
AD--A27
5 118

U~niversityOf 
calfornia 

. &Wan barbara

GENRALTHEIORY 
ANDj ALGORITMSFR 

H
N*ON..CAUSAL 

PERINO F S cJ B SI N S L E ~ y ~ A I O T OSPAE-BSEDARTICULAWIGA N~D
STRUCTURES

FialrPOrt to the 
4

Air Force Office Of Scientific Research

Under

Grant~ F49620 _9 1 _C09

by
DePartent of ME* BaY ancj B. Paden

Mecanialand Environrnenti 
IiUiesi'ty Of CaliforniagSanta Barbara, CA 93106

October 1993 
19-02646

College Of vnei.

t ~v

VC 
Il.-



Best
Available

Copy



REPORT DOCUMENTATION PAGE

swom to Weafemc **@rm go A Ial roa

Uctober 31, 1993 Final, Sept. 91 - Aug. 93

-L TTI. mAN S4U S.) Lwo R4 w4 MM
"General Theory and Algorithms for the Non-Causal
Inversion, Slewing and Control of Space-Based Artic ated F49620-91-C0095
Structures"

-&-A$TN0VAS)
Bayo, Eduardo
Paden, Bradley

7. PEUOI Nf G WA lTI ONAMEQS) ANO AO0US.IS) L PtWPoWW €AlAUzOs
Mechanical Engineering Department R NIPJMSE

University of California
Santa Barbara, CA 93106

SP.0ftS*WO MOiTOFNG AGII4CV NAME•() AMC ALOMIS M 5()SON"! MONTO
AFOSR A R

Dr. Spener ',,u, Progral Mianager
Directorate of Aerospace Sciences
Air Force Office of Scientific Research
Boiling Air Force Base, DC 20332-6448

11. SUDPUMINTAY NOMTU

12,. O5TNWUTIOU/ AVALAMU'f STATIMINT f'i OISTMUIS" COSM

M3. ASTPACr (.A 'WRnJ%,.
The following final report describes the accomplishments obtained by the research

team at UCSB sponsored by the Directorate of Aerospace Sciences of the AFOSR. The
riajor accomplishments are the following:

- General Procedures for the Non-Causal Inverse Dynamics of Nonlinear Articulated
Structures

- Inverse Dynamics of Nonlinear Articulated Structures: Simultaneous Trajectory

Tracking and Vibration Reduction

- Buckling Control of a Flexible Beam Using Piezoelectric Actuators

- Nonlinear Inversion-Based Regulation

146 SUiECr TURNS15I N O P"43

Flexible articulated structures, dynamics, control,
non-causal inversion, algorithms. 1 k COOS

I?. I1M0251 CLAS•UWAlN IL. SMCUM" UASSW4CATION I. I127 ItSAUR ASU"TIM IL LM.TA•T•OF 09 LTRACI
O9P %am? OP TNG$ Pa41 OP ASSTRACf
:1nc q i- UidlZStf led Unclassified SAR

S am g Ul Z



GENERAL THEORY AND ALGORITHMS FOR THE
NON-CAUSAL INVERSION, SLEWING AND CONTROL

OF SPACE-BASED ARTICULATED STRUCTURES

Final report to the

Air Force Gffice of Scientific Research

under

Grant F49620-91-C-0095

by

E. Bayo and B. Paden

Department of Mechanical and Environmental Engineering
University of California

Santa Barbara, CA 93106_ For

DTIC QTJU-LYI=•I uQiJ': T'" ' 5 .

[_- ~. ... . - ...............

October 1993-------------

• m~ l i i l i i i n i n I mllll IllI~llllll~lll •| i



Table of Contents

T itle Page .....................................................................
Table of Contents ..................................................................... ii

Executive Summary .................................................... 1

1. General Procedures for the Non-Causal Inverse Dynamics of
Nonlinear Articulated Structures ................................. 2

2. Inverse Dynamics of Nonlinear Articulated Structures:
Simultaneous Trajectory Tracking and Vibration Reduction ... 10

3. Buckling Control of a Flexible Beam Using

Piezoelectric Actuators ......................................... 16

4. Nonlinear Inversion-Based Regulation ............................ 21

S. References ........................................................... 29

6. List of Publications under Grant F49620-91-C-0095 .......... 32

Appendix: Copies of Publications .................................... 33



Executive Summary

The studies reported were carried out during the period September 1991 through August

1993 under the auspices of the Directorate of Aerospace Sciences of the AFOSR. They were
concerned with the dynamics and control of spaced based articulated structures, and have led

to a better understanding of the theory and procedures for the non-causal inversion, slewing

and control of systems characterized by unstable zero-dynamics. In particular the following

results can be highlighted:

" general non-recursive procedures to solve the inverse dynamics and kinematics of

flexible open-chain and closed-chain nonlinear articulated structures in two and three

dimensional s-tings. These include robust multibody dynamic formulations that are

efficient and stable even in singular configurations and in the presence of redundant

algebraic constraints.
"• a general theory for non-causal inversion of nonlinear non-minimum phase systems

which relates invertibility and hyperbolicity of zero dynamics equilibria.

"• recursive algorithms in three dimensions for inverse dynamics that include lumped and

distributed actuators.
"* new methods for the sizing and the placement of distributed actuators on linear and

nonlinear configurations.
"• a global nonlinear operator framework for controlled dynamical systems which

presently handles local dynamics.

* a new approach to nonlinear tracking control which does not require solution of the

Byrnes-Isidori PDE. New inverse dynamics based control methods have broad

applications (e.g. nonlinear flight control, vibration control of nonlinear structures,

trajectory control of towed vehicles, etc.)

* experimental results obtained from a smart articulated structure experiment (see figure
2.1) (funded by Astro-Aerospace Corporation) designed and fabricated at UCSB.
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1. General Procedures for the Non-Causal Inverse Dynamics of
Nonlinear Articulated Structures.

Summary

This study addresses the problem of end-point trajectory tracking in nonlinear flexible

articulated structures through the use of inverse dynamics, and summarizes the work
accomplished under the contract and which is described in detail in references 6, 7, and 8. A
global Lagrangian approach is employed in formulating the system equations of motion, and an
iterative procedure is proposed to achieve end-point trajectory tracking in three-dimensional,

flexible multibody systems. Each iteration involves firstly, an inverse kinematics procedure
wherein elastic displacements are determined in terms of the rigid body coordinates and Lagrange

multipliers, secondly, an explicit computation of the inverse dynamic joint actuation, and thirdly,
a forward dynamic analysis wherein generalized coordinates and Lagrange multipliers are
determined in terms of the joint actuation and desired end-point coordinates. In contrast with the
recursive methods previously proposed, this new method is the most general since it is suitable

for both open-chain and closed-chain configurations of three-dimensional multibody systems.
The algorithm yields stable, non-causal actuating joint torques and associated Lagrange

multipliers that account for the constraint forces between flexible multibody components.

Introduction

The problem of end-point trajectory tracking in flexible multibody systems has led to the

development of methods for inverse dynamics. Inverse dynamics deals with the problem of
determining the joint actuation that will cause a specified control point in the flexible multibody
system to follow a desired trajectory. T"..- pioneering work of Reference 1 on the trajectory
control of a single flexible link through inverse dynamics showed that the inverse dynamic torque
is non-causal with respect to the end-point motion, i.e., actuation is required before the end-point
has started to move as well as after the end-point has stopped. Moulin and Bayo [2]
demonstrated that because of the non-minimum phase character of the inverse dynamics for the
trajectory tracking problem, the only bounded solution for the inverse dynamic torque has to be
non-causal. Bayo, et. al. [3], extended the inverse dynamics to planar, multiple-link systems
using an iterative frequency domain approach. The recursive method proposed in that study is
suitable for planar open-chain systems, but required an ad hoc procedure for planar closed-chain
systems. A time domain inverse dynamic technique based on the non-causal impulse response
function was presented by &ayo and Moulin [4] for the single link system, with provisions for
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extension to multiple link systems. An equivalent time domain approach for a single link arm
was proposed by Kwon and Book [5] where the non-causality of the computed torque was
captured by dividing the inverse system into causal and anticausal parts.

In this study, a general approach is presented for the solution of the non-causal inverse
dynamics of three-dimensional, flexible multibody systems, which is suitable for both open-
chain and closed-chain configurations. With this work, a methodology is presented that is
suitable for all multibody systems, ranging from the single link case to three-dimensional

systems with general topologies.

Problem Formulation

Consider an n-body flexible multibody system such as that shown in Fig. 1.1. A typical
multibody component, say body i, is shown in Fig. 1.1 along with the floating reference frame
associated with that body. The generalized coordinates consist of rigid body coordinates qr
which describe the position and orientation of the floating reference frame associated with each
multibody component, and deformation coordinates q' which describe the deformation of the

flexible body with respect to its floating reference frame. The rigid body coordinates q~r consist
of the Cartesian coordinates R' which describe the position of the origin of the floating reference
frame associated with body i, and a set of Euler parameters 0/ which describe the orientation of
the floating frame. The deformation frotm the nominal configuration is assumed to be small, so
that the different bending and torsional modes are decoupled.

Considering the reference coordinates qT = [RT, OT, qT] as generalized coordinates for the
flexible multibody system, these coordinates are not independent because the motion of specific
points in different bodies are related according to the type of mechanical joints that interconnect
them. Moreover, in flexible multibody systems, the deformation of a component affects the
configuration of adjacent components. As a consequence, the interdependence of the generalized
coordinates is expressed by a vector of kinematic constraint equations, such as

D(q,t) = 0 (1.1)

where q is the total vector of system generalized coordinates, t is time, and (D is the vector of
linearly independent holonomic constraint equations. These constraint equations can be further

classified into:
1. rigid body constraints where only rigid body variables are involved in the constraint

equation;
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2. joint constraints where both rigid body and deformation coordinates are included in the

constraint equation; and
3. rheonomic conuai.nts wherein the constraint equations can be explicit functions of time as

well as generalized coordinates.

The third type of constraint becomes active, for example, in the case of imposing the
coordinates of the end-effector to follow a desired trajectory.

Considering the rigid body and deformation coordinates described above as generalized
coordinates, and following standard procedures in multibody dynamics, the constrained

equations of motion become

M(q) 4+C 4+K q+DT =Qe+Qv(q, q) (1.2)

where M, C, and K are the system mass, damping and stiffness matrices, respectively, X is the
vector of Lagrange multipliers associated with the constraints, Oq is the constraint Jacobian
matrix, Qe is the vector of applied external forces, and Q . is the quadratic velocity vector. The
quadratic velocity vector contains the centrifugal forces and Coriolis forces that result from the
differentiation of the kinetic energy expression with respect to the generalized coordinates.
Geometric stiffening due to high rotation rates can also be added to the vector Q..

In a forward dynamic analysis, i.e., finding the resulting motion given the applid joint
forces and external forces, Eqs. (1.1) and (1.2) constitute a mixed system of differential-
algebraic equations that have to be integrated simultaneously. The solution to the inverse

dynamics problem requires a forward dynamic analysis within an iteration process. We solve the
forward dynamics problem by using the augmented Lagrangian penalty formulation [8-9].
Applying the augmented Lagrangian penalty formulation to Eqs. (1.1) and (1.2) results in the

following equation:

M(q) 4j +C I + K q + (T (+[ + 2 + (0 2 D] = Q,+ q)-T q "q (1.3)

q~q q[i+ (1.3)1) Q+v(, D

where a is a diagonal matrix of penalty factors whose elements are large real numbers that will
assure the satisfaction of constraints, o and g.± are diagonal matrices representing the natural

frequencies and damping characteristics of the dynamic penalty system associated with the
constraints. The augmented Lagrangian method requires an iteration for the correct value of the
Lagrange multipliers. The iterative equation for the Lagrange multipliers is given by

+1=i+ a(X + 2 g ()0 + (2ID]. (1.4)
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The augmented Lagrangian penalty formulation [8] has several advantages over the
standard algorithms used in solving differential-algebraic equations. First, the method obviates
the need to solve a mixed set of differentil-algebraic equations and aoes not increase the numbo--
of equations to account for the constraints. Second, this method allows the use of standard
unconditionally stable algorithms without the need of further stabilization techniques to control
the violation of constraints during the integration process. Third, the method can handle
redundant constraints and allows the multibody system to undergo singular positions. Fourth,
the constraint forces (Lagrange multipliers) can be obtained as a by-product of the ihitepxation
without having to integrate additional equations for them. Finally, the method assures

convergence independent of the penalty values used.

Inverse Kinematics and Inverse Dynamics

The three-dimensional inverse dynamics problem for either open-chain or closed-chain

topologies is solved by an iterative Lagrangian procedure. Our overall strategy is to first solve
the inverse kinematics problem, i.e., finding the unknown rigid body coordinates q, and flexible
body displacements q-, given the desired end-point coordinates as explicit functions of time.
Having t'termined the correct generalized coordinates and their time derivatives, the inverse
dyna, , joint torques can be obtained explicitly from the equations of motion. Compared to the
recursive procedures previously proposed, this new approach is more systematic and becomes
the only choice when closed-chain systems are encountered. The elastic links are modeled under
pinned-pinned boundary conditions. Furthermore, since torsional deformations cause deviations
from the nominal configuration further down the chain, we model the elastic link as fixed with
respect to torsion at the distal end of the link.

