" (ARINC Specification
429-12, appendix 2, 1990), then the system performance could be affected due to
a "stale data" condition.

It should be the goal of any gateway design to keep the storage time small in
relation to the other time parameters.

Careful consideration should be given not only to the data latency problem but
also to the handling of bus errors through the gateway. Should an error that
was detected by the ARINC 429 bus interface be passed through the gateway to the
MIL-STD-1553 bus so that the intended receiver will detect it and take
appropriate action? Should there be a bit reserved in the data format to handle
this situation? Should the old data be stored in the gateway and used until a
correct error free update is received? The particular error recovery method
that is used should be consistent with the particular standard and have minimal
impact on system operation.

A protocol that uses an acknowledgement response from the receiver for verifying
correct receipt of data, will have additional constraints when used in a system
containing a gateway. If the protocol at the receiving end is not required to
issue an acknowledgement, but the sender requires it, then the end-to-end
integrity is broken at the gateway interface. If an acknowledgement is required
by both the sender and receiver, then the timeout value for the sender should
take into account the round trip delay introduced by the gateway.
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Periodicity is an attribute which may be affected by a gateway implementation.
A periodic bus is one in which data arrive at the receiver at regular time
intervals. Different protocols meet at the gateway. Each protocol by itself
may be periodic, but when linked to another protocol the result appears as an
aperiodic bus. This is due to the fact that the two protocols are not
synchronous. A wordstring that arrives at the gateway from bus X may have just
missed the transmission for bus Y. A later transmission from bus X may be just
in time for bus Y. Operation in this manner means that at certain unspecified
times the data will be fresh and at other times it will be stale. Systems that
require information to be updated at certain rates need to be analyzed closely
to determine if the introduction of a gateway will degrade the system operation.

In addition to the problems mentioned above, hardware-software interaction
problems, discussed in section 5.2, also apply. This is because, to each bus
the gateway resembles an LRU with a bus interface and host CPU.

5.1.2 Protocol Related Concerns

Multiple transmitters can use one bus by using time-based multiplexing. This
multiplexing requires that a bus access protocol be defined to ensure that, at
any one time, only one user is transmitting. The bus access protocol is a set
of rules by which all bus users must abide to access the bus and ensure its
specified operation. The basic types of access protocols which could be
considered for use with bidirectional data buses are as follows:

"* Contention

* Time slot allocation

"* Command/response

"* Token passing

With the contention protocol any bus user may transmit on the bus at any time
after the bus becomes idle. If two bus users start transmitting at the same
time, a collision of data occurs and the data are corrupted. Collisions are a
normal event with this type of protocol. This protocol works well under light
use but tends to collapse under heavy loading due to numerous collisions.

The time slot allocation protocol assigns a unique, predefined time slot during
which each bus user may access the bus. Each user listens to the bus for a
period of inactivity. When the assigned time occurs for a particular bus user,
it may take control of the bus.' Access to the bus is not attempted again until
the necessary time passes, which allows all other users to access the bus.

In a command/response protocol no bus user may transmit without receiving
permission from the BC. There is only one BC active at any time. The failure
of one BC should cause the activation of an alternate BC.

A token passing protocol allows a bus user to transmit only after it receives
the unique bit pattern, referred to as the "token." It receives the token,
sends any waiting message(s), and passes the token on to the next user.
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There are also variations of these protocols that make the differences between
them unclear. For instance, a command/response protocol can operate with a
single central controller using a redundant standby controller for recovery.
Under the same command/response protocol there can be a large number of BCs
attached to a bus and all but one will be in the inactive state. Control of the
bus can be passed from one controller to the next as each requires bus use.
This technique closely resembles the operation of the token passing bus with a
distributed control architecture. This is a more complex protocol.

Certain attributes have been identified as being highly desireable for avionic
data bus protocols. These are fault tolerance, efficiency, simplicity, data
integrity, support of synchronous and asynchronous data transfer, and predict-
ability (Rich et al. 1983). Though they are not the only desireable features
for a protocol, they do identify areas where major concerns have been expressed.

Fault tolerance describes the ability of a protocol to handle errors. Some
protocols simply identify the fact that an error occurred; others are able to
recover, possibly by a retransmission of the same data. Another recovery
technique is a bus user isolating itself from the bus after detecting self-
generated errors. A failure of the protocol should be identified by bus users
and the reestablishment of order should be possible with little delay.

With respect to data transfer, efficiency is a measure of how much useful data
are transmitted on the bus compared to the total number of bits transmitted.
A large amount of overhead required for operation decreases the capability of
the bus.

Simplicity is a measure of how understandable the protocol is. An easily
understood protocol will benefit all areas of development, testing, and
operation.

Data integrity depends on how well errors are detected to ensure that correct
transmissions are made on the bus. The use of some form of error detection is
necessary to achieve data integrity. Various methods are available to implement
this feature and each differs in the types of errors which it will detect. The
efficiency of the protocol is usually affected by the particular method used.

Most avionic data buses were designed to handle data that is synchronous. The
handling of control inputs, along with more recent applications, such as on the
Boeing 777 where the data bus may function as a general-purpose computer
network, require that the data bus be able to handle asynchronous demands as
well. This requirement necessitates that the overall throughput have the
capacity to handle the uncontrolled load of aperiodic devices.

A deterministic protocol is one which is highly predictable. The specification
states exactly how it will perform under all foreseeable conditions, and it can
be verified that it does act according to this predetermined behavior.
Asynchronous transfers detract from this characteristic and the truly random
access protocols based on collision detection are nondeterministic. Protocols
for avionic use are chosen because they are highly predictable.
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A protocol which has the capability to deny access to a bus user is not a
deterministic protocol. Even for a protocol that does not deny access, there
may be errors that have the same effect as access denial. For example, a
transmitter hardware failure may cause the transmitter to babble continuously,
thereby denying other transmitters access to the bus.

In the following sections, some of the basic protocols are discussed and
evaluated with respect to these preferred attributes.

5.1.2.1 Contention Protocols

A contention protocol in its pure form is nondeterministic. The term Carrier
Sense Multiple Access (CSMA) describes the predominant form of this protocol.
Multiple users are listening to the bus. When one has a message to send, it
waits for the bus to be not busy and makes a transmission. From this simple
description of CSMA operation one can easily see potential problems. This
uncoordinated access protocol cannot guarantee that a message will ever be
successfully transmitted. As more users are added to the bus, the CSMA protocol
suffers from an increasing number of collisions during the contention period
and, hence, wasted bandwidth. Unless some variation is made to this protocol
to avoid contention, it will be plagued with poorer performance as new users are
added. Therefore, many modifications have been made to this protocol in order
to increase its reliability. For further details on contention protocols, see
Elwell et al. (1992).

Since this protocol is not deterministic, it is not used in flight-essential or
flight-critical avionic applications.

5.1.2.2 Time Slot Allocation Protocols

In a time slot allocation protocol, each user is given a preallocated time slot.
The ARINC 629 bus uses a time slot allocation protocol that also accommodates
asynchronous transmission. As with other bidirectional data bus protocols, this
protocol uses collision detection, but collisions are not normal events as in
a contention protocol.

The Time Division Multiple Access (TDMA) approach is the simplest form of a time
slot allocation protocol. In pure TDMA, the time of occurrence and the duration
of each user's time slot are predetermined. When one user's time has tran-
spired, another user is given access to the bus. A more advanced form allows
users to determine the time of access based on bus activity. The standard
implementation is called the Dynamic Time Slot Allocation (DTSA) protocol.
Although it is not an avionic' data bus protocol, it is included to help
understand the ARINC 629 bus. The details of the DTSA operation are given in
appendix A of this chapter. The ARINC 629 bus implements a special form of
DTSA.

In contrast to CSMA, which is based on a random access method, a time slot
protocol relies on a unique and predefined access method for each user. Each
user is guaranteed that, during its time slot under error-free conditions, it
has sole access to the bus. This access method lends itself to a high bus
efficiency, even under heavy loading conditions. Throughput under the CSMA
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protocol, however, rapidly deteriorates with increasing access demands by its

users.

5.1.2.2.1 ARINC 629 Bus

ARINC Specification 629, Part 1, defines a TG count which is similar to the
count duration, To, for DTSA. It defines a unique value for each user based on
a delay count. Bus access is permitted only after this count is satisfied.
Another DTSA parameter, the Frame Time, Tp, is similar to the Minor Frame of the
ARINC 629 bus specification in that it defines the cycle time of one user, from
the start of transmission x to the start of transmission x+l. For either
protocol, if transmission lengths are allowed to vary then the sequence of user
accesses is maintained, but not the periodicity.

TDMA protocols operate in a cyclic fashion with the transmission of any user
being predictable as far as the time slot is concerned. The ARINC 629 bus
cycle, however, is more complex because three timers must be satisfied for bus
access. Also, variations such as aperiodic transmissions are permitted.

ARINC Specification 629, Part 1, defines two basic modes of protocol operation.
One is the Basic Protocol (BP), where transmissions may be periodic or
aperiodic. Normal transmissions on the bus are periodic, but a condition such
as bus overloading may force the protocol into an aperiodic mode. Transmission
lengths are fairly constant, but can vary somewhat without causing aperiodic
operation if sufficient overhead is allowed. In the Combined Protocol (CP) mode
transmissions are divided into three groups for scheduling:

"* Level 1 is periodic data (highest priority)

"* Level 2 is aperiodic data (mid-priority)

"* Level 3 is aperiodic data (lowest priority)

Level one data are sent first, followed by level two and level three. Periodic
data are sent in level one in a continuous stream until finished, after which
there should be time available for transmission of aperiodic data.

With this protocol there are three conditions which must be satisfied for proper
operation. They are the occurrence of a TI, the occurrence of an SG, and the
occurrence of a TG. These values are based on bus quiet time and are imple-
mented as timers in each bus user. Figure 5.1-4 shows the access timing when
the bus is operating in the periodic mode.

The TI defines the minimum period that a user must wait to access the bus. It
is set to the same value for all users. In the periodic mode, it defines the
update rate of every bus user. The SC is also set to the same value for all
users and is defined as a bus quiet time greater than the largest TG value. The
SG can take on four different values and is set larger than the greatest TG
value. Every user is guaranteed bus access once every TI period. The TI and
SG times are not reset by bus activity. The TG is a bus quiet time which
corresponds to the unique address of a bus user. The TG, however, is reset by
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any bus activity. Once all three timers have expired for a user, it may access
the bus.

FOR TERMINAL B: GO AHEAD GO AHEAD

STI(A)(B)
iI TI(B) "

TI is the controlling parameter.
TG prevents collisions due to clock drift.
SG is not a factor.

FIGURE 5.1-4. PERIODIC ACCESS FOR THREE BUS USERS
("ARINC 629 Symposium View Foils," 1991)

When a bus user or users exceed the time required for all transmissions to fit
within the TI value, the protocol becomes aperiodic. During this overload
condition, transmissions still continue but periodicity is not maintained.
Figure 5.1-5 shows the access timing when the bus is operating in the aperiodic
mode.

FOR TERMINAL B: GO AHEAD

TG(A)-.-K

id -T *- S --TG (B)

TG and SG are the controlling parameters.
TI is not a factor.

FIGURE 5.1-5. APERIODIC ACCESS FOR THREE BUS USERS
("ARINC 629 Symposium View Foils," 1991)

Since the TI value is exceeded, it is no longer the controlling parameter for
bus access. The SG and TG now become the controlling factors and the TI is not
a factor. This operation ensures all users bus access, although not at regular
intervals.
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According to Part 1 of the ARINC 629 bus specification, the system integrator
is tasked with the selection of values for the TI, SG, and TG. Once the number
of users is known, the range of TG values can be assigned and the SG and TI

values determined. The TI is given by the following formula (ARINC Specifica-
tion 629, Part 1, 1990):

TI - 0.5(Binary Value of TG), 0 + 0.5005625 ms

When adding users to the bus it becomes necessary to review these bus parameters
step-by-step, as was done in the initial design. Even if the bus capacity is
not a problem, the values of the TG and SG may require modification if many
users are added to the system. A recalculation of all timing parameters, along
with changes in the hardware straps and Programmable Read-Only Memories (PROMs)
for each user, may be required. The PROMs of all LRUs will also require
updating if new labels are added to the bus.

Additionally, when more users are added, bus efficiency is reduced because of
the increase in the TG required to address the new user. Adding user 126 to a
bus consumes almost 128 microseconds every TI, whereas the addition of user 10
consumes only about 12 microseconds. One way to avoid problems when adding
users is to maintain unassigned TGs with low values for this very purpose. If
utilization of these TGs is planned from inception, then the integration impact
will be minimal. Also, the SG value may need to increase when new users are
added if the largest TG value approaches the value of the SG.

In a TDMA-based protocol with fixed time slots, overload of the bus is not
possible since all users have access to the bus only in their own time slots.
If variable length transmissions are permitted and a bus user sends data longer
than is allotted, bus overload occurs. The data bus is still fully in use, but
it becomes asynchronous and established update times for periodic variables are
not met. This shift to the aperiodic mode is not detected by the bus hardware
and needs to be implemented at a higher level for detection.

The ARINC 629 bus specification allows the use of variable length wordstrings
and, therefore, the aperiodic mode is also defined in the specification. An
ample amount of free time should be provided in the initial design to allow for
integration of new users.

For the ARINC 629 bus, bus inactive time is measured and used by LRUs as a
parameter in the access protocol. When a protocol is based on the bus inactive
time, and the difference in inactive periods (which represent addresses)
approaches bus propagation time, care must be exercised in the physical layout
and address assignment of the individual users. Otherwise, a conflict may arise
due to two users responding at the same time, both assuming they have access to
the bus. To deal with this problem, section 4.2.1.3 of the specification states
the following:

"In general, for wire media, the total media length (stub/bus/stub)
between terminals [bus users] with consecutive TGs should not exceed
60 meters." (ARINC Specification 629, Part 1, 1990).
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. This requires that LRUs and unassigned TGs be physically grouped so that this
requirement is not violated. Also, any physical changes to the data bus that
affect propagation parameters need to be considered carefully.

The ARINC 629 system designer or system integrator is tasked with many decisions
concerning integration and operation of all the systems. The selection of the
particular protocol mode, BP or CP, is one decision which must be made and which
affects protocol complexity. If the CP mode is selected, then all LRUs must
conform to whatever standard is proposed for that mode. If undefined areas
exist in the bus specification, such as using the bus for file transfer, then
the system designer is essentially tasked with completing the undefined sections
and developing, testing, and implementing them as well.

5.1.2.3 Command/Response Protocols

A command/response protocol is one in which a central controller manages all
transmissions on the data bus. Bus users needing to send data are periodically
addressed by the controller and given permission to access the bus for a
specified message. No transmissions may be initiated without this permission.

An advantage of the centrally controlled architecture is that integration
changes are carried out only in the active and standby controllers. Users do
not require modification unless they are involved in the change. For further
information on command/response protocols, see Elwell et al. (1992).

5.1.2.3.1 High-Level Data Link Control Protocol

The High-Level Data Link Control (HDLC) protocol can operate in a com-
mand/response mode and is the basis of the ASCB data bus operation. HDLC was
defined by the International Standards Organization (ISO) for the purpose of
replacing character-oriented protocols.

HDLC is a bit-oriented protocol where data appears as a continuous stream of

"ones" and "zeros." The beginning and end of the data bit stream are defined

by using a flag at the beginning and end of the bit sequence. Once this is done
it is referred to as a frame. Any information sent using the HDLC protocol uses
the format shown in figure 5.1-6.

FLAG ADDRESS CONTROL DATA CRC FLAG

FIGURE 5.1-6. HDLC FRAME FORMAT

Operation of the HDLC protocol is described in terms of the capabilities of the
bus users, or stations, and their cooperation. Intelligent stations can be
connected to several very simple stations. The management of the bus, which
requires more capabilities, is usually located in the more intelligent station.
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This station is called a primary station while the others are called secondary
stations (Meijer and Peeters 1982). When there is a primary station with more
than one secondary station, it is referred to as an unbalanced configuration.

There are two modes by which the stations interact under the HDLC protocol:
Normal Response Mode and the Asynchronous Response Mode. The Normal Response
Mode specifies that the only time a secondary station can transmit is in
response to a command or poll from the primary station. The Asynchronous
Response Mode specifies that a station may transmit any time the bus is
inactive. This applies to both primary and secondary stations. Operation in
this mode means that collisions on the bus will be a normal occurrence.

In certain configurations it is necessary for all stations to have the same
capabilities. In this case, each station will have the capacity to function as
"a primary or secondary station. This type of configuration is referred to as
"a balanced configuration.

Based on the bus user capabilities and response modes there are three classes
of procedures defined in HDLC:

"* Unbalanced Asynchronous Configuration (UAC)

"* Unbalanced Normal Configuration (UNC)

"* Balanced Asynchronous Configuration (BAC)

Further details of the HDLC protocol are given in appendix B of this chapter.

5.1.2.3.2 Avionics Standard Communications Bus

The ASCB is a centrally controlled, unbalanced implementation of the HDLC
protocol using the No:,>al Response Mode. This configuration is the UNC. The
ASCB message frame uses the leading flag, address, data, CRC, and terminating
flag fields defined by the HDLC standard. Added to this are a checksum on the
data field and "SYNC" and "MARK" fields at the beginning and end of the message,
respectively. Figure 5.1-7 shows the frame format for the ASCB message.

SYNC FLAG ADDRESS DATA CHECKSUM CRC FLAG MARK

FIGURE 5.1-7. ASCB FRAME FORMAT

The ASCB eliminates the control byte, as defined in HDLC, from both the send and
receive messages. The ASCB specification, however, defines a control word and
a counter field in the control word (GAMA ASCB, section V, paragraph 4.3.1,
1987):
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"Three %its are reserved in the control word of each user to implement
a ... counter. This counter is incremented by the user each time it
transmits."

This counter is used to verify that the data received is a new transmission and
not the same data as the last transmission. Under HDLC, this field would be
used in a store-and-forward network where a message may be broken up into
smaller packets and sent to the destination, possibly over differing routes.
The receiver would then be required to reconstruct the message in the order in
which it was sent by using the three-bit counter field for correct ordering.
Since there is only one route defined for ASCB users, this field is used as a
data update indicator.

By not using the full implementation of the counter field as defined by HDLC,
the ASCB protocol avoids the complexity of returning an acknowledgement frame
to the sender for every message received. This is an important difference
because, by doing this, the protocol is greatly simplified and proper operation
is more easily verified and monitored. With the elimination of the control
field, the HDLC information frames, supervisory frames, and unnumbered frames
are also eliminated.

Since no acknowledgement is returned, there must be a way to recover from errors
on the bus where data are lost and, therefore, nonrecoverable. Assuming all
transmission errors are detectable, there are three basic ways to handle them:

"* Use the last data received

* Request retransmission

"* Use a stored or simulated value

Since retransmission is not a mode of operation for the ASCB, the system
designer must choose one of the other methods for error handling.

Transmissions on the bus are considered valid messages by users if they contain
a valid flag and address at the beginning and a valid flag and mark at the end.
Anything else which appears on the bus is to be ignored by all bus users.

It may be difficult to make significant additions of users to an avionic system
that uses the ASCB bus, since the message lengths are predefined and must fit
within a 25 milliseconds cycle time. The use of a central controller, however,
minimizes the difficulty since only the controller, and not all of the users,
need to be updated when this is done. Since users only respond when they are
addressed by the central controller, only the controller and any redundant
controllers need their user lists updated.

There-is no provision in the ASCB for separate handling of high priority data
or messages. All transmissions are treated the same. If certain information
on the bus is in higher demand by a bus user, the designer should ensure that
it appears on the bus more frequently than other data. This can be accomplished
by having a particular message sent every cycle time, as opposed to every other
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cycle time. Since the ASCB uses a predefined cycle time, which is 25 mil-

liseconds, the possibility of bus overload is nonexistent for this protocol.

5.1.2.4 Token Passing Protocols

This protocol is based on a token, or special bit pattern, which circulates
around a ring bus to each user. When a user receives the token it has exclusive
access to the bus. When no users have messages to send, the ring is idle and
the token circulates freely.

When a user wants to send a message, it waits until it receives the token. It
functionally removes the token from the bus by altering the bit pattern. The
message is then sent on its way around the ring along with the modified token,
which is called a "connector."

If the tokens or messages were completely received and retransmitted by each
user to the next user, it would be an inefficient protocol. The time to
circulate a message around the loop would be the product of the time for one
complete transfer multiplied by the number of users. Instead, the message is
retransmitted bit-by-bit; each user only introduces a one-bit delay. This
reduces the retransmission overhead to only one bit-time multiplied by the
number of users.

When the number of users connected to the ring is large, the one-bit delay and
propagation time become significant. If the ring is small, then the number of
users is limited by the number of bits contained in the token. There must be
enough users to allow the entire token to be placed on the ring. Another factor
which requires consideration is when a user is removed from the ring. The
number of users remaining active needs to equal or exceed the number of bits in
the token. If a user is removed, it may be necessary for the interface logic
to remain attached to the ring so that a one-bit delay is maintained.

A problem associated with this protocol is that if the token is ever lost, for
instance by a noise burst modifying the token pattern, operation will cease.
Users can monitor for this condition and, after a period of inactivity, start
a token circulating again. If variable length messages are permitted, the
timeout period needs to satisfy the worst case scenario, of all bus users
transmitting the maximum length message, to avoid having more than one token in
circulation.

Two avionic data buses that may be classified in the category of token rings are
the LTPB and the HSRB. The LTPB uses a linear topology with token passing for
access control. The HSRB uses a ring topology with token passing. Both buses
operate at high data rates (50 megabits per second) and are designed primarily
for military aircraft.

For further information on token passing protocols, see Elwell et al. (1992).

5.1.2.4.1 Linear Token Passing Bus

The LTPB is a recently defined data bus. Two types of media are defined for use
by the LTPB. They are fiber optic and wire media. Bus lengths of up to 1000
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motors can be accommodated by the LTPB. Some of the bus characteristics are. listed in table 5.1-1.

TABLE 5.1-1. LTPB CHARACTERISTICS

Media Fiber Optic or Wire

Word Size 16 Bits

Message Size 0 to 4096 Words

Number of Physical Addresses 128

Priority Levels 4

Topology Linear

Although the physical bus is linear, the protocol uses a token which is cyclicly
addressed to each bus user, in sequence, around a logical ring. The token is
a Token frame which consists of an address field and a frame check field. The
address field contains the address of the BIU for which the token is intended.
The frame check field is a CRC which ensures token integrity. The BIU that
receives the token is granted access to the bus.

Since the token contains the destination address, any BIU may alter the sequence
of BIUs by modifying this field. This feature allows a ring to easily
reconfigure itself when an individual BIU becomes inactive. At power-up, or
when the token is corrupt, the logical ring sequence is established by a
predefined contention method.

If a BIU does not respond in a reasonable amount of time to a token passed to
it, the sending BIU will again send the token to the same bus user. If there
is no response, the sending BIU increments the destination address field of the
token and again transmits it on the bus. This process continues until a
successor is found or the destination address wraps around and equals the
sending address (AS4074.1, 1988).

The addition of new members to the ring and reentering bus users that were
momentarily dropped from the ring is accomplished by the Ring Admittance Timer
(RAT). Each BIU maintains a RAT. When the timer expires, the BIU attempts to
pass the token to a bus user with an address between its own and that of its
current successor. A token is sent to the succeeding address two times. If no
response is received, the address is increased by one and a new token is issued.
This process continues until a successor is established. If the current
successor already has the next physical address, the RAT is ignored. A RAT
should be used only on a lightly loaded bus. The throughput of a moderately
loaded bus would be significantly decreased (AS4074.1, 1988).
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The LTPB allows message prioritizing. There are four categories of messages:
priority 0 through priority 3. Priority 0 messages are the highest in priority,
priority 3 messages are the lowest.

When a BIU receives the token, it sends all priority 0 messages first. A Token
Holding Timer (THT) is maintained by the BIU to control the maximum amount of
time the token may be held. It is reset upon reception of a token. The token
is passed on to the next user when the THT expires, even if there are messages
remaining to be sent.

Before the THT expires, Token Rotation Timers (TRTs) determine the window for
sending messages with priorities of 1 through 3. Each BIU maintains a TRT for
each of the three priority levels. After priority 0 messages are sent, priority
1 messages are sent until finished or until expiration of the priority 1 TRT.
This procedure is followed for each message priority level. If all of the
lowest priority messages are sent, the token is passed to the next bus user.
The TRT and THT ensure small latencies for high priority messages (AS4074.1,
1988).

5.1.2.4.2 High Speed Ring Bus

The HSRB is another recently defined data bus. It is a unidirectional ring bus
that sequentially passes the token from one bus user to the next to control bus
access. The BIU that receives the token modifies the token, originates a
message, removes the message when it returns around the loop, and then emits a
new token. All other BIUs in the ring simply repeat messages that they receive.
In the normal mode of operation, the BIU holding the token sends only one
message before issuing a new token. Some of the bus characteristics are listed
in table 5.1-2.

TABLE 5.1-2. HSRB CHARACTERISTICS

Media Fiber Optic or Wire

Word Size 16 Bits

Message Size I to 4096 Words

Number of Physical Addresses 128

Priority Levels 8

Topology Ring

A BIU connected to the HSRB has two functional parts: the Ring Interface Unit
(RIU) ond the Ring Interface Module (RIM). The RIM interfaces to the medium and
either allows the RIU to be connected to the bus or isolates the RIU from the
bus. The RIM has a mechanism to maintain ring continuity in the event of a bus
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user failure. The RIU interfaces with the host CPU and performs the many

protocol related tasks associated with the token passing protocol.

A maximum delay of six bit-times is permitted between the input and output of
a RIU. All BIUs repeat the received messages, except the transmitting BIU which
removes its own message from the ring and reissues the token.

The normal configuration for the HSRB is a dual ring configuration where one
ring is active and the other is inactive. Each message is simultaneously
transmitted on both rings, but the message on the inactive ring is normally
ignored.

There are three types of frames defined for the HSRB: Token, Message, and
Beacon. Token frames are used for access control, Message frames pass
information among bus users, and Beacon frames transmit control information
during start-up or reconfiguration.

5.1.2.4.2.1 Token Frame

The protocol uses a token which is continually passed from one BIU to the next
around the physical ring. The token is a Token frame which consists of a Token
Starting Delimiter Field (TSDF), a Control field, and a Token Frame Ending
Delimiter Field (TFEDF). The TSDF and TFEDF establish the start and end of the
Token frame. The Control field consists of five sub-fields relating to the
network operation. This token, with no message attached, is called a free
token. Only the BIU that receives a free token can access the bus. Refer to. AS4074.2 (1988) for more detail.

5.1.2.4.2.2 Message Frame

A Message frame is the vehicle used to transfer information from one bus user
to another. It consists of a Claimed Token sub-frame, which is the free token
with the Token Ending Delimiter stripped off, followed by a Preamble field,
various address and message control fields, an Information field, and a Frame
Status field (Aerospace Information Report [AIR] 4289, 1990).

With the exception of the Information field, all other fields in the Message
frame are considered overhead. They are used to ensure error free message
delivery to the destination and correct protocol operation.

