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Executive Summary

The studies reported were carried out during the period September 1991 through August
1993 under the auspices of the Directorate of Aerospace Sciences of the AFOSR. They were
concerned with the dynamics and control of spaced based articulated structures, and have led
to a better understanding of the theory and procedures for the non-causal inversion, slewing
and control of systems characterized by unstable zero-dynamics. In particular the following
results can be highlighted:

» general non-recursive procedures to solve the inverse dynamics and kinematics of
flexible open-chain and closed-ciain nonlinear articulated structures in two and three
dimensional scitings. These include robust multibody dynamic formulations that are
efficient and stable even in singular configurations and in the presence of redundant
algebraic constraints.

* a general theory for non-causal inversion of nonlinear non-minimum phase systems
which relates invertibility and hyperbolicity of zero dynamics equilibria.

+ recursive algorithms in three dimensions for inverse dynamics that include lumped and
distributed actuators.

» new methods for the sizing and the placement of distributed actuators on linear and
nonlinear configurations.

» a global nonlinear operator framework for controlled dynamical systems which
presently handles local dynamics.

*+ a new approach to nonlinear tracking control which does not require solution of the
Byrnes-Isidori PDE. New inverse dynamics based control methods have broad
applications (e.g. nonlinear flight control, vibration control of nonlinear structures,
trajectory control of towed vehicles, etc.)

+ experimental results obtained from a smart articulated structure experiment (see figure
2.1) (funded by Astro-Aerospace Corporation) designed and fabricated at UCSB.




1. General Procedures for the Non-Causal Inverse Dynamics of
Nonlinear Articulated Structures.

Summary

This study addresses the problem of end-point trajectory tracking in nonlinear flexible
articulated structures through the use of inverse dynamics, and summarizes the work
accomplished under the contract and which is described in detail in references 6, 7, and 8. A
global Lagrangian approach is employed in formulaiing the system equations of motion, and an
iterative procedure is proposed to achieve end-point trajectory tracking in three-dimensional,
flexible multibody systems. Each iteration involves firstly, an inverse kinematics procedure
wherein elastic displacements are determined in terms of the rigid body coordinates and Lagrange
multipliers, secondly, an explicit computation of the inverse dynamic joint actuation, and thirdly,
a forward dynamic analysis wherein generalized coordinates and Lagrange multipliers are
determined in terms of the joint actuation and desired end-point coordinates. In contrast with the
recursive methods previously proposed, this new method is the most general since it is suitable
for both open-chain and closed-chain configurations of three-dimensional multibody systems.
The algorithm yields stable, non-causal actuating joint torques and associated Lagrange
multipliers that account for the constraint forces between flexible multibody components.

Introduction

The problem of end-point trajectory tracking in flexible multibody systems has led to the
development of methods for inverse dynamics. Inverse dynamics deals with the problem of
determining the joint actuation that will cause a specified control point in the flexible multibody
system to follow a desired trajectory. T..: pioneering work of Reference 1 on the trajectory
control of a single flexible link through inverse dynamics showed that the inverse dynamic torque
is non-causal with respect to the end-point motion, i.e., actuation is required before the end-point
has started to move as well as after the end-point has stopped. Moulin and Bayo [2]
demonstrated that because of the non-minimum phase character of the inverse dynamics for the
trajectory tracking problem, the only bounded solution for the inverse dynamic torque has to be
non-causal. Bayo, er. al. [3], extended the inverse dynamics to planar, multiple-link systems
using an iterative frequency domain approach. The recursive method proposed in that study is
suitable for planar open-chain systems, but required an ad hoc procedure for planar closed-chain
systems. A time domain inverse dynamic technique based on the non-causal impulse response
function was presented by Dayo and Moulin {4] for the single link system, with provisions for




extension to multiple link systems. An equivalent time domain approach for a single link arm
was proposed by Kwon and Book [5] where the non-causality of the computed torque was
captured by dividing the inverse system into causal and anticausal parts.

In this study, a general approach is presented for the solution of the non-causal inverse
dynamics of three-dimensional, flexible multibody systems, which is suitable for both open-
chain and closed-chain configurations. With this work, a methodology is presented that is
suitable for all multibody systems, ranging from the single link case to three-dimensional
systems with general topologies.

Problem Formulation

Consider an n-body flexible multibody system such as that shown in Fig. 1.1. A typical
multibody component, say body i, is shown in Fig. 1.1 along with the floating reference frame
associated with that body. The generalized coordinates consist of rigid body coordinates q';
which describe the position and orientation of the floating reference frame associated with each
multibody component, and deformation coordinates q‘}- which describe the deformation of the

flexible body with respect to its floating reference frame. The rigid body coordinates q", consist
of the Cartesian coordinates R’ which describe the position of the origin of the floating reference
frame associated with body i, and a set of Euler parameters ¢ which describe the orientation of
the floating frame. The deformation from the nominal configuration is assumed to be small, so
that the different bending and torsional modes are decoupled.

Considering the reference coordinates qT = [RT, BT, q}] as generalized coordinates for the
flexible multibody system, these coordinates are not independent because the motion of specific
points in different bodies are related according to the type of mechanical joints that interconnect
them. Moreover, in flexible multibody systems, the deformation of a component affects the
configuration of adjacent components. As a consequence, the interdependence of the generalized
coordinates is expressed by a vector of kinematic constraint equations, such as

D(q,)=0 (1.1)

where q is the total vector of system generalized coordinates, ¢ is time, and @ is the vector of

linearly independent holonomic constraint equations. These constraint equations can be further

classified into:

1. rigid body constraints where only rigid body variables are involved in the constraint
equation;




Fig. 1.1. Topological description of a flexible articulated structure.




2. joint constraints where both rigid body and deformation coordinates are included in the
constraint equation; and

3. rheonomic consuaints wherein the constraint equations can be explicit funciions of time as
well as generalized coordinates.

The third type of constraint becomes active, for example, in the case of imposing the
coordinates of the end-effector to follow a desired trajectory.

Considering the rigid body and deformation coordinates described above as generalized
coordinates, and following standard procedures in multibody dynamics, the constrained
equations of motion become

M(q) §+Cq+Kq+®T 1 =Q,+Qy(q, §) (1.2)

where M, C, and K are the system mass, damping and stiffness matrices, respectively, A is the
vector of Lagrange multipliers associated with the constraints, ®@gq is the constraint Jacobian
matrix, Qe is the vector of applied external forces, and Q, is the quadratic velocity vector. The
quadratic velocity vector contains the centrifugal forces and Coriolis forces that result from the
differentiation of the kinetic energy expression with respect to the generalized coordinates.
Geometric stiffening due to high rotation rates can also be added to the vector Q,.

In a forward dynamic analysis, i.e., finding the resulting motion given the applied joint
forces and external forces, Egs. (1.1) and (1.2) constitute a mixed system of differential-
algebraic equations that have to be integrated simultaneously. The solution to the inverse
dynamics problem requires a forward dynamic analysis within an iteration process. We solve the
forward dynamics problem by using the augmented Lagrangian penalty formulation [8-9].
Applying the augmented Lagrangian penalty formulation to Egs. (1.1) and (1.2) results in the
following equation:

M(@) §+Cq+Kq+®q a[d+2p0é+0? 9]=Q.+Qy@ 9- 0T X" (1.3

where @ is a diagonal matrix of penalty factors whose elements are large real numbers that will
assure the satisfaction of constraints, ® and p are diagonal matrices representing the natural
frequencies and damping characteristics of the dynamic penalty system associated with the
constraints. The augmented Lagrangian method requires an iteration for the correct value of the
Lagrange multipliers. The iterative equation for the Lagrange multipliers is given by

k‘i+l=l.i+a[<f>+2umd>+m2 <b]. (1.4)




The augmented Lagrangian penalty formulation [8] has several advantages over the
standard algorithms used in solving differential-algebraic equations. First, the method obviates
the need to solve a mixed set of differential-algebraic equations and aoes not increase the numbe~
of equations to account for the constraints. Second, this method allows the use of standard
unconditionally stable algorithms without the need of further stabilization techniques to control
the violation of constraints during the integration process. Third, the method can handle
redundant constraints and allows the multibody system to undergo singular positions. Fourth,
the constraint forces (Lagrange muitipliers) can be obtained as a by-product of the iuterration
without having to integrate additional equations for them. Finzlly, the method assures
convergence independent of the penalty values used.

Inverse Kinematics and Inverse Dynamics

The three-dimensional inverse dynamics problem for either open-chain or closed-chain
topologies is solved by an iterative Lagrangian procedure. Our overall strategy is to first solve
the inverse kinematics problem, i.e., finding the unknown rigid body coordinates q, and flexible
body displacements q, given the desired end-point coordinates as explicit functions of time.
Having ~=termined the correct generalized coordinates and their time derivatives, the inverse
dyna . , joint torques can be obtained explicitly from the equations of motion. Compared to the
recursive procedures previously proposed, this new approach is more systematic and becomes
the only choice when closed-chain systems are encountered. The elastic links are modeled under
pinned-pinned boundary conditions. Furthermore, since torsional deformations cause deviations
from the nominal configuration further down the chain, we model the elastic link as fixed with
respect to torsion at the distal end of the link.

Our goal then is to formulate an inverse kinematics equation that is linearized about the
nominal motion, so that the elastic displacements, which are non-causal with respect to the end-
point motion, can be determined through a transformation to the frequency domain. This is
possible only if the leading matrix of the linearized equation is time-invariant and if the forcing
term is Fowier transformable. This objective has been achieved in the planar case with the use of
reference coordinates for the rigid body variables to describe the position and orientation of the
floating reference frame [6].

The three-dimensional inverse kinematics problem presents additional difficulties not
found in the planar case {7]. First, unlike the planar case, the three-dimensional torque vectors
change directions in time, so that the external force vector Q, in Eq. (1.3) becomes a nonlinear

function of the rigid body orientation coordinates. To overcome this difficulty, a proper




parametrization of the rigid body coordinates and preper bases for the joint torques are necessary
to attain the stated objectives in forming the linearized inverse kinematics equations. The desired
form of the linearized inverse kinematics equation is possible if Euler parameters are used to
describe the rigid body orientation and if the base torque vector of each multibody component is
expressed in terms of components along the associated floating reference f.ame.

For a typical multibody component, say body i, the equations of moticn can be written in
the following partiioned form {7]:

Mpr Mpg me R 0 0 O R 0 0 0 R ¢£ QCR] QVR
mgp meemef[9+000 0+/0 0 0 [[6 |+ o |=1Ge|+| Qe
mfR me mﬁrJ q, 0090 Cﬁ (.]f 00 k_ﬂ' qf (D;];f Qef Qvf

(15)

The elements of the mass matrix and quadratic velocity force vector corresponding to an
isoparamertric, three-dimensional curved beam finite element are given in Reference 7.

Let T be the torque vector at the base of body i, whose three components 1., 1@, and tf
are parallel to the associated floating reference axes F.s and ¢, respectvely. If we use Euler
parametcrs as the rigid body orientation coordinates, the externaily applied joint forces Qig
associated with the rigid body rotation of body i can be expressed as

io= [Gi]T {11_[ Ai]T Ait] Tm} (1.6)

where t is the base torque acting on body i and whose components are parallel to the floating
reference axes associat.d with body i; ©*1 is the vector of joint torques and reactic.. moments
transmitted from body i to body i + 1, and whose components are parallel to the floating
reference axes associated with body i + 1; A¥and A} are body axes to inertial axes rotation
transformaton matrices for bodies i and i + 1, respectively; and G' is a matrix that maps the
derivatives of the Euler parameters describing the orientation of the reference frame of body i to
the angular velocity of this reference frame, and is given by G'=2E. Combining Eq. (1.6}
with the second set of equations in Eq. (1.5), and after and involved process described in
Reference 7, the inverse dynamic equations are obtained as:




o =[A] A L G me R4 0GP O+ 0 4 5 GF 0T

N % Gi [Gi]T [y 66 + 3 o) L

where J* is the 3x 3 inertia tensor of body i with respect to the origin of the floating reference
frame and measured relative to this frame, and J‘f is the inertic matrix coupling the rigid body

rotation and the elastic deformation. The key to obtaining a time-inv iriant leading matrix, rhat is
necessary in transforming the linearized equations of motion into the frequency domain, is the
fact that the inertial coupling matrix J‘f can be decomposed into the sum of 2 time-invariant

matrix and a time-varying matrix, i.e.,
Y=+ Iy (1.8)

where Jifc and J"ﬁ are the time-invariant part and time-varying part of .!if, respectively. This
decomposition is essential to the formulation of the inverse kinematics equations that lead to non-
causal solutions of the nonlinear inversion problem and which are given by

iy i + 'y ol oy = F(M, &b, &b &b o a6 (1.9)
where
'y = miy ~NJ 3z, (1.10)

and wie motion-induced force vector acting on the elastic degrees of freedom is given by
i nT T aitt il il NT [a0)F pi+1 it
F=Np J[a] A i oNT [AT] AR e

+Q -0l A-mig Ri-mip & .
T e TR e (1.11)
The modified mass matrix ﬁn'j is non symmetric and it is precisely this non symmetry

that produces elastic displacements which are non-causal with respect to the end-point motion

when non-causal techniques are employed to obtain the proper inversion of the nonlinear, non-
minimum phase systems.




The non-causal inversion can now be carried out efficiently in the frequency domain since
the leading matrices have been constructed such that they remain constant throughout the motion.
Equatior: (1.9) can be written as a set of complex equations for a particular frequency @

i 1 | 2 i
[mb+i_u;cjﬂ._zn_2k‘ﬁ] q‘f(m)=F‘(0)) (1.12)

where a"f(o)) is the Fourier transform of c'i}(t) and ﬁ‘i(m) is the Fourier transform of F"(t).

Alternatively, the computation of the elastic displacements and their derivatives in each
iteration can also be carried out in the time domain through the use of the non-causal impulse
response function and the bilateral Laplace transform, e.g.,

. = j=n
Grt)= | '21 hi(t-0)f (vt

e fm (1.13)

where h (t) is the non-causal acceleration response vector to an impulse applied to the jth degree
of freedom and f ;(t) is the jth component of the forcing term on the right hand side of Eq. (1.9).
We note that the integration froin - to oo is necessary to capture the non-causal effects.

Once the non-causal elastic displacements and their derivatives are known, Eq. (1.7) can
be used to explicitly compute the non-causal inverse dynamics joint efforts that will move the end
effector according to a desired trajectory. We note, however, that the joint torques and elastic
displacements given by Egs. (1.7) and (1.9), respectively, depend on the Lagrange multipliers
and rigid body coordinates, which in turn depend on the elastic displacements and the applied
torque. Moreover, the rigid bedy coordinates and Lagrange multipliers are different from their
nominal values when the components of the multibody system are flexible. Therefore, a forward
dynamic analysis is required to obtain an improved estimate of the generalized coordinates and
Lagrange multipliers.

Results

Figure 1.2 shows a closed-chain, three-dimensional flexible articulated structure, where
the selected control torques are shown in the figure. Joints 1-4 are revolute joints while joint 5 is
a spherical joint. The desired end-point (joint 5) trajectory is a motion in the x5 = x3 plane with
the x; coordinate and x4 coordinate of the end-point following the trajectories shown in Fig.
1.3. The four links share the following geometric and material properties:




Fig. 12. Close-chain 3-D Flexible articulated structure.
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Length: 1.0m; Cross section dimensions: 1.0 cm x 1.0 cm; Young's modulus: 40 GPa;
Shear modulus: 15 GPa; Mass density: 2715 kg/m3; Tip mass: 0.1 kg.

The procedure is applied to the closed-chain system by introducing a cut at the end-point
(joint 5), thus creating two open-chain systems. The internal constraint forces exposed by the
cut are automnatically taken into account by the Lagrange multipliers in the equations of motion.
Figures 1.4a and 1.4b show joint torques T, and T, respectively, that are needed to achieve the
desired end-point trajectory. In these figures, the dashed curves refer to the inverse dynamic
torques obtained by the present procedure while the solid curves refer to the corresponding rigid
body torques. Observe the pre and post activation required. by the inverse dynamics situation.
Figure 1.5 shows the transverse deflections at a third point in link #2, obtained from a feed-
forward of the inverse dynamic torques (dashed curve) and the corresponding deflection obtained
from a feed-forward of the rigid body torque (solid curve). It may be observed that the inverse
dynamic torques minimize the residual structural vibrations that are otherwise present when rigid
body torques are used to actuate the system.

Conclusion

A new and general procedure for determining the inverse dynamics and kinematics of 2-D
and 3-D flexible articulated structures and multibody systems has been developed. An iterative
procedure is necessary because of the interdependence between the elastic coordinates, the rigid
body coordinates and the associated Lagrange multipliers in the system equations of motion. The
procedure is general since it is valid for both open-chain and closed-chain configurations, and
differs from the previously proposed recursive methods in the sense that the rigid body
coordinates are not assumed to follow the nominal motion. The conditions for trajectory tracking
are now met in a more general way through the satisfaction of rheonomic constraint conditions.
For closed-chain systems, the new method is the only valid procedure for determining the
inverse dynamic torques since in this case, the number of control torques is smaller than the
number of joints and therefore, the recursive methods can not be applied.




2. Inverse Dynamics of Nonlinear Articulated Structures:
Simultaneous Trajectory Tracking and Vibration Reduction.

Summary

The problem of inverse dynamics for flexible multibodies, which arises, in trajectory
tracking control of flexiole multibodies such as space manipulators and articulated flexible
structures is studied. Previous research has resolved this trajectory tracking problem by
computing the system inputs for feed-forward control of actuators at the joints. Recently, the use
of distributed actuators like electro-strictive actuators in flexible structures has introduced a new
dimension to this trajectory tracking problem. In this paper we optimally utilize such actuators to
aid joint actuators for tracking control, and introduce a new inverse dynamics scheme for
simultaneously (1) tracking a prescribed trajectory and (2) minimizing ensuing elastic defle~tions.
We apply this scheme for trajectory tracking of a two-link two-joint planar manipulator with joint
motors and distributed electro-strictive actuators. Experimental results are presented to contrast
our new scheme with other existing methods. The study summarizes the work done under the
contract and described in references 14 and 15.

[ntroduction

Inverse dynamics provides an excellent means for trajectory tracking of flexible
multibodies. Methods to pre crmpute the actuator inputs required to exactly track a given output
trajectory of a control point on open-chain flexible multibodies have been developed [1-5] where
the inverse dynamics and kinematics produce bounded feed-forward inputs for actuators, like
motors at articulations and joint angles, to track a reference point on the structure. The closed-
chain cases have been recently presented by Ledesma and Bayo [6-7]. If the sensors and
actuators are non-collocated then the flexible structure has nonminimum phase dynamics and the
only stable inverse dynamics solution to the tracking problem is non-causal [2]. Once a
trajectory is specified, the feed-forward control input obtained by inverse dynamics for exact
trajectory tracking, has a unique bounded solution. Therefore, the subsequent elastic structural
vibrations induced on the structure (except at the control point where these vibrations are zero)
during the trajectory tracking motion are also defined uniquely. These vibrations could be
detrimental to the performance of sensitive on-board systems and hence it is desirable to
minimize them. For some time, distributed actuators have been successfully used to control
structural vibrations [10-11]. Recent success in their experimental use [12) motivates the use of
such actuators to aid joint actuators, like motors, for trajectory tracking.




The trajectory tracking objective can be accomplished by the point actuators alone [13] and
in this sense the distributed actuators are redundant. In this study (which summarizes the
contribution of references) the concept of using the extra actuation available through the
distributed actuators in the structure is introduced to not only satisfy the trajectory tracking
constraint, but also minimize the accompanying elastic displacements during the motion. A new
inverse dynamics method is presented to compute the feed-forward inputs which includes the
cases of redundantly actuated structures. This use of distributed actuators for end effector
trajectory control is contrasted with the use of only the joint actuators in feed-forward. The
method proposed is shown to substantially reduce the induced vibrations in the structure. The
results are experimentally verified using a flexible two link articulated truss structure with
distributed electro-strictive actuators and joint motors.

Formulation

The inverse dynamics of a flexible multibody is a nonlinear problem. We solve this non-
linear problem recursively, one element of the multibody at a time. This algorithm proposed by
Bayo et al in [3], for general multibody inverse dynamics involves, 1) studying an individual
component (link) in the chain; 2) coupling the equations of the individual links; and 3)
recursively converging to the desired' actuator inputs and corresponding displacements.
Following this general procedure, a new scheme is proposed which incorporates distributed
actuators in the solution of the inverse dynamics problem [14-15]. This approach leads to the
following inverse dynamics equations in terms of joint torque and piezoelectric voltages:

Mi +[C+C (wp)] 2+[K+K (04, 0p)]2=BrT+B,V,+F 2.1

where z is an R” vector of the finite element degree of freedom. M and K belong to R™” and
are the conventional finite element mass and stiffness matrices respectively; C, and K, € R™"
and are the time varying Coriolis and centrifugal stiffness matrices, respectively. The R™"*
matrix C represents the internal viscous damping of the material. T is the unknown joint
actuation F € R" contains the reactions at the end of the link, and the known forces produced by
the rotating frame effect. The distributed actuator inputs V, € R"™ are the equivalent nodal
forces at the FEM degrees of freedom, where np is the number of distributed actuator inputs.
Br and B, are constant matrices inputs influence matrices of dimensions R® and R™?,
respectively.

The requirement is to accurately track the end effector of the link along the given nominal
trajectory without overshoot and residual vibrations. If the distributed actuators were not

11




available ther the exact tip trajectory tracking requirement defines the joint input torque T. The
objective is to use the additional actuation available through the distributed actuators to reduce the
ensuing structural vibrations at locations away from the control point during this motion by
minimizing J(T, V),), a measure of elastic deflections in the structure defined as follows:

J(T, VA T 207 2yt 2.2)

Mathematically the objective can be stated as

min _J(T,Vp) 2.3)
(T.Vp)eT

Where T is the set of all pairs of stable actuator inputs that when used to actuate the system
defined by Eq. (2.1) yields z,(t) = O for all «.
The solution process starts by rewriting Eq. (2.2) as

Mi+Cz+Kz=B;T+B,V,+F-C.(0;) 2- X {0}, 0;) Z (2.4)
T p'p c\Wh cA\YhWh

where the time dependent Coriolis and centrifugal terms are kept on the RHS of the equation.
The 1teration procedure starts with the absence of the last two terms involving C, and K, in the
right hand side. Then, the system of equations can be transformed into independent sets of
simultaneous complex equations by means of the Fourier transform. For each of the evaluation
frequency w, Eq. (2.5) becomes

Lo (T e
[WEC"F“] i |=| 0 |+| B |+| By | ¥, (2.5)

where the symbol A stands for Fourier transform, and F represents the known forcing terms.
After the first iteration it will also include the updated contributions from the Coriolis and
centrifugal terms appearing in the RHS of Eq. (2.4). For any ® # 0, the matrix

HA [M+—C 7&] (2.6)




is a complex, symmetric and invertible matrix. For @ = 0 the system undergoes a rigid body
motion and H& M, the positive definite invertible mass matrix. Let G 4 H™!. Then a
relationship between the joint actuation and the distributed actuator inputs and is obtained [14-15]

as:

Substituting this expression for the input hub torque in Eq. (2.3) and using the property that
i = %% yields

2= —ali(A\Al‘ﬁ B) 2.8)
where
A4 [= GHlGBL(GG,Gy) +GlB, 29)
and
B2 [= G3'GB[(G4G,Gy) +GF (2.10)

Next using Parseval's theorem the piezo-electric voltages are obtained as [14-15]:

V,= ~(A*A)!A*B (2.11)

where the symbol * denotes conjugate transpose. A sufficient and necessary condition for A to
have rank np is given in references [14-15].

The distribution of actuation effort depends on the mode-shapes of the structure and the
actuator placement, and can be modeled easily using FEM [16]. In the problem at hand, the best
placement for a given trajectory depends not only on the structure but also the component
frequencies of the desired motion. Thus the optimal placement of the actuator would in general
be trajectory dependent. In most structures, such a freedom of changing the actuator placement
with the prescribed trajectory is not available. The design of such structures with fixed actuator
placements, is based on minimizing the induced structural vibrations over sets of disturbances
with a specified energy [16]. In systems where the required motions are largely repetitive, the
actuator placement can be optimized over a specified set of trajectories; this warrants a separate
treatment to be considered in a future work.
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Fig.2.1. Experimental set up.
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Experimental Verification

An experimental truss structure developed at UCSB is shown in Figure 2.1. The
structure has 16 spans and two articulations forming a planar manipulator. The trusses are made
of aluminum and have lumped masses (net 2 Kgs for each link) distributsd along their lengths in
order to lower the links modal frequencies and hence the control sample rate. In addition, the
first (base) and the second links have tip loads of 3.5 and 1 Kgs respectively. These loads
further increase the flexibility of the structure and the natural frequencies of the first and second
links with clamped free boundary conditions are 0.6 Hz and 1.2 Hz respectively. Actuation
consists of low-inertia dc-motors at the two joints and an active bay (Figure 2.2) with four
electro-strictive actuators. Sensing consists of resolvers at the joints and collocated strain
sensors on the four electro-strictive actuators. In addition, an optical sensor measures the
position of an infra-red LED mounted about the midpoirt of the first link, thus providing
information of the induced structural vibrations during the tracking operation. The entire
structure is supported on air bearings and controlled with an Intel 386-based PC, servo
amplifiers for the motors and 150V servo amplifiers for the electro-strictive actuators.

To evaluate the proposed use of distributed actuators, we apply it to track the end-effector
of the two link flexible articulated structure. The desired trajectory of the end-effector is a series
of rest to rest motions, while the first link is stationary. The nominal motion of the second link is
shown in Figure 2.3. The objective is to track the desired trajectory and minimize the vibrations
in the first link which is equipped with electro-strictive actuators. To evaluate the vibration
reduction achieved, the following tracking experiments are conducted: (1) feed-forward of
torques computed without inverse dynamics, i.e. assuming the links to be rigid; (2) using the
torques computed by inverse dynamics for only the joint actuators; and (3) incorporating the
distributed electro-strictive actuators on the first truss along with joint actuators in the inverse
dyunamics computation and using these as feed-forward. In each case a joint based PD controller
was used for controlling errors due to unmodeled dynamics, friction and other modeling errors.

Plots of the inputs to he electro-strictor and joint motors are presented in Figures 2.4 and
2.5. Note that the actuations start before the tip trajectory begins. This non-causality due to the
propagaton delays is reduced when additional actuation is available through the piezos as seen in
Figure 2.5. To illustrate the viability of the proposed method we plot the transverse structural
deflections at the midpoint of t:¢ first link (Figure 2.6) during the motion obtained by an infra-
red led mounted on the structure and an over-head optical sensor. These elastic deflections in the
structure are considerably reduced when electro-strictive actuators are also used in addition to the
joint motors. On the contrary if inverse dynamics is not used and the rigid body torques are used
then the resulting motion has much larger vibrations.
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Thus the incorporation of electro-strictive actuators results in a significant reduction in the
structural vibrations and demonstrates the viability of the proposed method. The consequent
reduction (50%) in the induced vibrations of the structure allows the use of lighter elements and
therefore smaller joint actuators, especially in space structures where the loads are mainly inertial.

Conclusion

Typically distributed actuators like the electro-strictive ones cannot gamer enough
actuation to cause large motions in the multibody system. However they could be very
effective in reducing structural deformation. To reduce such vibrations by the use of
distributed actuators in feedforward aiding joint actuators for trajectory tracking is a novel
idea developed in this study. The method proposed is extreme'y efficient as it optimally
reduces structural vibrations and the theory developed was verified by experiments. The
use of the redundant distributed actuators seems promising in the slewing control of
flexible manipulators and other space structures, and motivates further work on distributed
actuators for the control of flexible multibodies.




3. Buckling Control of a Flexible Beam Using Piezoelectric
Actuators

Summary

A new application of piezoelectric actuation is described for enhancing the load
capacity of a beam under compression. By feedback control, the first buckling mode is
stabilized and the buckiing load 1s dramatcally increased to the critical load of the second
buckling mode of the beam. The approach uses a truncated modal model of the beam,
distributed piezo actuators, and strain gauges for feedback.

Introduction

Active damping and control of flexible structures has been an area of research focus
for some time. However, the recent application of distributed piezoelectric actuators to
structure control by Crawley and De Luis [17], Bailey and Hubbard [18]}, and Fisher [20]
has posed new and challenging problems. Following the initial experiments of these
researchers, where a single vibrational mode is controlled, Fisher addressed the actuator
placement problem to control several modes.

We address the new problem of buckling control using smart materials. In contrast
to the dynamic stability issues of vibration control, buckling is a static instability of axially
loaded members of a structure. It is well known that as the axial compressive load P in an
initially straight beam increases, the beam remains straight and undeformed until the load
reaches a certain critical value Pcr,1, where the stable equilibrium of the first bending mode
bifurcates into one unstable and two stable equilibria (pitchford bifurcation). The two
stable equilibria correspond to buckled configurations.

Here we use piezoelectric actuators and strain gauge sensors to show that buckling
of a simply supported beam can be postponed beyond the first critical load. The load
deflection characteristic for large deflections of a beam in a buckled configuration is highly
nonlinear and involves numerical solution of elliptic integrals. Figure 3.1a shows a typical
load deflection curve where Py p is the buckling load of the nth mode. If P < P¢rg, the
undeflected beam is stable. For Pcrp < P < Pern4 all modes are stable except for the first
n bending modes. The idea reflected in our work is the use of feedback controi in
conjunction with piezoactuators to stabilize the first bending mode beyond Per,; and achieve
a bifurcation diagram of the form shown in Fig. 3.1b, where the buckling force P 1 is
greater than that for the uncontrolled beam.

We use the linearized equations of motion and the associated modal equations of a
simply supported flexible beam with piezoelectric actuators subjected to slowly varying
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axial load. A finite-dimensional state-space model is then derived for a reduced order
system and a controller is designed to increase the stiffness of the first bending mode to
exceed that of the second bending mode.

\M &‘P -

- - .-
ymax ymax
(a) (b)

Fig. 3.1. Load deflection curve of a) uncontrolled beam and b) controlled beam.

Piezo-1 M

Piezo-2 Beam

Fig.3.2. Simply supported column with piezoelectric actuators.

Problem Formulation

We use a truncated modal expanstion of the deflection of a beam to derive a linear
finite-dimensional model. We emphasize that the beam is assumed to be uniform with no
manufacturing imperfections. Since the aim is to stabilize the beam in its straight
configuration, it is natural to assume small deflections and linearize the equations of motion
about this configuration. Note that the strain induced by ppezoelectric actuators is usually
small and, therefore, the small deflection assumption is consistent with the capacity of the
actuators.

Figure 3 2 shows a simply supported uniform beam with piezoelectric actuators of
equal thickness bonded to both sides by a suitable adhesive. The beam of width b and
thickness tp is subjected to an axial compressive load, and control moments are applied by




the piezoactuators. The actuator being modeled is a piezoelectric polymer, poly vinylidene
fluoride. For an axially polarized piezo, a voltage applied across its thickness results in
strain along its length. For simplicity the width of each piezolayer is assumed to be the
same as that of the beam.

The strain A; developed in an unconstrained piezo is given by A; = v;(t)d3;/1,
where v;(t); i =1, 2 is the voltage applied to the ith piezostrip, d3; the piezoelectric strain
constant, and tp the thickness of the piezolayer. If v; and v, are the voltages applied on
the top and bottom piezolayers, respectively, and Ep is the Young's modulus of the piezo,
the resulting moment on the piezobeam segment is given by

t t
M = bEpt,(Ay - Ay) (“zh ty +—22)

t t »
= bEpd3l(—2b+ ta +—2p-] (V2 - Vl) é k (VZ— Vl) 3 1

The equation of motion of the beam can be derived using Hamilton's variational principle.
Under small deflection assumption Hamilton's principle yields

pAJ +(Ely") +(Py')'= M[8'(x - x) - 8'(x = x)] (3.2)

where p is the density of the beam; y is the transverse deflection; y and y' are the time and
spatial derivatives of y, respectively; EI is the stiffness of the beam; A is the cross-sectional
area of the beam; &' is the spatial derivative of the delta function; and x; and x are the
locations of the two ends of the piezolayer.

Modal states are estimated from strain gauge measurements at discrete locations. It
is easy to see that observability of the modes of the system depends on the location of the
sensors; a mode with its node at the location of a strain gauge is unobservable with that
sensor. To reduce the number of sensors, modal control of flexible structures is usually
based on the first few modes of vibration. This is justified by the fact that higher
vibrational modes are in general difficult to excite and have higher structural damping.
However, the unmodeled dynamics can cause instability through what are known as
control and observation spillover. It has been shown that both control and observation
spillover of unmodeled modes are necessary to cause instability in a closed-loop system.

The sensors are placed so that the second and third modes and their multiples are
unobservable. Thus the first and fifth modes are the first two modes in a minimal
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realization of the system. We ignore higher order modes and discuss the associated
spillover problems in [20]. If a small amount of structural damping is present, all of the
unobservable modes remain stable even in the presence of spillover. Similarly the
dynamics of the even modes are not affected by the control, and hence they remain stable.

We model the sensors as follows. The bending moment at the location of a strain
gauge, a distance x from the lift end of the beam, is given by

2 p=oo
Mp = ~Epleqy" (x,1) = Ebqu% I nn, sm(“l’f") (3.9)

where Ejy is the Young's modulus of the beam material and Ieq is the equivalent moment of
inertia of the composite piezo-beam segment based on beam material. The resulting strain
in a strain gauge attached to one side of the beam is

My ((ty/2)+t,+t
c=+ b[( b ) a p]_ P (3.10)
EbIeq Aqub

where A¢q is the equivalent area based on beam material. The sign of the first term in Eq.
(3.10) depends on which side of the beam the strain gauge is bonded to. Therefore, the
output of a differential strain gauge is independent of the load P and is given by

2
{“2 [(tb/2)+ta+ tp] T* n=e

xnz'nnsin(nzx)Ak, Y n nnsm( "f‘) (3.11)

where kg is the strain gauge constant. If differential strain gauges are placed as x =1/3 and
x = 2L/3, and the sum of their measurements is taken as the system output, we have

L 2L
Vo A vg x=7|tvs| x=

N=o0
= kq 2 n ﬂn( n3n+sm2%£) 512
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Results

The modal model developed above was truncated to form the actuated beam model and
sensor model. A standard linear quadratic regulator was then designed. We showed that
the buckling of a flexible beam can be postponed beyond the first critical load by means of
feedback using piezoelectric actuators and strain gauge sensors [20]. It is observed that a
controller design based on a fixed axial load Pmax stabilizes the modeled modes for any P <
Pmax and, therefore, is robust to slow load variations. Hence buckling in the first mode is
inhibited, and the beam can support a load up to the second critical load. Actuator and
sensor placement is discussed with regard to problems of spillover. Finally, spillover has
not posed serious problems as we are able to design the controller, in the case of a beam,
using a low-order model and verify stability for a high-order model
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4. Nonlinear Inversion-Based Regulation

Summary

In this study a new inverse is introduced for nonlinear systems. This inverse
agrees with that of Hirschorn for minimum phase nonlinear systems, but is noncausal
(rather than unstable) in the nonminimum phase case. Further, a geometric connection is
made between the unstable manifold of the system zero dynamics and the noncausality in
the inverse. With the inverse used for generating feedforward, exact regulation along a
desired trajecto:y is easily accomplished with the addition of stabilizing feedback; this is
demonstrated with a numerical example and compared to the Bymes-Isidori regulator.
Rather than solving a PDE to construct a regulator, the inverse is easily constructed using a
Picard-like iteration. Moreover, when preactuation is not possible, noncausal inverse
trajectories can be truncated. The result is the introduction of transients common in other
regulators.

Introduction

_ Tracking control and regulation are common problems in applications and have thus
attracted considerable attention from control researchers. Asymptotic tracking has been
solved for arbitrary reference trajectories in the context of linear-quadratic optimal control
[21). Also for linear systems, the asymptotic regulation and tracking of signals generated
by finite dimensional linear systems has been studied in a general framework by Francis
and Wonham [22). These authors show that the tracking problem is solvable if and only if
a set of linear matrix equations is solvable. In the nonlinear case, the Francis-Wonham
equations have been generalized to a first-order partial differential algebraic equation (PDE)
by Bymes and Isidori [23). This fundamental work has been augmented with tests for
approximate solvability of the Bymes-Isidori PDE [24] and methods for optimal regulator
design [25]. In addition, extensions to the Byrnes-Isidori regulator have been described
in [26], and [27]. In this paper we introduce a new inversion-based approach to exact
nonlinear output tracking control. The basic idea presented is to use feedforward of a
nominal input which forces a given system along a desired trajectory, and then to stabilize
the trajectory using feedback. We use preactuation to establish initial conditions in the
nonminimum phase case, in contrast to setting initial conditions as is done in [28]. Our
approach eliminates the requirement for solving the partial differential algebraic equation (of
potentially high dimension) encountered in the Byrnes-Isidori regulator by tracking a
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specific trajectory rather than any one of a family. Moreover, no exosystem is required,
and the specification of trajectories is simplified. We do, however, introduce boundedness
and integrability requirements on the trajectory. The key to our approach is finding a
bounded inverse, even for nonminimum phase nonlinear systems, for use in generating
feedforward inputs. In contrast to the inversion approach of Hirschorn [29] where
unstable zero dynamics lead to unbounded responses of the inverse system, we introduce a
nonlinear operator which is noncausal in tic nonminimum phase case. Noncausal
feedforward can be used in the case where trajectory preview is possible, or truncated to a
causal signal at the cost of introducing transient tracking errors. Such noncausal character is
seen in the linear quadratic setting, but the use of exact inverses in both linear and nonlinear
tracking control is new. The noncausal inverses used here are motivated by the work of
Bayo [30] in flexible multibodies and have been applied to the control of flexible-link
robots in [31].

Problem Formulation
Consider the nonlinear system
x = f(x)+g(x)u (4.1)

¥y =h(x), (4.2)

defined on a neighborhood X of the origin of R", with input u € RP and output y € R9.
The functions f(x), gi(x) (the ith column of g(x)) i- 1, 2, .. ., p are smooth vector fields
and hi(x) fori=1, 2, .. ., q are smooth functions on X, with f(0) = 0 and h(0) = 0.

In the context of the above system pose the following
Stable Inversion Problem: Given a smooth reference output trajectory y4(t) e LyNL,,

(bounded, integrable signals) find a control input u4(t) and a state trajectory x4(t) such that
1) ud and x4 satisfy the differential equation

xg(t) = f(x4(1) + g(x4(1) uy(t), (4.3)
2) exact output tracking is achieved:
h(x4(D) = ya(t), (4.4)

3) ug and x4 are bounded, and
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ug(t) = 0, xq(t) > Oas t = too, (4.5)

We call xq the desired state trajectory and ug the nominal control input. These can be

incorporated into a regulator by using the nominal control input as a feed-forward signal
and x - x4 as an error signal for feedback.

Results

In solving for the nominal trajectories x4 and ug the concepts of stable and unstable
manifolds of an equilibrium point arise naturally (32]. For the sake of completeness we
review the definitions here. Let z = 0 be an equilibrium point of an autonomous system
defined in a open neighborhood U of the origin of R":

z = f(2), (4.6)

and ¢,(z) be the flow passing through z at t = 0. We define the (local) stable and unstable
manifolds WS, WU as follows:

WS ={zeUl(z) e UVt 20,9 (z) » Oast — o} 4.7
W'={zeUl¢(z) e UVt 20, ¢;(z) > 0 as t - —oo} (4.8)

The equilibrium point z = 0 is said to be hyperbolic if the Jacobian matrix Df of f at
z = 0 has no eigenvalues on the jw axis. Let nS denote the number of eigenvalues of Df in
the open left half complex plane, and nY the number in the open right half plane. Stable and
unstable manifolds WS and WU exist locally in the neighborhood of hyperbolic fixed point

and have dimensions n$ and n¥ respectively.
For convenience, we will use the following notation. Let N é {0, 1,2,...}, r=

{r1, 2,...,rq)te N™ and y=[y1(t), y2(t),...,yq(t)]t;teiK. Then we define
It A n+n+...+1q and write
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y0 a2 (4.9a)

We will use the bold number 1 to denote the vector (1, 1,.. ., 1)t so that

t
W_,_[(dn I
yWO=y (dt.dt..... =3 (4.9b)

If y: ®" — R and f: R" = K", we define

L?yl

L? Y
Lty A ) (4.10)

T,
Lt Y,

Partial linearization and inversion
The system dynamics (4.1, 4.2) is written in the following form, where the number
of inputs (p) is assumed to be the same as the number of outputs,

x =f(x)+ }E gi(x) u; (4.11a)
i=1
n = hy(x)
(4.11b)

Ym = hp(x) .
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We assume that the system has well-defined relative degree r = (rl, 1o TR rp) at the

equilibriusn point 0, that is,
(i) forudll1<j<p,forall1<i<p,forall k <r;—1, and for all x in a neighborhood
of the origin,

L, Lf hi(x) =0, (4.12)
(i)  the px p mawix

i » » -
Lg L™ hy(x) - LgpL‘} hy(x)

Lg LZ " ha(x) - Lg, LF " hy(x)
B(x) = (4.13)

Iy—1 rp—1
| Lg LF hp(x) - Lg LE hyx)

is nonsingular in a neighborhood of the origin.