Our goal then is to formulate an inverse kinematics equation that is linearized about the
nominal motion, so that the elastic displacements, which are non-causal with respect to the end-

point motion, can be determined through a transformation to the frequency domain. This is
possible only if the leading matrix of the linearized equation is time-invariant and if the forcing
term is Fotaier transformnable. This objective has been achieved in the planar case with the use of
reference coordinates for the rigid body variables to describe the position and orientation of the

floating reference frame [6].
The three-dimensional inverse kinematics problem presents additional difficulties not

found in the planar case [7]. First, unlike the planar case, the three-dimensional torque vectors
change directions in time, so that the external force vextor Qe in Eq. (1.3) becomes a nonlinear

function of the rigid body orientation coordinates. To overcome this difficulty, a proper
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parametriztion of the rigid body coordinates and prcper bases for the joint torques are necessary

to attain the stated objectives in forming the linearized inverse kinematics eqvations. The desired

form of the linearized inverse kinematics equation is possible if Euler parameters are used to

describe the rigid body orientation and if the base torque vector of each multibody component is

expressed in terms of components along the associated floating reference fLame.

For a typical multibody component, say body i, the equations of motion can be written in

the following partitioned form [7]:

MRR MRO mRf1 [ 00 R' 0 0(i
meR MOOn mf + +00 0 0 + 0 = .Qe + QvO

j m q 0 c f 0 kffj ql T [Qef v [ -J
(1 5)

The elemenLi of the mass matrix and quadratic velocity force vector corresponding to an

isoparametric, three-dimensional curved beam finite element are given in Reference 7. i in
Let t' be the torque vector at the base of body i, whose three components tr, and -t'

are parallel to the associated floating reference axes r/, s/, and t/, respectively. If we use Euler

parametcrs as the rigid body orientation coordinates, the externaily applied joint forces Q•0

associated with the rigid body rotation of body i can be expressed as

Q [ . G'J {TI' - [A iu A'+"t1 l (1.6)

where zi is the base torque acting on body i and whose components are parallel to the floating

reference axes associatod with body i; /+' is the vector of joint torques and reactic., moments

transmitted from body i to body i + 1, and whose components are parallel to the floating

reference axes associated with body i + 1; Ai and Ai+1 are body axes to inertial axes rotation

transformation matrices for bodies i and i + 1, respectively; and G' is a matrix that maps the

derivatives of the Euler parameters describing the orientation of the reference frame of body i to

the angular velocity of this reference frame, and is given by G' = 2 E'. Combining Eq. (1.6)

with the second set of equations in Eq. (1.5), and after and involved process described in

Reference 7, the inverse dynamic equations are obtained as:
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zi=AiTil~~+4 mO ijiqf 4 0"

+ 1 G' jij {ji G'6'+ J' (1

where ji is the 3 x 3 inertia tensor of body i with respect to the origin of the floating reference

frame and measured relative to this frame, and J' is the inertik matrix coupling the rigid body

rotation and the elastic deformation. The key to obtaining a time-in, 2;riant leading matrix, that is

necessary in transforming the linearized equations of motion into the frequency domain, is the

fact that the inertial coupling matrix Y can be decomposed into the sum of a time-invariant

matrix a -d a time-varying matrix, i.e.,

J = +J (1.8)

where Y and J1 are the time-invariant part and time-varying part of J' , respectively. This

decomposition is essential to the formulation of the inverse kinematics equations that lead to non-

causal solutions of the nonlinear inversion problem and which are given by

ffi'41 +c• 4lq• =V Fi, qr, Clr, 1lr, qf,qfl, qf)(1

where

ilh = mf-NT JT (1.10)

aind uhe motion-induced force vector acting on the elastic degrees of freedom is given by

Fi = NT {[A'T Ai+1 r+, + Ti N- NT [Ai]A' 1i r+

+ bQ _ .A.-m• R1 11- (111qi _ ((I.II)iii~ti i

Th-e modified mass matrix they is non symmetric and it is precisely this non symmetry

that produces elastic displacements which are non-causal with respect to the end-point motion

when non-causal techniques are employed to obtain the proper inversion of the ronlinear, non-

minimum phase systems.
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I The non-causal inversion can now be carried out efficiently in the frequency domain since
the leading matrices have been constructed such that they remain constant throughout the motion.

Equatiou; (1.9) can be written as a set of complex equations for a particular frequency o

I Lrn~i~cf~~~ (O)=F(o (1.12)

where qf(o) is the Fourier transform of q'(t) and F(o) is the Fourier transform of F(t).
Alternatively, the computation of the elastic displacements and their derivatives in each

iteration can also be carried out in the time domain through the use of the non-causal impulse
r-sponse function and the bilateral Laplace transform, e.g.,

n
4f(t) = " hj(t - TOfj('T) (t

where h1(t) is the non-causal acceleration response vector to an impulse applied to the jth degree

I of freedom and fj(t) is the jth component of the forcing term on the right hand side of Eq. (1.9).

We note that the integration from -o to -c is necessary to capture the non-causal effects.

I Once the non-causal elastic displacements and their derivatives are known, Eq. (1.7) can

be used to explicitly compute the non-causal inverse dynamics joint efforts that will move the end

effector according to a desired trajectory. We note, however, that the joint torques and elastic
displacements given by Eqs. (1.7) and (1.9), respectively, depend on the Lagrange multipliers

and rigid body coordinates, which in turn depend on the elastic displacements and the applied

torque. Moreover, the rigid body coordinates and Lagrange multipliers are different from their
nominal values when the components of the multibody system are flexible. Therefore, a forward

I dynamic analysis is required to obtain an improved estimate of the generalized coordinates and

Lagrange multipliers.

Results

Figure 1.2 shows a closed-chain, three-dimensional flexible articulated structure, where

the selected control torques are shown in the figure. Joints 1-4 are revolute joints while joint 5 is
I a spherical joint. The desired end-point (joint 5) trajectory is a motion in the X2 - x3 plane with

the x2 coordinate and x3 coordinate of the end-point following the trajectories shown in Fig.

i 1.3. The four links share the following geometric and material properties:

I .=



I

I
I

I joint 4 "%,oint 2

Ln #3 L in 4 Link #2 Lin #•l 1 X1i

jo~~int X2 oi

i3 T,

F

I

I
I
I
I
I



I 0. 6 L
I L

C X2 coordinate

- 0.4

75I©
I©

-. x3 coordinate

II I I

-0.0 0.5 1.0 1.5
I Time (sec.)

Fig. 1.3. Required end-point trajectory.



4

2

- 4

1 0

-6 . .. , , , , , , , ,
-0.0 0.5 1.0 1.5

i Time (sec.)

I5
I0

z

V
: 0

C-*o-5

-- tO _ _ _ _ _ _ _ _ __I 1 I ,

-0.0 0.5 1.0 1.5
Time (sec.)

Fig. 1.4. Inverse dynamics torques.



0.004

2 0

S0.000

-0.002

-0.004 1 1 1 I I I I I L I

-0.0 0.5 1.0 1.5
Time (sec.)

Fig. 1. Elastic deflection in an internal point.



9

Length: 1.0m; Cross section dimensions: 1.0 cm x 1.0 cm; Young's modulus: 40 GPa;
Shear modulus: 15 GPa; Mass density: 2715 kg/m3; Tip mass: 0.1 kg.

The procedure is applied to the closed-chain system by introducing a cut at the end-point
(joint 5), thus creating two open-chain systems. The internal constraint forces exposed by the

cut are automatically taken into account by the Lagrange multipliers in the equations of motion.
Figures 1.4a and 1.4b show joint torques T2 and T3 , respectively, that are needed to achieve the

desired end-point trajectory. In these figures, the dashed curves refer to the inverse dynamic
torques obtained by the present procedure while the solid curves refer to the corresponding rigid

body torques. Observe the pre and post activation required by the inverse dynamics situation.

Figure 1.5 shows the transverse deflections at a third point in link #2, obtained from a feed-
forward of the inverse dynamic torques (dashed curve) and the corresponding deflection obtained

from a feed-forward of the rigid body torque (solid curve). It may be observed that the inverse

dynamic torques minimize the residual structural vibrations that are otherwise present when rigid

body torques are used to actuate the system.

Conclusion

A new and general procedare for determining the inverse dynamics and kinematics of 2-D

and 3-D flexible articulated structures and multibody systems has been developed. An iterative

procedure is necessary because of the interdependence between the elastic coordinates, the rigid

body coordinates and the associated Lagrange multipliers in the system equations of motion. The
procedure is general since it is valid for both open-chain and closed-chain configurations, and

differs from the previously proposed recursive methods in the sense that the rigid body

coordinates are not assumed to follow the nominal motion. The conditions for trajectory tracking
are now met in a more general way through the satisfaction of rheonomic constraint conditions.

For closed-chain systems, the new method is the only valid procedure for determining the

inverse dynamic torques since in this case, the number of control torques is smaller than the

number of joints and therefore, the recursive methods can not be applied.
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2. Inverse Dynamics of Nonlinear Articulated Structures:
Simultaneous Trajectory Tracking and Vibration Reduction.

Summary

The problem of inverse dynamics for flexible multibodies, which arises, in trajectory
tracking control of flexible multibodies such as space manipulators and articulated flexible
structures is studied. Pcevious research has resolved this trajectory tracking problem by
computing the system inputs for feed-forward control of actuators at the joints. Recently, the use
of distributed actuators like electro-strictive actuators in flexible structures has introduced a new
dimension to this trajectory tracking problem. In this paper we optimally utilize such actuators to
aid joint actuators for tracking control, and introduce a new inverse dynamics scheme for
simultaneously (1) tracking a prescribed trajectory and (2) minimizing ensuing elastic deflexnions.
"We apply this scheme for trajectory tracking of a two-link two-joint planar manipulator with joint
motors and distributed electro-strictive actuators. Experimental results are presented to contrast
our new scheme with other existing methods. The study summarizes the work done under the
contract and described in references 14 and 15.

Introduction

Inverse dynamics provides an excellent means for trajectory tracking of flexible
multibodies. Methods to pre cnmpute the actuator inputs required to exactly track a given output
trajectory of a control point on open-chain flexible multibodies have been developed [ 1-5] where
the inverse dynamics and kinematics produce bounded feed-forward inputs for actuators, like
motors at articulations and joint angles, to track a reference point on the structure. The closed-
chain cases have been recently presented by Ledesma and Bayo [6-7]. If the sensors and
actuators are non-collocated then the flexible structure has nonminimum phase dynamics and the
only stable inverse dynamics solution to the tracking problem is non-causal [2]. Once a
trajectory is specified, the feed-forward control input obtained by inverse dynamics for exact
trajectory tracking, has a unique bounded solution. Therefore, the subsequent elastic structural
vibrations induced on the structure (except at the control point where these vibrations are zero)
during the trajectory tracking motion are also defined uniquely. These vibrations could be
detrimental to the performance of sensitive on-board systems and hence it is desirable to
minimize them. For some time, distributed actuators have been successfully used to control
structural vibrations [10-11]. Recent success in their experimental use [12] motivates the use of
such actuators to aid joint actuators, like motors, for trajectory tracking.
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The trajectory tracking objective can be accomplished by the point actuators alone [13] and

in this sense the distributed actuators are redundant. In this study (which summarizes the
contribution of references) the concept of using the extra actuation available through the
distributed actuators in the structure is introduced to not only satisfy the trajectory tracking

constraint, but also minimize the accompanying elastic displacements during the motion. A new
inverse dynamics method is presented to compute the feed-forward inputs which includes the

cases of redundantly actuated structures. This use of distributed actuators for end effector

trajectory control is contrasted with the use of only the joint actuators in feed-forward. The
method proposed is shown to substantially reduce the induced vibrations in the structure. The

results are experimentally verified using a flexible two link articulated truss structure with

distributed electro-strictive actuators and joint motors.

Formulation

The inverse dynamics of a flexible multibody is a nonlinear problem. We solve this non-
linear problem recursively, one element of the multibody at a time. This algorithm proposed by
Bayo et al in [3], for general multibody inverse dynamics involves, 1) studying an individual

component (link) in the chain; 2) coupling the equations of the individual links; and 3)
recursively converging to the desired' actuator inputs and corresponding displacements.

Following this general procedure, a new scheme is proposed which incorporates distributed
actuators in the solution of the inverse dynamics problem [14-15]. This approach leads to the

following inverse dynamics equations in terms of joint torque and piezoelectric voltages:

Mi + [C + Cc((oh)] +[K + Kc(ah, Oh)] Z = BTT + BPVP+ F (2.1)

where z is an Rn vector of the finite element degree of freedom. M and K belong to Rnxn and

are the conventional finite element mass and stiffness matrices respectively; Cc and Kc e Rnxn
and are the time varying Coriolis and centrifugal stiffness matrices, respectively. The Rnxn

matrix C represents the internal viscous damping of the material. T is the unknown joint

actuation F e Rn contains the reactions at the end of the link, and the known forces produced by
the rotating frame effect. The distributed actuator inputs Vp e WP are the equivalent nodal

forces at the FEM degrees of freedom, where np is the number of distributed actuator inputs.
BT and Bp are constant matrices inputs influence matrices of dimensions Rn and Rnx1P,

respectively.
The requirement is to accurately track the end effector of the link along the given nominal

trajectory without overshoot and residual vibrations. If the distributed actuators were not
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available ther the exact tip trajectory tracking requirement defines the joint input torque T. The

objective is to use the additional actuation available through the distributed actuators to reduce the

ensuing structural vibrations at locations away from the control point during this motion by

minimizing J(T, Vp), a measure of elastic deflections in the structure defined as follows:

00

J(T, Vp)A f z(t)T z(t)dt (2.2)
-00

Mathematically the objective can be stated as

min ]J(T, Vp) (2.3)
(T,Vp)eT

Where T is the set of all pairs of stable actuator inputs that when used to actuate the system

defined by Eq. (2.1) yields z1(t) = 0 for all t.