If a bus user wishes to send a message, it may wait for a free token and then
claim it, as long as it has higher priority messages to send than may be
reserved. Otherwise, the user can make a reservation in the Claimed Token sub-
frame of a message already circulating around the ring.

Reserving a free token - done by setting the appropriate priority bits ie .he
Control field of the Token frame according to the priority of the message the
bus user wishes to send (AS4074.2, 1988). If the field is already set to a
lower priority, the bus user replaces the previous reservation with its higher
priority reservation. If the field is already set to a higher priority, then
the bus user wishing to place a reservation for a lower priority message must
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wait until the priority field of a Claimed Token is lower than its message
priority level.

After the message is passed completely around the ring, the sender removes the
message from the ring and issues a free token with the priority field set to the
priority of the Claimed Token which it removed (AIR 4289, 1990). The first user
that has a message of that priority or higher may claim the reserved free token.

The bus standard allows for an option where it does not require the last issued
Claimed Token to be received by the sending bus user before it issues a new free
token. Operation in this manner allows multiple short messages on the ring
simultaneously. This mode of operation does not guarantee that the highest
priority message will be serviced first. Therefore, the bus standard limits the
number of consecutive short messages to 16.

5.1.2.4.2.3 Beacon Frame

The Beacon frame is used during ring reconfiguration to transmit control
information to all BIUs. Reconfiguration occurs after the application of power,
or during error recovery, and establishes the master station. The master
station issues the first free token after reconfiguration. The master station
is normally the highest addressed bus user. There is only one master station,
the rest are slaves. All bus users, however, must have master capability. The
reconfiguration also determines the number of participating bus users.

Since the ring allows reconfiguration at power-up, new bus users can be added
simply by attaching them to the ring and applying power. This assumes that the
required loading analysis has already been performed, the addresses of receiving
or transmitting BIUs have been implemented in the new BIU, and any other
required changes have been made.

A bus user may be a bus bridge, as in any network. A bridge functions as a
receiving BIU on the ring which originates the message and as a transmitting
BIU on the ring which is to receive the message. The bridge completely receives
the message, verifies its correctness, and acknowledges receipt, before the
message is passed to the receiving BIU. The HSRB standard includes examples of
bridge implementations and guidelines for the designer, along with guidelines
on handling the protocol acknowledgement through the bridge.

5.1.3 Data Integrity Concerns

The integrity of data in an integrated digital avionic system is a key concern
of the user. Hence, it needs to be a key concern of the designer and systems
integrator. Problems arise in the use of data buses when they are pushed beyond
their designed limits, causing a bus overload condition. Another cause of
concern is due to bus faults induced by internal or external sources. An
internal source may be a faulty bus user, while an external source may be
radiated noise. Some issues relating to data integrity are examined in the
following sections. Applications to avionic data buses are made.
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. 5.1.3.1 Bus Capacity

Bus capacity deals with the ability of a data bus to handle its load. A data
bus is used to deliver information in a safe and timely manner. If data are not
available for a computation when they are needed, the system requiring the data
will yield results that are less than desireable. Since avionic systems are
becoming increasingly complex and more integrated, there is a growing need to
pass more variables between systems on a particular data bus. This need is
driven by various factors such as cost savings, performance improvements, and
pilot workload reduction.

When an avionic system is designed, the designers and system integrators ensure
that there is ample free time on the data bus to handle all of the bus traffic
during the worst case condition. Draft 1 of ARINC Specification 629, Part 2,
section 4.1 (1989), states the following:

"... bus capacity is a finite resource and should be utilized in a
conservative manner. Therefore, it is recommended that the system
designer exercise diligence in the design process."

When new LRUs are added to an existing system at a later date, is the designed
worst case loading known? If it is, is it accounted for in the modified system?
Does the new integrated system meet the original design specification and update
rate for all variables?

In practice, the theoretical maximum bus capacity is limited by several factors:

* Bit rate

a Message format

a Protocol

a Architecture

The bit rate, or clock rate, of a data bus is only one factor relating to bus
capacity. It quantifies the number of bits per second that are transferred
across a data bus. If the clock rate of a data bus is 1 megabit per second,
and the word size is 20 bits, then the theoretical throughput is 50,000 words
per second. An increase in the bit rate will yield an increase in throughput.
There are physical limitations, however, that dictate the maximum bit rates for
a given configuration. The maximum bit rate depends on factors such as the
following:

"* Bus medium used (wire/fiber optic)

"* Physical characteristics of the medium

"* Bus interface logic device speed

The message format has a pronounced affect on bus capacity. Error detection and
correction bits add overhead to the basic data word. In addition, if more data
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bits are defined than are necessary for a particular variable, or if fields in
a wordstring are defined but not used, then overhead is increased, which reduces
the data bus capacity.

The particular protocol used also has an effect on the bus capacity. When a
protocol which requires an acknowledgement is used, the response time of the
receiver and the transmission time of the acknowledgement must be accounted for.
If the response time of the receiver varies, the worst case response should be
specified and used in the calculation of throughput.

In an acknowledgement type protocol, consideration should be given to the
additional load created by error correction., Upon detection of an error,
retransmission may be requested. Retransmissions may force the bus to become
aperiodic. Hence, it is necessary to plan for a certain amount of retransmis-
sions in an acknowledgement-based protocol.

A protocol that bases bus access on a delay time also influences throughput.
In effect, a certain delay time becomes the unique user address. The higher the
number of users on the bus, the lower the overall bus capacity.

Bus architecture has an influence on bus capacity. If a system contains
gateways or bridges, the resulting delays need to be accounted for. These
delays may be in the form of error checking, protocol conversion, data format
conversion, or other operations on the data performed in a gateway or bridge.

Not considered in this section, but significant to overall system performance,
are buffer availability in the receiver; the processing capability of the
receiver; the ability of the sender to maintain the required update rate; and
other areas not directly related to bus throughput, such as hardware-software
Interaction. It should be recognized that due to problems in these areas bus
performance may be degraded, but that the cause is not the data bus.

5.1.3.1.1 ARINC 429 Bus Capacity

The ARINC 429 bus uses a word length of 32 bits. There are two transmission
rates: low-speed, which is defined as being in the range of 12.0 to 14.5
kilobits per second; and high-speed, which is 100 kilobits per second.

There are two modes of operation in the ARINC 429 bus protocol: character-
oriented mode and bit-oriented mode. In the character-oriented mode, periodic
updates of each variable are maintained on the data bus. These periodic rates
are specified in Attachment 2 of the specification, along with the message
labels, equipment identifiers (IDs), and other essential information. Knowing
the bit rate and the essential update information from Attachment 2, a
determination of bus capacity can be made.

For the bit-oriented mode, the determination of throughput is complex and is
based on numerous protocol related variables. The bit rate specified is the
same as for the character-oriented protocol and can be either low- or high-
speed. Bus capacity is difficult to determine when the bit-oriented mode is
used, and no guidelines are given in the specification for making this
determination.

18-62



Bus utilization remains constant during operation of the character-oriented
protocol. The system designer defines the load based on the LRU messages and
update rates required for all LRUs and selects the appropriate bus speed to
support the update rate required. No guidance is given in the specification for
overhead allowance.

Since the ARINC 429 bus is a broadcast bus, no access protocol is used by
transmitters on the bus. Bus availability is not a problem for a bus with a
single transmitter. There is, therefore, no access protocol overhead limiting
bus capacity. There is a message format overhead, but it is minimal.

Out of the 32-bit word length used, a typical usage of the bits would be as
follows:

"* Eight bits for the label

"* Two bits for the Source/Destination Identifier

"* Twenty-one data bits

"* One parity bit

Thus, the information bit-rate for the ARINC 429 bus is typically a factor of
twenty-one thirty-seconds of the clocked bit-rate. An •'formation bit-rate of
65,625 bits per second is the maximum obtainable rate with the given overhead.p 5.1.3.1.2 Commercial Standard Digital Bus Capacity

The CSDB is similar to the ARINC 429 data bus in that it is an asynchronous
broadcast bus and operates as a character-oriented protocol. Two bus speeds are
defined in the CSDB specification. A low-speed bus operates at 12,500 bits per
second and a high-speed bus operates at 50,000 bits per second.

Data are sent as frames consisting of a synchronization block followed by a
number of message blocks. A particular frame is defined from the start of one
synchronization block to the star- of the next synchronization block. A message
block contains an address byte, a status byte, and a variable number of data
bytes. The typical byte consists of one start bit, eight data bits, a parity
bit, and a stop bit.

The theoretical bus data rate for the CSDB operating at 50,000 bits per second,
with an 11-bit data byte, is 4,545 bytcs per second. The update rate is reduced
by the address byte and synchronization block overhead required by the standard.

The CSDB Interblock and Interbyte times also reduce the throughput of the bus.
According to the specification, there are no restrictions on these idle times
for the data bus. These values, however, are restrained by the defined update
rate chosen by the designer. If the update rate needs to be faster, the
Interblock time and the Interbyte time can be reduced as required.
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5.1.3.1.3 ARINC 629 Bus Capacity

The current draft of ARINC Specification 629, Part 2, section 4, is entitled
"Bus Performance Analysis." The draft treats "Bus Loading" and will also
include sections on "Response Times" and "Data Latency."

Bus loading is discussed for the CP protocol. There are three levels of bus
data traffic defined in the CP protocol. The first level consists of all
periodic transmissions. Loading due to periodic traffic is evaluated before
level two and level three traffic. The specification states the following:

"Normally a worst case estimate can be obtained by simply summing the
maximum bus loads, after balancing has been attempted, of all
terminals [bus users] attached to the bus." (ARINC Specification 629,
Part 2, section 4, 1989).

The standard recommends that bus traffic be balanced before computing the bus
loading. This means that the designer should attempt to even out the traffic
load to minimize the worst case load. After this, a simple summation of the
maximum loads presented by each LRU will give the level one bus loading.

In contrast to level one loading, level two and level three loading is much more
difficult to ascertain. Aperiodic traffic depends on the flight phase or the
mode in which the aircraft is operating. According to the specification, the
designer will need to make several evaluations:

"* The average load presented by the identified traffic.

"* A worst case assessment, if transmission of level two messages within one
TI is to be guaranteed.

"* A less severe case, where transactions are triggered by some event.

"* A statistical evaluation of bus loading.

Level three traffic is aperiodic and lowest in priority. For this level, the
specification requires that the designer make the following assessments:

"* The average load presented by the identified traffic.

"* A worst case assessment, taking into account that some transfers may result
in closely spaced bus accesses and may use a file transfer protocol.

Since the ARINC 629 bus protocol is based on bus quiet times for operation, it
suffers throughput degradation when high periodic update rates are required with
a large number of users. Three factors which contribute to this degradation are
the Interstring Gap (IG), the TG, and the SG.

IGs are required time intervals inserted between contiguous messages. A TG is
a unique time interval for each bus user which must be satisfied for a user to
access the bus. The SG is a time interval greater than the largest TG that must
be satisfied for each user before a user can access the bus.
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SAnother factor contributing to throughput degradation is a small number of data
words per message. The larger the message, the more efficient the data transfer
becomes. However, to allow periodicity for all users means that some trade-
offs must be made between the frame rate for all users and the number of words
per label. A large number of users and high periodic update rate also detract
from the protocol performance.
On the other hand, greater performance can be realized if the following

guidelines are followed:

"* Use as many words per label as is practical.

"• Choose reasonable values for the periodic update rate and the number of
users.

"• Keep the TG values sequential and choose the smallest set possible.

"a Place the most used data words in a message closest to the label to enhance
receiver performance.

Concerning the initially designed bus capacity, section 4.4.6 of ARINC
Specification 629, Part 1 (1990), states the following:

"During initial development, bus loading should not exceed 50% of its
capacity in order to allow for growth during the system's operational
life."

The designer is cautioned that capacity is a finite resource and should be used
conservatively.

5.1.3.1.4 Avionics Standard Communications Bus Capacity

Data are sent on the ASCB as a series of eight frames, each with a duration of
25 milliseconds. There are no retransmissions or complicating protocol factors.
The computation of bus capacity is straightforward. The messages transmitted
in each frame are predetermined for a particular application, and there is no
deviation once the operation is established.

The ASCB standard gives the following information for computing the bus
capacity:

* Bus clock rate - 2/3 MHz -'0.0016 ms/bit

* Zero insertion factor - 6/5 x 0.0016 - 0.0018 ms/bit (The HDLC component
automatically inserts a "zero" to prevent six consecutive "ones." The
receiving HDLC component automatically removes the inserted "zeros.")

* 8 bits/byte x 0.0018 ms/bit - 0.0144 ms/byte, or 69,444 bytes/second

Bus utilization remains constant for ASCB during operation. The system designer
defines the throughput based on the LRUs and update rates required for all
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systems, and based on the byte rate defined above. Overhead is also added to
allow for future expansion. For a typical application, the ASCB utilizes
approximately 80 percent of the available frame time (Jennings 1986).

5.1.3.1.5 MIL-STD-1553 Bus Capacity

For the MIL-STD-1553 bus, messages are passed between a BC and remote terminal
(RT), which is a bus user, one RT and another RT, or one BC and another BC.
Calculating bus capacity is viewed as a fairly simple task. According to the
"MIL-STD-1553 Designer's Guide" (1982), the following are required for the
computation:

"* A hand-held calculator

"* System data

"* Decisions on the implementation of MIL-STD-1553

The "MIL-STD-1553 Designer's Guide" (1982) suggests the following values be used
when computing bus loading:

* 20N + 68 - value for each BC to RT message

* 20N + 116 - value for each RT to RT message

* 20N + 40 - value for each BC to RT broadcast message

* 20N + 88 - value for each RT to RT broadcast message

* 68 - value for each mode code (MC) message without data word

* 88 - value for each MC message with data word

* 40 - value for each MC broadcast message without data word

* 60 - value for each MC broao.., t message with data word

The value "N" represents the number of words in the message and the values
calculated are in milliseconds. The average bus loading is given by the
following:

Bus Loading - ( S / F ) x 100 percent

where S is the sum of the message type values and F is the frequency, 1.0
megahertz.

The "MIL-STD-1553 Designer's Guide" (1982), section I, paragraph 3.8, also makes
the following recommendation concerning bus capacity:

"A system should not exceed 40% bus loading at initial design and 60%
at fielding, in order to provide time for error recovery/automatic
retry and to allow growth during the system's life."

18-66



. 5.1.3.1.6 Linear Token Passing Bus Capacity

Before a determination of the bus capacity can be made, it is necessary to
calculate the token rotation time and categorize the traffic into message types
and priorities. Clear and ample direction for these determinations is given in
the LTPB user's handbook (AIR 4288, 1991). In addition, the handbook gives
examples to aid the system designer or integrator in this task.

The token rotation time is calculated as follows (AS4074.1, 1988):

T - N (Bus Length / Propagation Speed
"+ Token Receiving Time
"+ Token Transmitting Time)

where

T is token rotation time in seconds
N is the number of BIUs in the configuration
Bus Length is the distance from the transmitting BIU to the receiving BIU

The Token Receiving Time and Token Transmitting Time are equal since they both
contain the same number of bits and have the same clock rate. This time is
given by the following (AS4074.1, 1988):

(Preamble Size + Token Length) * Bit Time. The preamble is a bit pattern created by the transmitting BIU. It is used by
the receiver to synchronize its receive clock to the clock of the transmitting
BIU. The system designer has the liberty to set this value according to the
requirements of the receiving hardware. It must be accounted for in computing
the bus capacity.

There are four important characteristics of the bus traffic to quantify: types
of messages, data message size, peak frequency, and latency. The message type
describes a unique combination of message size and frequency. The data message
size is the number of 16-bit words associated with the message type. The peak
frequency defines the update rate for a message type. Latency is derived from
the peak frequency and is used as a basis for a message's priority. Table 5.1-3
gives an example of how messages may be characterized.

The messages need to be assigned priority. The LTPB user's handbook suggests,
for simplification, that the l'arger latencies be multiples of the smallest
latency. Using this criterion, table 5.1-4 gives the priority breakdown, using
the data from table 5.1-3.
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TABLE 5.1-3. LTPB MESSAGE CHARACTERISTICS
(AIR 4288, 1991)

Message Data Message Size Peak Frequency Latency
Type (Words) (Hz) (as)

A 20 100 10
B 50 75 10
C 50 50 20
D 150 50 20
E 20 25 40
F 225 25 40
G 1025 15 66

O 1000 12.5 80
I 150 12.5 80
J 2000 10 100

TABLE 5.1-4. LTPB MESSAGE PRIORITIES

Message Type Priority Latency

A 0 10
B 0 10
C 1 20
D 1 20
E 2 40
F 2 40
G 2 40
H 3 80
I 3 80
J 3 80

The time for a single transmission of all messages for each priority category
is calculated from the following equation:

dij (Number of priority i words * 16 bits/word
+ Message overhead bits * Number of priority i messages)
* Bit time

In table 5.1-3, priority 0 messages have 70 words. If an overhead of 27 bits
exists, and the bit rate is .02 microseconds per bit, then the transmission time
for priority 0 messages is as follows:

(70 * 16 + 27 * 2 ) * .02 - 23.48 microseconds
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. The calculated values for priority 0 through priority 3 messages are 23.48
microseconds, 65.08 microseconds, 408.02 microseconds, and 1009.62 microseconds,
respectively. Since there are 10 bus users, the total transmission time for
each priority group becomes 234.8 microseconds, 650.8 microseconds, 4080.2
microseconds, and 10096.2 microseconds, respectively.

Next, the number of token rotations necessary to service the messages for each
priority level of bus traffic is used to determine the expected bus loading.
It is assumed that in one token rotation, all priority 0 traffic will be passed;
in two, all priority 1 traffic will be passed; in three, all priority 2 traffic
will be passed; and in four, all priority 3 traffic will be passed. The
expected bus loading is then calculated by dividing the total transmission time
for priority "i" messages by the number of token rotations necessary to pass
priority "i" messages. Using the same data, the values of 234.8 microseconds,
325.4 microseconds, 1360.07 microseconds, and 2524.05 microseconds are obtained
(AIR 4288, 1991).

If the total bus loading for priority 0 through priority 3 traffic, plus the
token rotation time, is less than the required priority 0 latency, then
sufficient bandwidth exists to support the network operation. In this example,
the time for 10 bus users to pass their expected traffic is 4444.32 microseconds
(234.8 + 325.4 + 1360.07 + 2524.05). If the token rotation time (45.5
microseconds for this example) is added, then the total becomes 4489.82
microseconds. Since the priority 0 latency requirement is 10 milliseconds, or
10,000 microseconds, this bus configuration is adequate and allows ample
bandwidth for growth.

It is possible to enhance bus performance by requiring that successive bus users
be located adjacent to each other. This will reduce the token passing time and
the time for detection of the successor. Since the performance increase is
proportional to the bus medium length, the effect is more dramatic in larger
configurations (AIR 4288, 1991).

5.1.3.1.7 High Speed Ring Bus Capacity

The HSRB handbook includes a section on "Performance Calculation" for the HSRB.
To proceed with this analysis, it is first necessary to compute the Ring
Rotation Time (RRT). This is given by the following (AIR 4289, 1990):

RRT - Media Transmission Delay
"+ Bus User Bit Delay
"+ Bus User Modulation and Demodulation Delay

where

Media Transmission Delay - L / V
Bus User Bit Delay - [ ( N - 1 ) * Sb + Mb ] / Ck
Bus User Modulation and Demodulation Delay - N * ( T, + Td )
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and Length of medium

V Transmission velocity of medi.-u
N - Number of bus users on ring
Sb - Number of delay bits in a slave station BIU
b -- Number of delay bits in a master station BIU

Ck - Clock rate
T. - Modulation delay in a BIU
Td - Demodulation delay in a BIU

The HSRB standard specifies Sb and Nb to be 6 bits and 40 bits, respectively,
and Ct as 50 Megabits per second when using wire media. Using a value of 150
meters/microsecond for V, 0.05 microseconds for T. + Td, 64 for N, and 300 meters
for L, then the RIT can be computed as follows:

RRT - 300 / 150 + [ (64 - 1) * 6 + 40 J / 50 + 64 (0.05)
- 13.56 microseconds

The Message Length (ML) is also necessary for the performance computation. This
is computed in the following manner (AIR 4289, 1990):

ML - Overhead bits + Information bits
- 170 + 20*L + 40 * INT(I,/256) + 20 * In

where

, - Number of logical address words (equal to one if physical
addressing is used)

In - Number of Information words

If we use a value of L. - 1, then ML may be calculated over the range of
information words as shown in table 5.1-5.

TABLE 5.1-5. HSRB MESSAGE LENGTH VERSUS INFORMATION WORDS

Information Words Overhead Bits Information Bits Message Length

1 190 20 210
1024 350 20480 20830
2048 510 40960 41470
3072 670 61440 62110
4096 830 81920 82750

Once the ML is known the Message Time (MT) can be calculated as follows:
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SThe corresponding HTs for 1, 1024, 2048, 3072, and 4096 Information words are
4.2, 416.6, 829.4, 1242.2, and 1655 microseconds.

For the case of a single bus user transmitting a message, the worst case
transmission time, which occurs when the BIU has just missed claiming the token,
is given by the following:

Worst case transmission time for single transmitter - RRT + MT

The percent efficiency of the ring is now calculated as follows:

Efficiency - 100 * Information Time / Total Time

where the Information Time is computed as follows:

Information Time - Number of Information Bits (Ib) / Ck

Table 5.1-6 shows the relationship between the number of Information words and
the efficiency of the ring. Note the dramatic loss of efficiency with a small
number of Information words.

TABLE 5.1-6. HSRB EFFICIENCY VERSUS INFORMATION WORDS

I. Ib MT RRT Efficiency
(words) (bits) (AS) O's) 0)

1 20 4.2 13.56 2.25
1024 20480 416.6 13.56 95.20
2048 40960 829.4 13.56 97.20
3072 61440 1242.2 13.56 97.90
4096 81920 1655.0 13.56 98.20

5.1.3.2 Data Bus Fault Tolerance

Fault tolerance deals with the ability of a system to operate in the presence
of errors. Of primary importance here is that errors are detected. Once an
error is detected, it may be dealt with in numerous ways. In this section,
methods of error detection and correction, bus monitoring, and bus reconfigura-
tion are examined along with specific examples from the data bus svandards.
Fault tolerant techniques relating to the hardware-software interface are
discussed in section 5.2.

5.1.3.2.1 Bit Error Detection and Correction

Errors on any transmission medium are a fact of life. They are caused by events
beyond our control or that are too expensive to control. In either case, the
designer is faced with how to handle errors induced by sources outside the
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system as well as internal sources, such as equipment and transmission medium
failure. If the designer has some knowledge of the nature of the errors that
will likely occur, then the task of implementing error detection becomes precise
and efficient.

There are four common methods for detecting bit errors in data: a parity check,
CRC, Checksum, and Hamming code. The Hamming code not only detects errors but
can be used to correct errors. For further details on these methods, see Elwell
et al. (1992).

Whatever method or methods are used by a data bus for error detection or
correction, it is important that the bus s andard be precisely observed.
Designers and integrators should ensure that all transmitters and receivers
agree on the format of error detection (odd/even parity, CRC polynomial
generator, etc.) and that the specified checking is implemented. Error checking
implemented in data bus hardware is only the first step in ensuring data
integrity. The application software in the host CPU must respond to the
detected error or else the hardware checking is useless.

As mentioned in section 5.1, address errors are a major concern for systems
using data buses. An address field error caused by data bus induced noise, for
example, can have a more profound affect on system operation than an error in
the data field. A corrupt address field could cause an LRU to receive a message
or command that was intended for another LRU. Although it is possible to
"smooth over" errors in a data field by filtering, such an operation does
nothing to protect the address field. The address field should also be
protected by a high integrity check.

Additionally, since standards are very specific in defining each bit for the
data word, all defined fields of a word should be checked to ensure that they
are both valid and reasonable. Spare bits should be defined and fixed as either
ones or zeros and checked by the receiver. A data bit field that has additional
constraints placed on it by the standard should be checked by the receiver for
compliance. For instance, when a field of eight bits may have only one bit in
the logic "one" state at a time, all the rest should be tested to see if they
are "zero."

5.1.3.2.1.1 ARINC 429 Bus Error Detection and Correction Methods

ARINC Specification 429-12, section 1.3.1 (1990), states the following:

"A parity bit is transmitted as part of each data word to permit
simple error checks to be performed by the sinks"

This data bus relies on parity bit error detection with each data word. By
itself, this amount of protection does not seem adequate. In a data word of 32
bits, bit errors may occur in any even number of bits up to 32 without being
detected by the parity technique. However, experience has shown that the high
integrity of the twisted and shielded wire transmission medium and the slow
signaling rate have ensured reliable bus transmissions.
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An additional technique referred to in the standard is the "data reasonableness"
check. This means that the host computer at the data destination must have
information about the data it expects to receive. If no errors are indicated
by the data bus hardware, the CPU tests the data to ensure that it is within
anticipated reasonable bounds. This type of checking can be performed at the
host CPU as an additional integrity check on data that is passed over the data
bus.

Data filtering is also used to reduce the effects of data that may be within
reasonable bounds but is incorrect. The incorrect value is smoothed out by
averaging it with the preceding and following values.

ARINC Specification 429-12 also defines a bit-oriented protocol used for file
data transfer. This protocol uses "handshaking" between communicating users,
and also defines a CRC to be used for the file transfer. The use of the CRC
ensures that a certain amount of errors occurring in the data will be detected.
Since the file data are not refreshed regularly or continuously as are other
data, reasonableness checks and filtering are not possible. Thus, the CRC was
added to ensure additional data integrity. The generator polynomial used is as
follows:

G(x) - x16 + x12 + x5 + 1

5.1.3.2.1.2 CSDB Error Detection and Correction Methods

Two methods of error detection are referenced in the standard. They are the use. of parity and checksums.

A parity bit is appended after each byte of data in a CSDB transmission. In
section 2.1.4 of the standard, three types of transmission are defined:

"* Continuous repetition

"* Noncontinuous repetition

"* "Burst" transmissions

The "burst" transmission makes use of the checksum for error detection, as the
specification states:

"It is expected that the receiving unit will accept as a valid message
the first message block which contains a verifiable checksum." (GAMA
CSDB, 1986).

5.1.3.2.1.3 ARINC 629 Bus Error Detection and Correction Methods

ARINC Specification 629, Part 1 (1990), recommends multiple levels of error
detection. At the lowest level, parity is defined as part of the 20-bit data
word definition. Section 4.4.2 of the specification states the following:

"The last bit of each label and data word should be encoded such that

word parity is rendered odd."
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Section 6.5.1 of the specification allows two other options for error detection.
They are the use of the checksum and CRC. The checksum is a 16-bit word formed
by adding, without carry, the 16 least significant bits of all the data words
prior to the check word.

The other option is to use a CRC. The same generator polynomial used by the
ARINC 429 bus is recommended.

Although the checksum and CRC may be calculated by the host CPU, the time used
to perform these calculations differs. The CRC is more complex than the
checksum and the standard suggests that "dedicaied hardware" may be required for
this calculation. Calculation of the checksum, however, is relatively simple
and is usually performed by software.

5.1.3.2.1.4 ASCB Error Detection and Correction Methods

Transmissions on the ASCB are initiated by a central controller. The ASCB uses
both the CRC and the checksum. Each transmission of the ASCB has the CRC code
appended to it by the HDLC hardware. This CRC is the same one used by the ARINC
429 bus. A checksum computed by the host CPU is added to every transmission and
is sent as part of the user's data transmission (Jennings 1986).

