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This paper reviews attempts at signal detection in Gaussian noise using a higher order
statistical (Higher Order Spectra (HOS) or polyspectra) technique. Examples comparing power
spectral and bispectral analysis include the following topics: the identification of signals generated
by a system of coupled nonlinear differential equations, radar backscatter processing and target
identification, and a statistica. treatment of the detection of narrowband harmonic components
remhinginakeoeiverOpennnannmnstic(ROC)cuwe

The critical signal and noise probability density function (pdf) assumptions fror
polyspectra theory which must be met for more effective noise suppression relative to classical
second order power spectral methods are: (1) discussed in relation to detection results as reported
mummma)mmwmeu@m.mmmmumw
meuicbimeﬁerTmfom(DFl’)bispecmims emplbying Fast Fourier Transforms
(FFT) for both simulated and real data. 'l‘heslgmlseteomiswdofpumtonesandahopcodc
used in active sonar. L__ _, ;.

The results are in agreement with the examples reviewed which concluded that no
processing gain is derived from bispectral analysis. It is shown that the resolution for direct
methods using no formal cumulant construction (for zero mean strictly stationary random
processes, cumulants up to third order are equal to moments up to third order) was far superior
to that of indirect methods containing third order cumulant sequences. Simulated and real tests
indicate no significant improvement in bispectral over power spectral analysis because the echoed
signals exhibited a symmetric pdf (skewness approximately zero) similar to Gaussian noise. In
theory the bispectrum cannot differentiate between non-Gaussian symmetric signals and Gaussian
or non-Gaussian symmetric noise, all of which are equally suppressed. Noise only suppression




occurs i i :
when the signals echoed or radiated are zero-mean non-Gaussian with non-zero skewness
o -
(no symmetry evident), and the noise is zero-mean Gaussian or non-Gaussian with zero skewness
(symmetry evident).
The efficacy of signal detection in underwater acoustics using polyspectral methods is

exam '

ined in the light of current research into nonstationary HOS with future directions for stud
indicated. y
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CHAPTER 1
INTRODUCTION

Power spectral information is that which is present in the second-order statistics or
autocorrelation domain which suifices for the complete statistical description of a Gaussian
process of known mean. Phase information is suppressed in the autocorrelation domain since
the signal in question is represented as a superposition of statistically uncorrelated harmonic
components. Situations may exist, however, when the minimum-phase assumptions of second-
order statistics do not suffice, i.c., non-minimum phasc information needs to be extracted as
well as deviations from Gaussianity and degrees of nonlinearities. For these cases, higher-
order spectra such as the bispectrum and trispectrum are required.

Higher order spectra or polyspectra are the (n-1) dimensional Fourier transforms of nth
order cumulant sequences.!S Cumulants are phase sensitive higher order statistics which are
useful in the analysis and description of non-Gaussian processes. They display the degree of
higher order correlation present in a random series as well as providing a measure of the
deviation of a particular distribution from Gaussianity.

In general, the three main motivations behind the use of polyspectra in signal
processing are: (1) Gaussian noise suppression for processes of unknown spectrum
characteristics in detection, parameter estimation, and classification problems; (2) phase and
magnitude response reconstruction of signals; and (3) detection and characterization of time
series nonlinearities. The first motivation will be the focus of this paper and is based on the
property that for Gaussian processes only, all higher-order spectra of onder greater than two are
m«nym.'fnﬁsleadswﬂuonjecmmmapwaﬁmwmmmw
waveform consists of a non-Gaussian signal with non-zero skewness in additive Gaussian noise




or a non-Gaussian signal with non-zero skewness in non-Gaussian noise with zero skewness,
certain advantages may exist in signal detection in polyspectra domains.2

Higher-order spectra (polyspectra) defined in terms of the higher-order moments or
cumulants of a signal (see Appendix B for definition of cumulants and joint cumulants) can be
used to examine more information contained in a stochastic non-Gaussian or deterministic
signal than is contained in its autocorrelation (power spectrum). From statistical theory we
know that all joint cumulants higher than the second order vanish for a multivariate normal
process.!5 The immediate impact of this is that all spectra of order higher than two vanish for
a Gaussian process. Thus, higher-order spectra appear useful in distinguishing non-Gaussian
processes embedded in Gaussian noise. Moreover, polyspectra retain phase and give a
muonfﬂnplmemhﬁmbemcmpowmwmﬁeqmiestm. Such
phase relations could occur due to nonlinearities arising from modulation effects of active
mdmkmﬂmﬂtwwofaqwuﬁcsymmmpowcamimﬁmn
frequencies which are sums or differences of pairs of input frequencies, a phenomenon known
as Quadratic Phase Coupling (QPC).!5 QPC could result from the interaction of ship systems
giving rise to tonals (harmonics) above broadband noise in the passive sonar case. As an
example of this consider the frequency triple (f1,£2,f3=f1+f2). Quadratic coupling would result
in a power contribution at f3 if the phase at f3 was the sum of the phases at f1 and 2. The
bispectrum identifies quadratic nonlinearities of this type while the power spectrum is
completely insensitive to such phase relations.

There are basically two ways that can be used to estimate higher-order spectra when a
finite set of observation measurements is avﬁhbk. conventional (Fourier or nonparametric)
methods and the parametric approach based on Autoregressive (AR), Moving Average (MA),
and Autoregressive Moving Average (ARMA) models. Conventional approaches can be




3
implemented either by direct or indirect methods. The direct method refers to direct generation

of the DFT coefficients required for the ensemble average of the bispectral triple product from
the input data. It does not require using the 2-D FFT. The indirect method refers to the
generation of cumulants from the input data which are subsequently double Fourier
transformed to give the bispectrum. It comes from the general definition of polyspectra being
(n-l)dimensiomll’ouﬁermfomsofmhoﬁcrmmulm functions. In the case of bispectra,
this reduces to a 2-D Fourier transform of a third order cumulant function. (See sections 2.1.1
and 2.1.2). The direct method as a natural starting point for polyspectra analysis is the main
focus of this paper with the conventional indirect method and parametric techniques briefly
examined for comparison purposes.

Few applications of polyspectra have arisen due to the voluminous nature of the data
requirements with the accompanying computational burden. Also, statistical difficulties
coupled with the lack of a physical understandable interpretation have compounded the
problem.

For our purposes we will only be concemed with the fact that if a time series has a
statistically significant bispectrum, the generating process is non-Gaussian with a sufficient
degree of skewness as to be prominent in a Gaussian or non-Gaussian symmetric probability
density function (pdf) background which will result in a vanishing bicoherence. (See Appendix .
A). Bicoherence analysis results when the bispectrum shows a sensitivity to the amplitudes of
the involved spectral components.> It has been shown that, for even incoherent signals, the
value of the bispectrum can be significant if averaging is performed on too smali a number of
records. Since the bispectral estimator can be misleading, normalized bispectrums or
bicdmuwesuetiwmefemdclwiceofuﬂymsaﬁmﬁmofmmgcapabinﬁes.
Bicoherence, however, is very sensitive to SNR because of the normalization. This is




observed when, for perfectly coherent signals, the bicoherence is not one due to the input
noise. If the SNR is low, the value of the bicoherence estimated with a relatively small
number of data records, e.g., K < 50, can be insignificant. To recover significant value the
number of data records must be increased (up to several hundred) at least if the signal is
stationary over a sufficiently long time interval.> This can prove prohibitive which is the
reason why bispectral sensitivity to amplitudes of spectral components is wolerated. Moreover,
what is an undesirable feature for some is advantageous for others as this same amplitude
sensitivity is the main reason that uncoupled harmonics are prominent above noise in the
bispectrum. The real problem is why aren’t such signals more prominent given the
"vanishing" nature of bispectrums and/or bicoherences to Gaussian processes. The literature
would seem to imply that a processing gain is inherent in the application of polyspectral
methods. The answer is that theory is seldom realized in practice for the reasons cited by
Lagoutte in Reference 5 and reported here. It is interesting to note Lagoutte’s conclusion, " it
can be said that the use of bispectrum analysis can be subject to wrong interpretation.
Bicoherence can only be used if the waves are not embedded in noise.” This author has not
seen too many physical processes over the course of his career that are not embedded in

significant noise of some type other than those idealized results which invariably tum up in

" joumal articles but, strangely enough, are never applied to actual physical systems.

* Our main interest in the use of polyspectra is the realization of an improvement
relative to second order methods in the suppression of additive Gaussian noise for signal
detection problems arising in underwater acoustics.22 Non-Gaussian signal processes occur for
active sonar when the reflecting target.has only a few dominating scatterers. The noise in such
applications is frequently Gaussian, so that the detection problem is that of detecting a non-

Gaussian signal embedded in additive Gaussian noise.
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Detection problems related to non-Gaussian noise22 include sonars operating under ice
where noise due to ice-cracking, creaking and floe-smashing contribute a component found to
have substantial non-Gaussian behavior. Additionally, active sonars operating under ice near
the surface may encounter a non-Gaussian component due to specular reflection from the
irregular under-ice surface. Another environmental situation which may produce non-Gaussian
noise is shallow-water reverberation. Theoretically, non-Gaussian noise can be equally
suppressed via conventional polyspectral methods if the noise possesses a symmetric pdf, i.c.,
is not highly skewed.2

This paper will address problems related to active sonar as defined in reference 22
when the noise background is reverberation-limited and the scatterers giving rise to the
reverberation are assumed to be statistically independent in their reflecting properties.
Application of the central limit theorem gives rise t0 a Gaussian process for reverberation
while the retum, being primarily due to reflections from a few random scatterers will be
compositely non-Gaussian.

In passive sonar22 the detection of non-Gaussian signals in Gaussian noise occurs
when the background noise is frequently assumed to be Gaussian and stationary with the
sources such as ship-radiated noise being non-Gaussian, The passive problem is not
considered in this paper.

Hi-Spec, a collection of Matlab M-files designed to be used in conjunction with
Matlab developed by the MathWorks, 213 is a software package which provides polyspectra
analysis capabilities for various processing applicanions.l'2 A brief description of Hi-Spec
routines is given in Appendix A. The routines specifically used for this paper included
"bispec_d" - direct method for bispectrum estimation, "bispec_i" - indirect method for

bispectrum estimation, "gl_stat" - detection statistics for Hinich’s Gaussianity and linearity
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tests, "qpc_gen" - generator for quadratically phase-coupled harmonics in noise, "harm-gen” -
generator for harmonics in Gaussian (colored) noise for the harmonic retrieval problem, and
"harm_est" - estimator of power spectra hamonics using MUSIC, Eigenvector, Pisarenko, ML
(Capon) and AR methods based on the diagonal slice of the fourth order cumulant with
conventional periodogram also give for comparison purposes.

The routine "qpc_gen" generated the data for Figures C.1-1 and C.1-2 in Appendix C
as described in section C.1 DIRECT/INDIRECT COMPARISON FOR SIMULATED
DATA.

The routine "bispec_d" was used to calculate the direct bispectrum for: (1) Figures
C.0-1, C.0-2, and C.0-3 in Appendix C as described in section C.0 POWER
SPECTRUM/BISPECTRUM COMPARISON FOR SIMULATED DATA, (2) Figures C.1-
1 and C.1-2 in Appendix C as described in section C.1 DIRECT/INDIRECT BISPECTRUM
COMPARISON FOR SIMULATED DATA, and (3) Figures C.2-1 and C.2-2 in Appendix C
as described in section C.2 POWER SPECTRUM/BISPECTRUM COMPARISON FOR
REAL DATA.

The routine "bispec_i" was used to calculate the indirect bispectrum for Figures C.1-1
and C.1-2 in Appendix C as described in section C.1 DIRECT/INDIRECT COMPARISON
FOR SIMULATED DATA.