The solution process starts by rewriting Eq. (2.2) as

Mi + Ci + Kz = BTT + Bp Vp + F - Cc(o),,) z - Kc(ah, ah) z (2.4)

where the time dependent Coriolis and centrifugal terms are kept on the RHS of the equation.

The iteration procedure starts with the absence of the last two terms involving Cc and KC in the

right hand side. Then, the system of equations can be transformed into independent sets of

simultaneous complex equations by means of the Fourier transform. For each of the evaluation

frequency o., Eq. (2.5) becomes

rzh IT Fh Bph
M L LK = IO+F1l+[B. (2.5)

LZJ 0 J

where the symbol A stands for Fourier transform, and F represents the known forcing terms.

After the first iteration it will also include the updated contributions from the Coriolis and

centrifugal terms appearing in the RHS of Eq. (2.4). For any w * 0, the matrix

H 4 [M+-LC- 1K (2.6)
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is a complex, symmetric and invertible matrix. For w) = 0 the system undergoes a rigid body

motion and H 4 M, the positive definite invertible mass matrix. Let G 4 H- 1. Then a

relationship between the joint actuation and the distributed actuator inputs and is obtained [114-15]

as:

Tr = -G-'[GthGuGtI] ("+BpV~) (2.7)

Substituting this expression for the input hub torque in Eq. (2.3) and using the property that

z = -- yields

(= - (AV p + B) (2.8)

where

A 4 [ G-I1GBT(GthGaGtt)+GIBP (29)

and

B 4 [= G-'GBT(GthGnGtt)+G]F (2.10)

Next using Parseval's theorem the piezo-electric voltages are obtained as [14-15]:

Vp= -(A * A)-I A*B (2.11)

where the symbol * denotes conjugate transpose. A sufficient and necessary condition for A to

have rank np is given in references [14-15].

The distribution of actuation effort depends on the mode-shapes of the structure and the

actuator placement, and can be modeled easily using FEM [16]. In the problem at hand, the best

placement for a given trajectory depends not only on the structure but also the component

frequencies of the desired motion. Thus the optimal placement of the actuator would in general

be trajectory dependent. In most structures, such a freedom of changing the actuator placement

with the prescribed trajectory is not available. The design of such structures with fixed actuator

placements, is based on minimizing the induced structural vibrations over sets of disturbances

with a specified energy [16]. In systems where the required motions are largely repetitive, the

actuator placement can be optimized over a specified set of trajectories; this warrants a separate

treatment to be considered in a future work.
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Fig. 2. 1. Experimental set up.
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Experimental Verification

An experimental truss structure developed at UCSB is shown in Figure 2.1. The
structure has 16 spans and two articulations forming a planar manipulator. The trusses are made

of aluminum and have lumped masses (net 2 Kgs for each link) distributtd along their lengths in

order to !ower the links modal frequencies and hence the control sample rate. In addition, the

first (base) and the second links have tip loads of 3.5 and 1 Kgs respectively. These loads

further increase the flexibility of the structure and the natural frequencies of the first and second

links with clamped free boundary conditions are 0.6 Hz and 1.2 Hz respectively. Actuation

consists of low-inertia dc-motors at the two joints and an active bay (Figure 2.2) with four

electro-strictive actuators. Sensing consists of resolvers at the joints and collocated strain

sensors on the four electro-strictive actuators. In addition, an optical sensor measures the

pnsition of an infra-red LED mounted about the midpoirt of the first link, thus providing

information of the induced structural vibrations during the tracking operation. The entire

structure is supported on air bearings and controlled with an Intel 386-based PC, servo

amplifiers for the motors and 150V servo amplifiers for the electro-strictive actuators.

To evaluate the proposed use of distributed actuators, we apply it to track the end-effector

of the two link flexible articulated structure. The desired trajectory of the end-effector is a series

of rest to rest motions, while the first link is stationary. The nominal motion of the second link is

shown in Figure 2.3. The objective is to track the desired trajectory and minimize the vibrations
in the first link which is equipped with electro-strictive actuators. To evaluate the vibration

reduction achieved, the following tracking experiments are conducted: (1) feed-forward of

torques computed without inverse dynamics, i.e. assuming the links to be rigid; (2) using the

torques computed by inverse dynamics for only the joint actuators; and (3) incorporating the

distributed electro-strictive actuators on the first truss along with joint actuators in the inverse

dyiiamics computation and using these as feed-forward. In each case a joint based PD controller
was used for controlling errors due to unmodeled dynamics, friction and other modeling errors.

Plots of the inputs to he electro-strictor and joint motors are presented in Figures 2.4 and

2.5. Note that the actuations start before the tip trajectory begins. This non-causality due to the

propagation delays is reduced when additional actuation is available through the piezos as seen in

Figure 2.5. To illustrate the viability of the proposed method we plot the tranverse structural

deflections at the midpoint of t';e first link (Figure 2.6) during the motion obtained by an infra-

red led mounted on the structure and an over-head optical sensor. These elastic deflections in the

structure are considerably reduced when electro-strictive actuators are also used in addition to the

joint motors. On the contrary if inverse dynamics is not used and the rigid body torques are used

then the resulting motion has much larger vibrations.
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Thus the incorporation of electro-strictive actuators results in a significant reduction in the

structural vibrations and demonstrates the viability of the proposed method. The consequent
reduction (50%) in the induced vibrations of the structure allows the use of lighter elements and

therefore smaller joint actuators, especially in space structures where the loads are mainly inertial.

Conclusion
Typically distributed actuators like the electro-strictive ones cannot garner enough

actuation to cause large motions in the multibody system. However they could be very

effective in reducing structural deformation. To reduce such vibrations by the use of

distributed actuators in feedforward aiding joint actuators for trajectory trcking is a novel

idea developed in this study. The method proposed is extreme!y efficient as it optimally

reduces structural vibrations and the theory developed was verified by experiments. The

use of the redundant distributed actuators seems promising in the slewing control of

flexible manipulators and other space structures, and motivates further work on distributed

actuators for the control of flexible multibodies.

I
I
I

I
I
I
I

I i
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I 3. Buckling Control of a Flexible Beam Using Piezoelectric
Actuators

I Summary
A new application of piezoelectric actuation is described for enhancing the load

I| capacity of a beam under compression. By feedback control, the first buckling mode is
stabilized and the buwkiing load is dramatically increased to the critical load of the second

I buckling mode of the beam. The approach uses a truncated modal model of the beam,

distributed piezo actuators, and strain gauges for feedback.

I Introduction
Active damping and control of flexible structures has been an area of research focus

for some time. However, the recent application of distributed piezoelectric actuators to
structure control by Crawley and De Luis [17], Bailey and Hubbard [18], and Fisher [20]

has posed new and challenging problems. Following the initial experiments of these

researchers, where a single vibrational mode is controlled, Fisher addressed the actuator

placement problem to control several modes.
We address the new problem of buckling control using smart materials. In contrast

to the dynamic stability issues of vibration control, buckling is a static instability of axially

loaded members of a structure. It is well known that as the axial compressive load P in an

initially straight beam increases, the beam remains straight and undeformed until the load

reaches a certain critical value Pcrl, where the stable equilibrium of the first bending mode
bifurcates into one unstable and two stable equilibria (pitchford bifurcation). The two

stable equilibria correspond to buckled configurations.

Here we use piezoelectric actuators and strain gauge sensors to show that buckling

of a simply supported beam can be postponed beyond the first critical load. The load
deflection characteristic for large deflections of a beam in a buckled configuration is highly
nonlinear and involves numerical solution of elliptic integrals. Figure 3. la shows a typical

load deflection curve where Pcrn is the buckling load of the nth mode. If P < Pcr,l, the
undeflected beam is stable. For Pern < P < Pern+l all modes are stable except for the first

n bending modes. The idea reflected in our work is the use of feedback control in
conjunction with piezoactuators to stabilize the first bending mode beyond Perl and achieve

a bifurcation diagram of the form shown in Fig. 3.1b, where the buckling force Pcr,l is
greater than that for the uncontrolled beam.

We use the linearized equations of motion and the associated modal equations of a
simply supported flexible beam with piezoelectric actuators subjected to slowly varying
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axial load. A finite-dimensional state-space model is then derived for a reduced order
system and a controller is designed to increase the stiffness of the first bending mode to
exceed that of the second bending mode.

P P r~

y Y
max max

(a) (b)

Fig. 3.1. Load deflection curve of a) uncontrolled beam and b) controlled beam.

Piezo-1M

i/7777 Piezo-2/ Beam / / /

I Fig. 3.2. Simply supported column with piezoelectric actuators.

Problem Formulation
We use a truncated modal expanstion of the deflection of a beam to derive a linearI finite-dimensional model. We emphasize that the beam is assumed to be uniform with no

manufacturing imperfections. Since the aim is to stabilize the beam in its straight
configuration, it is natural to assume small deflections and linearize the equations of motion

about this configuration. Note that the strain induced by ppezoelectric actuators is usually
small and, therefore, the small deflection assumption is consistent with the capacity of the

I actuators.

Figure 3 2 shows a simply supported uniform beam with piezoelectric actuators ofIequal thickness bonded to both sides by a suitable adhesive. The beam of width b and
thickness tb is subjected to an axial compressive load, and control moments are applied by

I
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the piezoactuators. The actuator being modeled is a piezoelectric polymer, poly vinylidene

fluoride. For an axially polarized piezo, a voltage applied across its thickness results in

strain along its length. For simplicity the width of each piezolayer is assumed to be the

same as that of the beam.
The strain Ai developed in an unconstrained piezo is given by Ai = vi(t)d 31 / tp

where vi(t); i = 1, 2 is the voltage applied to the ith piezostrip, d31 the piezoelectric strain

constant, and tp the thickness of the piezolayer. If vI and v2 are the voltages applied on

the top and bottom piezolayers, respectively, and Ep is the Young's modulus of the piezo,

the resulting moment on the piezobeam segment is given by

M = bE tp(A 2 -A 1 ) (1+ta+-J

I ~ ~~~= bE d31 t!k+ta+LE) (v-V 1 ) k*(v-vl)(31

I The equation of motion of the beam can be derived using Hamilton's variational principle.

Under small deflection assumption Hamilton's principle yields

pAy + (EIy") + (Py')'= M[8'(x - x 2) - 8'(x - xl)J (3.2)

I where p is the density of the beam; y is the transverse deflection; , and y' are the time and

spatial derivatives of y, respectively; El is the stiffness of the beam; A is the cross-sectional

I area of the beam; S' is the spatial derivative of the delta function; and xI and x2 are the

locations of the two ends of the piezolayer.I Modal states are estimated from strain gauge measurements at discrete locations. It

is easy to see that observability of the modes of the system depends on the location of the

sensors; a mode with its node at the location of a strain gauge is unobservable with that

sensor. To reduce the number of sensors, modal control of flexible structures is usually

based on the first few modes of vibration. This is justified by the fact that higher

vibrational modes are in general difficult to excite and have higher structural damping.

However, the unmodeled dynamics can cause instability through what are known as

Icontrol and observation spillover. It has been shown that both control and observation

spillover of unmodeled modes are necessary to cause instability in a closed-loop system.

I The sensors are placed so that the second and third modes and their multiples are

unobservable. Thus the first and fifth modes are the first two modes in a minimal

I
I
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realization of the system. We ignore higher order modes and discuss the associated

spillover problems in [20]. If a small amount of structural damping is present, all of the

unobservable modes remain stable even in the presence of spillover. Similarly the

dynamics of the even modes are not affected by the control, and hence they remain stable.

We model the sensors as follows. The bending moment at the location of a strain

gauge, a distance x from the lift end of the beam, is given by

Mb = -EbIeqy"(xt)= Eb 2 = s (3.9)

I
where Eb is the Young's modulus of the beam material and 'eq is the equivalent moment of

inertia of the composite piezo-beam segment based on beam material. The resulting strain

in a strain gauge attached to one side of the beam is

SMb [(tb/2)+t+tp (3.10)
I Ebleq A-NEb

where Aeq is the equivalent area based on beam material. The sign of the first term in Eq.