5.1.3.2.1.5 MIL-STD-1553 Bus Error Detection and Correction Methods

This bus makes use of various error detection schemes. The command, data, and
status words are checked using a parity bit in position 20. In addition, the
"MIL-STD-1553 Designer's Guide" (1982) states the following:

"... the traditional methods of computer data protection can be
.applied. These include checksums and cycle redundancy checks."

If further error protection is required, the "Multiplex Applications Handbook"
(MIL-HDBK-1553A, 1988) recommends the use of a Hamming code protection method.
The recommended method allows for data correction of up to three bits per word.

5.1.3.2.1.6 Linear Token Passing Bus Error Detection and Correction Methods

A Frame Check Sequence (FCS) is used on the LTPB for error detection. It is a
CRC applied to Token frames and Message frames. The Token Frame Check Sequence
(TFCS) is applied to the token and ensures that a bus user will not accept a
token that has been corrupted. The Message Frame Check Sequence (MFCS) is
applied to a message and ensures that a bus user will not accept a corrupt
message. When a message with a CRC error is received, the receive buffers are
cleared and the host is not notified of the message or the error (AIR 4288,
1991).

The LTPB uses a CRC generator polynomial of x8 + x 4 + x2 + x + 1 for the TFCS and
a CRC generator polynomial of x16 + X12 + x1 + 1 for the MFCS.
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* 5.1.3.2.1.7 High Speed Ring Bus Error Detection and Correction Methods

An FCS is used on the HSRB for error detection; it is a CRC applied to Beacon
frames and Message frames. The Token frame does not have bit error detection
applied to it as it does for the LTPB. However, when a host claims a token, the
Token frame is modified and becomes part of the header of the Message frame.
The Message frame has a field called the Message Control Frame Check Sequence
(MCFCS), which is applied to the entire header of the Message frame. The
Information field of the Message frame has its own FCS, the Information Frame
Check Sequence (IFCS), applied to it to ensure that a bus user will not accept
corrupt data. The Beacon Frame Check Sequence (BFCS) field is used to provide
bit error detection for the Beacon Control field (AIR 4289, 1990).

The MCFCS, IFCS, and BFCS use the same CRC generator polynomial, x1' + x12 + x5
+ 1.

5.1.3.2.2 Bus Monitoring

Bus monitoring is a necessary function. The requirement for monitoring
increases with bus complexity. Old methods of locating faults in analog systems
will not work for digital data transmission. Placing an oscilloscope on a
transmission line will indicate only that there is activity on that line. It
will not indicate the origin of the activity or if the activity is correct.

One of the motivating factors behind bus monitoring is data integrity. When the
designers are finished, the simulations are all run, and the firmware programmed
and running in the target system, how can the functional system be validated
against the requirements? If the system is working correctly under the present
configuration, will it work the same under a slightly different configuration?
Under normal use, how can the state of the system be determined?

There are two types of bus monitoring to consider. One type is performed by the
data bus users to ensure bus communications. The other is usually performed by
a dedicated bus monitor for the purpose of collecting maintenance data.

5.1.3.2.2.1 Bus User Monitoring

User monitoring is performed by the bus interface of each user and should make
the following checks:

"• Protocol checking

"* Received data monitoring

"* Transmit data monitoring

"* Host system interaction monitoring

"* BIU hardware checking

The amount of bus monitoring used for integrity purposes by avionic buses varies
greatly. With some data buses only a minimal implementation is made. Bus
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standards should clearly define integrity issues and what parameters are to be
monitored to ensure integrity. For instance, if a standard does not specify
that buffer overrun errors shall be detected by all users, IC manufacturers or
system designers might implement this checking due to cost factors. Monitoring
should be planned at the beginning of the design, not added as an afterthought.
It will exist only if it is intentionally planned and designed.

For data buses used in essential or critical systems, the designers should
implement monitoring of any integrity related parameter. With current
technology this is not a burdensome task. The following list contains some of
the parameters which should be monitored by a bus user:

"Physical layer signal monitoring (Manchester modulation, parity, synchron-
ization patterns, voltage margins, frequency of bad data due to collisions,
HERF noise, or other interference)

"* Local protocol monitoring (acknowledgements, timeouts, access denial, etc.)

" Self-monitoring for transmission validation (correct address, correct
message format, "babbling" transmitter)

"* Received data transmissions

"* Transfer of data to and from host CPU

In addition to monitoring these parameters, provisions need to be made for
reporting any errors to the host CPU. Without the capability to report an
error, the ability of the user to detect it is useless.

5.1.3.2.2.2 ARINC 429 Bus User Monitoring

Since the ARINC 429 bus is older and unidirectional, the amount of bus
monitoring by the user hardware is significantly less than the newer, bidirec-
tional data buses. Additionally, being a unidirectional bus there are fewer
parameters for the bus interface to monitor.

For periodic messages the specification requires simple parity checks, not so
much for integrity as for compatibility with the hardware requirements (ARINC
Specification 429-12, 1990).

"...the parity bit was added to the BCD word for reasons related to
BCD/BNR transmitter hardware commonality, not because a need for it
existed for error detection."

The bit-oriented protocol requires that a CRC check be made on transfers. Other
higher level protocol parameters should be monitored by the host CPU. Further
checks may be performed by the host CPU only if the bus interface hardware
includes the functional capability to do so. For example, if buffer overrun
detection is not implemented in the hardware, the host CPU cannot detect this
error.
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. 5.1.3.2.2.3 Commercial Standard Digital Bus User Monitoring

Although many parameters are defined in the CSDB specification, there is no
suggestion that they be monitored by receivers. The bus frame, consisting of
the synchronization block and message block, may be checked for proper format
and content. A typical byte, consisting of start, stop, data, and parity bits,
may be checked for proper format.

The bus hardware should include the functional capability to monitor these
parameters. Parity, frame errors, and buffer overrun errors are typically
monitored in the byte format of the character-oriented protocols. The message
format can be checked and verified by the CPU if the hardware does not perform
these checks.

5.1.3.2.2.4 ARINC 629 Bus User Monitoring

Since this data bus is an autonomous access bus, self-monitoring becomes an even
more important function for bus users. There are three distinct areas of
monitoring defined for a ser: protocol monitoring, received data monitoring,
and transmission monitoring.

For received data, the user monitors the data for three conditions: a valid
synchronization pattern, valid Manchester II modulation, and proper parity.

Transmission monitoring consists of monitoring the same parameters as for the
received data when the user is sending. The synchronization pattern, Manchester
II modulation, and parity are checked by the sending user on every transmission.
An error causes the transmission to terminate. Other parameters which are
monitored by the user are excessive message or wordstring length, undefined
labels, and babbling conditions.

Protocol monitoring is performed by the user hardware also. This involves
checking a number of protocol related timing parameters, such as the TG and SG.
The protocol is implemented by dual hardware circuits. Each pair of protocol
parameters is checked for differences. Excessive deviation will cause the
transmitter to cease operation.

An error register is provided for the host CPU. Errors that are detected are
indicated by particular bits being set in this register. The host CPU should
monitor this register to ensure that any data bus errors receive appropriate
action.

It is also possible to monitor "handshaking" between the user hardware and the
memory. The ARINC 629 bus is designed to directly write and read the host
memory without the intervention of the host CPU. Since this is the case, the
CPU should check if these transfers were successful. The user hardware will set
a bit in the error register if the correct handshake sequence does not occur.
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5.1.3.2.2.5 Avionics Standard Communications Bus User Monitoring

The HDLC protocol used by the ASCB defines message delimiters and a CRC which
the users monitor to determine message validity. In addition, other checks are
performed by the hardware.

A Driver Enable Timer (DET) is implemented in the BCs and users to prevent
babbling. If an LRU attempts to send a message longer than its preallocated
time slot, the bus line driver is disabled by the DET. A checksum is added to
each message. In addition, a data counter, which indicates data "freshness,"
is included. The host CPU must check these parameters to determine the status
of each message.

The standby BC looks for invalid messages or a lack of messages from the
operating controller and also monitors itself for correct operation. The active
BC monitors itself for correct timing and transmissions. Upon detection of an
error in one of the controllers, the controller will reconfigure to maintain a
functional controller Controllers do not, however, monitor user transmissions
(Jennings 1986).

An HDLC protocol IC provides numerous parameters relating to bus operation that
the host processor can monitor. It provides CRC, overrun error, transmit
underrun, and other parameters in its receiver status register.

5.1.3.2.2.6 MIL-STD-1553 Bus User Monitoring

This bidirectional data bus relies on several checks of data integrity. At the
physical interface, each message is checked by the bus user for a valid
synchronization pattern and correct parity, and each bit of the word is checked

for valid Manchester II modulation.

Other items are monitored by bus users for detecting errors on a data bus.
Message formats are checked and undefined formats are rejected. For example,
users reject noncontiguous messages, which have a gap between the command and
data words.

Users also implement hardware timers to prevent babbling from its transmitter.
If a user attempts to transmit for more than 800 microseconds, a hardware timer
circuit will disable the transmission.

Upon detection of one of these errors in a data word, the user will set the
error bit of the status word to a logic one. Also, normal sending of the status
word is suppressed by the user. The BC will be alerted to a problem when the
user response is not detected within the period of time it has to respond.

5.1.3.2.2.7 Linear Token Passing Bus User Monitoring

Monitoring is a requirement for all LTPB bus users. An LTPB BIU monitors its
own transmissions and checks for various types of errors. Upon detection of an
error, the host CPU is notified and action is required.
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Specific transmission activities that are monitored for failure are Token claim
activity, Token frame transmission, Message frame transmission, and a transmit-
ter's detection of its own bus activity. Any detected error causes the

transmitter to isolate itself from the bus and notify the host CPU of the error
condition.

In each BIU there are many monitoring functions that support bus activity whose
failure can impact the bus as a whole. These take the form of registers,
generators, timers, a bus activity detector, and other hardware functions. The
combination of all these functions is called the Self Monitor Function (SMF).
A fault detected with any SMF requires corrective action and notification of the
host CPU (AIR 4288, 1991).

Other activities that do not affect the bus operation but do affect the BIU and
host system are not included in the SMF. These include tests such as Power-On
Self-Test or Periodic Self-Test (AIR 4288, 1991).

5.1.3.2.2.8 High Speed Ring Bus User Monitoring

Monitoring is a requirement for all HSRB bus users. The master station monitors
its own transmissions, checking for various types of errors. Upon detection of
an error the host CPU is notified and action is required.

Monitoring is performed to detect Information field errors, message control
errors, Token status errors, starting delimiter errors, Token format errors, and
Token priority errors. Occurrence of these errors requires that the host be
notified and, possibly, that it take corrective action.

Other errors may occur that require no explicit recovery action. In these cases
it is not necessary to notify the host. These errors are reservation bits set
too high, reservation bits set too low, and short message count errors.

There are also timers and counters implemented at each BIU on the ring. These
timers ensure the correct operation of the protocol and guard against token loss
and uncontrolled transmitters. Another timer ensures that a Beacon frame is
received within a specified time (AS4074.2, 1988).

5.1.3.2.2.9 Maintenance Monitoring

Bus monitoring for maintenance purposes is a long-term data integrity issue.
Monitoring is performed by a bus user that is specifically designed for this
purpose. Data are gathered and stored so that analysis can be done at a later
time. Tasks performed by the m6nitor should include the following areas:

"* Check for faulty LRUs

"* Check for faulty transmissions

"* Check global protocol

"* Record and report any error during flight
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* Check general bus performance

Defective LRUs may be detected by a bus monitor that has sufficient information
concerning the data bus implementation. If addresses of all users are known,
then the monitor will detect a particular LRU which fails to respond when
addressed. For access protocols based on TDMA, faulty transmissions may be
associated with a particular LRU based on a time slot allocation table.

In addition to monitoring the operation of the LRUs attached to the data bus,
there is a need to check the operation of the global protocol. Individual bus
users may only verify that their own bus accesses obey the rules of the
protocol. This does not guarantee that the overall protocol is functioning
correctly. Data buses that implement higher level protocols, such as the bit-
oriented protocols of the ARINC 429 and the ARINC 629 buses, need to be
monitored for protocol violations at a level higher than a user would check.
Unless the higher layers of the protocol are implemented in the user hardware,
the host CPU or a dedicated communication processor must perform this monitoring
function.

Monitored parameters can be used for both short-term and long-term performance
evaluation. Short-term monitoring will yield information on bus quality, LRU
failures, and the success of repairs. In the long-term, failure trends, mean
time between failure (MTBF), mean time to repair (MTTR), performance trends, and
cost of ownership can be ascertained.

Monitoring can be used to record serious errors that occur during flight and
landing. While it is important that the pilot is not bothered by messages that
are of little consequence, the pilot must be made aware of data bus failures
that may affect flight safety. Failures of this nature should be detected by
a bus monitor and reported to the cockpit so that appropriate action may be
taken.

Maintenance monitoring needs to be planned for from the start of a design. One
of the design goals should be ease of use. This means that the designer should
keep the user in mind. The human interface needs to be simple and the messages
informative. Messages can be stored in complete sentences. Today, large
amounts of information can be stored in nonvolatile memory. Some of the
information which might be store- in this memory and used for maintenance
purposes is as follows:

"* Reports of all monitorable data bus parameters

"* Explanations of corrective measures to be taken for any given failure

"* Diagnostic information, such as BIT status for all systems

"* System diagrams

"* System specifications
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. 5.1.3.2.3 Reconfiguration

Reconfiguration is a fault tolerance technique that is used in some data bus
implementations. The ASCB and MIL-STD-1553 bus define it in the data bus
specifications. In a centrally controlled data bus the integrity of the bus is
based on the ability to not only detect a malfunctioning controller, but also
remove such a controller from operation and resume operation with a standby
controller. The MIL-STD-1553 bus implements this function by making use of the
following ("MIL-STD-1553 Designer's Guide," 1982):

"* External wiring between controllers

"* Internal self tests by the controllers

"* Status and health messages between controllers

"* Data bus synchronization using clocks or mode codes

Another type of reconfiguration is to remove a defective user from the bus. In
a centrally controlled data bus, the controller can monitor the response of any
user and determine whether or not it is operating correctly. If the user does
not respond within a specified time, or if it responds incorrectly, the
controller can then proceed with a predefined error handling routine which may
involve the removal of the user from the polling sequence.

The ASCB uses a redundant bus architecture with dual buses. Bus users transmit
on only one of the buses and listen to both, while controllers can transmit on
either bus. If one of the buses becomes unusable, the users have the ability
to switch receivers to the other bus until valid transmissions from the BC are
again received on the failed bus.

When a data bus operates under autonomous control, there is not a single source
designated to monitor all users and take corrective action, as in the centrally
controlled bus. It is necessary, therefore, for each user to monitor itself.
Upon detection of an error, the user should execute an error handling routine
which may involve the user isolating itself from the data bus. The ARINC 629
data bus is one in which a user will remove itself when an unbroken sequence of
seven transmit errors is detected by the user's bus monitoring hardware.

5.2 Bus Hardware-Software Interaction

Constant breakthroughs in microelectronics make it difficult for a CE to address
the hardware-software interaction between a digital data bus and an avionic
system. Very Large Scale Integration (VLSI) ICs and multiversion software,
which make up digital systems, often contribute to the CE's dilemma. With these
advancements come new failure modes which need to be evaluated before a system
can be considered airworthy. Section 5.2 helps the CE understand the failure
modes at the hardware-software interface of a digital data bus and avionic
system.

First, the hardware-software interface is identified. Next, data integrity

problems that may arise when the bus and avionic system interact through
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hardware and software are identified. Finally, analyses of the error detection
and recovery schemes for the data integrity problems are pr3sented.

This section reviews the interaction of avionic systems with the ARINC 429 bus,
ARINC 629 bus, ASCB, and MIL-STD-1553 bus. Although the MIL-STD-1553 bus is
used for military applications, problems due to hardware-software interaction
resemble those of bidirectional data buses used in civilian aircraft.

5.2.1 Bus Interface Units and Central Processing Units

Figure 5.2-1 illustrates how avionic systems are connected to a data bus through
a BIU, and shows the point of hardware-software interaction. Although the ARINC
429 bus, ARINC 629 bus, ASCB, and MIL-STD-1553 bus are different, their point
of hardware-software interaction remains the same. Each data bus uses a BIU to
communicate data between a bus medium and a CPU within the avionic system.

The main part of each LRU is the avionic system. It exchanges data with other
avionic systems over the bus medium. An avionic system may be a flight control
computer (FCC), a display computer (DC), an autopilot, or any other system which
processes digital data during a flight. Avionic systems are usually constructed
with complex hardware, but always contain a CPU under software control to carry
out the system's repetitive functions. The CPU software is the software of
interest in this section.

The CPU software allows the CPU to perform the system's application specific
tasks. The CPU software may also be responsible for establishing communication
between the CPU and BIU. For example, for the ARINC 429 bus, the ASCB, and the
MIL-STD-1553 data bus, the CPU software receives data from, and sends data to,
its BIU. For ARINC 629 bus operations, a CPU's software merely tells the CPU
how to respond to signals initiated by the ARINC 629 BIU.

Two entities are needed to transfer digital data between avionic systems: the
bus medium and the BIU. The bus medium connects the BIUs and carries digital
data. The media are typically bundled in groups and attach systems, like those
in figure 5.2-1, throughout an aircraft.

The BIU connects the avionic system to the bus medium. This unit performs all
bus related tasks (e.g., bus timing, conversions, transmissions, receptions)
under control of its own software, or the CPU's software. For example, data
coding is accomplished by a circuit within the BIU, while transmission and
reception could be controlled by software executed in the CPU. The actual
functions are usually implemented in hardware and will vary, depending on the
type of data bus and application.

A BIU interfaces to a CPU through the BIU's internal registers and the CPU's
Random Access Memory (RAM). The registers are memory locations in the BIU that
a CPU can directly access. Status registers within a BIU notify the CPU of
conditions within the BIU, while control registers set up hardware operations
of the data bus. Again, registers and their uses will vary depending on the
design and application of the system.
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FIGURE 5.2-1. DATA BUS HARDWARE-SOFTWARE INTERFACE

The CPU's memory stores data pertaining to operations of the aircraft. For
example, before altitude data can be passed from one LRU to another (i.e., from
an FCC to a DC), the first LRU's CPU must send the data to the BIU. This
transaction is accomplished as follows:

An LRU receives altitude data from its sensors, and the CPU processes the
data according to its software.

* The CPU then stores the processed data in memory for the BIU.

At this point, the BIU is instructed to access the data and codes it into
a format which is usable by other BIUs.

The coded data are sent to other BIUs via the bus medium.

Once data are received by other BIUs, the procedure is reversed so that the
receiving LRU can use the data for its dedicated purposes. All data transfers
between a BIU and CPU are accomplished using address, data, and control lines.

The hardware-software interaction between the BIU and the avionic system's CPU
should be an area of concern for the CE since failures at this interface can
impact the entire system. The type of data bus, as well as the system
manufacturer, determine how a 'BIU and CPU perform this interaction. For
example, an ARINC 429 BIU may be either totally or partially controlled by the
system's CPU, as previously described. In ARINC 629 bus applications, each BIU
uses personality PROMs to regulate the hardware-software interaction.

The ARINC 429 bus, ARINC 629 bus, ASCB, and MIL-STD-1553 bus employ ICs to
realize various proportions of the BIU. In most cases, the IC can implement
all of the operating modes for a specific data bus (e.g., a MIL-STD-1553 BIU IC
can be configured as a BC, an RT, or a bus monitor). However, interaction with
a CPU is of the same form, regardless of mode. This section looks at one BIU
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IC for each bus (table 5.2-1) and examines how improper hardware-software
interaction between the BIU IC and the avionic system's CPU can inhibit data
integrity.

A BIU IC does not perform all of a standard BIU's functions. It is beyond the
scope of section 5.2 to discuss the hardware-software interactions of the non-
integrated portions of BIU circuitry. Only interaction between the BIU IC and
the CPU software are discussed.

5.2.1.1 Data Transfer Techniques

When either a BIU or CPU is requested to send Oata to an external location, it
must use certain techniques to ensure that the data are successfully received.
Since all units perform this task, the techniques must be flexible enough to
adapt to many environments. For data buses, memory mapping and Direct Memory
Addressing (DKA) are used to move data between a BIU and CPU.

Memory mapping may involve putting BIU registers at specific CPU memory
addresses. The CPU could then access the register as a memory location rather
than as an input/output (I/O) device. For example, the CPU's software could
execute a memory instruction, rather than an I/O instruction, to write data to
the BIU's regis.er. MOV is a typical memory instruction, and IN and OUT are
typical I/O instructions that a CPU uses to transfer data.

TABLE 5.2-1. BUS INTERFACE UNIT INTEGRATED CIRCUITS

Data Bus BIU IC

ARINC 429 Harris Semiconductor's
HS-3282, ARINC Bus Interface Circuit

ARINC 629 National Semiconductor Corporation's
XDl5U9AIC, ARINC 629 IC

ASCB Intel Corporation's
Intel 8274, Multi-Protocol Serial
Controller (MPSC)

MIL-STD-1553 Digital Device Corporation's
BUS-61553, MIL-STD-1553 Advanced
Integrated MUX (AIM) Hybrid

DMA is used by systems for high-speed block or packet data transfer between two
memories. In a standard DMA configuration, the memory address and control lines
are directly controlled by the sending device, rather than the CPU. The sending
device uses a DMA controller.
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. The DNA controller must be initialized by a CPU's software. This is ac-
complished by writing data to registers in the controller. A DMA controller's
registers are similar to the registers in a BIU in that they tell the controller
how to operate.

The major difference between DMA and memory mapped I/O is that a CPU does not
control the transfer of the data during a DMA operation.

Memory mapped I/O and DMA processes can both be accomplished through Shared
Interface RAM (SIR), also called dual-port memory. With data buses, such as the
ASCB and MIL-STD-1553, this is a common technique. SIR means that both the CPU
and BIU share the same memory. An illustration is provided in figure 5.2-2.

S^vionic

Address and Data Lines

FIGURE 5.2-2. SHARED INTERFACE RAM

With this configuration, both the CPU's and BIU IC's address and data lines are
directly connected to shared RAM. Access to the SIR by the two units is
controlled by an arbitrator circuit. This type of shared memory provides the
benefit of isolating the BIU from the CPU (i.e., no synchronization is
required). Furthermore, the data transfer rate is increased since neither
device has to wait for the other.

Although the ARINC 429 bus, ARINC 629 bus, ASCB, and MIL-STD-1553 bus are
different, each uses registers and memory during their operations. Registers
hold data pertaining to operations of the BIU IC and can be either written or
read by the CPU. Memory other than registers is used to hold data during
communication between a BIU and CPU. Through these registers and memory,
hardware-software interaction takes place.

5.2.2 Hardware-Software Interaction Faults

Two types of data are passed between the BIU and CPU: bus configuration data
and flight data. Bus configuration data are only sent to BIU IC registers,
while flight data (e.g., altitude, heading) is shared with other avionic
systems. If either type of data were to become corrupt, an error could result.
Since the CPU (controlled by software) interacts with the BIU IC's registers and
memory, the CPU's software has the capability to disrupt both types of data and
affect hardware operations.

If the host CPU writes faulty bus configuration data to the BIU IC registers,
the BIU could be set up for an improper mode, reset, or shut down. On the other
hand, if the BIU puts faulty flight data in the CPU's memory, the CPU would. propagate an error. Also, if external noise or an adverse environmental
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condition causes data in either location to become corrupt (i.e., an inverted
bit), the entire system could be affected. These situations will vary depending
on the type of system used and the conditions under which the system is
operating.

Typical errors that affect the hardware-software interaction of a BIU and CPU
are presented in table 5.2-2. Column (a) of table 5.2-2 represents errors
common to all data buses; column (b) lists errors unique to certain buses.
These errors can be present in bus configuration data or flight data. It is
beyond the scope of this chapter to discuss every failure mode which could cause
these errors. Therefore, a generic description of the errors is provided in the
following sections and, where possible, their trigger events defined.

TABLE 5.2-2. DATA BUS HARDWARE-SOFTWARE INTERACTION PROBLEMS

Errors Common to all Data Buses Bus Specific Errors
(a) (b)

Parity Errors Timing Errors

Overrun Errors Interrupt Handling Errors

Synchronization Errors

5.2.2.1 Parity and Overrun Faults

Parity and overrun errors are common to all buses and can occur in all cases of
data transfer (e.g., CPU to BIU or BIU to CPU). Parity errors may occur when
digital data are either transmitted or received with an incorrect number of
binary "1's.

Depending on the system, parity errors can be triggered in many ways. For
example, lightning or another environmental condition can cause data to become
corrupt while it is passing through the bus medium. As a result, a unit
receiving the data may detect a parity error. Section 5.1 provides a more
detailed discussion of parity errors.

Overrun errors can occur at many levels of the data bus, as with parity errors.
An overrun error means that current data was not used before new data was put
in the same memory location or register. This error results in the loss of the
old data. Overrun errors which affect the hardware-software interaction can
occur in memory shared between the BIU and CPU and in the BIU during reception
of data from the bus medium. This type of error can be caused by a babbling
BIU that improperly transmits data on the bus or a timing flaw in a CPU's
software that causes it to write data to a memory location at the wrong time.

A MIL-STD-1553 bus using a BUS-61553 IC is subject to overrun errors because it
shares memory with a CPU. Although sharing memory offloads some of the CPU's
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tasks and allows for DMA operations, overrun errors can easily occur because
both the BUS-61553 IC and CPU are able to access the same memory. For example,
when data are placed in the shared memory by a BIU (or CPU), it must notify the
CPU (or BIU) that the data are available. The CPU (or BIU) then reads the
appropriate location in memory and retrieves the data. An overrun problem
arises when one unit updates data in a location of shared memory before the
other unit reads the original contents of the memory. If this situation occurs,
the updated data are written over the original data.

The HS-3282 IC is susceptible to overrun errors during reception of data from
the bus medium. Data from the line receiver is placed into the HS-3282 IC's
shift register. When the data are valid, a signal is generated by the HS-3282
IC telling the CPU that data are available in the register. If the data are not
read by the CPU at this time, new data words being received by the HS-3282 IC
will overwrite th& data in the register.

Similarly, the MPSC is vulnerable to overrun errors. The HPSC stores flight
data from the bus medium in receive registers. If the CPU neglects the data,
the next data word coming into the receive registers will overwrite the previous
data word.

5.2.2.2 Synchronization Faults

Synchronization is used between LRUs to correlate serial data transmissions and
receptions. When one LRU has data to send to another LRU, its BIU may first
send a synchronization pattern to the receiving LRU. This allows the receiving
LRU to recognize the first bit of the message. Synchronization patterns may
also be sent to announce the end of the data. The ASCB uses both of these
patterns in LRU to LRU messages (Jennings 1986).

A framing error is a form of synchronization error that can occur during a write
or read instruction by an LRU. A framing error means that an appropriate number
of framing, or synchronization, bits around the data word were not detected by
the receiving unit.