~ Under this assumption, the system can be partially linearized. To do this, we
differentiate y; until at least one uj appears explicitly. This will happen at exactly the rjth
derivative of y;j due to (4.12). Define &ik = yi(k'l) fori=1,... pandk=1,..,r1, and

denote

5= (eheh o By B )

I R (X ) IR () I (’P“))t
(YM‘I- R/ IR D A NP ) (4.19)

. . . t R
Choose 1, an n -Irl dimensional function on R" such that (.‘,‘, nt) = y(x) forms a

change of coordinates with y(0) = 0 [32]. In this new coordinate system, the system
dynamics of equation (4.1) becomes




-

26
gi=gh
‘ _ fori=1,,p (4.152)
&r-1=8y
&r = (& 1) +Bi& n)u
1 =qy(&, 1) +q2(5 n) u, (4.15b)
which, in a more compact form, is equivalent to
y =a(g,n)+B(& nu, (4.16)
N =s;( n)+s2(& ) u, 4.17)

where

y =3 2 %)

u= (ul, ug, -, ul,)t ,

a(& ) =Lt h(y™'(E ). (4.18)
B(&, m) =Lk L' n(y~! (& m)). (4.19)

Here P is actually the same B(x) matrix defined in the equation (4.13), a(0, 0) = O since
f(0) =0, and

hx) = [hy(x), ha(x), -+, ()]

g(x) = [81(x), g2(x), -+, gp(x))-




Since by the relative degree assumption, $(§, 1) is nonsingular, the following feedback
control law

uABE W] [v-aE ) (4.20)

is well defined and partially linearizes the system such that the input-output relationship is
given by a chain of integrators:

yO=v (4.21)
where v € RP is the new control input. Assume both y and yq start from rest and choose
v=y{D. (4.22)

Then immediately we have
. -1 -1 (=D
§=84 ()’db Jab s YT Va2 o YSE e Y ) (4.23)

and equation (16) becomes, which we call the reference dynamics, or the zero dynamics
driven by the reference output trajectory,

1= 5(yg €, M) (4.24)
where

(v b M) A 1(8a ) +52(80 M) (B ] [9? - aEa )] 425)

under certain technical conditions on s (see [33]) there exists a solution
ng) e LlnL,.r\CO, to (51). Once the solution to the zero dynamics is found, an

integration of the reference dynamics gives rise to a trajectory of the original state through

the inverse coordinate transformation x4 = \y'l (f‘d) and an input trajectory, ud4, by
d

equation (4.20).
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If (f;d, Yd) has a compact support, [tg, t1], then it is possible to give a geometric

interpretation of the evolution of x4(t) [34). The noncausal part of the nominal control
drives the internal states of the system along the unstable manifold of the zero dynamics
manifold to a particular initiai condition x4(tp) while maintaining zero system output. This
initial condition guarantees two things: 1) the desired reference output trajectory is easily
reproduced with bounded input and states; 2) the internal states land on the stable manifold
of the zero dynamics manifold at the end of output tracking. With this nice final condition,
the internal states will converge to zero along the stable manifold without affecting the
output.

Conclusions

We have introduced a new nonlinear operator whose application in nonlinear
inversion yields a clear connection between unstable zero dynamics and noncausal
inversion. When noncausal inversion is incorporated into tracking regulators, we can see
that it is a powerful tool for control -- particularly when computation is considered. An
important fact is that a given system model defines different input-output operators
depending on how boundary conditions are applied. For the study of feedforward control,
boundary conditions at infinity give a useful perspective on a system. We have considered
only the case of hyperbolic zero dynamics. Cases where zero dynamics have a center
manifold or a hyperbolic orbit should prove interesting as well.
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Abstract. After a general review of the methods currently svailable for the dynamics of constrained multibody
systems in the context of numerical efficiency and ability to solve the differential equations of motion in singular
positions, we examine the acceleration based angmented Lagrangian formulations, and propose a new one for
holonomic and non-holonomic systems that is based on the canonical equations of Hamilton. This new one proves
to be more stable and accurate that the acceleration based counterpart under repetitive singular positions. The
proposed algorithms are numerically efficient, can use standard conditionally stable numerical integrators and do
not fail in singular positions, as the classical formulations do. The reason for the numerical efficiency and better
behavior under singularities relies on the fact that the leading matrix of the resultant system of ODEs is sparse,
symmetric, positive definite, and its rank is independent of that of the Jacobian of the constraint equations. The
latter fact makes the proposed method particularly suitable for singular configurations.

Key words: Constrained multibody sysiems, penalty and augmented Lagrangian method, holonomic and non-
holonomic constraints, canonical equations of Hamilton.

1. Review of Current Approaches for Multibody Dynamics

Computer systcms, while increasing tremendously in power in recent years, are so affordable
nowadays, that their use have become widely spread in many different fields and for a
number of applications. The computer kinematic and dynamic analysis of multibody systems
is increasingly being used in fields such as the automobile industry, acrospace, robotics,
machinery, biomechanics, etc., and it has been receiving considerable attention recently,
as seen by the amount of literature on multibody simulation and computer aided analysis
programs being sold in the market of engineering software. Nevertheless, there is an increasing
demand for faster and more reliable simulations that must be based on more efficient and robust
algorithms for multibody dynamics.

The dynamic analysis of multibody systems is a process which is most appropriately
performed using intcractive (rather than batch) type of analysis. The analyst is interested in
visualizing a whole set of successive responses of the multibody, a simulation of its behavior
and operation over all the mechanism workspace and over a certain period of time. In certain
cases it may be even necessary to introduce the engineer as an additional element in the
simulation, called “man-in-the-loop”, who may act by introducing extemal forces or control
over specific degrees of freedom. In any case, each response over a time step needs to be
calculated and displayed at the highest speed possible in order to give a picture that will
possibly resemble the actual motion of the system in both time and space: the real time

behavior.
While it is important for multibody dynamic simulations to have fast and accurate inter-
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active graphical interfaces, it is essential that the computer software relies on good numerical
algorithms that will permit a fast and reliable solution of the resulting algebraically constrained
differential equations of motion. Consequently, it becomes very important that numerical
efficiency and stability be combined with robustness so that the simulation does not reach
dead-lock situations due to singularity positions in the multibody motion.

In recent years, some important advances have been made in the development of new
formulations for multibody dynamics. Some formulations, stemming mainly from the robotics
field, have been especially conceived for real-time simulation and are based on the recursive
computation of some or all of the terms in the equations of motion [1-4]. Some of these
algorithms are O(N') meaning that the number of floating point arithmetic operations grows
linearly with the number of degrees of freedom. Others require the solution of a system of
N linear equations and, therefore, are of order O(N3) (if Gaussian elimination is used).
Although it has been demonstrated by Featherstone [3] that the best O(N?) algorithms are
faster than the best O(N) algorithms for N < 10, the elegance and attractiveness of the
O(N) Featherstone's formulation has exerted a strong influence on later developments that
have generalized these ideas for non-serial (tree-configuration) and closed-loop systems [6-7].
A limitation arises when closed-chain multibodies are analyzed, since for these cases special
provisions must be made to account for the reaction forces between the different loops [6].

The second group of methods encompasses those that reduce the equations of motion in
dependent coordinates to a minimum set of independent ones via a transformation matrix
obtained from the nullspace of the Jacobian of the constraint equations. Different methods
of choosing the independent set of coordinates and generating the transformation matrix
have been proposed (8-14]. The concept of velocity transformations, initially introduced by
Jerkovsky [15], has been subsequently extended into efficient algorithms [16-19] that avoid the
Jacobian factorization, and allow for an efficient and simple way of generating the equations
of motion in independent coordinates in a way that can be fully parallelized [19].

The classical way to generate the equations of motion is to use dependent (or absolute)
coordinates to generate and solve the equations of motion [14). These algorithms are based
on the classical Lagrange’s formulation which leads to a set of differential and algebraic
equations (DAE) of motion with the coordinates and multipliers as unknowns. The solution of
these equations require special techniques [20] whose merit has not been thoroughly calibrated
yet for the integration of multibody systems. A way to avoid the DAE is by differentiating
the constraints. The resulting constraint violations are commonly stabilized using the method
proposed by Baumgarte [21]. An extension for violation stabilization of holonomic systems
based on the use of the canonical momenta has been proposed in [22].

Although the methods described above are well established (some of them very efficient
numerically), they can not directly handle redundant constraints. In fact these have to be
eliminated prior to the dynamic analysis. In addition they all fail to give successful solutions
when the multibody undergoes a singular position. A partial solution to the problem of singular
positions was provided in [23] where a method is developed that detects the ill-conditioning of
the Jacobian matrix so that the integrator can step over it. In [24-25) a regularization method
is proposed to cope with singularities. The main idea consists in adding to the vanishing and
the linearly dependent constraints their third derivatives, and this tums the Jacobian non-
singular. A staggered stabilization approach was presented by Park and Chiou [26] which
was later refined by means of an explicit-implicit integration procedure [27]. This method
integrates two different sets of equations one for the coordinates and another for the Lagrange
multipliers, and avoids the singular position problem of the equations of motion. A small
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limitation, however, is that it requires the inversion of the mass matrix, which is in general
semi-positive definite and may not have an inverse in certain instances (in particular when
redundant dependent coordinates are used).

Bayo, Garcia de Jalon and Semna proposed a penalty method (28] by which the acceleration,
velocity and position constraint conditions are added to the equations of motion as a “‘dynami-
cal penalty system™ to obtain a simple and efficient formulation for the dynamic equations. The
appeal of this formulation lies in two main points. Firstly, it leads to a reduced set of equations
in the form y = g(y,¢) that can be integrated by standard conditionally stable numerical
algorithms, without the need of further stabilization techniques to control the violation of the
constraints during the integration process. Secondly, unlike the classical methods which rely
on the Jacobian, this penalty formulation leads to matrices that can be inverted even in singular
positions, and in the presence of redundant (linearl: dependent) constraints and coordinates.
Important theoretical studies of its convergence and stability have been carried out in [29] and
(30]. The penalty method of [28] has also been successfully extended to real time dynamics
within the context of fully Cartesian coordinates in [31]. There, it has been shown that the
penalty method requires the factorization of a symmetric matrix that is dominated by the terms
in the main diagonal (no pivoting is required), and is strongly banded, feature that makes it
an order n method, where n is the number of coordinates. In addition, the different steps of
the algorithm can be parallelized, making this method suitable for very large systems.

It was also proposed in [28] a more complete and accurate augmented Lagrangian method
(combination of the penalty formulation and Lagrange’s multipliers), which allows for con-
vergence independently of the penalty values and which yields the constraint forces (Lagrange
multipliers) as a by-product without having to integrate additional equations. In this paper we
examine this augmented Lagrangian formulation within the context of singular positions and,
in addition, propose a new one based on the use of the canonical equations of Hamilton that
is even more stable and numerically efficient than the previous one.

2. Preliminaries on the Classical Formulations

2.1. ACCELERATION BASED LAGRANGE’S MULTIPLIER FORMULATION

Let us consider a multibody system whose configuration is characterized by n generalized
coordinates q that are interrelated through the m holonomic kinematic constraint conditions

®(q,t) =0 1)

Let L be the system Lagrangian, defined by L = T — V , where T and V are the kinetic
and potential energy, respectively; and let Q be the vector of extemal and non-conservative
forces. The Lagrange equations of such a system can be written as [32)

d /oL oL Ty _

d—t(a) —a+0qA-Q, (93]
which for a general multibody system leads to:

M4 + 97\ = Q + Lq - Mq, 3

where M is the mass matrix, Lq is the partial derivative of the Lagrangian with respect to
the coordinates, ®4 is the Jacobian of the constraint equations, Q is the vector of extemnal
and non-conservative forces, and A is the vector that contains the Lagrange's multipliers.
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Equations (1) and (3) constitute a set of n + m mixed differential algebraic equations (DAE)
of index three [20], with q and A as unknowns. In order to avoid the direct integration of
DAE:s, a double differentiation of the constraints equations may be carried out, which along
with the Baumgarte’s stabilization [21] yields:

M d’g {‘i}_—_- .Q+I',q—1\'/'1<'1 @)
where a and b are the stabilization constants. These equations can now be integrated using
standard numerical integrators [33] with each function evaluation performed using equation

.

2.2. LAGRANGE'S MULTIPLIER FORMULATION IN CANONICAL FORM

Th2c definition of the conjugate or canonical momenta can be taken from classical mechanics
[32]
L
P=39 (5)
along with the Hamiltonian
H=p"q-L. (6)
The canonical equations of Hamilton for a constrained system are formulated as

. _9H (Ta)

dp
oOH
-p=— ~ 35}
In the case of multibody systems the Lagrangian L is defined in terms of q, § and ¢, and rather
than following a lengthy process to form the Hamiltonian as an explicit function of q, p and
t, and then differentiate as in (7a), the canonical equations can be directly obtained from (5)
and (7b). Since the system kinetic energy is a quadratic function of the generalized velocities,
(5) and (7b) directly lead to the following set of equations in matrix form

p=Mgq (8a)
p=1Lq+Q- 3\ (8b)

The combination of (8a-b) and (1) constitutes a system of 2n + m differential and algebraic
equations (DAE), of index two. Note, that although equations (8a-b) have n more equations
than (3), p can be obtained explicitly from (8b). In addition, index two DAEs are better
behaved than index three DAEs [20), and therefore the consideration of equations (8a-b) may
be numerically more advantageous than (3), when using algorithms for the solution of the
mixed differential algebraic equations.

In order to avoid the mixed differential and algebraic equations, the system Lagrangian is
modified in [22] and [34] to include the kinematic velocity constraints as

L*=L+®&7o, 9)

---------'-.
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where o are the new Lagrange multipliers. The new Hamiltonian is H = pTq — L* and the
application of (3) and (5b) leads to

Prew = M q + &30 (10a)

Prew = Lq + Q + &0 (10b)
that along with

®+1P =39+ B +12 =0 an

constitutes a set of 2n+m ordinary differential equations (ODE), with p, q and ¢ as unknowns.
The real constant y provides asymptotic stability of the stabilization scheme. It can be very
easily verified by differentiation of (10a) and substitution in (10b) that & = .

It is worth mentioning that only the following n + m equations need be solved at each time
step in the numerical implementation of the algorithm:

M &T ][4 Pnew }
q =
[Qq 0 ]{a} {-«b,—w : (12
The numerical simulations of [34] show that since only the first time derivative of the con-

straints is used, the integration of this equations is more efficient and more stable, than the
acceleration based counterparts.

2.3. REDUCTION TO AN INDEPENDENT SET OF COORDINATES

The other widely accepted group of methods for multibody dynamics is based on the use
of a transformation matrix R that will reduce the equations of motion to a minimum set of
coordinates. The matrix R is obtained from the concept of the nullspace of the Jacobian,
and allows one to express equation (3) in terms of an independent set of coordinates. The
procedure starts by differentiating the constraint equations ®(q) = 0, that for simplification
purposes we assume are sclerenomous, to obtain

24q=0. (13)

It may be seen from equation (13) that g belongs to the nullspace of the Jacobian ®4. The
dimension of the nullspace is equal to f, where f is the number of degrees of freedom of
the multibody system. We can always express q as a linear combination of the vectors of a
nullspace’s basis, in the form

q = R3, (14)
where R is an n x f matrix whose columns constitute a basis of the nullspace, and %z are
the f independent velocities. Since R constitutes a bas’s of the nullspace of the Jacobian,
it satisfies the relationship ®qR = 0. The matrix R may be obtained from the Jacobian by
projection methods using Gauss factorization [8], the singula. ralue decomposition [9] or the
QR methkad [10]. It can also be obtained more efficiently by velocity transformations [15-19]).
The substitution of (14) into (3) and premultiplication by R7 yields:

RT™MRi=RT(Q+Lq-Mq) -R"™MR 3 (15)

from which z can be calculated. An extension of this method within the setting of canonical
equations has been proposed in [35], where the same leading matrix is obtained.
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Fig. 1. Slider-crank mechanism.

7, 7
Fig. 2. a. Slider-crank mechanism motion. b. Rotating bar motion.

2.4. WHY THE CLASSICAL FORMULATIONS FAIL IN SINGULAR POSITIONS

As mentioned before, a singular position is encountered when the muitibody reaches a config-
uration in which there is a sudden change in the number of degrees of freedom. For instance,
a slider-crank mechanism as the one shown in Figure 1, reaches 2 singular position when
the two links are in vertical position. In that configuration, both links are coincident and the
mechanism has not one but two degrees of freedom. These two degrees of freedom corre-
spond to the two possible motions (bifurcations) that the mechanism can undergo, and which
are illustrated in Figure 2. Figure 2a shows the first possible motion that corresponds to a
slider-crank mechanism, Figure 2b, shows the second motion corresponding to a rotating bar
(in fact two coincident rotating bars). As may be seen, a singular position implies a bifurcation
point, in which the mechanism can, at least theoretically, undergo different paths.

The existence of a singular position with both, the classical Lagrange s multipliers approach
and the reduction to a set of independent coordinates, is invariably detected when the Jaco-
bian matrix of the constraints becomes rank deficient. These formulations are based on the
decomposition of the Jacobian and since its rank suddenly falls at a singular position, the
decomposition fails and therefore no solution can be found. The simulation then crashes not
because of the physics of the problem, but because of the inability of the dynamic formulation
to overcome the sudden change in the rank of the Jacobian.

Equations (4) and (12) are the key equations for the solution of the dynamics using the
Lagrange’s multipliers method. Assuming that all the constraints are independent, that is ‘€
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m = n — f, the rank of the leading matrices in those equations is n + m. Since the Jacobian
becomes rank deficient in singular positions, this matrix becomes singular. This means that the
accelerations (or velocities) may not be computed unless special care is taken to eliminate (or
regularize), at that particular position of the multibody system, all the vanishing constraints.
Otherwise, the dynamic simulation crashes at this point. Equation (15) is the alternate key
equation for the independent coordinate method. Again, when a singular position is reached
special provisions have to be made for the computation of the matrix R.

If a singular position is not exactly reached, the leading matrix of both classical methods
will not be strictly singular, but near singular, with a very high condition number. If this
situation is not correctly tracked, the integration and round-off errors will be amplified and
the resulting solutions may be totally erroneous.

It is important at this stage to emphasize the difference between a singular Jacobian and a
singular position. While a singular position always implies a singular Jacobian, the converse
is not always true. A Jacobian can become singular when redundant constraints are present,
a dead-lock position is reached, or, when the coordinate partitioning between dependent and
independent coordinates is not made properly or has not been updated for a while. Contrary
to the case of a singular position, these singularities can be easily avoided and the simulation
may proceed smoothly. The difference between singular Jacobian and singular positions can
be better understood by partitioning the columns of the Jacobian ®4 into two submatrices
(I’q and <I>q , correspording to the dependent and mdepcndcnt coordinates, respectively.
This partition is made so that $q has full row rank. When ®q¢ is rank-deficient but ®q has
full row rank the singularity is easily avoidable since the full rank of ®4° can be recovered
by a new suitable choice of independent coordinates. However, at a singular position ®q

‘looses rank all of a sudden, and the singularity may only be avoided by eliminating the non-

active constraints. As pointed out in {25] if these non-active constraints are eliminated in the
neighborhood of the singular configurations the corresponding constraint forces bccpme zero
and this may result in a fast deviation of the simulation from the constrained behavior.

3. Acceleration Based Augmented Lagrangian Formulation
3.1. DESCRIPTION OF THE METHOD

For the sake of completeness and in order to facilitate the understanding of the methods
proposed in sections 4 and 6, we present in this section the augmented Lagrangian method
introduced in [28). Later we will address its behavior in singular positions. Given a multibody
system with Lolonomic constraint equations of the form given in (1), which represent a set of
nonlinear algebraic equations in the coordinates and the time variable. The penalty-augmented
Lagrangian formulation proposed in [28] is derived by adding to the Lagrangian two terms: a
fictitious potential

. 1
| 4 =¥‘2-Clkw25

&Ta 02 (15)

D]

and a fictitious kinematic energy term

Z o (‘“”‘) 16Ta b, a7
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A set of Rayleigh's dissipative forces is also added to the system
sz —2ak Wi uk%’ = -20“[&&, (18)

where ay are large positive real values (penalty numbers), and wi and u;. represent the natural
frequency and the damping ratio of the dynamic penalty system (mass, dashpot and spring)
corresponding to the constraint &, = 0. Matrices a, £ and x4 are m x m diagonal matrices
that contain the values of the penalty numbers, the natural frequencies and the damping ratios
of the penalty systems assigned to each constraint condition. If the same values are used for
each constraint these matrices become identity matrices multiplied by the respective penalty
numbers. Note that in equations (16) through (18) we have used both index as well as matrix
notation, hoping that this will lead to a better understanding of the physical significance of
the different terms. In the following discussion we will only use the matrix form in order to
be consistent with the notation used so far in the paper.
The differentiation of the new Lagrangian leads to

oL*

3q =Lq+§€a§—(’€aﬂz§ (19)

aL* e

34 =Mg+®jad (20)
L Y .

%(;):Mq+Mq+{’:a0+{’:a@, @1

where the relation $7 = é};, which can be easily verified, has been used. L is the Lagrangian
corresponding to the system without constraints.
The work done by the fictitious Rayleigh forces is

§Wr=-2(6®)TaQpd=-26q"®Ta 2 s &. (22)
Therefore the final expression obtained by the application of the Lagrange’s equations (3) is
Mg + @30 ($ +20ud + 02@) + 81X = Q+ Lq - Mg, 23

where A* are the new Lagrange multipliers of the modified system. Note that the second term
in the LHS of equation (23). represents the projection in the direction of the coordinates q of
all the intemnal forces that are gencrated by the penalty system when the constraints ®, & and
& are violated. Introducing & = ®q4 + $qq + B, the final result is obtained

T - Ty
(M + 8Ta®q) G+ 23
= Q+Lqg- Mq - #7a($qq + &, +28ud + 0128). 4)
This equation may be viewed as the *“generic penalty method” [28] to which the Lagrange's
multipliers are added. As clearly shown in [28] this augmented Lagrangian formulation allows
the analyst to choose from a wide range of penalty values that assure convergence and avoid

numerical ill-conditioning. As we will sce later, the solution provided by this method is not
sensitive to the value taken by the penalty factor, and therefore, equation (24) represents and
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elegant and attractive way of avoiding the problems customarily attributed to the penalty
formulations.

It is important to note that there is a very important difference between equation (24)
and the classical dynamic algorithms represented by (4) and (15). As we indicated before,
the leading matrices of the latter equations become singular in singular positions. However,
although the mass matrix M is in general positive semi-definite, it is always strictly positive
definite in the nulispace of the Jacobian matrix. Therefore, a look at equation (24) reveals that
its lcading matrix (M + <I>qTa<I>q) is always positive definite, which means that it can always
be factorized, even in singular positions and/or with linearly dependent constraints. In practice,
the augmented Lagrangian formulation is superior to the generic penalty method since the
former allows for smaller values of the penalty parameter, hence, for a better conditioning of
the leading matrix.

In equation (24) the Lagrange’s multipliers A* play the role of correcting terms. In the
limit the constraint conditions are satisfied, thus A = A* and equations (4) and (24) become
equivalent except for round off errors induced by the penalty parameter and finite machine
precision. By comparing those two equations one can infer that

A" +a(<’1’>+2np§+n2¢>). (25)

We are seeking the solution of (24) without having to use the algebraic constraint equations
(1). This requires that the correct values of A* be known so that they can be inserted in (24).
Since those values are not known in advance we need to set up an iterative process that
calculates the unknown multipliers A*. The iteration is easily established by taking advantage
of equation (25)
=N +a(®+ 204 + n%)w, i=0,1,2,.. 26)

with A§ = O for the first iteration. Equation (26) physically represents the introduction at
iteration i + 1 of forces that tend to compensate the fact that the addition of all the constraint
terms are not exactly zero. It tums out that with the augmented Lagrangian formulation, the
penalty numbers do not need to be very large (thus leading to a better numerical conditioning)
since the resulting error in the constraint equations will be eliminated by the Lagrange’s terms
during the iteration procedure. Also note that the "generic penalty” (28] method corresponds
to the augmented Lagrangian formulation in which the iteration process is only carried out
once.

The matrix formulation of (24), including the iterative process defined in (26), is given by
the following expression:

(M + ®7a®,) = M§; - 8T a ($qq + &, +20ud + 073)

i=0,1,2,.. Q7

where the subscript ¢ represents the iteration number, and M Go = Q+Lq — Mq for the
initial iteration. Equation (27) may be used to iterate until [|§C+) — || < ¢, where e is a
user-specified tolerance.

The main advantage of using equation (27) is that the penalty terms are in fact used as an
intermediate tool in order to compute the Lagrange’s multipliers for which no new equations
are integrated: only n equations are solved in the integration process. Therefore, the value of
the penalty factor o does not affect the solution, but only the convergence rate. Experience

qi+l
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shows that when the constraints are scaled to unity, penalty factors ranging from 10° o0 10’
give a good convergence rate, and only 2 to 4 iterations are required to converge to the machine
precision, in double precision arithmetic.

Note that the added cost of using equation (27) to refine the solution and obtain the
Lagrange multipliers is fairly small, since its leading matrix remains constant during the
iteration process needed for a function evaluation. Therefore, at each iteration step only the
computation of the independent term and a forward and a backward substitutions are required.
The numerical implementation of the algorithm using standard integrators [33], available in
commercial mathematical libraries, is rather simple and may be described as follows

ALGORITHM ALF1
Given q and q at time step /.

1. Use (27) iteratively to solve for §, with M dg = Q + Lq — M4 for the initial iteration.

~ At the end of each iteration use (26) to calculate the Lagrange multipliers A*, if desired
2. Call the numerical integration subroutine (n.i.s) to compute q and q at time step ! + 1.
3. Upon convergence of the n.i.s update the time variable and go to step 1.

We have used this algorithm very successfully in multibody dynamics simulation and has
tumned out to be very efficient and accurate. However, we have noticed that under repetitive
singular conditions this algorithm may lead to unstabl= behavior (sce examples below) due to
the accumulation of small violations of the constraints during the integration process. This lead
us to propose a more robust augmented Lagrangian method based on the canonical equations
of Hamilton that is presented in the next section.

4. Augmented Lagrangian Formulation in Canonical Form
4.1. BASIC AUGMENTED LAGRANGIAN FORMULATION IN CANONICAL FORM

Let us consider equation (9) as the starting point to build a modified Lagrangian that will not
only contain the Lagrange multipliers o but also the penalty terms of the previous section.
Accordingly:

P .
L*=L+ %QTaQ - EQTﬂzaQ + @ o (28)
In the limit when the constraint conditions are satisfied, the penalty terms vanish and o = o*.
Similar to the Lagrange’s formulation ¢* = A* and after the augmented Lagrangian iteration
when the constraints are satisficd to machine precision & = A. The differentiation of L* with
respect to q leads to the following new canonical momenta in matrix form

aL* .
P= =Mq+®lad + 80", 29)

where we have eliminated the subindex ‘new’ of (10a) for practical convenience. The modified
Hamiltonian can be written as H* = pTq — L* and the use of (7), including the Rayleigh
forces of (18), leads to

[M+ #Tadq]q=p~ 8Jad: + 870" (302)
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P=Q+Lg+dlad - 2T (n’«p +20ud) + 870", (30b)

Equations (30a-b) constitute a set of 2n first order ordinary differential equations. However,
p is given in explicit form, and therefore only n algebraic equations need be solved at each
function evaluation for the numerical implementation of the algorithm.

Our numerical simulations have shown that equations (30) tend to be numericall y stiff due
to all the penalty terms concentrated in the RHS of (30b). This numerical stiffness limits the
possible choices of numerical integrators. Standard ODE integrators [33] that are based on
conditionally stable predictor-corrector multi-step formulae, lead to an increased number of
function evaluations. We propose in the next section a modification of (30) that circumvents
this problem.

4.2. MODIFIED AUGMENTED LAGRANGIAN FORMULATION IN CANONICAL FORM
The canonical equation (30a) may be also written as

P=Mg+dJad + 815", 31

which indicates that the canonical momenta is stabilized through the addition of penalty
terms that are proportional to the violation of the velocity constraint equations. It is important
to realize that if equation (31) is differentiated and substituted into the acceleration based
augmented Lagrangian equation (24) the result is precisely the additional canonical equation
(30b), which lead us to see that the canonical equations originate from the acceleration based
equations by the mere canonical transformation indicated in (31).

However, we can achieve a better stabilization of the canonical momenta if we add to the
RHS of (31) two additional penalty terms: one term proportional to the constraint violation
and the other to its integral. Accordingly we define a new momenta p as

T (4 ¢ T
p=Mq+oqa(¢+zyn¢+_-‘[ 'bdt) - aTo", (32)
t
By expanding the term ® equation (32) becomes:
t \
(M+ ®3a®q)q=p-2la («b, +2u0® + Q2 / th) ~-&10". (33a)
o

The differentiation of (33a) and substitution into (24) leads to the second set of modified
canonical equations

. 3 ‘ :
P=Q+L,+ Q}'a (@29;@ +03 / (I»dt) + ch‘, (33b)
t

which along with (33a) constitute a set of 2n first order ordinary differential equations in the
unknowns p, q and o*. Again only n algebraic equations need be solved at each function
evaluation for the numerical implementation of the algorithm. A very important point is that,
contrary to equations (30a-b), equations (33a-b) do not become stiff, and all our numerical
experiments show that they even provide more numerical accuracy and better constraint
stabilization than the acceleration based formulation of equation (24).

In fact we can compare this set of equations with the n second order ordinary differential
equations resulting from the acceleration based formulation of (24). While both formulations
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require the triangularization of the same leading matrix for each function evaluation, there
is a serious advantages in the use of (33a-b) as compared to (24): the kinematic constraint
conditions are differentiated only once with the canonical procedure (twice in the acceleration
based formulation) and this will lead to lesser violations of the constraints. We will see in the
numerical simulations of Section 6, how this factor becomes detrimental for the acceleration
based formulation under repetitive singular positions, whereas the canonical approach leads
to a much better performance.

Note again, that the multipiiers o* do not need to be solved for explicitly. Following the
same procedure as that used with the acceleration based augmented Lagrangian formulation,
the o* may be obtained in an iterative manner as:

. t
o5 =05 + (Q+2uﬂ‘l’+02/ ‘I’dr) , i=0,1,2,.. 34)
t i+l
with 0§ = O for the first iteration. Equation (33a) including the iterative process of (34)
becomes

T T C )
(M + q’q ai’q) Qs+l = Mq, - Qq a (¢g +2u)® + 02/; QdT) ,
i=0,1,2,.. 35)

with M go = p for the first iteration. Equation (35) shows that the velocity calculation at
each function evaluation is refined so that the weighted summation of the constraint equations
(34) are satisfied to machine precision. After the velocity calculation equation (33b) may be
used to evaluate the derivative of the canonical momenta.

The algorithm may be presented as

ALGORITHM ALF2
Given p and q at time step [.

1. Use (35) iterativeiy to solve for q, with M qo = p for the first iteration. At the end of
each iteration use (34) to calculate the Lagrange multipliers o*

2. Use (33b) to compute p explicitly (no solution of equations involved).

3. Call the numerical integration subroutine to compute p and q at time step { + 1.

4. Upon convergence of the n.i.s.
o If desired, use a differentiation scheme to obtain A = ¢
e Update the time variable and go to step 1.

This algorithm is as efficient numerically as ALF1 but much more stable under repetitive
singular positions.
5. Canonical Augmented Lagrangian Formulation for Non-Holonomic Systems

The modified augmented Lagrangian formulation described above may also be extended to
non-holonomic systems with constraints of the form

® (q,q9,1) = 0. (36)
The acceleration based augmented Lagrangian formulation for this type of constraints is:
Mg = Q+Lq - Mq - &Ja (& +32) - 812", 37)

N
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In order to obtain the canonical counterparts we follow a procedure similar to that used for
the holonomic case, and establish the following canonical transformation:

t
p=Mq+d]a (@ +8 /c, er) +&30%, (38a)

which indicates that a better stabilization of the canonical momenta may be achieved by
considering one penalty term proportional to the constraint violation and other to its integral.
The differentiation of (38a) and posterior substitution into (37) leads to the second set of
canonical equations

. t L]
p=Q+Lq+dla (o +8 /‘o ‘I>dr) +&To", (38b)

which along with (38a) constitute a set of 2n first order ordinary differential equations in the
unknowns p, q and ¢*. Again only n equations need be solved at each function evaluation.

Typically, non-holonomic constraint conditions for multibody systems take the following
form

® = A(q,t) 4+ B(q,t) (39)
and consequently the application of (38a-b) leads to

¢

(M + ATaA) qg=p-ATa (B +8 / er) - AT, (40a)
to

. ¢ X
|‘)=Q+L.,+A"a(+ﬂ/ dr)+ATa‘ (40b)
te
and
t
o1 =05 + (@ +4 <I>d-r) , 1=0,1,2,... @1
to i+1

with g5 = O for the first iteration.

6. Numerical Examples
6.1. A SIMPLE EXAMPLE

To better understand the application of the augmented Lagrangian formulation in singular and
non-singular positions, let us consider the slider-crank mechanism shown in Figure 1. Both
links are of length | = 1m, with a uniformly distributed mass of m = 1 Kg. We take as position
coordinates q, the z and y coordinates of the crank end, and the z coordinate of the slider,
thus QT = {21, y1, 2}. We consider the gravity force, with a value g = 9.81 m/s? acting in
the negative Y axis direction.

The 3 x 3 mass matrix corresponding to these variables is

53]

N —
- &
oso
NO -
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Table |. Convergence rate with

a=10*
Iteration # Error
1 6579210~
2 43705 10~
3 29206 1.3
4 1.6107 10~

This mechanism has one degree of freedom only, and therefore there are two geometrical
constraints that correspond to the constant distance conditions

e { bd+af-1) }

% [(:Ez —31)2+y% - 1}

When the crank forms an angle of /2 radians with the horizontal, the coupler is coincident
with the crank and the crank axis is also coincident with the slider. In this position the
mechanism has two instantaneous degrees of freedom, since it can undergo either the motion
of a slidercrank or the motion of two superimposed rotating bars. Let us now apply the
algorithm ALF1 for the instantaneous solution of the accelerations, for both a nonsingular
position and a singular position.

Nonsingular Position. Consider the mechanism in an initial position in which the crank forms
an angle of 7 /4 with the horizontal and in which the slider has a velocity z; = —2 m/s. The
exact acceleration has been computed first with the classical Lagrange’s multiplier method of
equation (4). Then, the accelerations have been calculated with the algorithm ALF1, using
equation (27) iteratively, with a value a = 10*. Table I shows the norm of the difference
between the exact acceleration and the one obtained with ALF1.

Table I also shows that the convergence rate of the iterative algorithm is considerably fast.
‘Itus rate agrees with that predicted anayticaily in [36). A hugher penalty value gives a faster
convergence rate but a lower precision. For instance, a value of a = 107 yields an error of the
order of 10-12 in one iteration, however, further iterations are unable to improve the solution,
since some precision is lost in floating point arithmetic operations between numbers with
exponents of significantly different values.

Singular Position. Now, consider the crank in a vertical position, forming and angle of 7 /2
radians with the horizontal. As we did in the nonsingular case, we take again a slider velocity
value £; = —2 m/s. Since the mechanism is in a singular position with 2 instantaneous degrees
of freedom, we also have to specify the horizontal velocity of the crank end. It can be easily
shown that, theoretically, the crank end can have any velocity value £; = v. However, the
slider-crank motion must satisfy the condition z; = x3/2 over all its motion, and therefore
the velocity £, = ~1 seems the obvious choice. Note that in this example the choice for the
crank-end velocity is being made explicitly, but dwing a dynamic simulation the numerica!
integrator will provide the value of the crank-end velocity. Since the integrator assumes a
continuous variation of the variables, this condition will be automatically guaranteed.

et BB bt m e ee S




Singularity-Free Augmented Lagrangian Algorithms 15

In this case, the exact acceleration value cannot be computed with equation (4) because the
leading matrix is singular. However, the application of equation (27) with a value of a = 10*
leads to

2 0 1 .

3 [4 Iy 0
02(10°+4) 0 i § = { = (210)* +9.81)
b0 Tyl e 0

which can be inverted and leads to the solution (0, —1.000473825436242729, 0). After 3
iterations, the result is (0, —1, 0), accurate to 14 digits.

This simple example clearly and simply illustrates that the penalty-augmented Lagrang-
ian formulation works in singular positions, when the classical formulations, such as the
Lagrange’s multipliers method or the reduction to independent coordinates, fail. Also note
that the condition number of the leading matrix increases at the same rate as the penalty

parameter.

6.2. DYNAMIC SMULATION OF THE SLIDER-CRANK MECHANISM

Let us consider again the same slider-crank mechanism of Section 6.1, in an initial position
such that the crank forms an angle of 7 /4 radians with the X axis and that the slider’s velocity
is £3 = -4 m/s.

We perform a dynamic simulation by integrating the equations of motion for a total of 10
seconds, using a conditionally stable variable step and order integrator based on predictor-
corrector multistep formulae [33]. We set the error tolerance to 105 and choose as penalty
parameters a = 107, Q = 10 and 4 = 1. During the simulation, the mechanism goes through
the singular position 11 times, following a periodical response.

First, the simulation was carried out with the acceleration based algorithm ALF1. Figure 3
shows the X acceleration of the crank-end over the time period of 10 seconds. Figure 4 shows
the value of the Lagrange multiplier \;, corresponding to the constant distance constraint
condition between the crank axis and the crank end. Finally, Figure 5 shows the time history
of the total energy, which should be kept constant, since the system is conservative. A very
interesting point can be noted in Figures 3, 4 and S. The value of the acceleration of the
crank-end and A} present spikes around ¢ = 9.25 s and, at the same time, the energy presents
a sudden discontinuity. The cause of this phenomenon is a small violation of the constraints
around the singular position, due to the combination of the errors produced by the numerical
integration routine and by the round-off errors produced by augmented Lagrangian procedure.
These errors are more critical in the acceleration based algorithm ALF1 because the constraint
equations are differentiated twice.

The simulation was repeated, this time using the algorithm ALF2, with the same error
tolerance and values for the penalty parameters. This time, the values of A; and the crank-end
acceleration, illustrated in Figures 6 and 7, no longer show the spikes resulting from ALF1.
In addition, the total energy, shown in Figure 8, does not show the sudden discontinuity that
results in Figure §.

The accumulation of integration errors that lead to small constraint violations in the
neighborhood of the singular position is the cause for the sudden peaks and jumps in the
constraint forces and accelerations produced by ALF1. These can be removed by tighter error
tolerances in the integrator. The better results obtained under the same condiions with ALF2
are due to its better constraint stabilization properties.
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Fig. 9. Assembly of two four-bar linkages.
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Fig. 10. Time history of z; with ALFI.

6.3. AN ASSEMBLY OF TWO FOUR-BAR LINKAGES

Figure 9 shows the initial position of a one degree-of-freedom assembly of two four-bar
linkages. This mechanism constitutes a particularly critical example, because when it reaches
the horizontal position the number of degrees of freedom increases instantaneously from 1 to 3.
To define the position of the system, we use the 6 position variables (z;, ¥, z2, ¥2, 3, ).
All the links are of length | = 1 m and have a uniformly distributed mass m = 1 Kg. The
gravity force acts in the negative Y direction, with a value g = 9.81 m/s?. At t = 0 the initial
velocity is ) = 1. We integrate the motion for 10 seconds, using the same integrator and
tolerance as before, and the values a = 107, Q = 10 and s = 1 for the penalty parameters.

The analysis was carried. out twice, first with the algorithm ALF1 and then with the
algorithm ALF2. The results obtained with ALF1 are displayed in Figures 10 and 11, which
show the time variation of the coordinate z; and the Lagrange multiplier A;, corresponding to
a constant distance constraint between point 1 and the fixed end of the leftmost link. Figures
12 and 13 show the variation of the same variables, obtained this time with the algorithm
ALF2. As may be seen, the solution with ALF1 becomes unstable after 3.3 seconds, while
ALF2 gives congruent results.

The reason for the failure of ALF1 and the success of ALF2 are found again in the better
stability propertics of ALF2 with respect to constraint violations (it even yiclds a successfull
integration when just the generic penalty formulation is used with no augmented lagrangian
iteration). The way ALF1 may be improved, if it is to be used in repetitive singular positions,
is by setting tighter error tolerances and rising the value of the parameter 2. However, this will
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introduce numerical stiffness in the problem and therefore will increase the computational
cffort. In this example, the value of w = 20 solves the problem satisfactorily at the cost of a
leng:hier integration.

7. Conclusions

In this paper we have concisely reviewed the state of the art in multibody dynamic simulation.
We have also revisited the acceleration based augmented Lagrangian formulation in the context
of sinfular positions (ALF1) and proposed a new one based on the canonical equations
of Hamilton (ALF2) for both holonomic and non-holonomic systems. Both formulations,
ALF1 and ALF2, successfully solve the simulation problem in singular positions, however
the canonical formulation ALF2 proves to be more accurate and robust than ALF1 under
repetitive singular configurations.