(3.10) depends on which side of the beam the strain gauge is bonded to. Therefore, the

output of a differential strain gauge is independent of the load P and is given by

I2 C2 [(tb/2)+ta+tpI 2n
vI 2e kg n=k

n21 nsin (2x)Aks . n n21lnsin (3.11)
rn=l

I where kg is the strain gauge constant. If differential strain gauges are placed as x = U/3 and

x = 21J3, and the sum of their measurements is taken as the system output, we have

=kn0 n2Thjsinn x + sin2n1
i (3.12)

I
I
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Results

The modal model developed above was truncated to form the actuated beam model and
sensor model. A standard linear quadratic regulator was then designed. We showed that
the buckling of a flexible beam can be postponed beyond the first critical load by means of
feedback using piezoelectric actuators and strain gauge sensors [20]. It is observed that a
controller design based on a fixed axial load Pmax stabilizes the modeled modes for any P <
Pma, and, therefore, is robust to slow load variations. Hence buckling in the first mode is
inhibited, and the beam can support a load up to the second critical load. Actuator and

sensor placement is discussed with regard to problems of spillover. Finally, spillover has
not posed serious problems as we are able to design the controller, in the case of a beam,

using a low-order model and verify stability for a high-order model
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4. Nonlinear Inversion-Based Regulation

Summary

In this study a new inverse is introduced for nonlinear systems. This inverse

agrees with that of Hirschom for minimum phase nonlinear systems, but is noncausal

(rather than unstable) in the nonminimum phase case. Further, a geometric connection is
made between the unstable manifold of the system zero dynamics and the noncausality in
the inverse. With the inverse used for generating feedforward, exact regulation along a

desired trajectorY is easily accomplished with the addition of stabilizing feedback; this is

demonstrated with a numerical example and compared to the Byrnes-Isidori regulator.
Rather than solving a PDE to construct a regulator, the inverse is easily constructed using a

Picard-like iteration. Moreover, when preactuation is not possible, noncausal inverse
trajectories can be truncated. The result is the introduction of transients common in other
regulators.

Introduction
Tracking control and regulation are common problems in applications and have thus

attracted considerable attention from control researchers. Asymptotic tracking has been
solved for arbitrary reference trajectories in the context of linear-quadratic optimal control
[21]. Also for linear systems, the asymptotic regulation and tracking of signals generated

by finite dimensional linear systems has been studied in a general framework by Francis

and Wonham [22]. These authors show that the tracking problem is solvable if and only if
a set of linear matrix equations is solvable. In the nonlinear case, the Francis-Wonham

equations have been generalized to a first-order partial differential algebraic equation (PDE)
by Byrnes and Isidori [23]. This fundamental work has been augmented with tests for
approximate solvability of the Byrnes-Isidori PDE [241 and methods for optimal regulator

design [25]. In addition, extensions to the Bymes-Isidori regulator have been described

in [26], and (27]. In this paper we introduce a new inversion-based approach to exact
nonlinear output tracking control. The basic idea presented is to use feedforward of a
nominal input which forces a given system along a desired trajectory, and then to stabilize
the trajectory using feedback. We use preactuation to establish initial conditions in the
nonminimum phase case, in contrast to setting initial conditions as is done in [28]. Our

approach eliminates the requirement for solving the partial differential algebraic equation (of
potentially high dimension) encountered in the Byrnes-Isidori regulator by tracking a
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specific trajectory rather than any one of a family. Moreover, no exosystem is required,
and the specification of trajectories is simplified. We do, however, introduce boundedness
and integrability requirements on the trajectory. The key to our approach is finding a
bounded inverse, even for nonminimum phase nonlinear systems, for use in generating
feedforward inputs. In contrast to the inversion approach of Hirschorn [291 where
unstable zero dynamics lead to unbounded responses of the inverse system, we introduce a
nonlinear operator which is noncausal in t,,c nonminimum phase case. Noncausal

feedforward can be used in the case where trajectory preview is possible, or truncated to a
causal signal at the cost of introducing transient tracking errors. Such noncausal character is
seen in the linear quadratic setting, but the use of exact inverses in both linear and nonlinear
tracking control is new. The noncausal inverses used here are motivated by the work of
Bayo [30] in flexible multibodies and have been applied to the control of flexible-link

robots in [311.

Problem Formulation
Consider the nonlinear system

= f(x) + g(x) u (4.1)

y = h(x), (4.2)

defined on a neighborhood X of the origin of gn with input u e V1' and output y e 91q.
The functions f(x), gi(x) (the ith column of g(x)) i - 1, 2, .... p are smooth vector fields
and hi(x) for i = 1, 2,...., q are smooth functions on X, with f(O) = 0 and h(0) = 0.

In the context of the above system pose the following
Stable Inversion Problem: Given a smooth reference output trajectory yd(t) e L, n L..,

(bounded, integrable signals) find a control input ud(t) and a state trajectory xd(t) such that
1) ud and xd satisfy the differential equation

id(t) = f(xd(t)) + g(xd(t)) ud(t), (4.3)

2) exact output tracking is achieved:

h(Xd(t)) = Yd(t), (4.4)

3) ud and xd are bounded, and
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Ud(t) -+ 0, Xd(t) -+ 0 as t - ±o*. (4.5)

We call xd the desired state trajectory and ud the nominal control input. These can be

incorporated into a regulator by using the nominal control input as a feed-forward signal
and x - xd as an error signal for feedback.

Results
In solving for the nominal trajectories xd and ud the concepts of stable and unstable

manifolds of an equilibrium point arise naturally [321. For the sake of completeness we
review the definitions here. Let z = 0 be an equilibrium point of an autonomous system

defined in a open neighborhood U of the origin of 90n:

i = f(z), (4.6)

and Ot(z) be the flow passing through z at t = 0. We define the (local) stable and unstable

manifolds Ws, WU as follows:

Ws = {z r U It(z) e UVtO> 0, Ot(z) -- 0 as t - *} (4.7)

Wu = 1z e U I 0t(z) e UVt a 0, Ot(z) -- 0 as t --- } (4.8)

The equilibrium point z = 0 is said to be hyperbolic if the Jacobian matrix Df of f at
z =0 has no eigenvalues on the jo axis. Let ns denote the number of eigenvalues of Df in

the open left half complex plane, and nu the number in the open right half plane. Stable and

unstable manifolds Ws and Wu exist locally in the neighborhood of hyperbolic fixed point

and have dimensions ns and nu respectively.
For convenience, we will use the following notation. LetN A (0, 1, 2,...}, r =

(rI, r2 ... rq)t 6 N-m and y = [y(t), y2(t) ... , yq(t) t ; t 91. Then we define

IrI A r+ r2+. .. +rq and write
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dtr l

y (r) A y--. (4.9a)

dtr2

.drq Yg

dz q

We will use the bold number I to denote the vector (1, 1, ... 1)t so that

y (1) = y LAd "Y2' "~ (4.9b)
(l)(dy dy2  d~)t

If y: gn __, 9qq and f: tn -+tn, we define

L?yi

Lfy L Y (4.10)

Lqry

.uf yq

Partial linearization and inversion

The system dynamics (4.1, 4.2) is written in the following form, where the number

of inputs (p) is assumed to be the same as the number of outputs,

PY = fix) + gj(x) ui (4.11a)

h1(x)

(4.11 b)

ym hp(x).
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We assume that the system has well-defined relative degree r = (rj, r2 ,.... rp) at the

equilibriumn point 0, that is,
(i) for ,U 1 < j < p, for all 1 < i < p, for all k < ri - 1, and for all x in a neighborhood

of the origin,

Lgj Lf hi(x) = 0, (4.12)

(ii) the p x p matrix

Lg1 Lrf•-1 hi(x) ... Lgp L7-1 h,(x)

Lx) L 1 L- t h(x) Li,, Lrrl h2 (x) (4.13)

LL gi hp(x) .. LgP L hp(x)

is nonsingular in a neighborhood of the origin.

Under this assumption, the system can be partially linearized. To do this, we
differentiate yi until at least one uj appears explicitly. This will happen at exactly the rith

derivative of yi due to (4.12). Define ýi = y(k-1) for i -- 1,.. . p and k = 1,.. ., ri, and

denote

= 4 4, 41.. 1 2 - 42• ...• 4-,..

Yj 2,-'- Y ,"',Yp ) (4.14)

Choose ri, an n -Irl dimensional function on 9tn such that (rt Tit) = V(x) forms a

change of coordinates with W(0) = 0 [32]. In this new coordinate system, the system

dynamics of equation (4.1) becomes
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I =i-

Iom for i = 1, ... , p (4.15a)

I •~~ir = i(4, TO) + PiA, .1 TO

I
3I = q1(, el)+ q2 (4, TO) u, (4.15b)

3 which, in a more compact form, is equivalent to

y(r) + 0(4,71)u, (4.16)!y

= s1(A, 11)+ s2(A, i) u, (4.17)I
where

Y (y1, Y2,,Yp)'
Y= 11, 112,'",p),

I

a(4, ni)= Lf h(•It-(•, 1)), (4.18)

3(t, 71)= Lg L'•-' h(v-' (, TI)). (4.19)

Here P is actually the same P3(x) matrix defined in the equation (4.13), ct(O, 0) = 0 since

3 f(0) = 0, and

3 h(x) = [hI(x), h2 () '"' hp(x),

3 g(x) = [g1 (x), g2 (x)W,."' gp(x)]"

I
I
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SSince by the relative degree assumption, P3(4, TI) is nonsingular, the following feedback
control lawI

u A [ m(', TI]T ' [v - c (X , n)] 
(4.20)I

is well defined and partially linearizes the system such that the input-output relationship is

given by a chain of integrators:

i v (4.21)

where v ••90 is the new control input. Assume both y and Yd start from rest and choose

- (r) (4.22)I
Then immediately we have

IdA (YdI, ,d, ".., y(- Yd2, ... , Yd .yp (4.23)

and equation (16) becomes, which we call the reference dynamics, or the zero dynamics

I driven by the reference output trajectory,

s s(Yd, 4d, 11) (4.24)

I where

S (Yd, 4d, 71) A S(4d, i1) + S2((d, T) [P(Rd, Ti)]- [y~r) - z(4d, 1)]J. (4.25)

under certain technical conditions on s (see [33]) there exists a solution

NOd() e LInL..nC0 , to (51). Once the solution to the zero dynamics is found, an

3 integration of the reference dynamics gives rise to a trajectory of the original state through

the inverse coordinate transformation xd =•- (T1 ) and an input trajectory, ud, by

Sequation 
(4.20).

I
I
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I If (ý.d Yd) has a compact support, [to, til, then it is possible to give a geometric

interpretation of the evolution of xd(t) [34]. The noncausal part of the nominal control

drives the internal states of the system along the unstable manifold of the zero dynamics
manifold to a particular initaia condition xd(t0) while maintaining zero system output. This

initial condition guarantees two things: 1) the desired reference output trajectory is easily

reproduced with bounded input and states; 2) the internal states land on the stable manifold

of the zero dynamics manifold at the end of output tracking. With this nice final condition,

the internal states will converge to zero along the stable manifold without affecting the

output.

Conclusions
We have introduced a new nonlinear operator whose application in nonlinear

inversion yields a clear connection between unstable zero dynamics and noncausal

inversion. When noncausal inversion is incorporated into tracking regulators, we can see

that it is a powerful tool for control -- particularly when computation is considered. An
important fact is that a given system model defines different input-output operators

depending on how boundary conditions are applied. For the study of feedforward control,

boundary conditions at infinity give a useful perspective on a system. We have considered

only the case of hyperbolic zero dynamics. Cases where zero dynamics have a center

manifold or a hyperbolic orbit should prove interesting as well.

I
I
I
I
I
I
I
I
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Abstract. After a general review of the methods currently available for the dynamics of constrained multibody
systems in the context of numerical efficiency and ability to solve the differential equations of motion in singular
positions, we examine the acceleration based augrented Lagrangian formulations, and propose a new one for
holonomic and non-holonomic systems that is based on the canonical equations of Hamilton. This new one proves
to be more stable and accurate that the acceleration based counterpart under repetitive singular positions. The
proposed algorithms ar numerically efficient, can use standard conditionally stable numerical integrators and do
not fail in singular positions. as the classical formulations do. The reason for the numerical efficiency and better
behavior under singularities relies on the fact that the leading matrix of the resultant system of ODEs is sparse,
symmetric, positive definite, and its rank is independent of that of the Jacobian of the constraint equations. The
latter fact makes the proposed method particularly suitable for singular configurations.

Key words: Constrained multibody systems, penalty and augmented Lagrangian method, holonomic and non-
holonomic constraints, canonical equations of Hamilton.

1. Review of Current Approaches for Multibody Dynamics

Computer systems, while increasing tremendously in power in recent years, are so affordable
nowadays, that their use have become widely spread in many different fields and for a
number of applications. The computer kinematic and dynamic analysis of multibody systems
is increasingly being used in fields such as the automobile industry, aerospace, robotics,
machinery, biomechanics, etc., and it has been receiving considerable attention recently,
as seen by the amount of literature on multibody simulation and computer aided analysis
programs being sold in the market of engineering software. Nevertheless, there is an increasing
demand for faster and more reliable simulations that must be based on more efficient and robust
algorithms for multibody dynamics.