Figure 5.2-3 shows an eight-bit serial data word that could be sent by an LRU
through its BIU. As defined by the system's protocol, the receiving LRU knows
what type of synchronization pattern to expect. If the data word shown in
figure 5.2-3 is supposed to be surrounded by synchronization patterns made up
of all digital "l"s, but digital "O"s show up in these patterns, a framing error
occurs. These errors could be the result of line noise entering the bus medium
during data transfer between two LRUs. Regardless of the cause, if data
possessing framing errors are passed on to the CPU, the system could be
affected.

The MPSC employs framing when it is used in ASCB applications. Before
information from the CPU is sent by the transmitting BIU, the information is
framed as shown in figure 5.2-3. These framing bits allow the receiving system
to temporarily synchronize with the transmitting system and eliminate timing
skews between the two systems.
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Data Word I

Framing Bits

FIGURE 5.2-3. DATA FRAMING

lesides using synchronization between two BIUs, a CPU and its BIU may also need
to be synchronized. This would be required if the CPU was responsible for
initiating data transfer between LRUs. In this case, if the CPU does not know
when the BIU is ready, it cannot properly instruct the BIU to send or receive
data.

When an ARINC 429 BIU that uses the HS-3282 IC is executing the Bit-Oriented
Communications Protocol (BOCP), this synchronization can occur. In the BOCP,
the transmitting LRU broadcasts a Request To Send (RTS) message to the receiving
system prior to transmission of flight data on the ARINC 429 bus medium.
Immediately after the receiving system gets the RTS message, it must respond
within a predetermined amount of time with a Clear To Send (CTS) message, a Not
Clear To Send (NCTS) message, or a Destination Busy (BUSY) message (ARINC
Specification 429-12, 1990). Since the HS-3282 IC does not have the logic to
produce these messages, it is the CPU's responsibility to undertake the task.
Improper use of these messages by a CPU could cause the HS-3282 IC to miss
transmission or reception of data.

The types of errors presented above are common to all data buses. Parity, as
well as overrun errors, can happen at the bus medium to BIU interface, as well
as the BIU to CPU interface. Synchronization and framing errors only occur at
the bus medium to BIU interface. However, they can be triggered by a condition
within the BIU or CPU.

5.2.2.3 Timing Faults

A timing problem can arise when a CPU does not complete its data transfer to the
bus before its access time to the bus expires. Timing errors of this nature
are common in a time-multiplexed environment. A typical timing problem between
a CPU and an ARINC 629 BIU can occur while the CPU is sending data to the bus
medium.

The problem arises from the fact that BCAC's Integrated Avionic Computer System
(IACS) integrates many avionic systems on a number of central CPUs and uses
autonomous ARINC 629 BIUs. The CPUs perform several functions which share the
CPU memory. The functions are partitioned to prevent hardware and software
failures in one function from affecting another partition's functions. All of
the CPUs within the IACS are controlled by a software algorithm known as the
Real-Time Executive (RTE).
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. The RTE controls transmit and receive timing between the LRUs. To ensure that
all transmissions and receptions are coordinated, the RTE gives each LRU a
specific amount of time in which to complote its message transmission. To
accimplish a transmission, an ARINC 629 BIU must obtain processed data from the
CPU and completely transmit the data on the bus medium in a predetermined amount
of time. Since the RTE controls when the ARINC 629 BIU obtains data, the RTE
could instruct an ARINC 629 BIU to interrupt a CPU before all of the CPU's data
are ready to be transmitted. The ARINC 629 BIU accesses the data without first
checking if the CPU is done with its process. When this occurs, the ARINC 629
BIU could transmit partially updated or otherwise erroneous data to other LRUs.

A similar timing problem arises with the MIL-STD-1553 data bus. If periodic
data are to be processed by a CPU's software, the MIL-STD-1553 BIU must notify
the CPU that data are available and ready to be processed. In a MIL-STD-1553
bus application, a specific signal is used to annunciate this condition.

Once the signal is generated, the CPU has a certain amount of time to ac-
knowledge the signal and process the data. (Recall that the time is designated
by a BC, and the BUS-61553 IC is capable of performing BC operations.) If the
CPU takes more time to process data than the BC allows, the BC must either
terminate the CPU's access to the bus, or wait for the CPU to complete its task.
If the BC elects to terminate the CPU's access to the bus, an error similar to
the ARINC 629 bus timing problem could result. The transmitting BIU could get
erroneous or old data and send it to other LRUs. On the other hand, if a CPU
is constantly allowed to overshoot its allotted time, the entire network will
"Jitter in its periodicity" ("MIL-STD-1553 Designer's Guide," 1982). These two. descriptions show how both a distributed control and a centrally controlled bus
can be exposed to similar timing errors.

5.2.2.4 Interrupt Handling Faults

Interrupts are a standard method of initiating data transfer between a BIU and
CPU. For example, when a BIU places data in SIR the BIU must send a signal on
an interrupt line to the CPU to announce that the data are available. This
signal is called an interrupt.

If a BIU generates an interrupt to the CPU, the CPU may respond with an
acknowledge signal and, either suspend what it is doing in the main part of the
program and read the data, or continue to process until some later time.

Interrupt handling problems can arise when more than one interrupt is generated
at one time. For example, if a CPU is already servicing one interrupt and its
BIU initiates another interrupt, which one should get priority and how will
throughput of the bus be affected? Avionic system manufacturers must deal with
these conditions.

The MPSC uses interrupts to notify the CPU when one of 14 conditions occur. If
all of these conditions happen within a short period of time, they could cause
the CPU to be so tied up with interrupts that it cannot maintain the required
application processing. Furthermore, the CPU may not be able to promptly
service all of the interrupts. This would also affect the operation of the LRU.
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5.2.3 Fault Detection

If not detected, all of the errors discussed in section 5.2.2 have the potential
to cause a bus failure. To recognize these types of errors, BIUs and CPUs can
employ bit-level detection schemes during data transmission and reception.
Using these schemes, the BIU or CPU can spot faulty data before it leaves or
enters the unit's boundaries. For both BIUs and CPUs, bit-level detection
schemes include parity checks, CRCs, checksums, and Hamining codes. Each check
is valid for detecting certain types of bit errors. The checks, and which buses
use which checks, are detailed in section 5.1.

When a BIU is responsible for error detection,,it should be able to annunciate
results of the data checks so that corrective action can be taken when
necessary. In most of today's avionic BIUs, this notification is performed by
setting or resetting a specific bit in the BIU's status register. Once a bit
has been appropriately set, either the BIU can interrupt the CPU and report the
error, or the CPU's software can periodically access the BIU's register and read
the error.

If the BIU is incapable of performing any checks, the CPU may be responsible
for error detection. In this case, the CPU checks bus configuration or flight
data which enters or leaves its bounds and flight data entering the BIU from
the bus medium. Error detection routines within the CPU include ones previously
mentioned and may be implemented as a routine in the CPU's software. A CPU's
detection responsibilities will vary depending on each application and must be
defined by the system's designer.

Monitoring and voting are other methods that can be used to ensure that failures 0
at the BIU to CPU interface do not go undetected. These are also discussed.

5.2.3.1 Bus Interface Units and Fault Detection

The MPSC contains 21 registers which a CPU can access. These registers are
split between two redundant channels: A and B. Of the 21 registers, 10 belong
to channel A, and 11 belong to channel B. Channel A registers include Write
Registers (WRs) zero though seven (WRO-WR7) and Read Registers (RRs) zero and
one (RRO and RRl). Channel B registers are the same, except that channel B
includes an extra register used to service interrupts: RR2. This register
either contains the interrupt vector programmed into WR2 or holds the vector of
the highest pending interrupt within the MPSC.

When the MPSC receives a data word from the bus, the MPSC checks the data for
integrity. If a parity, framing, or CRC error is detected by the receiving
circuitry, the MPSC sets a specific bit in the appropriate read register
("Microcommunications," 1990). The system's CPU can check for errors by polling
che MPSC, or by an MPSC interrupt.

The BUS-61553 IC uses similar methods to inform its CPU of parity, overrun, and
synchronization errors. Within the BUS-61553 IC are three internal registers
that the CPU can access: the Configuration Register, the Interrupt Mask
Register (IMR), and the Start/Reset Register ("MIL-STD-1553 Designer's Guide,"
1982). Each has different applications.
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.The IKR can be read or written by the CPU. Upon reception of a data word from
the bus medium, the BUS-61553 IC checks the data to ensure that it does not
violate the MIL-STD-1553 bus formats. If a parity, overrun, or synchronization
error is detected, the "message error bit" within the IMR will be set ("MIL-
STD-1553 Designer's Guide," 1982). The CPU can then read the IMR and take
appropriate action. Other errors that the BUS-61553 IC can detect include loop
test failures, coding errors, and time-out errors.

A Hamming code is another detection scheme that the BUS-61553 IC can use. The
IC uses this code to detect and correct up to three erroneous bits in a flight
data word. Detection is accomplished by sending a protection word immediately
after each 16-bit data word. If blocks of data are to be checked, the
protection word would follow each consecutive 16-bit data word in the block.
Section 80 of the "Multiplex Applications Handbook" (MIL-HDBK-1553A, 1988)
discusses this error detection scheme. In addition, a general description of
Hamming codes is provided in section 5.1 of this chapter.

The ARINC 629 IC transfers bit-level errors, as well as diagnostic information,
to a CPU via an error register. The error register is 16 bits wide. Each bit
represents a different error condition. Twelve of the 16 bits are latched
("ARINC 629 Communication Integrated Circuit," 1990). When an error occurs, a
corresponding bit is set in the error register. The other four bits in the
error register reflect the ARINC 629 IC's current status.

The HS-3282 IC does not hold error information for its CPU. Instead, the HS-S 3282 IC passes error detection responsibility directly to its CPU or another
external device. The HS-3282 IC does, however, use a configuration register to
distribute internal control signals. One of these signals directs the HS-3282
IC to check its transmission for proper parity.

From the above discussion, it is apparent that BIUs are capable of annunciating
many types of errors to a CPU through internal registers. The errors include
ones previously discussed, like parity and overrun, but may also include others
like coding and loop-test failures. Each BIU and data bus manufacturer must
develop their own method to inform the avionic system of hardware-software
interaction errors while keeping within the bounds of the data bus's standard.
Even though this is a job for the BIU and data bus manufacturer, the CPU
programmer and system integrator must design the system to utilize all
information provided by the BIUs.

5.2.3.2 Monitoring

Monitoring can be performed at many levels in a data bus. However, this
monitoring discussion details only processes that apply to errors at the
hardware-software interface.

Besides a BIU annunciating faults to the CPU using interrupts, most BIUs can be
monitored by a CPU's software. As with the other forms of error detection, this
allows the CPU to take appropriate corrective action in the event of an error.
Software monitoring by a CPU may mean periodically polling a register or memory
location in an LRU, or may require a dedicated algorithm in the CPU's software

* 18-91



to oversee the operation of the entire BIU. As with detection methods in BIUs,
monitoring techniques will vary from one application to another.

The MPSC provides a good example of how software monitoring can be employed.
When the MPSC is configured for the polled mode of operation, the CPU can
monitor conditions by reading bits in the MPSC's RRO and RR1. Data available,
status, and error information are apparent in RRO and RR1 for both channels of
the MPSC.

An example of an algorithm that a CPU can use to monitor the MPSC is discussed
in "Microcommunications" (1990) and is called MPSC$POLL$RCV$CHARACTER. This
algorithm tells the MPSC to get data from the bus medium and wait until the
"character available" flag in RRO is set. After this flag is set, the CPU
checks RR1 for parity, synchronization, and overrun errors. If errors are
detected, the receive buffer must be read and another algorithm, RECEIVE$ERROR,
must be called. This algorithm processes errors received by the previous
algorithm. However, the RECEIVE$ERROR procedure is application dependant. The
RECEIVE$ERROR algorithm requires the address of the affected MPSC channel and
the contents of RR1 to operate. Both algorithms are shown in Application Note
Number 134 ("Microcommunications," 1990).

If a CPU is incapable of monitoring the BIU at this level, or the software
overhead required for the task is not permitted, monitoring can also be done by
a dedicated LRU. For example, the MIL-STD-1553 bus employs bus monitors and the
ASCB implements a similar, special purpose monitor called a Listen Only User.
These monitors are separate LRUs. They are attached to the bus medium as shown
in figure 5.2-1.

The MIL-STD-1553 bus monitor listens to all data on the bus and "extracts
selected information to be used at a later time" ("MIL-STD-1553 Designer's
Guide," 1982). A typical bus monitor performs no transfers on the bus, but bus
monitors usually have the capability to become a MIL-STD-1553 bus RT under
request from the BC. Applications of the bus monitor include data collection
and monitoring the overall system for status information.

In some cases, a bus monitor can be configured as a back-up BC. When this
occurs, the bus monitor collects data, watches transmissions, and performs the
same jobs as the current BC, with the exception of issuing commands on the bus.
This way, the bus monitor is continuously aware of the operation of the overall
system and subsystems, and is available to serve as a back-up BC if an error
between the hardware and software takes down the original BC ("MIL-STD-1553
Designer's Guide," 1982).

The ASCB BC is also capable of being used as a self-monitor, as stated in the
ASCB Specification:

"In the active control mode, the bus controller shall self-monitor its
own bus control operation. If bus control performance, as described
in this specification, is not being performed properly, the bus
controller shall remove itself from bus control operations and assume
the standby mode. Monitoring techniques shall provide coverage for
both hardware faults and software errors. In addition, the monitor
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shall verify proper content and timing of all control sequences being
transmitted." (GAMA ASCB, 1987).

The monitors used in both the ASCB and MIL-STD-1553 buses must watch for single
points of failure at the BC and associated BIUs. This environment helps ensure
that hardware-software interaction errors will not cause the simultaneous
failure of the BC and other BIUs on the bus.

5.2.3.3 Voting

Voting is another fault detection method that can be used by LRUs. Although
this technique is usually applied at the system level, it can be utilized at the
BIU to CPU interface. Voting is typically done at either the input or output
of a system.

Voting requires at least three redundant units. Although in most applications
a single CPU interacts with a single BIU, either of these units can be made
redundant to incorporate voting. For example, an LRU may contain three CPUs
which process data.

Input voting can be done on data from the bus medium before it reaches the CPU,
while output voting can be done on data between redundant CPUs and the BIU.
(The definition of input and output voting will vary depending on the reference
point in the system.) In both cases, a circuit within an LRU compares the
values from triply redundant CPUs or BIUs and pasý.as on a refined value. Thus,
erratic data from any of the redundant units will be detected. Figures 5.2-4. and 5.2-5 illustrate the concepts of input and output voting.

IRU

Data 
Bus 

I

S BIU 2 Voter

BIU 3

Redundant BIUt

FIGURE 5.2-4. INPUT VOTING
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CPU 1

Data Bus
CPU 2 VoterBI

CPU3

Redundant CPUs

FIGURE 5.2-5. OUTPUT VOTING

The extent of the voting architecture depends on which component failures are
to be compensated. Input and output voting can be used to create systems that
have a high level of fault tolerance.

5.2.4 Fault Correction

Previous sections presented typical errors which occur during data transmission
and reception between a BIU and CPU. Also discussed were different methods used
to detect the errors. The errors addressed, however, are not the only ones that
can occur, nor are the detection schemes the only ones that can be used.
Nevertheless, it is the system designer's job to ensure that no hardware or
software errors between an avionic system and its data bus cause a flight-
critical or flight-essential system to fail.

The correction methods described in the following sections apply to the faults
presented in section 5.2.2. Retransmission is a standard method of correction
for errors that have already occurred. Multiple buffering is a method that
prevents certain errors from occurring. Besides these methods, fault tolerant
bus architectures that rely on redundancy for error correction are presented.
Although these architectures are not usually incorporated by the buses discussed
in this chapter, they are valid solutions to many hardware-software interaction
problems.

5.2.4.1 Retransmission and Default Data

Once a parity error has been detected by a BIU or CPU, retransmission and use
of default data are correction methods that can be used. Retransmission simply
means sending the same message again, and default data are values automatically
used unless other values are specified. For correction purposes, default data
could be used in place of data which has been verified to be unusable. These
simple schemes can effectively correct parity errors that result from transient
interferences.
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. Most data bus systems are capable of using software to request retransmission
if a parity error occurs. Consider an ASCB using the MPSC. The CPU can monitor
the MPSC's status by testing appropriate bits in the MPSC's RRs. If a parity
error is detected within the MPSC, the data are discarded, and the CPU runs the
MPSC$POLL$RCV$CHARACTER algorithm. Depending on the application, the algorithm
could be set up to request retransmission from the sending unit.

The ARINC 429 data bus, under the BOCP, is also capable of using retransmission
in the event of a parity error. Prior to flight data transmission on the ARINC
429's bus medium, the transmitting system sends an RTS message to a receiving
system. If the RTS message is accepted and the transmitting system is allowed
to transmit its data, it sends a Start of Transmission message, followed by the
data, to the receiving system. Immediately after the receiving system gets the
data, its CPU can test it for parity errors. If a parity error is detected by
the receiving system, it sends a Not Acknowledge message back to the transmit-
ting system. When this message is received, the transmitting system could be
configured to retransmit its data.

Retransmission is useful for correcting synchronization errors. As pointed out
in section 5.2.2, framing bits can be used to synchronize data during recep-
tions. If the framing bits become inverted due to an error, the BIU may not be
able to recognize when a reception is completed. In this case, the BIU or CPU
could request a retransmission from its source.

A system that uses the ARINC 429 data bus under the BOCP and uses an HS-3282 IC,
employs retransmission in the event of a synchronization error. If a transmit-
ting system's RTS message is ignored, or if the receiving system sends a message
which prevents the transmitting system from broadcasting its data (NCTS or
BUSY), the sending unit retransmits its RTS message withiin a time defined by the
ARINC 429 bus specification. If the second RTS message is ignored, the
transmitting unit should keep trying until five RTS messages have gone
unacknowledged. If, however, the sending unit receives a BUSY message, it may
repeat its RTS message up to 20 times. ARINC Specification 429-12 (1990)
states:

"The actual number of attempts a source should make before giving up,
or taking some different course of action, when the limit is exceeded
depends on the application."

Using default data is another way to recover from parity, overrun, and
synchronization errors. For example, if a BIU receives data with bad parity
from the bus medium, the CPU may elect to use default data for the next process.
Even though this method keeps errors from tying up a system, the designer must
ensure that using default data will not upset the operations of a flight-
critical or flight-essential system.

5.2.4.2 Interlocks

Interlocks are a method of preventing timing errors during data transmission on
serial data buses. Interlocks, which are usually constructed with hardware,
prevent BIUs from transmitting at inappropriate times.
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An ASCB BIU is capable of using an interlock to prevent timing problems during
transmission, as stated in the ASCB specification:

"Each user which transmits on the bus, has an interlock to prevent
erroneous transmissions longer than its allocated time on the bus.
A separate, dedicated hardware timing circuit, is used to enable the
transmitter, in each of the users, only when the specific request is
received." (GAMA ASCB, 1987).

This interlock is provided by the DET which ensures that an ASCB user will not
transmit out of its time frame.

5.2.4.3 Multiple Buffering

Although overrun errors are as common as parity and synchronization errors, they
are more complicated since a receiving system may not be aware that an overrun
error has occurred. One method for preventing overrun errors is a memory
management scheme called multiple buffering. Besides keeping data from being
overwritten, multiple buffering prevents partially updated data from being read
by the CPU or sent to the BIU. Both the ARINC 629 bus and the MIL-STD-1553 bus
use multiple buffering.

To employ the multiple buffering scheme, a BIU and CPU must share memory. The
memory is segregated into several areas which are swapped by the CPU or BIU at
appropriate times. The key to this scheme is that the CPU and BIU are only
allowed to access one area of shared memory at a time.

MIL-STD-1553 applications using the BUS-61553 IC employ multiple buffering to
prevent overrun errors by assigning two or more areas of memory for each address
shared by the CPU and BIU. Each area is 32 bits wide. Control information,
contained in another part of memory, specifies which area is to be used by the
CPU and which area is to be used by the BUS-61553 IC.

When the BUS-61553 IC is to receive information, it writes data in one area,
while the CPU reads previous data from the other area. Upon completion and
validation of the received message, circuitry within the BUS-61553 IC toggles
the two areas, making the newly received data available to the CPU. During
transmit operations from the CPU to the BIU, the scheme is reversed. The CPU
writes data to one area, while the BIU reads data from another area. When the
CPU completes its write, the CPU swaps the two a eas of memory and allows the
BIU to access the new data. All memory swaps occur totally between the reads
or writes ("MIL-STD-1553 Designer's Guide," 1982).

Multiple buffering is a valid solution to the ARINC 629 bus timing problem. A
partition within BCAC's IACS could be set up to write to a different buffer than
the ARINC 629 IC reads. As described above, the read and write buffers could
be swapped, preventing the ARINC 629 IC from reading a buffer that is currently
being written.
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. 5.2.4.4 Grace Periods

A correction method for the timing error presented in section 5.2.2 can be
implemented in either hardware or software. A hardware solution utilizes a
multiple buffering technique as described in section 5.2.4.3, while a grace
period is a software correction method used for both the MIL-STD-1553 and ARINC
629 bus timing problems. A grace period can be implemented within the IACS's
RTE, or the MIL-STD-1553 BC's software.

Recall that an IACS's RTE is capable of instructing each LRU when to obtain
data. Therefore, if the RTE knew when an LRU's CPU was done with processing,
the problem would be resolved.

To correct the timing problem, each of an ARINC 629 LRU's tasks are completed
under a software subroutine within the RTE. In this subroutine, the RTE
monitors whether an LRU has completed its process. If one LRU's process is not
completed when the RTE wants to switch to another LRU, the RTE allows an LRU
extra time (a grace period) in which it can finish its job. A MIL-STD-1553
application uses similar correction methods for the timing problem; the BC
provides a grace period (equal to one minor frame) to the LRU.

Another method that the ARINC 629 bus could use to correct the timing problem
requires the functions within the LRUs to transmit and receive data at the
beginning of their time frame. Furthermore, each LRU's time frame must be
longer than any of the transmissions or receptions could possibly take.
Although this solution eliminates the timing problem, processing completed while
an LRU is in a current time frame would not be made available until the next
time frame (Bakken 1988). The advantage to this solution is that it requires
less CPU overhead than the grace period solution.

The use of grace periods merely increases the time to complete a task. If
transmissions exceed the grace period, an error would be announced and
corrective steps would need to be taken as if the grace period was never
implemented. It is the system designer's responsibility to decide what solution
would be best for a situation.

5.2.4.5 Prioritizing

A BIU or CPU can employ prioritizing to eliminate incorrect handling of
interrupts. The purpose of prioritizing is to decide which interrupt is more
critical.

The MPSC uses priority in both a vectored and nonvectored mode to decide which
interrupt deserves attention. In the vectored mode, the MPSC sends the location
of the interrupt's service routine to the CPU along with the interrupt
condition. In the nonvectored mode, the CPU is responsible for determining the
location of the interrupt's service routine. In either mode of operation, the
14 interrupt conditions are categorized by the MPSC into three different
interrupt requests for each channel. This means that there are six interrupt
requests generated by the MPSC ("Microcommunications," 1990).
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Correct handling of these six requests can be accomplished by a priority
resolution circuit. In the vectored mode of operation, a circuit within the
MPSC decides which interrupt deserves priority. In the nonvectored mode, a
circuit contained in an external device, such as Intel's 8259A Programmable
Interrupt Controller, may prioritize the interrupts.

A system that uses the BUS-61553 IC requires the CPU to determine which
interrupt should have priority. The BUS-61553 IC contains an IMR which holds
information about interrupt conditions for the CPU. The interrupt conditions
may be the ones explained in the BUS-61553 IC's data sheet or others defined for
a specific system. If any of these interrupt conditions occur, the BUS-61553
IC sends an interrupt request signal to the ,CPU. The CPU responds with an
acknowledge message and reads the IMR to determine which interrupts have
occurred. The CPU then selects the highest priority interrupt and runs the
appropriate service routine.

The 8088 CPU uses an Interrupt Vector Table (IVT) when establishing the priority
of interrupts. Interrupt vectors, which point to the beginning of the service
routines for a BIU, are put in this table. The 8088 CPU uses the position of
the interrupt vector in the IVT to decide which interrupt deserves priority.
Other processors, like Zilog's Z80, can be set up in the same manner to service
interrupts and eliminate interrupt handling errors.

5.2.4.6 Redundancy

Because so many errors are application dependant, having a back-up system is a
good method of correction. Redundancy is the most widely use method for
prevention and correction of all data bus errors resulting frum hardware-
software interaction. Most avionic systems implementing flight-essential and
flight-critical applications use at least one form of redundancy to meet
requirements for certification.

Redundancy employs either similar or dissimilar hardware and software to mimic
operations of a primary system. These redundancy techniques can be applied at
all levels of the system including CPUs, BIUs, and the bus medium. All of the
BIU ICs employ a form of redundancy within their bounds. The HS-3282, ARINC
629, BUS-61553, and MPSC ICs all are capable of transmitting or receiving data
on one of two channels. However, all of these BIU ICs have only one interface
to the CPU.

When choosing a redundant technique at the hardware or software level, the
designer must decide whether to employ similar or dissimilar redundancy.
Similar redundancy makes the whole system easy to design and verify, but does
not guard against generic errors. Dissimilar redundancy does protect the system
from these errors, but takes more time to design, is more expensive, and is
harder to evaluate during certification.

Redundant techniques that use both hardware and software include Honeywell's
Self-Checking Pair (SCP) (Driscoll 1983), triplication and voting (Spitzer'
1986), and the Fault Tolerant Multi-Processor (FTMP) Architecture (Lala 1983).
Although these techniques are not designed by the data bus manufacturers, they
provide valuable techniques that can be used by data bus manufacturers when
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Sdesigning the bus hardware-software interface. See chapter 5 of the "Handbook -

Volume 10 (Hitt 1983) for further discussion on this topic.

5.2.4.6.1 The Self-Checking Pair

Figure 5.2-6 shows a diagram of two SCPs. The SCP includes identical halves
made up of application processors (APs) and BIUs. The transmitting and
receiving LRUs are each an SCP. Notice that the only differences between this
diagram and figure 5.2-1 are that external monitors watch each input and output,
and each CPU and BIU has a back-up.

The monitors on the transmit (output) side and the receive (input) side of the
SCP are the key to the system. Assuming that both transmit CPUs process the
same data, the BIUs' outputs to the monitors (and bus medium) should be
identical. If, for some reason, data to both output monitors is not consistent,
the monitors are able to switch the faulty system offline. Input monitors
function in the same way. If a faulty output monitor or bus error causes bad
data to be passed to the receiving system, the input monitors should catch the
error and prevent it from being passed to the receiving system.

The SCP is applicable to both unidirectional and bidirectional data bus
networks. An SCP could be placed in one LRU of a bidirectional network, or
transmit and receive SCPs could be placed at the ends of a unidirectional bus.
To enhance the performance of these networks, the SCP CPUs could be programmed
using dissimilar software.. 5.2.4.6.2 Triplication and Voting

The previous section described how a dual redundant SCP was able to address the
issue of fault correction in a digital system. It also mentioned that the CPUs
in the SCP could be programmed with dissimilar software to enhance the operation
of the SCP. In 1984, the Sperry Corporation developed a fault tolerant system
which employed multiversion programming, voting, and monitoring for error
detection and reconfiguration for error correction.