. The advantages of the proposed method can be summarized as follows:

* The mew:cd is very simple to implement and can use standard off the shelf conditionally
stable nuinerical integrators such as those available in commercial mathematical libraries.

o The fact that the leading matrix of the equations of motion is always positive definite,
symmetric and sparse, allows for a very efficient solution of the equations without the
use of pivoting. This applies even in the presence of redundant (linearly dependent)
constraints and coordinates, and most imponrtantly in singular positions.

o Both the generic penalty and augmented Lagrangian methods do not require special pro-
visions such as, detection, elimination of constraints or regularization, near the singular
position. The integration goes through the singularity in a procession manner with no
need for additional changes.

* The Lagrange multipliers (reaction forces at the constraints) are obtained without having
to integrate additional equations.

e The leading matrix is strongly banded, feature that in principie makes it an order n
method, where n is the number of dependent coordinates. Therefore it may become a
very efficient formulation for those systems with a large number of multibodies, although
this assertion needs to be corroborated by further research.

o The acceleration based formulation ALF1 shows numerical inestabilities under repetitive
singular positions that are due to the accumulation of round-off and constraint errors.
These can be circumvented with tighter tolerances and increased values in the frequency
of the dynamical penalty system at the expense of additional computational cost.

e The canonically based method ALF2 is more .obust and has not shown pathological
behavior in any of our simulations (even when we used it in the generic penalty way).
Ther= authors do not know of any other algorithm that can simulate the motion of a
multibody undergoing repetitive singular positions as ALF2 does.

As a final remark, one must keep in mind that the actual behavior of multibody systems
around singular positions is physically uncertain, due to the uncertainty in the manufacturing
tolerances. It is, therefore, unlikely that the behavior of the systems simulated with the
algorithms presented in this paper may be experimentally reproduced. However, the usefulness
of the algorithms and numerical results presented herein is twofold. Firstly, they provide an
efficient and reliable tool for multibody dynamics, which avoids the program crashing that
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occurs with the classical formulations. Secondly, these algorithms become useful for the study
of the different altemative motions that a multibody system may undergo in the neighborhood
of a singular position, when one or several geomeurical parameters are slightly varied to
simulate manufacturing errors.
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ABSTRACT

This paper addresses the problem of inverse dynamics for articulated
flexible structures with both lumped and distributed actuators. This prob-
lem arises, for example, in the combined vibration minimization and tra-
jectory control of space robots and structures. For such flexible structures,
closed loop passivs joint based controllers have been shown to be effec-
tive in trajectory control by Paden et al. Crucial to the development of
such closed loop controllers, which are robust to external perturbations, is
the problem of dynamic inversion which yields the nominal state trajec-
tories and the feedforward inputs. In this paper we propose a new inverse
dynamics scheme for computing the nominal lumped and distributed feed-

forward inputs for tracking a prescribed trajectory.




1. Introduction

Inverse dynamics is an important problem in the control of articulated flexible struc-
tures such as space stations and manipulators. A solution for the nonredundant lumped
actuator case has been provided by Bayo et. al., [1] and Book, [2]. This method produces
bounded inputs which move a reference point on the structure along a desired trajectory.
The inputs are necessarily non-causal when the structure dynamics are nonminimum
phase. Elastic deformation which may cause vibration of the structure is also determined
by the trajectory; our goal is to minimize such vibrations. The viability of distributed
actuators for the control of structural vibrations, [3], [4] and [5], has motivated their use

here for trajectory tracking.

Trajectory tracking of the structure can be accomplished by the use of the joint
actuators alone [6] and in this sense the distributed actuators are redundant. However, if
only the joint actuators are used, once the trajectory to be tracked is prescribed, the feed-
forward inputs and consequently the induccd structural vibrations during motion are
determined uniquely. Note that there are many state trajectories that could yield the same
output response, but we can only access a particular one, with a given set of non-
redundant number of actuators. On the contrary if additional actuation is available, we
have the freedom of choosing a more favorable state dynamics. In this paper, we develop
the concept of using the extra actuation available through the distributed actuators in the
structure to not only satisfy the trajectory tracking constraint but also minimize the
accompanying elastic displz;ccmcnts during the motion. To obtain thesc new feedforward
inputs, the inverse dynamics method suggested in [1] is extended to cover cases of
redundantly-actuated structures. To verify the efficay of the proposed method, an exam-
ple of a flexible two link truss structure with distributed piezo-electric actuators was stu-
died to contrast the use of distributed actuators along with the joint actuators for end
effector trajectory control with the use of only the joint actuators. The inverse dynamics

problem studied in this paper, yields the nominal desired state trajectories and the feed-
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forward input which can be used to develop closed loop controllers to achieve robust tra-

jectory tracking( 6].

The remainder of the paper is organized in the following format. The modeling of
flexible structures with joint and distributed actuators, the formulation of the problem and
its solution are presented in Section 2. Section 3 deals with an application of the pro-

posed method to the example of a two link flexible truss. The discussions and conclu-

sions are presented in section 4.

2. Formulation

The solution to the general multi-link inverse dynamics problem involves studying
an individual link in the chain, coupling the equations of the individual links, and then
recursively converging to the desired actuator inputs and corresponding displacements.

This approach is presented below, beginning with a single link.

2.1 Equation of motion of a single link

To simplify the equations, we present the equations for a link with a revolute joint.
The flexible link depicted in figure 1 forms part of a multi-link system. The link is shown
with a revolute joint, however the formulation remains identical for a link with transla-
tional joint. The elastic deflections in the structure are defined with respect to a nominal
position characterized by a moving frame whose origin coincides with the location of the
hub of the link. The nominal motion of this frame is prespecified by its angular velocity
w4, angular acceleration a, and the translational motion of its origin. The above
definition of the elastic disﬁlacemcnts with respect to this nominal frame permits the
linearization of the problem from the outset. Incorporating the kinematic model followed
by Naganathan and Soni [7] in a finite element model (FEM), the equations of motion for

a single link at any time ¢ can be written as [1]

Mz + [C +Cc(co,.)] z+ [K +K,(a,,,w,.)] 2 =BrT +B,V, +F. .1
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Where z is an R” vector of the finite element degrees of freedom. M and K belong to
R™* and are the conventional finite element mass and stiffness matrices respectively;
C. and K, € R™* and are the time varying Coriolis and centrifugal stiffness matrices,
respectively. The R*>* matrix C represents the internal viscous damping of the material.
T is the unknown joint actuation. F € R™ contains the reactions at the end of the link,
and the known forces produced by the rotating frame effect. The distributed actuator
input, V, (t) € R, is the equivalent nodal forces at the FEM degrees of freedom, where
np is the number of distributed actuator inputs. By and B, are constant matrices of

dimensions R” and R"*"? , respectively. The set of finite element equations (2.1) may be

panitioned as follows

[ ] ]
9,, 9;,
.- r . r 6,\
M 2 +]-C +CC(0);,)] Z;l + K+Kc(a,,,a),,)] Z; | =
L z
i ; '
[ [
r1 BP; Fh
0| T+| 8| Vo +| E: 2.2)
L Bp, F‘

where 8, is the elastic rotation of the hub, z; is the elastic deflection at the tip in the y
lirection, and the other n-2 finite element degrees of freedom are included in the vector

z;. The force vector, F , and the B, and Br matrices are also partitioned similarly.
2.2 Minimization Objective

The requirement is to accurately track the end effector of the link along the given
nominal trajectory without overshoot and residual vibrations. Additionally we also seek
to minimize the ensuing structural vibrations during this motion by minimizing J(T,V, ),

a measure of elastic deflections in the structure defined as follows

J(TV,) 48 Tz(:)Tz(:)dr. (2.3)

—00
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Mathematically the objective can be stated as

Where T is the set of all pairs of stable joint torque and distributed actuator inputs that

when used to actuate the system defined by equation (2.2) yields z,(¢) = 0 for all ¢.

2.3 Solution Methodology

An iterative scheme is described below for each link. Equation (2.2) can be rewrit-

ten as
Mz +CZ +Kz=BrT+B,V, +F - C.(wy) - K. (o, 004) 2 2.5)
where the time dependent Coriolis and centrifugal terms are kept on the RHS of the
equation. The iteration procedure starts with the absence of the last two terms involving
C: and K, in the right hand side. Then, the system of equations can be transformed into
independent sets of simultaneous complex equations by means of the Fourier transform.

For each of the evaluation frequency o, equation (2.5) becomes

r
Zh -
M-Lc-lg 5—T+%+g’"v" 2.6)
s |7 -l -2 B e
4

where the bar stands for the Fourier 'traixsform, and F represents the known forcing
terms. After the first iteration it will also include the updated contributions from the
Coriolis and centrifugal terms appearing in the RHS of equation (2.5). For any ®#0, the

matrix

HA [M - A=C - BITK} @n
is a complex, symmetric and invertible matrix. For @ = 0 the system undergoes a rigid
body motion and H & M which is the positive definite invertible mass matrix, Let
G 4 H-1. Then the above equation can be re-written as

[ ] ( )

pa—

Zh -
- Gm Gy G T (® “» B, | __

7| =| G Gi Gu | 4 Té) | E|+ BT} (2.8)
—_ Gwm Gy Gu F, B,,

4
L \ J
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The condition that the tip should follow the nominal motion is equivalent to z; = 0 for ail
. This induces a relationship between the joint actuation and the distributed actuator

inputs and is obtained from the last row of the previous equation.

T =- Grh-l[G:h G Gn] (F +Bp ‘-/p—) - 2.9
Substituting this expression for the input hub torque in equation (2.8) and using the pro-

g2, -
perty that %ﬁ- = -0%7 yields

F=-lr 4V, +B). (2.10)
Where
A 8 (-G ' GB1 (G G, Gy) +G18B, Q.11)
and
B 8[-G4'GBr (G, G; Gy)+G]F . 2.12)

Next we determine ﬁ'. Using Parseval’s theorem, minimizing J(T,V,) in equation
(2.4) is equivalent to minimizing #Z% # at each o. This is a standard least squares
approximation problem (8] and results in the following solution for the distributed actua-

tor inputs,

Vv, =-U

5! (9] V*B (2.13)
where I, U and V define the standard singular value decomposition of A as follows

VAU = [5— 8] (2.14)

Where the conjugate transpose matrix operator is denoted by *. In addition if A has rank
np , which is the number of distributed actuator inputs, then the least squares approxima-
tion yields

V, =—(A°AYIA°B . (2.15)
A sufficient and necessary condition for A to have rank np is given next.

Lemma
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rank [A]=np iff rank [Br |B,] =np+1 (2.16)
Proof
Rank [Br]=1 => rank [GBT(Gn G;; Gu)l=1

= rank [.‘i 8 [Gu! GBr (G Gy G¢)+G]] 2 n-l.

Since Br =[100]*, it is easy to see that the null space of A is the span of (1 00]°.
Hence rank A is n~1. Noting that A =4 B,, the lemma follows easily. a

The above lemma requires that all the columos of the input matrices By and B, be
independent. This is computationally more efficient than checking the rank of A for each
. Next, the corresponding joint torque component, T is then evaluated from equation
(2.9). The inverse Fourier transforms for the feedforward inputs completes the first itera-
tion and results in torques, T! and distributed inputs V,'. Then the forward dynamic
analysis is carried out to compute K, and C.. F in the RHS of equation (2.5) is updated
and the process is repeated to find the new input torques and voltages. The process is
stopped at the n** iteration if #T*-T"~18 5+ #V, "=V, 7~ ; < ¢, where € is some small
positive constant. It may be noted that for slow motions the terms involving K. and C.
are small relative to the other terms in equation (2.1) and the iterations converge in a few

steps [1].

2.4 The Algorithms for the Mxlllti-Link Cases

In the previous sub-sec;ion the procedure to evaluate the joint actuations of a single
link was presented. This can be recursively extended for multi-link flexible manipulators.
Algorithms are presented below for both open and closed chain multi-link mechanisms.
Multi-Link Open Chain Case
1. Define the nominal motion (Inverse Kinematics of rigid manipulator).

2. For each link j, starting from the last one in the chain:

a) Compute torque (or force) T/ and distributed actuator inputs PJ




imposing z/ =0 (Section 2)
b) Compute the link reaction forces R/ from equilibrium.
3. Use equation (2.1) to compute the elastic displacement and joint angles.
4. Compute the inputs for the next link, j-1.
Multi-Link Closed Chain Case
1. Define the nominal motion (Inverse Kinematics of rigid robot).
2. Define an independent set of joint forces and reactions equal in number to the degrees
of freedom of the robot.
3. For each link j, starting from the last one in the chain:
a) Compute torque (or force) T/ and distributed actuator
inputs P4 imposing z/ = 0 (Section 2)
b) Compute the link reaction forces R/ from equilibrium.
4. Use equation (2.1) to compute the elastic displacements and joint angles
5. Use elastic deflections tb correct the nominal motion of each link.
6. Repeat steps 3 to 5 until convergence in the forces/torques is obtained

This concludes the methodology. In the next section we present an application to a

two-link flexible manipulator.

3. Example

A twolink truss experiment under development at UCSB is shown in figure 2. The
trusses are made of lexan and have lumped masses (net 2 Kg for each link) distributed
along their lengths. The first and the second links are tip loaded with 3.5 and 1 Ky
respectively. Equivalent beam properties of the trusses used in the FEM model for simu-
lations are Youngs modulus = 7 ¢? GPa, Link length = 1.2 m, density = 1500 Kg/m3,
cross sectional area = 4.378 ¢~5 m?2 and cross sectional area moment of inertia = 4.7244

e~9m4 Of the 10 spans in each link, two are piezo-electrically actuated. They are

B G N N S My A I BT @mN T D N M aae e AN mE amm |
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located at the second and ninth spans as shown in the figure 2. The piezo-electric stack
actuators in those spans have the following properties. Cross sectional area, Acy = 7.3
e~8 m2, piezo strain to voltage constant, ds, =.731 ¢ V-1, Youngs modulus, E, = 73
¢9 Gpa and distance of the actuator from the neutral axis of the tuss, d, = 1.27 etm.
Following the standard Bernoulli-Euler modeling for an applied voltage Vipu, the
piezo-electric actuation can be considered as two concentrated moments M acting at the
two ends of the actuator [9] and [10]. Where M is given by
M =(ds NyEpAcsdi)Vinpue 3.1)
and N, =4 is the number of piezos in each span. For the truss considered above
= =0.0198V,,u . The desired trajectory is a rest to rest motion of the structure with
initial conditions given by 6; = 8, =0 and final conditions 8; = 11.25° and 6, = ~22.5°.
Where @’s are the absolute angles of the links with respect to a frame fixed on the ground
and are shown in figure 2. The nominal motion of the tip for each link are the trajectories
followed by the tips of the links if thc‘ structure were rigid and followed the nominal
angular motions shown in figure 3. Using the procedure in section 2.4 for open-chain
mechanisms, open loop simulations were performed (1) using only the joint actuation for
feedforward and (2) using the distributed piezo-electric actuators along with joint actua-

tors in feedforward and the results are presented below.

Plots of the input piezo voltages and joint torques are presented in figures 4 and 5 respec-
tively. To illustrate the viability of the proposed method figures 6 and 7 show the
transverse structural midpoint deflections of the two links during the motion with and
without the distributed actuators. Similar plots for the elastic hub rotations are shown in

figures 8 and 9.

Thus the piezo-electric actuators show a significant reduction in the structural vibrations
and demonstrates the viability of the proposed method. The consequent reduction in the
induced strains in the structure allows the use of lighter elements and smaller actuators,

especially in space structures where the loads are mainly inertial.
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4. Conclusion

Typically distibuted actuators like the piezo-electric ones cannot gamer enough
actuation to cause large motions in the structure. However they could be very effective in
controlling the small structural deformations in the structure. Their use in the feedfor-
ward to aid the joint actuators for trajectory tracking is a novel idea developed in this
paper. The method proposed was shown to be extremely efficient in removing structural
vibrations from structures as seen in the example. Thus these feedforward actuations,
obtained through the proposed inverse dynamics, augmented with joint angle feedback
based closed loop controllers seem promising in the slewing control of flexible manipula-
tors. This encouraging result motivates further work on distributed actuators in the con-

trol of flexible structures.
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Piezoelectric Actuator Design for Vibration Suppression:

Placement and Sizing

Santosh Devasia,* Tesfay Meressi,* Brad Paden,t and Eduardo Bayot
University of California, Santa Barbara, Santa Barbara, California 93106

In this paper we consider the problem of simultaneous placement and sizing of distributed piezoelectric
actuators te achieve the control objective of damping vibrations in 2 uniform beam. For several closed-loop
performance measures we obtain optimal placement and sizing of the actuators using a simple numerical search
algorithm. These measures are applied to the specific example of a simply-supported beam with piezoelectric
actuators, and their relative effectiveness is discussed. We demonstrate that the controllability grammian is not
suitable to determine actuator placement for vibration suppression problems.

Nomenclature
A, =cross-sectional area of the beam
b =cross-sectional width
C, =capacitance of the piezoelectric actuator
dy; = piezoelectric constant

£, =Young’s modulus of the adhesive layer
E, =Young’'s modulus of the beam column
E, = Young’s modulus of the piezoactuator

gy = strain to voltage constant

I, =area moment of inertia of the beam
le, =equivalent area moment of inertia
t, =thickness of the adhesive layer

t,  =thickness of the beam column

t, =thickness of the piezoaciuator

v, =voltage applied to the top piezo

v, = voltage applied to the bottom piezo
¥(x) = vertical displacement of the neutral axis
& =derivative of the delta function

p» =density of the beam

I. Introduction

HE control of large flexible structures has been consid-

ered for some time.'* However, the recent application of
piezoelectric materials by Crawley’ and Bailey and Hubbard*
for actuation of flexible structures has added new dimensions
to the control problem. This comes from the fact that these
actuators can be distributed along structural members for
vibration and shape control. In this paper we consider the
problem of simuitaneous placement and sizing of distributed
piezoelectric actuators to achieve the control objective of
damping vibratons in a uniform beam.

Figure | shows a specific example of a simply-supported
beam with piezoelectric actuator strips attached to both sides.
Our goal is to find the position and length of piezoelectric
actuators to maximize modal damping when feedback control
is applied. In contrast to previous approaches, we simulta-
neously optimize the position and length of the actuator strips.
For several closed-loop performance measures we obtain opti-
mal placement and sizing of the actuators using a simple nu-
merical search algorithm.

Received April 13, 1992: revision received Nov. 6, 1992; accepted
for publication Nov. 13, 1992. Copyright - 1993 by the American
Institute of Aeronautics and Astronautics, Inc. All rights reserved.

*Research Assistant, Department of Mechanical and Environmen-
tal Engineering.

*Associate Professor, Department of Mechanical and Environmen-
tal Engineening.

In Crawley’s early work the actuator was simply placed with
one bending mode in mind at the location ¢f maximum strain
for that mode.? However the placement problem for the case
with two or more controlled modes was not addressed. Kon-
doh et al.’ used the linear quadratic-optimal control frame-
work to perform sensor and actuator placement, but formu-
lated the problem such that the solution is initial condition
dependent—this dependence is removed here. Controllability
was used as a performance measure for placement of a point
actuator in Refs. 6 and 7. These methods are shown to yield
less effective results for vibration damping in beams than those
based on closed-loop performance measures. Previous works
on actuator placement have not dealt with the sizing problem.
We incorporate this as an additional optimization parameter
and show that increasing the size of the actuator is not neces-
sarily better.

Questions of robustness to spillover and actuator dynamics
have been raised and addressed in Refs. 1, 2, and 8, but are not
addressed here. Another important issue is the problems in-
volved in the implementation of controllers for the distributed
piezoactuators. These include depoling, nonlinearity, hyste-
resis, and creep effects in the actuator.’ Depoling may be
avoided by maintaining the applied field below the coercive
field. Within the depoling limits, the nonlinearity between the
applied electric field and the resulting actuation strain may
require the use of more complex models.'? An alternative is the
linearization of this relationship about the operating point."!
Creep and strain rate dependence of the actuator become im-
portant at large strains and low frequencies. Hysteresis also
plays an important role at low frequencies. Significant perfor-
mance improvement over such behavior is possible by com-
manding the induced charge rather than the voltage applied to
the actuator.'? Other related issues due to actuator dynamics
are considered in Refs. 13 and 14, but not addressed in this
paper. We note, however, that piezoactuators have fast dy-
namics relative to electromagnetic actuators and are attractive
in this regard.

The remainder of the paper is organized in the following
format. In Sec. Il a state-space model of a piezoelectric actu-
ated beam of finite length is derived. Section 11l formulates
the placem. at problem with respect to three performance cri-
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Fig. 1 Simply-supported beam.
859




360 DEVASIAETAL.. PIEZOELECTRIC ACTUATOR DESIGN

teria. These are applied to the simply-supported beam in Sec.
IV and compared. Our conclusions are made in Sec. V. The
Appendix contains detailed calculations of the mechanics of a
piezoactuated beam.

I1. State-Space Model of Actuated Beam

In this section we develop a state-space model for the trans-
verse vibrauons of the finite beam. The boundary conditions
are any combination of pinned, clamped, or free. A pair of
piezos attached to the top side and bottom side of the beam is
used to actuate the beam as shown in Fig. 2. A second pair is
used as sensors. Collocation is achieved since the two pairs are
lo-ated side by side. The input to the system is the voltage v
applied to the actuator pair and the output is the strain-
induced voltage generated by the sensors. We show in the
Appendix that the net forcing of the beam is equivalent to two
equal and opposite moments, M and - M (Fig. 3), applied to
the beam at the piezo endpoints x, and x;. Moreover, the
moment M
is proportional to the input voltage

M=Ky (1

The partial differential equation describing the distributed pa-
rameter system is therefore

Eylyy™ +ppApy = M3 (x-x)-8"{x-x))] (2

We assume that the effects of the actuator on the mode shapes
are negligible, which is valid if the dimensions of the piezo are
small compared with those of the beani. I'his formulation is
simple and is sufficient for the work presented 1n this paper.
More detailed models are available in Ref. 9. Our assumption
of a finite beam with pinned, clamped, or free boundary con-
ditions guarantees a modal decomposition of the form

ﬂmﬂ¥§QHMU) 3

where the &,(x) are the normalized orthogonal mode shapes
and the n,(¢) are the modal amplitudes. Substituting Eqgs. (1)
and (3) into (2) and projecting onto the ith mode yields decou-
pled modal equations

os A (1) + EpIy¥om, (1) = [8/(x2) - &/ (x))| Kv(t) (4

where ¢, determines the modal stiffness and is given by

o,
2| & @7 dx (5)
0

Define

.y Enlyy 1

R LAl A , ’

= and B, = $/(x &/ (x)|K 6)
” opAy Pp Ay [ ) l)] (

Then equation (4) can be written as

0,(8) + win,(t) = B;v(t) )

Zeam

.0

\ Pieza

Fig. 2 Beam segment with actuator.

iresive

It is clear from Eq. (7) that the ith mode is controllable if and
only if B, is nonzero. In this paper we are trying to control
multiple modes with a single piezo and so there must be a
compromise placement and sizing such that B, for each con-
trolled mode is nonzero.

With the sensor placed as shown in Fig. 2, the output of the
sensor piezos is a linear combination of the modal amplitudes.
Substituting Eq. (3) into Eq. (A9) of the Appendix yields

Vi) =k, & (1) {®/(x2) =/ (x))] (®)
Define C, by
C 2K, (9 (x)- ¥/ (x))] 9)
then
yi =1L Cn(n) (10)

If C, is nonzero then the ith mode is observable. In our case of
collocated sensors and actuators (Fig. 2), the ith mode is ob-
servable if and only if it is controllable.

If we truncate our representation to n modes, the dynamics
can be written as

2ty = Az(1) + Bv(1)

V,(t) = Cz(1) an
where
z2m o m o M om M) (12)
- o] I
é n n
ae %ol
Onxl
(o] B,
é nax1 =
B'[ 8 ]
B,
Cé[c len]=[cl CZ"'CN len] (13)

and Q4 diag(w;, ... ,wn).
We emphasize the fact that B and C depend on the piezo
position and length through x, and x,.

III. Optimsl Placement and Sizing of Piezoactuators

In this section we formulate three optimization problems for
determining a good placement and length of the piezoactuator.
In words they are the following: 1) subject to the constraint
that collocated damping control is used, find the placement
and length that maximizes damping uniformly in the modes;

Fig. 3 Equivalent beam segment.
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2) assuming the system is detectable and stabilizable, find
the placement and length that minimizes a standard linear
quadratic cost functional uniformly in initial conditions; and
3) find the placement and length that maximizes the minimum
eigenvalue of the controllability grammian (as is done only for
the actuator placement problem by Arbel®).

Passive Damping Case

For the first optimization problem, we assume a pure collo-
cated damping control given by

v(¢) = k;Crq (14

where n=[n, 72 --- n,] and k; is the controiler gain. With
this control, Eq. (11) can be written in vector form as

i+ Qn =k8Ch 15

and the state-space description becomes

(N =Az(1) (16)
where
O I
__}_ n n o 7
A_[—QZ —kdBC} (1"

The advantage of such a collocated passive control is that
controllers designed for a finite-dimensional model retain the
stability of the infinite dimensional plant provided that actua-
tor dynamics can be neglected.'® Since the bandwidth of a
piezo is only limited by its capacitance, actuator dynamics can
be justifiably ignored for large space structures. The imple-
mentation issues of such controllers have been addressed in
Refs. 9 and (4.

We measure the system performance for a particular choice
of controller, placement, and piezo length by the rate of decay
of system states and therefore seek to place the poles of the
system far into the left half of the complex plane. More for-
mally, we perform the following optimization

min max Rekl,(A) (18)
Ly €i0.La) ¢
Xy, 2.Ly-Lp 2}

where A\, (A) is the ith eigenvalue of 4. We vary the length of
the piezo L, from zero to the length of the beam L,. The piezo
mu t not overlap the ends of the beam hence the center posi-
tion X, of the piezo is varied from L,/2 to Ly —L,/2.

Linear Quadratic Regulator Case

The linear quadratic regulator (LQR) is attractive because
the controller stabilizes the closed-loop system and also allows
for user defined weights on the inputs and states. LQR opti-
mization has been used to reduce the structural vibrations in
the control of large flexible structures in Refs. 4 and 7 for a
fixed-size actuator. Here we include placement and sizing in
the optimization. For the system described by Eq. (11), con-
sider the infinite-horizon time-optimal control problem of
minimizing a quadratic cost functional given by

J, 3 \ [Rv(1)?+27(1)Qz(1)] ds (9
0

where R is a positive scalar and Q is a positive semidefinite
matrix such that the pair (4,Q *) is observable. Provided sys-
tem (11) satisfies the standard conditions of stabilizability and
detectability, the minimum cost mjn J, is given by z7(£0}Pz(fo),
where Pis the unique nonnegative-definite solution to the alge-
braic Riccati equationi®

PA+~ATP -PBR-'BTP +Q =0 (20)

The corresponding control is
v(f) = —=R'BTP;(1) (21)

We propose minimizing J, for the worst case initial condition
and therefore pose the following optimization for computing
X,and L,.

min max zJ Pz
L, €(0.Ly] iy =1
Xyell, 2 iy-L, )

o= 2Wo) (22)

This method optimizes performance uniformly in initial condi-
tions in contrast to the approach by Kondoh et al.* where a
sclution sensitive to initial conditions is proposed.

Controllability Grammian Method

Finally, we describe a placement procedure based on the
controllability grammian proposed by Ref. 6. This method 1s
useful, but has certain disadvantages discussed in the Conclu-
sion. With the inclusion of structural damping the matrix 4 in
the state-space description Eq. (11) becomes

O I
a2l 17 2
[—m —m} o

where [ is the structural damping coefficient. Since 4. is sta-
ble, as the final time T tends to infinity, it can be shown that
the finite time controllability grammian ¥'(0,T) approaches
W, which is the solution of the Lyapunov equation

WAT + AW + BBT =0 29)
Based on Arbel’s method we perform the optimization

max min A, (W) (28)
L, €{0.Ly) )
Xy €Ly 2 Ly-Ly 2]

to maximize the controllability of all the modes. The three
approaches discussed here are compared via an example in the
next section.

IV. Example: Simply-Supported Beam

Consider the simply-supported actuated beam (Fig. 1) hav-
ing the following properties.
Beam properties

¢=0.01 Ey» =70 GPa Ly =05m

b=0.05m

Piezoactuator-sensor properties

ty =0.01m op = 2500 Kg/m’

E,=63GPa  L,€[0.L,] 1,=2x10"*m

dy =120x10"2m/V gy =10.6x10"' Vm/N

C, = 35pC

Adhesive properties

E, =2.4GPa L, =L, ty=2%x10"'m

Using the geometric boundary conditions
y0,0)=y(L.0)=y"0,)=y"(L.1) =0 (26)

together with Eqs. (2) and (3), we obtain the equation for the
1th mode shape normalized so that

"
PPdx =1
Y

P (x)=~2/L, sin(inxx/Ly) (27
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Substituting this into Egs. (5) and (6), we have

= Er Byl 28)
Lb: VP:;A»; @
The ith component of the input vector B is obtained from

Egs. (6) and (27) and is given by

8 = ibt}K*x z X <iwx3 _ fimx 29
! ]20;,,4/’1541-}7 \Lb cos . Lb T o8 Lb ( )

where K* and /g, are as defined in the Appendix by equations
(A3) and (A4), respectively. The ith component C, of the out-
put vector C is obtained from Eqgs. (9) and (27):

—_
c e 2 [ firx irx

' 2C,L, VI, cos L - oS Tb_ 30)
Note that a necessary condition for observability and con-
trollability of the ith mode is for the term in parentheses in
Eq. (30) to be nonzero. From Eq. (29) we see that 8, is large if
x, and x; are chosen to lie near two different nodes of the ith
mode separated by an odd number of half cycles of the mode
shape (hence a bigger actuator is not necessarily better!). Also
the ith (1 > 1) mode becomes uncontrollable if the center of the
piezo coincides with one of its nodes or the piezo {ength is an
integral multiple of 2L,/i. For example, if the piezo length L,
is the same as the beam length L,, then all of the even modes
are uncontrollable.

max ReA(A)

:

o
1, e Ee-£

Simulations were performed for each of the optimization
schemes discussed in Sec. III applied to the earlier truncated
beam model (with the first two modes). A uniform structural
damping coefficient of 0.01 is considered for both of the
modes. This implies that the system is stable and hence both
detectable and stabilizable. For the passive damping case a
controller gain ks = e ~ 6 was used. In the LQR based design
the placement depends on Q, especially if some states are not
penalized. However, to uniformly penalize all modes, Q was
taken as 7,.4. It was observed in the simulations that the
optimum placement and sizing did not vary with R. The results
presented are for the R =1 case. The variations of the objec-
tive function for the passive damping case with 1) the position
of the center of the piezo X, (optimal over all possible actuator
lengths) and 2) the length of the piezo L, (optimal over possible
piezo placements) are shown in Fig. 4. Similar simulation re-
sults for the LQR and the controilability grammian methods
are shown in Figs. § and 6, respectively. Note that as the piezo
length L, approaches the beam length L,, its midpoint is
pushed toward L,/2, making the second mode less control-
lable. Hence the cost increases as L, tends to L, and leads to
an optimal actuator length less than L,. The optimal lengths
and positions for the three methods are given in Table 1.

To make a comparison between our LQR method and the
initial condition dependent methods described in Refs. 3 and
5 we consider the following two different initial conditions
z7=[100 0] and z7=[0 1 0 0], which correspond to unit
displacements in the first and the second modes, respectively.
The variation of the cost of control over different actuator

0 -
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-0.06 .
0 0.5 1
b) Lp/Lb

Fig. 4 Passive damping based optimization.
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locations for each of the earlier initial conditions is shown in
Fig. 7. The optimization based on these initial conditions re-
sults in two different optimum piezo positions at L,/2 and
L,/4 suggesting piezo placement at locations where the strain
is maximum for the corresponding initial condition. The opti-
mal piezo positions for various initial conditions that are linear
combinations of the two modes will vary widely. This problem
is easily resolved by the LQR methodology proposed in this
paper as it optimizes over all initial conditions.

Next we discuss the controllability grammian method ap-
plied by Arbel.® The optimized minimum energy control cost
for given initial condition z(ty) and final condition z(T) is
equivalent to

J 2 [2(D) e T-02(1g)] 'W=10,D)[2(T) - e T-0z(1y)]
3D

where e4s(T-1} s the state transition matrix.'® J is the energy
required to deviate from the natural motion of the system,
which would have reached the state e4s(T-10z(¢t;) at time T
without the application of any control. Arbel’s method is
based on optimizing J (over all possible initial and final con-
ditions) aind results in minimizing the maximum eigenvalue of
the inverse of the controllability grammian, W -'(0,T), over
different actuator positions. However, the control cost J for
the finite time regulator problem [z(7)=0] is given by

J, & [eAT-0z(1))] W10, Dt T-02(s0)]  (32)

ard is not suitably evaluated by Arbel’s controllability gram-
mian approach because it fails to consider the effect of
e4:(T-1 on J, in Eq. (32). Next we show that the maximum
eigenvatue of W ~'10,T) increases as the system poles move far
into the left half of the complex plane. Let +, be an eigenvalue
of W and let V, be the corresponding eigenvector such that
'V, |;=1. Pre- and post-multiplying the Lyapunov Eq. (24) by
vT and V,, respectively, we obtain

VIWALV, + VTAWV, + VIBBTV, = 0 (33)

Then
VIBBTY, { max N(BBT)|
S WAV, T min|N(A4))

Y = 34

This result implies that for a given B the eigenvalues of W-!
increase if the eigenvalues of A, move far into the left half
plane. Hence Arbel’s approach deems the system as less con-
trollable and therefore not desirable even though the shifting
of the poles is advantageous for vibration reduction.

~
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Dotted - ztto) =22 /
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(a)  Xp/Ld
Fig. 7 [Initial conditions based optimization.

Table 1 Results

. Ly Xp

Coantroller Optimal — Optimal —

Ly Ly
Passive 0.7723 0.3961
LQR 0.7921 0.4060
Contr. Gramm. 0.6139 0.3267

This decrease in controllability can be easily illustrated
through a scalar example described by

x(t)= —ax(t) + bu(t) (35)

Using Arbel’s method, for a large final time T, the eigenvalue
of W(0,T) tends to b%/2a, which decreases as a increases., and
subsequently the controllability measure deems the system as
less controllable even though from a vibration reduction per-
spective it is more desirable. A similar effect due to the high
decay rate in the second mode is seen in the example of the
simply-supported beam. The two modes have the same damp-
ing coefficient, and so the second mode has a faster decay rate.
Arbel’s placement method therefore assigns the second mode
as less controllable relative to the first mode and hence pushes
the placement toward L,/4 where the second mode has maxi-
mum strain. Because of a lower decay rate, control of the first
mode (which is more controllable when the placement is at the
center of the beam) is more critical from a vibration suppres-
sion perspective. However, the placement obtained by Arbel’s
method is further away from the center of the beam and hence
results in slower vibration decays in the system as compared to
the results obtained through LQR or passive damping methods
(Table 1). Thus for vibration reduction, passive damping or
LQR based objective functions are more suitable to design the
placement of actuators.

Y. Conclusion

In this paper we formulated actuator placement and sizing
methodologies for vibration suppression ia uniform beams.
Several closed-loop performance criteria were considered to
derive objective functions for optimum placement and sizing
of piezoelectric actuators in uniform beams. The pape: ‘llus-
trated through an example that passive damping or linear
quadratic regulator based measures are more suitable than the
controllability measure for the placement and sizing of actua-
tors to obtain vibration reduction. The procedures developed
led to solutions that are independent of initial conditions. The
design is also formulated as an eigenvalue problem thereby
reducing the required computation considerably.

We also note that the measures proposed in this paper can
be applied to any general linear time invariant system and
hence the actuator design for vibration suppression can be
based on these measures. The question of the existence of
optimal designs over different controllers (e.g., all passive con-
trollers) for general linear time invariant systems is the subject
of further research.

Appendix: Mechanics of Piezo Actuated Beam

Consider a segment of the piezo beam as shown in Fig. 2. It
is assumed for simplicity that the width of the piezo is equal to
that of the beam. Using the standard Bernouili-Euler beam
approach, the moment generated by voltage applied to the
piezos is given by Ref. 9

M* = b, E, [(Ay = A1y /2+ 14 + 1,/ 2)] (A
where
dy v
A, = Y i=1.2 (AD)
’D




R R R — —

64 DEVASIAETAL.. PIEZOELECTRIC ACTUATOR DESIGN

Thus
M = bE,dy 1y 24 1, + 1,/ 2)(vy =~ vy) 2 K2 (v = v2)/2 (AD)

M* is the effective bending moment acting on a beam of
equivalent area moment of inertia given by

IN bt} L6\ L bt
= U Do S P 2p
fee= 13 =377 w""(z *3) 7t

(Ad4)

where b, =b(E,/E,) and b, =b(E,/E,) are the equivalent
adhesive and piezo widths, respectively. Then the resultant
strain of the actuator is

M*(x)h

(A5)
Eh IEq

e(x,h) =

where x is measured along the length of the piezo and A is
the distance trom the neutral axis. The previous expression
is based on the Bernoulli-Euler model described in Ref. 9
and a detailed explanation of the results based on this model
can be found in Ref. 17. If the voltages applied at the top and
bottom layers of the piezoactuators are equal in magnitude
and opposite in sign (v; = — v, 2 v), then equation (A3) be-
comes M* = K*v. Without loss of generality one can write the
effect of the piezo on the beam as two equal and opposite
concentrated moments whose magnitudes are given by M = Kv
as shown in Fig. 3, where

bt}
121,

K2K* (A6)
The sensor output is obtained as follows. The incremental
charge dQ generated on an infinitesimal area b dx is given by

ly dz_V(X)

JdQ = -
Q 2112 dx’

b dx (AT)

This may be integrated over the sensor covered length of the
beam to yield the sensor output voltage

bipgn
VD = T2 [y )=y ()] (A%)
2K [y (xa,0) -y (x.1) (A9)

where g1 15 the strain to voltage constant, C, is the capacitance
and x, and x, are the locations of the piezo ends.
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ACTUATOR PLACEMENT FOR AQRTICULATED FLEXIBLE

MANIPULATORS AND SPACE STRUCTURES
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ABSTRACT

In this paper we consider the problem of placing piezoelectric vibration
dampers in an experimental articulated flexible structure (AFS). The placement
problem for these jointed structures is complicated by their nonlinear dynamics.
Even with small linear vibrations about a given rigid body configuration, a good
placement for one configuration should not necessarily work well after the
structure’s joints are rotated. With a finite-element model, we have indeed
observed a large variation in modal frequencies (for the linearized dynamics) as
the joint angles are varied. However, we have observed that for our structure the
mode shapes are relatively invariant to joint configuration and hence uniformly
good placements are possible. We also show, using a singular perturbation argu-
ment, that such uniformly good placements can be expected in a class of AFS
with joint dominated iﬂertias. Two methods of placement are explored. The first
is based on a simple damping controller where placements are chosen to maxim-
ize the decay rate of vibrations. The second method optimizes placement based
on closed-loop performance of Linear-Quadratic Regulator. The two methods are

contrasted using a finite-element model of our structure.
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1. Introduction

Control of Articulated Flexible Structures (AFS) is important in many space and aerospace
applications. The control objectives are application dependent, for example in articulated flexible
manipulators the objective may be to track a given end-effector trajectory or to reduce the elastic
vibrations in the structure. The problem of using point actuators has been addressed in (1] and {2]
where the inverse dynamics problem has been solved to obtain the control inputs. Closed loop
controllers which achieve exponentially stable trajectory tracking have been proposed by Paden
et al (3]. However, errors in the modeling of the structure, approximations in the implementation
of the controllers and disturbances from external sources introduce vibrations in the structure.
This vibration problem is compounded by backlash and friction in the motor drives which make
small amplitude vibrations difficult to control. These vibrations adversely affect the system per-
formance and are to be minimized. This problem can be mitigated by using piezoelectric or elec-
trostrictive actuators. Substantial success in vibration reduction has been reported [4] by incor-
porating such distributed actuators in the flexible structures. To optimize the vibration reduction
with distributed actuators, synergistic structure-controller designs are necessary, [5] and [6]. A

key issue in any such design is actuator placement.

In this paper the placement problem for distributed actuators in articulated flexible struc-
tures is addressed. In contrast to this nonlinear problem the placement issue for linear systems is
well studied in literature. In Crawley's early work on systems with linear dynamics, the distri-
buted actuator was simply placed with one bending mode in mind at the location of maximum
strain for that mode {7]. However the placement problem for the case with two or more con-
trolled modes was not addressed. This was done using a controllability based performance meas-
ure by Arbel [8]. The effectiveness of measures based on closed loop controllers ([9] and[10])
over those based on the controllability grammian for vibration damping in linear flexible struc-
tures was demonstrated by Devasia er al [11]. However, the computations of such measures are

not tractable for general trajectories in systems like AFS which have nonlinear dynamics.

We introduce two measures in this paper which are useful to determine the placement of
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actuators to achieve structural vibration reduction in AFS. The goal of vibration damping based
actuator placements is to improve the convergence rate for a set of equilibrium points. For our
case these equilibria are rigid body configurations with zero elastic deflections. Our approach can
be summarized as 1) linearizing about equilibrium points, 2) evaluation of a local cost functional
at the different equilibrium points and 3) selection of placement based on a suitably constructed
global measure (pertaining to the entire set of equilibrium points). The measures are then applied
to an example two-link flexible manipulator to solve the placement problem for a piezoelectric

actuator.