The dynamic analysis of multibody systems is a process which is most appropriately
performed using interactive (rather than batch) type of analysis. The analyst is interested in
visualizing a whole set of successive responses of the multibody, a simulation of its behavior
and operation over all the mechanism workspace and over a certain period of time. In certain
cases it may be even necessary to introduce the engineer as an additional element in the
simulation, called "man-in-the-loop", who may act by introducing external forces or control
over specific degrees of freedom. In any case, each response over a time step needs to be
calculated and displayed at the highest speed possible in order to give a picture that will
possibly resemble the actual motion of the system in both time and space: the real time
behavior.

While it is important for multibody dynamic simulations to have fast and accurate inter-
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2 E.BayoandA.Avello

active graphical interfaces, it is essential that the computer software relies on good numerical
algorithms that will permit a fast and reliable solution of the resulting algebraically constrained I
differential equations of motion. Consequently, it becomes very important that numerical
efficiency and stability be combined with robustness so that the simulation does not reach
dead-lock situations due to singularity positions in the multibody motion.

In recent years, some important advances have been made in the development of new
formulations for multibody dynamics. Some formulations, stemming mainly from the robotics
field, have been especially conceived for real-time simulation and are based on the recursive

computation of some or all of the terms in the equations of motion [1-4]. Some of these
algorithms are O(N) meaning that the number of floating point arithmetic operations grows

linearly with the number of degrees of freedom. Others require the solution of a system of

N linear equations and, therefore, are of order O(N 3 ) (if Gaussian elimination is used).
Although it has been demonstrated by Featherstone [3] that the best O(N 3) algorithms are
faster than the best O(N) algorithms for N < 10, the elegance and attractiveness of the
O(N) Featherstone's formulation has exerted a strong influence on later developments that
have generalized these ideas for non-serial (tree-configuration) and closed-loop systems [6-71.
A limitation arises when closed-chain multibodies are analyzed, since for these cases special I
provisions must be made to account for the reaction forces between the different loops [6).

The second group of methods encompasses those that reduce the equations of motion in
dependent coordinates to a minimum set of independent ones via a transformation matrix
obtained from the nullspace of the Jacobian of the constraint equations. Different methods

of choosing the independent set of coordinates and generating the transformation matrix
have been proposed [8-14). The concept of velocity transformations, initialJy introduced by I
Jerkovsky [ 151, has been subsequently extended into efficient algorithms [ 16-19] that avoid the
Jacobian factorization, and allow for an efficient and simple way of generating the equations
of motion in independent coordinates in a way that can be fully parallelized [191. m

The classical way to generate the equations of motion is to use dependent (or absolute)
coordinates to generate and solve the equations of motion [14]. These algorithms are based
on the classical Lagrange's formulation which leads to a set of differential and algebraic
equations (DAE) of motion with the coordinates and multipliers as unknowns. The solution of
these equations require special techniques [201 whose merit has not been thoroughly calibrated
yet for the integration of multibody systems. A way to avoid the DAE is by differentiating
the constraints. The resulting constraint violations am commonly stabilized using the method
proposed by Baumgarte [21]. An extension for violation stabilization of holonomic systems
based on the use of the canonical momenta has been proposed in [221.

Although the methods described above are well established (some of them very efficient
numerically), they can not directly handle redundant constraints. In fact these have to be
eliminated prior to the dynamic analysis. In addition they all fail to give successful solutions
when the multibody undergoes a singular position. A partial solution to the problem of singular
positions was provided in [23] where a method is developed that detects the ill-conditioning of
the Jacobian matrix so that the integrator can step over it. In [24-251 a regularization method
is proposed to cope with singularities. The main idea consists in adding to the vanishing and I
the linearly dependent constraints their third derivatives, and this turns the Jacobian non-
singular. A staggered stabilization approach was presented by Park and Chiou [26] which
was later refined by means of an explicit-implicit integration procedure [271. This method I
integrates two different sets of equations one for the coordinates and another for the Lagrange
multipliers, and avoids the singular position problem of the equations of motion. A small

I



Singularity-Free Augmented Lagrangian Algorithms 3

limitation, however, is that it requires the inversion of the mass matrix, which is in general
semi-positive definite and may not have an inverse in certain instances (in particular when
redundant dependent coordinates are used).

Bayo, Garcia de Jalon and Sema proposed a penalty method [281 by which the acceleration,
velocity and position constraint conditions are added to the equations of motion as a "dynami-
cal penalty system" to obtain a simple and efficient formulation for the dynamic equations. The
appeal of this formulation lies in two main points. Firstly, it leads to a reduced set of equations
in the form k = g(y, t) that can be integrated by standard conditionally stable numerical
algorithms, without the need of further stabilization techniques to control the violation of the
constraints during the integration process. Secondly, unlike the classical methods which rely
on the Jacobian, this penalty formulation leads to matrices that can be inverted even in singular
positions, and in the presence of redundant (linearly dependent) constraints and coordinates.
Important theoretical studies of its convergence and stability have been carried out in [29] and
L301. The penalty method of [281 has also been successfully extended to real time dynamics
within the context of fully Cartesian coordinates in [311. There, it has been shown that the
penalty method requires the factorization of a symmetric matrix that is dominated by the terms
in the main diagonal (no pivoting is required), and is strongly banded, feature that makes it
an order n method, where n is the number of coordinates. In addition, the different steps of
the algorithm can be parallelized, making this method suitable for very large systems.

It was also proposed in [28] a more complete and accurate augmented Lagrangian method
(combination of the penalty formulation and Lagrange's multipliers), which allows for con-
vergence independently of the penalty values and which yields the constraint forces (Lagrange
multipliers) as a by-product without having to integrate additional equations. In this paper we
examine this augmented Lagrangian formulation within the context of singular positions and,
in addition, propose a new one based on the use of the canonical equations of Hamilton that
is even more stable and numerically efficient than the previous one.

2. Preliminaries on the Classical Formulations

2.1. ACCELERATION BASED LAGRANGE'S MULTIPLIER FORMULATION

Let us consider a multibody system whose configuration is characterized by n generalized
coordinates q that are interrelated through the m holonomic kinematic constraint conditions

*(q, t) = 0 (1)

Let L be the system Lagrangian. defined by L = T - V, where T and V are the kinetic
and potential energy, respectively; and let Q be the vector of external and non-conservative
forces. The Lagrange equations of such a system can be written as [32]

d (8L) - 4L + TA =qI j( -ý+ =Q, (2)

l which for a general multibody system leads to:

M4 + TA =Q+Lq -M , (3)

j where M is the mass matrix, Lq is the partial derivative of the Lagrangian with respect to
the coordinates, Oq is the Jacobian of the constraint equations, Q is the vector of external
and non-conservative forces, and A is the vector that contains the Lagrange's multipliers.I
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Equations (1) and (3) constitute a set of n + m mixed differential algebraic equations (DAE)
of index three [201, wi'h q and A as unknowns. In order to avoid the direct integration of I
DAEs, a double differentiation of the constraints equations may be carried out, which along
with the Baumgarte's stabilization [21] yields: I

][q Q -- ql -- • - M4 -bol (4)

where a and b are the stabilization constants. These equations can now be integrated using i
standard numerical integrators [331 with each function evaluation performed using equation
(4). i

2.2. LAGRANGE'S MULTIPLIER FORMULATION IN CANONICAL FoRM

The definition of the conjugate or canonical momenta can be taken from classical mechanics
[32)

9L
p() I

along with the Hamiltonian

H = pTil - L. (6) 3
The canonical equations of Hamilton for a constrained system are formulated as

=H (7a)

-= q q (7b)

In the case of multibody systems the Lagrangian L is defined in terms of q, q and t, and rather
than following a lengthy process to form the Hamiltonian as an explicit function of q, p and I
t, and then differentiate as in (7a), the canonical equations can be directly obtained from (5)
and (7b). Since the system kinetic energy is a quadratic function of the generalized velocities,
(5) and (7b) directly lead to the following set of equations in matrix form I

p = M4 (8a)

1 = Lq + Q - O\- (8b)

The combination of (8a-b) and (1) constitutes a system of 2n + m differential and algebraic
equations (DAE), of index two. Note, that although equations (8a-b) have n more equations i
than (3), p can be obtained explicitly from (8b). In addition, index two DAEs are better
behaved than index three DAEs [201, and therefore the consideration of equations (8a-b) may
be numerically more advantageous than (3), when using algorithms for the solution of the 3
mixed differential algebraic equations.

In order to avoid the mixed differential and algebraic equations, the system Lagrangian is
modified in (221 and [341 to include the kinematic velocity constraints as i

V = L + 4To', (9) I
I
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wht,'e a are the new Lagrange multipliers. The new Hamiltonian is H = pT4 - V and the
application of (3) and (5b) leads to

p wM 4 + 4,T (10a)

Pnew Lq + Q + (lOb)

that along with

4 + t = tql+ -6t + -It = 0(11)

constitutes a set of 2n+m ordinary differential equations (ODE), with p, q and a as unknowns.
The real constant y provides asymptotic stability of the stabilization scheme. It can be very
easily verified by differentiation of (10a) and substitution in (10b) that & = A.

It is worth mentioning that only the following n + m equations need be solved at each time
step in the numerical implementation of the algorithm:[q 0fl{ }={: new} (12)
The numerical simulations of [341 show that since only the first time derivative of the con-
straints is used, the integration of this equations is more efficient and more stable, than the
acceleration based counterparts.

2.3. REDUCTION TO AN INDEPENDENT SET OF COORDINATES

The other widely accepted group of methods for multibody dynamics is based on the use
of a transformation matrix R that will reduce the equations of motion to a minimum set of
coordinates. The matrix R is obtained from the concept of the nullspace of the Jacobian,
and allows one to express equation (3) in terms of an independent set of coordinates. The
procedure starts by differentiating the constraint equations 4?(q) = 0. that for simplification
purposes we assume are sclerenomous, to obtain

tq4 = 0. (13)

It may be seen from equation (13) that q belongs to the nullspace of the Jacobian tq. The
dimension of the nullspace is equal to f, where f is the number of degrees of freedom of
the multibody system. We can always express q as a linear combination of the vectors of a
nullspace's basis, in the form

(14)

where R is an n x f matrix whose columns constitute a basis of the nullspace, and z are
the f independent velocities. Since R constitutes a bas:s of the nullspace of the Jacobian,
it satisfies the relationship lqR = 0. The matrix R may be obtained from the Jacobian by
projection methods using Gauss factorization [81, the singula, ,alue decomposition [9] or the
QR method [ 10]. It can also be obtained more efficiently by velocity transformations [15-19].
The substitution of (14) into (3) and premultiplication by RT yields:

RTM R i = RT(Q+ Lq - Mqi) - RTM Ri i (15)

from which i can be calculated. An extension of this method within the setting of canonical
equations has been proposed in [351, where the same leading matrix is obtained.
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Fig. 1. Slider-crank mechanism. 3
I
i

Fig. 2. a. Slider-crank mechanism motion. b. Rotating bar -iotion.

2.4. WHY THE CLASSICAL FORMULATIONS FAIL IN SINGULAR POSITIONS 1
As mentioned before, a singular position is encountered when the multibody reaches a config-
uration in which there is a sudden change in the number of degrees of freedom. For instance, I
a slider-crank mechanism as the one shown in Figure 1, reaches a singular position when
the two links am in vertical position. In that configuration, both links are coincident and the
mechanism has not one but two degrees of freedom. These two degrees of freedom corre- I
spond to the two possible motions (bifurcations) that the mechanism can undergo, and which
are illustrated in Figure 2. Figure 2a shows the first possible motion that corresponds to a
slider-crank mechanism, Figure 2b, shows the second motion corresponding to a rotating bar I
(in fact two coincident rotating ban). As may be seen, a singular position implies a bifurcation
point, in which the mechanism can, at least theoretically, undergo different paths.

The existence of a singular position with both, the classical Lagrange's multipliers approach
and the reduction to a set of independent coordinates, is invariably detected when the Jaco-
bian matrix of the constraints becomes rank deficient. These formulations are based on the
decomposition of the Jacobian and since its rank suddenly falls at a singular position, the
decomposition fails and therefore no solution can be found. The simulation then crashes not
because of the physics of the problem, but because of the inability of the dynamic formulation
to overcome the sudden change in the rank of the Jacobian.

Equations (4) and (12) are the key equations for the solution of the dynamics using the I
Lagrange's multipliers method. Assuming that all the constraints are independent, that is f I

I
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m = n - f, the rank of the leading matrices in those equations is n + m. Since the Jacobian
becomes rank deficient in singular positions, this matrix becomes singular. This means that the
accelerations (or velocities) may not be computed unless special care is taken to eliminate (or
regularize), at that particular position of the multibody system, all the vanishing constraints.
Otherwise, the dynamic simulation crashes at this point. Equation (15) is the alternate key
equation for the independent coordinate method. Again, when a singular position is reached
special provisions have to be made for the computation of the matrix R.

If a singular position is not exactly reached, the leading matrix of both classical methods
will not be strictly singular, but near singular, with a very high condition number. If this
situation is not correctly tracked, the integration and round-off errors will be amplified and
the resulting solutions may be totally erroneous.