The routine "gl_stat” was used as an added, albeit redundant check due to the observed
obvious non-zero nature of the echoed signal skewness, to verify the zero skewness hypothesis
for the real data as described in section C.2 POWER SPECTRUM/BISPECTRUM
COMPARISON FOR REAL DATA. The use of the "gl_stat” routine in this context was
more for security than an absolute requirement and, as such, not formally addressed in this
paper. It will suffice to say that "gl_stat” verified the zero skewness hypothesis in all




instances which gave the author a2 warm feeling about the "correctness” of the Hi-Spec
software package. It is worth noting that there are many statistical tests of a less complicated
nature then "gl_stat” which serve the same purpose, i.c., the comparison of continuous or
binned data where one data set is compared to a known distribution or two equally unknown
data sets are to be compared. See Chi-Square goodness-of-fit and Kolmogorov-Smimov tests
as described in reference 52.

The routine "harm_gen” was used t0 generate the harmonics for the higher order
statistical resolution improvement routine "harm_est" as reported in section 2.2.1 Harmonic
Retrieval. The results were briefly addressed for illustrative purposes to make the reader
aware that higher order statistical versions of these routines suffer from the same constraints
that their lower order counterparts do - namcly. a high SNR requirement. This ¢yupled with a
lack of signal skewness caused no discemable difference with second order periodogram
methods. |

A condensed version of this paper was published in The U. S. Navy Journal of
Underwater Acoustics, Volume 43, No. 1, January 1993, pp. 201-220, under the title, "Signal

Detection Using the Bispectrum.”




CHAPTER 2
A REVIEW OF DETECTION RESULTS AS REPORTED IN LITERATURE

This chapter reviews nonparametric and parametric attempts at signal detection in
Gaussian noise using the bispectrum. Examples from the literature which address comparison
of power spectral to bispectral methods include the following applications: (1) the
identification of signals generated by a system of coupled nonlinear differential equations, (2)
radar backscatter processing and target identification, and (3) a statistical treatment of the
detection of narrowband harmonic components resulting in a Receiver Operating Characteristic
(ROC) curve. meeﬁcditeamdmdimmﬂhdsmfomanydeﬁmdalmgwim
corresponding test results which are in agreement with the examples cited in the literature
review. Parametric methods are described including the reasons for neglecting same in this
paper. Harmmonic retrieval is briefly discussed in the context of conjectured resolution
demapﬁmmwmmsﬁcsdegoﬂm. The resolution
section is included to show the extension of the detection problem, lack of signal skewness

compared to noise, to the resolution problem.

2.0.1 Identification of Signals Generated by a Coupled System of

Noulinear Differential Equations

The detectability of signals was examined through experiments in which simulated
signals were subjected to power-spectral and direct bispectral analysis.}1 Specifically, signals
rich in harmonic content were generated by solving a system of coupled nonlinear differential
equations and were subsequently contaminated by Gaussian white noise before being subjected
to spectral and bispectral analysis. The effects of start up transients due to initial conditions




were removed by discarding the first 2,000 points as the solution was stepped for typically
10,000 steps. Classical windowing and segment averaging was applied to the noise cases for
two different noise levels described as low and high. In both instances ensemble averaging
did not produce sufficient reduction of background noise to make the bispectium a
significantly more efficient signal detector than the power spectrum. It was concluded that the
bispectrum slices taken did not show it to be a very valuable indicator of the existence of
multiple harmonic signals in the presence of Gaussian noise. No signals were observed in the
presence of noise using bispectra when they were not also visible in the power spectra. It was
further shown that no increase in processing gain is derived from bispectral analysis even
though it makes use of inter-frequency phase relation data. It was found that reliable detection
required more signal energy in the bispectral case than for spectral detection unless the signal
skewness was large. The amount of averaging applied to reduce random sampling variations
is proportional to the time bandwidth product. The disadvantage of bispectral analysis varied
dimcﬂywhhﬂwﬁmebuﬂﬁdmmasmnmhﬂiwedﬂmﬂnbispemﬂmw
inferior to both energy and correlation (maiched filter) detectors. Bispectra did not appear to0
offer any advantage in detectability at low signal-to-noise ratios unless the signal skewness
was large.

As a caveat it was pointed out!! that the signal bispectrum contained more structure
than the power spectrum, indicating that bispectral analysis of signals may provide useful
additional classification beyond that obtained from energy methods. It was further conjectured
that bispectral analysis may be useful in active acoustic detectors in the presence of
reverberation assuming that the acoustic return reflects a localization compared with the
reflectors producing reverberation.
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2.02 Radar Backscatter Processing and Target Identification

The use of bispectral processing methods for radar backscatter processing and target
identification have also been examined.2> In this situation bispectral processing methods were
adapted 10 the radar signature analysis problem which resulted in the birange profile, a 2-D
display of target scattering mechanisms in the range domain with the final goal being the
detection and classification of radar signals.

The type of signal processing addressed in this study is based on a specific target
scattering model where the scattered signal is a combination of specular scattering terms from
localized areas on the target and multiple interaction terms. Higher order spectral processing
ofraduﬁmm.ﬁmﬂuwdasiaﬂw:mﬂmdyﬁsofndnmmmsim.m
metimedomainmatmtelatedtothegeomeu'ical'smpeofﬂwmget. This serves as an aid
" in target discrimination. A description of this process follows.

Complex natural resonances of radar targets are aspect independent and are used as an
aspect insensitive method for discriminating between targets. No information about the
scattering mechanisms of a radar target is directly evident from the backscattered frequency
response data. However, this information pertaining to target shape, size and orientation is
present in frequency and can be extracted by examining the target scattering mechanisms that
are displayed in the Target Impulse Response (TIR). The TIR comes into play since if a plane
wave is transmitted to illuminate a target, then the backscattered field is a function of the
transfer function as seen by the radar, and the range to the target. Accordingly, it is desirable
to change variables from frequency to time since target scattering features can be recovered
from the impulse response giving the analyst 2 more intuitive understanding of the processes
involved by working with time domain signatures instead of frequency domain responses. For
the radar problem the end result becomes a time triple correlation mapped to a range plane via
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the bispectrum where the bispectrum is expressed as an ensembie average of impulse responses
B(rl,r2) = <h(r1).(r2),(r1+r2)> where h(r) is the impulse response as a function of range.
Defining the birange as such implies that a2 non-zero bispectral response is the result of
interaction between the responses at ranges rl and r2 which appear as a response at the range
r1+r2. For the bispectrum of real data, this usually takes the form of a clearly evident non-
zero magnitude bispectrum at the ordered pair in range (rl,r2) in the principal triangular region
of the bispectrum (see appendix B), and various assorted other ordered pairs in the
corresponding eleven bispectrum symmetry regions. (See Figure B.2-1b.) These symmetry
regions containing significant non-zero magnitude bispectrums occur at the ordered pairs:
(r2,r1) from symmetry region 2, (-r2,r1+r2) from conjugate symmetry region 3, (-rl,r1+r2)
from conjugate symmetry region 4, (-rl-r2,r1) from symmetry region S, (-r1-r2,r2) from
symmetry region 6, (rl,-r2) from conjugate symmetry region 7, (-12,-rl1) from conjugate
symmetry region 8, (r2,-ri-r2) from symmetry region 9, (rl,-rl-r2) from symmetry region 10,
(rl+12,-r1) from conjugate symmetry region 11, and finally, (r1+12,-r2) from conjugate
symmetry region 12. (See Appendix C section C.1 figures for an illustration of the twelve
symmetry regions of the bispectrum for real data.) Furthermore, the bispectrum at (r1.12) is
non-zero only if the responses at rl and r2 and rl+12 are correlated. For the bispectrum of
compiex data, the non-zero magnitude of the bispectral response corresponding to the
interactions between the responses at ranges rl and r2 still appears at the ordered pair in range
(r1,12) located in the principal triangular region of the bispectrum as before for the real data
case. Howevér.becausewemmwdealingwithbispecmmsofcomplexasopposedtorcal
data, there are no longer twelve symmetry regions but only one defined by the placement of
the complex conjugate for the third order joint cumulant 23°9 An example of the placement
used in Hi-spec is given in Appendix B directly below Figure B.2-3. This corresponds to the
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firt symmetry relation defined for the bispectrum of complex-valued signals immediately
following the example. Formally, this range symmetry for the complex case would only occur
at (2.11) in the area designated region 2 in Figure B.2-1b in Appendix B. The noise
suppression capabilities of the bispectrum arise from the fact that uncorrelated or low
correlated Gaussian noise of unknown spectra characteristics (colored or white) does not have
a significant bispectrum. Consequently, the motivation for using bispectrums for detection
purposes becomes clear as, in theory for an infinite number of samples, Gaussian processes
vanish. In practice, however, only a finite number of data samples is available so additive
Gaussian noise is not totally suppressed in the birange profile. Also, since additive noise may
be only asymptotically Gaussian or non-Gaussian clutter having a non-zero third order moment
(skewness), total noise suppression wouldn't occur for even an infinite number of samples.
The obvious conjecture is that the bispectrum might prove a viable altemative to power
spectrum techniques since it retaing phase information thereby identifying any type of phase
coupling which might result from the interactions of target scattering mechanisms. This
information could allow for better target detection. The time/range mapping is discussed next.

In most signal processing problems, the data sequence consists of sampies taken from
a time dependent waveform. Then the bispectrum, as defined in Appendix B, is a function of
two variables in the frequency domain. The radar scattering data sequence, however, is not a
time series but recorded in the frequency domain. The triple correlation of this radar
frequency domain data is a 2-D profile in the frequency domain with the applied bispectrum
becoming a profile of target scattering signatures in the 2-D time domain which could be
termed a "bi-time"-profile of radar targets. This profile can be subsequently expressed as a 2-
.meﬁkhlnngeusingﬂnmndardmgeequaﬁontsaflwhuui:menngeﬁmﬂw
radar t the target, t is the time needed for the signal to propagate to the target and back, and ¢
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is the speed of light. This is what is referred (0 as the birange profile of the target. Formally,
it is a bispectral display of target signatures in the 2-D range domain r1 and r2 where the term
“range” denotes the propagation distance to the target. This process is directly related to the
classical problem of determining the system impulse response by taking the inverse Fourier
transform of the system transfer function (analogous to the radar system transfer function
containing the complex natural resonances of the targets). This resulting time triple correlation
is subsequently mapped to range to create the birange profile.

The focus of the report was on the processing of radar data treated as a time series
using higher order spectral analysis techniques, in particular, the bispectrum. The reason for
the renewed interest in the bispectrum as a general signal processing technique is related to
current increases in processing capabilities as, previously, excessive computational
requirements gave the promise of limited rewards. Not only are the mathematics of the
bispectrum far more complicated than for other spectral analysis techniques but the physical
insight into the technique is not fully understood as the main problem remains the lack of an
intuitive interpretation and understanding of the bispectral processing of a time series.

Both Direct and Indirect methods of bispectrum computation were outlined with the

requirement for a large number of data samples due to the high variance incurred by both
estimates. It was noted that the estimates could be made smoother if more data segments were
used at the expense of decreased birange resolution that results from the introduction of
nonstationsry problems. The main advantage of these methods is the ease of implementation
using FFT algorithms. A variant of these methods was used to generate the birange profiles.
A parametric technique using sutoregressive modeling was introduced as an altemative to
classical Fourier transform techniques. The reasons for this stemmed from the resolution of
the estimated profiles being limited by bandwidth and the effects of the window function used.
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(The window had a wide mainlobe which further limited resolution.) It was pointed out that
applying a rectangular window 10 the triple correlation for the bispectrum caused 2-D sidelobes
to appear along each range axis. It was observed that with finite sets of radar scattering data,
resolution problems with Fourier techniques are inevitable. To avoid this problem the
parametric technique was imposed which assumed that the scattering as a function of
frequency satisfies a model whose parameters are estimated from the measured data. The
birange resolution was no longer limited by the measurement bandwidth as was the case with
Fourier based processing of finite length data records. The parameters in question were
autoregressive (AR) and could be estimated from the second or third order cumulants of the
measured backscatter data sequence. The birange was then computed as the triple correlation
of the inverse Z transform of the measured backscatter response which became the Target
Impulse Response (TIR). Hence, the birange was parameterized by the AR coefficients. The
limitations of parametric modeling arose from the fact that: (1) scattering at frequencies
outside the measurements can not be casily predicted from the measured data due to
dependence on many factors such as dispersion and scattering region, and (2) model
parameters are often estimated using nonlinear algorithms and, as such, are sensitive to noise
in the data. It was noted that improvements in Fourier methods could be achieved if the
measured backscatter had a high signal-to-noise ratio coupled with a slowly varying frequency
response for the target.