The remainder of the paper is organi-ad in the following format. Qur approach is described
in section 2. In section 3 we illustrate the methodology with an example of actuator placement in
a two-link flexile truss structure (figure 1). For this articulated structure, modal frequencies of
linearizations change considerably with configuration and one may expect that a uniformly good
placement is impossible. The saving fact is that, although the frequencies change, the mode
shapes are relatively invariant. This result;s in placements that are uniformly “good” over all
configurations. Section 4 studies a class of systems (with joint dominated inertias) where such
uniformly good placements can be expected due to mode shape invariance. Qur conclusions are

in section §.

2. Performance Measures for Actuator Placement

In this section we formulate the problem for the placement of distributed actuators in a gen-
eral articulated flexible structure (AFS). The set of equilibria in AFS consists of rigid body
configurations with zero elastic deformations. Our objective is to damp elastic vibrations about
these rigid body equilibrium configurations. In the following section solution methodologies
based on two different measures are described in detail. We start with a description of the general

actuator placement problem.




General Placement Problem

The general equation of motion for an articulated flexible structure can be described by a
nonlinear differential equation as,
X(t)=fp(x,u(t)
y=h,(x), 2.1

where x is a vector of the system states and p belongs to the set of possible actuator placements
X,. A formal dezign proceduic fur acuudior placement involves the following: Given a set X4 of
desired state trajectories, a set U of possible inputs and a set X, of possible placements, evaluate

the formal expression

Juip  max  min J,(,00xg)).
where x, is the actual trajectory followed by the system when actuated by input u# and
J.(u,(xy=x4)) is a functional that defines the design objectives. The issue is to choose an
appropriate functional J, which penalizes undesirable behavior and is also computationally
viable — — an example is a cost functional which is quadratic in control input ¥ and the state tra-

jectory error (x, — x4). However, in the general nonlinear setting (2.1) the minimax problem is

intractable.

Here we address the simpler issue of actuator placement to suppress elastic deflections
about given rigid body configurations. Therefore, our control objective is to obtain uniformly
good regulation of elastic deformations. at any equilibrium state (rigid body configuration) of the
articulated structure. This implies that the set of desired trajectories X4, are constant trajectories.
Our approach is based on linearization of the system equations at each equilibrium point in the
set X, followed by a local cost measure evaluation at these equilibrium points. In the following

sub-section we describe this procedure.

Linearized State Space Model and Local Measures

Low amplitude elastic deformations, about a given rigid body equilibrium configuration x,

and for a given placement p, of an articulated flexible structure can be approximated bv a finite
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number of equations using the Finite Element Method (FEM) or assumed modes method as given

below {12}

2(8)=A4p 5,2(t) + By u(t) (2.2a)

Y()=Cp 5,2(1), (2.2b)

where z € R™ represents deformations and deformation rates, ¥ € R! is a vector of the /

inputs, and y () € R 9 is the output vector.

Using the model (2.2), we introduce two measures to determine local costs for different
actuator placement. In words they are the following. (1) Subject to the constraint that a given
“passive” control is used, find the placement that maximizes damping uniformly in the elastic
modes. (2) Assuming all states of equation (2.2) are stabilizable and detectable, find the place-
ment that minimizes a standard Linear Quadratic Regulator (LQR) cost functional uniformly in

initial conditions and rigid body configurations.

Passive Control Case
We use the term "passive” to mean input-output passivity as defined by [13]. A dynamical
system is passive if, whenever its initial states xo =0 at time ¢, its input 4 (t) € R* and output

t
y(t) € R* satisfy JuT(t) y(t)dt 20 forall time ¢ > tg. Local collocated controllers like the
0

rate-based damping controllers ~.for flexible structures fall under this category. In addition to the
simplicity of these passive controllers, they exhibit robustness to spill-over problems due to
unmodeled dynamics [14]. For this optimization problem, let the feedback control input be
specified by

u()=-KqCp x, 2 . (2.3
With this control, equation (2.2a) can be written in vector form as

2(t)= A, 52(1) (2.4)




where

Ax,.p =Ap.Bp xKiCp s, - 2.5)

W¢ measure the system performance for a particular choice of controller and placement by

the decay rate of the linearized system states and therefore seek to place the poles of the system
(2.4) far into the left half of the complex plane. More formally, we generate the following local

cost measure at a configuration x, and placement p.

cp.x,) 2 max Rcl,-(fp,,_) (2.6)

where A; (X,,,,.) is the i** eigenvalue ofA—,,,,..

Linear Quadratic Regulator Case

The Linear Quadratic Regulator (LQR) is attractive because the controller stabilizes the
closed loop system and also allows for user defined weights on the inputs and states. LQR optim-
ization has been used to reduce the structural vibrations in the control of large flexible structures
in [9] , (10] and {15]. For the system described by equation (2 2), consider the infinite-horizon

time-optimal control problem of minimizing a quadratic cost functional given by

J, 8 8[ Ru(t)? + 2T (£)Qz (1) 1dt 2.7
where R is a positive scalar. () is a positive semi-definite matrix such that the pair (A, ,.Q 172y
is observable. Provided system (2.2) satisfies the standard conditions of stabilizability and detec-
tability, the minimum cost, m&n J,, is given by z7 (2g)Pz (to) where P is the unique positive

definite solution to the algebraic Ricatti equation [16]

PA, ., +A}‘.,.P -PB,,"R'lBPT',.P +Q =0. (2.8)
The corresponding control is

u(t)=-R-1BJ ; Pz(1). 2.9)

We propose minimizing J, for the worst case initial condition and therefore evaluate the local

cost function as

-“---------‘
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cp.x,) & max zfPzo=0(P). z9=2(to), (2.10)

ol =1
where E(P) is the maximum eigenvalue of P implicitly dependent on the placement p. This
method optimizes the local performance uniformly in initial conditions in contrast to the

approach by Kondoh et al (9] where a solution sensitive to initial conditions is proposed.

We state the placement problem in the next sub-section.

Problem Statement

Based on the local cost measures defined in the previous section we can state the placement

problem as

pn;m}’ C(p) (2.11)
where the functional C (p) assigns a global cost for each placement by evaluating a suitable

norm on the function ¢ (p,.) : X, =R L. If for example, the set of equilibrium points, X, is con-

tained in R, then two possible choices of the the function C ( p) are the average and worst case:

x[c(xo,p)dx

—j—-—dx (2.12)

and

Lmag ¢ @ x). (2.13)
The measures described in the above section are used to numerically solve the problem of placing

distributed piezoelectric actuators in a two-link flexible manipulator-strictive in the next section.

3. Example

The effectiveness of distributed actuators has been demonstrated for vibration reduction
([17] and [18]) and tracking control of flexible manipulators [19]. Such structures exhibit resi-
dual vibrations due to imperfections in the controller and disturbances like impacts, thermal heat-
ing and micro-gravity. For example, in space station mobile transporter units, power and weight

restrictions require that only small actuators be used at the joints. Consequently the large numbei
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of gear trains, required to amplify the torques provided by these small actuators, exhibit substan-
tial friction, stiction and backlash. Therefore the joint actuators are ineffective in controlling low
amplitude structural vibrations. The placement of distributed actuators plays a critical role in their

ability to control these vibrations.

Experimental Set-up

The example considered is an experimental two-link truss structure (figure 1) built at
UCSB. The structure has 16 spans and two articulations forming a planar manipulator. The
trusses are made of aluminum and have lumped masses (net 2 kg for each link) distributed along
their lengths in order to lower the modal frequencies and hence the control sample rate. In addi-
tion, the first and the second links have tip loads of 3.5 and 1 kg respectively, and their lengths
are 1.8 and 1.1 m respectively. Actuation consists of low-inertia dc-motors at the two joints and
an active bay with four piezoelectric actuators. Sensing consists of resolvers at the joints and col-
located strain sensors on the four piezoeleéuic actuators. The bays structural properties are only
minimaly affected by the addition of piezoelectric actuators as the the Youngs modulus of the
piezoelectric actuator (83 Gpa) is similar to that of the aluminum (77Gpa) used for the truss, and
the added mass is negligible compared to the lumped masses and end plates (see figure 2) at each
end of the bay. However these effects will be included in the model considered for consistency.
The entire structure is supported on air bearings and controlled with an Intel 386-based PC, servo

amplifiers for the motors and 150V servo amplifiers for the piezoelectric actuators.

Modeling Issues

Our interest is to study piezoelectric actuator placement for optimally controlling structural
vibrations. A related issue is the implementation of controllers for the distributed actuators. The
problems of implementation include depoling, nonlinearity, hysteresis, and creep effects in the
actuator {20]. Depoling may be avoided by maintaining the applied field below the coercive

field. Within the depoling limits, the nonlinearity between applied electric field and the resulting

----------"
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actuation strain may require the use of more complex models {21]. An altemative is the lineari-
zation of this relatonship about the operating point [22]. Creep and strain rate dependence of the
actuator become important at large strains and low frequencies. Hysteresis also plays an impor-
tant role at low frequencies. Significant performance improvement over such behavior is possible
by commanding the induced charge rather than the voltage applied to the actuator (23]. Other
related issues due to actuator dynamics are considered in [4] and [24], but not addressed in this
paper. We note, however, that piezoelectric actuators have fast dynamics relative to electromag-

netic actuators and are attractive in this regard.

In this section we study the placement problem to optimally control structural vibrations
when the joint motors are locked because of friction. In the flexible manipulator this corresponds
to clamped boundary conditions at the joints. Our objective is to find the bes: placement of the
active bay in the truss structure which minimizes the given cost functional. We study the actuator
placement at a single shoulder joint configuration because the system dynamics are independent
of the shoulder joint angle. Also, the elbow joint 0 is constrained to 18| £90? in the experiment.
Then by symmeury it is suthicient 1o study the prooiem for elbow joint angles between 0° and
90°. Hence the set of equilibrium states X,,, containing rigid body configurations with zero elas-

tic deflections, is parametrized by the elbow joint angle © and is independent of the placement p .
For a given 0 and p € X, the linearized system equations for the two-link flexible manipu-
lator generated via Finite Element Method (FEM) [1] can be written as

Mp.o% +D, o% +K, ox =B, ¢y (3.1a)
y=Cprex, (3.1b)

where x € R™ denotes the flexible degrees of freedom. M, g, and K, g, are the mass and
stiffness matrices respectively. D) g includes a uniform structural damping coefficient (0.001) in
the elastic modes. Hence the system is stable and thus trivially stabilizable and detectable.
Uy € R is the input voltage to the actuator. The effect of the piezoelectric actuators is modeled
as two point moments M (figure 3) acting at the ends of the actuator ([20) and[25]) and is

included in the 5;,.9 matrix. The output y € R! is obtained from a strain gauge collocated with

XY
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the actuator and is linear in the state {11). From equadon (3.1) it is seen that at each p . the system
can be considered as a family of linear systems parametrized by 8. Noting that at each equili-

brium point is defined by x = x = 0,1, the state equation (3.1) can be rewritten in the form (2.2)

as
z(1)=Ap 02(1)+ B, pu(r) (3.22)
y(@)=Cp.ez(t). (3.2b)
where
. T
z=[xT xT] eRV | (3.2¢)
0 I
Ap.8= e A € R | (3.2d)
"wp_.]e Kp.e —‘wp—.b Dp.O
[ A
Onx1
B,.e= o e R | (3.2¢)
and
Controller Choice

The two measures defined in section 2 are used to generate solutions to the placement prob-
lem of the piezoelectric actuators. The passive collocated damping controller considered can be

parametrized by a scalar feedback gain Kz and the feedback law can be written as (11]

While computing the cost, an optimization is also performed over the scalar controller gain Ky .

This implies that the iocal measure ¢ (p, X, ), with the passive damping controller is given by

c(@.xo) & min, max Reki(4p.s,). (3.4)

For the LQR controller based measure, weighting matrix Q) is chosen to be uniform in the elastic
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displacements as

I’l)(ll O’lX’l
Q= ) (3.5)
Onxn Onxn

The choice of the weight R on the contro! input depends on the depoling limit of the actuator and
the initial conditions. For a given R, and optimal placement Pop» the maximum input voltage
U max(R ) over all the configurations is found. This variation of ¥ nsx(R ) as a function of R and
the bound on the initial conditions i.e. I x, | S is shown in figure 4. Based on depoling limits for
the actuator, the maximum applied voltage is limited to 300V which corresponds to an applied
field of 2 MV /m. For a = l1e —3 which corresponds to a maximum transverse elastic deflections
of approximately 3cm, R = le—6 falls in the suitable region, with maximum input voltages

below the actuator depoling limit.

Simulation Results

For a given elbow joint configuration the variation of the passive damping and LQR based
costs with placement are shown in figures 8 and 9 respectively. The optimal placement at each
configuration is marked by an asterik. Figure 8 shows that for all joint configurations the passive
damping based cost is minimal when the placement is at the root of the first link. For the averag-
ing global measure defined by equation (2.12), the LQR based measure resulted in a placement at
the root of the second link. To illustrate the improvements achieved by the proper placement of
the piezoelectric actuators, simulations of the equations of motions for the passive damping con-
troller case are carried out. Note that there are an uncountably infinite set of possible initial condi-
tions, and hence as many possible system responses. A major advantage of our formulation is that
the design is optimized over an entire set of initial perturbations with the same energy. The worst
case vibration response, for the passive damping case, over all configurations and all perturba-
tons of a fixed energy is shown in figure 10, which shows the decay of the systems energy
(kinetic energy + potential energy) for different placements. The rate of vibrational energy decay

is maximum when the actuators are placed at the first bay. In theory, this decay rate can be arbi-
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wrarily chosen by appropriate feedback. but at the cost of larger inputs to the piezoelectric actua-
tors. To avoid the saturation of these actuators, the input is penalized in the LQR controller based
design measure. The average variation of these costs over the different placements is shown in
figure 11 and the resultant placement of the actuator with the LQR controller is at the the root of

the second link.

Discussion of Results

As the joint angle 6 varies from O to 909, there is a substantial variation in the system
modal frequencies. This is represented in figure 5, where the variation of the lowest modal fre-
quency with elbow joint angle is shown. These significant (40% increase) changes in the modal
frequencies might deem uniformly good placements impossible. The uniformity of placement
location is a desirable result because it implies that a a single placement is effective in reducing
vibrations at the different configurations. The placement based on passive damping controller is
seen to be invariant with joint configuration. when the LQR based measure is used, the resultant
global optimal placement (at the root of the second link) is not the best for certain configuratons.
For example, when the structure is fully extended, i.e. the elbow joint angle is zero, the optimal
placement of the active bay (for this particular configuration) with an LQR controller is at the
root of the first link. However the increase in cost due to placing the actuator at the root of the
second link is negligible (1%, figure 9). Hence the placement is not very sensitive to gross
changes of system configuration. This near optimality over all configurations is attributed to the

relative invariance of the rotational components of the mode shapes, and is discussed next.

The placement invariance is due to the fac: that in our example the eigenvectors are rela-
tively invariant with the joint configuration. This is illustrated in figure 6, where the projection of
the eigenvectors, associated with the least two eigenvalues, onto the rotary elastic displacements
at the FEM nodes of the manipulator model is shown. These comrespond to the spatial derivative
of the projection of the eigenvectors onio the transverse elastic displacements of the manipulator.

Note that the rotary mode shapes shown in figure 6, vary little with joint angle. As the placement

SR N N S U = N NN S TR D & I R D B ER R E.
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varies over the length of the manipulator, the relative control over each mode and its variation are
determined by these mode shapes (24). Consequently, the invariance of these mode shapes with
the joint angle implies the relative invariance of the distribution of effective control over “ifferent
modes. It is this control distribution of the different modes that determines the cost for the possi-

ble placement and therefore its invariance results in a uniformly good placement.

The performance measure based on passive damping is determined by the distance of sys-
tem eigenvalues from the imaginary axis. This distance is an estimate of the slowest decay rate of
elastic perturbations in the structure. In our example, the decay rate tends to increase with the
elbow joint-aiigle as shown in figure 7. This is mainly due to the increase in the system natural
frequencies, but with constant structural damping. For such a system, the elastic vibration modes
associated with higher modal frequencies tend to have higher decay rates. Thus in the case of the
passive controller based performance measure, it is the variation of the eigenvalue associated
with the lowest frequency that determines the cost and therefore-thc placement. To control a sin-
gle eigenvector, the optimal placement is at‘the location of maximum strain [26] where the effec-
tive control over that mode is maximized. Hence the passive damping based measure yields the

placement at the first span of the structure. As discussed above, this placement is uniformly good

for all joint configurations because the rotary mode shapes are relatively invariant.

The LQR based performance measure resulted in a placement where the control objective to
minimize the quadratic cost functional given by equation (2.7) is achieved. The optimization of
this quadratic cost functional results in a compromise placement between high decay rates of per-
turbations and smail control efi‘ort. Note that the placement obtained on using this performance
measure is relatively good over all configurations. Thus the invariance of the mode shapes
resulted in placements which were near-optimal for each of the possible configurations. In the
next section we study a class of AFS where such uniformly good actuator placements can be

expected.

4. Mode Shape Invariance in Structures with Joint Dominated Inertias
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In this section we show that "high frequency” mode shapes are configuration invanant in
AFS with joint dominated inertias. We also show that this invariance results in actuator place-
ments which are uniformly good over different configurations. We begin with the following

lemma dealing with the eigenvalues and eigenvectors of a singularly perturbed eigenvalue prob-

lem arising in our analysis.

Lemma

Consider the problem of finding the eigen pair (A, v), v a [vy v2]7, which satisfies

M +B A\ 2+B, vy

=0, 5.1
M1 +821 AMple+Adn+Bn | |va| G-

where A |1 € R***, Aj;€ R™*™, the other submatrices A , A 12, etc. have compatible dimen-

sions, and det(A43) #0.

Then

(1) The eigenvalues of the singularly perturbed system are close to the roots of

det (lambdaA ,y + B 1) =0, or are close to zero. More precisely, given r >0, there exists
€o(r) > O such that 0 < € S €o(r) implies

IA; (&) -B; <r, i =1,..,n, and 5.2

1)) <r, i=n+l,...n+m , (5.3)

where {1, ..., Ba) are the roots of det [ BA 13 +B1;] =0, and (A; (€), vi (€)) are solutions to

(5.1) (renumbered if necessary), with the dependence on € explicitly stated.

(2) If A; is an eigenvalue satisfying (5.2) is not too small (i.e. B; # 0), then the norm of v; 7 is
small relative to v; 1. That is, for all B; # 0, given r >0, there exists €,(») >0 such that

0 < € S€)(r) implies

- R N =R El.
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hvi 2@ 2 < rllv; 1€ 2, i=1,..n (5.4)
where (A;,v;) is the solution to (5.1) such that I v; Il , = 1.

Proof

(1) This follows from standard arguments in singular perturbations theory,

for example, see [27].

Q) if B; = O, from equation (5.1),

[Mzz/€+x.822+322} V,"2=—[M21+Bz1] Vil 5.5
By continuity of matrix inversion in a neighborhood of Ay, given &; > O there exists
€i,2(31) > O such that, whenever0 < € SE€; 2(5y),
- NIAF3 N,
ll[ ;An+ePidn+ ] W, < 1+9). 5.6
BiAn+eBidn+eBxn 2 e—TBi—r—( 1) (5.6)
Choose €; o (from first part of the theorem) such that O < &€ S€g; o implies that
1B; | A s
|).i—B,'| < -—2-— Lete|"3 = M(ei,O’Ei.Z(l)).

Then

\

Iuﬂ2<-%E$JAﬁlﬂth 5.7)
wheneverQ < & < g3, where
K 4 max{l[ﬁ,-Az,+32,+|[31|fzzl]u2, I{B,-Anwz,—l[s,liz’l] |2} (5.8)

IfK = 0 then ch = g3, else ch = min |¢g r 18!
= en choose €, = €3, else C ooseel—‘,g}m”“ﬁ e"3'4K|A' S|
Then for all e suchthat 0 < € < €,

Mv; Al < rllv; (2 5.9
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and this completes the proof. a

Next we use the lemma to show that for planar AFS (figure 12) 1) consisting of interconnected
beams and 2) having joint dominated inertias, the modal frequencies can be partitioned into two
groups. One "low frequency"” set corresponds to eigenvalues that tend to zero as the joint inertias
become large. The other group of relatively "higher frequency” modes comresponds to the eigen-
values of the AFS, simply supported at the joints. We show that these high frequency mode
shapes are joint configuration invariant. Due to bandwidth restrictions, joint actuators on the AFS
are ineffective in controlling these high-frequency vibrations, but the distributed actuators are
highly effective in controlling them. Due to the invariance of these mode shapes in AFS with
joint dominated inertias, we can expect to find distributed actuator placements that are uniformly

good over all joint configurations.

To show the mode shape invariance we generate a dynamic model for the beams Using the
Finite Elemenmt Method (FEM), with degrees of freedom (dof) as shown in figure 13, each of the
individual beam’s mass and stiffness matrices can be assembled to obtain the total mass and stiff-

ness matrices, M, and K;, of the structure. The system equations can be written as

M, X+K,X=BF, (5.10)
where F is the external force. X can be partitioned into X | and X 7, where the later consists of

the translational dof at the joints. Moreover, the matrices M; and K can be partitioned such that

the dynamic equations become
M M2 x.l K K Xy _
[MIZ Myu| [Xl Y| K12 K| [ X2 =BF,, (5.11)
where ] )
X
Yin)
(2)
Xp=| @ (5.12)

Xim)

Y;(n)

'
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represents the translational degrees of freedom at the joints. Since all degrees of freedom, except
those of the joints, are defined in local beam co-ordinates, only the joint related inertias
(M 13, M 21, M) and stiffnesses (K 12, K21, K27) are dependent on the joint angles, 8, . How-
ever, M€ RM™® and K ;€ R™, which also include terms corresponding to the rotary
degrees of freedom, are independent of 8,. The submatrix M), € R™*™ consists of two

components-- the contribution from the joint masses Mj,ins, and the contribution from the link

]
inertias, &y7. Since M joines is large by assumption, we express it as 'Me— where € 1s small.

Therefore M 52 can be written as

L ]
My=M_ +8y (5.13)
Note that 87, depends on 8, and M * does not. For the system described by 5.11, its eigenvalues
A; and the corresponding eigenvectors, v;, satisfy

MM -Kn AMi2-Ky2 Vi1

AMy-Kan  AM*/e+1A;85,-Kay Vi,2 o

]
(]

(5.1%)

From the lemma proved earlier, in the limit as €—0 (large joint inertias), the system eigenvalues
: . . P S L . j=m

can be partitioned into the "high frequency” groupy o; . and thé "low frequency”q @; ,
i= Jj=1

such that

ém la; —=B; 1 =0 (5.15)
é% lg; | =0 (5.16)
where f3; satisfies det [B,- MK “] = (. Moreover, in the limit as €—0, the eigenvectors v;,

corresponding to a,- , are those of the structure, simply supported at the joints. Hence

vi.2=0, (5.17)
o My v = K i (5.18)

14
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Since M 1) and K] are independent of joint configurations, equation 5.18, and consequently the
eigenpairs ((;,-, V;) are also configuration invariant in AFS with joint dominated inertias. Hence
the associated "high frequency” mode shapes and in particular their rotary components do not
change much with joint configuration if € is small. This leads to placements that are good over
large variations in joint configurations as discussed in section 3. The above arguments can also be
extended for spatial AFS with complex structural connections between joints. Thus we can expect

to find uniformly good distributed actuator placements in AFS with joint dominated inertias.

5. Conclusion

[n this paper we formulated the actuator placement for Articulated Flexible Structures. Two
closed loop performance criteria were considered to derive objective functions for optimum
placement of actuators in such systems. The procedures, developed independent of initial condi-
tions and formulated as eigen-value problems, are easy to compute. In the example two-link
manipulator, these measures are computationally tractable and effective to solve the distributed
actuator placement problem for optimal structural vibration reduction. An important observation
is that the mode shapes associated with nodal rotations for the example two-link flexible manipu-
lator are relatively invariant with joint configuration. This invariance resulted in a placement
which is effective in reducing vibrations over all the different configurations. We further invest-
gate the invariance of the mode shapes and identify a class of articulated structures, with joint
dominated mass distributions, where we can expect such uniformly good placements.

The measures suggested in this paper can also be used for actuator placement in set point con-
trollers of nonlinear systems. In this sense the approach is a modest attempt at the larger problem

of nonlinear actuator placement. The existence and computability of optimal designs for general

trajectory tracking in nonlinear systems is the subject of further work.
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Figure 1. Experimental Smart Flexible Structure
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Redundant Actuators to Achieve Minimal Vibration Trajectory
Tracking of Flexible Multibodies: Theory and Application

SANTOSH DEVASIA and EDUARDO BAYO
Mechanical & Environmental Engineering Department, University of Califomia, Santa Barbara, CA 93106

Abstract. We address the problem of inverse dynamics for flexible multibodies, which arises, in trajectory
tracking control of flexible multibodies such as space manipulators and articulated flexible structures. Pre-
vious research has resolved this trajectory tracking problem by computing the system inputs for feedfor-
ward control of actuators at the joints. Recently, the use of distributed actuators like electro-strictive actua-
tors in flexible structures has introduced a new dimension to this trajectory tracking problem. In this paper
we optimaly utilize such actuators to aid joint actuators for tracking control, and introduce a new inverse
dynamics scheme for simultaneously (1) tracking a prescribed trajectory and (2) minimizing ensuing elastic
deflections. We apply this scheme for trajectory tracking of a two-link two-joint planar manipulator with
joint motors and distributed electro-strictive actuators. Experimental results are presented to contrast our
new scheme with other existing methods.

Key words: Flexible articulated structures, multibody dynamics, actuator redundancy, trajectory tracking,
inverse dynamics.

1. Introduction

Inverse dynamics provides an excellent means for trajectory tracking of flexible muitibo-
dies. Methods to precompute the actuator inputs required to exactly track a given output
trajectory of a control point on a single link flexible arm were provided by Bayo [1] and
by Kwon and Book, [2]. The solution for muld-link open-chain applications has been
proposed by Bayo et al. [3] where the inverse dynamics and kinematics produce bounded
feedforward inputs for actuators, like motors at articulations and joint angles, to track a
reference point on the structure. The closed-chain planar case has been recently presented
by Ledesma and Bayo [4]. If the sensors and actuators are non-collocated then the flexi-
ble structure has nonminimum phase dynamics and the only stable inverse dynamics solu-
tion to the tracking problem is non-causal [5]. Once a trajectory is specified, the feedfor-
ward control input obtained by inverse dynamics for exact trajectory tracking, has a
unique bounded solution. Therefore, the subsequent elastic structural vibrations induced
on the structure (except at the control point where these vibrations are zero) during the
trajectory tracking motion are also defined uniquely. These vibrations could be detrimen-

tal to the performance of sensitive on-board systems and hence it is desirable to minimize
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them. For some time, distributed actuators have been strongly considered successfully
used to to control structural vibrations ([6] and [7] ). Recent success in their experimental
use {8] motivates the use of such actuators to aid joint actuators, like motors, for trajec-
tory tracking.

The trajectory tracking objective can be accomplished by the point actuators alone
[9] and in this sense the distributed actuators are redundant. In this paper we introduce
the concept of using the extra actuation available through the distributed actuators in the
structure to not only satisfy the trajectory tracking constraint, but also minimize the
accompanying elastic displacements during the motion. A new inverse dynamics method
is presented to compute the feedforward inputs which includes the cases of redundantly
actuated structures. This use of distributed actuators for end effector trajectory control is
contrasted with the use of only the joint actuators in feedforward. The method proposed
here is shown to substantially reduce the induced vibrations in the structure. The results
are experimentally verified using a flexible two link articulated truss structure with distri-
buted eiectro-strictive actuators and joint motors. We also present a novel strain based
control scheme for electro-strictive actuators which is very effective in reducing hyster-

isis and other non-linear effects pre-dominant in such actuators.

The remainder of the paper is organized in the following format. Modeling of flexi-
ble multibodies with joint and distributed actuators, formulation of the problem and the
solution methodology are presented in Section 2. Section 3 deals with an application of
the proposed method to a two-link flexible truss and presents experimental results. Our

conclusions are made in Section 4.

2. Formulation

The inverse dynamics of a flexible multi-body is a non-linear problem. We solve this
non-linear problem recursively, one element of the multi-body at a time. This algorithm,

proposed by Bayo in [3], for general multi-body inverse dynamics involves, 1) studying
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an individual component (link) in the chain; 2) coupling the equations of the individual
links; and 3) recursively converging to the desired actuator inputs and corresponding dis-
placements. Following this general procedure, we propose a new scheme which incor-
porates distributed actuators in the solution of the inverse dynamics problem. This

approach is presented in the following section.

2.1 Egquation of motion of an individual link

We start by studying the dynamics of a single link. To simplify the equations, we con-
sider a link with a revolute joint, however the formulation is similar for a general element
of a given multibody with other types of joints like the translational type. The flexible
link depicted in Figure 1 forms part of a multi-link (multi-body) system, and has a total
length L, mass per unit length m, area moment of inertia /, cross-sectional area A,
Ycungs modulus £, shear modulus G, and shear coefficient k. A tip mass of magnitude
M, is attached at one end, and a hub with rotary inertia /, at the other end. A point P ata
distance x from the center of the hub has undergone elastic deflections of magnitudes u,
and uy, and rotation of 0, defined with respect to a nominal position characterized by the
moving frame (€, €,) that rotates at a specified angular velocity and acceleration w, and
oy, respectively, and a linear acceleration of a,. This definition of motion with respect to
the nominal frame permits the linearization of the single link’s dynamic equations. Incor-
porating the kinematic model followed by Naganathan and Soni [10], the linear and
angular accelerations ( @, and 0, respectively ) can be written in vectorial notation as
ap = W X(WRXI) + ApXI + 2O XV, + ap + Bref (1a)
a, =oy +6 (1b)
where r 4 (x +uz)e(t) +uy€y(t) , vy is the relative velocity of point P, whose rela-
tive acceleration is a,,;. The components of acceleration vectors satisfy the following
equations

axz-(ohzux -ahuy —20.);,1&, +l'4', —co;,zx + Qpx (2a)
Ay =~y Uy —Wp2Uy +2 Wplly +Uy —OpX +apy (2b)
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Qp =0y +9 (20)
where the subscripts x and y denote components along the &, and €, directions. Now
using the Timoshenko beam theory, which includes the effects of shear deformation and
rotary inertia, the principle of virtual displacements can be used directly to generate the

following equations of motion

I{rﬁa, du, +m ay du, +rTnn2ap 00 Jdx + 1, (o, +é}.)8(-),. +M,a, du, +
I[EI 8°00°+GAk(® —u’y)0(0 —u’y) + EAu'y Su’y Jdx =

T 864 +Ryy Supy +Ry Suy +T, 86, (3)

where M 1is the radius of gyration of the section. The subscripts 4 and ¢ indicate the hub
and tip respectively, and the symbol * denotes the spatial derivative. du, du, and 86
represent a set of virtual elastic displacements. T is the unknown torque to be applied at
the hub so that the prescribed tip motion is obtained. Note that the hub acceleration is
decomposed into the nominal acceleration o, and the acceleration due to elastic
deflections. Also observe that the reactions at the hub do not have any effect in the total
virtual work. As shown later, this constraint is met by imposing the constraint that the
hub moves «long the nominal path without any elastic deformations. The displacement

field of equation (3) can be discretized using the finite element method (FEM) as follows

ux(x.t)=$H.-(X)ux"(t) ; u,(x,t)=$Hz(x)uy‘(r) : O(x,t)=$,H,~(x)9"(t) (4)

where H; are interpolation functions whose order depends on the number of nodes, N, in
the elements ; u,‘ ,u,‘ and 8 indicate the nodal deflections. It should be noted here that
other alternative approaches, like the modal superposition method may be followed to
generate the system equations. The approach chosen is dependent on the ease and accu-
racy of the particular method. Substituting equations (2) and (4) in the virtual work
expression (equation 3), and following standard procedures for the formulation and

assemblage of element matrices [11], the equation of motion can be written as [3]
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Mz + [C +Cc(co,,)] z+ [K +Kc(a,,.co,,)] :=BrT +B,V, +F. (5)
Where z is an R” vector of the finite element degrees of freedom. M and K belong to
R™* and are the conventional finite element mass and stiffness matrices respectively:
C. and K, € R"** and are the time varying Coriolis and centrifugal stiffness matrices.
respectively. The R*** matrix C represents the internal viscous damping of the material.
T is the unknown joint actuation. F € R” contains the reactions at the end of the link,
and the known forces produced by the rotating frame effect. The distributed actuator
inputs V, € R™ are the equivalent nodal forces at the FEM degrees of freedom, where
np is the number of distributed actuator inputs. Br and B, are constant matrices input
influence matrices of dimensions R™ and R"¥, respectively. The set of finite element

equations (5) is partitioned as follows

r Moo
9;, 9;, eh
M z',f +[C +Cc(m,,)] z} + 1 K +Kc(a,,,co,,)] Zi| =
z',' Z} _ - 2t
L L (
1 BPh Fh
Ol T+|B,|V, +|F; (6)
.0 Bp' F

where 8), is the elastic rotation of the hub, z, is the elastic deflection at the tip in the v
direction, and the other n-2 finite element degrees of freedom are included in the vector

z;. The force vector, F, and the B, and Br matrices are also partitioned similarly.

2.2 Minimization Objective

The requirement is to accurately track the end effector of the link along the given nomi-
nal trajectory without overshoot and residual vibrations. If the distributed actuators were
not available, then the exact tip trajectory tracking requirement defines the joint input
torque T. Our objective is is to use the additional actuation available through the distri-
buted actuators to reduce the ensuing structural vibrations at locations away from the

control point during this motion by minimizing J (7,V, ), a measure of elastic deflections
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in the structure defined as follows
J(TV,) & [ 207 z2(t)dr. @)

Mathematically the objective can be stated as

in _J(T,V,).
S 7 T.Vp) (8)
Where T is the set of all pairs of stable actuator inputs that when used to actuate the

system defined by equation (6) yields z;(¢) = 0 for all ¢.

2.3 Solution Methodology

An iterative scheme is described below for each link. Equation (6) can be re-written as
Mz +Cz +Kz=BrT+B,V, +F = C.(wp) 7 — K (0, 03) 2 9)
where the time dependent Coriolis and centrifugal terms are kept on the RHS of the
equation. A study of the influence of the Coriolis and centrifugal effects on the inverse
dynamics has been presented by Gofron and Shabana [12]. The iteration procedure starts
with the absence of the last two terms involving C. and K, in the right hand side. Then,
the system of equations can be transformed into independent sets of simultaneous com-
plex equations by means of the Fourier transform. For each of the evaluation frequency

, equation (9) becomes

{AW [ 1
Zp r ﬁh BPA
mM+teo-Ll |5 =1ol+|&]+]8|v (10)
{7} ©2 A & pi| Vp
Z Uy By,

- L . L
where the symbol stands for Fourier transform, and F represents the known forcing
terms. After the first iteration it will also include the updated contributions from the
Coriolis and centrifugal terms appearing in the RHS of equation (9). For any @ # 0, the

matrix

HA M+-‘-16C—812-K] (11)
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is a complex, symmetric and invertible matrix. For @ =0 the system undergoes a rigid
body motion and H a M, the positive definite invertible mass matrix. Let G 8 y-1,

Then the above equation can be re-written as

" ( C 1)
7 > E B

NG Gri G| | | T TR aP

|l = gih gi,' (G;,', < 0 + | F;| + Bp‘. Vp > . (12)
N 1 "

2.’ th Y YUn 0 Fz Bp,

- - . . = -, J A
The condition that the tip should follow the nominal motion, is equivalent to z, = 0 for all
. This induces a relationship between the joint actuation and the distributed actuator

inputs and is obtained from the last row of the previous equation.

T =—G,,'"[G,,. Gy G,,] (F+B,V,). (13)
Substituting this expression for the input hub torque in equation (8) and using the pro-

~ -
perty that Z = —w?2zyields

2=——ly (AV,+B). (14)
Where
A 8[-Gy ' GBr (G Gy Gy) +G1B, (15)
and
B &[G~ GBr(Gip G1i Gu)+ G F. (16)

Next we determine Vp. Using Parseval’s theorem, minimizing J(T,V,) in equation (8)
is equivalent to minimizing #zll 52 at each w. This is a standard least squares approxima-

tion problem [13] and has one of the solutions for the distributed actuator inputs as,

5 z-1 0
V, =-U V*B 17
P 00 an

where £, U and V define the standard singular value decomposition of A as follows

z 0
V*AU = . 18
20 -
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and the conjugate transpose matrix operator is denoted by *. This solution is unique in
the sense that it also minimizes | Vp I 2 over all possible Il z¥ 52 minimizing solutions. In
addition if A has rank np, which is the number of distributed actuator inputs, then the
least squares approximation yields

V,=-(A"A)!A"B . (19

A sufficient and necessary condition for A to have rank np is given next.

Lemma

rank [A]=np iff rank [Br |B,]=np+1 (20)
Proof
Rank [Br]=1 => rank [GB(Gy G4 Gu)l=1

=> rank [A‘ 8 (-G~ GBr(Gy G G,,)+G]] > n-1

because G is invertible with rank n. Since By =[100]*, it follows that [1 0 0]* lies in
the null space of A . Hence rank A is n-1. Noting that A =A B,, the lemma follows

easily. O

The above lemma states that if all the columns of the input matrices Br and B, are
independent, then the solution for Vp is given by equation (19), thus the computationally
expensive singular value decomposition given by equation (18) can be avoided. The
independency of the input influence matrix columns imply that the different modes of the
structure are acted upon in different ratios by the different inputs. If the actuations of two
inputs were similar on all the modes, then they can be lumped together to be considered
as a single input in the computations. This distribution of actuation effort depends on the
mode-shapes of the structure and the actuator placement, and can be modeled easily
using FEM [14]. In the problem at hand, the best placement for a given trajectory
depends not only on the structure but also the component frequencies of the desired

motion. Thus the optimal placement of the actuator would in general be trajectory
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dependent. In most structures, such a freedom of changing the actuator placement with
the prescribed trajectory is not available. The design of such structures with fixed actua-
tor placements, is based on minimizing the induced structural vibrations over sets of dis-
turbances with a specified energy [14]. In systems where the required motions are largely
repetitive, the actuator placement can be optimized over a specified set of trajectories;

this warrants a separate treatment to be considered in a future work.

The iteration procedure continues as follows. The corresponding joint torque com-
ponent, T is evaluated from equation (13). An inverse Fourier transform evaluation yields
the feedforward inputs and completes the first iteration. The results of this first iteration
are the joint torques, T! and the distributed inputs V,!. Next a forward dynamics analysis
is carried out to compute K. and C.. F in the RHS of equation (9) is updated and the
process is repeated to find the new input torques and voltages. The process is stopped at
the n** iteration if #T*~T"-1l,+1V,"-V,*~11; <&, where € is some small positive
constant. It may be noted that for slow motions the terms involving K, and C, are small

relative to the other terms in equation (5) and the iterations converge in a few steps [3].

2.4 Algorithm for the Multi-Link Case

In the previous sub-section the procedure to evaluate the joint actuations of a single link
was presented. This is recursively extended for multi-link flexible manipulators. An algo-

rithm is presented below:

1. Define the nominal motion (Inverse Kinematics of rigid manipulator).

2. For each link j, starting from the last one in the chain:
a) Compute torque (or force) T/ and distributed actuator inputs P,/
imposing z,J =0 (Section 2)
b) Compute the link reaction forces R/ from equilibrium.

3. Use equation (5) to compute the elastic displacement and joint angles.
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4. Compute the inputs for the next link, j-1.

This concludes the methodology. In the next section we present an application to a

two-link flexible manipulator.

3. Experimental Verification

An experimental truss structure developed at UCSB is shown in Figure 2. The structure
has 16 spans and two articulations forming a planar manipulator. The trusses are made of
aluminum and have lumped masses (net 2 Kgs for each link) distributed along their
lengths in order to lower the links modal frequencies and hence the control sample rate.
In addition, the first (base) and the second links have tip loads of 3.5 and 1 Kgs respec-
tively. These loads further increase the flexibility of the structure and the natural frequen-
cies of the first and second links with clamped free boundary conditions are 0.6 Hz and
1.2 Hz respectively. Actuation consists of low-inertia dc-motors at the two joints and an
active bay (Figure 3) with four electro-strictive actuators. Sensing consists of resolvers at
the joints and collocated strain sensors on the four electro-strictive actuators. In addition,
an optical sensor measures the position of an infra-red LED mounted about the midpoint
of the the first link, thus providing information of the induced structural vibrations during
the tracking operation. The entire structure is supported on air bearings and controlled
with an Intel 386-based PC, servo amplifiers for the motors and 150V servo amplifiers

for the electro-strictive actuators.

A major concem in the use of electro-strictive actuators is their non-linear applied
voltage to effective strain behavior. Temperature dependent variations of this relation-
ship, and the presence of hysterisis prevents their effective use as precision actuators.
Several techniques have been discussed in [15] to alleviate this problem. These include
biasing the electro-strictor, linearizing the model for small inputs, and non-linear models.
We propose a closed loop cascade controller (see Figure 4) with a feedback control based

on the effective strain induced by these actuators. A strain gauge collocated with the
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electro-strictive actuator is used as sensor for feedback. In our experiments a simple pro-
portional controller yielded excellent results as seen by plot of effective strain versus the
command strain (Figure 5) where hysterisis and other non-linear behavior of the electro-
strictors are eliminated when a feedback is used. Such a cascade control scheme is partic-
ularly effective here because the actuator dynamics are much faster than the dominant

modes of the multibody.