It is important at this stage to emphasize the difference between a singular Jacobian and a
singular position. While a singular position always implies a singular Jacobian, the converse
ijs not always true. A Jacobian can become singular when redundant constraints are present,
a dead-lock position is reached, or, when the coordinate partitioning between dependent and
independent coordinates is not made properly or has not been updated for a while. Contrary

I to the case of a singular position, these singularities can be easily avoided and the simulation
may proceed smoothly. The difference between singular Jacobian and singular positions can
be better understood by partitioning the columns of the Jacobian 0q into two submatrices

I *Iiqd and ' q i, corresponring to the dependent and independent coordinates, respectively.
This partition is made so that $qd has full row rank. When $qd is rank-deficient but 4q has
full row rank the singularity is easily avoidable since the full rank of 4ýqd can be recoveredU by a new suitable choice of independent coordinates. However, at a singular position 4'q
looses rank all of a sudden, and the singularity may only be avoided by eliminating the non-
active constraints. As pointed out in [251 if these non-active constraints are eliminated in the
neighborhood of the singular configurations the corresponding constraint forces become zero
and this may result in a fast deviation of the simulation from the constrained behavior.

3 3. Acceleration Based Augmented Lagrangian Formulation

3. 1. DESCRIPTION OF THE METHOD

For the sake of completeness and in order to facilitate the understanding of the methods
proposed in sections 4 and 6, we present in this section the augmented Lagrangian method
introduced in [281. Later we.will address its behavior in singular positions. Given a multibody
system with holonomic constraint equations of the form given in (1), which represent a set of
nonlinear algebraic equations in the coordinates and the time variable. The penalty-augmented
Lagrangian formulation proposed in [281 is derived by adding to the Lagrangian two terms: a
fictitious potential

V'=Z ak W 2_=$Ta n2$ (15)

and a fictitious kinematic energy term

T* = ' (dk \ 2 - Tr j (17)I 2
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A set of Rayleigh's dissipative forces is also added to the system 3

G:= - 2 _k wk = -2a fljs (18)Gk -2k l, ~kdt -

where ak are large positive real values (penalty numbers), and wk and Ak represent the natural I
frequency and the damping ratio of the dynamic penalty system (mass, dashpot and spring)
corresponding to the constraint Ok = 0. Matrices a, f] and A are m x m diagonal matrices
that contain the values of the penalty numbers, the natural frequencies and the damping ratios
of the penalty systems assigned to each constraint condition. If the same values are used for
each constraint these matrices become identity matrices multiplied by the respective penalty
numbers. Note that in equations (16) through (18) we have used both index as weli as matrix I
notation, hoping that this will lead to a better understanding of the physical significance of
the different terms. In the following discussion we will only use the matrix form in order to
be consistent with the notation used so far in the paper. I

The differentiation of the new Lagrangian leads to

aL*
=- Lq + -Ta (19) 3
.= M + -Ea (20) 3

t(_- ) W+ q+ q(21) I
where the relation 6 = j1T which can be easily verified, has been used. L is the Lagrangian

corresponding to the system without constraints.
The work done by the fictitious Rayleigh forces is
6 WR = -2(60)Tc 0 p 6 = -26qTI'a q p 6. (22) 3

Therefore the final expression obtained by the application of the Lagrange's equations (3) is

M( + 2nu-6 q =Q+Lq - 1dl, (23) 3
where A* are the new Lagrange multipliers of the modified system. Note that the second term
in the LHS of equation (23).represents the projection in the direction of the coordinates q of
all the internal forces that are.generated by. the penalty system when the constraints 0,,6 and
*are violated. Introducing 0 = = qci + Oq94 +-, the final result is obained

(M + 9~Q~) f, +.DI\

This equation may be viewed as the "generic penalty method" [281 to which the Lagrange's
multipliers are added. As clearly shown in [28] this augmented Lagrangian formulation allows
the analyst to choose from a wide range of penalty values that assure convergence and avoid
numerical ill-conditioning. As we will see later, the solution provided by this method is not
sensitive to the value taken by the penalty factor, and therefore, equation (24) represents and I

I
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elegant and attractive way of avoiding the problems customarily attributed to the penalty
formulations.

It is important to note that there is a very important difference between equation (24)
and the classical dynamic algorithms represented by (4) and (15). As we indicated before,
the leading matrices of the latter equations become singular in singular positions. However,
although the mass matrix M is in general positive semi-definite, it is always strictly positive
definite in the nullspace of the Jacobian matrix. Therefore, a look at equation (24) reveals that
its leading matrix (M + 0 qT aq) is always positive definite, which means that it can always
be factorized, even in singular positions and/or with linearly dependent constraints. In practice,
the augmented Lagrangian formulation is superior to the generic penalty method since the
former allows for smaller values of the penalty parameter, hence, for a better conditioning of
the leading matrix.

In equation (24) the Lagrange's multipliers A* play the role of correcting terms. In the
limit the constraint conditions are satisfied, thus A = A* and equations (4) and (24) become
equivalent except for round off errors induced by the penalty parameter and finite machine
precision. By comparing those two equations one can infer that

A t_ý A* + a (41 + 20,Aý + f120). (25)

We are seeking the solution of (24) without having to use the algebraic constraint equations
(1). This requires that the correct values of A* be know, so that they can be inserted in (24).
Since those values are not known in advance we need to set up an iterative procecs that
calculates the unknown multipliers A*. The iteration is easily established by taking advantage
of equation (25)

A + a (4 + 2fl4 + nl20)i+l, i = 0, 1,2,... (26)

with A• = 0 for the first iteration. Equation (26) physically represents the introduction at
iteration i + I of forces that tend to compensate the fact that the addition of all the constraint
terms are not exactly zero. It rnms out that with the augmented Lagrangian formulation, the
penalty numbers do not need to be very large (thus leading to a better numerical conditioning)
since the resulting error in the constraint equations will be eliminated by the Lagrange's terms
during the iteration procedure. Also note that the "generic penalty" [28] method corresponds
to the augmented Lagrangian formulation in which the iteration process is only carried out
once.

The matrix formulation of (24), including the iterative process defined in (26), is given by
the following expression:

(M+O Ta~q) c+ Mqi - OTC, (6q4 + 4t + 2flts- + n 2o)

i = 0, 1,2,... (27)

where the subscript i represents the iteration number, and M q,. = Q+Lq - Mqi for the

initial iteration. Equation (27) may be used to iterate until j14(i+') - 40(i) 1 <r. where e is a
user-specified tolerance.

The main advantage of using equation (27) is that the penalty terms are in fact used as an

intermediate tool in order to compute the Lagrange's multipliers for which no new equations
are integrated: only n equations are solved in the integration process. Therefore, the value of

the penalty factor a does not affect the solution, but only the convergence rate. ExperienceI
U
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shows that when the constraints are scaled to unity, penalty factors ranging from 10& to 107

give a good convergence rate, and only 2 to 4 iterations are required to converge to the machine
precision, in double precision arithmetic.

Note that the added cost of using equation (27) to refine the solution and obtain the
Lagrange multipliers is fairly small, since its leading matrix remains constant during the
iteration process needed for a function evaluation. Therefore, at each iteration step only the
computation of the independent term and a forward and a backward substitutions are required.
The numerical implementation of the algorithm using standard integrators [33], available in I
commercial mathematical libraries, is rather simple and may be described as follows

ALGORITHM ALFI
Given q and q at time step I.

1. Use (27) iteratively to solve for q, with M qv0 = Q + Lq - Mq for the initial iteration.
At the end of each iteration use (26) to calculate the Lagrange multipliers A*, if desired

2. Call the numerical integration subroutine (n.i.s) to compute q and q at time step I + 1.
3. Upon convergence of the n.i.s update the time variable and go to step 1.

We have used this algorithm very successfully in multibody dynamics simulation and has
turned out to be very efficient and accurate. However, we have noticed that under repetitive
singular conditions this algorithm may lead to unstable behavior (see examples below) due to
the accumulation of small violations of the constraints during the integration process. This lead
us to propose a more robust augmented Lagrangian method based on the canonical equations
of Hamilton that is presented in the next section.

4. Augmented Lagrangian Formulation in Canonical Form 3
4.1. BASIC AUGMENTED LAGRANGIAN FORMULATION IN CANONICAL FORM

Let us consider equation (9) as the starting point to build a modified Lagrangian that will not
only contain the Lagrange multipliers a but also the penalty terms of the previous section.
Accordingly:

V = L + I T, -- l ,T + 4Ta*. (28) I
22

In the limit when the constraint conditions are satisfied, the penalty terms vanish and a = i*.'

Similar to the Lagrange's formulation &* = A* and after the augmented Lagrangian iteration

when the constraints are satisfied to machine precision 6 = A. The differentiation of LV with
respect to q leads to the following new canonical momenta in matrix form

+L" 0 Taf+ DTO•*, (29)

p -' 7- = q q + I
where we have eliminated the subindex 'new' of (lOa) forpractical convenience. The modified
Hamiltonian can be written as H* = pTq - LV and the use of (7), including the Rayleigh

forces of(18), leads to

[M + 'TT@aq] q = p - bTap, + 4ýTo. (30a) I
I
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4ý Q Lq q (02,6 + 20,u42) + (30b)

"Equations (30a-b) constitute a set of 2n first order ordinary differential equations. However,
p is given in explicit form, and therefore only n algebraic equations need be solved at each
function evaluation for the numerical implementation of the algorithm.

Our numerical simulations have shown that equations (30) tend to be numerically stiff due
to all the penalty terms concentrated in the RHS of (30b). This numerical stiffness limits the
possible choices of numerical integrators. Standard ODE integrators [331 that are based on
conditionally stable predictor-corrector multi-step formulae, lead to an increased number of
function evaluations. We propose in the next section a modification of (30) that circumvents
this problem.

3 4.2. MODIFIED AUGMENTED LAGRANGIAN FORMULATION IN CANONIcAL FORM

"the canonical equation (30a) may be also written as

p=M4+ i+4 cr*, (31)
which indicates that the canonical momenta is stabilized through the addition of penalty
terms that are proportional to the violation of the velocity constraint equations. It is important
to realize that if equation (31) is differentiated and substituted into the acceleration based
augmented Lagrangian equation (24) the result is precisely the additional canonical equation
(30b), which lead us to see that the canonical equations originate from the acceleration based
equations by the mere canonical transformation indicated in (31).

However, we can achieve a better stabilization of the canonical momenta if we add to the
RHS of (31) two additional penalty terms: one term proportional to the constraint violation
and the other to its integral. Accordingly we define a new momenta p asE P=q+J > (32)

By expanding the term 4 equation (32) becomes:

U( + 4q) P _ .4)ý7 (ýt + 2A00 +n2j t~dt) _ .$T'&'. (33a)

The differentiation of (33a) and substitution into (24) leads to the second set of modified
canonical equations

P QLq 4ba(20,w4.+ ' fdt) q (33b)

which along with (33a) constitute a set of 2n first order ordinary differential equations in the
unknowns p, q and e'. Again only n algebraic equations need be solved at each function
evaluation for the numerical implementation of the algorithm. A very important point is that,
contrary to equations (30a-b), equations (33a-b) do not become stiff, and all our numerical
experiments show that they even provide more numerical accuracy and better constraint
stabilization than the acceleration based formulation of equation (24).

In fact we can compare this set of equations with the n secend order ordinary differential
equations resulting from the acceleration based formulation of (24). While both formulations
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require the triangularization of the same leading matrix for each function evaluation, there
is a serious advantages in the use of (33a-b) as compared to (24): the kinematic constraint I
conditions are differentiated only once with the canonical procedure (twice in the acceleration
based formulation) and this will lead to lesser violations of the constraints. We will see in the
numerical simulations of Section 6. how this factor becomes detrimental for the acceleration
based formulation under repetitive singular positions, whereas the canonical approach leads
to a much better performance.

Note again, that the multipliers a* do not need to be solved for explicitly. Following the
same procedure as that used with the acceleration based augmented Lagrangian formulation,
the a* may be obtained in an iterative manner as:

=+ 4d , i = 0, 1,2,... (34)

with oro= 0 for the first iteration. Equation (33a) including the iterative process of (34) I
becomes

(M + b~ca4'q + Mci6 _ 4KT¾ (4't +2il'+2J dt)3
q,, q++) q+ -- 2,4C + C12. Ib

i =0, 1,2,... (35)

with M qo = p for the first iteration. Equation (35) shows that the velocity calculation at 3
each function evaluation is refined so that the weighted summation of the constraint equations
(34) are satisfied to machine precision. After the velocity calculation equation (33b) may be
used to evaluate the derivative of the canonical momenta. 1

The algorithm may be presented as

ALGORITHM ALF2
Given p and q at time step 1.

1. Use (35) iterativeiy to solve for 4, with M qi = p for the first iteration. At the end of
each iteration use (34) to calculate the Lagrange multipliers a*

2. Use (33b) to compute 1 explicitly (no solution of equations involved).
3. Call the numerical integration subroutine to compute p and q at time step I + 1.
4. Upon convergence of the n.i.s. I

"* If desired, use a differentiation scheme to obtain A = &
"* Update the time variable and go to step 1.

This algorithm is as efficient numerically as ALFI but much more stable under repetitive
singular positions.