This particular architecture uses three redundant CPUs in two identical FCCs.
Two of the CPUs within each FCC share memory and are programmed with identical
software, while the other CPU is programmed with dissimilar software and has its
own memory. The output of the paired CPUs, as well as the single CPU, go to
separate data buses.

Each FCC uses one of the paired CPUs to perform both flight-critical and
flight-essential functions, while the other two CPUs perform flight-critical
functions only. The outputs of the paired and single CPUs are compared by two
monitors. If a monitor detects a failure at any CPU's output, the system is
gracefully reconfigured so that one FCC is always engaged. A diagram and
discussion of how the system reconfigures itself in the event of an error is
presented in Digital Avionics Systems (Spitzer 1987).
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S 5.2.4.6.3 Fault Tolerant Multi-Processors

In a fault tolerant environment, multiple CPUs are used to process similar data
and monitor transactions taking place on the bus. These CPUs typically share
a central memory and communicate over one or more redundant data buses. This
configuration allows a back-up CPU to immediately take over the process of a
failed CPU. One method of employing multiple CPUs in flight control applica-
tions is called FTHP.

The FTMP architecture uses both hardware and software to detect and correct
errors in an avionic system. Hardware within an LRU is used to accomplish fault
detection and error masking. Ten LRUs, each made up of CPUs, memory modules,
and BIUs, are organized in triads to form three groups of three LRUs and a spare
LRU. Any three CPUs, BIUs, or memory modules may be organized as a triad.
Communication between LRUs is accomplished over four, triply redundant,
bidirectional buses called the transmit, receive, polling, and clock buses.
Each triply redundant bus is backed up by two spares, making the total number
of bus connections 20. During a data transfer operation, the CPUs send data to
the shared memory modules from which the BIUs can obtain the data and send it
across the buses to other LRUs.

When a fault is detected at an LRU, a System Configuration Controller (SCC)
ensures that all CPUs are aware of the fault and have the same information about
the fault. The SCC is merely an algorithm run within an LRU triad that reads
error information from all 10 LRUs.

Some faults can be immediately isolated and detected by the SCC. For faults not
so easily identified, the FTMP executes a reconfiguration routine to isolate
the source of the fault. This routine swaps LRU triads (depending on the nature
of the fault) between the redundant data buses until the faulty LRU is
identified (Lala 1983).

After a fault has been isolated, the FTMP implements techniques to recover from
the condition. These techniques include using the spares of each unit. Recall
that there are three triads and one spare of each CPU, memory module, and BIU.
To reconfigure from a failure of a CPU, first the spare CPU would be brought
online. If the spare CPU was already online and another fault occurred, the
FTMP would remove the entire LRU triad, operate from the other triads, and use
the remaining two CPUs in the failed triad as spares for the remaining LRUs.
A similar recovery method is used for memory module or BIU failures.

Even though the FTMP was designed for use with MIL-STD-1553 data buses, it is
acceptable for commercial aircraft. FTMP is capable of masking single faults
in a system by reconfiguring each faulty node with redundant spares.

5.2.4.7 N-Version Programming and Recovery Blocks

N-version programming and recovery blocks are software based methods usually
employed in redundant systems containing three or more CPUs. These are valid
means of dealing with certain hardware-software interaction problems, and are
presented in chapter 9 (Hecht 1989) of this handbook.
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5.2.5 Summary

All of the discussions in section 5.2 are meant to help the CE better understand
the hardware-software interaction between a data bus and its avionic system.
This interface is important because many situations that affect the integrity
of a bus or an avionic system may arise at this point and can easily be
overlooked during the certification process.

Because new technology constantly changes the way avionic systems communicate,
it is hard for a CE to evaluate hardware-software interaction during a system's
certification process. To help the CE with this problem, appendix C provides
a hardware and software analysis checklist for failures in bus related hardware
and software. The checklist is not specific to any particular failure mode.
It is a general approach to evaluating bus related hardware and software
failures which could impact the operation of flight-critical or flight-
essential systems.

5.3 Bus Protocol Specification and Verification Methods

Development work in the area of data buses is progressing rapidly due to the
requirement for higher throughput and reliability. Along with this development
comes the need for new comprehensive methods of evaluation and testing. New
data buses must be analyzed to ensure that they will function properly under all
foreseeable conditions.

One area that requires careful attention from the designer is the communication
protocol. In a system of distributed computers that are required to communicate
with each other, rules must be developed and implemented to avoid chaos when
messages are exchanged. The complete set of rules is referred to as the
protocol. The protocol should ensure safe and timely delivery of data or
control messages from one user of a data bus to another. The fact that the
protocol may be implemented in a single high-density IC is all the more reason
to subject the protocol to rigorous analysis.

Specification techniques are used to model and define protocols while verifica-
tion techniques demonstrate that the protocol satisfies the specification.
Protocols having different characteristics require different specification and
verification techniques. No single method is suited to every existing protocol
(Merlin 1979). The following sections describe some of the formal methods used
to specify and verify communication protocols. Techniques such as state machine
analysis and Petri nets are examined, along with examples and applications to
current data buses.

5.3.1 A Protocol Specification Guideline

Recently, the ISO adopted ISO 7498 (1983), "Information Processing Systems -
Open Systems Interconnection - Basic Reference Model." This standard was
designed to facilitate the interconnection of systems from different network
manufacturers. It is the IEEE standard model for the "Open Systems Interconnec-
tion" (OSI) architecture.
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Organizations responsible for developing protocol standards increasingly make
use of the Basic Reference Model. The ARINC 429 DITS has been modified to make
use of the model, and the ARINC 629 bus totally reflects its philosophy. The
Basic Reference Model aids the designer in developing a protocol without
imposing unnecessary constraints upon its design. When a protocol is function-
ally layered, as the model requires, it is more easily understood by those who
wish to study it. The use of the model also clarifies the purposes and
capabilities of the protocol.

5.3.2 Protocol Specification Content

The use of formal techniques for specifying and validating protocols has
increased due to the rise in protocol complexity and the need for reliable data
transmission in distributed systems. A list of general guidelines used in
specifying protocols is given in table 5.3-I.

TABLE 5.3-1. PROTOCOL SPECIFICATION GUIDELINES
(Bochmann and Sunshine 1980)

1. A general description of the purpose of the layer and the services

that the layer provides.

2. A precise specification of the service to be provided by the layer.

3. A precise specification of the service provided by the layer below and
required for the correct and efficient operation of the protocol.

4. The internal structure of the layer in terms of entities and their
corresponding relations.

5. A description of the protocol(s) used between the entities, including:

a. An informal description of the operation of the entities.

b. A protocol specification which includes:

(1) A list of the types and formats of messages exchanged between
the entities.

(2) A list of rules governing the reaction of each entity to user
commands, messages from other entities, and internal events.

c. Any additional details, not included above, such as considerations
for improving the efficiency, suggestions for implementation
choices, or a detailed description which may come close to an
implementation.
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Although item 1 in table 5.3-1 is important in understanding the protocol, it
is not required. If any of the other elements of the specification are lacking,
the specification is deemed incomplete.

5.3.3 Protocol Specification Methods

Protocol specifications must be both concise and easy to understand. In complex
protocols these two goals are in conflict. A natural language description may
appear to be easily understood, but leads to lengthy and informal specifications
which often contain ambiguities and are difficult to check for completeness and
correctness (Bochmann and Sunshine 1980).

Formal techniques and their variations are used for protocol specification. The
major methods are the use of Petri nets, state diagrams, high-level computer
languages, and various grammars designed for this particular application. State
diagrams, Petri nets, and grammars are used to model the responses to data
transfers at a layer interface or an internal timer. This type of modeling is
event or transition driven. A particular drawback of this method is that
protocols using sequence numbers become quite cumbersome to model. If an eight-
bit sequence field is used, then a separate state would exist for every possible
combination of the eight bits.

High-level programming languages are used to model protocols and have the
advantage of being easily understood since they appear more like natural
language. The problem of representing sequence numbers in the state diagram is
easily handled by the use of a variable to represent all combinations of that
number. This method differs little from an actual implementation of the
protocol. However, certain unique characteristics of the programming language
which may be nonessential to the protocol model could hinder the implementation.

5.3.3.1 The Finite State Machine

The Finite State Machine (FSM) concept has been a key element in protocol
specification. It can be used to model the global state of the protocol over
an entire network, or one state machine may be used for each entity in a layer.
At a given time, the state machine may be in only one of the defined states.

For complex protocols it is tedious and time consuming to generate a state
diagram of all the possible states. When this is the case, one approach to
simplify the protocol representation is to group together a large number of
states. Since some states consume a relatively small amount of time in relation
to other states, these states may be regarded as transient and grouped together
as one state for purposes of analysis. Since states are defined to be cases
where the FSM is waiting for the next event to occur, the number of states may
be represented by 2", where n is the number of bits needed to represent the
variables which cause the transitions.

In a given state there are zero or more transitions to other states which happen
when a designated event occurs. Typical events which cause transitions in the
FSM are when an internal timer triggers, when a message is received, when a
message is transmitted, or when an interrupt occurs. If the bus medium, or
link, is modeled separately from the sending and receiving protocol, then the
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. transitions that may cause the link FSM to change states are a message entering
the link, a message leaving the link, or loss of data in the link.

In figure 5.3-1, a sender-receiver topology is modeled in a simple fashion with
an FSM model. There are four distinct global states and four distinct
transitions between the states given in this FSM. The action of an entity
sending data forces a state transition to the "Wait for Data" state. Upon
receiving new data the "Process Data" state is entered. When "Process Data" is
finished, the "ACK" status is sent and the "Wait for Acknowledge" state is
entered. Finally, when the "ACK" is received the network returns to the "Idle"
state, clearing the way for new data to be sent. The advantage of this model
is that the global characteristics of the network can be directly checked. If
the protocol is complex the FSM model will be complex and difficult to
construct.

/C::IDLE
Receive, Send

ACK Data

Send Data

ACK

PROCESS
DATA

FIGURE 5.3-1. STATE MACHINE
(Merlin 1979)

Another method of representing a protocol is to use multiple FSMs. Figure 5.3-2
represents a simple protocol modeled by multiple, coupled FSMs. The receiver
moves from the "Receiver Ready" to the "Receiver Busy" state on the transition
caused by data reception. It moves back to "Receiver Ready" after processing
is completed and the "ACK" is returned. The Link FSM shows the delivery of data
from the source to the destination. It models the data transfer and the
acknowledgement of the data. If the delay in the link is not significant, then
the Link FSM may not be necessary and the model can eliminate this FSM. Like
the receiver, the sender moves between the "Sender Enabled" and "Sender

18-105



Disabled" states based on data being sent and the corresponding acknowledgement
being received. This model has the advantage of allowing implementation of each
entity without the problem of having to decompose a single FSM description into
the different entities. A complex FSM can be implemented more easily when it
is divided into concise functional elements and modeled so that all correspond-
ing interactions are apparent.

Transitions modeled by the FSM are considered to be instantaneous. The "Send
ACK" event of the receiver occurs at the same moment as the "LINK RECEIVES ACK."

SENDER LIKRECEIVER
ENABLED EPYREADY

Receive Send Link Link Link link Send Receive
ACK Data Sen" Receives Sends Receives ACK Data

Data Data ACK ACK

SENDERDATA IN ACK IN RCIE
DISALEDLINK LINK BS

SENDER LINK RECEIVER

FIGURE 5.3-2. COUPLED STATE MACHINES
(Merlin 1979)

5.3.3.2 Petri Nets

Petri nets use four basic elements to represent a protocol: places, transition
bars, arcs, and tokens. Places represent states in which the protocol may exist
at any given moment. Directed arcs connect transitions to the places and the
places to the transitions. The transition bars are transitions which may have
zero or more input and output arcs. Input places of a transition are those
which originate at a place and arrive at the transition. Output places of a
transition are those which originate at a transition and arrive at the place.
A token is indicated by a dot inside a place. (This token is not to be confused
with the token in a token passing network architecture.) The following rules
are given by Danthine (1977) for the operation of a transition:

A transition is said to be enabled or fireable if each of its input places
contains at least one token. 18-106



* The firing of an enabled transition consists of removing one token from
each of its input places and adding one token to each of its output places.

The firing of an enabled transition may not occur instantaneously. Firing
may be considered as depending on an outside authority.

Representation of the Petri net is often done in an algebraic form resembling
a grammar. Each transition contributes a rule to the grammar (Tanenbaum 1981).
If a defined state of a Petri net consists of places A, C, and G, which contain
tokens while the other places are empty, this state is represented as ACG. If
a transition causes the tokens to move to new places such as A, D, and F, then
CG - DF represents this action and is a rule for this Petri net. Since the
place A is common to both states, it is eliminated from both sides of the rule.

A simple Petri net is shown in figure 5.3-3, with four places, four transitions,
one token, and directed arcs between the places and transition bars. The token
that initially resides at place A causes transition 1 to fire. When this happens
the token is removed from A and put at B. This sequence continues through B,
C, D, and finally back to A again. There is no starting point or terminating
point in this model; it simply continues forever in a loop.

A B

4

D C

FIGURE 5.3-3. PETRI NET WITH FOUR STATES AND FOUR TRANSITION BARS

Petri nets may be used to model protocols in the same way that state machines
are used. However, Petri nets have broader application in some cases. Certain
resources, such as a receiver with multiple buffers, are better represented by
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Petri nets than state machines. Each buffer allocation can be handled by a
separate set of tokens being added to the net. Events which occur in an
arbitrary order are also easily represented by the Petri net.

5.3.3.3 Other Methods of Protocol Representation

FSKs and Petri nets are common methods for protocol representation, but not the
only ones. High-level programming languages and grammars are used to model
protocols and have the advantage of being easily understood since they appear
more like natural language. Advantages of using a high-level language include
ease of representing counters, data, and variables. Complex control structures,
on the other hand, are difficult to representand understand when represented
by a high-level language.

The use of a high-level programing language to model a protocol by its very
nature comes close to an actual implementation of the protocol. Also, the unique
characteristics of the programming language, which may be nonessential to the
protocol model, will be obvious in the implementation.

5.3.4 Protocol Verification Methods

With a shift from unidirectional to bidirectional data buses, the access protocol
assumes an added degree of complexity. As complexity increases, so should the
concerns that relate to protocol verification. Verification involves demonstrat-
ing that the interactions of distributed protocol modules satisfy the service
specification of the protocol (Sunshine 1979). A protocol may logically
meet all the requirements of the specification, but this does not guarantee that
a particular implementation is correct.

Also a particular protocol of layer, n, may meet the requirements but its correct
operation is based on the service provided to it by the n-1 layer. For example,
if the Network Layer is not operating correctly, the cause may be in the physical
or Data Link Layer which the Network Layer relies on.

lertain general properties of any protocol may be checked. Areas which should
oe checked are as follows (Merlin 1979):

* Deadlock Freeness

Liveness

Tempo-Blocking Freeness

Starvation Freeness

Recovery from Failures

Self Synchronization

Correct Execution of the Purpose of the Protocol
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SDeadlock Freeness means that the protocol will not terminate. There should
exist no states in the protocol design or implementation which are terminal.
Liveness shows that from a given reachable state, any other state can be reached.
Tempo-Blocking Freeness simply checks that there is no infinite looping.
Starvation Freeness means that no process will forever be prevented from
acquiring an available resource. Recovery from Failures states that when a
failure occurs, the protocol operation will return to the normal execution within
a finite number of states. Self Synchronization means that from any abnormal
state the protocol will recover within a finite number of states. Correct
Execution of the Purpose of the Protocol means that a protocol is doing what it
was designed to do.

5.3.4.1 Global State Generation

These are the particular properties that are checked for a protocol, but the
method used to apply these checks varies. In a protocol modeled by an FSM or
a Petri net, one of the more common methods of verification is called global
state generation. Global state generation is implemented by starting with a
given initial state and identifying all possible transitions from that state to
another state. Each of the new states is examined until no new transitions are
identified. Some transitions may lead back to a state already encountered.
When this is complete, all possible outcomes of the protocol are known and
observations may be made concerning the properties listed above.

Global state generation has a limitation. It may only be used on protocols that
can be represented with a finite number of states. An advantage of this
technique is that it may be easily mechanized for automatic testing of certain
properties.

5.3.4.2 Assertion Proving

Assertion proving is another technique for verification. This is applied to the
protocol and its description as though they were parallel programs. Assertions
are made about certain variables based on the description. If the protocol and
description compare at predetermined points, then the proof holds. The assertion
proving method is commonly used with protocols that have many states. Assertion
proving requires special considerations for implementation. Therefore, it does
not lend itself to automation as the method of global state generation does.

5.3.4.3 Other Verification Methods

Two other methods in use are "induction over the topology" and "adherence to
sufficient conditions." In the first method, the holding of a property or
occurrence of an event is proven by showing that certain conditions will
propagate throughout the topology (Merlin 1979). If a certain property holds
for a system with x entities, then it will also hold for a system of x+l
entities. The latter method uses constructive design rules that automatically
result in correct protocols. For instance, for every send transition imple-
mented by the designer, the design rules specify the corresponding receive
transition of the peer entity (Bochmann and Sunshine 1980). At each step in the
design, the protocol is checked to ensure that it satisfies the properties it
"specifies.
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There is no one method that can be applied easily to all protocols. Depending
on the complexity and the topology, one method may be preferred over another.
In cases where the state explosion becomes a problem, such as for complex
protocols, it is sometimes necessary to make simplifications of the model for
the purpose of verification.

5.3.5 Application to Avionic Data Buses

Protocols may be implemented in hardware as well as in software. Most of the
hardware used in avionic data buses, such as the ARINC 629 bus, ASCB, and MIL-
STD-1553 bus, has been implemented in a single high-density IC or a combination
of several high-density ICs. When this is done, the protocol is not accessible
to examination and scrutiny as is a software-implemented protocol. As avionic
systems using data buses increase in complexity, so do the protocols and the bus
hardware used to implement the protocol.

A protocol may be implemented in any of the seven layers of the OSI Basic
Reference Model, from the Physical Layer to the Application Layer. The
complexity of a protocol is not the same from one level to the next. At the
Data Link Layer a protocol may be straightforward, but at the Network Layer
become highly complex and, therefore, difficult to model.

As seen in the ARINC 429 bus standard, a more complex bit-oriented protocol is
added on top of the previously defined physical and Data Link Layers. This can
be done with any data bus, whether it is unidirectional or bidirectional. Since
protocols may be layered in this manner, some data bus standards, such as ARINC
Specifications 429-12 and 629, have defined protocol transactions which can be
used at the higher layers.

Although a data bus may be implemented strictly in hardware, it should not be
treated any differently in the areas of specification and analysis than a
software-implemented protocol. Hardware-implemented protocols should be
subjected to rigorous analysis, like that specified in RTCA/DO-178 for avionic
software.

5.3.5.1 ARINC 429 Bus

The ARINC 429 DITS is a unidirectional broadcast type bus with only one
transmitter. Access to the bus by the transmitter is not a matter of conten-
tion. Another factor contributing to the simplicity of this protocol is that
it was originally designed to handle "open loop" data transmission. In this
mode there is no required response from the receiver when it accepts a
transmission from the sender. The system simply depends on the integrity of the
shielded twisted pair of transmission lines, a data integrity test using parity,
and data reasonableness checks by the host processor.

With an increasing need for more functions to be handled by the data bus, a new
protocol was developed and has been incorporated into the standard. This
protocol is bit-oriented, as described in section 2.5 of ARINC Specification
429-12, and is used along with the previously defined character-oriented
protocol. It is intended to be used for the transfer of data files from one bus
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. member to another using techniques that are common to computer networks to ensure
safe and orderly delivery of data files. Four layers of the OSI Basic Reference
Model are described for use with the bit-oriented protocol: Physical, Data
Link, Network, and Transport Layers. Labels, timing, and protocol transactions
are described as well. The protocol transactions specify an orderly and
controlled transfer making use of closed-loop control. Commands such as RTS and
CTS are used along with timeouts, which are required on all transactions.

The use of a data bus in this manner can be modeled with a Petri net and tested
for all the properties a protocol should have, such as Deadlock Freeness,
Liveness, Recovery From Failures, etc. It is beyond the scope of this chapter
to attempt to model this protocol, but such analysis should be done by a
developer for verification purposes.

5.3.5.2 ARINC 629 Bus

The ARINC 629 bus is a bidirectional bus with multiple transmitters and
receivers. Access to the bus by all transmitters must conform to a thoroughly
tested integration standard.

At the lower levels, the access protocol is implemented in hardware. The
protocol at this level may be analyzed by an FSM or a Petri net method. Included
in Attachment 7 of the ARINC 629 bus specification is a state diagram of the
overall access protocol. The purpose is to give an overview of how a terminal
accesses the bus for a particular operational mode. Some of the other functions
of the hardware that could be modeled for verification are self monitoring,
interaction with the host CPU, the data bus, various timers, and error checking
and handling. If the complete actions of the hardware were modeled, the state
diagram would be quite complex.

The state diagram of the CP is included for reference in figure 5.3-4. The
diagram shows the general actions of the access protocol based on the three
defined levels of access: Ll, L2, and L3. The conditions for transition to the
next state are also shown. In the ARINC 629 bus specification, each of the
three levels of access are expanded to one complete page in Attachments 7c, 7d,
and 7e, respectively.

Figure 5.3-4 shows, in a general manner, how a terminal acquires the bus for a
transmission when using the CP. The three levels of access and the various
timers are explained in section 5.1 of this chapter.

As with the ARINC 429 DITS, this standard also defines the data bus in terms of
the layers of the OSI Basic Reference Model. Not only is it designed for use
as a broadcast bus, but it is also intended to be used as a closed-loop system,
as stated in ARINC Specification 629, Part 1, section 6.3.1 (1990):

"Directed messages may or may not be used to direct information
between two systems so that handshaking protocols may be established
for message checking capability."
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. In this closed-loop mode it is necessary to define a complete protocol which
utilizes the services provided by the lower protocol layers (the ARINC 629 data
bus). This protocol should define parameters that may be used for directed data
transfer such as an acknowledgement response, some form of flow control, the
data transfer and data structures, and timeout conditions. When all of the
necessary parameters are specified, along with the rules governing their
interactions, it is possible to subject the protocol to analysis as previously
defined in section 5.3.

5.3.5.3 ASCB and MIL-STD-1553 Bus

A data bus that uses a form of central control can be examined using the
analysis techniques presented in this section. When a command is issued on the
bus, a response is anticipated from the addressed terminal. Whether the
response occurs or not, the timeout conditions, the number of retries, and the
error handling can all be modeled for the interaction with the terminal. A
global network model can be created and checked against the specification for
correct operation. When redundant central controllers are used, there needs to
be a clear definition of the interaction between them for detecting and handling
controller error conditions. Modeling can provide this clarity.

The ASCB is implemented as an open-ended protocol where the response from the
terminals is not checked by the BC. Therefore, no end-to-end interaction may
be modeled for the ASCB specification.

The MIL-STD-1553 is a candidate for analysis by use of formal techniques. The
interactions can be formally examined for any problems using the guidelines
previously set forth in section 5.3.

5.3.6 Summary

A data bus specification should address integration problems by defining the
hardware as completely as possible. A data bus specification addressing a
software protocol should also be complete to avoid future integration problems.
Questions need to be asked concerning these protocol specifications and
implementations, such as the following:

"• Is the protocol implementation correct according to the specification?

"* Is the protocol specification complete?

"* Do all systems have the same timeout values for every timeout condition?

"* Do all systems have the same retry value?

"* How can the protocol parameters be tested under every possible condition?

"* Have all the properties of the protocol been checked?

The fundamental question that needs to be addressed on this topic is "Has the
protocol been completely specified and verified by the use of formal methods?"
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When formal methods are used, the implementor may have more confidence in the

protocol.

5.4 Bus Integration Standards, Guidelines, and Techniques

A typical avionics system consists of several subsystem boxes that are connected
in a unique arrangement to input sensors, output devices, and each other to
produce the functionality required for a particular aircraft. The intercom-
munication is provided by one or more digital data buses, as well as some analog
data buses and point-to-point wiring.

Each subsystem is typically designed independently of the others. They may even
come from different manufacturers. This section describes the standards,
guidelines, and techniques used to ensure that data buses reliably integrate
the subsystems that they interconnect. This section also addresses how these
integration aids relate to the certification of aircraft. For additional
information, integration aids for buses that are used primarily in military
applications are included. A list of some of these documents is given in table
5.4-1. For more detail, refer to the bibliography.

5.4.1 Levels of Integration

There are several levels at which reliable integration of subsystems must be
ensured. The lowest level is the physical integration of the hardware.
Physical integration includes mechanical and electrical aspects. For the
subsystem hardware to be properly integrated, the pieces must be mechanically
compatible and the bus interface of each subsystem must obey the bus standards
for voltage levels, signal encoding, signal timing, and other electrical
characteristics. These specifications must not be exceeded for any configura-
tion that the system might take on, and for any environment in which the system
might be placed. Integration at this level is essential for bus messages to be
generated and received.

The logical integration of the hardware is the next level of integratio•.. The
hardware protocol defines the sequence of bits that constitutes the smallest
unit of data that can be transferred on the bus as a legal message. Bus
messages form the building blocks for all higher level transfers of information.
The subsystems must obey the bus standard for the timing, sequence, and polarity
of each bit in a bus message. This ensures that all messages are encoded and
decoded into the proper sequence of synchronization bits, start-of-message bits,
control bits, address bits, data bits, status bits, error detection bits, error
correction bits, and/or end-of-message bits. The patterns of many of these
groups of bits must obey certain rules. If there are exceptions, the hardware
produces a bus message error signal. Integration at this level also is
essential for bus messages to be generated and received.

18-114 0



TABLE 5.4-1. INTEGRATION STANDARDS AND GUIDELINES, BY BUS
(PART 1 OF 2)

Document Name Publisher

ARINC 429 Bus
ARINC Specification 429-12 ARINC
ARINC 429 Supplement GAMA
ARINC 429 Receiver/Transmitter Western Digital
ARINC 429 Bus Interface Circuit Harris Semiconductor
ARINC 429 Bus Interface Line Driver Circuit Harris Semiconductor
Application Note No. 400 Harris Semiconductor

ARINC 629 Bus
ARINC 629 Part 1, Technical Description ARINC
ARINC 629 Part 1, Supplement 1 ARINC Draft
ARINC 629 Part 1, Supplement 2 ARINC Draft
ARINC 629 Part 2, Applications Guide ARINC Draft
ARINC 629 Part 3, Data Standards ARINC Draft
ARINC 629 Part 4, Test Plan ARINC Draft
ARINC 629 User's Manual BCAC
ARINC 629 Terminal Device LSI Logic
ARINC 629 Communication IC National Semiconductor
ARINC 629 Serial Interface Module SCI Technology
ARINC 629 Current Mode Coupler SCI Technology
ARINC 629 Serial Interface Module AMP/Dallas Semiconductor
ARINC 629 Current Mode Coupler AMP/Dallas Semiconductor

GAMA CSDB
GAMA CSDB GAMA
EIA RS-422-A EIA

GAMA ASCB GAMA
EIA RS-422-A EIA
WD193X Synchronous Data Link Controller Western Digital
ASCB Data Link Coupler SCI Technology

MIL-STD-1553 Bus
MIL-STD-1553-B Standard Military Standard
MIL-HDBK-1553-A Handbook Military Standard
SAE AE-12 Systems Integration Handbook SAE
SAE AS4112 RT Production Test Plan SAE
SAE AS4113 BC Validation Test Plan SAE
SAE AS4114 BC Production Test Plan SAE
SAE AS4115 System Test Plan SAE
Multiplex Applications Handbook AFSC
Multiplex Applications Handbook Addendum AFSC
MIL-STD-1553 Designer's Guide Data Devices Corporation

18-115



TABLE 5.4-1. INTEGRATION STANDARDS AND GUIDELINES, BY BUS

(PART 2 OF 2)

Document Name Publisher

AS4074.1 Standard SAE
AIR 4288 Handbook SAE Draft
AS4290 Test and Validation Plan SAE Draft

AS4074.2 Standard SAE
AIR 4289 Handbook SAE Draft
AIR 4291 Test and Validation Plan SAE Draft

The logical integration of the software is the next level of integration.
Although the hardware protocol usually permits all possible permutations of
control, address, data, and status bits, a particular system usually supports
only a few of the possibilities. The software protocol determines the legal
field formats and message sequences. The subsystems must obey the software
protocol standards to be integrated into a reliable system. Otherwise, legal
bus messages might not reach their proper destination or might not be properly
interpreted.