An AR parametric model where the parameters were estimated using third order
cumulants was devised and tested using experimental radar data. The AR birange profiles
wme@Wmmmuwm The results obtained on
modeling scaled model aircraft using the AR-based algorithm were not encouraging in the
sense that no closely spaced peaks in the birange were resolved and little compatibility
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between Fourier-based birange profiles and AR-based birange profiles was observed. This
incompatibility was attributed to problems associated with modeling complex (bispectral, i.c.,
birange) as opposed to spectral data. For a detailed discussion on the problems associated
with the AR modeling of complex-valued signals see section 4.3 of Jouny.23

The motivation for bispectral processing of radar signals for this study?> was the
inherent advantage over spectral processing techniques for the suppressing of additive Gaussian
noise or any additive undesirable random signal with a symmetric pdf. This engendered the
interest in using birange profiles for target recognition purposes, in particular, if the backscatter
waveforms are corrupted with zero mean additive Gaussian noise. The process of target
recognition was approached in two ways: nonparametric FFT-based and parametric AR
modeled. The parametric approach required the knowledge of the underlying distribution of
ﬂnﬁmmmemﬂuapﬁoﬁmbawhyofmmofemm Such an approach
was deemed useful for estimating the optimal classification performance that could be achieved
using the birange as a feature. However, due to the lack of knowledge of the apriori
probabilities of possible targets, and due to the computational burden imposed by parametric
chaﬁﬁaﬂaunmnmuﬂcﬁnﬁﬁmmo&nmmappmpﬁm

In summary, it was found that performance gains using the birange profile were slight
with the additional computational needs being an undesirable tradeoft.3

203 Statistical Treatment of the Detection of Narrowband Harmonic

Components Resulting in a Receiver Operating Characteristic (ROC) Curve

A comparison of the detection performance of the power spectrum and bispectrum for
detecting narrowband harmonic components is given in Wilson.2 The emphasis here is on a
more statistical treatment of the detection process. Consistent estimates of the unnormalized
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bispectrum are constructed as a function of the number of DFT's over which the bispectrum is

coherently averaged. Normalized bispectrums, i.c. bicoherences [see (A.2-1) and B.2-10)], are
also considered. The variance of the unnomalized bispectral estimator becomes a function of
the multiple of the power spectrums at the respective bispectral frequencies f(j), f(k), and
f(j+k) scaled by the DFT size divided by the number of DFTs averaged. The time series is
assumed to be uncorrelated in time. The coherently averaged estimator of the bispectrum is
shown to be an element of a multivariate complex Wishart distribution with dimension 3,
degrees of freedom corresponding to the number of averaged bispectrums, and complex
Gaussian distributed in the asymptotic sense. The bicoherence is determined to produce a
quantity whose asymptotic statistics are more easily calculated. It is pointed out that since the
asympiotic distribution of the bispectral estimator is complex Gaussian, the distribution of the
bicoherence is given by an asymptotically noncentral chi-square distribution with two degrees
of freedom and a noncentrality parameter which is a function of the skewness of the data in
the time series in question, e.g. if the time series is Gaussian, the skewness function will be
zero for all bispectral frequency pairs and the distribution of the bicoherence (normalized
bispectrum) is central chi-square with two degrees of freedom (the noncentrality parametes will
also be zero). For the detection of signals in the presence of additive Gaussian noise, a
threshold is applied to the bicoherence estimate to detect a non-zero bispectrum at a specified
false alarm rate corresponding to the probability of committing a Type I error (accepting the
alternative hypothesis when the null is true) from the central chi-square distribution. The
derivation of the noncentrality parameter as a function of the skewness of the signal and the
signal-to-noise power ratio for a noncentral chi-square distributed normalized bispectrum
estimate of signal-plus-noise is given in Hinich.3! The probability of detection is then

computed for the normalized bispectrum (bicoherence) from the noncentral chi-square
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distribution as a function of the noncentrality and the threshold parameters for the noncentral

chi-square distribution. A similar threshold is derived as a function of the signal-to-noise
power ratios at the f(j), fk), and f(j+k) bispectral frequencies for the magnitude squared
unnormalized bispectrum to calculate the probability of detection from the noncentral chi-
square distribution by evaluating the probability that a noncentral chi-square random variable
with a given non-centrality parameter will exceed the normalized bispectrum threshold which
i&hmm.mdizedbyﬂnafomenﬁqubispecuﬂﬁeqwtysimﬂao-powerndos.
Simply put, the concemn is how large the nommalized bispectrum statistic has to be in order to
confidentdy reject the "Gaussian noise only” hypothesis in favor of declaring the presence of a
non-Gaussian signal. It is shownZ? that to operate at a false alarm rate of .001, one would
njeaﬂihypommmnanymiseism(ﬂnmmﬂizedbimaﬁsﬁcism
chi-square distributed rather than noncentral chi-square distributed) for values of the
normalized bispectrum statistic that are 13.8 or larger. The observation is made that since the
mean value of the normalized bispectrum statistic is equal to the noncentrality parameter, it
follows that the noncentrality parameter must be 13.8 or larger to achieve detection at this
false alarm rate. The critical issues addressed®> from a statistical perspective pertain 1o this
noncentrality parameter, in particular, the several factors which contribute 10 its value--
skewness (characteristic of the signal), signal-to-noise ratio (characteristic of the signal and
noise power levels), and finally, the processing characteristics, i.e., DFT size, number of DFTs
used in bispectrum averaging.

The conclusions reached? can be summarized as follows. If a signal has a non-zero
skewness function, a tradeoff exists between signal-to-noise ratio and processing parameters
which will determine if the non-zero skewness is sufficiently large to result in a noncentrality

parameter which will allow its detection at a given false alarm rate. For small values of the
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skewness function, the processing parameters and signal-to-noise ratios have to be such that
their product remains large enough to produce a sufficiently large noncentrality parameter for
detection. [The noncentrality parameter has a linear dependence on the number of averages
and an approximately cubic dependence on signal-to-noise ratio (for low SNR).] The
implication here is that if the signal-to-noise ratio decreases by a factor of 2 (3 dB), then it is
necessary to increase the number of averages by a factor of 8 in order to retain the same level
of detectability dictating a certain degree of flexibility for real time algorithmic realizations
which may not be feasible. By far, it is clear that the underlying concemn remains signal
skewness as Wilson?? demonstrates the essential relationship between signal characteristics,
noise characteristics, and processing parameters which define the detection performance of the
bispectrum. It is shown that given a skewness function, the processing parameters necessary
to achieve detection as a function of signal-to-noise ratio can be determined. Broadband
detection in which the detection statistic is based on bispectrum values over the entire principal
domain is discussed in Hinich3! as opposed to narrowband detection at a single point in the

A comparison of the detection performance of both the nommalized and unnormalized
bispectrum to the power spectrum for detecting harmonics in Gaussian noise is shown in the
Figure 2.0-1 from Wilson.2? mﬁgmismonmmmmmingmmesim-
to-noise ratio. The number of averages used was 10 necessitating an approximation to the
asymptotic statistics used to produce the results since the expression for the exact distribution
has not been derived. The unnomalized bispectrum (B) performs better than the power
spectrum (PS) while the normalized bispectrum (NB) performs worse. The best that can be
said about bispectral estimation based upon this ROC (Receiver Operating Characteristic)
curve is that it is no better than approximately 2-2.5 dB over power spectral techniques in the
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signal-to-noise ratio range of -10 to 10 dB with a normalized version up to 8 dB worse on the
high end. It is worth noting that Wilson assumed that all of the variables critical to successful
bispectral processing are optimal, i.e., sufficient signal skewness exists, the noise is Gaussian
or non-Gaussian symmetric, and the processing parameters (DFT length, number of DFTs
averaged, etc.), are chosen such that detection will result from a sufficiently large noncentrality

parameter for the noncentral chi-square distribution in those cases where the skewness function

is low.
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Figure 2.0-1 Comparison of Bispectrum and Power Spectrum
Narrowband Detection Performance for PFA = 0.001
21 NONPARAMETRIC METHODS
The methods can be broken down into two classes, direct and indirect. The methods
have the advantage of being straight forward allowing the introduction of polyspectral
processing from a computational standpoint which is comparable to the well known classical
Discrete Fougier Transform (DFT) implementation of the power spectrum.




In practice, conventional bispectrum estimators!S use a finite set of observation
measurements. However, the caution is that limitations on the statistical variance of the
estimates, computer time and memory requirements present severe implementation problems.
In general, the direct and indirect methods for bispectrum estimation give different statistical
estimates. These estimates, however, are asymptotically unbiased and consistent and have
distributions that tend 1o be complex Gaussian.! Conventional estimators have high variance
and thus require a large number of records to obtain smooth bispectral estimates. Increasing
the number of records or segments causes the tradeoff of increased computation time and can
present additional problems with nonstationarities. Frequency domain averaging over small
rectangles to reduce variance has the unwanted side effect of increasing bias as well as
computation time. As per power spectrum computations, the effective number of reoor(k can
be increased by overlapping for short data records. 1S

2.1.1 Direct Method
This class of conventional estimator is useful for the generation of moment spectra
using FFT algorithms and is defined in Nikias!® as follows.

Let {X(1),X(2),....X(N)} be the available set of observations for bispectrum estimation.
Assume that f; is the sampling frequency and A, = f/N, is the required spacing between
frequency samples in the bispectrum domain along horizontal or vertical directions. Thus N,
is the total number of frequency samples.

1. Segment the data into K segments of M samples each, that is N = KM, and subtract

the average value of each segment. If necessary, add zeros at each segment to obtain

a convenient length M for the FFT.
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Assuming that {z®%(k) k=Q,1,2,...,M~1} arc the data of segment (i}, generate the

DFT coefficients
1 M-1
YOQ) = o0 X =O0exp(-2xkA M), A = O,1,..M12
keo

i=12,..K

2.1.1-1)

In general, A = M, xnowhem M, is a positive integer (assumed odd number),
. thatis, M, = 2L, + 1. Since ) is evenand M, is odd, we compromise on the

value of N, (closest integer). Generate,

{ & L

Ao ‘I"‘I g'l.-"l

MP(ymnd, ) =

2.1.12)
- YO +k) ... YO +k )

D il ¢ WUNRY ST TR T N

forj = 1.2,.. K. For example, in the special case of the bispectrum where no
averaging is performed, that is, M =1L = (), We have the triple product

M) (4, 1)) = %Y"’(ll) YO, YO (a,+2) 2.1.1:3)
0 ' .