5. Canonical Augmented Lagrangian Formulation for Non-Holonomic Systems

The modified augmented Lagrangian formulation described above may also be extended to
non-holonomic systems with constraints of the form I

t (4,q,t) = 0. (36)

The acceleration based augmented Lagrangian formulation for this type of constraints is: 3
M4. = Q + Lq - llq Ta (4• + 0ý) _ 4T\.. (37)

I
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In order to obtain the canonical counterparts we follow a procedure similar to that used for
the holonomic case, and establish the following canonical transformation:

M4+4T ý+ 47 ýo* (38a)

which indicates that a better stabilization of the canonical momenta may be achieved by
considering one penalty term proportional to the constraint violation and other to its integral.
The differentiation of (38a) and posterior substitution into (37) leads to the second set of
canonical equations

which along with (38a) constitute a set of 2n first order ordinary differential equations in the
unknowns p, q and a*. Again only n equations need be solved at each function evaluation.

Typically, non-holonomic constraint conditions for multibody systems take the following
form

t = A(q, t) 4 + B(q, t) (39)

and consequently the application of (38a-b) leads to

(M+ATocA) il=p - Ta(B + f4bdr)-A ° (40a)

P=Q+L. +ATQ( fdT)+ We (40b)

I and

or.+, =O' + 0+0 f.dr , i=0,1,2,... (41)

with uj = 0 for the first iteration.

I 6. Numerical Examples

6.1. A SIMPLE EXAMPLE

To better understand the application of the augmented Lagrangian formulation in singular and
non-singular positions, let us consider the slider-crank mechanism shown in Figure 1. Both
links are of length I = Im, with a uniformly distributed mass of m = 1 Kg. We take as position
coordinates q, the x and y coordinates of the crank end, and the x coordinate of the slider,
thus qT = {x1, Y1, X2 }. We consider the gravity force, with avalue g = 9.81 m/s2 acting in
the negative Y axis direction.

The 3 x 3 mass matrix corresponding to these variables isi , [4 0 ]
M=- 040

6 11021I
I
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Table 1. Convergence rate with 3

= le

Iteration # Error

1 65792 10-4
2 4.3705 10-8
3 2.92M6 1--"
4 1.6107 10-14

I
This mechanism has one degree of freedom only, and therefore there are two geometrical
constraints that correspond to the constant distance conditions

il- (X2 _ 112 y

When the crank forms an angle of 7r/2 radians with the horizontal, the coupler is coincident
with the crank and the crank axis is also coincident with the slider. In this position the
mechanism has two instantaneous degrees of freedom, since it can undergo either the motion
of a slider-crank or the motion of two superimposed rotating bars. Let us now apply the
algorithm ALFI for the instantaneous solution of the accelerations, for both a nonsingular
position and a singular position.

Nonsingglar Position. Consider the mechanism in an initial position in which the crank forms
an angle of ir/4 with the horizontal and in which the slider has a velocity i2 = -2 m/s. The
exact acceleration has been computed first with the classical Lagrange's multiplier method of
equation (4). Then, the accelerations have been calculated with the algorithm ALFI, using
equation (27) iteratively, with a value a = 104. Table I shows the norm of the difference
between the exact acceleration and the one obtained with ALF1. I

Table I also shows that the convergence rate of the iterative algorithm is considerably fast.
'Ilus rate agrees with that pwdicted analytically in [361. A higher penalty value gives a faster
convergence rate but a lower precision. For instance, a value of * = 107 yields an error of the
order of 10-12 in one iteration, however, further iterations are unable to improve the solution,
since some precision is lost in floating point arithmetic operations between numbers with
exponents of significantly different values. I
Sjngan Posid Now, consider the crank in a vertical position, forming and angle of 7r/2
radians with the horizontal. As we did in the nonsingular case, we take again a slider velocity 1
value i2 = -2 m/s. Since the mechanism is in a singular position with 2 instantaneous degrees
of freedom, we also have to specify the horizontal velocity of the crank end. It can be easily
shown that, theoretically, the crank end can have any velocity value xi = v. However, the
slider-crank motion must satisfy the condition x1 = x2/2 over all its motion, and therefore
the velocity it = -1 seems the obvious choice. Note that in this example the choice for the
crank-end velocity is being made explicitly, but dwing a dynamic simulation the numerical
integrator will provide the value of the crank-end velocity. Since the integrator assumes a
continuous variation of the variables, this condition will be automatically guaranteed. I

I
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lpIn this case, the exact acceleration value cannot be computed with equation (4) because theleading matrix is singular. However, the application of equation (27) with a value of a = 104

leads toi2
30 0

2(104+1) {}, {(2(10)4+9I1 i 2 0

which can be inverted and leads to the solution (0, -1.000473825436242729, 0). After 3
iterations, the result is (0, - 1, 0), accurate to 14 digits.

This simple example clearly and simply illustrates that the penalty-augmented Lagrang-
ian formulation works in singular positions, when the classical formulations, such as the
Lagrange's multipliers method or the reduction to independent coordinates, fail. Also note
that the condition number of the leading matrix increases at the same rate as the penalty
parameter.

6.2. DYNAMIC SMULATION OF THE SLIDER-CRANK MECHANISM

Let us consider again the same slider-crank mechanism of Section 6.1, in an initial position
such that the crank forms an angle of ir/4 radians with the X axis and that the slider's velocity
is it2 = -4 m/s.

We perform a dynamic simulation by integrating the equations of motion for a total of 10
seconds, using a conditionally stable variable step and order integrator based on predictor-
corrector multistep formulae [33]. We set the error tolerance to 10- and choose as penalty
parameters a = 107, 0 = 10 and # = 1. During the simulation, the mechanism goes through
the singular position 11 times, following a periodical response.

First, the simulation was carried out with the acceleration based algorithm ALFI. Figure 3
shows the X acceleration of the crank-end over the time period of 10 seconds. Figure 4 shows
the value of the Lagrange multiplier Aj, corresponding to the constant distance constraint
condition between the crank axis and the crank end. Finally, Figure 5 shows the time history
of the total energy, which should be kept constant, since the system is conservative. A very
interesting point can be noted in Figures 3, 4 and 5. The value of the acceleration of the
crank-end and A, present spikes around t = 9.25 s and, at the same time, the energy presents
a sudden discontinuity. The cause of this phenomenon is a small violation of the constraints
around the singular position, due to the combination of the errors produced by the numerical
integration routine and by the round-off erors produced by augmented Lagrangian procedure.
These errors are more critical'in the acceleration based algorithm ALFI because the constraint
equations are differentiated twice.

The simulation was repeated, this time using the algorithm ALF2, with the same errorI tolerance and values for the penalty parameters. This time, the values of AI and the crank-end
acceleration, illustrated in Figures 6 and 7, no longer show the spikes resulting from ALF1.
In addition, the total energy, shown in Figure 8, does not show the sudden discontinuity that
results in Figure 5.

The accumulation of integration errors that lead to small constraint violations in the
neighborhood of the singular position is the cause for the sudden peaks and jumps in the
constraint forces and accelerations produced by ALF I. These can be removed by tighter error
tolerances in the integrator. The better results obtained under the same conditions with ALF2
are due to its better constraint stabilization properties.
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Fig. 3. Acoceeration of the crank end with ALF1.
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Fig. 4. Lagrange's multiplier with ALFI.
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Fig. 6. Acceleration of the crank end with ALF2.
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Fig. 7. Lagrange's multiplier with ALF2.
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I

18 E. Bayo and A. Avello I
12 3

I

Fig. 9. Assembly of two four-bar linkages.
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Fig. 10. Tune history of zx with ALFI. 3
6.3. AN ASSEMBLY OF TWO FOUR-BAR LINKAGES

Figure 9 shows the initial position of a one degree-of-freedom assembly of two four-bar
linkages. This mechanism constitutes a particularly critical example, because when it reaches
the horizontal position the number of degrees of freedom increases instantaneously from I to 3.
To define the position of the system, we use the 6 position variables (xi, yl, X2, Y29, z3, s).
All the links ame of length I = 1 m and have a uniformly distributed mass m = I Kg. The
gravity force acts in the negative Y direction, with a value g = 9.81 m/s2 . At t =0 the initial
velocity is -+ = 1. We integrate the motion for 10 seconds, using the same integrator and
tolerance as before, and the values a = 107, Q = 10 and p = I for the penalty parameters.

The analysis was carried. out twice, faist with the algorithm ALFM and then with the
algorithm ALF2. The results obtained with ALFI are displayed in Figures 10 and 11, which
show the time variation of the coordinate xi and the Lagrange multiplier A1, corresponding to
a constant distance constraint between point 1 and the fixed end of the leftmost link. Figures
12 and 13 show the variation of the same variables, obtained this time with the algorithm
ALF2. As may be seen, the solution with ALFI becomes unstable after 3.3 seconds, while
ALF2 gives congruent results.

The rason for the failure of ALFI and the success of ALF2 are found again in the better
stability properties of ALF2 with respect to constraint violations (it even yields a successfull
integration when just the generic penalty formulation is used with no augmented lagrangian
iteration). The way ALFI may be improved, if it is to be used in repetitive singular positions, I
is by setting tighter error tolerances and rising the value of the parameter f. However, this will I

I
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Fig. 11. Lagrange's multiplier with ALFI.
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Fig. 12. Tume history of zx with ALF2.
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Fig. 13. Lagrange's multiplier with ALF2.
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introduce numerical stiffness in the problem and therefore will increase the computational
effort. In rhi example, the value of w = 20 solves the problem satisfactorily at the cost of a 1leng~her integration.

7. Conclusions I
In this paper we have concisely reviewed the state of the art in multibody dynamic simulation.
We have also revisited the acceleration based augmented Lagrangian formulation in the context
of sinr.dar positions (ALFI) and proposed a new one based on the canonical equations I
of Hamilton (ALF2) for both holonomic and non-holonomic systems. Both formulations,
ALFM and ALF2, successfully solve the simulation problem in singular positions, however
the canonical formulation ALF2 proves to be more accurate and robust than ALF1 under
repetitive singular configurations.

The advantages of the proposed method can be summarized as follows:

"* The met-.d is very simple to implement and can use standard off the shelf conditionally
stable numerical integrators such as those available in commercial mathematical libraries.

"* The fact that the leading matrix of the equations of motion is always positive definite,
symmetric and sparse, allows for a very efficient solution of the equations without the
use of pivoting. This applies even in the presence of redundant (linearly dependent)
constraints and coordinates, and most importantly in singular positions. I

"* Both the generic penalty and augmented Lagrangian methods do not require special pro-
visions such as, detection, elimination of constraints or regularization, near the singular
position. The integration goes through the singularity in a procession manner with no u
need for additional changes.

"* The Lagrange multipliers (reaction forces at the constraints) are obtained without having
to integrate additional equations.

"• The leading matrix is strongly banded, feature that in principle makes it an order n
method, where n is the number of dependent coordinates. Therefore it may become a
very efficient formulation for those systems with a large number of multibodies, although
this assertion needs to be corroborated by further research.

"* The acceleration based formulation ALF1 shows numerical inestabilities une,!r repetitive
singular positions that are due to the accumulation of round-off and constraint errors.
These can be circumvented with tighter tolerances and increased values in the frequency
of the dynamical penalty system at the expense of additional computational cost.

"* The canonically based method ALF2 is more ubust and has not shown pathological
behavior in any of our simulations (even when we used it in the generic penalty way).
The-! authors do not know of any other algorithm that can simulate the motion of a
multibody undergoing repetitive singular positions as ALF2 does.

As a final remark, one must keep in mind that the actual behavior of multibody systems
around singular positions is physically uncertain, due to the uncertainty in the manufacturing
tolerances. It is, therefore, unlikely that the behavior of the systems simulated with the
algorithms presented in this paper may be experimentally reproduced. However, the usefulness
of the algorithms and numerical results presented herein is twofold. Firstly, they provide an i
efficient and reliable tool for multibody dynamics, which avoids the program crashing that

l
I
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occurs with the classical formulations. Secondly, these algorithms become useful for the study
of the different alternative motions that a multibody system may undergo in the neighborhood
of a singular position, when one or several geometrical parameters are slightly varied to
simulate manufacturing errors.

Acknowledgments

I The partial support of this work by the Air Force Office of Scientific Research under contract
#F49620-91-C-0095, and the NATO travel grant 0877-87 that has allowed team cooperatiun
between the University of Navarra and the University of California are greatly acknowledged.
The authors wish to thank Dr. Chang and Dr. Wu of the AFOSR for their interest in our work,
and Prof. Andrew Kurdila for his helpful comments.

I References

1. rmstrong, W. W., 'Recursive solution to the equations of motion of an N-link manipulator', Proceedings 5th
World Congress on Theory of Machines and Mechanisms 2, 1979, 1343-1346, Montreal. Canada.

2. eatherstone, R., 'The calculation of robot dynamics using articulated body inertias', The International Journal
of Robotic Research 2, 1983, 13-30.