The final level of integration occurs at the functional level. The function
that each subsystem is to perform in response to a received message must be
consistent with the intent of tha subsystem generating the message. The
application programs must all use the same data definitions. At this level, the
content of the messages becomes important. The subsystems must obey the system
standard for legal communications at this level to be integrated into a reliable
system.

The first three levels of integration are clearly bus-dependent integrations.
It would appear that functional integration is not a bus integration issue. It
is primarily the concern of the system specification, rather than a bus
standard. However, since every LRU which communicates on a bus must use the
same data definitions, the job of standardizing the definitions has been
relegated, in many cases, to the bus standard. In fact, not only do the bus
standards define the acceptable data words, but many of the protocols accept no
other data types. Many of the buses do not transparently transfer whatever data
the LRUs wish to transmit.

5.4.2 The Ideal Bus Integration Standard

Certainly a bus integration standard requires that, at a minimum, the bus medium
and the LRUs satisfy a bus standard which specifies items such as the following:

Bus medium
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* * Bus connectors

"* Electrical characteristics that all signals on the bus must satisfy

"* Logical characteristics that elementary messages on the bus must satisfy

"* Electrical characteristics that each LRU must satisfy

"* Logical characteristics that each LRU must satisfy

"* Environmental conditions under which the equipment must operate

"* Electromagnetic requirements that all of the equipment must meet

"* LRU test procedure

But this is not sufficient because problems that are unique to a particular
system configuration are uncontrolled by such a bus standard. For instance, the
bus standards do not specify the interactions of multiple LRUs in a system.
That is left for the system specification. A bus integration standard that is
designed to control the integration of LRUs must also specify the following
integration specific items:

"* Physical layout of the bus

P Control, address, and status words that are allowed on the bus

"* Interpretation of the allowed control, address, and status words

"* Data words that are allowed on the bus

"* Interpretation of the allowed data words

"* Integration test procedure

Where possible, control of these items should be accomplished by precise
specification. Where greater flexibility is required, the standard should use
formal guidelines. These must consist of precise definitions with formulas,
tables, rules, or flowcharts that constrain the system designer to produce
working configurations.

None of the avionic data bus standards qualify as bus integration standards by
these criteria. Some of these integration-specific topics are either not
addressed at all or are only discussed, as opposed to specified. Furthermore,
no generic bus integration standard was discovered by these researchers for
avionic buses.

18-117



5.4.3 Bus Integration Standards and Guidelines

The standards that address system integration by data buses consist of the data
bus standards and the data bus test standards. These standards regulate the
integration of subsystems to varying degrees. Generally, they do not address
the integration-specific topics directly.

All of the data bus standards specify, to some extent, the physical makeup of
the bus conductors. They generally do not specify the physical layout of the
system. That is unique to each system. Nevertheless, some of the bus standards
at least address the effects that the system layout has on the electrical
characteristics of the bus. All of the bus standards specify the electrical and
logical hardware requirements for each LRU attached to the bus. They do not all
address the electrical and logical characteristics of multiple LRUs interacting
on the bus. All of the bus standards also address the software protocol that
each LRU must obey. However, they cannot specify the content of the control,
address, data, and status words for a particular system. These are unique to
each LRU and system.

Elwell et al. (1992) delineate the strengths and weaknesses of each set of bus
standards as they apply to subsystem integration. Guidelines are also
discussed, whether they are part of the standard or nc.•.

5.4.4 Bus Integration Techniques

The complexity of the interactions among LRUs on bidirectional buses has
motivated many data bus designers to use various design analysis techniques when
designing and certificating systems that use data buses. Typically, convention-
al computer system design techniques are adapted to the unique requirements of
data bus development. These techniques use mathematical or otherwise logical
constructs to represent the system being designed. The representation is then
exercised and tested to determine if the real system most likely has, or will
have, the desired characteristics. Each technique emphasizes a particular
characteristic. The goal of these techniques is usually to increase the
confidence that the system will always satisfy the requirements for it. Using
these techniques could give the developer confidence that an aircraft is worth
building, or give a CE confidence that a built aircraft should be TCed.

Some of these techniques are described and their application to data bus design
and analysis presented. Their use in certification will be addressed later.
A list of the techniques documents is given in table 5.4-2.

Some of the techniques described in the following sections are recommended or
required by the data bus documentation. Specifically, MIL-HDBK-1553 states, "It
is essential that a proposed network be simulated before the design is
finalized." (MIL-HDBK-1553A, 1988). The HSRB test plan requires that the
station tester emulate the host and all other bus stations. Similarly, both the
LTPB and the HSRB specify the use of analysis in their quality assurance plan.
Some of the analysis techniques are recommended in the certification documenta-
tion. In AC 25.1309-IA, the Functional Hazards Assessment, FMEA, and FTA are
all offered as acceptable means of showing compliance with RTCA/DO-178. Other
techniques are commonly used by developers simply as good engineering practice.
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TABLE 5.4-2. INTEGRATION TECHNIQUES DOCUMENTS

Document Name Reference

Computer Resources Handbook for Flight Hecht and Hecht
Critical Systems 1985

Fault/Failure Analysis for Digital Systems ARP 1834
and Equipment

Procedures for Performing a Failure Mode, MIL-STD-1629A
Effects and Criticality Analysis

Fault Tree Handbook Vesely et al.
1981

5.4.4.1 Modeling

Modeling consists of creating a system of mathematical equations that formulates
all the significant behavior of the system being modeled. The reliability of
the system is a common behavior of interest.

In unidirectional broadcast buses, the bus is little more than a transmission
medium, since all of the communications control is embedded in the LRU software.
For these buses, modeling is used only to analyze the behavior of the electrical
signals on the bus. The standards specify this behavior for an ideal bus.
Modeling is necessary to confirm that a particular implementation, with multiple
LRUs, specific bus lengths, and specific LRU separations, conforms to the ideal.
This means that a particular layout of a bus must be sufficiently characterized
so that the shape of the signal waveform can be calculated for any point on the
bus at any time in the sequence of transmissions. This was done for the Mark
33 DITS, for various configurations, to confirm that distortions remain within
the permissible limits of the waveform. The waveforms are presented in appendix
1 of ARINC Specification 429-12. The ARINC 629 bus standard provides for the
use of this kind of analysis also. Although ARINC 629 bus operation has been
established for lengths up to 100 meters, "A systems designer may extend the bus
length if proper analysis demonstrates that there is no loss of bus integrity."
(ARINC Specification 629, Part 1, 1990).

A model of the electrical characteristics of a bus network is usually used to
aid the engineer when developing a design. A tentative layout for integrating
multiple LRUs can be set up in the model, and the electrical behavior checked
for unanticipated problems. As various layouts are checked, the iterative
process guides the designer toward a trouble-free solution. This technique
turns trial and error learning into a convergent engineering design process.
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For bidirectional buses, bus communication is controlled by a computer system
of its own. Bus transmissions are controlled by a state machine, implemented
with hardware and software, that serves no function for the LRU except to
control bus communication. This computer system can be quite complex, involving
a protocol that controls numerous unique interactions in an environment that
requires fail-safe operation. The reliability required of a bus used in
critical avionics may be provided by a fault tolerance scheme that is dis-
tributed across hardware and software features and even across LRUs. The design
of such a system is greatly dependent upon the use of modeling.

The Computer Resources Handbook for Flight Critical Systems (Hecht and Hecht
1985) presents a simple analytic model for aslessing the reliability, availa-
bility, and fault tolerance of a system. An analytic model allows the designer
to evaluate the likely outcomes of system design decisions and gives insight
into the behavior of.. the design.

A thesis from the Naval Postgraduate School gives a good example of how modeling
is applied to a complex data bus network (Nelson 1986). In that study, a
computer architecture that uses advanced hardware-software reliability
techniques is modeled for the purpose of determining a design that can meet FAA
safety requirements for critical systems. Conventional reliability analysis is
inadequate, since it is based on hardware reliability alone. In this case, the
reliability was based on the reliability of the components of the system, and
the capability of the system to identify correctly both the occurrence of a
fault and its precise location within the ,ystem configuration. (This is
exactly what is done in the bidirectional bus protocols as they try to ensure
that no two transmitters attempt to operate simultaneously.) A Semi-Markov
analysis computer program was used to create the model. This model was used to
generate a configuration that met the safety requirements.

The Hybrid Automated Reliability Predictor (HARP) embodies yet another approach
to the modeling of computer systems that use advanced reliability techniques
(Bavuso et al. 1987). It addresses a weakness of structural decomposition
methods. In order to do a structural decomposition, the fault tolerant behavior
of a system must be able to be partitioned along with the mutually independent
subsystems. This often is not the case. The HARP program uses behavioral
decomposition instead. Bavuso et al. applied the method to two flight control
systems as examples.

Some models are more general purpose. Parhami (1979) developed an approach to
modeling bus redundancy. The model can be used to assess the tradeoff between
increased redundancy and increased complexity for single and multiple bus
systems.

5.4.4.2 Simulation

Simulation is very similar to modeling. Simulation consists of creating a
system of mathematical equations that formulates all significant contributions
to the behavior of the system being modeled. Simulation, however, assumes that
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S the systm exists. A simulation usually combines a computer program emulation
of most of the functions of the system (before they are implemented) with some
of the actual hardware. Simulations that rely heavily on emulation are
sometimes called emulations.

Since real, rather than proposed, behavior is modeled by a simulation, the model
can be, and should be, validated. The response of the simulation to a
particular real-life scenario is compared against the response of the real
system. Once the simulation is validated, it is used to do analyses which would
be too costly in time, money, or risk to perform on a real system.

The ARINC 629 bus, MIL-STD-1553 bus, LTPB, and HSRB all rely on simulation for
the validation of a particular bus network. The LTPB handbook includes a
program listing that can be used to simulate the priority scheme of the
protocol. This simulation aide the system designer in choosing protocol
,armeters while the bus design is still only on paper. The HSRB test procedure
requires a simulator that can emulate a host and all other stations. Simulators
are also used to test and evaluate ARINC 429 buses.

The United States Air Force Aeronautical Systems Division defined guidelines for
the development of computer programs used in digital flight control systems.
Sylvester and Hung (1982) present the concepts for V&V of these systems that
require extreme reliability. They found that,

"The key to the development approach leading to V&V is the consistent
and integrated use of modals and simulations. The verification of
such simulations with ground and flight test information leads to
validation of flight control system concepts and implementation."
(Sylvester and Hung 1982).

They proceed to present a conceptual framework where the problem of design and
test of highly reliable systems may be studied. The design process should start
with a functional simulation, validated against experimental data and analysis.
As it continues, the simulation should evolve into a simulation test facility
which uses as much of the prototype hardware as possible. In the testing phase,
flight tests should be instrumented to gather data to confirm that the earlier
simulations were valid. Sylvester and Hung also describe an entire system of
simulation plans and reports, and a cross-reference index for the integration
of simulation into the design process.

The need for early validation of complex computer systems is also addressed by
Karmarker and Clark (1982):

"Few automated or semi-automated techniques, however, have been
developed to address the verification of the very early development
stages, namely system requirements and system design. Instead modern
practice relies on formal and informal reviews, and analytical studies
and trade-off analyses of various aspects of the system design."
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They present a tool and a development methodology for using a system level
emulation to perform this early validation. They have applied the technique to
a flight control system.

The National Aeronautics and Space Administration has also investigated using
emulation as a technique for validation, rather than relying only on analytical
modeling. Becher writes, "ways must be found to reduce the risk caused by these
new technologies" (Becher 1987). Becher developed an algorithm to emulate the
hardware of complex integrated computer systems as logic gates, flip-flops, and
tri-state devices. The emulations are used as general reliability analysis
tools in the Avionics Integration Research Laboratory (AIRLAB). Such an
emulation also lends itself to using fault injpction to determine the response
of the system to faults.

Petrichenko (1988) writes on some lessons learned from doing simulation. The
article gives a good introduction to some of the basics of simulation techni-
ques, particularly for hardware-in-the-loop simulation. He observed that an
added benefit of creating a simulator is that it functions as an independent
development of the same function as the system being simulated. As a result,
when the logic of the two differ, often the system logic may be found to be
faulty.

Hecht and Hecht (1985) address the simulation of reliability models. They point
out that simulation allows complex models to be evaluated for the system failure
modes. Furthermore, a simulation can be tailored to concentrate on the unlikely
problem areas that are of particular interest in critical systems. They discuss
some general-purpose simulation programs that can be used. Bannister et al.
(1982) also address the evaluation of which design is best for a particular
application. They state, "Simulation and analytical tools are the time-proven
means for the precise evaluation of a given design." They then discuss some
software tools that can be used for this purpose.

Simulation is taken one step further with the ARINC 429, CSDB, and MIL-STD-1553
buses. Manufacturers make black box testers that are used to simulate an LRU
connection to the bus. They are made to generate and evaluate messages
according to the electrical and logical standards for the bus. They consist of
a general purpose computer connected to bus interface cards. The simplest ones
may simulate a singi" LRU transmitting or receiving. The most complex ones may
be able to simulate multiple LRUs simultaneously, as well as a BC, where
applicable (McCartney and Phillips 1981).

These simulators are invaluable for system integration in highly integrated
systems. In such systems, a single LRU cannot be tested without the entire
system being present. Testing should not be held off that long. Furthermore,
the correctness of the data bus itself must be checked before LRUs can be
installed (Sawtell and Dawson 1988). These simulators provide a solution to
both problems; they can be used to verify bus operation and to simulate the
other LRUs in the system. Fitzgerald and Polivka (1982) also point out the
usefulness of a system tester that can be used in data bus system development
and integration testing.
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. Although simulation can be used to detect many integration problems, a
simulation cannot be run for the many hours required to prove that a system will
not have a critical failure more often than 10- per flight-hour. VanBaal (1985)
states it well:

"To put this figure into perspective, it should be realized that the
total accumulated number of flight-hours on turbo-jet powered
airplanes since their introduction in 1957 is estimated to be in (sic)
the order of 3 x 101. It is thus easily seen that proof of such low
probabilities by means of ... simulation is highly impractical."

As a result, more analytical techniques should be used to support simulation.
Some of these techniques are discussed in the following sections.

5.4.4.3 Fault/Failure Analysis

F/FA is a general term for analysis techniques used to identify systematically
and, possibly, quantify the effects of hardware failures on a system. Modern
data bus interfaces are sufficiently complex to warrant such an analysis. The
techniques usually implied are those of the formal F/FA process defined by ARP
926A. The application of these basic techniques to processor-based digital
electronics is presented in ARP 1834.

ARP 1834 discusses, in detail, the purposes of F/FA, the types of F/FA, and the
considerations to be made in choosing which techniques to use and how thorough. an analysis to perform. The desired effect is to produce a credible statement
of the possible faults and their effects in the most cost effective manner. The
analysis techniques fall into two classes. Those that analyze the faults from
the top-down and those that analyze from the bottom-up.

In the first case, the analyst postulates the undesirable system effects and
deduces from them what subsystem faults could produce such an effect. The
analyst asks the question, "How can this failure occur?" Each subsystem fault
is then analyzed to determine what lower level fault would cause the subsystem
fault. Each of these branches is expanded until they are terminated by faults
considered to be sufficiently controllable or sufficiently unlikely. Top-down
analysis has an advantage in that it can be performed on design models. A
disadvantage is that it does not guarantee that every possible fault is
identified. ARP 1834 covers the use of FTA for a top-down approach. An example
is given in appendix 2 of the ARP.

In the bottom-up method, the system components and their relationships are
known. The analyst identifies e'ery possible failure mode of each component at
the level of interest and then deduces the effect each failure would have on the
next higher level. This procedure answers the question, "What failures are
possible?" This method is exhaustive. It covers all the bases, but it can
become unmanageable for complex systems. A bottom-up analysis of IC-based
circuits must be initiated at some level higher than the component level to be
feasible. The process defined in ARP 1834 covers FMEA for a bottom-up approach.
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The two approaches tend to be complementary. The F/FA process provides for
using both approaches. Since both approaches rely on the ability of the analyst
to think of failure modes and their implications, it is essential that a well-
coordinated team effort be used to conduct a correct and comprehensive survey
of all system faults and their effects (Vesely et al. 1981). Failure Mode,
Effects, and Criticality Analysis (FMECA) and fault insertion are also presented
as available methods. Each of the techniques incorporated by ARP 1834 is
defined apart from that document and can be used independently of it. For this
reason, they are discussed individually in subsequent paragraphs. Additional
discussion is presented in chapter 3 (Curd 1989) of this handbook.

5.4.4.4 Fault Tree Analysis

FTA is a method that helps ensure that decisions about a system are based on all
known pertinent information on the system. In particular, a decision about the
likelihood of a certain undesirable event occurring should take into account the
implications of all credible ways in which the event can occur. FTA does this
by providing a directed, disciplined process for identifying the failure
producing faults. Furthermore, the analysis recognizes that a complex system
is more than the sum of its parts. Component interactions determine much of the
character of a system. Thus, FTA is particularly appropriate for analyzing bus-
integrated ai°'onics for problems that are peculiar to the system interactions.
FTA is usually used for analyzing hardware faults, but application has been made
to software and computer systems (Hecht and Hecht 1985).

FTA is reco mmended by ARP 1834 as a component in an F/FA. FTA of hardware is
defined, explained, and demonstrated in the Fault Tree Handbook (Vesely et al.
1981). They explain,

"Fault Tree Analysis is a deductive failure analysis which focuses on
one particular undesired event. The undesired event constitutes the
top event in a fault tree diagram. Careful choice of the top event
is important to the success of the analysis. If it is too general,
the analysis becomes unmanageable; if it is too specific, the analysis
does not provide a sufficiently broad view of the system. Fault tree
analysis can be an expensive and time-consuming exercise and its cost
must be measured against the cost associated with the occurrence of
the undesired event." (Vesely et al. 1981).

Because fault trees can easily become unmanageable, Hecht and Hecht (1985)
suggest that FTA be used to identify the critical events at the subsystem level,
then use FHECA to determine the potential causes of these events.

A typical fault tree is shown in figure 5.4-1.
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The computer
stops working

OR

The hard disk Someone tripped The fuse
crashed on the cord blew out

AND

The cod was A peson
left exposed walked by

FIGURE 5.4-1. TYPICAL FAULT TREE

The fault tree is produced by a directed qualitative process. However, once the
tree is produced, a quantitative probability of the undesirable event occurring. can be calculated. The FTA can be used for either purpose: simply to identify
the causes so that they can be controlled, or to calculate the probability given
the set of causes.

A quantitative analysis is shown in figure 5.4-2. It is calculated as follows:

2.3 x 10"' = 5.7 x 10- + (7 x 10-')(0.2) + 2.9 x 10-5

where it is assumed that every person that walks by will trip on the cord.

A particular fault tree only accounts for the effects of the most credible
attributing faults, as thought of and assessed by theanalyst. It is not a
model of all possible system failures or all possible causes for system failure.
To accomplish that, the analyst must identify every possible system failure and
develop the fault trees for each of them.
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The computer
stops working

Two times per year
(2.3 x 10-')

crashed on the cord blew u

Once every two years 1.2 times per year Once every four years( 5 . 7 x 1 0 -') ( 1 .4 x 1 0 -4 ) ( 2 .9 x 1 0 -1)

1 2

left exposed walked by

Six hours a year Once per five hours
(7 x 10-) (0.2)

FIGURE 5.4-2. QUANTITATIVE FAULT TREE ANALYSIS

5.4.4.5 'Parts Count" Failure Analysis

If it is assumed that the failure of any single component in a system will cause
a system failure, the probability of system failure is simply the sum of the
individual failure probabilities. The analyst counts the number of each
component, multiplies each of these by the .probability that the component will
fail, and then adds these together. This probability is the most conservative
estimate, since all dependencies are covered. Thus, if the system or subsystem
failure probability is sufficiently low using the parts count method, then it
will be found to be sufficiently low by any more refined method. The additional
detail of those methods would be unnecessary. Some of these more refined
methods are discussed in the following paragraphs.

5.4.4.6 Failure Mode and Effects Analysis

FNEA is a systematic analysis of failures and their effects, that uses an
inductive, bottom-up approach. It is one of the techniques recommended by ARP
1834 for an F/FA of digital systems.

In a purely qualitative analysis, the analyst identifies every significant
failure imaginable at a certain subsystem level and then describes the effects
that result as the impact of the failure ripples up to the system level. A
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. simple qualitative FNEA is shown in table 5.4-3. A more detailed worksheet is

provided in NIL-STD-1629.

TABLE 5.4-3. FMEA QUALITATIVE ANALYSIS REPORT

Component Failure Mode Failure Effects

Bus Line Driver Open circuit 1. [RU can no longer transmit.
2. Bus impedance is changed.

Short Circuit 1. Bus transmission disabled
until driver timeout.

2. Bus impedance is changed.

Once the effects are identified, a quantitative analysis can be performed to
find the likelihood of system failure based on the combined contributions of the
various unrelated failures. Table 5.4-4 shows a typical quantitative FMEA
report. The probability of a critical system failure is 2 x 10"', which is the
sum of the four critical effect probabilities.

TABLE 5.4-4. FMEA QUANTITATIVE ANALYSIS REPORT
(Vesely et al. 1981)

Percent Critical
Failure Failure Failure Effect Noncritical

Component Probability Mode by Mode Probability Effect

A 1 x 10-3 Open 90 x
Short 5 5 x 10-5
Other 5 5 x l0'

B lx 10- Open 90 x
Short 5 5 x 10"5

Other 5 5 x 10"

FMEA is generally used to provide an analysis of hardware, but MIL-STD-1629
defines both a strict hardware approach and a functional approach in its
procedures for performing FMEA on hardware. Extending FMEA further, VanBaal
(1985) found that no special treatment is required when the software elements
of a system are included in the analysis. He concluded, "an FMEA of a system
containing software can be performed and yields useful results with regard to
system safety" (VanBaal 1985). However, the quality of the software has to be
ensured by following good software engineering practices. Thus, FMEA can be
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used to address data bus integration issues associated with processor-based bus
interfaces.

A quantitative FlEA requires that failure rate data be available for all the
components. This is not usually available for software or for new and novel
hardware components or subsystems. Warr (1984) describes a special method of
PHIA that could be applied in these situations. A multifunctional team of
design engineers defines the relative rankings and relative weights for each
product and its failure modes. The relative risk associated with each failure
mode can be calculated from these weights. This method might prove to be
especially useful for certificating new and novel bus-integrated systems for
which no earlier counterpart exists. Hecht (P986) also addresses some of the
unique requirements for applying FNEA to digital avionics.

FlEA is called out as the recommended means of analysis by one of the bus
standards. An ARINC 629 bus is to be made of a single, unspliced cable. If a
splice is made, the standard recommends that an FlEA be completed for each
splice.

5.4.4.7 Failure Mode, Effects, and Criticality Analysis

FMECA is recommended by ARP 1834 for use in F/FA of digital systems. The
technique is defined by the U.S. Department of Defense in MIL-STD-1629. The
purpose of an FMECA is the early identification of all critical failure
possibilities so that they can be eliminated or minimized in the system design.
The standard establishes the following procedures:

"to systematically evaluate the potential impact of each functional
or hardware failure on mission success... Each potential failure is
ranked by the severity of its effect in order that appropriate
corrective actions may be taken to eliminate or control the high risk
items." (MIL-STD-1629A, 1984).

FMECA is very similar to an FMEA, but the criticality of the failure is analyzed
in greater detail and controls are described for limiting the likelihood of each
failure. An F7MECA worksheet might look like that shown in table 5.4-5.
MIL-STD-1629 contains a more detailed worksheet.

TABLE 5.4-5. FMECA ANALYSIS REPORT

Failure Mode Failure Effects Control Net Effects

Bus line driver LRU cannot trans- LRU switches to One transmis-
open circuits dur- mit redundant bus sion is lost
ing transmission

The standard defines a two-step process, beginning with an FWEA and followed by

a more detailed Criticality Analysis (CA). The purpose of the CA is to rank
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. each potential failure mode according to the combined influence of its severity
and likelihood, i.e., according to risk.

The CA can be a qualitative categorization of the failures into five probability
categories, or a quantitative calculation based on the hardware component
failure rate data in MIL-HDBK-217. MIL-STD-1629 contains a detailed worksheet
that is used for a quantitative analysis. Concerning the use of MIL-HDBK-217,
Hecht and Hecht (1985) write,

"While the overall failtire rate of an LRU can be computed fairly
readily from the part failure rate information, the failure probabil-
ity in a specific mode pertinent to the aircraft level depends almost
entirely on judgement. Thus, a considerable subjective component
enters into this approach as well."

FMECA requires a team approach, since the analyst who understands the effects
at the component level will probably not properly assess the criticality of the
effects at the system level.

5.4.4.8 Fault Insertion

Fault Insertion is suggested by ARP 1834 as a special technique for F/FA of
digital systems. Because the system response to a failure may be time, mode,
or data dependent, the analytical prediction of the response to a specified
failure may be nearly impossible via the basic methods previously described (ARP
1834, 1986). Important considerations for fault insertion, taken from ARP 1834,
are summarized below.

Rather than trying to deduce the response of a system to each failure, fault
insertion consists of purposely inserting faults to observe the effects. This
is most effective when it can be done in the actual system. Rather than alter
a standard part, usually an LRU or a BC is emulated in a software based tester
in which faults are easily generated. For verifying designs, a computer can be
used to simulate bus components in a tester that includes fault generation.

Fault insertion into the actual system is the most realistic, but has the
disadvantage that only simple faults can be generated easily. Faults internal
to an IC cannot be generated at all. Furthermore, the F/FA cannot be performed
until the system is built. On the other hand, faults can be generated at any
point in an emulation or a simulation; but they provide less realism. In
addition, a simulation allows F/FA to be performed on a system design, long
before any part of the system is fabricated. The main disadvantage of emulation
and simulation is that they must be validated against the system they claim to
reflect. For additional discussions on this topic, see chapters 3 (Curd 1989)
and 5 (Cooley 1989) of this handbook.