To evaluate the proposed use of distributed actuators developed in Section 2, we
apply it to track the end-effector of the two link flexible manipulator. The desired trajec-
tory of the end-effector is a series of rest to rest motions, while the first link is stationary.
The nominal motion of the second link is shown in Figure 6. Our objective is to track the
desired trajectory and minimize the vibrations in the first link which is equipped with
electro-strictive actuators. To evaluate the vibration reduction achieved, we conduct the
following tracking experiments: (1) feedforward of torques computed without inverse
dynamics, i.e. assuming the links to be rigid; (2) using the torques computed by inverse
dynamics for only the joint actuators; and (3) incorporating the distributed electro-
strictive actuators on the first truss along with joint actuators in the inverse dynamics
computation and using these as feedforward. In each case a joint based PD controller was
used for controlling errors due to unmodeled dynamics, friction and other modeling
errors. The stability of such joint based controllers are discussed in [9]. The results of our

experiments are presented below.

Plots of the inputs to the electro-strictor and joint motors are presented in Figures 7,
8 and 9. Note that the actuations start before the tip trajectory begins. This non-causality
due to the propagation delays is reduced when additional actuation is available through
the piezos as seen in Figure 9. To illustrate the viability of the proposed method we plot
the transverse structural deflections at the midpoint of the first link (Figure 10) during the
motion obtained by an infra-red led mounted on the structure and an over-head optical

sensor. These elastic deflections in the structure are considerably reduced when electro-
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strictive actuators are also used in addition to the joint motors. On the contrary if inverse
dynamics is not used and the rigid body torques are used then the resuling motion has

much larger vibrations.

Thus the incorporation of electro-strictive actuators results in a significant reduction
in the structural vibrations and demonstrates the viability of the proposed method. The
consequent reduction (50%) in the induced vibrations of the structure allows the use of
lighter elements and therefore smaller joint actuators, especially in space structures

where the loads are mainly inertial.

4. Conclusion

Typically distributed actuators like the electro-strictive ones cannot garner enough actua-
tion to cause large motions in the multibody system. However they could be very effec-
tive in reducing structural deformation. To reduce such vibrations by the use of distri-
buted actuators in feedforward aiding joint actuators for trajectory tracking is a novel
idea developed in this paper. The method proposed is extremely efficient as it optimaly
reduces structural vibrations and the theory developed was verified by experiments. The
use of the redundant distributed actuators seems promising in the slewing control of flexi-
ble manipulators and other space structures, and motivates further work on distributed
actuators for the control of flexible multibodies. In particular, for systems with largely
repetitive trajectory tracking requirements, future work will address the actuator design

problems like placement and sizing, from a vibration minimization perspective.
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Abstract

In this paper we address the problem of actuator place-
ment for articulated flexible structures. Specifically, the place-
ment of a single active bay on an articulated truss is formulated
and solved for the UCSB/Astro-Aerospace truss. We observe
that controllability grammian methods are not reliable in gen-
eral and that better placements are achieved using closed-loop

performance measures. Some preliminary vibration damping
experiments are also described.

1. Introduction

The control of large flexible structures has been con-
sidered for some time [1]. However, the recent application of
piezoelectric materials by Crawley [2] for actuation of flexible
structures has added a new dimension to this problem because
these actuators can be distributed along structural members for
vibration and shape control. This paper deals with the problem
of actuator placement to achieve optimal damping of vibrations
in articulated flexible structures (AFS) through the example of
an experimental two-link two-joint truss structure. The key
issue m such optimizations is the use of a suitable design
evaluation measure. Once a numerically tractable measure is
available, a combined structure-controlles design optimization
can be carried out. We approach the problem in two steps, first,
different measures to perform design evaluation in linear struc-
tures are studied, and second, we extend two of these measures
to articulated flexible structures (AFS) with non-linear dynam-
1CS.

For structures with linear dynamics, our goal is to find
the placement to maximize modal damping when feedback
control is applied. Similar problems has been studied previ-
ously literature. In Crawley’s early work the actuator was sim-
ply placed with one bending mode in mind at the location of
maximum strain for that mode [2). However the placement
problem for the case with two or more controlled modes was
not addressed. Kondoh ef al [3] used the linear quadratic-
optimal control framework to orm sensor and actuator
placement, but formulated the problem such that the solution is
1nitial condition dependent -- this dependence is removed here.
Controllability was used as & ferfotmmce measure for place-
ment of a point actuator in [4]. Our main result for the linear
case states that methods based on the controllability grammisn
can yield less effective placement results for vibration damping
than those based on closed-loop performance measures.

Next, we consider the non-linear problem of placing
piezo-electric vibration dampars in articulated flexible struc-
tures (AFS). The placement problem for these jointed struc-
tures is complicated by their nonlinesr dynamics. Even with
small linear vibrations about a given rigid body configuration, a
good placement for one configuration should not necessarily
work well after the structure’s joints are rotated. With a finite-
element model, we have indeed observed a large variation in
modal frequencies (for the linearized dynamics) as the joint
angles are varied. However, we have discovered that for some
structures (and ours in particular) nodal rotations associated
with the mode shapes are relatively invariant to configurations

* Supported by the Astro Aerospace Corp. under P.O.
104238.

** Supported by the U.S. Airforce under grant F49620-
91-C-0095.

and uniformly good placements are possible! Two me!
lacement are explored. The first is based on the :impm;:d‘n?:
B ased damping controller where placements are chosen to may.
imize the decay rate of vibrations. The second method optim.
izes placement based on closed-loop performance of Linesr.
ic Regulator. The two methods are contrasted using s
finite-element model of our structure.

The remainder of the paper is organized in the following
format. In section 2 we describe the experimental sewp and
modeling. Section 3 formulates measures to be used for actua-
tor placement in linear structures and discusses the perfor-
mance messures. Section 4 deals with the extension of the
measures to articulated flexible structures along with an exam-
ple and presents simulation and preliminary experimental
results. Our conclusions are made in section 5.

Experimental Set-up

The effectiveness of distributed actuators has been
demonstrated for vibration reduction [1]. Such structures exhi-
bit residual vibrations due to imperfections in the controller
and disturbances like impacts, thermal heating and micro-
gravity. For example, in space station mobile transporter mani-

, gear trains exhibit substantial friction, stiction and

kiash. Under such conditions, joint actuators are ineffective

in controlling low amplitude structural vibrations. The proper

placement of distributed actuators is critical to the control of
such vibrations.

The example we consider is an experimental two-link
truss structure (figure 1 and shown in the video) developed at
UCSB. The structure has 16 spans and two articulations form-
ing a planar manipulator. The trusses are made of aluminum
and have lumped masses (net 2 Kgs for each link) distributed
along their lengths in order to lower the modal frequencies and
hence the control sample rate. In addition, the first and the
second links have tip load of 3.5 and 1 Kgs respectively, and
their lengths are 1.8 and 1.1 m respectively. Actuation con-
sists of low-inertia dc-motors at the two joints and one active
bay (Figure 2) with four piezo-electric actuators. Sensing con-
sists of resolvers at the joints and co-located strain sensors on
the four piezo-electric actuators. The entire structure is sup-
%rled on air bearings and controlled with an Intel 386-!§|sed

, servo amplifiers for the motors and 150V servo amplifiers
for the Piezos.

Our interest is to study piezo actuator placement for
optimally controlling structural vibrations. A related issue 15
the implementation of controllers for the distributed actuators.
The problems of implementation include de-poling, nonlinear-
ity, hysteresis, and creep effects in the piezo actuator [5]. De-
poling may be avoided by maintaining the applied field below
the coercive field. Within the de-poling limits, the nonlinearity
between applied electric field and the resulting actuation strain
may require the use of more complex models [6]. An alterna-
tive is the linearization of this relationship about the operating
point [7]. Creep and strain rate dependence of the actuator
become important at large strains and low frequencies. Hys-
teresis also plays an important role at low frequencies.
Significant performance improvement over such behavior is
possible by commanding the induced charge rather than the
voltage lied to the actuator [8]. Other issues related to
actuator dynamics are considered in [9] and [10]. We note that
the Piezos have fast dynamics relative to elecromagnetic
actuators and are attractive in this regard.




System Model

The modeling of actuator/structure interaction usi
finite dimensional models has been studied in detail in {5]. Fol-
lowing a similar approach, low amplitude motions relative to a
given rigid body equilibrium configuration x, of an articulated
flexible structure is approximated using the Finite Element
Method (FEM) [11]. and can be written as

M, ox +Dp ox + K, ox = B oldp (2.1a)
where x € R*® denotes the flexible degrees of freedom.
M, ., Dy eand K, g, are the mass, damping and stiffness
matrices respectively. p € R! denotes the placement, 8 € R?2
is the joint angle vector of the structure, and 4, € R! is the
input voltage to the actuator. Note that joint motor torques do
not appear in the equations as the joints are assumed to be
locked due to static friction. The effect of the piezo actuators is
modeled as two point moments M (figure 3) acting at the ends
of the piezo ([5] and[12)) and is included in the B, o matrix.
The output y € R! is obtained from a strain gauge co-located
with the actuator and is linear in the state [13)

y=Cpox. 2.1b)

From equation (2.1) it is seen that for each ghcemem p. the
system can be considered as a family of linear systems
parametrized by 0. Noting that at each equilibrium point is
defined by x =X = 0,x), the state equau'one?Z.l) can be rewrit-

ten as
z2(t)=Ap.02(t) + By ou(t) (2.2a)
y()=Cp 02(s). (2.2b)
where
, T
z=[x7' xr] €R» | 2)
OIM Ile
Ap o= € RP»s  (2.24)
? "Mp_.pr.O -M;.pr.e
Bo=| 7™ | erma, @i
' -M; %80
L
arld -
Cr0= i Cpo Om] €R | (220

3. Actuator Placement for Linear Systems

In this section we formulate three optimization problems
for determining a good placement of the piezo actuator for the
linearized system. Our objective being an actuator placement
to achieve optimal vibration damping in the elastic modes. In
words they are the following. (1) Subject to the constraint that
co-located damping control is used, find the placement that
maximizes damping uniformly in the modes. (2) Assuming the
system is detectable and stabilizable, find the placement that
minimizes a standard linear quadratic cost functional uniformly
in initial conditions. (3) Find the placement that maximizes the
minimum eigenvalue of the controllability ian (as is
done for the actuator placement problem by Arbel (4]).

Passive Damping Case
For the first optimization problem, we assume a pure
co-located damping confrol given by
v(t)=—kqCp e x a.an
where kg is the scalar controller gain. With this control the
state-space description (2.2) becomes

2(t)=A 2(1) 3.2)

AAA

where

A A Ap.o + —ky B’,o[ O 1xa Cp_e] 3.4)

The advantage of such s co-located passive control is
that controllers designed for a finite-dimensional model
remains stable with the infinite dimensional plant provided that
actuator dynamics can be neglected {14]. Since the bandwidth
of a piezo is only limited by its capacitance, actuator dynamics
can be justifiably ignored for large space structures. The imple-
m;n{m.(i)t]m issues of such controllers have been addressed in (5}
and {10].

We measure the systern performance for a particular
choice of controller, placement and piezo length by the rate of

decay of system states and therefore seek o place the poles of
the system far into the left half of the complex plane. More for-
mally, we perform the following optimization

mpinm?.x ReX;(4) @3.5)

where A;(A) is the i eigenvalue of A, and p is one of the
span midpoints.
Linear Quadratic Regulator Case

The Linear Quadratic Regulator (LQR) is attractive
because the controller stabilizes the closed loop systern and
also allows for user defined weights on the inputs and states.
LQR optimization has been used to reduce the structural vibra-
tions in the control of large flexible structures in [15] and [16}
but the formulations were initial condition dependent -- this
dcpcndcncl is removed here. For the system described by
equation (2.2), consider the infinite-horizon time-optimal con-
trol problem of minimizing a quadratic cost functional given by

J, & I[ Rv (e +2T(1)Qz(t) Jdt (3.6)

where R is a positive scalar and Q is positive semi-definite
matrix such that the pair (A, 9,Q V%) is observable. Provided
system (2.2) satisfies the standard conditions of stabilizability
and detectability, the minimum cost min Jy is given by
2T (¢o)Pz(to) where P is the unique nonnegative-definite solu-
tion to the algebraic Ricatti equation{17}

PA, o+A, oTP - PB, oR-'B, TP +Q =0. (3.7)

The cotresponding control is
v(t)=-RB, T Pz(t). (28)

We propose mmnimizing J for the worst case initial condition
and therefore pose the following optimization for computing
the placement.
min |mag_(lz&'i’zo . z9=2(tg). 3.9)

This method optimizes performance uniformly in initial condi-
tions in contrast to the approach by Kondoh et al [3] where a
solution sensitive to initial conditions is proposed.
Controllability Grammian Method

Finally, we describe a placement based on the
controllability grammian sed lz (4). This method is use-
ful, but has certain di antages discussed in the following
section. Assuming that the matrix A,_g in the state space
description (2.2) is stable, as the final ume T tends to infinity,
it can be shown that the finite time controllability grammian
W (0,T) approaches W, the solution of the Lyapunov equation

WA, of + A, oW +B, 9B, T =0.  (3.10)
Based on Arbel’s method we perform the optimization

mgxm‘ink(W) 3.11)

to maximize the controllability of all the modes. This approach
is discussed in the following sub-section.




Discussion of the Controllability Grammian based Measure

We discuss in this sub-section the drawbacks of the con-
trollability grammian method applied by Arbel [4]. The cost
for the minimum en control given initial condition z (fo)
and final condition z(T') is

JA [z (T) - ehT=19; (to)] ' W“(O.T)[z(T) - M=, (‘o)]

(3.12)

where e*+T =% is the state transition matrix. J is the energy
required to deviate from the natural manmb of the system,
which would have reached the state ¢ " =9z (t0) at time T
without the application of any control. Arbel's method is
based on optimizing J over all possible initial and final condi-
tions and results in minimizing the maximum eigenvalue of the
inverse of the controllability grammian, W-1(0,T’), over dif-
feremt actuator positions. In contrast we are interested in a par-
ticular final condition namely zero. The control cost J, for this
finite time regulator problem (z (T') = 0) is given by

J, 4 [e‘»-(’ e (:0)] ‘w-QT) [e‘m-” "-’z(:o;] (3.13)

which differs from J significantly. Next we show that the max-
imum eigenvalue of W~1(0,T) increases as the system poles
move far into the left half of the complex plane. Thus J
increases as the system becomes more damped! Let ¥ be an
cigenvalue of W and let v be the ing eigenvector
such that vl 2=1. Pre- and post-multiplying the Lyapunov
equation (3.10) by vT and v respectively, we obtain

vIWA, oTv + vTA, eWv + V7B, 0By o'v =0(3.14)
Then
i TGy o)

vIB, ¢ B, oTv
2V TAP‘OV

The above result implies that for & given B, ¢ the eigenvalues
of W-! increase if the eigenvalues of A, ¢ move into the left
half plane. Hence Arbel’'s approach deems the system as less
controllable and therefore not desirable even though the above
shifting of the poles is advantageous for vibration reduction.

This decrease in controllability can: be easily illustrated
through a scalar example described by

x(t)=—ax(@)+bu(t). (3.16)

Using Arbel’s meth: {or a large final time T, the eigenvalue
of W(0,T) tends o7y which decreases as @ increases, and

subsequently the controllability measure deems the system as
less controllable even though from a vibration reduction per-
spective it is more desirable. A similar effect is seen in flexible
structures with large decay rates in the higher modes [13].
Arbel's placement method would therefore push the placement
towards locations where the higher modes have maximum
strain. However, due 1o lower decay rates, control of the lower
modes is more critical from a vibration suppression perspec-
tive. Thus for vibration reduction, care must be exercised
when using the controllability grammian based messures.

4. Actuator Placement For AFS

In this section we formulate the problem for the place-
ment of distributed actuators in a general articulated flexible
structure (AFS). The set of equilibria in AFS consists of rigid
body configurations with zero elastic deformations. Our control
objective is to obtain uniformly good regulation of elastic
deformations at any equilibrium state (rigid body
configuration) of the articulated structure. This implies that the
set of desired trajectories X4, are constant trajectories. Our
approach is based on linearization (Section 2) of the system
equations at each equilibrium point in the set X, followed by &
local cost measure (Section 3) evaluation at these equilibrium
points. In the following sub-section we describe this pro-
cedure.

2005 input voltage Umax

Problem Statemers

A local cost functional ¢ (x,,p) is defined for every
placement p and rigid body confi ion X, of the articulated
flexible structure as follows. For the passive asmping con-
troller (3.5) the local cost function is defined as

¢(%,p) & max Red;(4) (4.1s)
and
¢(x.p) & max 28Pzo, 20=2(tp). (4.1b)

for the LQR controller (3.9). Based on cost measures evaluated
through local linesrization (section 3) we can state the place-
ment problem as

;g C(p) 4.2)

where the functional C(p) assigns s global cost for each
placement by evsluating a suitable norm on the function
c(,p): X, R, If for example, the set of equilibrium
points, X, , is contsined in R, then two possible choices of the
the function C ( p ) are the average and worst case:

Jc (%, p)drx
—'—jzx—— and 4.3)
,may c(x.p). (4.4)

These measures are used to numerically solve the problem of
placing distributed Piezo-electric actuators in & two-link flexi-
ble manipulator-strictive in the next section.

Example

For the two-link flexible manipulator (figure 1), we
study the distributed actuator placement to optimally control
small structural vibrations when the joint motors are effectively
locked because of static friction. This corresponds to clamped
boundary conditions at the joints. Our objective being an
actuator placement in the truss structure to achieve optimal
vibration damping in the elastic modes over a set of rigid body
equilibrium configurations. We study the actuator placement at
a single shoulder joint configuration because the system
dynamics are independent of the shoulder d‘%i;\t angle. Also,
the elbow joint O is constrained by 181 < in the experi-
ment. Then by symmetry it is sufticient to study the problem
for elbow joint angles between 0° and 90°. Hence the set of
equilibrium states X,, containing rigid body configurations
with zero elastic deflections, is parsmetrized by the elbow joint
angle 6 and is independent of the placement p.
The two measures defined in the above sub-section are used to
generate solutions to the placement problem of the piezo-
actuators. The passive co-located damping controller con-
sidered is parametrized by a scalar feedback gain K4 and the
feedback law can be written as {13)

u =-—K4[01u 6,_9] z. 4.5

While computing the cost, an optimization is also performed
over th -calar controller gain K. This implies that the local
measui. [ (P, X, ), with the passive damping controller is given
by

c@.%) éxm.ig, max ReA(4). (4.6)

For the LQR controller based measure, weighting matrix Q is
chosen to be uniform in the elastic displ ents as

Incn Onn Ny
€= e Onn | ° @D

The choice of the weight R on the contro! input depends
on the de-poling limit of the actuator and the initial conditions.
For a given R, and ?mmnl placement p,, and the maximum

) over all the congguntions is found.




This vanation of Umax(R ) as a function of R and & (the bound
on the initial conditions i.e. 1.x, 1 S&t) is shown in figure 4.
Based on de-poling limits for the actuator, the maximum
applied voltage is limited to 300V which corresponds to an
applied field of 2 MV /m. For = le -3, corresponding to a
maximum transverse elastic deflections of approximately 3cm,
R = 1¢—6 falls in the suitable region, with maximum input
voltages below the actuator de-poling limit.

For the averaging global measure defined by equation (4.3), the
passive damping based measure yielded a placement at the root
of the first link, while the second case of LQR based measures
resulted in a placement at the root of the second link (figures
8,9). Itis seen in these figures that the placements obtained are
relatively “"good” over all joint configurations.
Discussion

As the joint angle O varies from 0 to 907, there is a sub-
stantial variation in the system eigenvalues. This is represented
in figure S, where the variation of the lowest modal cy
with elbow joint angle is shown. This significant (40%
increase) change in the modal frequencies might deem uni-
formly good placements impossible. The uniformity of place-
ment location is a desirable result because it implies that a sin-
gle placement is effective in reducing vibrations at the different
configurations. The placement based on passive damping con-
roller is seen to be invariant with joint configuration. For the
LQR case the resultant global optimal placement is not the best
for certain configurations, however the increase in cost is negli-
gible (1%) as seen in figure 9o This near optimality over all
configurations is attributed to the relative invarisnce of the
eigenvector components associated with the nodal rotations at
different joint angles.

The placement invariance is due to the fact that in our
example the eimccwrs are relatively invariant with the joint
configuration. This is illustrated in figure 6, where the projec-
ton of the eigenvectors, associated with the least two eigen-
values, onto the rotary elastic displacements at the FEM nodes
of the manipulator model is shown. These correspond to the
spatial derivative of the projection of the eigenvectors onto the
transverse elastic displacements of the manipulator. Note that
these rotary mode s shown in figure 6, vary litle with
joint angle. As the placement varies over the length of the
manipulator, the relative control over each mode and its varis-
tion are determined by these mode shapes 10]. Comequw.
the invariance of these mode shapes with the joint e
implies the relative invariance of the distribution of effective
control over different modes. It is this control distribution of
the different modes that determines the cost for the possible
placement and therefore its invariance results in a uniformly
good placement.

The performance measure based on passive damping is
determined by the distance of system eigenvalues from the
imaginary axis. This distance is an estimate of the slowest
decay rate of elastic perturbations in the structure. In our exam-
ple, the decay rate tends to increase with the elbow joint-angle
as shown in figure 7. This is mainly due to the increase in the
system natural frequencies, but with constant structural damp-
ing. For such & system, the elastic vibration modes associatad
with higher modal frequencies tend to have higher decay rates.
Thus in the case of the passive controller based performance
measure, it is the variaton of the mode associated with the
lowest {requency that determines the cost and therefore the
placement. To control & single eigenvector, the optimal place-
ment is at the location of maximum strain [18] where the effec-
tive control over that mode is maximized. Hence the passive
damping based measure yields the placement at the ﬁn‘;:rm of
the structure. As discussed sbove, this placement is uniformly
good for all joint configurations because nodal rotations associ-
ated with the mode shapes are relatively invariant.

The LQR based performance measure resulted in a
placement where the quadratic cost functional given by equa-
tion (2.7) is minimized. The optimuzation of this quadratic cost
functional results in a compromise placement between high
decay rates of perturbations and small control effort. Note that
the piacement obtained by using this performance measure is
relatively good over all configurations. Thus the invarisnce of
the mode shapes aided in placements which were near-optimal

The reader is cautioned that this invariance in the
mode-shapes need not be true for all AFS. The vanations in the
mode shapes and the modal frequencies with configuration can
in general affect the placement. Hence it is not always possible
to find placements that are uniformly good over different
configurations. In such circumstances the placement should be
based on either the average performance or worst case perfor-
mance described in section 2, and then the resulting placement
yields the best achievable performance.

Preliminary experimental results for co-located passive
damping based controllers are given in figure 10, where we
show the frequency response between the elastic vibrations at
the end of first link span 8 obtained through an optical sensor
and input to the base joint actuator. We obtain a 7db improve-
ment in vibration suppression at the first pin- free resonance.

6. Conclusion

In this paper we formulated the actuator placement for

both linear and articulated flexible structures. It was shown
that the controllability grammian based placement technique is
not suijtable for vibration damping problems. For general aru-
culated structures, two closed loop performance criterions were
used to derive objective functions for optimum placement of
actuators. The procedures, developed independent of initial
conditions and formulated as eigenvalue problems, are easy to
compute. In the example two-link manipulator, these measures
are computationally tractable and effective to solve the distri-
buted actuator placement problem for optimal structural vibra-
tion reduction. An i t observation is that the mode
shapes associated with nodal rotations for the example two-link
flexible manipulator are relatively invariant with joint
configuration. This invariance resulied in 8 placement which is
effective in reducing vibrations over all the different
configurations.
The measures suggested in this paper can also be used for
actuator placement in set point controllers of non-linear sys-
tems. In this sense the approach is a modest attempt at the
lugu problem of non-linear actuator placement. The existence
and computability of optimal designs for general trajectory
tracking in non-linear systems is the subject of further work.
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A NON-RECURSIVE LAGRANGIAN SOLUTION OF THE
NON-CAUSAL INVERSE DYNAMICS OF FLEXIBLE
MULTIBODY SYSTEMS: THE PLANAR CASE

RAGNAR LEDESMA AND EDUARDO BAYO

Depurtment of Mechanical Engineering, University of California, Santa Barbara, C4 93106, U'.S. 4.

SUMMARY

A techmique s presented for solving the inverse dynamics of flexible planar multibody systems. This
technique yields the non-causal joint efforts {inverse dynamics) as well as the internal states (inverse
kinematics) that produce a prescribed nominal trajectory of the end effector. A non-recursive Lagrangian
approach is used in formulating the equations of motion as well as in solving the inverse dynamics
equations. Contrary to the recursive method previously presented, the proposed method solves the inverse
problem in a systematic and direct manner for both open-chain as well as closed-chain configurations.
Numerical simulation shows that the proposed procedure provides an excetlent tracking of the desired end
effector trajectory.

1. INTRODUCTION

Accurate positioning and vibration minimization of flexible multibody systems have generated
considerable interest from the computational dynamics and controls communities. The advent of
the new generation of very fast, lightweight robots and flexible articulated space structures has
made the control of structural vibrations-an important practical problem in the manufacturing
and space industries, respectively.

There is a large body of literature dealing with the forward dynamic analysis of flexible
multibody systems, ie. the determination of the resulting motion when the joint forces and
external forces are given. Several authors® ' have proposed the use of floating reference frames,
while others'! '? have put forward the use of inertial reference frames. Winfrey' proposed the
superposition of linear deflection of flexible bodies to the non-linear rigid body motion. Bahgat
and Willmert? presented a finite element approach for vibration analysis of planar mechanisms
using the assumption that rigid body motion is determined by rigid body kinematic analysis and
the elastic response is driven by the inertial forces generated by the rigid body motion. Likins?
considered the coupling effects of rigid body motion and elastic deformation in the analysis of
tree-structured flexible systems. De Veubeke®* proposed the use of quasi-co-ordinates and a mean
axis co-ordinate system to simplify the equations of motion. Song and Haug® proposed the use of
centre-of-mass co-ordinates and elastic deflections as generalized co-ordinates for the analysis of
planar mechanisms composed of beam elements. Shabana and Wehage® used the generalized
co-ordinate partitioning method in the analysis of inertia-variant flexible mechanical systems.
Sunada and Dubowsky’ used four-by-four matrix methods and component mode synthesis to
analyse three-dimensional flexible robots. Agrawal and Shabana® investigated the dynamic
characteristics of general inertia-variant flexible multibody systems using Euler parameters for
rigid body co-ordinates and different finite element mass formulations. Kim and Haug?® extended
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2726 R LEDESMA AND E. BAYO

the recursive formulations for the dynamics of rigid multibodies to open-chain and closed-chain
flexible mulitibody systems. Vukasovic et al.'® presented the use of fully Cartesian co-ordinates in
the analysis of flexible multibody systems. The efficiency of this approach lies in the fact that only
the coupling terms between rigid and elastic co-ordinates become time-variant.

Different approaches which use the inertial frame of reference to describe the large overall
motion of flexible beams have been proposed by Simo and Vu-Quoc,!'! Cardona and Geradin!'*
and Avello et al.'? among others. The use of an inertial frame of reference leads to linear,
uncoupled inertia terms in the exprassion for kinetic energy, while the expression for the potential
energy functional becomes non-linear. Essential to this type of formulation is the use of finite
strain and finite rotation theories that are capable of treating large deformations and large
rotations. This approach has the advantage that it captures the non-linear stiffening effects that
becorne important at large speeds of operation. However, it has the disadvantage of having
a more involved implementation than the formulation based on the use of floating reference
frames.

On the other hand. numerous control approaches have also been proposed for the position
control of flexible mult:body systems. An early work was that of Cannon ard Schmitz.'* who
presented an optimal linear quadratic technique to control the tip trajectory of a single-link
flexible robot arm. Singh and Schy'?® proposed a joint space close: loop control for elastic robots
by applying a causal non-linear inversion and modal damping. Siciliano and Book'® presented
a singular perturbation approach to identify reduced-order systems used to obtain a collocated
control scheme. Pfeiffer!” suggested a multistage control strategy consisting of a feedforward
based on rigid body inverse dynamics, and a stabilizing feedback on the linearized system around
the rigid trajectory. De Luca et ai.'® proposed a closed-loop control scheme consisting of
a model-based feedforward term and a linear feedback on joint angles. Oakley and Cannon*’
implemented a multilink arm controller based on the LQG design of the linearized arm.

Looking at the vibration minimization problem from another perspective, Bayo?° presented
the solution of the inverse dynamics of a single-link flexible arm in the frequency domain. The
inverse dynamics yields a non-causal or time-delayed joint torque (appliea in negative time and
future time) that is capable of positioning the end effector according to a desired trajectory. Bayo
and Moulin?! extended the inverse dynamics to the time domain by making use of a bilateral
convolutjon integral. Essential to the inverse dynamics of elastic multibodies is the realization
that the joint efforts start actuating before the end effector or control point does. Consequently.
for a small amount of time the joint forces do not cause any tip motion. This effect is called
non-causality and the inverse dynamics has to account for it. This also constitutes a difference of
significant importance between the rigid and flexible multibodies because in the rigid case the
inverse dynamics is causal (instant response), wher~-- .t is non-causal (time-anticipatory re-
sponse) in the flexible case. As shown by Bayo and Moulin,?! the causal integration of the inverse
dynamics of the flexible case leads to unstable results. Kwon and Book?? also proposed a solution
for the inverse problem for a single-link flc: ible arm by dividing the inverse system into a causal
part and an anticausal part to calculate the joint torque and state variables in the time domain for
a given end effector trajectory. Bayo et al.?? solved the multilink case using a recursive procedure
suitable for open-chain confiqurations. The importance of using the inverse dynamics approach
to vibration control has been demonstrated recently by Paden et al.2* who have used passive
feedback and feedforward of the inverse dynamics torque to achieve an exponentially stable
tracking control law that yields excellent end-point tracking of flexible multubody systems.

Recursive methods are limited to open-chain configurations, since for closed-chain systems
they require ad hoc procedures??® that strongly depend on the given configurations. This limita-
tion motivated the research described in this paper in which we present a non-recursive
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Lagrangian approach for the solution of the non-causal (time-anticipatory) inverse dynamics of
flexible multibody systems. This method provides a systematic way of generating and solving the
inverse problem for open-chain as well as closed-chain systems in either the frequency or the time
domain. In the next sections, the equations of motion are formulated and a solution procedure for
the inverse dynamics of general planar flexible multibody systems is proposed. Simulation results
for open-chain and closed-chain configurations are presented to illustrate the accuracy of the
method.

2. MATHEMATICAL FORMULATION

In this paper, the floating frame of reference is used to represent the kinematics of the deformable
bodies comprising the planar muitibody system. Hence, the configuration of a typical component
of a planar multibody shown in Figure | can be described by two sets of co-ordinates: the first set
corresponds to the rigid body co-ordinates representing the location and orientation of the body
axes with respect to the inertial frame; the second set corresponds to the so-called deformation
co-ordinates or nodal deformations representing the deformation of the body with respect to the
budy axes. Using the aforementioned choice of co-ordinates, the location of an arbitrary point
P in a planar deformable body i is given by?®

r' = R’ + AW (N
where R’ is the location of the origin of the body axes with respect to the inertial frame, u' is the

location of point P with respect to the body axes, and A’ is the rotation transformation matrix
from the body axes to the inertial frame. In the planar case, the transformation matrix is given by

Al | 08 ¢ —siné 2
" | sing cos &' (
where &' is the angle of rotation of-the body axes with respect to the inertial frame. The vector o'

can be decomposed intc

o= ul 4+ ug 3)

=X

Figure 1. Reference co-ordinates for a planar body
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where u; is the position vector of point P in the undeformed state with respect to the body axes,
and u, is the deformation vector of point P with respect to the body axes. The deformation vector
u; can be expressed in terms of the nodal deform2tions by using a finite element discretization
scheme

ut = N'gy (4)

where N is the shape function matrix and q; is the nodal deformation vector.

When reference co-ordinates such as those described above are employed in multibody
systems, the system is then represented in terms of the co-ordinates q' = [R. 9, q;]. These
co-ordinates are not independent because the motion of specific points in different bodies are
related according to the type of mechanical joint that interconnects them. Moreover, in flexible
mechanical systems the deformation of a component affects the configuration of adjacent
components. As a consequence, the interdependence of the generalized co-ordinates is expressed
by a vector of kinematic constraint equations, such as

®(q,1)=0 (5)

where q is the total vector of system generalized co-ordinates, ¢ is time, and ® is the vector of
linearly independent holonomic constraint equations. These constraint equations can be further
classified into: (1) rigid body constraints where only rigid body variables are involved in the
constraint equation; (2) joint constraints where both rigid body and deformaiion co-ordinates are
included in the constraint equation; (3) time-dependent constraints wherein the constraint
equations can be explicit functions of time as well as generalized co-ordinates, as in the case of
imposing the co-ordinates of the end-effector to follow a desired trajectory. To illustrate the
construction of constraint equations, take the case of a revolute joint which connects two flexible
planar bodies i and j at points P and Q shown in Figure 2. The two constraint equations
corresponding to the constraint condition that requires points P and Q to be coincident can be
written as

(R + Aiu) ~ (R’ + Aluy) = 0 (6)

We note that the constraint equation exemplified by equation (6) forms a set of coupled
non-linear algebraic equations in the rigid body co-ordinates and deformation co-ordinates.

Figure 2. A pair of flexible planar bodies
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Considering the rigid body and deformation co-ordinates described above as generalized
co-ordinates, and following standard procedures in multibody dynamics, the constrained equa-
tions of motion become**

M(g)§ + Cq + Kq + 94 = Q. + Q.(q,q) (7)

where M, C and K are the system mass, damping and stiffness matrices, respectively, 4 is the
vector of Lagrange multipliers associated with the constraints, ®, is the constraint Jacobian
matrix, Q. is the vector of applied external forces, and Q, is the quadratic velocity vector. The
quadratic velocity vector contains the centrifugal forces and Coriolis forces that result from the
differentiation of the kinetic energy expression with respect to the generalized co-ordinates.

2.1. Forward dynamics

In a forward dynamic analysis, i.e. finding the resulting motion given the applied joint forces
and external forces, equations (5) and (7) form a mixed system of differential-algebraic equations
that have to be solved simultaneously. As explained in the next section, the solution to the inverse
dynamics problem requires a forward dynamic analysis within an iteration process. We solve the
forward dynamics problem by using the augmented Lagrangian penalty formulation.?® Applying
the augmented Lagrangian penalty formulation to equations (5) and (7) results in the following
equation:

M(q)§ + Cq + Kq + ®la[® + 2pod + 0’®] = Q. + Q,(3, q) — I i* (8)

where 2 is a diagonal matrix of penalty factors whose elements are large real numbers that will
assure the satisfaction of constraints, and @ and p are diagonal matrices representing the natural
frequencies and damping characteristics of the dynamic penalty system associated with the
constraints. Values of z in the range 10° < x < 10® provide excellent results when working in
double precision. The augmented Lagrangian method requires an iteration for the correct vatue
of the Lagrange multipliers. The iterative equation for the Lagrange multipliers is given by

AL+ A +a® + 2ped + 0] )

The iterative process described by equation (9) involves only a few additional operations during
each iteration but it significantly improves the convergence of the forward dynamics solution as
compared to the standard penalty method.2®

The augmented Lagrangian penalty formulation has several advantages over the standard
algorithms used in solving differential-algebraic equations. First, the method obviates the need to
solve a mixed set of differential-algebraic equations and does not increase the number of
equations to account for the constraints. Second, this method allows the use of standard
unconditionally stable algorithms without the need of further stabilization techniques to control
the violation of constraints during the integration process. Third, the method can handle
redundant constraints and allows the multibody system to undergo singular positions. Fourth,
the constraint forces (Lagrange muliipliers) can be obtained as a by-product of the integration
without having to integrate additional equations. Finally, the method assures convergence
independent of the penalty values used.

2.2. Inverse kinematics and inverse dynamics

In the context of end-point motion and vibration control, inverse dynamics refers to the
problem of finding the actuating forces or torques that will cause the end point of a flexible

e ——— —t = . e
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multibody system to follow a desired trajectory. Moulin and Bayo?” showed that because of the
non-minimum-phase character of the inverse problem, the unique stuble solution is found to be
non-causal, 1.e. actuation in required before the end-point has started to move as well as after the
end-point has stopped. These findings have led to new theoretical discoverics in the inversion of
non-linear non-minimum-phase systems such as flexible multibodies.?® ?° In addition. the fact
that the stable solution starts at negative time and extends into future time precludes the standard
time-domain integration schemes currently available in multibody computer codes from obtain-
ing the proper inverse solution. These codes will yield causal, and hence unstable, results and
therefore are valid only for the forward dynamics. The integration process is therefore essential to
obtain non-causal solutions, and the time-anticipatory effect can be obtained by integrating in the
frequency domain or in the time domain using the bilaterai Laplace transform.

It is important to note that when the dynamic etfects of the elastic modes are small (quasi-rigid
cases), causal inverse solutions may be obtained by regularizing the problem with the addition of
artificial damping either through the damping matrix or the numerical integration scheme.
However. this ad hoc process changes the nature of the problem and does not yield the desired
time delay effect.

Previous solutions?!- 3 to the inverse problem relied on a pinned-free finite element model of
a flexible beam, and the equation for the inverse dynamics torque was formulated by imposing the
condition that the transverse deformation of rhe free end of each link be zero throughout the
motion. This type of model led to a recursive scheme to solve the inverse dynamics of multilink
flexible manipulators. This recursive procedure is suitable for open-chain but not for closed-chain
configurations.

In this section, we describe a non-recursive Lagrangian approach to solve the general planar
inverse dynamics problem. Compared to the recursive procedure, this non-recursive Lagrangian
approach is more systematic and becomes the only choice when closed-chain systems are
encountered. We model the elastic links under pinned-pinned boundary conditions. This allows
us to express the end effector trajectory in terms of the rigid body co-ordinates only and. in
addition, leads to a simplified form of the inverse kinematics equations for the internal states.
Once the correct internal states are known, the equations of motion give an explicit expression for
the inverse dynamics torque.

In partitioned form, equation (7) can be written as

Mgz Mge Mg | | R 00 0 R 00 0 R
Mgg My My 0' +{0 0 O 9 +{0 O 0 0
Mg Mg My G 0 0 ¢y |4 0 0 ke| |ar
(D; QeR QvR
+{ @ [A=]|Qu|+]| Qu (10)

¢If Qef QVf

The second set of equations in equation (10) can be rearranged to express the externally appled
joint forces as

Q.o = MggR + myeb + myeiiy + DIA — Q. (tn

Equation (11) constitutes the inverse dynamics equation that yields the joint forces (torques)
necessary for the end-point to follow a prescribed trajectory. In order to obtain Q.. the nodal
acceleration vector g, is needed. This vector can be obtained from the third set of equations in
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equation (10), which can be written as
Mg + Ceefe + KeeQe = Qo + Qur — ®I,l - mgR — my,0 (12)

The vector of applied nodal forces Q. can be expressed in terms of the externally applied torques
through the following mapping:

Qi = GiQy (13)

where in the planar case, the matrix G, is a constant Boolean matrix which maps the externally
applied torques to the vector of externally applied nodal forces. For example, in the open-chain
planar multibody system shown in Figure 3, the Boolean matrix G is constructed such that the
external moment on the node located at the base of the first link is equal to the base motor torque,
the moment on the node located at the tip of the first link is the negative of the elbow motor
torque, the external moment on the node located at the base of the second link is equal to the
elbow motor torque, and all other external forces are zero. The same technique can be applied for
the closed-chain multibody system shown in Figure 9, where the Boolean matrix G, is construc-
ted such that the externally applied nodal forces are equal to the motor torques at the rotational
degree of freedom of the nodes where the motors are located and zero elsewhere. Substituting
equations (11) and (13) into equation (12) results in

Mgl + e + KeeQr = Gemgele + F (4 Q. 4 Grs Qry Ge) (14)

where F, is a force vector that includes the inertial terms, reaction terms between contiguous
bodies and quadratic velocity terms.

The problem statement for the inverse kinematics is that of finding the non-causal internal
states q, so that the end-point co-ordinates characterized by a subset of the rigid body co-
ordinates q, follow a prescribed trajectory. The inverse kinematic equations of equation (14) are
non-linear in the variable q,. The non-linear non-causal inversion cannot be carried out by
standard numerical integration of ODEs. It requires a linearization process in either the
frequency domain or the time domain, or splitting the linearized system into its causal and
anticausal components.