Equation (2.1.1-2) gives the user the option of performing averaging over neighboring
ﬁeqnwnciesmwduceﬂwbiwecuumestimaﬁonvaﬁm.‘o ‘The number of adjacent

frequencies over which this averaging is to be performed is determined by the
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parameter M =2L, +1 35 A, must always be odd so that the number of points in both
dilecdonsalmdgpanudmmebispeanmamwmhaveamidpoimormedim
that will contain the averaged value from both directions as given in equation (2.1.1-
2). Forl_‘.o_ M =1 and we have no frequency averaging with equation (2.1.1-3)
resulting and M=M3xN,=N, For L =1, M,=3 and equation (2.1.1-2) would reflect
frequency averaging over three adjacent frequency points along both axes of the
bispectrum with MxN,=3N,=M with the DFT performed over M=3N, points for
cach segment. Thus, the desired number of frequency samples is attained as
MM, =N, At the outset of using the direct method we specify N, which is typically
some convenient value for FFT computation. If we also have the frequency averaging

opticnmilabh:tousthenvnrm:anspecifyavalneforul defining our averaging

interval length along both bispectrum axes. 'l'hischmgeswrorigimlvameof)v‘
which now becomes NyJ/M, = MM, which is our new or effective value of N,
reflecting the frequency averaging, i.c., effective N, < original N,. Since M, is even
anduisodd.ﬂlenewvalueofnoisusuanynotaninwger. We compromise by
choosing the closest integer to it which is used in the calculation of the scaling
parameter for equation (2.1.1-2). The averaging operation does indeed reduce the
variance but it may also introduce bias.5® This brute force frequency averaging
operation is implemented in Hi-Spec’s direct bispectrum estimation routine “bispec_d"!
via a 2-D convolution of a frequency domain smoothing window with an averaged

bispectrum over K segments (records) which is defined next.
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4, The moment spectrum of the given data is the average over the K segments

o 1 &
Mi(0,..,0,) = = Y M%,,..0,.) (2.1.14)

K id
where @, = (2xf/NA,
An optimal frequency domain smoothing window in the mean square emor sense (MSE), the
Rao-Gabr window'# which optimizes the tradeoff between variance reduction and bias
introduction, is offered as a Hi-Spec option. The Hi-Spec window implementation is defined
as follows:!
1 mmrwwmﬁsnnﬁeqMMﬁnmmm
window. If wind is a scalar, the Rao-Gabr window of length wind will
be used. This window is defined by,!4

W sﬁl_n’+n
(m, n) ‘,[ N

”""]. (m,n)eG

where N is half the FFT length, aff?, and G is the set of points, (m, n),
satisfying the ellipse

wind®

(nf/2)

m2 +n2+muc<=

2. A unity value for wind results in no windowing.
3 If wind <= 0, the default value of 5 will be used.
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4, If wind is a vector, it is assumed to specify a 1-D window from which

a 2-D window is computed, W(m.,n) = wimw(n)wim+n).
S.  If wind is a 2-D matrix, it is assumed 10 specify the 2-D smoother directly.
The net effect of this windowing procedure for steps 1 and 3 is that all of the points G, the
shaded hexagonal region in Figure 2.1.1-1 from Rao'# comprising the 12 symmetry regions of
the bispectrum (see Appendix B) bounded by the cllipse area G;, are windowed where G; is

the ellipse area
wind?®
mn): mi2+enemun<= .
2
G is the shaded hexagonal area
Gn < ol + jmen] <=2 202,
MG<GI.

The optimal Rao-Gabr window reflects the minimization of the MSE consisting of the variance
of the bispectral estimate plus the square of its bias. This weight function is actually an
expression contained in the variance of the estimate and is shown to be smaller than any other

bispectral weight function, thereby minimizing the MSE.14




Figure 2.1.1-1 Rao-Gabr Window Bounds

2.L1.1 Test Results

As described in Appendix C synthetic signals at varying signal-to-noise ratios were
generated to exercise the direct bispectrum algorithm. Results for synthetic signals embedded
MGauadmwlﬁw;nisehdimmﬁpﬁﬁcamimpmvememinﬁMumﬂydsmmr
spectral analysis. The reason for this is that the signals simulated exhibited a symmetric pdf
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(skewness approx. 0) which made it difficult for the algorithm to differentiate between non-
Gaussian symmetric signals and non-Gaussian symmetric noise. Both of these are equally
suppressed as the basic assumptions in regard to bispectral analysis are that the signals are
non-Gaussian, zero-mean with non-zero skewness, i.e., exhibit non-symmetry, and that the
noise is zero-mean Gaussian or non-Gaussian symmetric.

Real active sonar field data was processed with similar results to the simulated data for
similar reasons, i.c., the projected signals used for pinging exhibit symmetric pdfs which were
unperturbed upon backscattering from a target.

In summary, the results indicate that bispectral techniques which suppress Gaussian (or
non-Gaussian - symmetric pdf) noise suffer from a lack of signal skewness which precludes
any discemaic improvement over power detection methods (see section C.2 of Appendix C).

212 Indirect Method
This class of conventional estimator is based on the 2-D FFT of a windowed third
order cumulant function and is defined in Nikias!® as follows.

Let {X(1),X(2),....X(N)} be given data set. Then we have the following.

1. Segment the data into K records of J4 samples each, that is, N = KM-

2. Subtract the average value of each record.

3. Assuming that (x®(k)k = 0,1,...,M-1) is the data set per segment | = ],
2,..., K. obtain estimates of the higher-order moments

4. Avenage over all segments

5. Generate the ath-order cumulant sequence c:(g”,,,f__l); it is a function of
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5
1
mP (e, 1, ) i .‘E“ x0®) x ks ). xP(k+t, )
R=23.m1=12,.K 2.12-1)
S, = mx(O,-t,....,-t. -l)'
S, =min(M -1,M-1-<,M-1- TyraM -1 -1, )
1 &

A (pta) = g 2 (% ety ) @122

R= 23.....' - lo
mmmmmwm(mwwwmmmmm
However, for a zero-mean process we have

&) = A(x)
8(x,%) = AJ(ry5)

&5y Tuty) = M(5,T,,Ty) — A(5AS(x, - <) 2.123)
~My(t iy (xy - 3) - R (g {(x, - t).

6. Generate the higher-order spectum estimate

L L
C:(o,,...,u, - 1) = E ooe 2 c:(tl’""tn-l)
5y e-L et -L 2.124)

Wyt - Jexpi{ (0T, 4o v@, T, DI,

where L<M - 1 =d Wlx,,..,t, _,) is a window function. Instead of a cumulant
spectrum, 2 moment spectrum can be generated by equation (2.1.2-4), if we substitute the
cumulants by moment estimates given by equation (2.1.2-2).
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The multidimensional window function should satisfy the symmetry properties of
higher-order moments or cumulants. They should also be zero outside the region of
support of estimated cumulants and have nonnegative Fourier transforms. A class of
functions that satisfies these constraints is the following.

Wt,,..t, _ ) = d(t)d(t). A, ), + ... + 1, _),

d(x) = &-%)
(<) = 0,x>L |
&) = 1 2125

L
D) = Y dvexp{-jotl2 0, foral .

t= -l

Identity (2.1.2-5) allows a reconstruction of window functions for higher-order spectrum
estimation using standard one-dimensional (] - 4) windows. However,notall | - 4
windows satisfy constraint D(w)2 0 for all ®. Two windows with good performance in

terms of bias and variance minimization are (see Nikias!> and references therein):

1 xT _Jﬂ =T
d,(x) = L A R e R L TP
oo If' > L.




;-6(1%1)‘*6 (l%l)’ o)< £

2
= 3 (2.1.2-7)
a() = | 2(1--'%-l , —;‘- s|t|sL

o, HESA

The first window achieves a bias that is about 18 percent smaller than that of the second
(Parzen) window. However, the first window produces variance that is about 26 percent larger
than that of Parzen window. Equation (2.1.2-7) is applied in Hi-Spec to minimize the

variance.

2.12.1 Test Results

Conventional indirect bispectral analysis employing 2-D FFTs of higher order
cumulants were examined for comparison with direct methods with the result that resolution
was far superior using the direct algorithm (see section C.1 of Appendix C). The inability of
the indirect bispectrum t0: (1) resolve quadratic phase coupled components similarly to the
direct bispectrum; and, (2) suppress uncoupled sinusoids mixed with coupled sinusoids; caused
questions 1 be raised as 10 its effectiveness for noise suppression (uncoupled sinusoids should
look like non-Gaussian symmetric pdf noise to the bispectrum). Thus, indirect bispectra
comparison to power spectra was dropped pending a more detailed examination of the theory
and implementation of conventional indirect bispectrum methods. (See section C.1
DIRECT/INDIRECT BISPECTRUM COMPARISON FOR SIMULATED DATA))




22 PARAMETRIC METHODS

An aliemative approach 1o Fourier based methods for the interpretation of time series
data is the construction of white noise driven linear parametric models from the underlying
physical process. The motivations for this are threefold: (1) to recover phase information
accurately, (2) to increase the resolution capability of an estimator involving closely spaced
peaks in the bispectrum domain, and (3) to increase bispectrum fidelity in the situations where
non-Gaussian processes are actually parametric or may be approximated by parametric
models.! These methods typically suffer in low signal-t0-noise ratio environments and
demand a certain amount of apriori knowledge which isn’t always readily available in practice.

Parametric methods for higher-order spectrum estimation are described in section 7.4
of Nikias.!0 MA, noncausal 4R, and ARMA methods are discussed respectively in relation to
amiﬁmm-phues}miduniﬁcaﬁmmblanwtﬁchﬂ&edﬁmplyis.givmaﬂyaﬁﬁm
length of data, it is required to estimate the bispectrum of the underlying discrete random
process via parametric modeling of its third moments.!5 For example, the MA method
requires the estimation of the coefficients of the MA process via a typical second-order method
to reflect the autocorrelation structure of the data. This apriori knowledge is then applied to0
the estimation process with the end result being a fine tuning to the coarse estimate made via
the second-order process to improve resolution. A typical example of this in Hi-Spec is the
"gpc_tor” program defined under quadratic phase coupling in section A.0 of Appendix A.27
This program uses a "third-order recursion” to estimate the bispectrum as a function of the AR
model order which should be greater than the number of spectral lines, in particular, closely
spaced spectral lines. The motivation for such parametric techniques is to (1) more accurately
estimate bispectra of an AR process, and (2) resolve closely spaced peaks in the bispectrum or
detect the presence or absence of quadratic phase coupling at frequency pairs in close
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proximity to each other. The conjecture is made that, just as AR, ARMA models offer high
resolution capabilities as alternatives to conventional power spectrum methods, their bispectral
counterparts can be expected to offer similar high resolution capabilities compared to
conventional direct or indirect bispectral estimators. Comparison examples are given in
Raghuveer.2

There appears to be some difference of opinion in the literature conceming the efficacy
of assuming that a given time series can be described by a low order AR or ARMA model as
mponedmmomson”whichdmikﬂwwuwm’expeﬁminmﬂyzmgmmydiffemmﬁme
series models from scientific and engineering problems with the statement that "neither of us
has yet seen an example which could reasonably be described by an autoregressive model.”
This statement is later qualified by the admission that, while stating that such examples may
exist, the probability of realizing one appears to be so low that "starting with the assumption
that a given time series can be described by a low-order AR or ARMA model is a prescription
for trouble.” This is not the reason for neglecting parametric bispectral estimators in this paper
asmuchasnnmquimmtforuuminimiuﬁmofapﬁoﬁmwhdgemmgmwbispm
signal detection versus second-order statistics power spectrum techniques, i.c., the main focus
here is coarse as opposed to fine tuning although some altemnative methods employing high-
order statistics for resoluﬁbn improvement will be listed in section 2.2.1.