5.4.4.9 System Safety Assessment

System Safety Assessment (SSA) is a systematic and analytical methodology for
assessing the safety of software controlled digital avionic systems. It is
formulated for meeting the analysis requirements for civil aircraft airworthi-
ness regulations. The methodology is summarized in table 5.4-6.

18-129



TABLE 5.4-6. SYSTEM SAFETY ANALYSIS METHODOLOGY
(Vanlaal 1985)

1. Prepare a safety plan:

"* Goal
"* Function safety plan in SSA
"* Limits of the system and the SSA
"* Techniques and analysis methods
"* Safety criteria
"* Time-schedule, organization

2. Prepare a system description:

"* System components (hardware and software)
"* Functions of the system
"* Architecture
"* Interfaces (other systems, crew, environment)
"* Requirements
"* Safety-related measures already foreseen

3. Perform a hazard analysis:

a A qualitative, top-down analysis of deductive character

4. Perform a failure mode and effect analysis:

* A bottom-up analysis of inductive character; initially, only of a
qualitative nature

5. Perform other analyses, where necessary. Some options are as follows:

"* Zonal analysis
"* Fault tree analysis
"* Sneak circuit analysis
"* Common cause failure analysis
"* Change analysis

The analysis begins with a Hazard Analysis (HA), which identifies the functions
whose failure could lead to dangerous situations. The emphasis is on the
effects that system failure has on things other than the system, like the
airplane or the crew. VanBaal shows the HA worksheet; it is reproduced here in
figure 5.4-3. An FKEA is then performed on the parts of the system that
contribute to the functions identified by the HA. Additional analyses can be
conducted as needed to demonstrate airworthiness. The options are listed in
table 5.4-6.
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. AZ iLYSIS jPrimery System: Aircraft: Date: Page: of

Mlost
Function, Failure Condition Possible Critical Hazard Hazard Hazard

# (Effects an Aircraft and Flight) Causes Flight Class Limited By Increased By Remarks
Phase

FIGURE 5.4-3. HAZARD ANALYSIS WORKSHEET HEADER
(VanBaal 1985)

5.4.4.10 Preliminary Hazard Analysis

The Fault Tree Handbook (Vesely et al. 1981) describes a Preliminary Hazard
Analysis that is very similar to the HA. The "preliminary" emphasizes that this
analysis should be conducted as early in the development cycle as possible to
identify system safety requirements. Whereas the other methods focus on the
effect of failures on system operation, this procedure assesses the potential
hazards posed to system users and bystanders. The process consists of
identifying hazardous situations and the events that could place the system in
that situation. The likelihood of the enabling events must be assessed so that
the need for preventative measures can be determined. This establishes the
system safety requirements.

5.4.4.11 Sneak Circuit Analysis

The Computer Resources Handbook for Flight Critical Systems (Hecht and Hecht
1985) describes the sneak circuit analysis referred to in the SSA. It is a
systematic way of detecting unintentional behavior in a system. A logic tree
is developed for the logic of the system, regardless of whether the system is
implemented in hardware or software. A software tool analyzes this tree to find
all the conditions that can cause a given output, all conditions that are
necessary to prevent a given output, and all conditions that can cause a
combination of outputs. An analyst then examines these lists to ensure that
there are no violations of the system requirements.

5.4.4.12 Petri Net Safety Analysis

Petri nets are a special form of state diagram that can -be used to model and
analyze system behavior, both hardware and software. From a Petri net, an
analyst can identify all possible states of the system and, particularly, the
terminal states into which the 'logic may lock up. Leveson and Stolzy (1987)
give several references for this type of conventional Petri net analysis.

Leveson and Stolzy, however, address the use of Time Petri net modeling and
analysis techniques in the safety analysis of real-time computer systems, like
those in aircraft. They developed a Petri net variazion which includes a time
element, noting that "basically correct software actions which are too early or
too late can lead to unsafe conditions" (Leveson and Stolzy 1987). From the
analysis, they can determine "the timing constraints of the final systemO• necessary to avoid high-risk states and the watch-dog timers needed to detect
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critical timing failures" (Leveson and Stolzy 1987). They also develop a
procedure for analyzing how failures affect the timing and reachability of the
system states. This technique is appropriate for analyzing the complex state
transitions of the bus communications in integrated avionics systems. It can
be applied early in the design stage.

5.4.4.13 Testing Techniques

After all the design analysis, modeling, prototyping, and simulation, the real
product finally needs to be tested. For transport aircraft, manufacturers use
a Systems Integration Laboratory to test the data bus integrated avionics, since
testing time on the prototype aircraft is much, too expensive. This laboratory
is also called a "hot-bench." The hot-bench allows the integrated system to be
tested, but with simulated aircraft inputs. Simple bus bench testers only
simulate generic bus..communications. For GA aircraft, this system integration
is often done in the actual airplane.

As all the pieces of the aircraft are manufactured, testing may be done on an
"iron-bird" configuration. In this test configuration, the avionics are
connected to a cockpit mockup that can be "flown" on the ground by test pilots.
This provides a realistic, real-time environment in which to test the bus
integrated avionics.

The final testing technique used is the flight test. The prototype airplane is
actually flown in increasingly more demanding flight patterns to verify proper
operation. While no bus integration problems are explicitly tested during this
phase, it is still a very important part of the bus integration techniques. The
real-time data that is collected is used to validate all of the previous
simulations that were performed. If the small set of documented real flight

behavior matches that of the simulations of the same behavior, then the
simulations of all other unverified activity can be relied upon. For additional
discussion on this topic, refer to chapters 8 and 9 of the "Handbook - Volume
I" (Hitt 1983).

5.4.5 FAA Certification and Bus Integration

FAR Part 21 defines the general process that avionics manufacturers must follow
for the FAA to certify that avionic systems meet the airworthiness standards and
are in safe condition for flight. In other words, FAR Part 21 defines the
requirements for the process, and Parts 23, 25, 27, 29, and 33 define the
requirements for the product. To what extent do the certification process and
airworthiness standards ensure that complex bus-integrated avionics are correctly
integrated? Consider the four certification processes presented in section 3.

5.4.5.1 Type Certification and Bus Integration

Type certification requires the most thorough demonstration of compliance to
the standards. One of the strengths of type certification is it requires that
systems meet a standard of what constitutes airworthiness. The manufacturer
who develops systems under a TC must (Part 21, subpart B) perform the following
steps:
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* Submit a plan for the development, production, and verification of the
product.

"* "Hake all inspections and tests necessary to determine compliance with the
applicable airworthiness ... requirements" and to determine that the
materials, parts, and processes conform to those specified in the type
design.

"* Perform flight tests, as required by the FAA, to determine the reliability
and proper functioning of the system to be approved.

"* Submit "the type design, test reports, and computations necessary to show
that the product to be certificated meets the applicable airworthiness ...
requirements."

"* Allow FAA investigators to make any inspections, ground tests, and flight
tests necessary for them to determine compliance with the requirements of
the FARs.

"* Submit a statement of conformity certifying that each product manufactured
under the TC conforms to the type design.

A TCed product cannot escape this process.

Since the TC process assures that products are checked for compliance with the. airworthiness standards, the strength of the type certification depends on the
quality of the airworthiness standards. All four standards include the same
general requirements for equipment in aircraft (Subpart F, section 1301):

"Each item of installed equipment must -
(a) Be of a kind and design appropriate to its intended function;
(b) Be labeled as to its identification, function, or operating
limitations, or any applicable combination of these factors;
(c) Be installed according to limitations specified for that
equipment; and
(d) Function properly when installed."

This general requirement is comprehensive in requiring proper functioning. From
design and installation to operation, it requires that a bus-integrated system
be properly integrated. However, it makes no attempt to define proper
functioning and specifies no form of assurance or demonstration that a product
meets this requirement.

What constitutes proper functioning is more specifically defined in section 1309
of each airworthiness standard. To varying degrees, proper functioning means
that the equipment "perform its intended function under any foreseeable
operating condition" and, generally, hazards that could result from probable
malfunction or failure must be minimized or prevented. Parts 23, 25, and 29
specifically state that this latter requirement take into account the relation
of systems to one another. This makes these regulations strong on integration.
But Part 27, for normal category rotorcraft, does not state this. However, the
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primary weakness of Part 27 lies in the requirements for demonstration and
analysis.

Part 27, the airworthiness standard for normal category rotorcraft, does not
require any specific use of analysis, inspections, or tests beyond that required
to show compliance with the requirements. This leaves a lot of room for
interpretation when establishing whether a bus-integrated avionic system meets
the general requirement that it function properly when installed. It certainly
does not point the developer in the direction of using integration techniques
or following bus standards and guidelines. A stronger section 1309 is in order
for more critical systems (Swihart 1984). However, even if section 1309
referred directly to the bus standards, these s':andards are weak on integration
issues. Thus, successful integration of bus communications is not assured for
normal category rotorcraft by the current type certification and bus integration
documents.

Section 1309 of Parts 23, 25, and 29 specifies analysis and testing for the
purpose of demonstrating compliance with the requirements for the probability
of failure and for environmental conditions. They also specifically list that
an analysis must consider possible failure modes, multiple failures, failure
effects, and fault detection. These requirements do much to ensure that
integration concerns will be addressed and that integration techniques will be
employed. For transport category aircraft, these activities are assured, since
Parts 25 and 29 both require such analysis. For normal category airplanes, the
analysis is only suggested as an acceptable means of showing compliance. This
is a weaker regulation; but in practice, developers usually follow the suggested
means for showing compliance. Although these airworthiness standards are more
specific about the use of analysis and testing than Part 27, the integration of
bus communications still is not ensured, since the bus standards give insuffi-
cient guidance on the integration issues.

5.4.5.2 Supplemental Type Certification and Bus Integration

Supplemental type certification involves the second most thorough regulation of
the manufacture and installation of avionic systems. The basic tenet of this
certification process is that the redesigned system must satisfy all the same
requirements as the TCed product into which it will be installed. Thus, similar
to the TC process, the manufacturer of a system that is to receive an STC must
perform the following steps (Part 21, subpart E):

"* "Make all inspections and tests necessary to determine compliance with the
applicable airworthiness ... requirements" and to determine that the
materials, parts, and processes conform to those specified in the type
design.

"* Allow FAA investigators to make any inspections, ground tests, and flight
tests necessary for them to determine compliance with the requirements of
the FARs.

"* Submit a statement of conformity certifying that each product manufactured
under the STC conforms to the type design.
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. Although an STCed product cannot escape this process, the STC process does not
go as far in checking compliance to the airworthiness standards as did the TC
checking. In particular, the manufacturer is not required to repeat the flight
tests. Since an applicant for an STC is not the manufacturer who holds the TC
for the original product, relaxing the requirements is unjustified. One
manufacturer who is changing another's design must be sure to understand the
design at least as well as the original design team. Changing a design after
the fact is a more demanding process than working out a new design. Despite
this, the process tends to move the focus from requiring the applicant to
substantiate the entire design to substantiating the compliance of just the
redesigned system, where it is assumed that the rest of the product is not
affected.

Like the TC process, the STC process ensures that products are checked for
compliance with the airworthiness standards. The strength of the supplemental
type certification also depends on the quality of the airworthiness standards,
as previously discussed. But the fundamental weakness of the STC process for
bus-integrated avionics is that it seems to underestimate the ramifications of
a second party altering a TCed product.

5.4.5.3 Parts Manufacturer Approval and Bus Integration

A PHA gives a manufacturer approval to produce aircraft parts for sale or
installation on the basis that they conform to another manufacturer's TC or STC.
This is a reasonable regulation, however, it allows an owner or operator of an
aircraft to manufacture parts for use on their aircraft without obligation toS this regulation of aircraft part manufacture. In this case, installation
approval (FAA Form 337) is all that is required. Although an installation
approval requires that the part being installed is the one required by design,
no investigation is required to verify the design. This seems to be a major
weakness in the process of ensuring safe aircraft. An operating airline may
manufacture a bus LRU according to the type design and then be given permission
to install it, without any requirement that anyone perform inspections and
tests. This is not an acceptable regulation of the production of complex
digital bus-integrated avionics. Detailed accountability is a necessity.

When the parts are to be sold, the manufacturer's ability to build reliable
parts is carefully examined. The regulations require that the manufacturer who
desires to sell a part must perform the following steps (Part 21, subpart K):

"* Identify the "product on which the part is to be installed."

"* Submit the information necessary to show the design of the part.

"* Submit the "test reports and computations necessary to show that the design
of the part meets the airworthiness requirements" or that the design is
identical to the original TCed part.

"* "Establish and maintain a fabrication inspection system."

"* Allow FAA investigators to make any inspections or tests necessary for them
to determine compliance with the FARs.
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"* "Make all inspections and tests necessary to determine compliance with the
applicable airworthiness requirements" and to determine that the materials,
parts, and processes conform to those specified in the type design.

" "Determine that each completed part conforms to the design data and is safe
for installation."

These requirements are commensurate with those required to ensure that bus-
integrated avionics are properly produced. They are almost as strict as those
for type certification. The first point avoids the problem that LRUs in digital
systems are not 100 percent interchangeable, s.nce the single intended point of
installation must be specified. In general, these requirements also do not
assume that the new design produces the same result as the type design. Thus,
the manufacturer's -.design is reviewed and compared to the airworthiness
standards, independent of the fact that the new design was to meet the type
design.

The PKA is weak because no flight tests are required, even though the part is
a new design; no specific inspections and tests are suggested; and the
airworthiness requirements can be avoided by showing the new part is identical
in design to the original. If the airworthiness requirements are used as the
standard, the weaknesses of the PHA are limited primarily to those associated
with the airworthiness standards, as previously discussed (except for the lack
of a required flight test). But, if the manufacturer chooses to only show that
the design of the part is identical to the type design, a more serious problem
is allowed to occur for bus-integrated avionics. An identical design would
likely be limited to the requirements set forth by the bus standard. Since the
bus standards generally do not sufficiently cover bus integration, too much
leeway is allowed in determining whether a design is equivalent.

5.4.5.4 Technical Standard Order Authorization and Bus Integration

A TSO Authorization gives a manufacturer approval to produce an aircraft part
for sale or installation on the basis that it conforms to the minimum perform-
ance standard for the part, as specified by a TSO. A manufacturer who desires
to produce parts under a TSO Authorization must perform the following steps
(Part 21, subpart 0):

"* Issue a statement of conformance to the FAR and the TSO.

"* Submit the technical data required by the TSO.

"a Submit a description of the quality control system.

"* "Conduct all required tests and inspections and establish and maintain a
quality control system."

" Allow FAA investigators to witness tests and inspect parts, processes,
facilities, and files.
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. This process is the weakest of the four. The TSO concept, that a part can be
specified apart from its application, is contradictory to the design of parts
that compose bus-integrated avionics. Furthermore, the bus standards do not
provide a sufficient forum for producing a reliable TSO. In general, they do
not provide an integration standard. Even apart from the integration issues,
the bus standards leave too many requirements unspecified. A TSO that
incorporates something like the Interface Control Documents published for a MIL-
STD-1553 bus system could possibly provide the necessary integration criteria.

The TSO Authorization is weak on checking that the manufacturer's design truly
satisfies the minim-m performance standard of the TSO. All that is required is
a statement of conformance. The FAA investigators may request analysis,
inspections, and tests, but none are specified as a matter of course. It is
unreasonable to expect the new design to fulfill the requirements without a
systematic engineering approach. As pointed out earlier, most of the bus
standards are open to interpretation. There is no guarantee that two designs
for the same bus-integrated avionics would produce the same result.

The airworthiness issue is also inadequately addressed. It is left unaddressed
by the TSO Authorization. The manufacturer need not be concerned with the
airworthiness issue or the flight tests needed to substantiate it. The parts
need only conform to a TSO. It is left to the installation process (FAA Form
337) to determine whether a part with a TSO number may be installed. Yet,

"when a system is installed in an aircraft it's often the first time
TSO approved components can be tested for proper integration. This
point in the certification process is often too late for the type of
testing which would be required to demonstrate all combinations of
system operation." (Williams 1989).

Nevertheless, as pointed out before, the installation process does not
investigate the design of the part and certainly not its impact on airworthi-
ness.

The FAA has responded to this problem by issuing ACs on some of the advanced
integrated systems, like autopilot, TCAS, and multisensor navigation systems.
The ACs require an additional approval, the Preliminary Installation Approval,
under certain circumstances. This approval is achieved-through an STC program
for the integration of the system into a specific aircraft. The manufacturer
must obtain the STC before producing the system for sale. The AC further
specifies the conditions under which the purchaser must either undergo an STC
evaluation or simply apply for an installation approval.

Another problem with the TSO Authorization is that manufacturers with a TSO
Authorization are given substantial freedom for changing the design. The
manufacturer may make minor changes to the design being used without any further
approval from the FAA. This could be reasonable, depending on what is
considered a minor change. However, it is left to the manufacturer to make the
determination. The manufacturer can of course solicit an unofficial opinion
from the ACO. If too much latitude is taken, the FAA will discover this in the
next audit of the manufacturer's activity. In this case, the manufacturer risks
the possibility of being fined by the FAA.
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The manufacturer can also request a deviation from the requirements of the TSO.
To be granted a deviation, the manufacturer must show that the deviation is
compensated for by factors or design features that provide an equivalent level
of safety. The means of showing compliance to this level of safety is
unspecified.

5.4.6 Summary

Until bus standards are standardized in addressing the complete development
process, it is not sufficient for a developer to claim that a developed bus
satisfies the bus standard. Even when bu". standards and guidelines are
followed, the extent to which reliable communication has been achieved depends
on the particular bus documentation. Some standards barely address the
integration problems.,

Furthermore, bus standards will never be able to ensure that any particular
design is proper. The standards must, necessarily, leave room for application
specific variations. Thus, CEs should expect that bus communications be
developed and validated through a methodology which includes most of the
following techniques (Ashmore 1982, Bannister et al. 1982, Carter 1986, Earhart
1982, Hitt and Eldredge 1983, Shimmin 1989, Spradlin 1983, VanBaal 1985, and
Verdi 1980):

"* Requirements Capture - Use a system that ensures that each requirement is
captured by the design. A cross-reference matrix to identify where each
system requirement is satisfied in the system specification should result.

"* Configuration Control - Use a system that tracks exactly what revision of
which components constitute the latest approved configuration.

"* Design Modeling - Model the design for the purpose of choosing the best

one for the system specification.

"* Hazards Analysis - Determine the effect of system failures.

"* F/FA - Determine the probability r each failure occurrence.

" Hot Bench Simulation - Perform laboratory testing of LRUs based on
simulation of the environment.

"Iron Bird Simulation - Perform testing of real-time operation on a
simulation that uses as much as possible of the actual avionics and
airframe.

"* Flight Testing - Perform testing during actual flight of the aircraft.

If levels of performance are set for specific techniques, such a systematic
development can ensure proper operation for any application. Certification
procedures and airworthiness standards need to go further to ensure that bus
integration is accomplished according to a systematic engineering process
involving analytical techniques.
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6. CONCLUSIONS

The data communication on serial data buses in aircraft has been analyzed from
several different angles. The certification procedures have been reviewed to
determine the certification activity that is performed on data buses. The
regulations have been analyzed to identify the stipulations that avionic data
buses must satisfy. The technology has been addressed from several points of
view to determine the areas that require careful attention, regulation, and/or
certification. What are the main areas of concern for using data buses in
aircraft? To what extent are these areas addressed by the current regulations
and certification procedures? What improvements are needed? The answers to
these questions are su.mmarized in this section.

6.1 Certification Procedures for Bus-Integrated Systems

The conclusion of the technical report research on certification procedures is
repeated here (Elwell et al. 1992).

The TC and STC processes are sufficiently robust to accommodate the complexities
of current and emerging serial data bus technologies. However, they do not
currently address these technologies as specifically as necessary. The
procedures leave the manufacturer and ACO free to mutually determine the
specific analysis, tests, and documentation required to substantiate the safety
of the aircraft being designed. They are even free to categorically accept data
buses as safe, treating them as "simply a piece of wire." Data buses, however,
are more than just wire and have failure modes that cannot be exercised by
system level tests. Communications on bidirectional data buses are sufficiently
complex that the methods of demonstration should be carefully thought out,
documented, and standardized by data bus experts. A standard that functions
like RTCA/DO-178 does for software, is needed for Type Certification of bus-
integrated systems.

The Production Certificate situation is similar. The procedure appropriately
requires the manufacturer to establish an approved production inspection and
test system to ensure that each manufactured part meets the type design.
However, the procedure is not specific about what inspections and tests to use.
This is inadequate, since manufacturers implement various amounts of testing.
For example, Earhart (1991) explhins that, although MIL-STD-1553 buses have been
designed and implemented for nearly 20 years, testing of LRUs is often
insufficient because of fundamental misconceptions, such as the following:

"Validation testing is not necessary if validated components are used to
build the RT."

a "Because the [bus] interface board was validated in one LRU, validation
testing isn't necessary on subsequent LRUs."
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"Validation testing is not necessary because the LRU has been operating in

the system."

A formal bus testing standard should be adopted by the industry for each avionic
bus to ensure that tested systems truly are reliable. Furthermore, the
reliability of integrated systems is not ensured by tests of system components.
Installation approvals need to include integration testing.

The procedure specified for a TSO Authorization inadequately addresses approval
of bus-integrated systems, since it allows approval of a component independent
of the system into which it will be installed. The FAA is making interim
provisions through special ACs. For the long "erm, either the procedure should
be formally made more robust, or integrated systems should not be eligible for
this approval.

The current certification procedures have successfully supported the certifica-
tion of nonessential 'ystems using data buses. They have also been used to
support the certification of bus-based essential systems backed up by conven-
tional means. Most of this experience is with unidirectional buses, but some
of it involves bidirectional buses used to a limited extent. To date, no
civilian aircraft accidents are known to be due to data bus failure.

As bidirectional data buses are used for essential and critical systems and
relied upon in fly-by-wire aircraft, the procedures need to specifically
identify the steps necessary for ensuring reliable data bus operation.

6.2 Related Regulations and Standards

There is no specific approach for certificating systems containing digital data
buses and integrated avionic equipment. As a result, the CE must consult many
sources for information concerning any affects a data bus might have on a
flight-critical or flight-essential system. To further complicate the problem,
the sources must be related to broad federal regulations.

The AIAA, IEEE, and other organizations produce publications which address
technical requirements for avionic systems integrated with data buses. Since
current certification methods do not consider systems at the bus's level, these
publications could be useful for establishing new certification procedures.
Test procedures within the publications may ensure that particular interactions
between a system and a data bus are not overlooked during a system's certifica-
tion.

RTCA and SAE committees work towards making an avionics system easier to
certify. Standards produced by these organizations may be used as part of the
manufacturer's design process, or as informal guidelines to meet specific FARs,
ACs, or SCs.

ARINC and GAMA also work with manufacturers to produce standards for avionic
equipment and data buses. The standards include specifications of data bus
topologies and protocols, as well as tests which data bus manufacturers can use
during the development process. Because the standards contain specific
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. technical information about data buses, they are also useful for system
certification.

Section 4 related current FARs to procedures defined by the above organizations.
It is also useful for developing a certification process applicable to
integrated avionic equipment and data buses. The new procedure for certifica-
tion should consider information from a variety of sources and treat every
integrated system separately. Whether a new certification process is developed,
or current methods refined, a successful procedure should perform a thorough V&V
on all aspects of flight-critical and flight-essential systems.

6.3 Bus-Integrated Systems Technology

6.3.1 System Integration Concerns

There is no one factor that can satisfy all of the requirements for data buses
used in flight-critical systems. The accurate and timely delivery of data from
the source to the destination demands that the data bus exhibit a mixture of
attributes. The architecture needs to control data latency. Physical
redundancy needs to be carefully considered and implemented. Protocols must
ensure periodic, deterministic, simple, error-free, and efficient communication.
Other attributes, such as maintenance and monitoring, are implemented at the
discretion of the designers and system integrators. This implementation
requires careful and detailed consideration in the design phase and should not
be treated as an afterthought.. The system designer or system integrator is tasked with many integration
decisions. Using standards that are not completely specified, or are unclear
in certain areas, creates problems which might escape detection. Seeking to
resolve any ambiguity at an early stage will ensure a more successful integra-
tion period.

The system integrator should not merely be concerned with having an operational
system, but a system that operates correctly under all conditions. Exhaustive
monitoring, recording, and reporting of data bus activity is the only way to
ensure that data bus integrity is maintained.

6.3.2 Bus Hardware-Software Interaction

Hardware-software interaction between a BIU and an avionic-system can be easily
overlooked during a system's certification process. Integration has taken data
buses to a new level, sometimes concealing what functions are implemented with
hardware and what functions are implemented with software. Section 5.2
discussed hardware-software interaction between digital data buses and avionic
systems. Special attention was given to the BIU IC and the host system CPU's
interface.

To analyze hardware-software interaction at this level, section 5.2 discussed
data integrity problems that arise when a bus and avionic system pass data.
Common errors which occur during bus hardware-software interaction include
parity, framing, and overrun errors. Other errors more specific to certain. buses, are timing and interrupt handling errors. All of these errors could
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result from dynamic conditions within the BIU or CPU, or from the system's
design.

Regardless of the type, any undetected error can have a catastrophic effect on
its system. For this reason, section 5.2 presented methods of error detection
and correction. These methods included monitoring, voting, retransmission for
after the fact correction, prevention, and redundancy. Any of the methods can
be applied at the hardware-software interface.

Practical solutions for hardware-software interaction problems were presented
in the final part of section 5.2. Although some of the solutions were designed
by manufacturers of military aircraft, they are applicable to civilian aircraft
as well. Detection and correction methods are a key part of the solutions.
Section 5.2 demonstrated how some of the solutions are implemented.

6.3.3 Bus Protocol Specification and Analysis

One particular area that requires careful attention from the designer is the
communication protocol. Since protocol specifications must be both concise and
easy to understand, formal techniques are used for protocol specification.
Formal techniques should be used to model and define protocols and to analyze
the correctness and proper operation of the protocol.

With a shift from unidirectional to bidirectional data buses, the access
protocol assumes an added degree of complexity. Since protocols may be
implemented in hardware rather than software, the protocol should be subjected
to rigorous scrutiny before it becomes "buried" in the hardware. The protocol
specification and analysis should be performed as carefully as it is for a
software-implemented protocol.

6.3.4 Bus Integration Standards, Guidelines, and Techniques

The integration of LRUs from various sources to form a system implies that there
exists a central specification to which each manufacturer can design. The
digital data buses provide this specification. The buses used to integrate the
various LRUs on the market are designed according to a published industry
standard for each bus. However, these standards primarily specify the operation
of a single bus interface, rather than an entire integrated system. The system
integration is mostly left in the hands of the system designer. As a result,
when these systems are certificated, there is no standard by which to judge the
applicant's claim that the system meets the airworthiness standards.

The airworthiness standards require analysis and testing, but bus integration
standards need to be formally published by the industry to provide direction on
these topics. These standards should specify the values and tolerances of all
constant parameters.

Bus integration guidelines should be published to control the flexible aspects
of a bus. These guidelines should provide formulas or formal procedures for
deriving reliable values for variable parameters. In addition, these standards
need to specify component and system tests designed to exercise the full scope
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. of significant failure modes. Some of the bus standards specify component
tests, but none address system tests.