The key to the linearization process for the non-recursive approach relies on decomposing the
inertial coupling submatrix my into the sum of a time-invariant matrix and a time-varying matrix

Mg = Mg + My (15)

/— Elbow Motor

Link No. 2

Link No. |

Base Motor

Figure 3. Open-chain flexible multibody system
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where mj, and mj are the time-invariant part and time-varyng part of my,, respectively. This
decomposition is essential for the iteration process needed to obtain the non-causal solution to
the non-linear inversion problem. Substituting equation {15) into Equation {14), we obtain the
inverse kinematics equation of motion for the nodal displacements g;,:

mide + e + KeeQe = F(A, 9, §ro G00 Q¢ Ay, ) (16)
where

m{; = mg — Gemg, (17)

The mass matrix m¢ is non-symmetric and it is precisely the non-symmetry of the mass matrix
that produces internal states which are non-causal with respect to the end-point motion when
non-causal techniques are employed to obtain the proper inversion of the non-linear, non-
minimum problem characterized by equation (16). The non-linear inversion can now be carried
out efficiently in the frequency domain, since the leading matrices have been constructed such that
they remain constant throughout the motion. We thus solve equation (16) iteratively in the
frequency domain to yield the nodal deformation vector g that is non-causal with respect to the
end-point motion.

In the frequency domain, equation (16) can be written as a set of complex equations for
a particular frequency @

1 1 s &
[m?f + —C— — 3 kff]qf(w) = F(CL)) (18)
1w w

where ti,(cb) is the Fourier transform of §(t) and F(@) is the Fourier transform of F(z). Equation
(18) is based on the assumption that g(t) and F(t) are Fourier-transformable. This assumption is
valid for slewing motions which are from rest to rest. The nodal acceleration vector ﬁ,(d)i can be
obtained directly from equation (18) for each frequency @. The leading matrix of equation (18) is
a complex regular matrix that is invertible for all frequencies except @ = 0. However, for @& = 0,
the system undergoes a rigid body motion determined only by the invertible mass matrix mf.
However, we note that the forcing vector on the right-hand side of equation {18) depends on the
‘nodal deformations, velocities and accelerations. We use a successive substitution scheme to
iterate for the nodal deformations, velocities and accelerations. Finally, the nodal accelerations in
the time domain may be obtained through the application of the inverse Fourier transform, ie.

. 1 -
qm)=2—J ql@)e ' dd (19)

Once the non-causal nodal accelerations are known, equation (11) can be used to compute
explicitly the non-causal inverse dynamics joint efforts that will move the end effector according
to a desired trajectory. We note, however, that the inverse dynamics torque and internal states
given by equations (11) and (16), respectively, depend on the Lagrange multipliers and rigid body
co-ordinates, which in turn depend on the internal states and the applied torque. Moreover, the
rigid body co-ordinates and Lagrange multipliers are different from their nominal values when
the components of the multibody system are flexible. Therefore, a forward dynamic analysis is
required to obtain an improved estimate of the generalized co-ordinates and Lagrange multi-
pliers. In order to ensure that the iteration process converges to obtain the joint efforts that will
cause the end-effector to follow the desired trajectory, the forward dynamics analysis is carried
out with the additional constraint that the co-ordinates of the end-point follow the desired
trajectory. These additional constraints have corresponding Lagrange multipliers which act as
correcting terms to the joint efforts that have previously been calculated.
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It is important to note that the computation of the nodal acceleration vector in each iteration
can also be carried out in the time domain through the use of the bilateral Laplace transform

Ge(r) = Y hit — 0 fi(nde (20)
- {=1
where h;(t) is the acceleration response vector to an impulse applied to the ith degree of freedom
and fi(?) is the ith component of the forcing term on the right-hand side of equation (16). We note
that the integration from — ¢ to % is necessary to capture the non-causal effects.
To summarize, the procedure for obtaining the inverse dynamics solution for flexible multi-
body systems invelves the following steps:

Algorithm

1. Perform a rigid body inverse dynamic analysis to obtain the nominal values of the rigid
body co-ordinates q, and Lagrange multipliers 4.

2. Solve the inverse kinematics equation in the frequency domain through equation (16) or in
the time domain through equation (20) to obtain the time-delayed nodal accelerations ;.

3. Compute the inverse dynamics joint efforts Q.4 using equation (11).

4. Perform a forward dynamic analysis using equation (8) to obtain new vaiues for the
generalized co-ordinates and Lagrange multipliers.

5. Repeat steps 2-4 until convergence in the inverse dynamics torques is achieved.

It is worthwhile to compare the recursive procedure?? and the non-recursive Lagrangian
procedure for the inverse dynamics of multibody systems. In the former method, each body in the
multibody system is analysed sequentially starting from the last element in the chain. For each
element, the joint torques are determined first under the assumption that the rigid body
co-ordinates are moving according to the nominal trajectory. With the joint actuation known for
this component, a forward dynamic analysis is casrried out to determine the nodal deformations,
and the reaction forces from the next element in the chain are subsequently determined from
equilibrium considerations. This recursive method works very well for open-chain systems, but it
is not suitable for closed-chain systems because it requires the analyst to cut the loop of the closed
chain and -account for the reaction forces at the cuts through ad hoc procedures. The non-
recursive Lagrangian method avoids this problem since the reaction between system components
are automatically accounted for by the Lagrange multipliers and no distinction is made between

open-chain and closed-chain configurations. The non-recursive procedure is thus more system-
atic and general.

3. SIMULATION RESULTS

In this section we present the results of numerical simulations that verify the procedure discussed
above. First, we apply the proposed non-recursive Lagrangian approach to an open-chain flexible
multibody system and compare the resuits with those obtained by the recursive method?? to test
the validity of the proposed procedure. Next, we present the results of the application of the
non-recursive Lagrangian approach to a closed-chain flexible multibody system to determine the
inverse dynamics torque that will produce the desired motion at the end effector.

3.1. Open-chain multibody system

Figure 3 shows a two-link flexible multibody system in the horizontal plane. The end-point of
the second link is specified to move along the x-axis according to the acceleration profile
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Figure 4. End-point acceleration along the x-axis

described by Figure 4, which corresponds to an end-point displacement of 0-483 meters along the
x-axis. The geometric and material properties of the links are as follows:

First link:
Length 0-66 m
Cross-sectional area 1-2x 10™* m?
Cross-sectional sccond moment of area 2:3x107!'°m*

Second link:
Length: 066 m
Cross-sectional area 4-0x 10™° m?
Cross-sectional second moment of area 85 x 10! m*

The two links share the following properties:

Young’s modulus 14 GPa
Mass density 2715 kg/m3

In Figure S, the inverse dynamics torque profile for the base motor using the non-recursive
method is superimposed on the inverse dynamics torque profile determined by the recursive
method. The inverse dynamics torque profiles for the elbow motor computed by the two
aforementioned methods are superimposed in Figure 6. Both the recursive and non-recursive
formulations yield the same result and can be superimposed on each other (solid curve), thus
validating the proposed method. The corresponding rigid body torques are also shown as dashed
curves in Figures 5 and 6 to illustrate the pre-actuation and post-actuation present in the inverse
dynamics flexible torque profiles.

Figure 7 shows comparison of the elastic angular rotation at the base of the second link
obtained by a feedforward of the inverse dynamics torque (solid curve) to that obtained by
a [eedforward of the rigid body torque (dashed curve). We observe that while the inverse
dynamics torque does not induce residual vibration, the rigid body torque induces substantial
residual oscillation.
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Figure 8 shows a comparison of the vertical tip error obtained by a feedforward of the inverse
dynamics torque obtained using the non-recursive approach (solid curve) and the vertical tip
error obtained by a feedforward of the rigid body torque (dashed curve). We observe that while
the inverse dynamics torque provides an excellent tracking of the tip trajectory, the rigid body
torque induces a large oscillation in the tip motion.

3.2. Closed-chain multibody system

Figure 9 shows a closed-chain flexible multibody system made up of four flexible links with two
joints which are fixed against translation relative to the ground. As in the open-chain case, the
multibody system is assumed to lie on a horizontal plane so that gravity effects are neglected. The
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desired trajectory of joint 5 is a straight line at 45° with respect to the x- and y-axis. The x- and
y-components of the acceleration of joint 5 are specified to follow the acceleration profile shown
in Figure 10. The four links share the following geometric and material properties:

Length 060 m

Cross-sectional area 4-0x 107 % m?

Cross-sectional second moment of area 85x 1072 m*
Young's modulus 14 GPa

Mass density 2715 kg'm?

Figure 11 shows the inverse dynamics torque profile at joint 1 obtained by the non-recursive
method (solid curve). The rigid body inverse dynamics torque profile is superimposed for
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Figure 10. End-point acceleration along the x- and y-axis
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comparison (dashed curve). The fig ire shows the non-causal (time-anticipatory) character of the
solution for the inverse problem. Figu-e 12 shows the inverse dynamic torque profile (solid curve)
at joint 3 superimposed with the corresponding rigid body torque profile (dashed curve). Again,
the time delay due to the non-causality of the solution is seen in this figure.

Figure 13 shows the elastic angular rotation at the base of the first link obtained by a feedfor-
ward of the inverse dynamics torque (solid curve). Superimpossed in the same figure is the
corresponding elastic angular rotation obtained by a feedforward of the rigid body torque
(dashed curve). Whereas the rigid body torque produces residual angular rotations, the inverse
dynamic torque does not show residual angular rotations. As a matter of fact, it was observed in
the simulations that the rigid body torques produced residual vibration in all the nodal
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deformations while the inverse dynamics torques eliminated the residual oscillation. Further-
more, the inverse dynamics torques produced nodal deformations which exhibited non-causal
characteristics with respect to the end-point motion. Figure 14 shows a comparison of the ve:tical
tip error at joint S obtained by a feedforward of the inverse dynamics torque (solid curve) with the
tip error resulting from a feedforward of the rigid body torque (dashed curve). This figure shows
that the inverse dynamics torque provides an excellent tracking of the desired end effector
trajectory whereas the rigid body torque again induces substantial vibration on the end-point
motion. '

The numerical simulations reported in this paper were carried out using a single-processor Sun
Sparcstation 1. For the open-chain multibody system, the CPU time was 14 s for the recursive
method and 37 s for the non-recursive method. As expected, the recursive method is more efficient
than the non-recursive method for open-chain problems since the former solves the system
equations one link at a time, hence significantly reducing the dimension of the problem. However
the non-recursive method can easily be amended to take advantage of parallel processors, hence
enabling the method to become more attractive when multiprocessors are used.

For the closed-chain multibody system presented above, the non-recursive method was used to
solve the inverse dynamics problem with a CPU time of 96 s. The use of the recursive procedure
for the closed-chain system would require an ad hoc procedure where the analyst must decide
where to cut the chain and impose proper boundary conditions on the resulting tree-structured
open-chain system. Hence, the recursive method becomes too cumbersome for the inverse
dynamics of closed-chain systems, and for this reason it was not used to simulate the closcd-chain

A

system. :

4. CONCLUSION

A non-recursive Lagrangian approach for the inverse dynamics of flexible multibody systems has
been presented. The procedure is capable of solving for the non-causal inverse dynamics torque
profiles of both open-chain and closed-chain flexible muitibody systems in a unified and
systematic manner. The method is found to produce an excellent tracking of the desired trajectory
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of the end effector In a {uture paper, we will address the inverse dynamics problem for flexibie
multibody systems undergoing motion in three dimensions. New problems arise in the three-
dimensionai case, since the actuating torque vectors have directions which are time-varying and
non-linear functions of the rigid body co-ordinates, in contrast to the planar case where the
applied torque vectors have directions fixed perpendicular to the plane of the muitibody system.
In addition. controllahility and accessability issues need to be addressed.
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ABSTRACT

This paper addresses the problem of end-point trajectory tracking in
flexible multibody systems through the use of inverse dynamics. A global
Lagrangian approach is employed in formulating the system equations of
motion, and an iterative procedure is proposed to achieve end-point trajec-
tory tracking in three-dirmensional, flexible multibody systems. Each itera-
tion involves firstly, a recursive inverse kinematics procedure wherein
elastic displacements are determined in terms of the rigid body coordi-
nates and Lagrange multpliers, secondly, an explicit computation of the
inverse dynamic joint actuation, and thirdly, a non-recursive forward
dynamic analysis wherein generalized coordinates and Lagrange multi-
pliers are determined in terms of the joint actuation and desired end-point
coordinates. In contrast with the recursive methods previously proposed,
this new method is the most general since it is suitable for both open-chain
and closed-chain configurations of three-dimensional multibody systems.
The algorithm yields stable, non-causal actuating joint torques and associ-
ated Lagrange multipliers that account for the constraint forces between

flexible multibody components.




1. Introduction

The effect of elastic deformation on the dynamics of multibody systems has been
vigorously studied during the past thirty years. In particular, the modeling of muitibody
components as elastic beams has received considerable attention as made evident in the
survey papers of Lowen and J andrastis,! Erdman and Sandor,2 Modi,3 and more recently
by Lowen and Chassalpis.4 A specific area of interest with regards to flexible multibody
systems, especially in the aerospace and robotics industries, is in controlling the motion
of a specified point in the multibody system. In most cases, the control objective is to
have the end-point of the multibody system follow a desired trajectory. Various feedback
control strategies for the problem of end-point trajectory tracking have been proposed,
and the survey papers of Balas’ and Book® present some of the approaches advanced by

the controls community towards this problem.

The problem of end-point trajectory tracking in flexible multibody systems has led
to the development of computational methods commonly referred to as inverse dynamics.
Inverse dynamics deals with the problem of determining the joint actuation that will
cause a specified control point in the flexible multibody system to follow a desired trajec-
tory. The pioneering work of Reference 7 on the trajectory control of a single flexible
link through inverse dynamics showed that the inverse dynamic torque is non-causal
with respect to the end-point motion, i.e., actuation is required before the end-point has
started to move as well as after the end-point has stopped. Moulin® demonstrated that
because of the non-minimum phase character of the inverse dynamics for the trajectory
tracking problem, the only bounded solution for the inverse dynamic torque has to be
non-causal. Bayo, ez. al.? extended the inverse dynamics to planar, multiple-link systems
using an iterative frequency domain approach. The recursive method proposed in that
study is suitable for planar open-chain systems, but required an ad hoc procedure for
planar closed-chain systems. A time domain inverse dynamics technique based on the
non-causal impulse response function was presented by Bayo and Moulin!© for the single
link system, with provisions for extension to multiple link systems. An equivalent time

domain approach for a single link arm was proposed by Kwon and Book!! where the




non-causality of the computed torque was captured by dividing the inverse system into
causal and anticausal parts. Recently, a more systematic and more general non-recursive,
frequency domain method for the inverse dynamics of planar multibody systems was
proposed in Reference 12. This method includes the constraint forces between the multi-
body components in the equations of motion, and the method is found suitable for both
open-chain and closed-chain configurations of planar multibody systems. The effect of
Coriolis forces and centrifugal forces on the inverse dynamics of constrained mechanical

systems was presented by Gofron and Shabana.13

The inverse dynamics approach to end-point trajectory tracking of open-chain flexi-
ble multibody systems was recently applied to the three-dimensional problem by

Ledesma, et. al.,14

where a recursive procedure was proposed to simultaneously track a
desired end-point trajectory and minimize motion-induced vibrations through the com-
bined use of lumped inverse dynamic torques and distributed piezoelectric actuators. The
recursive procedure required a controlled motor at each intermediate revolute joint and
three motors at the ground. This procedure is effective for open-chain systems, but it is
not valid for closed-chain systems because in such systems, the number of required con-

trol inputs is less than the number of joints.

In this paper, we present a general computational approach for the solution of the
non-causal inverse dynamics of three-dimensional, flexible multibody systems, that is
suitable for both open-chain and closed-chain configurations. With this work, we present
a methodology that is suitable for all multibody systems, ranging from the single link
case to three-dimensional systems with general topologies. The equations of motion are
formulated in Section 2 and an iterative algorithm is subsequently developed. Simulation
results for open-chain and closed-chain configurations are presented in Section 3 to

demonstrate the validity and accuracy of the method.




2. Problem Formulation

In this section, we derive the governing equations of motion for a flexible multibody
system by using a global Lagrangian approach, and develop a solution for the inverse
dynamics problem that is suitable for both open-chain and closed-chain configurations.
Crucial to the success of the proposed procedure is the use of the correct, non-causal
Lagrange multipliers that account for the constraint forces between flexible muitibody
components. These Lagrange multipliers are determined in a forward dynamic analysis,
which in turn, require the unknown inverse dynamic actuations. Therefore, the proposed
solution is an iterative procedure which converges to the stable, non-causal inverse

dynamic actuations and the associated Lagrange multipliers.

Consider an n-body flexible multibody system such as that shown in Fig. 1. A typi-
cal multibody component, say body i, is shown in Fig. 1 along with the floating reference
frame associated with that body. The generalized coordinates consist of rigid body coor-
dinates q which describe the position and orientation of the floating reference frame
associated with each multibody component, and deformation coordinates qj- which
describe the deformation of the flexible body with respect to its floating reference frame.
The rigid body coordinates q/ consist of the Cartesian coordinates Ré which describe the
position of the origin of the floating reference frame associated with body i, and a set of
Euler parameters & which describe the orientation of the floating frame. The use of Euler
parameters among several choices of orientation coordinates will be explained later in
the section describing the inverse dynamics solution procedure. The deformation from
the nominal configuration is assumed to be small, so that the different bending and tor-
sional modes are decoupled. For the sake of completeness, we summarize in the follow-
ing equations the basic kinematic expressions that lead to the general equations of motion
for flexible multibody systems. A more detailed formulation is found in Reference 15.
With the above choice of coordinates, the position of an arbitrary point P in body i is
given by

r =R + Al u¢ (N




where R/ is the location of the origin of the body axes with respect to the inertial frame,
u’ is the location of point P with respect to the body axes, and Al is the rotation transfor-
mation matrix from the body axes to the inertial frame. In the three-dimensional case, the
rotation transformation matrix is given by
288 +08R) =1 2(8,82— 8083) 28,04 +0y8y)|
Al =12(010,+6¢03) 2(8¢ +62) — 1 2(8,03 — 638,) ()
2(8163 — 6002) 2(8203 + 6901) 2(64 +04) - 1

where the orientation coordinates are represented by four Euler parameters 64, 6{, 84, and

84 which satisfy the following identity:

3 ©iR2=1. 3)
k=0

The position vector with respect to the body axes, u‘, can be decomposed into
u =u/ +uf 4)

where u/ is the position vector of point P in the undeformed state with respect to the
body axes, and uf is the deformation vector of point P with respect to the body axes.
The deformation vector u } can be expressed in terms of the nodal deformations by using

a finite element discretization scheme, hence
uj =Ni gf )

where Ni is the shape function matrix and qf is the nodal deformation vector. Differen-

tiating Eq. (1) with respect to time, we obtain the following expression for the velocity

vector in terms of the rigid body coordinates and nodal deformation coordinates: 15

=R -2A & E 6 + Al Ni § ©6)
where (') represents differentiation with respect to time, Ef is a matrix that depends

linearly on the Euler parameters and is given by

|01 6y 83 6,
E'=1-0; -6; 6 6 )
-0 6; 6, 6




and @’ is a 3 x 3 skew-symmetric matrix given by

, 0 —Us u
= u, O2 -ui (8)

in which uy, uy, and u, are the coordinates of the generic point P with respect to the

body axes, in the deformed configuration.

Considering the reference coordinates qT = RT,87,qf ] as generalized coordinates
for the flexible multibody system, these coordinates are not independent because the
motion of specific points in different bodies are related according to the type of mechani-
cal joints that interconnect them. Moreover, in flexible mechanical systems, the defor-
mation of a component affects the configuration of adjacent components. As a conse-
quence, the interdependence of the generalized coordinates is expressed by a vector of

kinematic constraint equations, such as
D(q,t) =0 ‘ ®

where q is the total vector of system generalized coordinates, ¢ is time, and @ is the vec-
tor of linearly independent holonomic constraint equations. These constraint equations
can be further ciassified into:

1. rigid body constraints where only rigid body variables are involved in the constraint
equation;

2. joint constraints where both rigid body and deformation coordinates are included in
the constraint equation; and

3. rheonomic constraints wherein the constraint equations can be explicit functions of

time as well as generalized coordinates.

The third type of constraint becomes active, for example, in the case of imposing
the coordinates of the end-effector to follow a desired trajectory. To illustrate the con-
struction of constraint equations, take the case of a spherical joint which connects two
flexible bodies i and j at points P and Q shown in Fig. 2. The three constraint equations

corresponding to the constraint condition that requires points P and Q to be coincident




can be written as
[Ri + 4 ug) - [Ri + 4 ug) =0. (10)

We note that the constraint equation exemplified by Eq. (10) forms a set of coupled non-
linear algebraic equations in the rigid body coordinates and deformation coordinates.

Considering the ngid body and deformation coordinates described above as general-
ized coordinates, and following standard procedures in multibody dynamics, the con-

strained equations of motion become 15

M@ 3+Cq+Kq+dJA=Q.+Q\q.q (11)

where M, C and K are the system mass, damping and stiffness matrices, respectively, A
is the vector of Lagrange multipliers associated with the constraints, ®, is the constraint
Jacobian matrix, Q. is the vector of applied external forces, and Qy is the quadratic velo-
city vector. The quadratic velocity vector contains the centrifugal forces and Coriolis
forces that result from the differentiation of the kinetic energy expression with respect to
the generalized coordinates. Geometric stiffening due to high rotation rates can also be
added to the vector Q,.

2.1. Forward Dynamics

In a forward dynamic analysis, i.e., finding the resulting motion given the applied
joint forces and external forces, Eqs. (9) and (11) constitute a mixed system of
differential-algebraic equations that have to be integrated simultaneously. As explained
in the next section, the solution to the inverse dynamics problem requires a forward
dynamic analysis within an iteration process. We solve the forward dynamics problem
by using the augmented Lagrangian penalty formulation, 16 Applying the augmented
Lagrangian penalty formulation to Egs. (9) and (11) results in the following equation:

M(q)ii+C¢'1+Kq+¢§a[5f>+2um<i>+m2¢] =Qe+Qy(q,9)

-of A’ (12)




where a is a diagonal matrix of penalty factors whose elements are large real numbers
that will assure the satisfaction of constraints, @ and y are diagonal matrices representing
the natural frequencies and damping characteristics of the dynamic penalty system associ-
ated with the constraints. Values of o in the range 103 < & < 108 provide excellent
results when working in double precision. The augmented Lagrangian method requires
an iteration for the correct value of the Lagrange multipliers. The iterative equation for

the Lagrange multipliers is given by
l.ll=k.‘+a[<'f>+2umé+w2¢]. (13)

The iterative process described by Eq. (13) involves only a few additional operations dur-
ing each iteration but it significantly improves the convergence of the forward dynamics
solution as compared to the standard penalty method. 16

The augmented Lagrangian penalty formulation has several advantages over the
standard algorithms used in solving differential-algebraic equations. First, the method
obviates the need to solve a mixed set of differential-algebraic equations and does not
increase the number of equations to account for the constraints. Second, this method
allows the use of standard unconditionally stable algorithms without the need of further
stabilization techniques to control the violation of constraints during the integration pro-
cess. Third, the method can handle redundant constraints and allows the multibody sys-
tem to undergo singular positions. Fourth, the constraint forces (Lagrange multipliers)
can be obtained as a by-product of the integration without having to integrate additional
equations for them. Finally, the method assures convergence independent of the penalty

values used.

2.2. Inverse Kinematics and Inverse Dynamics

Gofron and Shabana!’ have proposed a solution to the inverse dynamics problem by
integrating Eq. (12) directly and solving for the joint actuation from the Lagrange muld-
pliers thus obtained. This method leads to a causal solution which relies on the presence

of damping forces in order to obtain a stable solution. In contrast, the method presented




in this paper does not rely on damping to produce a stable solution. Moulin and Bayo 18
recognized that because of the non-minimum phase character of the inverse problem, the
unique stable solution should be non-causal, i.e., actuation is required before the end-
point has started to move as well as after the end-point has stopped. These findings have
been corroborated by Paden and Chen!? in their theoretical work on the inversion of non-
linear non-minimum phase systems such as flexible multibodies. The proper integration
is of crucial importance in obtaining non-causal solutions, and as previously demon-
strated in the planar inverse dynamics problem, the time-anticipatory effect can be

9

automatically obtained by integrating in the frequency domain” or in the time domain by

using the non-causal impulse response function and the bilateral Laplace transform. 10

A previously proposed solution to the three-dimensional inverse dynamics prob-
lem!? relied on a pinned-free finite element model of a flexible beam, and the equation
for the inverse dynamics torque was formulated by imposing the condition that the tor-
sional deformation and the two transverse deformations of the free end of each link be
zero throughout the motion. This limited type of model led to a recursive scheme to solve
the inverse dynamics of flexible multibody systems, and is found suitable for open-chain

configurations but not for closed-chain configurations.

In this section, we describe an iterative Lagrangian procedure to solve the three-
dimensional inverse dynamics problem for either open-chain or closed-chain topologies.
Our overall strategy is to first solve the inverse kinematics problem, i.e., finding the unk-
nown rigid body coordinates q, and flexible body displacements qy, given the desired
end-point coordinates as explicit functions of time. Having determined the correct gen-
eralized coordinates and their time derivatives, the inverse dynamics joint torques can be
obtained explicitly from the equations of motion. Compared to the recursive procedure
cited above, this new approach is more systematic and becomes the only choice when
closed-chain systems are encountered. We model the elastic links under pinned-pinned
boundary conditions. Furthermore, since torsional deformations cause deviations from
the nominal configuration further down the chain, we model the elastic link as fixed with
respect to torsion at the distal end of the link.
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Our goal then is to formulate an inverse kinematics equation that is linearized about
the nominal motion, so that the elastic displacements, which are non-causal with respect
to the end-point motion, can be determined through a frequency domain analysis. This is
possible only if the leading matrix of the linearized equation is time-invariant and if the
forcing term is Fourier transformable. This objective has been achieved in the planar case
with the use of reference coordinates for the rigid body variables to describe the position

and orientation of the floating reference frame. 12

The three-dimensional inverse kinematics problem presents additional difficulties
not found in the planar case. First, unlike the planar case, the three-dimensional torque
vectors change directions in time, so that the external force vector Q. in Eq. (11)
becomes a nonlinear function of the rigid body orientation coordinates. To overcome this
difficulty, a proper parametrization of the rigid body coordinates and proper bases for the
joint torques are necessary to attain the stated objectives in forming the linearized inverse
kinematics equations. As described later in this section, the desired form of the linearized
inverse kinematics equation is possible if Euler parameters are used to describe the rigid
body orientation and if the base torque vector of each multibody component is expressed

in terms ot components along the associated floating reference frame.

A second difficulty that appears in the three-dimensional inverse dynamics problem
is that the end-point vibration in the¢ ane defined by the revolute joint axis and the
member axis can not be controlled by the torque applied at the revolute joint. This sug-
gests that additional actuation is necessary to control the end-point motion when the mul-
tibody system reaches an "inaccessible” conﬁguration.20 This problem has been
addressed in Reference 14 wherein one motor at each intermediate joint and three motors
at the ground were proposed to control the end-point motion for all possible
configurations of a certain class of open-chain, flexible multibody systems. The problem
of "inaccessibility" in open-chain systems, however, can be completely avoided simply
through a judicious design of the orientation of the joint motors so that end-point vibra-
tion is controllable for all possible configurations. For closed-chain systems, "inaccessi-

ble" configurations do not occur, hence the controllability of the end-point motion is
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assured without the need for extra actuation.

Consider again the system equations of motion expressed by Eq. (11). For a typical
multibody component, say body i, the equations of motion can be written in the follow-

ing partitioned form:

EEEILRID BRI BRIt R

The elements of the mass matrix and quadratic velocity force vector corresponding to an

isoparametric, three-dimensional curved beam finite element are given in the Appendix.

Let us define © as the torque vector at the base of body i, whose three components
T, 1, and T/ are parallel to the associated floating reference axes ri, s¢, and ¢¢, respec-
dvely. If we use Euler parameters as the rigid body orientation coordinates, the externally
applied joint forces QJg associated with the rigid body rotation of body i can be

expressed as
Qis=[G']T v - [AT]T AVl Tiv) (15)

where T is the base torque acting on body i and whose components are parallel to the
floating reference axes associated with body i; ©'*! is the vector of joint torques and
reaction moments transmitted from body i to body i+1, and whose components are
parallel to the floating reference axes associated with body i+1; Aé and Ai*! are body
axes to inertial axes rotation transformation matrices for bodies i and i+1, respectively;
and G* is a matrix that maps the derivatives of the Euler parameters describing the orien-
tation of the reference frame of body i to the angular velocity of this reference frame,
and is given by G¢ =2 Ef. Combining Eq. (15) with the second set of equations in Eq.
(14) yields

[GIT (v — [AF]T Ai+11i*1) = mdg R + még & + md; Gf
+Dd A - Q. (16)

If we pre-multiply both sides of Eq. (16) by %—G" and use the identity
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3G G =1 an

where I is the 3 x 3 identity matrix, we can get the following result after expanding the
inertia matrices and quadratic velocity vectors found in Eq. (16), (the reader is referred to
the Appendix for the expressions for the inertia matrices and quadratic velocity vectors in

terms of the invariants of the motion):
= (AT At v+l + LG mig RV + 3 GE 6 + Jf §f + LGI OF A
+2G G (J G & +Jf 4} (18)

where J¢ is the 3 x 3 inertia tensor of body i with respect to the origin of the floating
reference frame and measured relative to this frame, and J} is the inertia matrix coupling
the rigid body rotation and the c¢lastic deformation. The key to obtaining a time-irivariant
leading matrix, that is necessary in transforming the linearized equations of motion into
the frequency domain, is the fact that the' inertial coupling matrix J} can be decomposed

into the sum of a time-invariant matrix and a time-varying matrix, i.e.,
Jf =Jfc +Ife (19)

where Jf. and Jf; are the time-invariant part and time-varying part of Jf, respectively.
This decomposition is essential to the formulation of the inverse kinematics equations
that lead to non-causal solutions to the nonlinear inversion problem. This is also the rea-
son for selecting Euler parameters as rigid body orientation coordinates over other types
of singularity-free coordinates such as natural coordinate:s,21 where the decomposition of
the inertial coupling matrix into time-invanant and time-varying parts is multiplicative
rather than additive as in Eq. (19). Introducing this decomposition into Eq. (18) results in

the following expression for the base torque on body i:

v =[AIT Ai+l i+l + T} +J}c Q} (20)
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where T} is a torque vector given by
Tj = 3G mig RV +Ji G § +Jf, §f + +Gi O A
+ $GHGHT (3 G & +Jf af). 21)

Considering the equations of motion associated with the elastic degrees of freedom,
the externally applied force vector due to the joint torques acting on body i can be

expressed as
Qéf = N{ - N,T [Ai]T Ai+l pi+l (22)

where N and N; are the shape function matrices associated with a torque vector acting
on node b (base) and at node ¢ (tip) of the finite element mesh, respectively. Combining
Eq. (22) with the third set of equations in Eq. (14) yields the following inverse kinemat-

ics equations for body i :
mfr df +cjr af +kjr of =Fi\q\.& 4/ af.4f df) (23)
where the modified mass matrix is given by
mjy =mjy - Nf Jfe (24)
and the motion-induced force vector acting on the elastic degrees of freedom is given by
Fi = Ng‘ {[Ai ]T Ai+l gi+l +T£} - N,T [Ai]T Ai+l i+l
+ Q\ff - (DqT’ A- m}R ﬁi - mfe 6‘ . (A))
The modified mass matrix s is nonsymmetric and it is precisely this nonsym-
metry that produces elastic displacements which are non-causal with respect to the end-
point motion when non-causal techniques are employed to obtain the proper inversion of
the nonlinear, non-minimum phase systems. Furthermore, inspection of Egs.(23)-(25)
shows that the inverse kinematics equation for body i assumes that the base torque vector

t'*! is known beforehand. This suggests some form of recursive algorithm for the inverse

kinematics, i.e., finding the elastic displacements starting from the end-point, and
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proceeding to the base of the multibody system (inboard direction). This procedure is
straightforward for open-chain configurations. However, for closed-chain configurations,
we need to take the additional step of cutting the chain at the joint that is defined as the
end-point, and then proceed as in the open-chain case, since the constraint forces at the

cut are automatically accounted for by the vector of Lagrange multipliers.

The nonlinear inversion can now be carried out efficiently in the frequency domain
since the leading matrices have been constructed such that they remain constant
throughout the motion, Our strategy is to solve Eq. (23) in the frequency domain to
obtain the nodal deformation vector q; that is non-causal with r=spect to the end-point
motion. In the frequency domain, Eq. (23) can be written as a set of complex equations

for a particular frequency @
iy + 13 oy — o7 Ky | P@=F @ (26)

where ii}(m) is the Fourier transform of q} (t) and Fi(w) is the Fourier transform of
Fi(¢). Eq. (26) is based on the assumption that 4} (¢) and Fi(¢) are Fourier transformable.
This assumption is valid for slewing motions which are from rest to rest. The nodai
acceleration vector ci) (w) can be obtained directly from Eq. (26) for each frequency w.
The leading matrix of Eq. (26) is a complex regular matrix that is invertible for all fre-
quencies except for @ =0. However, for w =0, the system undergoes a rigid body
motion, and the leading matrix will be determined only by my, which is positive definite
and therefore invertible. We note, however, that the forcing vector on the right hand side
of Eq. (26) depends on the elastic deformations, velocities and accelerations. Therefore,
an iterative process is needed to obtain the solution to the differential equations which
are nonlinear in q } We start the iteration process by assuming zero elastic deformations,
velocities and accelerations for the initial calculation of the forcing vector Fi(¢), and use
a successive substitution scheme to converge to the correct solution. Finally, the elastic
displacements and their derivatives in the time domain may be obtained through the

application of the inverse Fourier transform, e.g.,
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A

i#(t):-z%j qf () e dw. (27)

Alternately, the computation of rne elastic displacements and their derivatives in
each iteration can also be carried out in the time domain through the use of the non-

causal impulse response function and the bilateral Laplace transform, e.g.,
qr)= | ’f"'h,-(t—'t)fj(t)dr (28)
—0 J=

where h; () is the non-causal acceleration response vector to an impulse applied to the
Jj* degree of freedom and f;(¢) is the j* component of the forcing term on the right
hand side of Eq. (23). We note that the integration from —oe to oo is necessary to capture

the non-causal effects.

Once the non-causal elastic displacements and their derivatives are known, Eq. (18)
can be used to explicitly compute the non-causal inverse dynamics joint efforts that will
move the end effector according to a desired trajectory. We note, however, that the joint
torques and elastic displacements given by Egs. (18) and (23), respectively, depend on
the Lagrange multipliers and rigid body coordinates, which in turn depend on the elastic
displacements and the applied torque. Moreover, the rigid body coordinates ana
Lagrange multipliers are different from their nominal values when the components of the
multibody system are flexible. Therefore, a forward dynamic analysis is required to
obtain an improved estimate of the generalized coordinates and Lagrange multipliers. In
order to ensure that the iteration process converges to obtain the joint efforts that will
cause the end-effector to follow the desired trajectory, the forward dynamics analysis is
carried out with the additional constraint that the coordinates of the end-point follow the
desired trajectory. These additional constraints have corresponding Lagrange multipliers
which act as correcting terms to the joint efforts that have been previously calculated. We
also note that this iteration process takes into account the effect of the nonlinear coupling
between the rigid body coordinates and the deformation coordinates in the computation

of the joint efforts. The iterative procedure is found to be convergent for multibody
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systems with moderately flexible members and with moderate rotation rates.

To summarize, the procedure for obtaining the inverse dynamics solution for three-

dimensional, flexible multibody systems involve the following steps:

Algorithm:

1. Perform a rigid body inverse dynamic analysis to obtain the nominal
values of the rigid body coordinates q, and Lagrange multipliers A.

2. Solve the inverse kinematics equation in the frequency domain through
Eq. (23) or in the time domain through Eq. (28) to obtain the
time-delayed elastic displacements and their time derivatives.

3. Compute the inverse dynamics joint efforts t using Eq. (18).

4. Perform a forward dynamic analysis using Eqs. (12) and (13) to obtain new
values for the generalized coordinates and Lagrange multipliers.

5. Repeat steps 2 through 4 until convergence in the inverse dynamics

torques is achieved.

It is worthwhile to compare the recursive procedure proposed in Reference 14 and
the algorithm proposed in this paper. The most important difference between the two
methods is that the former method assumes that the dependence of rigid body coordinates
on the elastic displacements are made negligible through the action of control forces so
that the rigid body coordinates take on values corresponding to the nominai motion. This
assumption is not made in the present method and consequently, the solution of the
inverse kinematics equation of Eq. (23) would require an iteration for the rigid body
coordinates q, as well as the Lagrange multipliers A that are needed as inputs to the
inverse kinematics equation. A consequence of the above assumption in the previously
proposed recursive procedure is that control inputs were required at all intermediate
joints in the multibody system. This requirement is acceptable in open-chain
configurations, but not practical in closed-cizin configurations because the number of
system degrees of freedom is less than the number of joints in a closed-chain multibody

system. The present procedure takes advantage of this fact and allows the analyst to
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choose a priori which joints in the multibody systerm: are the control joints. Therefore, the
present algorithm is more general and more systematic than the previously proposed pro-

cedure, although it requires more computational effort.

3. Simulation Results and Discussion

We present in this section some results of the numerical implementation of the pro-
cedure discussed above. First, we apply the procedure proposed in this paper to the
inverse dynamics of a two-link, open-chain flexible muitibody system undergoing motion
in three-dimensional space, and compare the results with those obtained by the previ-
ously proposed recursive procedure.14 Next, we present some simulation results of the
application of the present procedure to the inverse dvnamics of a closed-chain, flexible

multibody system undergoing three-dimensional motion.

3.1. Open-Chain Multibody System

The iterative procedure discussed in the preceding section is applied to the three-
dimensional open-chain flexible manipulator shown in Fig. 3. The multibody system is
controlled by three motors at the base and one motor at the intermediate revolute joint.
The desired motion is to have the end-point remain in the x;—x3 plane with the x, coordi-
nate and x3 coordinate of the end-point following the trajectories shown in Fig. 4. Gravi-
tational forces are neglected. The two links share the following geometric and material

properties:

Length: 1.0 m
Cross section ditnensions: 1.0 cm x 1.0 cm
Young’s modulus: 70 GPa
Shear modulus: 27 GPa
Mass density: 2715 kg/m3
. Tip mass: 0.1 kg
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We perform two sets of computations for the example considered: 1) using the
recursive procedure proposed in Reference 14; and 2) using the iterative procedure pro-
posed in this paper. In the open-chain case, each intermediate joint needs to be con-
trolled, and we therefore expect very similar results from both methods. Plots of inverse
dynamic joint torques needed to track the desired end-point trajectory are shown in Figs.
Sa and 5b. The results obtained from the two methods superimpose, thus validating the
method proposed in this paper. Plots of the corresponding rigid body torques are also
shown in the figures to illustrate the non-causal nature of the inverse dynamic torques. In
Figs. 5a-b, the dashed curves refer to the inverse dynamic torques, while the solid curves
refer to the rigid body torques. Transverse deflections induced by the motion at third
points in the two links are shown in Figs. 6-7. In these figures, the dashed curves are
transverse deflections caused by the inverse dynamic torques, while the solid curves are
deflections caused by the rigid body torques. In Fig. 6, one vibration mode with a fre-
quency of approximately 30 Hz dominates the response, while in Fig. 7, two vibration
modes at frequencies of approximately 3.4 Hz and 30 Hz dominate the response. The
higher frequency corresponds to the first bending mode of a single link and characterizes
the so-called "fast subsysfem" while the lower frequency corresponds to the "slow sub-
system" formed by the assembly of the multibody components. Rayleigh damping was
used in the numerical simulation, with damping coefficients of 0.4% and 3.8%
corresponding to frequencies of 3.4 Hz and 30 H:z, respectively. We observe that the
inverse dynamic torques minimize the residual structural vibratior : that would otherwise

be present if rigid body torques were used to actuate the flexible multibody system.

3.2. Closed-Chain Multibody System

Fig. 8 shows a closed-chain, three-dimensional flexible multibody system, where
the selected control torques are shown in the figure. Joints 1-4 are revolute joints while
joint 5 is a spherical joint. The desired end-point (joint 5) trajectory is a motion in the
x,~x3 plane with the x; coordinate and x3 coordinate of the end-point following the tra-

jeciories shown in Fig. 9. As in the open-chain case, gravitational forces are not
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considered in order to focus on the inertial effects on the dynamics of the system. The

four links share the following geometric and material properties:

Length: 1.0 m

Crcss section dimensions: 1.0cm x 1.0 cm
Young’s modulus: 40 GPa

Shear modulus: 15 GPa

Mass density: 2715 kg /m3

Tip mass: 0.1 kg

The present procedure is applied to the closed-chain system by introducing a cut at
the end-point (joint 5), thus creating two open-chain systems. The internal constraint
forces exposed by the cut are automatically taken into account by the Lagrange multi-
pliers in the equations of motion. Figs. 10a and 10b show joint torques T, and T3, respec-
tively, that are needed to achieve the desired end-point trajectory. In these figures, the
dashed curves refer to the inverse dynamic torques obtained by the present procedure,
while the solid curves refer to the corresponding rigid body torques. Figs. 11 and 12
show the transverse deflections at a third point in link #2, obtained from a feedforward of
the inverse dynamic torques (dashed curve) and the corresponding deflection obtained
from a feedforward of the rigid body torque (solid curve). Again, we observe that the
inverse dynamic torques minimize the residual structural vibrations that are otherwise
present when rigid body torques are used to actuate the system. It is also interesting to
look at the Lagrange multipliers that represent the reaction forces between multibody
components. Fig. 13 shows a typical Lagrange multiplier associated with the inverse
dynamic torques (dashed curve) and the corresponding nominal Lagrange multiplier
associated with the rigid multibody system (solid curve). We observe that pre-actuation
and post-actuation are also exhibited by the Lagrange multipliers in an inverse dynamics

calculation.
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4. Conclusion

We have presented a new iterative procedure for determining the inverse dynamic
torques that are needed for end-point trajectory tracking in three-dimensional flexible
multibody systems. An iterative procedure is necessary because of the interdependence
between the elastic coordinates, the rigid body coordinates and the associated Lagrange
muldpliers in the system equations of motion. This procedure is valid for both open-
chain and closed-chain configurations, and differs from the previously proposed recursive
procedures in the sense that the rigid body coordinates are not assumed to follow the
nominal motion. The conditions for trajectory tracking are now met in a more general
way through the satisfaction of rheonomic constraint conditions. The new method is
shown to yield the same results as those obtained with the recursive procedures for
open-chain systems with normal link flexibilities and normal rotation rates. For closed-
chain systems, however, this new method is the only valid procedure for determining the
inverse dynamic torques since in this case, the number of control torques is smaller than

the number of joints and therefore, the recursive methods can not be applied.