221 Harmonic Retrieval Test Results

As an adjunct to the problems encountered in bispectral signal detection due to the
lack of echo or radiated signal skewness compared to noise contributions having negligible
skewness, frequency resolution tests possible using the Hi-Spec routine "harm_est™ were
performed using signals generated by "harm_gen" (see Appendix A). The "harm_est” routine
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gives an estimation of the frequencies of real harmonics in noise with comparison o a
conventional periodogram. The estimation is given using the MUSIC, Eigenvector, Pisarenko,
ML (Capon) and AR methods based on the diagonal slice of fourth-order cumulants. No
improvement was noted over nonparametric FFT-based direct bispectral algorithms as a FFT
bispectral slice exhibited the same peak to peak response as the diagonal fourth-order cumulant
slice. Moreover, for low signal-to-noise ratio cases, these higher-order statistical resolution
improvement methods deteriorated significantly in comparison to the classic periodogram - a
problem common to their second order counterparts.

It is noted that coarse adjustment (long range detection) as opposed to fine (target
classification) is the main focus of this paper. It was the author’s intent to call attention to the
fact that higher-order methods are no resolution panacea. Lack of signal skewness inhibits any
propagation gain as the signal is suppressed equally with the noise. Lack of sufficient SNR
inhibits any resolution improvement. The latter is not a new result. The former verifies the
examples from the literature review and the tests performed for this paper as reported in

Appendix C.
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CHAPTER 3

CONCLUSIONS/FUTURE WORK

This chapter examines the efficacy of signal detection in underwater acoustics using
polyspectral methods in the light of current research into nonstationary HOS with future

directions for study indicated.

3.0 GENERAL CONCLUSION

The theme throughout this paper is that the critical parameter in relation to the third
oﬂcrmu&nspemum(bispecm)mdeﬁmdhequaﬁdn(BJ-S)mmnymdmngmy
type of propagation gain over the second order cumulant spectrum (power spectrum) as
defined in equation (B.2-3) is the signal skewness as defined in equation (B.1-6). Preliminary
results, pending a more detailed examination of simulated/real data, indicate that if the echoed
(active) or radiated (passive) signal does not exhibit a degree of moderate skewness which
remains to be quantified, but as a rule of thumb approximately .5 where 1 indicates a highly
skewed distribution, the probability that HOS signal processing sophistication will realize a
~ significant detection improvement over second order methods appears to be low. This is bome
out by observing that a time series representing a mixture of quadratically phase coupled
sinusoids and uncoupled sinusoids exhibits a moderate skewness measure while a similar series
representing only uncoupled sinusoids does not, i.c., suppression of the uncoupled sinusoids is
realized in the former case while there is no difference between uncoupled sinusoids and

Gaussian or non-Gaussian symmetric noise in the latter case.




3.1 NONSTATIONARY HIGHER-ORDER SPECTRA

Success in the area of nonstationary higher order spectral estimators resulting in a
claimed 3 dB detection performance improvement under realistic conditions when compared t0
the stationary power spectrum has been reported in Wilson.2? In this report the detection
performance of different types of higher order spectra are discussed for a variety of signals.
The introduction of what the authors refer to as a "new type of higher order spectra called
nonstationary higher order spectra” is made with the distinction that these nonstationary higher
order spectra are not stationary higher order spectra representations of nonstationary processes
butmlurmdiﬁ‘mmgpemwlﬁchcontainﬂnstaﬁm:yhigtwro:dcrspemasambsuof
their domain. It is shown quantitatively through theoretical predictions and simulations that
these spectra perform better at detecting nonstationary signals than do the traditional stationary
spectra. The detection performance of the bispectrum is examined in comparison to the power
spectrum. The motivation for the introduction of this new class of spectra is the detection of
nonstationary signals such as harmonically related narrowband components of finite duration
transients. A functional approach is used? to define the stationary higher order spectra or
polyspemuﬂasuﬁsﬁcdappmadlisusedmdcﬁmﬂwmﬁmrymmromgrspem
or cumulant spectra. The estimation of higher order spectra are discussed from both stationary
and nonstationary perspectives.

The stationary functional approach defines a process with orthogonal increments based
on the classical derivation as defined on page 32 of Priestly.5® The nonstationary statistical
approach assumes a vector valued discrete time series whose nth order cumulant exists and is
finite. Mﬂnﬂorderdim?oﬁﬁermnsfomofﬂnwmﬂmeximuﬂmmhom
cumulant spectral density function is subsequently defined as the nth order discrete Fourier

transform of the cumulant function. The key here is that no assumption of stationarity has
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been made. For the estimation of nonstationary higher order spectra the result that the

cumulant of the finite Fourier transforms is proportional to the ath order polyspectral density
function plus lower order terms is extended to being proportional to the ath order cumulant
spectral density function (defined above) plus lower order terms. The observation is made
that, for stationary processes, the cumulant spectrum is zero except in the domain for which
the sum of all frequency components are zero. Thus, within this domain the cumulant
spectrum is equal 10 the classical polyspectrum defined by the stationary functional approach.
(This domain is the dark shaded triangular region in the block labeled "1” in the first quadrant
of Figure B.2-2 entitled, Fundamental Domain of the Discrete Time Bispectrum, from
Section B.2. The light shaded triangular region adjacent to this domain becomes a region

where non-zero values indicate nonstationarity.)

311 Conclusion

The bispectral results have previously been discussed in this paper (see Section 2.0).
The message of the statistical approach taken in Wilson®® is that blindly computing
polyspectra is folly without taking the time to understand the underlying statistics of the
processes involved which necessitates a certain degree of statistical preprocessing prior to
attempting any type of polyspectral analysis. The nonstationary statistical approach used in the
report to define cumulant spectral density functions lends itself to a better understanding of the
statistics involved in polyspectral processing and is an example of the mulﬁdimmiotﬁ
statistical basis used for trispectrum (kurtosis) computations that will be addressed in section
3.2.




312 Future Work

Further examination is recommended 0 better understand the nuances between
stationary and nonstationary higher order spectra computations from both algorithmic and
interpretive viewpoints as a function of the underlying statistics (real and assumed) of the

processes involved.

32 TRISPECTRUM

A natural extension to the bispectrum is the examination of fourth-order statistics
(kurtosis) in reference to determining the degree of success for signal detection in the
transform (trispectral) domains. 3% Work is specifically being directed toward computing the
statistics for the trispectrum similar to that for the bispectrum?®=! over the region of support in
ﬂnﬁmommforuispecuﬂcomwnﬁomis..ﬂ:pﬁndpddomahofﬂruispecqumfor
stationary continuous time processes which is a triangular cone in the positive octant—the
mmﬁduofﬁﬁsmbﬁngﬁtplmfomedbyﬂnhmcﬁuuofﬂmofmc
trispectrum’s symmetry planes.’64

As defined in (B.2-8) the trispectrum is the fourth order cumulant spectrum of a
random process. The motivation for investigating the trispectrum as described further in Dalle
Molle® is that bispectral tests don't serve as complete tests for the rejection of Gaussianity
ﬂﬁmﬁtyhypomen& Although impractical, a complete test based on higher order spectra
would involve all possible polyspectra as non-Gaussian processes may exist which have zero
bispectral values and in tum zero skewness measure over the complete principal domain. It is
observed that since most non-Gaussian processes have non-zero high order cumulants, it is
unlikely that a process would have both its skewness and kurtosis functions identically equal to

zero over the entire principal domain. Therefore, just as additional statistical goodness-of-fit
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tests present stronger cases for acceptance/rejection of hypotheses, bispectral and trispectral
based tests together make a stronger case for the rejection of the null hypothesis of
Gaussianity. Similarly, the constancy of the skewness function is not always a good indicator
for a linear model. Thus, the trispectrum presents a more powerful wol for the analysis of
non-linear and non-Gaussian time series. For the trispectrum, the square of the average
kurtosis func + ’n becomes the test for Gaussianity. 36 The symmetries which need to be
considered in order to define the continuous and discrete time principal domains of the
trispectrum along with the description of the wedge-shaped hyperplane cone in the frequency
triple (f1.22,£3) which forms the continuous time principal domain are given in Dalle Molle.36
This pyramid shaped wedge is defined explicitly for band limited processes. The principal
domain of the trispectrum for a discrete time band limited process is derived in a similar
manner to the bispectrum’s principal domain. Sampling at the Nyquist frequency results in the
mmmw'mmamwm;mmmmmmmm
support set for the continuous time band Limited trispectrum 36

Kurtosis estimation has also been extensively addressed. 3348 The occurrence of non-
Gaussian signals in underwater acoustics due to multipath and modulation effects is the main
motivation here as sinusoidal and narrowband Gaussian signals which, when propagated
through fading or multipath environments, are received as non-Gaussian in terms of the
frequency domain kurtosis estimate. 38 The results are applicable to both active and passive
sonar with the active case conjectured 10 be non-Gaussian (skewness at the retums) due to
modulation effects. Results have suggested the possibility of detecting non-Gaussian signals
via kurtosis estimation at lower signal-to-noise ratios than the power spectrum method.

For under ice data the non-Gaussian signals are due to ice movement which produced
transient and modulated signals in the passive case.38 (If, in fact, sufficient skewness is




observed at the retums for the active casc then third order statistics should generally
discriminate between non-Gaussian and Gaussian signals.4%) Kurtosis is defined 1o be the
ratio of a fourth order central moment to the square of a second order central moment. It has
~ been shown 10 be a locally optimum detection statistic under certain conditions and is extended
inﬂtfmmydomahmmeduecﬁmofmmmﬁmmomawincwssim;mpk-ﬂe
outliers being equivalent to the randomiy occurring signal that is 10 be detected.

Based on the analyses of real underwater acoustics data, conditions exist under which
ﬁwydomahkumdsesﬁmﬁmhﬂicmﬂnmofmﬂomlyocwmgsim&”
ForaGauﬂmdimiMmhmosiswmhaveavahnofm3wim:omebmmdasa
function of the number of samples. For randomly occurring signals that produce non-Gaussian
distributions, the kurtosis estimate can be less than or much greater than 3. A model for the
received data which contained the effects of amplitude and phase fluctustion of the signal
along with modulation effects was used 1o evaluate the kurtosis estimates in Dwyer.?® The
frequency domain kurtosis estimation was computed and shown to have significantly high
values even for small signal-to-noise ratio cases surpassing the averaged power spectrum
estimation in some instances due to its sensitivity to the pdf of the signal. Results from
Dwyet”algmmufamuomlyoequﬁngﬁgml&e.g..ammiunmamodmaedsignﬂ
over long integration times, the frequency domain kurtosis estimate may be a better detection
statistic that the power spectium estimate. For fading environments which frequently occur in
underwater acoustics, the kurtosis estimates are significantly enhanced.

The utility of the fourth order spectrum for the classification of transient signals in
passive sonar and resonances in active sonar along with the computational drawbacks is given
in Dwyer43 The importance of this is obvious because many noise sources, i.c., ambient,
reverberation, flow, etc., are Gaussian compared to signals, i.e., sinusoids, transients, active




sonar transmissions, which are all non-Gaussian. It is demonstrated that the fourth order
spectrum differentiates between a sum of sinusoids and thus can aid in active sonar
classification. When long pulse trains are transmitted the retumn echo is usually modulated
from target dynamics, Doppler spreading, or medium effects. Under these conditions the
spectrum can be severely distorted making detection and classification impossible. Using an
amplitude coded pulse train it is shown that the fourth order spectrum can extract range and
Doppier information while for the same conditions the spectrum is useless.4> The emphasis is
on the special case of the fourth order cumulant defined as kurtosis in (B.1-6). The treatment
here is multidimensional as a new class of non-Gaussian density functions which represent
meaningful signals (independent data are not required) is introduced with their corresponding
fourth order spectra. The importance of this work is related to the statistical treatment of
modulated processes as related to sonar, in particular active sonar.