The standards, guidelines, and test procedures that have been developed for the
MIL-STD-1553 bus come close to providing a model for bus standards and integra-
tion guidelines. The standard for individual LRUs is flexible, yet specific.
Numerous integration guidelines are provided. The documents for civilian
avionic buses would be greatly improved if their specifications and procedures
were patterned after those of the military bus; and would be complete if
integration standards were added.

Techniques for systematic, analytical design and analysis also need to be
formally incorporated into the certification requirements. Techniques exist
which can improve the reliability of bus-based digital systems, but they are not
presently part of the bus standards or the certification procedures. These
should be formally recommended in these documents for the development of bus-
based systems.

6.3.5 FAA Certification and Bus Integration

The buses associated with integrated avionics currently in use have been
certificated implicitly as part of the system that uses them. Thus, they are
naturally certificated in an integrated environment. This has been sufficient
for unidirectional and bidirectional buses used in nonessential systems. As
bidirectional buses are fully used in essential and critical systems, the bus. integration issues will need to be explicitly analyzed and tested.

The airworthiness standard for normal category rotorcraft, as specified in FAR
Part 27, is particularly weak on bus integration issues since it does not
require any specific analysis and testing, as do the other airworthiness
standards. Although the other standards (Parts 23, 25, and 29) do require
specific analysis, the industry provides very few guidelines on how to perform
the bus analysis and testing required. Thus, even though the certification
requirements are fairly strong for these categories of aircraft, there is no
guarantee that the implementation is meaningful. The TC and STC procedures,
which rely on these airworthiness standards, need to specify standards and
guidelines that may be followed as an acceptable means for showing compliance
to the airworthiness standards. This may be done either by reference or
inclusion.

The STC procedure is weakened even further on integration concerns, since it
allows a manufacturer to make a change to another's design without resubstan-
tiating the entire design. Only the changed aspects need to be shown to meet
the airworthiness standard. This would be a reasonable allowance to make for
the manufacturer who designed it, but not for another. Another manufacturer is
more likely to overlook the full ramifications of a change than would the
original, designer. This situation needs to be closely examined to see if the
development of a bus-integrated system is adequately examined under an STC
approval.

The PMA covers the production of bus-integrated systems fairly well, but it. relies heavily on the completeness of design specifications for ensuring that
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manufactured parts are reliable. Currently, the bus standards are too ambiguous
for that to be a safe approach. Integration analysis, ground tests, and/or
flight tests should be considered for every installation of a bus-integrated
system. Alternatively, bus integration standards could be developed that are
sufficiently specific that successful integration of a manufactured part could
be more easily ensured.

The TSO Authorization regulations currently do not address integration at all.
The regulations assume that systems developed under a TSO Authorization are
interchangeable. This is not realistic for complex bus architectures and
protocols. The FAA is taking steps to rectify this situation.

To sufficiently address the integration of systems with data buses, the industry
needs to develop a comprehensive suite of documentation on each data bus. This
documentation needs to include a thorough standard that includes test procedures
and criteria for single LRUs and an integration standard that includes system
specifications, tests',.and guidelines. In addition, the FAA regulations need
to adopt these standards as specifying an acceptable means for showing compli-
ance with the airworthiness requirements for safe operation.

6.4 Summary

Improvements needed to support the certification of flight-essential and
flight-critical systems that use data buses have been identified, as follows:

"* The certification procedures of FAR Part 21 need to consistently require
that integrated systems, rather than components, be certificated.

"* The airworthiness standards of FAR Parts 23, 25, 27, 29, and 33 need to
consistently require analysis and testing of equipment, systems, and
installations, particularly in an integrated configuration.

"* ACs should be published to establish formal guidelines for the specifica-
tion, design, analysis, and testing of bus protocols and hardware.

"* Bus standards need to be adopted by ACs as informal guidelines, specifying
an acceptable means for showing compliance to the FARs.

"* Bus standards need to specify a complete system engineering methodology for
the specification, design, analysis, and testing of bus protocols and
hardware, from the component to the system level.

" Specific analysis techniques need to be adopted by ACs as informal
guidelines for bus analysis.
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APPENDIX A - DYNAMIC TIME SLOT ALLOCATION PROTOCOL

The operation of the Dynamic Time Slot Allocation (DTSA) protocol is based on
time allocations being preassigned to all bus users. Each user is guaranteed
that during its time slot, under error-free conditions, it will have an
opportunity to access the bus. This access method lends itself to a high bus
efficiency, even under heavy loading conditions. A simple state diagram for the
DTSA protocol is given in figure A-1.

MESSAGE ARRIVES
AND COUNT IS NOT

COMPLETED

COUNT IS
COMPLETEDAND BUS IS
AVAILABLE

REEV COUNT , -: TRANSMIT

REECEIVE

MESSAGE IS
COMPLETELY
TRANSMITTED

FIGURE A-1. DTSA ACCESS PROTOCOL STATE DIAGRAM

Under normal operation, one bus user will be in the transmit state and all other
bus users will be in the receive state. After the transmitting user is
finished, it and all the receiving users go into a count state to determine
which can access the bus next. The amount of time each user must wait to send
a message is determined by the following relationship (Porter, Couch, and
Schelin 1983):

TC (n-m) if n>m

TT (N+n-m) if n:m
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where

T. - wait time for user m
Te - count duration (based on maximum propagation delay)
n - address of user performing computation
m - original address of last transmission
N - maximum number of users

As seen in the state diagram, each user fluctuates between the "count" state
and "receive" state, or the "count" state and the "transmit" state. When a
transmission is received from the bus, the user switches from the "count" to the
"*receive" state and then back to the "count" s,ate when reception is complete.
When a new transmission is received, each user decrements its counter. If user
number four is in the count mode and then receives a transmission from user
number two, user nmmber four computes the time until it can originate a
transmission, T. - n-m, or two units of time. The sequence for four users is
given in table A-1.

TABLE A-1. DTSA USER ACCESS SEQUENCE
(Porter, Couch, and Schelin 1983)

Address of Address of Number of T, Times
Terminal Performing Last Terminal in Terminal Must Wait in

Calculation Transmit Mode Count Mode Before
(n) (m) Transmitting

n - m if n > m
N + n -m if n < m

1 1 4
2 1 1
3 1 2
4 1 3

1 2 3
2 2 4
3 2 1
4 2 2

1 3 2
2 3 3
3 3 4
4 3 1

1 4 1

2 4 2
3 4 3
4 4 4

SEQUENCE REPEATS
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If a user does not have data to send when its count duration decrements to zero,
the bus interface simply sends a status message without involving the host
central processing unit. This maintains a constant timing and access sequence
for the protocol.

The timing diagram for different numbers of active users is given in figure A-2.
Note that the frame time, T., which is defined as the time from the start of
user number one time slot to the next start of user number one time slot, varies
based on the number of active users and the length of messages being sent on the
bus.

As seen by examination of the DTSA, time slot protocols exhibit greater
throughput and shorter wait times during periods of heavy loading than does a
Carrier-Sense, Multiple Access protocol. Also, for cases where the average
access times of both protocols are approximately the same, DTSA provides the
shortest maximum wait time (Porter, Couch, and Schelin 1983).

ACTIVE T F I• TC
TERMINALS

1 ONLY F -1 Fi I1

0I AND2_ 2

T FST~F "

I,ZAND 3 7F] 77] 2 711 Y71 F

TF

1, 2,3, AND4 [3 7][~ ~ Y

FIGURE A-2. DTSA ACCESS PROTOCOL USER TIMING
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APPENDIX B - HIGH-LEVEL DATA LINK CONTROL PROTOCOL

The High-Level Data Link Control (HDLC) protocol was defined by the Internation-
al Standards Organization for the purpose of replacing character-oriented
protocols. It is a bit-oriented protocol which may be broken into three main
categories for better understanding:

"• The bit stream

"* Transmission format

"* Station-to-Station cooperation

B.1 The Bit Stream

Since HDLC is a bit-oriented protocol, data at the physical layer of the Open
Systems Interconnect Basic Reference Model appears simply as part of the bit
stream. This bit stream includes information which may be added by a higher
layer (e.g., network or transport layer). It is then necessary to define the
beginning and end of the data bit stream. This is done by using a flag at the
beginning and end of the sequence. The entire bit stream is referred to as a
frame.

The bit sequence that defines an HDLC frame is 0 1 1 1 1 1 1 0. This unique bit
sequence appears only at the beginning and end of the frame. When data are sent
using the HDLC protocol, the transmitter will test for the occurrence of
consecutive ones. When five ones in a row are found, the transmitter will
automatically insert a zero for the next bit. At the receiver, if there is a
bit stream of five ones detected, the sixth bit is dropped.

B.2 Transmission Format

Any information sent using the HDLC protocol uses the *format shown in figure
5.1-6 of this chapter. Normally, the address and control fields are each eight
bits in length. The address field may contain the address of the sender or
receiver, depending on the particular configuration. A broadcast mode is
implemented by using all ones in this field. Groups of users, or stations, may
be assigned a particular address to which they are to respond, called group
addresses. Extended addressing may be used by setting the last bit in this
field to a zero. In this case, the address field can be extended by multiples
of eight bits.

There are three kinds of frames defined for HDLC: Information frames (I
frames), Supervisory frames (S frames), and Unnumbered frames (U frames). The
formats of these frames are given in table B-1. I frames are used in data
transfer to maintain a sequential flow of related information; S frames are used
for data control, to acknowledge or reject messages from the sender; and U
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frames are used for control purposes. They are used to implement initializa-
tion, disconnection, polling, and other functions (Tanenbaum 1981).

TABLE B-1. HDLC CONTROL FRAMES
(Meijer and Peeters 1982)

MSB Bit Significance LSB

Frame Type 8 7 6 5 4 3 2 1

I Receive Count N(R) P/F Send Count N(S) 0

Supervisory
S Receire Count N(R) P/F Type S 0 1

U Modifier Ml P/F Modifier M2 1 1

In table B-1, N(R) and N(S) refer to the number of I frames which are received
or sent, respectively. All stations maintain counters for these variables.
They are used to keep the frames in proper sequence. The sender increases the
N(S) bit field by one for each I frame it sends, and the receiver increases the
N(R) field by one for each I frame it acknowledges. These three-bit fields
allow for only seven unacknowledged frames (Meijer and Peeters 1982).

When a sender polls another bus user, the sender sets this Poll bit. The
receiver replies with a response frame and sets the F, or Final, bit. The S bit
field indicates different types of supervisory frames. Ml and M2 are modifier
bits for the Unnumbered frames. These bits are used to define the various
control commands used by the HDLC protocol (Tanenbaum 1981).

The Frame Check Sequence field in figure 5.1-6 of this chapter is a method for
checking the validity of the received frame. It is actually a Cyclic Redundancy
Check (CRC) inserted in the message by the sender based on the generator
polynomial X16 + X12 + X1 + 1. If a CRC error is detected by the receiver, the
entire framc is discarded and some form of error recovery should be exercised.

Combined stations can send both command frames and response frames. The
difference between the two types of frames will be in the address bit field.
If the address is the station's own, then the frame is a response frame;
otherwise it is a command frame. In unbalanced operation, a frame sent by a
primary station is always a command frame, and that sent by a secondary station
is always a response frame.
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APPENDIX C - CHECKLIST FOR ANALYSIS OF DATA BUS HARDWARE AND SOFTWARE

Avionic manufacturers who wish to evaluate their systems can use the checklist
provided in table C-1. The checklist should not be the only means used to
evaluate these systems. It is merely a starting point for ensuring that single
failures are adequately addressed. The checklist could be used in conjunction
with a Failure Mode and Effects Analysis or other method described in section
5.4 of this chapter.

TABLE C-1. CHECKLIST FOR ANALYSIS OF BUS HARDWARE AND SOFTWARE
(Bunce 1980)

SYSTEM FAILURE MODE

Is the failure detected by the system, LRU, CPU, or YES [ ] NO [ ]
BIU?

Does the CPU's software detect this failure? YES [ ] NO [

Does the BIU's hardware annunciate this failure to YES [ ] NO [ I
the CPU's software?

Does the CPU's softwar- provide effective methods for YES [ ] NO [ ]
dealing with this failure?

If the CPU's software cannot correct the error, will YES [ ] NO
other hardware within the BIU or LRU?

Will the failure cause either HW or SW to overload YES [ ] NO
the other?

If the failure mode is introduced into other SW YES [ ] NO
logic, will other functions be affected?

Is the system able to handle more than one of these YES [ ] NO [ ]
failures at a time?

Is reconfiguration of the system, by either the YES [ ] NO [ ]
system itself or the crew, necessary?

Explanations/Comments:

Necessary Changes:
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GLOSSARY

ACCESS. The process of a transmitting bus user obtaining control of a data bus
in order to transmit a message.

ADVISORY CIRCULAR. An external FAA publication consisting of nonregulatory
material of a policy, guidance, and informational nature.

AIR TRANSPORT AIRCRAFT. Aircraft used in interstate, overseas, or foreign air
transportation.

AIRWORTHINESS STANDARDS. Parts 23, 25, 27, 29, and 33 of the Code of Federal
Regulations, Title 14, Chapter 1, Subchapter C.

ARCHITECTUR. The design and interaction of components of a computer system.

AVIONIC. Electronic equipment used in aircraft.

BABBLING TRANSMITTER. A bus user that transmits outside its allocated time.

BALANCED CONFIGURATION. A bus using the HDLC protocol that connects only. primary stations.

BIDIRECTIONAL DATA BUS. A data bus with more than one user capable of trans-
mitting.

BIT-ORIENTED PROTOCOL. A communication protocol where message frames can vary
in length, with single bit resolution.

BRIDGE. A BIU that is connected to more than one bus for the purpose of
transferring bus messages from one bus to another, where all the buses follow
the same protocol.

BROADCAST DATA BUS. A data bus where all messages are transmitted to all bus
users.

BU Memory used to hold segments of the data transferred between asynchron-
ous processes.

BS. A conductor that serves as a common connection of a signal to multiple
users.

BUS CONTROLLER. The electronic unit that is designed to control the bus
communication of all users for a centrally controlled bus.

BUS INTERFACE UNIT. The electronics that interface the host CPU of an LRU to
a bus medium.
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BUS MEA. A complete set of bits that can be transferred between two bus

users.

BUS N K . The collection of all BIUs and bus media associated with one bus.

BUS OV.2!D . The condition that exists when the time it takes to transmit
outstanding messages on a bus exceeds the time allotted for those transmissions.

ILIjUUSR. Any LRU attached to a bus.

CENTRAL BUS CONTROL. The bus control approac4 where a single electronic unit
attached to a bus controls all the communication of the bus users.

CERTIFICATION. The.,process of obtaining FAA approval for the design, manu-
facture, and/or sale of aircraft and associated systems, subsystems, and parts.

CHARACTER-ORIENTED FROTOCOL. A communication protocol where messages can vary
in length, with single character resolution.

CIHCKSUM. An error detection code produced by performing a binary addition,
without carry, of all the words in a message.

CD QO. A system where the output is a function of the input and the
system's previous output.

COMMAND/RESPONSE DATA BUS. A data bus whose protocol initiates each data
transfer with a command and terminates the transfer after a proper response is
received.

CONFIGURATION MANAGEMENT. The precise control and documentation of the
configuration of an entity at any time during its development and deployment.

CONTENTION PROTOCOL. A protocol that allows users to randomly access the bus
at any time. When bus contention results, each user tries again to access the
bus without contention.

CONTROL REGISTER. A register in an IC controller that receives commands from
a host processor.

DATA BUS. A bus that carries electronic signals that represent information.

DATA BUS PROTOCOL. The set of rules that governs the transfer of data between
data bus users.

DAIA _ZH . The delay in transferring data from its source to various users.
This can result in using an old sample of data in a system after a new sample
is available.

DATA REASONABLENESS CHECK. A check performed to see if a value of data is
within reasonable bounds for the given context.
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DEZFAULDATA. An alternative value used for a parameter whenever the normal
data is not supplied.

DETERMINISTIC PROTOCOL. A protocol where all parameters are known so that its
various states are predictable in sequence and time.

DIGITAL DATA BUS. A data bus that uses digital electronic signals.

DISSIMIIAR REDUNDANCY. The redundancy of systems that provide a redundancy of
function, but by a different form.

DISSIMILAR SOFTWARE. Redundant computer programs that provide a redundancy of
function, but by a different form.

DISTRIBUTED BUS CQONRO)L. The bus control approach where the total communication
control Job is distributed across the bus users, each controlling the communica-
tions during its period of responsibility.

EMULATION. The duplication of the behavior of a system with a different system.

UMASKING. The process of masking the presence of avionic errors, possibly
by using an electronic voter to override an erroneous input with the values of
substitute inputs.

F. A design philosophy that ensures that any failure in a system does
not result in an unsafe condition after the failure..FAULT TOLERANCE. The ability of a system to continue operation after a fault,
possibly in a degraded condition.

FEDERAL AVIATION REGULATIONS. Subchapter C of the Code of Federal Regulations,
Title 14, Chapter 1.

FINITE STATE MACHINE. A state machine with a finite number of states.

FLIGHT-CRITICAL FUNCTION. A function whose failure would contribute to or cause
a failure condition that would prevent the continued safe flight and landing of
the aircraft.

FLIGHT-ESSENTIAL FUNCTION. A function whose failure would contribute to, or
would cause, a hazardous failure condition that would significantly impact the
safety of the aircraft or the ability of the flight crew to cope with adverse
operating conditions.

FLIGHT-NONESSENTIAL FUNCTION. A function whose failure could not significantly
degrade aircraft capability or crew ability.

FRAME. A formatted block of data words or bits that is used to construct
messages.

FUNCTIONAL PARTITTIONING. The partitioning of system functions by placing each
group of users, which share a common function, on different data buses.
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TEAYU~h. A bus user that is connected to more than one bus for the purpose of
transferring bus messages from one bus to another, where the buses do not follow
the same protocol.

GENERAL AVIATION AIRCRAFT. The non-air transport civil aircraft.

GENERATOR POLYNOMIAL. The polynomial code that is used to generate the
remainder in the division of the CRC check.

GIML STATE. A state that represents the condition of the entire network being
modeled, including senders, receivers, and theý coamunication link.

-i L. Bidirectional communication between two entities on a single
channel by each haviLg a turn to control the channel.

HMIGCDE. An error detection and correction code based on the Hamming

distance.

HAMMING DISTANCE. The number of bit positions in which two binary words differ.

HANDSHAKING. The reciprocal responses given by two electronic systems to
sequence the steps of a transfer of data between them.

HARDWARE-IN-THE-LOOP SIMULATION. A partial simulation of a system; part of the
actual system is used in the simulation.

INTERRUPT VECTOR. The address that points to the beginning of the service
voutine for an interrupt.

INTERRUPT VECTOR TABLE. The table of interrupt vectors for all interrupts
seryiced by a system.

LINE REPLACEABLE UNIT. An electronics unit that is made to be replaced on the
flight line, as opposed to one that requires the aircraft be taken to the shop
for repair.

LI B. A bus where users are connected to the medium; one on each end,
with the rest connected in between.

MANCHESTER II MODULATION. A non-return to zero, bipolar modulation of a voltage
that encodes bits based on the zero-crossing direction of the signal.

MODELING. Creating a system of mathematical equations that formulate all the

significant behavior of a system.

MULTIVERSION PROGRAMMING. N-version programming.

N-VERSION PROGRAMMING. The independent coding of a number, N, of redundant
computer programs that are run concurrently for the purpose of comparing their
outputs.
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.�Q3AHW. The message timing gaps, control bits, and error detection bits added
to some data to satisfy the data bus protocol.

PARIT. An error detection bit added to a data word based on whether the number
of "one" bits is even or odd.

PRTITIONED. Colocated hardware-or software functions that are designed so that
adverse interactions between them cannot occur.

PETRI NET. A state analysis diagram that tracks the status of the state
transition conditions of a state machine.

POLLING. A method whereby a CPU monitors the status of a peripheral by
periodically reading its status signals.

POLYNOMIAL CODE. A sequence of bits that represents the coefficients of each
term in a polynomial.

PRIMARY STATION. An intelligent HDLC protocol user, usually used to manage the
access of other bus users to the bus.

PROPAGATION DELAY. The time it takes an electrical signal to travel from its
source to its destination.

PROTOCOL. The set of rules by which all bus users must abide to access the bus
and ensure its specified operation.

RECONFIGURATION. The process of a system reassigning which hardware performs
a particular function.

RECOVERY BLOCK. A block of code executed upon detection of a fault to recover
from the erroneous condition that results.

REGISTER. A single word of RAM located within an IC controller that is used for

transferring data and control information.

REMOTE TERMINAL. The BIU portion of a MIL-STD-1553 bus user.

RING BUS. A bus where users are connected only to the two adjacent users in a
continuous ring; each connected to the next and the last'-one connected to the
first one.

SECONDARY STATION. A simple HDLC protocol user.

SENSO. Any transducer that converts the measurement of a physical quantity to
an electrical signal.

SERIAL DATA BUS. A data bus capable of sending only one bit at a time, in
series.

SERVICE SPECIFICATION. The specification of the service provided by a protocol
layer.
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SIENA=. An approximated representation of the behavior of a system with a
similar system.

SINGLE-POINT FAILURE. A failure of a component that, by itself, causes the
failure of the system in which it is contained.

SPECIAL CONDITION. A regulatory document that adds to, or otherwise alters, the
airworthiness standards for particular aircraft.

STATION. Bus user.

STATIONARY BUS CONTROL. Bus control that is continually performed by a single
bus controller, or by one of its backups.

STATUS REGISTER. A register in an IC controller that holds the status of the
state of certain contkoller functions.

STUM. The short length of cable used to attach a single LRU to a data bus.

SYSTEM INTEGRATOR. The developer who has the responsibility to integrate the
various subsystems into a working system.

TOKEN PASSING PROTOCOL. A protocol that limits bus access to the user that has
just received the token word.

UNBALANCED CONFIGURATION. A bus using the HDLC protocol that connects one
primary and one or more secondary stations.

UNIDIRECTIONAL DATA BUS. A data bus with only one user that is capable of
transmitting.

VALIDAION. The process of evaluating whether or not items, processes,
services, or documents accomplish their intended purpose in their operating
environment.

VERFATION. The act of reviewing, inspecting, testing, checking, auditing,
or otherwise establishing and documenting whether or not items, processes,
services, or documents conform to specified requirements.
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ACRONYMS AND ABBREVIATIONS

ps Microsecond
AC Advisory Circular
ACK Acknowledge
ACO Aircraft Certification Office
AEEC Airlines Electronic Engineering Committee
AFSC Air Force Systems Command
AIAA American Institute of Aeronautics and Astronautics
AIM Advanced Integrated MUX
AIR Aerospace Information Report
AIRLAB Avionics Integration Research Laboratory
AP Applicatior Processor
ARINC Aeronautical Radio Incorporated
ARP Aerospace Recommended Practice
ASCB Avionics Standard Communications Bus
BAC Balanced Asynchronous Configuration
BC Bus Controller
BCAC Boeing Commercial Airplane Company
BCD Binary Coded Decimal
BFCS Beacon Frame Check Sequence. BIT Built-In-Test
BIU Bus Interface Unit
BNR Binary
BOCP Bit-Oriented Communications Protocol
BP Basic Protocol
BUSY Destination Busy
CA Criticality Analysis
CE Certification Engineer
CMC Current Mode Coupler
CP Combined Protocol
CPU Central Processing Unit
CRC Cyclic Redundancy Check
CSDB Commercial Standard Data Bus
CSMA Carrier Sense-Multiple Access
CTS Clear To Send
DATAC Digital Autonomous Terminal Access Communication
DC Display Computer"
DET Driver Enable Timer
DITS Digital Information Transfer System
DMA Direct Memory Addressing
DME Distance Measuring Equipment
DTSA Dynamic Time Slot Allocation
EEC Electronic Engine Control
EES Electromagnetic Emission and Susceptibility
EFID Electronic Flight Instrument Display
EFIS Electronic Flight Instrument System
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EIA Electronic Industries Association

FAA Federal Aviation Administration

FAR Federal Aviation Regulation
FCC Flight Control Computer
FCS Frame Check Sequence
FMEA Failure Mode and Effects Analysis
FMECA Failure Mode, Effects, and Criticality Analysis
FSM Finite State Machine
FTA Fault Tree Analysis
FTMP Fault Tolerant Multi-Processor
GA General Aviation
GAMA General Aviation Manufacturers Association
HA Hazard Analysis
HARP Hybrid Automated Reliability Predictor
HDLC High-Level Data Link Control
HERF High Ehergy Radio Frequency
HIRF High Intensity Radiated Frequency
HSRB High Speed Ring Bus
HW Hardware
Hz Hertz
i/O Input/Output
.ACS Integrated Avionic Computer System

L C Integrated Circuit
ID Identifier
IEEE Institute of Electrical and Electronics Engineers
IFCS Information Frame Check Sequence
IMR Interrupt Mask Register
ISO International Standards Organization
IVT Interrupt Vector Table
LRU Line Replaceable Unit
LSB. Least Significant Bit
LSI Large Scale Integration
LTPB Linear Token Passing Bus
m Original Address of Last Transmission
MC Mode Code
MCFCS Message Control Frame Check Sequence
MFCS Message Frame Check Sequence
MHz megahertz
MIL-HDBK Military Handbook
MIL-STD Military Standard
ML Message Length
MPSC Multi-Protocol Serial Controller
ms millisecond
MSB Most Significant Bit
MT Message Time
MTBF Mean Time Between Failure
MTTR Mean Time to Repair
MUX Multiplexer
n Address of User Performing Computation
N Maximum Number of Users
NASA National Aeronautics and Space Administration
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. NCTS Not Clear To Send
OSI Open Systems Interconnection
PMA Parts Manufacturer Approval
PROM Programmable Read-Only Memory
RAM Random Access Memory
RAT Ring Admittance Timer
RF Radio Frequency
RIM Ring Interface Module
RIU Ring Interface Unit
RR Read Register
RRT Ring Rotation Time
RS Recommended Standard
RT Remote Terminal
RTCA Radio Technical Commission for Aeronautics
RTE Real-Time Executive
RTS Request To Send
SAE Society of Automotive Engineers
SAI Systems Architecture and Interfaces
SC Special Condition
SCC System Configuration Controller
SCM Software Configuration Management
SCP Self-Checking Pair
SG Synchronization Gap
SIm Serial Interface Module
SIR Shared Interface RAM
SMF Self Monitor Function. SQA Software Quality Assurance
SSA System Safety Assessment
STC Supplemental Type Certificate
SW Software
Tc Count Duration
TC Type Certificate
TCAS Traffic Alert and Collision Avoidance System
TDMA Time Division Multiple Access
TF Frame Time
TFCS Token Frame Check Sequence
TFEDF Token Frame Ending Delimiter Field
TG Terminal Gap
THT Token Holding Timer
TI Transmit Interval
T. Wait Time for User
TRT Token Rotation Timer
TSDF Token Starting D61imiter Field
TSO Technical Standard Order
UAC Unbalanced Asynchronous Configuration
UNC Unbalanced Normal Configuration
V&V Verification and Validation
VLSI Very Large Scale Integration
VOR VHF Omnidirectional Range
VT Validation Testing
WR Write Register
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