Further research is needed to address the inverse dynamics prcblem wherein the
contribution of the quadratic force vector Qs to the generalized elastic forces is consid-
erable enough to yield errors in the feedforward control law. This case arises when the
rotation rates are high or when the structural components are extremely compliant. It has
been reported that this problem can be mitigated by introducing damping into the struc-

ure.!” An issue that still needs to be resolved is how to introduce distributed actuation
that may necessary beyond that provided by structural damping that is inherent in the
material. In a separate paper, 14 \we have addressed this issue through the use of electros-

trictive actuators that are distributed along the span of the structure.
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Appendix

The elements of the mass matrix and quadratic velocity force vector in Eq. (14) can
pe expressed in terms of the so-called invariants of the motion which need to be com-
puted only once at the start of the simulation. For each component of the flexible multi-

body system, the invariants of the motion can be expressed by the following integrals:

Zl=£u,pdV (A1)
Zy= lN pdv (A2)
U2 +uld) —Urle, —~u, Uy,
Z,= £ — Uy, (UE +u2) —upu,, | pdav (A.3)
—lpglry = Upgle, (42 + ',-.',22)
Zﬂ:iu,.. N;padVv, i,j=123 (A.4)
Z§f=£N‘TNj pdv, i,j=123 (A.5)

where p is the mass density, V is the volume of the component, N is the shape function
matrix, and N; is the j* row of the shape function matrix. We observe that the motion
invariant Z, is a measure of the first moment cf the undeformed component about the
body axes, and the motion invariant Z; is the inertia tensor of the undeformed component

with respect to the body axes.

Closed-form expressions for the motion invariants corresponding to the three-
dimensional, Bernoulli-Euler straight beam element are given in Reference 15. In this
paper, however, we use the variable-node, isoparametric, three-dimensional curved beam
element developed by Bathe and Bolourchi?? to model the flexible links. As a result, the
motion invariants can be expressed in terms of integrals which are evaluated numerically

through Gaussian quadrature.

The components of the mass matrix, expressed in terms of the invariants of the

motion are given by the following:




Mpp =m 13
mR9=—A§G

me =AZZ

me=GT JG; J=

mes =GT Jr ;5 Iy

.22 -

(Z3+J; + J2]

= [ch + Jfl]

my; =231 + 232 + 233

(A.6)
(A7)
(A.8)
(A.9)
(A.10)

(A.11)

where, in Eq. (A.6), m is the total mass of the component, and the tilde symbol above the

vector in Eq. (A.7) refers to the skew-symmetric matrix operator. The matrices S, J.,

Jsi, J1, and J; are given by

S=Zl+22Qf
28 -1
Z2-74
qf (28 -75%)
I =|qf (Zst - 743
qf (Z4%-127¢Y)
Pn+tpn) -pP12 -P13
Ji= -pau (@u+p3) -px
-p3n -p32 (Pu+p2)
@n+q33) —-49n2 - 413
J2= -q21 (Q@u1+q33) -4
i -q31 -q32 @u+4q90)
in which

pi; =Zi+ 2l g5,

and

i,j=123

qj=qf Z¥q,, i,j=123.

(A.12)

(A.13)

(A.14)

(A.15)

(A.16)

(A.17)

(A.18)




The quadratic velocity force vectors are given by
Qur =-A{?S+20Z,q) (A.19)
Qo=~2GT (Ju+J; ) (A.20)

Qu =~ [0 [ZP+ZR2+Z2)T - (0¥’ myr qr - [20]" mr q;  (A21)

where ® is the absolute angular velocity of the body axes, whose components are

expressed with respect to the body axes and given by

0=Go (A.22)

and the matrices [6)2]' and [2 6)]' are block diagor .1 matrices whose diagonal elements

are ? and 2 @, respectively.
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Inverse Dynamics of Spatial Open-Chain Flexible Manipulators with
Lumped and Distributed Actuators

Ragnar Ledesma
Santosh Devasia
Eduardo Bayo

Department of Mechanical Engineering
University of California
Santa Barbara, CA 93106

ABSTRACT

This paper addresses the problem of inverse dynamics for three-
dimensicnal flexible manipulators with both lumped and distributed actua-
tors. A recursive procedure is presented for computing the lumped inverse
dynamic torques and the distributed piezoelectric actuator inputs for
simultaneously tracking a prescribed end-point trajectory and reducing
induced vibrations in the manipulator. The procedure sequentally solves
for the non-causal inverse dynamic torques and piezoelectric voltages
applied to each link in the manipulator, starting from the last element in
the chain and proceeding to the base element. The method allows trajec-
to1y tracking wherein controllability of the structural vibrations is assured
in all possible configurations through the use of only one motor at each
intermediate joint and three motors at the ground. Numerical simulation
shows that the elastic vibrations can be reduced significantly through the
use of distributed actuators while at the same time satisfying the trajectory
tracking requirement through the use of inverse dynamics.




1. Introduction

The control of flexible manipulators is becoming a more important area of research
as more stringent demands are placed on these multibody systems. For example, current
developments in orbiting space manipulators and cranes require their different com-
ponents to be positioned accurately in order to fulfill mission requirements. In most
cases, the control objectives for these structures are end-point tracking in a slewing
maneuver and minimizing the structural vibrations that result from the slewing motion.
Several approaches towards these objectives have been suggested from different seg-
ments of the scientific community. Some researchers have suggested the improvement of
the dynamic properties of the structure through the use of composite materials tailored
for higher damping capabilities along with shape optimization to maximize the stiffness
to mass ratio.! A second approach is to implement feedback control on the joint actuators
through the use of a variety of control strategies (the reader is referred to Reference 2 for
a survey of the state of the art in the control of flexible manipulators). Recent studies in
this area which include valuable experimental results have been reported in References
345 and 6. Thirdly, the use of distributed active control members such as piezoceramics
to damp out the elastic vibrations has been proposcd.7 Finally, a fourth method is to com-
pute the inverse dynamic joint torques that will cause the control point to follow the
desired trajcctory.sglo The computed torque technique has been validated with experi-
mental results in the study done by Paden, et. al.,!! wherein passive feedback and feed-
forward of the inverse dynamic torques were used to achieve an exponentially stable
tracking control law in flexible, multi-link systems. However, it is desirable to not only
rack a desired trajectory but also minimize the subsequent el.stic deformations in the
structure. To achieve this goal, we combine the third and fourth approaches and present
in this paper a new schc;i:e for simultaneous trajectory tracking and vibraton minimiza-
tion for open-chain flexible articulated structures. The major contributions of this paper
are the extension of the inverse dynamics formulation to three-dimensional open-chain
manipulators and the combined application of inverse dynamics and distributed

piezoelectric actuation to track trajectories and reduce vibrations simultaneously.

Trajectory tracking in planar flexible articulated structures has been addressed by
Bayc;.8 Bayo and Moulin,’ and also by Kwon and Book.!? The researchers cited above
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have considered the non-minimum phase character of the system when solving for the
inverse dynamic torques that are required for end-point trajectory tracking in slewing
motions that are confined in a plane. The results of the above studies lead to the conclu-
sion that the unique stable solution for the inverse dynamic torques are non-causal with
respect to the end-point motion. This non-causality can be captured either through
integration in the frequency domain,® or by computing for the inverse transfer function in
the frequency domain and subsequently integrating in the time domain through the use of
bilateral convolution intcgrals.9 or by dividing the solution into causal ard anticausal
parts and integrating in the time domain.!? In our opinion, the frequency domain
approach involves a simpler formulation than the time domain approach, when the equa-
tions of motion can be linearized about ths nominal motion so that the Fourier transforms
of the deformation coordinates and base torques can be explicitly expressed. Bayo, er.
al.'? extended the computed torque technique to multiple flexible links in a planar,
open-chain configuration by using a recursive method that computes for the inverse
dynamic torques starting from the last component in the chain and continuing to the first
link at the base of the chain. The recursive method entails an inverse dynamic analysis
for the non-causal joint torques and a forward dynamic analysis for the reaction forces
between contiguous links in the chain. The inverse dynamic torques so determined
achieve end-point tracking but do not minimize the elastic vibrations. In this paper, we
extend the application of inverse dynamics to simultaneous trajectory tracking and vibra-
tion reduction by combining inverse dynamic joint torques with distributed piezoelectric
actuators in three-dimensional, open-chain flexible manipulators. In the present work, the
inverse dynamic torques and the piezoelectric voltages are simultaneously computed so
that the non-causal joint torques assure end-point tracking while the distributed
piezoelectric actuators reduce the elastic vibrations that are induced by the slewing

motion.

We develop in the present study a recursive computational algorithm that allows
end-point trajectory tracking of three-dimensional open-chain manipulators through the
use of only one motor at each intermediate joint and three motors at the ground, as
opposed to the method proposed in Reference 13 where three motors were proposed at
each joint. Our method achieves the trajectory tracking requirement with the use of
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reduced number of actuators and in addirion, the elastic vibrations are reduced through
the use of distributed piezoelectric actuators. The extension of the frequency domain
recursive inverse dynamics proccdure12 to three-dimensional flexible manipulators is not
trivial and presents two main difficulties. First, unlike the two-dimensional case, the
three-dimensional joint torque vactors change direction in time and become functions of
the rigid body orientation coordinates. Consequently, if the torque vectors are expressed
in terms of components along the inertal frame axes, the force vectors due to these
torques become nonlinear functions of rigid body orientation coordinates and torque
components, for which the Fourier transforms may not exist Second, in the three-
dimensional case, the end-point vibration in the plane defined by the revolute joint axis at
the base of the link and the member axis can not be controlled by the torque applied at

the revolute joint.

The two previously mentioned problems are solved by taking the following steps in
the formulation of the solution. First, the nonlinearity in the forcing term due to the joint
torques is avoided by expressing the base torque in terms of components along the float-
ing reference frame associated with each multibody component. The base torques are
- then expressed independent of the rigid body configuration, and as a consequence these
torques are Fourier transformable. Secondly, having expressed the base torques in this
manner, the bi-axial bending and torsional deformations are decoupled when deforma-
tions from the nominal motion are small. Hence, one of the base torque components
described above, which refers to the joint torque applied to the revolute joint, controls the
end-point deformation in one direction, while the remaining two torque components can
be treated as a reaction torsional moment which controls the end-point torsional deforma-
tion and a reaction bending moment which controls the lateral deformation in the other
direction, respectively. T‘f\ese reaction moments are treated as unknowns which are to be
determined along with the inverse dynamic joint torques. Here, it is important to note
that in the three-dimensional case, the torsional deformation at the end-point needs to be
conrrolled, since the torsional deformation will result in a displacement from the nominal
configuration further down the chain.

The recursive procedure can then be formulated as follows. The last multibody

component at the end of the chain is analyzed first to determine the actuating torque and
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reaction moments at the base of that mulibody component. Each of the other com-
ponents are subsequently analyzed for the base torques at the proximal end given the
desired reaction forces and reaction moments at the distal end. The actuating torques at
the base of the chain can then be determined by a simple projection of moments, where
the projection matrix depends on the nominal rigid body orientation coordinates.
Through the use of the proposed recursive procedure, the end-point trajectory tracking
problem of three-dimensional, open-chain flexible manipulators can be accomplished by
using only one motor at each intermediate joint and three motors at the ground. In con-
trast with other proposed approaches that rely on three motors at each intermediate
joint,13 the use of only one motor at each intermediate joint for control purposes minim-
izes the inertial forces acting on the system, thereby increasing the speed under which the

system can effectively operate.

2. Mathematical Formulation

In this section, we formulate the problem and present a solution of simultaneous tra-
jectory tracking and vibration reduction for three-dimensional open-chain flexible mani-
pulators. The problem formulation starts with the equations of motion for each com-
ponent of an n-link manipulator that is 'indergoing motion in three dimensional space.
The combined objectives of trajectory tracking and vibration reduction are then
expressed in the form of a minimization problem that is suitable for numerical computa-
tion. The solution procedure presented in this section is a recursive procedure which
solves for the required actuating torques and piezoelectric voltages starting from the last
multibody component at the end of the chain and proceeding to the first component at the

base of the chain.

2.1. Problem Formulation

Consider an n-link, open-chain flexible manipulator shown in Fig. 1. The recursive
procedure developed in this paper consisis in analyzing each multibody component for
the piezoelectric voltages applied across the distributed actuators and the base torques at
the proximal end, given the inertial forces due to the nominal motion and the reactions

coming from the next component at the other end. A typical multibody component, say
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body i, is shown in Fig. | along with the floating reference frame associated with that
body. The generalized coordinates consists of rigid body coordinates q, which describe
the position and orientation of the floating reference frame associated with each mult-
body component, and deformation coordinates q which describe the deformation of the
flexible body with respect to its floating reference frame. The deformation from the nom-
inal configuration is assumed to be small, so that the different bending and torsional

modes are decoupled. Using the aforementioned coordinates, the equations of motion for
a flexible multibody component can be written as

8ol )l )] o

where m,, is a configuration-dependent matrix representing the mass and inertia tensor

of the deformed body, associated with the rigid body coordinates; my, and m, are
configuration-dependent matrices representing the inertial coupling between the rigid
body coordinates and deformation coordinates; and myy, ¢y, and kg, are the consistent
finite element mass, damping, and stiffness matrices, respectively. The force vector Q,
represents the applied external forces, control forces, and reaction forces coming from
adjacent multibody components, while the force vector Q, represents the quadratic velo-
city force vector which includes centrifugal forces and Coriolis forces. Geometric stiffen-
ing due to high rotation rates can also be added to the vector Q..

The dependence of the rigid body coordinates on the deformation coordinates can
be mitigated by assuming that we can find control forces so that the rigid body coordi-

nates follow the nominal motion and therefore, the resulting equations of motion become

My Gp +¢fr Gr +Kep @ =Qep +Qup — My, G @)
where §, takes values along the nominal motion. Furthermore, the external force vector
Q. can be decomposed into applied torques, equivalent moments coming from the dis-
tributed piezoelectric actuators and reaction forces coming from adjacent multibody
components, i.e.,

Qs =B.t+B, vV, +R (3)

where B, and B, are constant matrices that describe the placement of the motors and

G2 O N &S N EE W I N GE BN BE E I G EE BE e e |
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piezoelectric actuators, respectively; T is the vector of base torques measured with
respect to the floating reference frame; V, is the vector of applied piezoelectric voltages;
and R is the vector of reaction forces coming from adjacent multibody components. The
reaction force vector R consists of three force components and three torque components
acting at both ends of the multibody component. The force and torque components are
taken along the body axes associated with the multibody. As shown in Fig. 2, these force
and torque components are transferred from body j to body i through the rotation

transformation

o = Al o )
and

v =AU (3)

where ¢¢ and © are the reaction forces and reaction moments, respectively, measured
along the body axes of body i, and A¥/ is the rotation transformation matrix which pro-
jects forces and moments from body j to body i. The transformation matrix A¥ depends

on the nominal values of rigid body coordinates q/ and gq/.
Following the model proposed by Crawley and Anderson,!? the piezoelectric actua-

tion can be considered as two self-equilibrating concentrated moments acting at the two
ends of the actuator. The magnitude of the concentrated moment is proportional to the

voltage applied across the piezoelectric actuator, hence

My =k, V, (6)
where the proportionality constant &, is a function of the dimensions and material pro-
perties of the piezoceramic material and the link components. As an example, for a 3-

element model where the iniddle element has piezoelectric actuators attached on four
sides to control bending in two directions, the influence matrix B, can be expressed as




-8-
i 1
> 8
k
8 &
B, = —é’ 2 (7
“p
0 0

where the rows having the non-zero coefficients correspond to the rotational degree of
freedom of the element in which the piezoelectric actuators are attached. Each column of
B, corresponds with a specific voltage of a pair of actuators. Hence, B, will have as
many columns as the number of pairs of piezoelectric actuators. In general, the influence
matrix B, depends 'n the sizing and placement of the distributed actuators. Issues con-
cerning the design of so-called smart structures are discussed in Reference 16. In the
cited work, the researchers conclude that the optimal placement and sizing of piezoeletric
actuators depends on the free vibradon modes of the flexible manipulator, tne frequency
content of the desired motion, and "the choice of vibration modes that need to be con-
trolled. As a general rule, distributed actuators are most effective in controlling the vibra-
tion modes which do not have nodes near the distributed actuator.

There are two important reasons for expressing the base torques in terms of com-
ponents along the floating reference frame. First, the influence matrix B, becomes a con-
stant Boolean matrix because each of the base torque components is associated with a
specific rotational deformation degree of freedom. Constant influence matrices B and B,
are necessary in order to obtain the non-causal base torques and piezoelectric voltages in
the frequency domain as will be seen in the following section. Second, the base torque
components which are associated with the torsional moment and the two bending
moments are independent of each other if the corresponding modes of deformation are
decoupled, as in the case of small deformation from the nominal configuration. Hence,
the influence matrix B, has independent columns, and this property is useful in finding

the solution to the minimization problem described in the next section.
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Combining Egs. (2) and (3), the equations of motion for each multibody component
become

myr qr +¢fp G +Kpr Q =Bet+B, V, +F (8)
where
F=R+Qy -my ¢. 9)

Having derived the equations of motion for each multibody component, the problem
statement that this paper addresses can be stated as follows. Given the nominal motion of
an open-chair. flexible manipulator, we wish to find: 1) the inverse dynamic torques that
will cause the end-point of each multibody component to follow the nominal motion; and
2) the piezoelectric voltages that will minimize the induced elastic vibrations during the
motion. The problem of simultaneous trajectory tracking and vibration reduction can be

stated mathematically as the following minimization problem:

. ‘;:1)11 fJ (t,Vp) (10)

where T is the set of all pairs of stable joint torques and distributed actuator voltages that
cause the end-point to follow the nominal motion, and J (T,V,) is a measure of the elastic

vibrations and defined as

T V)= [ qr () qp(r) dr. (1

2.2. Solution Procedure

The minimization problem described in the previous subsection presents some
unique features that are associated with non-minimum phase systems such as flexible
manipulators. The requirement that the pair (t,V,) should cause the end-point to follow
the nominal trajectory admits only non-causal solutions as stable solutions to the minimi-
zation problem.17 As demonstrated by Bayo, er. al.,'2 the recursive frequency domain
approach can be employed to capture the non-causal (time-anticipatory) nature of the
actuating torques in the case of multi-link, planar manipulators. In our approach, each
multibody component is modeled by a pinned-free beam and the requirement that the
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end-point follows the desired wajectory is satisfied by imposing the condition that the
elastic displacement at the tp is zero. In the three-dimensional case, however, we have to
impose the additional constraint that the elastic torsional deformation at the tip is zero,
because torsional deformatons would cause displacements from the nominal

configuration further down the chain.

In the frequency domain, Eq. (8) can be expressed as a set of complex equations for

a particular frequency @

where q,(m). (@), V ((o). and F() are the Fourier transforms of § qy (), ©(t), V, (¢), and
F(¢), respecdvely. Eq. (12) is based on the assumption that the aforementioned Fourier
ransforms exist, an assumption which is valid for rest to rest slewing motions. We also
take note of the fact that the Fourier transforms of the base torques and applied
piezoelectric voltages can be explicitly expressed because their respective influence
matrices are constant. The leading matrix

P 1 1
H(w) = mer + -‘-.-ac”' - kaf (13)

is a complex regular matrix that is invertible for all frequencies except for © = 0. How-
ever, for ® =0, the system undergoes a rigid body motion, and the leading matrix will be
determined only by my, which is positive definite and therefore invertible. Making use
of the fact that the leading matrix is invertble for all frequencies, Eq. (12) can be
expressed in the following partitioned fom: 1

@] |G Gui Gr| | | I B,, @)
G@r=| G Gi G | < 8 @) +| B, | V(@) +| ;@] ¢ (14)
q () G Gy Go B,, Fi(w)

L J
where G(w) is the inverse of H(w) and I; is the (3 x 3) identity matrix. The subscript A

refers to the rotational degrees of freedom at the hub, the subscript ¢ refers to the defor-
mation degrees of freedom at the tip which are to be controlled, and the subscript i refers

to the remaining elastic degrees of freedom. The expression for the influence matrix B,
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on the right hand side of Eq. (14) makes use of the fact that each of the components of

the base torque vector T is associated with a specific rotational deformation degree of
freedom and is independent of the other components.

The condition that the tip should follow the nominal motion is equivalent to impos-

'g the constraint 6,(5) =0 for all @. This constraint results in a relationship between the

base torques t and the distributed piezoelectric actuator inputs V,. This relationship can

be obtained from the last set of equations of Eq. (14) when &,(5) is set to zero, hence

giving the following result:
OB Gm'l[é:h Gu én] { B, V, (@) + F(B)} (15)

where the existence of the inverse of C,,, is assured when the torsional deformation and
the bi-axial bending modes are decoupled, which is consistent with the assumption of
small deformation from the nominal configuration. Substituting the above expression for
the base torque (@) in Eq. (13) and using the Fourier transform property q=- w* §

yields the following expression for the elastic displacements in compact form:

q,@):--c-:, (AV, +B) (16)
where

A=[-GB. Gy (G G Gu)+G1B, (17)
and

B={-GB.:Gx' (Gu Gi Gy)+GI F. (18)

Employing Parseval’s theorem, minimizing J (%,V, ) is equivalent to minimizing the
2-norm //4s ((T))//} for each ®. The minimization problem of Eq. (10) then reduces to a

standard least squares approximation problem with the solution
V,=-(A"A)1A'B (19)
where A* denotes the conjugate transpose of A. A necessary and sufficient condition for

the inverse of A*A to exist is that ail the columns of the constant matrices B, and B, are

independent. This condition is automatically satisfied because the base torques and the
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equivalent concentratad moment due to the distributed piezoelectric actuators do not act

on the same degree of freedom in the finite element model.

Having determined the piezoelectric voltages V(w) for each frequency ® from Eq.
(19), the base torques (@) and the elastic displacements 4r (®) can be determined from
Egs. (15) and (16), respectively, for the same frequency. The base torques, elastic dis-
placements, and piezoelectric voltages do not need to be determined for the frequency
w = 0 because the zero trequency content of these variables can be determined from the
zero initial conditions. The base torques, elastic displacements, and the piezoelectric vol-

tages in the ime domain can then be obtained by using their respective inverse Fourier

transforms
W)= [ (@) e 4w (20)
)= | 4@ e dw @1
and
V()= o= [ V(@ ei® da. (22)

We note, however, that the forcing vector F(r) in Eq. (8) depends on the elastic
nodal deformations and nodal velocities. Therefore, an iteration p.ocess is needed to
obtain the solution to the nonlinear differential equations. We start the iteration process
by assuming zero elastic deformations and velocities for the initial calculaton of the
forcing vector F(¢) and use a successive substitution scheme to converge to the correct
solution. For normal robotics applications, convergence is achieved in two or three itera-

dons.

Once the base torques and the elastic deformations have been determined, the reac-
tions coming from the next multibody component in the proximal direction can be deter-
mined from dynamic equilibrium considerations. The reaction forces between com-
ponents will generally consist of three foice components and three torque components.
As shown in Fig. 2, the three torque components at the base for body j consist of a
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revolute joing actuating torque T,, a reaction bending moment <, that contols the end-
point displacement §, in the plane defined by the revolute joint axis and the component's
body axis, and a reaction torsional moment t, which controls the end-point torsional
deformadon 8, for this multibody. Having determined the reaction forces and moments
between this multibody and the next multibody component in the proximal direction, the
latter mulcbody can be analyzed using the inverse dynamics procedure discussed above.
This multibody component has, at its distal end, the previously computed reaction forces
and reacuon moments coming from the previous multibody cor-ponent. These forces and
moments are transferred from the previous multibody component to the present multi-
body by a projecton of forces and moments, where the projection matrix depends on the
rigid body coordinates. The inverse dynamics analysis therefore involves a procedure
which analyzes each multibody body component, starting from the end of the chain and
proceeding towards the base of the chain. For each multibody component, the base
torques are determined such that the end-point follows the desired trajectory and in addi-
tion, the reaction forces and moments at the end-point are in dynamic equilibrium with
the previously computed base torques and base forces of the adjacent multibody com-
ponent in the distal direction. Finally, the bass torques of the multibody component at the
base of the chain are projected onto a reference frame that defines the joint axes of the
three motors at the ground. The three torque components that result from this projection
are the required base motor torques at the ground.

To summarize, the procedure for obtaining the inverse dynamic torques ar. distri-
buted piezoelectric voltages that will simultaneously track a desired end-point trajeciory
and minimize elastic vibrations in open-chain flexible manipulators involve the following

steps:
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Algorithm:
1. Define the nominal motion (rigid body inverse kinematics).
2. For each link in the chain, starting from the last link:
a) Determine the piezoelectric voltages for this link.
b) Determine the base torques for this link.
¢) Determine the elastic displacements, velocities and accelerations.
d) Repeat steps (a), (b), and (¢) until the base torques and
voltages converge to within a desired tolerance.
e) Determine the reaction forces to the next link by considering
dynamic equilibrium for this link.
3. Proceed to the next link in the chain.

The recursive approach presented above solves the trajectory tracking problem one
link at a time. In general, there may be global solutions to the nonlinear inversion prob-
lem associated with end-effector trajectory tracking, which can potentially have many
solutions. Our method, however, yields a solution which can be efficiently computed due
to the linearization process that takes place when the ends of each link are constrained to

move along their respective nominal trajectories.

In the next section, we consider an example of a class of spatial, open-chain, flexi-
ble manipulators where all intermediate joints are revolute joints and all intermediate
joint axes are parallel in the nominal configuration. For this class of flexible manipula-
tors, at least three motors are required at the ground in order to achieve end-point track-
ing for all possible configurations. We illustrate the preceding statement through a simple
example involving a single-link flexible manipulator supported by a rotating base and
controlled by only two motors at the ground, as shown in Fig. 3. When the manipulator is
in the vertical position, the end-point displacement §, can not be controlled by two
ground motors alone. This is so because as the manipulator gets closer to the vertical
position, the torque that is required to control this displacement component becomes so
large that it saturates the capacity of the ground motor. Likewise, when the manipulator
is in the horizontal position, the end-point rotational displacement 8, can not be con-

trolled by the two motors alone. Hence, a minimum of three motors at the ground is
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necessary to assure that the end-point elastic displacements are controllable for all possi-
ble configurations. The requirement of having three motors at the ground is not restrictive
because it does not increase the mass that is distributed on the links, and therefore this
requirement does not increase the inertial forces acting on the system. The simple algo-
rithm presented herein, and the minimal number of motors required to implement the tra-
jectory wracking procedure should make the proposed approach very attractive in the

design and experimentation of spatial, open-chain, flexible manipulators.

3. Simulation Results and Discussion

The recursive procedure discussed in the preceding section is applied to the three-
dimensional open-chain flexible manipulator shown in Fig. 4 to demonstrate the validity
of the proposed procedure for solving the simultaneous end-point trajectory tracking and
vibration reduction problem. The desired motion is to have the end-point remain in the
x2—x3 plane with the x; coordinate and x3 coordinate of the end-point following the tra-
jectories shown in Fig. 5. The two links share the following geometric and material pro-

perties:

Length: 1.0m

Cross section dimensions: 1.0cm x 1.0 cm
Young’s modulus: 70 GPa

Shear modulus: 27 GPa

Mass density: 2715 kg/m3

Tip mass: 0.5 kg

The piezoelectric actuators are distributed uniformly on the middle third span of
each link. This placement of the distributed actuators assures that the first mode of vibra-
ton is minimized. For the example considered herein, the equivalent concentrated
moment that results from the applied voltage to the piezoelectric actuator is

M, =0.2V,. 23)

We perform two sets of computations for the example considered: 1) inverse

dynamic torques acting alone; and 2) inverse dynamic torques applied together with
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distributed piezoelectric actuators. We can compare the results of the two separate
numerical experiments to illuswate the effectiveness of the distributed actuators in
minimizing eiasuc vivrations while simultaneously tracking a desired end-point trajec-
tory.

Plots of the inverse dynamic motor torques needed to track the desired end-point
trajectory are shown in Figures 6-9. In these plots, the solid curve refers to the inverse
dynamic torques that are needed when they are acting alone, and the dashed curves refer
to the required inverse dynamic joint torques that are acting together with piezoelectric
actuators. We take note of the observation that the inverse dynamic torque profiles exhi-
bit pre-actuation and post-actuation with respect to the end-point motion for both sets of
curves. We also note that the inverse dynamic torques are only slightly perturbed by the
presence of the distributed piezoelectric actuators.

Figures 10 and 11 show the elastic deformations along the two transverse directions
at the proximal third point in each of the two links. The solid curve refers to the elastic
deflection caused by the joint actuators acting alone, and the dashed curves refer to the
elastic deflection that results when joint torques are acting together with the distributed
piezoelectric actuators. The figures show that the distributed actuators can significanty
reduce the elastic vibradons that are induced by the slewing motion. Plots of the
piezoelectric voltages that are required to obtain the above reductions in the elastic vibra-

tions are shown in Figure 12.

4. Conclusion

We have presented a new recursive computational procedure for determining the
inverse dynamic torques and distributed piezoelectric actuator voltages that are needed to
simultaneously achieve end-point trajectory tracking and vibraton minimization in
three-dimensional, open-chain flexible manipulators. The trajectory tracking requirement
is achieved for the three-dimensional case with the use of a single actuator at each inter-
mediate joint, as opposed to previous approaches where three actuators have been pro-
posed at each joint. The non-causal inverse dynamic torques and piezoelectric voltages
are obtained through integration in the frequency domain. The transformation of the
equations of motion into the frequency domain is greatly simplified by expressing the

f
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base torques in terms of components along the associated floating reference frame for
each multibody component. End-point displacements in the plane defined by the associ-
ated revolute joint axis and the body axis can be controlled by treating the base torque
conwolling this displacement as an unknown internal reaction moment which is to be
determined. Through a recursive procedure, the actuating torques at the proximal revo-
lute joints are determined so that the desired internal reaction moments described above
are attained. Finally, the minimal number of motors required at the intermediate joints to
implement the tracking control procedure substantially reduces the control effort and
weight of the manipulator, and this is an important contribution in the design and experi-

mentation of spatial, open-chain, flexible manipulators.

Further research is needed to address the problem of simultaneous trajectory track-
ing and vibraton minimization of general (open-chain or closed-chain) three-
dimensional flexible manipulators. The sensitdvity of the method to modeling errors
needs to be addressed as well.
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Buckling Control of a Flexible Beam
Using Piezoelectric Actuators
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Introduction

CTIVE damping and control of flexible structures has

been an area of research focus for some time.! However,
the recent application of distributed piezoelectric actuators to
structure control by Crawley and De Luis? and Bailey and
Hubbard? has posed new and challenging problems. Following
the initial expeiiments of these researchers, where a single
vibrational mode is controlled, Fisher* addressed the actuator
placement problem to control several modes.

In this Note we address the new problem of buckling control
using smart materials. In contrast to the dynamic stability
issues of vibration control, buckling is a static instability of
axially loaded members of a structure. It is well known that as

Received Feb. 25, 1992; revision received Oct. 10, 1992; accepted for
publication Oct. 19, 1992. Copyright © 1992 by the American Insti-
tute of Aeronautics and Astronautics, Inc. All rights reserved.

*Research Assistant, Department of Mechanical Engineering.

tAssociate Professor, Department of Mechanica] Engineering.

the axial compressive load P in an initially straight beam in-
creases, the beam remains straight and undeformed until the
load reaches a certain critical value P, ;, where the stable
equilibrium of the first bending mode bifurcates into one un-
stable and two stable equilibria (pitchfork bifurcation). The
two stable equilibria correspond to buckled configurations.

Here we use piezoelectric actuators and strain gauge sensors
to show that buckling of a simply supported beam can be
postponed beyond the first critical load. The load deflection
characteristic for large deflections of a beam in a buckled
configuration is highly nonlinear and involves numerical solu-
tion of elliptic integrals. Figure 1a shows a typical load deflec-
tion curve where P, , is the buckling load of the nth mode.
If P<P,, the undeflected beam is stable. For P, ,<P
< P, a4 all modes are stable except for the first 2 bending
modes. The idea reflected in this Note is the use of feedback
control in conjunction with piezoactuators to stabilize the first
bending mode beyond P ; and achieve a bifurcation diagram
of the form shown in Fig. 1b, where the buckling force P, , is
greater than that for the uncontrolled beam.

We begin by deriving the linearized equation of motion and
the associated modal equations of a simply supported flexible
beam with piezoelectric actuators subjected to slowly varying
axial load. This is followed by the state-space mode! of the
reduced order system and the design of a controller to increase
the stiffness or impedance of the first bending mode. We dis-
cuss the effect of the unmodeled higher order residual modes
and methods of reducing this effect. Qur conclusions are made
in the last section.

---------_..-_,
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Fig. 1 Load deflection curve of ) uncontrolled beam and b) con-
trolled beam.
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Fig. 2 Simply supported column with piezoelectric actuators.

System Model of a Beam with Piezoactuators

In this section we use a truncated modal expansion of the
deflection of a beam to derive a linear finite-dimensional
model. We emphasize that the beam is assumed to be uniform
with no manufacturing imperfections. Since the aim is to stabi-
lize the beam in its straight configuration, it is natural to
assume small deflections and linearize the equations of motion
about this configuration. Note that the strain induced by
piezoelectric actuators is usually small and, therefore, the
small deflection assumption is consistent with the capacity of
the actuators.

Figure 2 shows a simply supported uniform beam with
piezoelectric actuators of equal thickness bonded to both sides
by a suitable adhesive. The beam of width & and thickness ¢,
is subjected to an axial compressive load, and control moments
are applied by the piezoactuators. The actuator being modeled
is a piezoelectric polymer, poly vinylidene fluoride. For an
axially polarized piezo, a voltage applied across its thickness
results in strain along its length. For simplicity the width of
each piezolayer is assumed to be the same as that of the beam.

The strain A, developed in an unconstrained piezo is given
by A, =»,(t)dy, /1, where »;(t); i =1, 2 is the voltage applied to
the ith piezostrip, dy; the piezoelectric strain constant, and ¢,
the thickness of the piezolayer. If », and », are the voitages
applied on the top and bottom piezolayers, resnectively. and
E,1s the Young’s wodulus of the piezo, the resulting mouient
on the piezobeam segment is given by

t t
M= bEpIp(Az-Al)<Eh +1,+ 'f)

= bE,d;;(t—zb+l¢+’—2p>(vz—'l)ék'(l'z""|) (1)

The equation of motion of the beam can be derived using
Hamilton’s variational principle’ Under small deflection as-
sumption Hamilton’s principle yields

PAY + (Ely")” +(Py') = M[§'(x-x)~8'(x-x))] (2)

where p is the density of the beam; y is the transverse deflec-
tion; y and y * are the time and spatial derivatives of y, respec-
tively; EJ is the stiffness of the beam; A is the cross-sectional
area of the beam; &’ is the spatial derivative of the delta func-
tion; and x; and x, are the locations of the two ends of the
piezoiayer. The solution to Eq. (2) is obtained as follows.

Unforced Dynamics

The unforced system dynamics are defined by the condition
M =0 in Eq. (2). Using separation of variables, we have
Ya(x.1) = &,(x)n,(1). Substituting this in Eq. (2) and assuming

a simply supported uniform beam (E/ constant) of length L,
we obtain

Na(t) = sin(wat +y¥) and  @,(x) = D,sin(nxx/L)
n=123... 3

If ¢, is normalized so that [£¢? dx =1, the unforced dynamics
in modal form becomes

Yulx,t) =V2/L sin(nxx/L)sin(wst + ¥) )

To see how the load affects the natural frequencies of the
beam, substitute Eq. (4) in Eq. (2) and simplify to get

&)

1 nix? nix?
L2

“=a |HT

From Eq. (5) we see that the nth pole pair +,w, moves along
the imaginary axis toward the origin as P increases from 0
t0 P, & EIn?x3/L? and becomes real for P =P, ,. Hence,
when P = P , the beam loses all of its stiffness and buckles in
the nth buckling mode.

Forced Response

The deflection of the beam can be written in terms of the
modal deflections as

y(x,t)= El Ya(x,0)

Substituting this in Eq. (2) we obtain

LEL LET ] e

L pAduin + L EI67 7, + L Pradi

=M[6'(x-xz)-—6'(x—x,)] (6)

(If the piezoelectric actuators are bonded along the total length
of the beam, x;=0 and x,=L.) Multiplying both sides of
Eq. (6) by ¢,, integrating with respect to x over the beam
length, and using the orthogonality of the mode shapes yields

1 if nisodd
-2nTM |2

7 == I 7
ﬂn*""%"’n AL L )
0 if n iseven

If ==y, 85, we have M=2k*y and Eq. (7) becomes
fia + win, = B,v, where

1 if nisodd
- »
pAL L
0 if nis even

Since the n even modes are uncontrollable, we expect the beam
to buckie in the second mode when P2 Py ;.

Many control problems aimed at vibration suppression use
piezoelectric materials as sensors in the feedback loop. How-
ever, due to charge leakage, piezoelectrics are not useful as
sensors near 0 Hz as required in this application. Therefore,
resistive strain gauge sensors are used as modeled in the next
section.

Sensor Modeling

Modal states are estimated from strain gauge measurements
at discrete locations. It is easy to see that observability of the
modes of the system depends on the location of the sensors; a
mode with its node at the location of a strain gauge is unob-
servable with that sensor. To reduce the number of sensors,
modal control of flexible structures is usually based on the first

—
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few modes of vibration. This is justified by the fact that higher
vibrational modes are in general difficult to excite and have
higher structural damping. However, the unmodeled dynamics
can cause instability through what are known as control and
observation spillover. It has been shown! that both control and
observation spillover of unmodeied modes are necessary to
cause instability in a closed-loop system.

The sensors are placed so that the second and third modes
and their multiples are unobservable. Thus the first and fifth
modes are the first two modes in a minimal realization of the
system. We ignore higher order modes and discuss the associ-
ated spillover problems later. If a small amount of structural
damping is presei.t, all of the unobservable modes remain
stable even in the presence of spillover. Similarly the dynamics
of the even modes are not affected by the control, and hence
they remain stable.

We model the sensors as follows. The bending moment at
the location of a strain gauge, a distance x from the left end of
the beam, is given by*

2 .y _(nxx
M, = ~E [ ,y"(x,1) =\/£ Eyleq Ix El ”z""‘sm<T> ®

where E, is the Young’s modulus of the beam material and /7,
is the equivalent moment of inertia of the composite piezo-
beam segment based on beam material. The resulting strain in
a strain gauge attached to one side of the beam is

My [(tp/72) + 1, + ¢,
e=+ b[ b o p] _ P (10)
Eylq AgE,

where A, is the equivalent area based on beam material. The
sign of the first term in Eq. (10) depends on which side of the
beam the strain gauge is bonded to. Therefore, the output of
a differential strain gauge is independent of the load P and is
given by

2 (s/2) +t; +t,|x% 1=
v:=26kx=2 -k,[—L;—i]— El

L
x niy, sin(’—'l—x) 8 YT n%y,,sin("%‘) an

A=l

where k, is the strain gauge constant. If differential strain
gauges are placed at x=L/3 and x =2L /3, and the sum of
their measurements is taken as the system output, we have

2L
vaév,< =%>+v,<x=7> N

LAY ]

2
=k, ¥ n%,(sin? +sin —;1> 12
nst

Controller Design

If n modal amplitudes and their rates are taken as the
states of the system, the state-space representation of the
2n dimensional reduced order model with a state vector
nf={m m - 7. 7] becomes

7, =A,7+8By and V,=Cnq, 13

where A4, is a 2n x2n block diagonal matrix, B, is a 2n x1
input matrix, and » is input to the system. We assume that the
derivative of the sensor output can be computed and define
VI 3iw, »];andC, isa2x2n output matrix. If only the

first and the fifth modes are included in the reduced order
model and a structural damping coefficient { is assumed, then

0 1 0 0
-w? =200, O 0
A, =
0 0 0 1
0 0 —wi =2fws
0 TV o ]
—41rk‘\/5 1 0 Vi
B, =— |+ , Cl=k

pAL NL |0 r ’i-zsﬁ o
5 ;0 -25v3,
[ -

(14)

A controller is designed using standard linear quadratic regu-
lator (LQR) design to minimize a cost functional of the form

J=j (anTQn, +v Ry} dt as)
(]

where Q and R are positive semidefinite and positive definite
weighting matrices, respectively; and « is a scalar. The solution
of the corresponding Riccati equation in this method gives an
optimal state feedback solution of the form (1) = - K, n.(¢),
where K, is a constant feedback gain matrix. The following
parameters were used for simulation.
Beam properties:
bp =25.4 mm

ty, =1 mm E, =5GPa

ps = 1000 kg/m* L, =152.4mm

Piezoactuaor properties:

b,=by, ,=110pm E,=2GPa L,=L,

pp = 1780 kg/m’ dy =23%x10-2m/V

A strain gauge constant k, =0.01 V/u strain and structural
damping coefficient { = 0.01 are assumed. The thickness of the
adhesive layer is neglected.