To demonstrate theoretical results in regard to frequency domain kurtosis estimation an
experiment was conducted®® where a sinusoid was modulated by white Gaussian noise,
transmitted through the water and received on an omni-directional hydrophone. This was an
attempt at simulating the modulation due to target effects which was previously discussed.
The second order spectrum (power spectrum), the spectrum of the special case of the fourth
order moment, and the spectrum of the special case of the fourth order cumulant (trispectrum)
derived at the output of 2 lowpass filter were estimatéd from the filtered data. The experiment
verified theoretical results by showing that the second order spectrum could not extract the
sinusoidal frequency, but the respective spectrums of the fourth order moment and cumulant
could. hisﬁnmernpomd“dmﬂn-unlysisofmdmcleaﬂymowmodmmdor
fluctuating signals. As the range increases between a source and receiver these fluctuating
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components dominate the signal. This fluctuation was the reason for the Gaussian modulation

of the transmitted signal in the experiment.

The properties of the special case of a fourth order cumulant are considered via
implementation using 1-D Fourier transforms as opposed to the computational complexity
involved with full 3-D Fourier transform realizations of the trispectrum as defined in (B.2-8).
The dersivation of the Fourier transform of the special case of a fourth order cumulant for the
extraction of range and Doppler information is given in Dwyer.4147 An improvement on the
order of that noted in Dwyer™ for the detection of sinusoids was similarly observed when
comparing fourth order cumulant techniques to the second order spectrum for range/Doppler
applications. It was demonstrated by simulations that the Fourier transform of a special case
of the fourth order cumulant could extract range and Doppler information with high resolution
even when Gaussian noise was added to the echo while, under the same conditions, the
ambiguity function and second order spectrum processing showed significant Doppler
spreading losses.

321 Conclusion

It is recognized that the additional computational, statistical, and physical meaning
complexity concomitant with trispectral computations may be the deciding factors in any kind
of a tradeoff with a conjectured improvement over polyspectral methods of lower order.

322 Future Work
If special cases of fourth order cumulant spectrum (trispectrum) computations can be

realized which minimize the computational effort required for otherwise full trispectrum

realizations then the efforts cited above merit further scrutiny in regard to, at the very least,
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signal classification which exploits the phase interactions of higher order statistics, and signal
detection per se in comparison 10 second order methods. Abbreviated kurtosis estimation
algorithms might even present viable altematives to third order methods when signal skewness
is not a problem, i.c., sufficient skewness exists to employ bispectral techniques. This did not
appear 1 be the case, however for the real test data examined in this report as signal
skewness, specifically lack of same, presented a very real problem in regard to the assumptions
necessary for successful application of higher order spectra for detection purposes.

Dwyer’s work points out the fact that power spectrum density (PSD) estimation is
essentially a second order measure which is not sensitive to the statistical nature of the
signais. 3348 He offers, as an altemative, simple fourth order movement (kuntosis) tests in
both frequency and time as supplements 1 PSD estimates and, in some cases of practical
wummmwmm It is highly recommended that
the success which dwyer achieved using frequency domain kurtosis methods be extended to
the time domain, as he suggests, for both active and passive sonar scenarios. Dwyer
emphasizes that the time domain is nothing more than a special case of the frequency domain
and that analogous results should also hold in the spatial domain where kurtosis methods could
be evaluated in regard to target angle estimation. His past success, for low input signal-to-
noise ratio cases (SNRi) using kurtosis methods exclusive of any cumulant connotations where
kurtosis methods detected non-Gaussian signals while PSD methods failed to do so, is reason
enough to verify his conjectures in both time and spatial domains.

Following Dwyer’s lead, algorithms need to be developed which examine both the real
and imaginary pans of the input data and optimally select the part or post processing of both
parts which gives the best detection statistic as a function of: (1) the signal set used, (2) the
target aspect angle, and (3) the kurtosis window length which defines a sliding kurtosis
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window across an acoustic cycle (ping in active case, listening interval in passive case). The
algorithms need to be examined in regard t0: (1) edge effects resulting from the windowing
procedure for simulased high and low kurtosis signals, specifically, how edge effects can
maximize detection by dictating whether high or low kuriosis is sought for the detection
statistic; (2) the effect of inducing high or low kurtosis to a signal distribution prior o pinging
for the active case, specifically, how such inducement effects the signal upon backscattering
from a target with particular attention paid 10 the degree of kurtosis observed post target
dynamics and/or modulation effects; (3) evaluation against simulated test beds containing
realistic targets from widely accepted sonar models as a function of target aspect, platform and
target speed, tum rate, depth, position, and sea depth for fine tuning purposes, and finally, (4)
emkmmumuwwddmummmvuifywdimbwyﬂ's
conjectures, specifically, what signals are optimal for kurtosis as an effective detection statistic
in the active case, and what kurtosis window lengths and post processing are optimal in the
passive case. ‘The utility of kurtosis for detection would then have to be compared with
standard second order methods in 2 ROC curve sense for quantification purposes.

It is worth noting that work has begun on an algorithm, Induced Kurtosis Statistic
Anomaly Detector (IKSAD).33 10 test Dwyer's conjectures with the initial results being very
encouraging. The algorithm, currently in development is a sliding windowed kurtosis in time
over an acoustic cycle. Tests were performed using simulated data generated by the Target
Echo, Noise, and Reverberation (TENAR) Model5* The results, for a wide selection of
platform and target dynamic parameters in shallow water scenarios at varying target aspects,
indicate successful target location as an extrema over the acoustic cycle in almost 80% of the
cases without any type of signal post processing for a complete range of SNRi = 15 dB down
to0 -15 dB in decrements of 5 dB. The algorithm uses no FFTs and, as such, is independent of
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doppler. It merely uses a normalized simple fourth order moment (kunosis) as a detection
Statistic 10 exploit the active signal perturbation upon backscattering as a function of target
dynamics and/or modulation effects suggesied by Dwyer. In short, it is concemed only with
the statistical distribution of the echoed signal over the target extent. Additional simulated
tests against specific targets of interest at aspects of interest for both shallow water and deep
ocean scenarios were performed with a high degree of success, upward of 90%, in the SNRi
range of [15,-15] dB. All simulated tests utilized a 15 degree beam at a look angle of 0
degrees, i.c., directly on the Main response Axis (MRA). Preliminary tests against real data
(static and dynamic) have also been performed with the algorithm again achieving success in
the SNRi = (15.-15] dB range for abbreviated test sets. More real data needs 1o be analyzed 1o
mguymn{smwuaﬁummmmmmmmw
be encountered. This is necessary to complete the evaluation of Dwyer’s conjectures.

'iheTENARmodeL“uudforﬂnmmﬁonofﬁmnluddm.ptedimﬂrkvds
and complex cross-correlations of sound "heard" by a multichannel active o passive sonar
system in a specified environment. Sound sources may include ambient noise, target radiated
mmmmmmmmmmmmmm). Two
propagation models are offered: isovelocity (straight line) with boundary reflections, or
Weinberg's CONGRATS ray tracing.’’ Eggan and Goddard developed the sequence of
programs for generating TENAR’s simulated multichannel reverberation. These programs
are fusther described in broad outline form by Luby>> with the physical and mathematical
background given by Princehouse. 8

This reverberation capability has now been integrated into The Sonar Simulation
Toolset (SST)’8 developed with sponsorship from several U. S. Navy sources including the
Applied Research Laboratory of The Pennsylvania State University (Lee Culver, Leon Sibul,




and Frank Symons, Jr.). SST is a set of computer programs, input files, object-oriented
software components, and software development tools for building and running sonar
simulations. In this context, a "sonar simulation” is a computer-based process for predicting
the response of a sonar system to a particular environment. It produces a digital representation
of the predicted signal in each channel of the sonar receiver’s processing path. This signal
includes random fluctuations with the correct statistical properties. The SST enables a user to
create an "artificial ocean” for: (1) testing new or proposed sonar systems or tactics, (2)
training sonar operators, (3) planning experiments, or (4) validating models of underwater
acoustic phenomena by comparing simulation results with measurements. Inputs to a sonar
simulation include: (1) the characteristics of the ocean itself (sound propagation, sound
scattering, ambient noise), (2) active targets (scatterers of an active sonar’s pulses), (3) passive
targets (noise sources), (4) the sonar transmitter (pulses, beams, trajectory), and (5) the sonar
receiver (beams, trajectory, signal processing, self noise). SST commands available now can
generate reverberation and target echoes for a multichannel active sonar and compute the
signal received by a multichannel passive sonar from any number of maneuvering sources.
Three different methods for generating reverberation are: (1) random point scatterer based, (2)
Gaussian integration, or (3) Monte Carlo integration. A straight line (isovelocity) sound
propagation model is built in; alternatively, the user may choose a propagation model based on
eigenray files produced by NUWC's Generic Sonar Model (GSM). The latter mechanism
makes all five of GSM’s propagation models available to the SST. The scattering function
produced using the Gaussian and Monte Carlo integrations is a time dependent cross spectral
du&ity matrix for reverberation. SST-uses this scattering function to produce a multichannel

stochastic time series for subsequent analysis.""8
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It is the author’s intent t0 use SST, in particular SST"s ability to reflect the correct

statistical properties of the received signal for a specified environment, w0 quantify his work
with IKSAD3 in relation to current detection methods. The final result will be a qualification
of Dwyer’s conjectures regarding the utility of time domain kurtosis as an effective detection

statistic for both active and passive sonars.
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APPENDIX A

HI-SPEC




A0 SOFTWARE DESCRIPTION
A brief description of Hi-Spec Routines follows!.

bispec_i Indirect method for bispectrum estimation

cum_true Computes theoretical (true) cumulants of AR, MA and ARMA processes
rp_iid Generates sequence of i.i.d. random variables

amna_syn Generates ARMA synthetics

ar_rcest Estimates AR parameters using correlation and/or cumulants

ma_est Estimates MA parameters

ammags  Estimates AR parameters using the g-slice algorithm

arma_rts Estimates ARMA parameters using the residual time series method

s Total least squares solution to a set of linear equations
Quadratic Phase Coypling
gpc_gen Generates quadratically phase-coupled harmonics in noise
gpc_tor Parametric QPC detection of quadratic phase coupling via the TOR method
H ic Retrieval

harmm_gen Generates harmonics in Gaussian (colored) noise for the harmonic retrieval problem




harm_est

4

riv_dl

niv_tr

iv_cal

biceps
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Estimation of power spectra of harmonics using MUSIC, Eigenvector,
Pisarenko, ML (Capon) and AR methods based on the diagonal slice of the
fourth-order cumulant with conventional periodogram also given for

COmparison purposes

Time-Delav Estimation
Generates Synthetics for time-delay estimation
Estimages time-delays from two sensor measurements using third order cross
cumulants

Amay Processing
Generates Synthetics for DOA problem
Estimates number of sources and their bearings from a linear array of sensors
using MUSIC, cigenvector, Pisarenko, ML (Capon) and AR methods based on
spatial fourth-order cumulants

Adaptive Linear Prediction
Adaptive LP using double lattice filter

Adaptive LP using transversal filter

Computes instrumental variable processes

Magnitude and Phase Retrieval
Estimates impulse response via the bicepstrum method and computes complex
cepstrum of a signal
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matul Estimates Fourier Phase and magnitude of a signal using the Matsuoka-Ulrych

algorithm

cum?2_est Estimates covariances
cum3_est Estimates third-order cumulants
cumd_ecst Estimates fourth-order cumulants

Al  BISPECTRUM ROUTINES

The bispectrum of the process, y, is estimated via the direct (FFT-based) and indirect
metlndl.l'ls

For the direct method, the time-series, y, is scgmented into possibly overlapping
records; the mean removed from each record, and the FFT computed; the bispectrum of the &-
th record is computed as

. (A.11)
By(mp) = X (m)X,(n) X, (m+n),
\

wheux.damﬂ:eFFl‘ofﬂnhhwcotd. The bispectral estimates are averaged across
records, and an optional frequency-domain smoother (Rao-Gabr window)!4 is applied.

For the indirect method, the time-series, y, is again seqmented into possibly
overlapping records; unbiased sample estimates of third-order cumulants are computed for each
record and then averaged across records; a Parzen lag window is applied to the estimated
cumulants, and the bispectrum is obtained as the 2-D FFT of the windowed cumulant function.
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A2  GAUSSIANITY TESTS

A decision siatistic for Hinich’s Gaussianity test is estimated.! The bispectrum is
estimated using the direct method, and a frequency-domain 2-D boxcar smoother is applied.
The power spectrum is estimated via the direct method, and a boxcar smoother is applied. The
bicoherence is then estimated. The Gaussianity test (actually zero-skewness test) basically
involves deciding whether or not the estimated bicoherence is zero.

The statistic for the Gaussianity test, sg, is a three-element vector where sg(1) is the
estimated statistic S, 5g(2), is the number of degrees of freedom, p, and the probability of false

alarm, 3(3), is the probability that a 2 random variable with p degrees of freedom could

have a value larger than the estimated S in sg(1). If this probability is small, say, 0.05, then
wmynjeaﬂuhypoﬁmisofmmnaPFA(wdﬂmma)ofo.os.
Therefore, if you decide to accept the hypothesis that the data have non-zero skewness, tiien
the probability that the data may actually have zero skewness is given by sg(3). If PFA is
large, then the hypothesis of zero skewness cannot be easily rejecied.

The nommalized bispectrum (bicoherence) is defined as

Ko,0,)

A2-1
(3(01)3(0)“0103’))“ ( ‘

B (0,0, =

where 3.(9”92) is the bispectrum and §(¢) is the power spectrum. Under the Gaussianity
(zero skewness) assumption, the e~ ~ted value of B (0,0, is zero. The test of Gaussianity

is based on the mean bicoherence power,
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S=Y [B(a,0) (A2-2)
whemdnmmaﬁmispcrfmmedmﬂnmndundmugionadeﬁmdhﬂkﬁch.” The

msnfmmmmpamofﬁm.mnpkammﬁmofﬂum

lengthmdamoluﬁonpmmetet.cpamu"pisappmximclyequalmNzlﬁuz.whereNis

the length of the time series.

A3 HARMONIC ESTIMATION

Let C denote the maxiag by maxlag matrix, with entries, C(ij) = C,( - j00).

Also, let C = VS¥’ denote the eigenvector decomposition, where S is the diagonal matrix of

cigenvalues, A(k), and V is the matrix of eigenvectors, vp k = 1,..,maxlag. Let

o(w) :=[Lexp(- jw), ... exp(-j(maxlag - D)l (A3-1)

denote the FFT vector; and let p denote the chosen order (the parameter p_order). Then, the

cxmuﬂam-huedpowq:emmobninedasfoﬂowsl.

M 1
P(o)-(.};_‘ wik) Ic’(le’) (A32)
1
where,
1 MUSIC
w(k) = { 1A(k) Eigenvector

Sk - M) Pisarenko

where §(k) is the Kronecker delta function.
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The AR power spectrum is obtained as follows: First, a rank p approximation of the matrix C |

is obtained, as ¢ = Y3y, where ¢ is obtained from S by setting A, =0, k = p+l,.. M.

The AR parameter vector is then obtained as the solution to (g = @; the method in

Cadzow?! is used, and the solution is forced to have unity modulus. !
The ML(Capon) solution is given by,

» -1
1 etow. B (A3-3)
Pn(u)-{rzn: ) le’(@)v, | )




APPENDIX B

POLYSPECTRA THEORY




BSOS INTRODUCTION

This appendix presents an overview of the definitions, properties, and estimation
methods of higher-order statistics or cumulants of stochastic signals and their associated
Fourier transforms known as higher-order spectra or polyspectra as presented in the tutorial
references, 2+15:16

Bl  MOMENTS AND CUMULANTS
Higher-order spectra of stationary stochastic signals are defined in terms of cumulants
and are referred to as cumulant spectra. Given a set of a real random variables

{%,,%5,..,%,}, their joint cumulants of order r = k, + k, + ... + k_ arc defined as

o' Ind(w,,0, ..., u,)l
Coep & (- (B.1-1)
ol Il PR B W [
1% .. e, 0,
where
® (0,05, -, @) = E {expj(x, + .. + 0 x)} (B.1-2)

is their joint characteristic function. The joint moments of order r of the same set of random

variables are given by

" ®(0,, 0, ..., u)l
doy dor |

m ., & E{x,*'x:' x) = (Y

(B.1-3)




The joint cumulants can be expressed in terms of the joint moments of the set of random

variables as follows for the moments m ,m.,m,,m,:

m =Ek) m=Ekd
m, = Ek]} m, = E&{)

of the random variable {;l}mxclatedtoitscumulamsby

G =m
‘z""z""xz
¢y = my - Imm, + 2m;

¢ = My~ dmym, - 3m} + 12mm] - 6m; .
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It is clear that the computation of the rth-order cumulant of {‘1) requires knowledge of all its

moments from order first to rth, i.c., m,m,....m, . If {x(k)}, k =0, £1, £2, ... is a real,

strictly stationary random process with zero mean, E{x(k)} = 0, then the moment sequences of

the process are related to its cumulants as follows:

Myt nT, ) = S{x® xR + t). xlk + T, ) (B.1-4)
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where the moments up to order n exist and depend only on the time differences

Ty» Ty .., _ . T12King inio account the zero mean condition above, the cumulants are

related to the moments as follows for orders n = 1,2,3.4:

¢ =m =E{x(k) =0 (mean value), (B.1-5a)

F(x) =mi(x) - m” =mi(x) = Ex@®xk + 1))
(covariance sequence),

(B.1-5b)
where ..; () is the autocorrelation sequence,

6 (5pTY) = MG, T) - MM (x) + mI(x) + M5y - 1)) + 2m)
(B.1-5¢)

c5 (5,5 = my (v,%,) = Ex(®x(k+)x(k + )}
(third-order moment ox cumulant sequence),

€ (B T2 %) = M (7,5 %) —my(3y) "My (75 - 7)) - my(z)
mE(Ty - 1) ~mE(r) mE(5, - ) - MM (3, - Tt - T
+ my (T3, Ty + My (3,79 + my (%), T)]
+ 2 [ (5) + M (5) + M (%) + mi(xy - )
e mE(Ey - T) ¢ mi(sy + t)] - 6mF
(B.1-50)




€ (BT T = MY (51 T3 Ty) = My (5) my (3 - 1) - my'(s)

- my (g - T) - my (s my (3, - 1)

=E{x(®)x@k+t)x®k +z)x(k + 1))

(fourth - order moment sequence).
Equations (B.1-5a)-(B.1-5d) illustrate that while the moments up to third order are identical to
cumulants for zero mean stationary random processes, the generation of the fourth-order
cumulant sequence requires knowledge of the fourth-order moment and autocorrelation
sequences. |
By putting the delays = 0 in equations (B.1-5a)-(B.1-5d) with the zero mean

assumption, the variance, skewness, and kurtosis become

Y5 = ¢ (0) = E{x2(k)} (variance)
s = ¢5 0,0) = E{x* ()} (skewness) (B.1-6)
s = ¢, 0,0,0) =E{x*®)} - 3[v3F (kurrosis)

B2 HIGHER-ORDER SPECTRA

Higher-order spectra of stochastic signals are usually defined in terms of cumulants
and not moments for two reasons: (1) for a stationary Gaussian random process, all of the
moments for n > 2, although generally non-zero, provide no new information, while the fact

that the joint cumulants for n > 2 are identically zero conveys this explicitly; (2) if the random

variables {‘v-"-xa} can be divided into any two or more groups which are statistically




independent, their ath-order cumulants are identically zero thus providing a measure of
statistical independence. (The ath-order moments are non-zero.)
Assuming that the cumulant sequence is bounded, i.c., satisfies the condition

y .. Y led (3. 07,.y) <, the nth-onder cumulant spectum Cf(w,,..., 0, _,)

% - Ty =

of (x(k)} exists and is continuous and is defined as the (n-1)-dimensional Fourier transform of

the ath-order cumulant sequence

Cl@popenty ) —— 3 .. T

(2“).-1 tY - tpy "
Y 9 SRR (B.2-1)
cexpl{-j(w; 7, + @7, + ... + 0,5}

o, |sxfori=1,2,...a-1and |0, + 0, + ... + @, |sx.

In genenal, CF (w,, @, ..., @, _,) is complex for n > 2, i.e., it has magnitude and phase.

z z z (B.2-2)
C, (..., 0, ) = | C (0,,...,0, ) |expj ¥, (0,...,0, ).

The cumulant spectrum is also periodic with period 2, i.c.,
C, (wy,...,0, ) = C; (0, + 27,...,0, , + 2%).

The power spectrum, bispectrum, and trispectrum are special cases of the mth-order cumulant
spectrum defined by equation (B.2-1),




Power Spectrum: & = 2

G =5 ¥ @aplj©n) (B2:3)

lw| s =,

where ¢, (1) is the covariance sequence of (x(k)} given by equation (B.1-Sb). From equation

(B.1-5b) and equation (B.2-3) we have

¢z () = & (~%)
G (0) = C; (-w) (B.24)
C; ()2 0 (real, nonnegative function).
Bispectrum: & = 3

Cs (0, @) = (2'1)’ ‘2.:_. :,;- ¢ (7, 1) explj(o, 7, + 0, 1))

jo,lsx, o, <%, |0, + @, |<x,

(B.2-5)

where c,' (% %) is the third-order cumulant sequence of {x(k)) described by equation (B.1-

5c). Important symmetry conditions follow from equation (B.1-5¢)
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65 (53 %) = 65 (5 T) = 6 (-7 %, - 1)
2o (5 -t - T) = (%, - Ty - 1) (B20)
= ¢y (-Tp T, - T,).
The definition of the bispectrum in equation (B.2-S) and the properties of third-order

cumulants in equation (B.2-6) give
Cs (0 @) = Cy (0 @) = Cy (-0, -0

= G (-0p ~w) = Gy (~wy - 0y )
= Csx(“‘v -0, - @) =G5 (-0, - 00,
= Cy (0p -0, - @)

This knowledge of the bispectrum in the triangular region ©0,20,0,20,0, + ©,5% is

(B.2-7)

enough for a complete description of the bispectrum.
Trispectrum: n = 4
Ci (0 0,09 = 1 Y Y Y &Gurry
(23), Tw g e
caxpl-j(0, 5, + 0,7, + @1y}

lo,| <%, |0,| £%,| 04| s%,] 0, + @, + 0y |sx,

(B.2-8)

where c.' (%) Tp Ty) is the fourth-order cumulant sequence given by equation (B.1-5d).

Symmetry properties can be derived for the trispectrum, similar to those given in equation
(B.2-7) for the bispectrum.




A normalized cumulant spectrum which combines the cumulant spectrum of order

n, C}(@y, ..., ©,_,)+ and the power spectrum, C; (w). Of a process may be defined as

Ca (0 03,0,
[CF(0) * G (0)~C5 (0, * C(@, + @, + ~+w, )1#
(B.2-9)

P, (0, ©p,0, )8

The third-order (n = 3) case is called the bicoherence which is the normalized

bispectrum

Cs (0,, @, (B.2-10)
[C () Cf (0) Cf (0, + 0]

Py (0, 0, &

where ¢ is defined in equation (B.2-5) and C; is defined in equation (B.2-3).