The optimal feedback gain matrix X, is computed for
P=4.1P,, using Q=C’C,, R=1, and a=0.05. The first
mode is stabilized at a load exceeding P, ;=4 P, ; and at this
load the uncontrolled second mode is unstable (i.e., the beam
is forced to buckle in the second mode). However, it remains
to check that this controller stabilizes the system for loads less
than 4.1 P, ;. For the reduced order system this problem can be
reduced to checking the roots of a fourth-degree interval poly-
nomial with each coefficient varying monotonically when the
load varies from P =0 to P=4.1P,,. The stability of the
system under any fixed axial load P <4.1P,; was verified by
checking the stability of the two Kharitonov polynomials®
associated with the fourth-order characteristic equation of the
system. The same robustness result can also be obtained nu-
merically using a root locus plot parameterized by P.

The resulting closed-loop response to nonzero initial condi-
tions and the control input voltage to the actuators for the
controlled model with a load of P=3.8P,, are shown in
Fig. 3a. The effect of the unmodeled dynamics and methods of
reducing this effect is the subject of the next section.

Numerical Evaluation of Spillover
To see the effect of spillover, the same gain X, is used with
an extended evaluation mode] containing modes 7 and 11 in
addition to modes | and 5. To reduce the effect of spillover the
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Fig. 3 Closed-loop response to nonzero initial deflection
(P = 3.8P.1): 2) reduced order model and b) extended evaluation
model.

controlied modes are reconstructed from the output of the
extended model using a2 comb filter selecting modes 1 and §
(an observer serves this purpose) and these estimates are used
for feedback.

The resulting closed-loop response of the augmented system
to nonzero initial conditions and the required input voltage to
the actuators are shown in Fig. 3b. From Figs. 3a and 3bit can
be seen, as expected, that there is no significant effect of the
uncontrolled modes on the dynamics of the controlled modes.

Conclusion
In this Note we addressed the problem of buckling control

ENGINEERING NOTES

using smart materials, a static instability of axially loaded
members of a structure. We showed that the buckling of a
flexible beam can be postponed beyond the first critical load
by means of feedback using piezoelectric actuators and strain
gauge sensors. It is observed that a controller design based on
a fixed axial load Pp,, stabilizes the modeled modes for any
P < Pnix and, therefore, is robust to slow load variations.
Hence buckling in the first mode is inhibited, and the beam
can support a load up to the second critical load. Actuator
and sensor placement is discussed with regard to problems of
spillover. Finally, spillover has not posed serious problems
as we are able to design the controller, in the case of a beam,
using a low-order model and verify stability for a high-order
model.
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STABLE INVERSION OF NONLINEAR NONMINIMUM PHASE SYSTEMS

Degang Chen
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Abstract

This paper addresses the inversion of a nonlinear system
of the form x=f(x)}+g(x)u, y=h(x) from the perspective of
noniinear geomermic control theory. We use the nodon of zero
dynamics for obtaining stable, though noncausal, inverses for
nonminimum phase systems. This contrasts with the causal
inverses proposed by Hirschorn where unstable zero dynamics
result in unbounded solutions to the inverse problem. Qur results
reduce 0 those of Hirschom in the case of stuable zero dynamics,
however. A numerical example is described and the input gen-
eraled using inversion is compared with that produced using
recent resuits in nonlinear regulation.

Key Words: inversion, output tracking, nonlinear systems. non-
minimum phase.

1. Introduction

Output tracking control for nonlinear systems is a chai-
lenging problem encountered in the contol of articulated flexi-
ble space souctures, flexible manipulators and elsewhere. There
are two basic approaches to this problem. First, asymptotic
wacking conwol using feedback and, second, inversion coupled
with stabilization. The second approach offers the potendal of
exact output tracking without transients, but introduces the proo-
lem of inverdng nonlinear systems with unstable zero dynamics.
Motivated by new results in the conwmol of artculated flexible
squctures {1, 2. 3], we address the second approach and solve
the inversion problem for a class of nonlinear systems with
unstable zero dynamics.

For the linear muitivariable case, the asymptodc tracking
proolem was solved by [4, S} and subsequently crystalized as
the internal model principle (6]. The matrix equatons defining
an asymptotic tracking conwgoller for linear svstems were
transiated o nonlinear partial differenual equatouns in the non-
linear case (see Isidori and Bymes (7]). Although nonlinear
PDE’s are oniy numencally wactable for systems of low order,
soluuons for Tacking periodic Tajectories have developed based
on Founter series (8, 9]. Transient response remains a problem,
however.

Transient behavior can be precisely contoiled using sta-
bilizing feedback :ogether witn feed-forward generated b+ an
inverse system. For linear multivariable systems the inversion
problem has been resolved o a large degree by Brockett and
Mesarovic (10] and Silverman {11]. Howevcr, thesc inverses
are all causal. Conditons for the invertibility of nonlinear real-
anaivtic systems have been derived by Hirschom {12, 13]. Here
agan. oniy causal inversion is addressed. Decply rooted in

N

Brad Paden
Department of Mechanical Engineering
University of California
Santa Barbara, California

these inversion results is the notion of relatve degree which is
important in our work also (although a clear exposition of rela-
tve degree for nonlinear systems is fairly recent [14]).
Although stable inversion has not been studied in the framework
of Brockett and Mesarovic and Hirschom, approximate non-
causal inversion has been used, for example, in linear quadratc
optumal tracking [15], etc..

In this chapter we derive bounded inverses to nonlinear
systems in an effort o And feed-forward signals for tracking
controllers. For systems with unstable zero dynamics these are
necessarily noncausal. These results are new for linear as well
as nonlinear systems and were modvated by the successiul
inversion of a flexible manipulator model by Bayo et al. [2]
using iterative linearization and solution with the Discrete
Fourier Transform. Here we seek a geomeric interpretation and
time-domain solution of the inversion problem for the system

x=f(xHgz(x)u
y=h(x).

We show that inversion is equivalent to solving a two-point
boundary vaiue problem in the general case of unstable zero
dynamics. The stable and unstable manifolds of the zero
dynamics play a central role in the ideas developed.

The remainder of the chapter is organized as follows. In
the next section we define the class of reference trajectories
under considerauon and state the problem of stabie inversion.
Secuon 3 contains the main result and shows that the stabie
inversion problem reduces to a two-point boundary value prob-
lem of reduced-order ordinary differential equations. Section 4
contains an example of a fourth order nonlinear nonmintmum-
phase system: our stable inversion approach is worked out in
detail and compared to the approximate inverse obtained from a
nonlinear regulator. Simulation results demonstrate the value of
our inverse for dead-beat output tracking.

2. Framework and Problem Statement
We consider a nonlinear system of the form
X =f(x)+g(x)u (1)
y = h(x), ()
defincd on a neighborhood X of the origin of R", with input
u € R™ and output y € R?. The functions f(x), g:(x) (the
ith columnof g(x)) i = 1.2, ---,m are smooth vector ficlds

and h;(x)fori = 1,2, -- -, p are smooth functions on ¥, with
f{0)=0and h(0) = 0.




In the context of the above system pose the following

Stable Inversion Problem: Given a smooth reference output tra-
jectory y4(t) with compact support, find a contol input ug(t)
and a state trajectory x4(f) such that

1) u4 and x, satisfy the differential equation

Xg(t) = [ (xa(£)) + g (xalt Nualt), 3)
2) exact output tracking is achieved:

h(xg(e)) = ya(e), @
3) uy and x4 are bounded and ‘

ug(t)—=0, x4(t)=0 as t—*oo. )

Note that here we require y,(t) to have compact support,
that is, there exist £ and #, such that y,(t) = 0 for all r < ¢4 and
all + 2¢,. However, the development in this chapter can be
extended with little effort to cover desired wajectories whose
first derivatves have compact support. The extension covers a
large class of realistic trajectories.

We call x4 the desired state trajectory and u, the nominal
control input. These can be incorporated into a dead-beat con-
woller by using the nominal contol input as a feed-forward sig-
nal and x ~ x4 as an error signal for feedback. The design of
the feedback compensator has no general solution yet, but con-
rrollers for specific systems have been developed (see e.g. Paden
et al. [1]).

In solving for the nominal trajectories x4 and u, the con-
cepts of stable and unstable manifolds of an e3juilibrium point
arise naturally [16]. For the sake of completeness we review the
definitons here. Let z =0 be an equilibrium point of an auto-
nomous system defined in a open neighborhood U of the origin
of R*:

z=f() 6

and 9,(z) be the flow passing through z att = 0. We define the
(local) stable and unstable manifolds W*, W* as follows:

W' =(ze Ulo(z)e U VWt 200,(2)=0 as t = o0} (7)

W =(z€ Ulo,@z)e U Yt 200,(z)—0 as 1 ——o0) (3)

The equiiibrium point z =0 is said o be hyperbolic if
the Jacobian mawix Df of f at z = 0 has no eigenvalues on the
Jjo axis. Let n’ denote the number of eigenvalues of Df in the
open left half complex plane, and n* the number in the open
right half plane. Stable and unstable manifolds W’ and W*
exist locally in the neighborhood of hyperbolic fixed point and
have dimensions n’ and n* respectively.

For convenicnce, we will use the foilowing notation. Let
N2(0. L2 - -} raY e N"  and
y = {y{t) ye). Then we define

r=(r,r., -

oy e R

792

a .
lrb 2 r +ry+ -+ - +ry, and write

A
"

"2
yoi| T ©)

- d". -
We will use the bold number 1 to denote the vector
(I, 1, -+, 1) so that

dy; dy;  d¥a

Moy =
4 y (dt'dt' "ode

If y: R*">R™ and f: R*—IR", we define

*.

L!’ l)’l

Liy = Lrya| (10)

L ,"" Ym

3. Inversion of Partially Linearizable Systems

Consider a nonlinear system of the form (1) and (2) with
the same number m of inputs and outputs which we expand in
the following form:

£=fx)+ Xgi(x)u

i=]

y1=h(x)

Im = hn(x)

We assume that the system has well-defined relative
degree r =(ry, 74, - - -, rn) at the equilibrium point 0. that is,
(YforallsjSm, foralllSiSm,foralk<r, -1, and
for all x in a neighborhood of the origin,

Ly Lth(x) =0, (an
(ii) the mxm marmix
(1,1 i) L, L hyx)

Ly Ly hax) Ly L7 'yt
Blx) = (12)

Lyl hax)

Ly L™ hatx)

is nonsingular in a neighborhood of the origin.

Under this assumption. the system can be partially linear-
ized. To do this, we diffcrentiate y; until at least one u: appears
explicitly. This will happen at exactly the r;th derivative of ¥
due w0 (11). @-0 for i=1, -

Define 34 = y; .m and

I




£ =1, -+, r, and denote

:_(:1 2! .., z1 22 =2 :n):

9 = A9l 2 . 3 Syl -yz. L

i . (r,-3) (7 4=i} tr_-=1)

STV TR NS PR RS PAIRPEERIS Mk (13)

Choose 11, an n ~ | r| dimensional funcdon on R* such that
(3. 1) = w(x) forms a change of coordinates with w(J) =0
(14]). In this new coordinate system, the system dynamics of
equadnn (1) becomes

(

=3i

Js

fori=1,---m, (14)

1=

Eo=a@ o)+ BiGE

o4

T‘ = 41@- 71) + Qz(i- ﬂ)uv

which, in a more compact form, is equivalent to

¥y = a@ n) + BGE, nu. (19
M=q:E ")+ q& e . (16)
where
7=0uyn YAl
“=(“1r“‘b "'-“--)‘-
a@. n) =LA E ) an
BG ) =L, th(yE ). (18)

Here B is actually the same P(x) matrix defined in th~ equation
(12), a0, 0) = 0 since f(0) = 0, and

hA(x) = [Ay(x), Axx), - 0L A ()],
g(x)=(gx) g2lx) -, 2ux)]

Since by the relative degree assumption. B(3, 1) is nonsingular,
the foilowing feedback congol law

u = [BE M v - &3 M) (19)

is well defined and partially linearizes the system such that the
input-output relationship is given by a chain of integrators:

vy =y (20)

where v € R™ is the new ccnmol input. Assume both y and y,
siart from rest and choose

v =y, 2n
Then immediately we have
i=y
é (y”. ,\;4\. Tty y;’x‘-”. Yoo " "t y;;f” T )‘;:“-n)‘ 22)

and equation (16) becomes. which we call the reference dynam-
ics, or the zero dynamics driven by the reference output rajec-
lory,
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N =PG4 5. M) (23)
where
pUas S0 )
2 1. M) + g2, MBE I 147 - aEaml. 24)

It is clear now that an integration of the reference dymamics
gives rise to a frajectory of the original state through the inverse

coordinate wansformation x = ‘i‘“(,a) and an input Tajectory by

equaton (19). Now the queston is how to integrate the refer-
ence dynamics to generate a bounded input solving the stable
inversion problem. since the reference dynamics may be
unstable in both posidve and negative time directions in general.

For reference trajectories with compact support, the refer-
ence dynamics become autonomous zero dynamics for ¢ outside
the compact interval {fq, ty) Assuming that N =0 is a hyper-
bolic equilibrium point of the autonomous zero dvnamics, then
there exist stable and unstable manifolds W* and W*. Locally
W* can be defined by an equation B*(n) = 0 and, similarly, WV’
can be defined by B/(n) =0. The following theorem is our
main result.

Theorem: The stable inversion problem has a solution if and
only if the foilowing two-point boundary value problem has a
solution:

ﬁ=P(YJ- :'y' T‘)n (:3)
subject to

B*Mte) = 0,
B*(n(t)) = 0.

Proof: (necessity) Suppose x4(¢t) and u4(¢) solve the sutie
inversion prodblem. Then x;(t) and u,(t) sausfy the diiferential
equadon (1). Let (5, n') = w(xy4). Then & and n satsfy (1) or
equivalendy (14) with 4 subsuruted by uy. Besides. since
v = h(xy) = vg by assumption. 3 =3, and y"' = v/ There.
fore by equadon (15)

(25)

vi = atgy, ) + BCEl, nua,
which yields

ke = (B, I - Aty M)

Substituting this into the n dynamics of equadon (16} and com-
paring the resulting right-hand side with the definition of
P2 (Ya, ;4 M) in equation (24), we recognize that i} satisfy equa-
ton (23).

Now we only need to show that n also satisfies the boun-
dary conditdon. This is easy. Since by assumption, x,(¢)—0 as
t——oo and Y(0) =0, thus N()—0 as r——oo also. Bv
definition of the unstable manifold. n(t) € W* for all ¢ < ¢y,
Therefore,  B*(Mity)) = 0. show ihat
B'(n(t,) = 0.

(suifiziency) Suppose mn, solves the above (wo point
boundary value problem. Then, n, is bounded, and n, i )—t as

Similar arguments



t—o0 since my(,) e W' and n,(t)—0 as oo since

Nylte)) € WY, Also, &, =0 forr Stqand fort 2 ¢,
Let

xq = WSy M4
Uy = [BCas MO = G, a))-

Then. x, and uy are bounded. and x4(¢), us(t)—0 as t —o0 or
t——oo, since Y '(0,0)=0 and a(0.0)=9 And by the
defiruton of &, ¥ = yq4.

This completes the proof.

A geomerric interpretation of the x4(f) evolution is shown
in Figure 1. The noncausal part of the nominal contol drives
the internal states of the system along the unstable manifoid of
the zero dynamics manifold to a particular initial condition
x4(to) while maintaining zero system output. This initial condi-
tion guarantees two things: 1) the desired reference output mra-
jectory is easily reproduced with bounded input and states; 2)
the internal states land on the stable manifold of the zero
dvnamics manifold at the end of >urput racking. With this nice
dnal condition, the internal states will converge to zero along
the stable manifold without affecting the ourput. This geometri-
cal picture is shown in Figure 1 where for clanity we showed a
case of output slewing so that the to and ¢, zero dynamics mani-
{oids are separate.

Here we see that the stable inversion probiem is
transformed into a two-point boundary value probiem for which
e number of equatons is reduced. However, it is sull a non-
mvial numerical problem. The difficulty arises because of the
instability of the reference dvnamics in both positive and nega-
tive time. Exisung approaches, for example the shooting
method, do not perform well numerically for unstable systems.

In the case of minimum-phase systems. the reference
dyramics is asymptoticaily stable in the forward time. The size
of the stable manifold is the same as tiat of the zero dynamics
manifold and the unstable manifold reduces to the ongin only.
Therefore, the boundary condidon B“{i{{tg)) = 0. reduces w©
nite) =0 and 8'(N(¢,)) = O imposes no exwa constraints. And
the two-point boundary value problem reduces to a simple initial
condition problem with an asympiotically stable dynamics, and
can be easily integrated in the forward time. This is Hirschorn's
Similarly, if the zero dynamics is completely
unstable, the two-point boundary value problem reduces o a
final-value problem and can Se easily intcgrated in backward
(tme.

armoach.

Another simple situation is when the stable and unstable
part of the reference dynamics can be decoupled by change of
crordinates. This happens when the reference dynmamics is a
lincar time-invariant system driven by the reference output and
s derivauves. In such cases, we can easily integrate the stuble
part in forward time and the unstable part in backward time.

794

4. An Examule

In this section, both the inversion and regulator
approaches will be applied tw a simple nonlinear nonminimum-
phase system. The example sysiem is selected such that both
the integradon of the reference dynamics and the solution to the
noniinear parual differental equatons are manageable. The per-
formance of the two spproaches is compared.

Now consider a slightly nonlinear single-input single-
output system described by the following equatons:

x| | =x;+xq 0

¢ -3 ] 2 +sin’x

X3 _ Xy + Xy + + SIN“X, u

i, - Xy "b; 0 '
>

£ | X+ xf 0

y =x = 3x;.
The reference output trajectory is given by:

21 - cos(t))
Ja=} g

and is depicted in Figure 2 with a dotted curve.

t € [0, 2],
otherwise,

First, let us consider the regulator approach. The refer-
ence signai can be exactly generated by the foilowing linear
ume-invarian: exo-ystem:

Wi =Wy
wa = —wy,
wy=0

Ja =Wy = wy.

The initial conditions are set and reset as follows:
wi(—00) = wy(—00) = wy(~o0) = 0);
wi(0) = w3(0) =2, wy0)=0;

w1(210) = wa(ZR) = wy(2n) = 0.

The z2ro error manifold, x = x(w) and u=u(w), is obtaired dy
solving a system of nonlinear parual differential equations,
whica is in general extremely difficult if not impossible. For
this example, the partial differential equations are as follows:

ux-._(w) .- ax"(w) wy = —x(w) + xs(w),
ow oW
éfiw; - —.azz wy = =3xy(w) + 2] (W) + (2 + sin’x(w)u(w),
w. awa
g‘?(w) Wy - axﬂW}wl = x(w) - 2x5(w),
ow, dwy
af.)(w)w:_ O o rw) + xEOw),
W w2
subject 1o

xi(w) = 3xy(w) = wy — wy,

AN

5




Fortunately, we are able w get a closed-form solution as fol-
lows:
x|(w) == %Wl - %wz - 2wy,

x{w) == Tw; = 4w, - 2w,,

xyw) = -',1,‘(“’1'*'“’2) - wy,

-
X(w) = ,—-Wv.z + 73-'%? + L wiwy = wiwsy + wi,
20 20 10

uiw) = (= 17wy = Twy + 18wq) / (2 + sinxy(w)).

Now note that with & = 0, the forward system is locally asymp-
totically stable since the Jacobian matrix of f(x) at x =0 is
cleariy

-11 0 0
0 -3 0 0
1 0 -2 0

0 0 -1

and has all its eigenvalues negatve. Therefore, for simplicity,
we can choose the feedback gain o be zero.

This completes the regulawr design. The simulation
results are shown in Figure 2 w 4. Figure 2 compares the
destred and actual output trajectory, Figure 3 shows the stae tra-
jectories solving the partial differential equations, and Figure 4
the actual state trajectories. Note that the output generated by

the reguiator does asymptodcaily track the reference trajectory .

as predicted by theory. This is evidenced by the segments from
f =4t =21 and r >9. However, there ars substantial Tan-
sient tracking error both when geting ontc the zero error mani-
foid and geuing off the manifold. This phenomenon is not a
special case of this example, but rather generic.

Next, let us consider the stable inversion approach. To
partially linearize the system, we differentate the ourput y
vield

y'=x'1—3i3=—4x,+xz+6x3.

Since the congol u does not appear explicidy, we differentate y
agaun to yieid

Y= —d(—x, + x:) = 3xq 4+ x{ + (2 +sinxdu + 6(x, - 2x3)
= (10x, - Txy = 12xy + x2) + (2 + sin’x)u = alx) + P(x)u.

Now not only does « appear, its coefficient B(x) = 0 for all x.
Hence, we can set

u(x) =

1 . .
T}?x_)-(y‘ - afx)) 26)

and inoduce a change of coordinates:

yiov R ? 2 x
iyl oot x2
™ X3 ‘O 010 X;‘
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The inverse Tansformation is given by:

r1 (1030

x /

X4 11 6 0 y

x| =100 1 ol|n @7
lx o000 1]|m

Using the feedback of equadon (26), the system in the new
coordinates becomes:

¥ = Ya (23%)
N ="M +y,
g =-My + Nk

Since we assume partially (the output part) correct initial condi-
tions, equation (28) leads 1o
Y = Ya-

Then the above n dynamics with y substituted with v; charac-
terize our reference dynamics. And for ¢t outside [t o],
ya =0, giving the zero dynamics:

M=
M2 =-ny + N

This is an autonomous system. It is clearly hvperbolic, since its
irst order approximation has eigenvalues 1 and —1. Therefore
there exist stable and unstable manifoids. The stable manifoid
can be easily seen to be characterized by

m= 0.
And the unstable manifold is characterized by

Th: )
= — M9
M2 3 29

Therefore the two-point boundary value problem is given by:

="+ Y Mty =0,

nilto)

3

My = -1z + N nxte) =
This particular example is in a wiangular form and can be easily
solved. For the first equation is antistable with a final value
condition, it can be easily integrated backward in ume w0 give
7:. The integration is continued into the time ¢ <1 and
stopped when Iyl is sufficiently small. Once we have m,, the
second equation is a stable system with an iniual condition and
driven by 1 xnown input . Integration forward in time is no
problem either. For the part of 13 before tg, we use the simple
algebraic reladon of equation (29) since the wajectory remaws
on the unstaole manifold.

Once n; and 7, are calculated, the desired trajectory of
the original states can be obtained using the inverse coordinate
wansformation in equation (27) with y = 34 and y = v,. Then
the nominal control input is calculated according to the lincariz-
ing fcedback law in cquation (26). Note that the n's are




aonzero for ¢ <o the u thus obtaned is also nonzero for
! < !4, corresponding to a noncausal input.

Again, since the forward system is asymptotically stable.
we choose zcro feedback gain for simplicity. The simulation
resulis are shown in Figures 5 w 7. Figure 5 comparcs the
desired and actual output trajectories, Figure 6 shows the nomu-
nal state trajectories by inversion, and Figure 7 the actual state
irajeciories generated by the truncated nominal input. Note that
an almost perfect output tracking is obtained using a mild con-
ol effort A stabilizing feedback lcop is expected w0 ‘mprove
these small errors.

5. Conclusion

The primary contribution of this chapter is the connection
made between zero dynamics and stable inversion of nonlinear
svstams. These results, in conjunction with Hirschom's show
:hat there are multiple inverses for nonminimum-phase noniinear
svstems — bounded, noncausal solutions produced with our
method and unbounded, causal soludon produced using
Hirschom's technique. These inversion techniques are funda-
men:al to nonlinear racking conuollers which use feed-forward
in cenjunction with stabilizing feedback. Future work wiil
include conditions for existence of solutions to the two-point
boundary-value problems and global behavior of inverses.
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Abstract

This paper addresses the inversion of nonlinear systems of the form
x=f(x)+g(x)u; y =h(x) from the perspective of nonlinear geometric
control theory. We use the notion of zero dynamics for obtaining stable,
though noncausal. inverses for nonminimum phase systems. This contrasts
with the causal inverses proposed by Hirschom where unstable zero dynam-
ics result in unbounded solutions to the inverse problem. We show that
hyperholicity of the zero dynamics equilibrium guarantees invertibility.

1. Introduction

Inversion of nonlinear nonminimum-phase systems is a challenging
problem encountered in the control of articulated flexible space structures.
flexible manipulators and elsewhere. A nominal input, derived by inversion.
which produces a desired output is an excellent feedforward control which
can then be stabilized with feedback. Motivated by i. ~ results in the control
of articulated flexible structures (1] we explore the inversion approach to
nonlinear systems with unstable zero dynamics.

An alternative approach is to apply the nonlinear regulator theory and solve
the associated partial differential equations. For the linear multivanable
case, the asymptotic tracking problem was solved by (2} and subsequently
crystalized the intemal model principle. The matrix equations defining a
asymptotic tracking controller for linear systems are easily solvable but
translate to nonlinear partial differential equations in the nonlinear case
which pose severe computational problems (see Isidori and Bymnes (3] ).
This was avoided in flexible robot control by tracking periodic trajectories
where Fourier series methods have been applied [4]. The class of periodic
trajectories is poorly suited to such systems however.

Transient behavior is an issue in tracking control in contrast to inversion
approaches where deadbeat control can be acheived. For linear multivari-
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able systems the inversion problem has been resolved to a large degree by
Mesarovic and Brockett (5] and Silverman (6]. However, these inverses are
all causal. Conditions for the invertibility of nonlinear real-analytic systems
have been derived by Hirshom (7]. Here again, only causal inversion s
addressed. Deeply rooted in these inversion results is the notion of relative
degree and is important in our work also (although a clear exposition of rela-
tive degree for nonlinear systems is fairly recent(8] ).

In this paper we prove a connection between the hyperbolicity of zero
dynamics and the invertibility of nonlinear nonminimum phase systems. For
systems with unstable zero dynamics these inverses are necessanly non-

causal.

The remainder of the paper is organized as follows. In section 2 we review
some concepts from nonlinear geometric control theory and formulate our
inversion problem. Section 3 contains the main result and shows that inver-
tibilty can be tested by examining the zero-dynamics of the system 1n ques-
tion. Our conclusions are made 1n secuon 5. The appendix contains a key
technical result on the Frechet differentiability of solutions of ordinary dif-
ferential equations with respect to a control.

2. Framework and Problem Statement
We consider a nonlinear system of the form
x=f(x)+g(x)u i2lay
y=h{x), 2.1b)
defined on a neighborhood X of the origin of R™, with input u € R™ and
output y € RP. f(x). 8,(x) (the 1th column of g{x)) t1=1,2,
smooth vector fields and A, (x) for i=1, 2, - -, p are smooth functions on
X, with f (0)=0 and h(0)=0.
In the context of the above system pose the following

t.moare




Stable Inversion Problem: Given a smooth ‘'desired’’ output trajectory
y4(t) with compact support [0,T], find a comresponding control input ug(r)

and a state trajectory x4(¢) such that
1) uq and x4 satisfy the differential equation
Ag(e) = £ (xg (1)) + 8 (xg(ug (1) 2.2
2) exact output tracking is achieved:
hixg(e) = yqlt), 2.3)
3) uy and x4 are bounded and

ug(1)=0, x4(1)>0 as t—zoo, (2.4)

We call ry the desired state trajectory and uy the desired control
corresponding to the desired output trajectory. These can be incorporated
into a dead-beat controller by using uy as a feedforward signal and x ~ x4 as
an error signal for feedback. The design of the feedback compensator has no
general solution, but coatrollers for specific systems have been developed
(see e.g. Paden etal. (9] ).

In solving for the trajectories x; and uy the concepts of stable and
unstable manifolds of an equilibrium point anse naturally. For the sake of
completeness we review the definitions here. Let 2=0 be an equilibrium
point of an autonomous system defined in a open neighborhood U of the ori-
ginof R”*:

2=f(2), (2.5)

and ¢,(z) be the solution passing through z at t=0. We define the (local)
stable and unstable manifolds W*, W¥ as follows:

W=fze U | §,(z)>0ast—o0.and ¢,(z)e U ¥ r 20}

Wiz{ze U | 0,(z)>0ast—»~o0, and §,(z)e U ¥ ¢ SO}

The equilibrium point z=0 is said to be hyperbolic if the Jacobian
matnx Df of f at z=0 has no eigenvalues on the j® axis. Let n* denote the
number of eigenvalues of Df in the open left half complex plane, and n“

the number in the open right half plane. In this case, stable and unstable
manifolds W* and W#¥ exist locally and have dimensions n -~ 4 n¥ respec-
tively.

For convenience, we will use the following notation: N=0, 1,2, - -,
r(ri ey r)T € N™ and y=(y,00). y2t), Ly )T £ € R, Also
define r
L7}

de"t

d"ly,
yir = 7‘? . 2.6)
4ym

drt™

We will use the bold number 1 to denote the vector (1, 1, - - -, 1) so that

. dy; dy d
Moy = 1 2 ... %m T
y Y= e AR

If y:R"R™ and f:R"—R", we define L,y:%/(x),
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Lpy =L;(Lf~'y) and
'y
Lf
Lfy = 2| Q.7
LLF)’M

3. Inversion of Partially Linearizable Systems

Consider a nonlinear system of the form (2.1) with the same number m
of inputs and outputs which we expand in the following form:

i=f(x)+ f\g,(x)u,- (3.12)
y1=h(x)
Ym=hm(x) (3.1b)

We assume that the system has well-defined relative degree
r=(r\.ry, -, ry) at the equilibrium point 0, that is,

(iforall 1S jsm, foral 1SiSm,forall k <r,—1,and forallx ina
neighborhood of the origin,

Lg Lk, (x)=0, (3.2)
(i1) the m>m matrix
Lo L'~ Thyx) oo Lo Lf'™'h(x)
L L~ thy(x) - Lg LF™'hax)
o= T Lo (3.2)

Ly Li~ " 'hmix) - Ly Ljm ™ hy(x)

is nonsingular in a neighborhood of the origin.

Under this assumption, the system can be partially linearized. To do
this, we differentiate y; until at least one u; appear algebraically. This will
happen at exactly the r th derivative of y;. Define &=yt -1 for

i=l, ---,m and k=1, - - -, r;, and denote
E=&d & - B ER - A 5T (3.4
O T N T A

Choose N(x), an a —-ir| dimensional function on R" such that
(¢T.nT)T = y(x) forms a change of coordinates with 1) y(0) =0 and 2) the
system dynamics (3.1) become (8]

§(=84
é::;|=€}; fori=1.-.m, (3.52)
& =0y &) - P& nu

n=q1& ) + g N, (3.5b)

which, in a more compact form, is equivalent to

¥y =ag. n)+BE nu
n=q &) +q2& Nu . (3.6)




where
y=0ryn o)l
w=(uy, Uy up)l,
&, n) = LER(y' € 0
B& ) =L /L~ "y IE ).
This B is actually the same B(x ) matrix defined in the above, and
RGO ={R(x) Axx), o A (T,
g(xy=[g1(x). 820x), ~+ - gmix)].

o, and B, are the ith row of a and [ respectively. By the relative degree
assumption, $(&. n) 1s nonsingular so we can define the feedback control law
u = BIE My - g, ml. 3.7

This control linearizes the input-output behavior to a chain of integrators:
y=vy (3.8)
where v € R™ is the new control input. Assume both y(¢r)s0and y4(t)s0

for ¢t < 0 and choose

v =yd). (3.9
Then immediately we have
gt =
Garvar 0TV oyag T e a0
and equation (3.6) becomes,
n=pE.ydm) (3.1

where
PO 8. ™) = q1(Ea. ™) = 92, By Eg NIy - oy Eg)].
For brevity we define 4 = (54, y4")) and write (3.11) as

n=p&qn). 3117

We call (3.11°) the §; dynamics. Equation (3.11) together with (3.8) deter-
mine the linearizing input through (3.7). Our goal is to choose a particular
solution of (3.11°) such that the resulting input tends to zero at teo and
meets the other requirements of being and inverse o0 y4.

For reference trajectories with compact support (0, T], the reference
dynamics become autonomous zero dynamics for ¢ outside the interval
(0.T]. The following theorem is our main result.

Theorem (State-space conditions for existence of inverse): Consider the
system

x=f(x)+g(x)u (3.13a)

y =h(x) (3.13b)

where £, g and h are smooth. Let O be an equilibrium point of x = f (x) and
assume without loss of generality that h(0) = 0. If y4(¢) is a smooth desired
output with compact support [0,7] and 0 is a hyperbolic equilibrium point
of the zero dynamics then there is a solution 1o the inverse problem provided
15,0 = £ i

Eal “s?&”l E4(1)1 5 1s not too large,
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Proof: Let
y) =yf) (3.142)
n=pEsn) (3.14b)

be the nommal form of the system with initial conditions 0 at —eo and v
chosen to cause tracking of the desired output. We need to find a solution to
the 1 dynamics such that the input « tends to zero at oo, Define 0,571 be the
flow of the 1 dynamics (3.14b) from time ¢ to time t. Note that there exists
an interval, say, [0,7] outside which y and its derivatives are zero. Hence
the n dynamics before O and after T are simply the zero dynamics. Since
the stable and unstable manifolds of the equilibium point O are indeed
smooth manifolds there exists smooth functions
BS:R(=1rDRA=II=A) apq Bu RN =1 NLRU =111 =8) yhich define

the stable and unstable manifolds.

We claim that %E}(W“)ﬁW’ is nonempty (an clement of this set defines an
initial condition for selecting our solution to (3.14b)). That is. the image of
the unstable manifold of G under the flow 00‘}, intersects the stable manifold
of 0. This is equivalent to the existence of a solution to
B"wo%m»] <o

8s(n)

For & = 0 there is a solution since the stable and unstable manifolds intersect

f(ng) :=[ (3.16)

at 0. We now employ the implicit function theorem to show existence of
solution for | EI o 18 NIOt 100 large. Since the intersection of the stable and

unstable manifolds intersect transversally at the equilibrium 0 we have that
D »f (0,0) is an isomorphism. Also,

DB“<02;D;¢:'-,

[ER WA

Def (00) = [

The function B“ is smooth and, by the corollary to the proposition wn the

Appendix, Dzo,e, is continuous. Hence, by the implicit function theorem,
there exists a solution Ny to 3.16 when § Edl o0 15 NOL t00 large. By flowing

this solution point forward and backward in time we can obtain the inverse.

Define the desired 7 trajectory by

ng(6) =05 Mr) (318)

From this and the desired & trajectory we construct the input:
u(t) =& ng)"' 64" - atdy.n4)). Since Ny is on the stable manifold and
the Ed dynamics are the zero dynamics after time T, we have that n—0O as
t =00 . Also, §(1)—0 as 1 oo because y4 has compact support. If follows
that both u and x tend to zero as r —»oo. A similar argument applies in back-
ward time. On the interval {0,T] solutions are bounded since they depend

continuously on F-;d and | E:dl « 15 bounded. Hence and inverse exists. ~

In the case of minimum phase systems, the reference dynamics is
asymptotically stable in forward time. The stable manifold is the dimension
as the zero dynamics manifold and the unstable manifold reduces to the or-
gin only. Therefore, the boundary condition B%(n)=0, reduces to n=0 and
8% (n)=0 imposes no extra constraints. The inverse can be easily integrated
in the forward time. This is Hirshom's approach.

Similarly, if we consider the system as evolving backward in time. and

I G BN G D A B D N N BN BN O N SIS Sae e B e




this reversed system has only the origin as the stable manifold of its zero
dynamics then the two point boundary value problem reduces to a final
value problem and can be easily integrated in backward time.

Another simple situation is when the stable and unstable part of the
reference dynamics can be decoupled by change of coordinates. This hap-
pens when the reference dynamics is a linear time-invariant system driven
by the reference output and its derivatives. In such cases, we can easily
integrate the stable part in forward time and the unstable part in backward

ume.

4. Conclusion

The primary contribution of this paper is the proof existence of inverses
when zero dynamics are hyperbolic. These results, in conjunction with
Hirschom's show that there are multiple inverses for nonminimum phase
nonlinear system -- bounded, noncausal solutions produced with our method
and unbounded, and causal solutions produced using Hirschom’s method.
These inversion techniques are fundamental to nonlinear tracking controllers
which use feedforward in conjunction with stabilizing feedback. Future
work will include input-output characterizations for existence of solutions to
the inverse problem.

Appendix

Proposition: Consider the system
x=f(xu) x(0)=xg (A1

on the interval [0, T) where f:R" xR™ — R”" is smooth in x and 4 and
bul = es%’r}'“ (¢ 3 < M T is chosen such that solutions exist on [0.T]

forallu e L , sausfying the bound.

Let ¢,(f.xg) denote the solution of the differential equation on {0.7). The
Frechet derivative, D, ¢, (¢ .xq): L {0.T]->L _[0,T] of the map

u()—»0,(xq) (A2)

is given by
_ )

Dy, (t 20§ = 0.1 L [0, (tx0)us (DIG(DYI T (A3)
where ®(2,7) is the state transition matrix for

%= [%(ou(uo).u(r))l 3 (A4
Before proceeding with the proof we establish the following
Lemma: The mapping from L _[0,T]—L _{0.T] given by

u()—=o,(xg) (A.5)
is Lipshitz in u.
Proof: Define

€(e) =1 0y (£ x0)-0, (¢ xoil 2. (A.6)
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The one-sided derivative of € is

e(t) = hlmﬂ'_*’.'_i'_ﬁiﬂ.
= m[e(r).f(o.‘,(uom O = £ (@t xoht 2(1)] C@AD

where m_ [x.y] is the directional derivative of ihe 2-norm:

m,[x.y]:hl_i_.r&h +hyl —Vxl he smoothness of £ implies its local

Lipschitz continuity (in both arguments). Since m [x.y] €Iyl we have

L (&, (8 X0t 1(2))=f (0,08 xo)a2(t )b

S K[e(r) + luy(e) —ua(e ] (A.8)
for some real K. This implies
€ < Kle+luy—uyl ). (A9)
By solving this differential inequality we obtain
et) S (Iul—uzl“)KIeK(“"dt. (A.10)

Therefore we have the desired Lipschitz property with Lipschitz constant

K iex(: -tqx.

Proof of Proposition (see [10] proposition 5.3 for related proof techniques).
Let € > 0. By the Lipschitz continuity of ¢,(¢.xq) proven in the lemma and
the smoothness of f , there exists 7 € (0, (M -1 G} )] such that

1 £ @uatt ) +0) = £ @ (1 20)t) = SL 0, (1 20001040100 x0)

0 (s x0) - -?;{:-(@u (txonuGlt  sergr (A1)

for all 1€ {0.T] and § satisfying $ GV , <M —tul . Define the error
between a solution ¢, (¢ .xo) and a perturbed solution Oy 41 x0) bY
5([):0‘,,(({,{0)—0“(1,1’0). (A.12)

(The idea of the proof is to bound 8(¢) - A(t) where A(t) is the right-hand
side of equation (A.3). We integrate this bound to get a bound on &(t) - A(¢)
and, finally, we show that 8(¢) = A(1) in the limitd {1 _ - 0.)

Differentiating &) yields

&) = f Oyt xohu(t) +50)) = f (0 (¢ x0)u (1)) (A.13)
but this is just the first two terms in (A.11). Hence
180) - Louxons- Lo,rxod sl (Ald

Define p(r) =1 8(t) - A(r)1 . The one-sided derivative of p(r) is given by
Pals) = m.[8(e) - AL, 8(e) - A(n)

Expanding A in the second argument, using A.l4 and the property
my(xy+z] S mJx,y}+1z] wehave

Bty S m{ 86 = 8. 3L (04 (1 xg).u(D)EE) - 8| +eN T (ALS)

S Bpt)+el G) (A.16)

where B is a uniform bound on %(Qu(l Xo)u(t)) fort € (0.T] and u satis-
fying lud < M. The existence of the bound follows from basic existence

and uniqueness theory for ordinary differential equations, boundedness of u
and smoothness of f .




Solving this differential inequality yields

p(t) S ¢l cl_,leﬂ('-ﬂdr (A1)
We have therefore
. 15-4l su-ug
dim o s e!e T (A.18)

Since € can be chosen arbitrarily small, 4 is Frechet derivative evaluated in

xR

Corollary D, d, (¢ .xg) is continuous in u ().

the direction {.

Proof: By inspection of (A.3) we see that the smoothness of f and the con-
tinuity of ¢, in u(-) implies the statement of the corollary.
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