The six symmetry regions of the third-order cumulant as given in equation (B.2-6) and
the twelve symmetry regions of the bispectrum as given in equation (B.2-7) are listed below
and shown in Figures B.2-1a and B.2-1b:




L €} (0, @,)

2 Gy (vy 0

3.6y (rup 0, + @)
4.CP (-0, 0, + @)
5. CF (-0, -0y @)
6. CJ (-0, - 4y, @)
1.CF (0, -0y

8 CF -0y -@)

9. € 0y -0, - 0y
10. C5 (@, -0, - ©,)
1. € (0, + 0, -0,)

12. Q‘(Ql + 0y ~0,)
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® N2
@ @ -x\ ©
1‘ @
® Q)
®© Oloen
Figure B2-1a Figure B2-1b
The six symmetry regions of the The twelve symmetry regioas of the
third order cumulant function c’.(f”t’) bwmc;(op “3)

The additional symmetries as defined by the extremities of the outer hexagon in the above
figure are due to the effects of a discrete time/continuous frequency bispectrum as opposed to
the standard inner hexagon symmetry region of the continuous time bispectrum corresponding
to a band limited process. The net result is an additional set of twelve symmetry regions
defining the borders of the outer hexagon. The double periodicity of the bispectrum causes
dﬁseffeamdisillnsnmdinaﬁgmBJ‘ZﬁomAﬂimu The block capital "C" notation
defines conjugate symmetry regions of the bispectrum while the boxed numbers donate
equivalent regions of the discrete time bispectrum. Figure B.2-2 reflects a normalized
sampling frequency = 1 with the lighter shaded region being the zero part of the bispectrum
for a bandlimited process indicative of a properly sampled, stationary time series. The darker

shaded region represents the non-zero part of the bispectrum.
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Figure B2-2 Fundamental Domain of Discrete Time Bispectrum

Previous bispectrum properties apply solely to real-valued signals. The extension to
complex-valued signals has not been widely addressed. The following definitions and
properties are due to the requirement for complex signals for radar signal processing as
presented in Jouny.23 This is a normal requirement for analytic signal analysis for a wide
spectrum of applications involving real or quadrature-sampled data.

If the data {x(k)} is a complex stationary process, the second order cumulant is defined

as_c;(g) = E{x*(k) x (k + t)). It is also possible to altemnate the conjugate so that

¢ (z) = Elx(®)x*(k+ ). For the third joint cumulant case, the conjugase can be placed

either on one or two entries of the triple product in equation (B.1-5¢). Only one placement,
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however, defines which one of the symmetry relations given in equation (B.2-7) remains valid.

In general, the bispectrum of complex signals has twofold symmetry about an axis defined on
(“’1 0,0, = 50,0, * ~50, 0, * -w,). See Figure B.2-3 for the distributions

of responses in the bispectral domain as a function of the placement of the conjugates for the

third order cumulants.
W,
x*x*x
@
o b 3¢ - 3
@,
x°*x® x'xx®
xx*

Figure B2-3 Distribution of the responses in the bispectral domain as a function of
third order cumulant conjugate placement

For example, if the first quadrant ©,, 0,>0 is preferred then the third order cumulant is

defined as ¢f(z,, ¥,) = E{x* (B)x(k + t)x(k + t,)).

The following relations define the bispectrum of complex-valued signals for all

possible positions of the complex conjugate:




F

<-==>

Elx*(B)x(k + v )x(k + T} <X(0)X(w)X* (0, + @,)>

with the symmetry relation CJ/(w,,0,) = C5 (0, @),

F

<--=>

Elx()x*(k+ < )x(k + t,)} <X*(~0)X(w)X(-0, - 0,)>

with the symmetry relation C;(w,,@,) = Cy (@, @, - ©,),

F

€-==>

Elx(®)x®& +<)x° (k + t)} <X(0)X*'(-0)X(-0, - @,)>

with the symmetry relation Cy'(w,,0,) = Cy (-0, - ©,,6,),

Elx®z G+ e)x' k1)) T <X*(-0)X*(-0)X(-0,- 0>

with the symmetry relation Cy'(w,,0,) = Cs'(0,,@,),

F

==

E{x*(B)x"(k+z)x(k+<)) <X*(~0) X () X* (0, + ) >

with the symmetry relation €5 (@,,w,) = C; (-, - ©,,®,),

F

<-==>

Elx*®)xk +<)x*(k+ 1)} <X(0)X*(~0)X*(w, + @,)>

with the symmetry relation Cy (0,,0,) = Cy (0,, -0, - 0,),

where F denotes the Fourier transform pair and < denotes the ensemble average.

<-=-=>
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The triple correlation aspect of the bispectrum is self evident from its definition as the

Fourier transform of a third oraer cumulant in equation (B.2-1). This definition implies that the
blspemumnapuﬁaﬂuﬁequencypair(u'o) is non-zero if at least one of the three spectral
responses X(o‘),X(u), and x(u‘“,,) is correlated with the other two since

C;(u’u) = <X(Q‘)X(Q)X’(u‘ + Q)>. This definition arises from a Fourier-Stieltjes

representation of X where the distinction is made between the power spectrum representation of the
contribution to the mean product of two Fourier components whose frequencies are the same
compared to the similar bispectrum contribution involving three Fourier components where one
frequency equals the sum of the other two.!3




APPENDIX C.

SIMULATED/REAL DATA TEST RESULTS
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C.0 POWER SPECTRUM/BISPECTRUM COMPARISON FOR SIMULATED DATA

Figures C.0-1 through C.0-3 show a comparison between the power spectrum and
bispectrum of a harmonic (pure tone) for three different states: (1) noiseless (Figure C.0-1), (2)
low noise (Figure C.0-2), and (3) high noise (Figure C.0-3). The low and high noise states
represent signal-t0-noise ratios (SNR) of 16.5 and -3.5 dB respectively where the SNR is

defined as the ratio of the signal variance to the noise variance; when expressed in dB, it is

given by 10log (0%/g2) where g} is the variance of the signal and o is the variance of

the noise. The bispectrum: was computed using a FFT size of 256 corresponding to the data
length as no averaging was performed. The bispectrum slices refiect the effects of no
windowing and a Rao Gabr window of length § for smoothing purposes. The slices with the
highest bispectral value in the triangular region of support were chosen, a convention followed
in bispectral processing?®> The pure tone was designed to show up at .5 hz for this set of test
cases with a sampling rate of 2 hz. The noise states were generated by adding Gaussian noise
to the pure tone. The plots indicate essentially no difference in the signal peak to noise level
representations between the power spectrum and bispectrum for the noise states in Figures C.0-
2 and C.0-3 respectively.

C.1 DIRECT/INDIRECT BISPECTRUM COMPARISON FOR SIMULATED DATA
Figures C.1-1 and C.1-2 show a comparison between the conventional direct and
indirect methods for estimating the bispectrum as defined in sections 2.1.1 and 2.1.2
respectively. The data for the figures was generated using the Hi-Spec program "qpc_gen”
which generates quadratically phase-coupled harmonics in noise as defined in section A.0 of

Appendix A. Figure C.1-1 represents bispectral processing using a quadratically phase coupled
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synthetic consisting of three quadratically phase coupled harmonics at frequencies fl = 0.12, 2
=0.18, and f3 = f1 + f2 = 0.30 hz. The data was segmented to reflect independent
realizations. For each realization the phases of the first two hanmonics were chosen randomly
with the phase of the third harmonic set to the sum of the phases of the first two. A total of
64 independent realizations, each consisting of 64 samples, were gencrated. The amplitudes of
all three harmonics were unity and the signal was noise free. Figure C.1-2 data was identical
to Figure C.1-1 with the exception that Gaussian noise was added to the signal to obtain an
overall signal-to-noise ratio of 0 dB.

The direct bispectrums from left to right reflect no windowing and 2 Rao-Gabr
window of length S respectively. Similarly, the indirect bispectrums from left to right reflect
no windowing and a Parzen window respectively. The FFT size in both ‘cases was 128 with
the number of lags chosen in the indirect case for the estimation of the higher order moments
being 21. (It is suggested as a rule of thumb in Hi-Spec that the number of lags should be set
to the number of samples per segment divided by 10.)

The severe deterioration of the indirect bispectrum estimate for the noisy data in
Figure C.1-2 was unexpected relative to the successful suppression of noise noted for the
direct bispectrum estimate in comparison. The skewness of the noiseless data in Figure C.1-1,
a function of the quadratic phase coupling, was 0.82 indicating highly skewed data. The
skewness of the noisy data in Figure C.1-2 was 0.36 indicative that the phase coupling
contribution to the skewness was not masked by the addition of Gaussian noise. It is
worthwhile to note that for the generation of uncoupled sinusoids at the same frequencies,
0.12, 0.18, and 0.30 hz, the noiseless skewness was 0.03 while the noisy skewness was -0.01
indicative of symmetry which explains the inability of the bispectrum to differentiate

uncoupled sinusoids from symmetric pdf noise.
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The indirect bispectrum’s inability to sufficiently suppress the noise in Figure C.1-2
along with resolution problems noted in Figure C.1-1 (note the loss of the quadratic phase
coupled triplet in the Parzen window case) dictated the use of the direct bispectrum for
comparison against second order statistical methods for this paper. The problems related to
the indirect bispectrum remain unresolved at this time pending further study in regard to the

theory and algorithmic implementation in Hi-Spec.

C.2 POWER SPECTRUM/BISPECTRUM COMPARISON FOR REAL DATA

Figures C.2-1 and C.2-2 show a comparison between the power spectrum and direct
bispectrum as defined in equations (B.2-3) through (B.2-7) respectively of Appendix B. The
bispectrum was computed using a FFT size = 128 with a Rao-Gabr window of length 3.
Figure C.2-1 is a sonar ping using a 100 ms hop code designated Ping A while Figure C.2-2 is
a 11 ms pure tone designated Ping B. The 1-quadrant bispectrum is shown via contour plots
with the quadrant symmetry clearly evident as illustrated by the figures in section B.2, in
particular Figure B.2-3, "Distribution of the responses in the bispectral domain as a function of
third order cumulant conjugate placement,” which is in the first quadrant for Hi-Spec.
Bispectrum slices are computed following the convention referenced in section C.0 for
comparison with the power spectrum. The ping data limitations constrain the averaging to
approximately 9 segments which mirrors the tests performed in Wilson.2? The frequency
scales have been normalized for sanitization purposes and the power spectrum/bispectrum
comparison reflects a relative dB scale as a log power spectrum/log magnitude bispectrum is
computed - a parameter typically found in the literature.

The figures indicate that no processing gain is realized by the bispectrum over the

power spectrum for detection purposes in both instances. Closer examination of the statistics




)
reveals that the distributions of the retums had skewness measures of (-0.02, 0.00) and (0.02,

0.01) respectively for their real/imaginary parts. Moreover, the kurtosis statistics were (3.68,
3.15) and (3.19, 3.21) respectively (a kurtosis of 3 indicates Gaussianity). Clearly, the desired
effects of target dynamics and/or modulation necessary to skew the data sufficiently for
bispectral enhancement via suppression of Gaussian or non-Gaussian symmetric pdf noise were
not anough”“s"‘g.

The data analyzed represented shallow water scenarios. A total of approximately 11
pings were examined with the results in all cases similar to those described in Figures C.2-1
and C.2-2. The average echo skewness measure over 11 pings was (0.01, -0.00) with a
skewness range of ([-0.03 0.03], [-0.03 0.01)) and a smndatd deviation of (0.02, 0.01). The
average echo kurtosis measure was (3.47, 3.47) with a kurtosis range of ([2.67 4.84],
[2.60 4.35]) and a standard deviation of (0.73, 0.54). These numbers appear to be well within
the bounds of Gaussianity for skewness with only a slight variance for kurtosis. The
corresponding numbers for the reverberation data in the neighborhood of the echoes was (0.00,
0.00) for skewness with range ([-0.01 0.01), {-0.00 0.01]) and standard deviation (0.01, 0.00)
which is the crux of the problem, i.c., the echoes cannot be discriminated sufficiently in a
statistical sense from the reverberation for successful bispectral processing.
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Figure C.1-2 Direct/Indirect Bispectrum Comparison for Simulated Data - Noise
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