3. eatherstone, R., Robot Dynamics Algorithms, Kluwer Academic Publishers, Boston, MA. 1987.
4. alker. M. W. and Orin, D. E., 'Efficient dynamic computer simulation of robotic mechanisms', Journal of

Dynamic Systems. Measurements and Control, ASME 104, 1982, 205-211.
5. ae, D. S. and Hang, E. J., 'A recursive formulation for constrained mechanical system dynamics. Part I: Open

loop systems', Mechanics of Structures cod Machines 15, 1987, 359-382.
6. ae, D. S. and Hang, E. J., 'A recursive formulation for constrained mechanical system dynamics. Part IM:

Closed loop systems', Mechanics of Structures and Machines 15, 1987-88, 481-506.
7. odriguez, G., Jain A., and Kreutz K., 'A spatial operator algebra for manipulator modelling and control',

International Journal of Robotics Research 10, 1991, 371-381.
8. arcfa de Jal6n, J., Unda, J., Avello, A., and limdnez, I. M., 'Dynamic analysis of three-dimensional mecha-

nisms in natural coordinates', Computer Methods in Applied Mechanics and Engineering 56, 1986,309-327.
9. am, N. K., Haug, E. J., and Atkinson, K. E., 'Application of singular value decomposition for analysis of

mechanical system dynamics', Journal of Mechanisms, Transmissions and Automation in Design 107,1985,
82-87.

10. im, S. S. and Vanderploeg, M. I.,'QR decomposition for state space representation of constrained mechanical
dynamic systems', Journal of Mechanisms, Transmissions and Automation in Design 108, 1986, 183-188.

II. iang, C. G. and Lance, G. M.. 'A differentiable null space method for constrained dynamic analysis', Journal
of Mechanisms Transmissions and Automation in Design 109, 1987, 405-411.

12. ehage, R. A. and Hang, E. J., 'Generalized coordinate pvrtitioning for limension reduction in analysis of
constrained dynamic systems', Journal of Mechanical Design 104, 1982 247-255.

13. der, S. K. and Amirouche, F. M. L., 'Coordinate reduction in constrained spatial dynamic systems - a new
approach', Journal of Applied Mechanics 55, 1988, 899-905.

14. uhrer, C. and Schwertassek, R., 'Generation and solution of multibody systems equations', International
Journal Non-Linear Mechanics 25, 1990, 127-141.

15. erkovsky, W.. 'The structure of multibody dynamic equations', Journal of Guidance and Control 1, 1978,
173-182.

16. im, S. S. and Vanderploeg, M. J., 'A general and efficient method for dynamic analysis of mechanical systems
using velocity transfonraations', Journal of Mechanisms, Transmissions andAutomation in Design 108, 1986,

176-182.
17. ikravesh, P. E. and Gim, G.,'Systematic construction of the equations of motion for multibody systems

containing closed kinematic loops', Advances in Design Automation 3, 1989, 27-33.
18. ane, T. R. and Levinson, D. A., Dynamics: Theory and Applications, McGraw-Hill, New York, NY, 1985.

19. arcda de Jal6n, J., Jiminez, J. M., Martin, F., and Cuadrado. J., 'Real-time simulation of complex 3-D
multibody systems with realistic graphics', Real Time integratitc' -"ethodsfor Mechanical System Simulation.
Edited by E. Hang and R. Deyo. NATO AS[ Series 69, 1990, 26 293.

20. renan. K. E, Campbell, S. L., and Petzold, L. R., The Numerical Solution of Initial Value Problems in
Differential-Algebraic Equations, Elsevier, New York. NY, 1989.I

I



22 E. Bayo and A. Avello I
21. aumgarte, J., 'Stabilization of constraints and integrals of motion in dynamical systems', Computer Methods

in Applied Mechanics and Engineering 1, 1972, 1-16. I
22. aumgarte, J., 'A new method of stabilization for holonomic constraints', Journal of Applied Mechanics 50,

1983, 869-870.

23. ark. T. and Haug, E. 1., 'iUl-conditioned equations in kinematics and dynamics of machines', International
Journal of Numerical Methods in Engineering 26, 1988, 217-230. I

24. der, S. K. and Amirouche, F. M. '.., 'Numerical stability of the constraints near singular positions in the

dynamics of multibody systems, C mputers & Structures 33, 1989, 129-137.
25. mirouche, F. M. L. and Chin-Wei, T., 'Regularization and stability of the constraints in the dynamics of

multibody systems', Nonlinear Dynamics 1, 1990, 459-475. I
26. ark K. C. and Chiou J. C., 'Stabilization of computational procedures for constrained dynamical systems',

Journal of Guidance, Control and Dynamics 11, 1988, 365-370.
27. ark K. C., Chiou J. C., and Downer, J. D., 'Explicit-implicit staggered procedure for multibody dynamic

analysis', Journal of Guidance, Control and Dynamics 13, 1990, 562-570. I
28. ayo, E., Garcia de Jal6n, J., and Serna, M. A., 'A modified Lagrangian formulation for the dynamic analysis

of constrained mechanical systems', Computer Methods in Applied Mechanics and Engineering 71, 1988,
183-195.

2.9. urdila, A. J., Junkins, J. L., and Hsu, S., 'Lyapunov stable penalty methods for imposing nonholonomic
constraints in multibody system dynamics', Nonlinear Dynamics, to appear.

30. urdila, A. J. and Narcowich, F. J.,'Sufficient conditions for penalty formulation methods in analytical dynam-
ics', Computational Mechanics, to appear.

31. ayo, E., Garcia de Jal6n, J., Avello, A., and Cuadrado, I., 'An efficient computational method for real time I
multibody dynamic simulation in fully Cartesian coordinates', Computer Methods in Applied Mechanics and
Engineering 92, 1991, 377-395.

32. oldstein H., Classical Mechanics, Second Edition, Addison-Wesley, London, 1980.
33. hampine, L. F. and Gordon, M. K., Computer Solution of Ordinary Differential Equations: the Initial Value I

Problem, W I. Freeman, San Francisco, CA, 1975.
34. ankarani, H. M and Nikravesh, P. E., 'Application of the canonical equations of motion in problems of

constrained multibody systems with intermittent motion', Advances in Design Automation 1, 1988, 417-423.
35. ae, D.-S. and Won, Y. S., 'A Hamiltonian equation of motion for real time vehicle simulation', Advances in I

Design Automation 2, 1990. 151-157.
36. lowinski, R. and LeTallec, P., Augmented Lagrangian and Operator-Splitting Methods in Nonlinear Mechan-

ics, SIAM, Philadelphia, PA, 1989.

I
I
I
I
I
I
I
I



Inverse Dynamics of Articulated Flexible Structures: Simultaneous

Trajectory Tracking and Vibration Reduction

Santosh Devasia

3 Eduardo Bayo

Dept. of Mechanical & Environmental Engineering

I University of California, Santa Barbara, CA 93106

I
ABSTRACT

U This paper addresses the problem of inverse dynamics for articulated

3 flexible structures with both lumped and distributed actuators. This prob-

lem arises, for example, in the combined vibration minimization and tra-

3 jectory control of space robots and structures. For such flexible structures,

closed loop passivs joint based controllers have been shown to be effec-

I tive in trajectory control by Paden et al. Crucial to the development of

such closed loop controllers, which are robust to external perturbations, is

the problem of dynamic inversion which yields the nominal state trajec-

3 tories and the feedforward inputs. In this paper we propose a new inverse

dynamics scheme for computing the nominal lumped and distributed feed-

3 forward inputs for tracking a prescribed trajectory.

I
U
I
I
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1. Introduction

Inverse dynamics is an important problem in the control of articulated flexible struc- I
tures such as space stations and manipulators. A solution for the nonredundant lumped

actuator case has been provided by Bayo et. al., [1] and Book, [2]. This method produces I
bounded inputs which move a reference point on the structure along a desired trajectory. 3
"The inputs are necessarily non-causal when the structure dynamics are nonminimum

phase. Elastic deformation which may cause vibration of the structure is also determined

by the trajectory; our goal is to minimize such vibrations. The viability of distributed

actuators for the control of structural vibrations, [31 , [4] and [5] , has motivated their use I
here for trajectory tracking.

Trajectory tracking of the structure can be accomplished by the use of the joint

actuators alone [6] and in this sense the distributed actuators are redundant. However, if

only the joint actuators are used, once the trajectory to be tracked is prescribed, the feed-

forward inputs and consequently the induced structural vibrations during motion are I
determined uniquely. Note that there are many state trajectories that could yield the same

output response, but we can only access a particular one, with a given set of non-

redundant number of actuators. On the contrary if additional actuation is available, we

have the freedom of choosing a more favorable state dynamics. In this paper, we develop

the concept of using the extra actuation available through the distributed actuators in the 3
structure to not only satisfy the trajectory tracking constraint but also minimize the

accompanying elastic displacements during the motion. To obtain thes,; new feedforward I
inputs, the inverse dynamics method suggested in [1] is extended to cover cases of

redundantly-actuated structures. To verify the efficay of the proposed method, an exam-

ple of a flexible two link truss structure with distributed piezo-electric actuators was stu- 3
died to contrast the use of distributed actuators along with the joint actuators for end

effector trajectory control with the use of only the joint actuators. The inverse dynamics 3
problem studied in this paper, yields the nominal desired state trajectories and the feed- I

I
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forward input which can be used to develop closed loop controllers to achieve robust tra-

jectory tracking( 6].

The remainder of the paper is organized in the following format. The modeling of

flexible structures with joint and distributed actuators, the formulation of the problem and

I its solution are presented in Section 2. Section 3 deals with an application of the pro-

posed method to the example of a two link flexible truss. The discussions and conclu-

sions are presented in section 4.

I 2. Formulation

3 The solution to the general multi-link inverse dynamics problem involves studying

an individual link in the chain, coupling the equations of the individual links, and then

Srecursively converging to the desired actuator inputs and corresponding displacements.

This approach is presented below, beginning with a single link.I
2.1 Equation of motion of a single link

I To simplify the equations, we present the equations for a link with a revolute joint.

The flexible link depicted in figure 1 forms part of a multi-link system. The link is shown

with a revolute joint, however the formulation remains identical for a link with transla-

3 tional joint. The elastic deflections in the structure are defined with respect to a nominal

position characterized by a moving frame whose origin coincides with the location of the

3 hub of the link. The nominal motion of this frame is prespecified by its angular velocity

ol,, angular acceleration ah and the translational motion of its origin. The above

definition of the elastic displacements with respect to this nominal frame permits the

5 linearization of the problem from the outset. Incorporating the kinematic model followed

by Naganathan and Soni (7] in a finite element model (FEM), the equations of motion for

3 a single link at any time t can be written as [11

SMi +[C+CC(Coh)] i +[K+Kc(athmih )] z-=BTT+BpVp +F. (2.1)

I
I
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Where z is an R" vector of the finite element degrees of freedom. M and K belong to 1

R'"xn and are the conventional finite element mass and stiffness matrices respectively;

C, and K, e Rnxn and are the time varying Coriolis and centrifugal stiffness matrices,

respectively. The R nxP matrix C represents the internal viscous damping of the material. 3
T is the unknown joint actuation. F e R" contains the reactions at the end of the link,

and the known forces produced by the rotating frame effect. The distributed actuator 1

input, V. (t) e R IP, is the equivalent nodal forces at the FEM degrees of freedom, where

np is the number of distributed actuator inputs. BT and B. are constant matrices of

dimensions Rn and R"n "P, respectively. The set of finite element equations (2.1) may be

panitioned as follows

9 A O h .
M + + +[Kc(ahoh Zi

zj +bC c'C,,hv1 r 1_,

L JqT IB F. (2.2)I

where 0@, is the elastic rotation of the hub, zt is the elastic deflection at the tip in the y

lirection, and the other n -2 finite element degrees of freedom are included in the vector 3
zi. The force vector, F, and the B, and BT matrices are also partitioned similarly.

2.2 Minimization Objective

The requirement is to accurately track the end effector of the link along the given I
nominal trajectory without overshoot and residual vibrations. Additionally we also seek 1

to minimize the ensuing structural vibrations during this motion by minimizing J(T,Vp ),

a measure of elastic deflections in the structure defined as follows 3
00

J(T,Vp) f z(t)Tz(t)dt. (2.3) 3
I

m • j • • B • . ,
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I Mathematically the objective can be stated as

I(T., P~, =* J (T,VP). (2.4)

Where t is the set of all pairs of stable joint torque and distributed actuator inputs that
when used to actuate the system defined by equation (2.2) yields z( (t) = 0 for all t.

5 2.3 Solution Methodology

An iterative scheme is described below for each link. Equation (2.2) can be rewrit-

I ten as

I M"+Ci +Kz=BTT+Bp Vp +F - Cc (cOh) i -Kc(cah,q1h) z (2.5)
where the time dependent Coriolis and centrifugal terms are kept on the RHS of the
equation. The iteration procedure starts with the absence of the last two terms involving

C, and K, in the right hand side. Then, the system of equations can be transformed into
I independent sets of simultaneous complex equations by means of the Fourier transform.

For each of the evaluation frequency co, equation (2.5) becomes

M - c -- '- + & + BPI VP (2.6)

I where the bar stands for the Fourier transform, and F represents the known forcing
I terms. After the first iteration it will also include the updated contributions from the

Coriolis and centrifugal terms appearing in the RHS of equation (2.5). For any ) * 0, the

3 matrix

H M-LCo -1K (2.7)

is a complex, symmetric and invertible matrix. For a = 0 the system undergoes a rigid

body motion and H A M which is the positive definite invertible mass matrix. Let

G - H-1. Then the above equation can be re-written as

zh

[ GM Ghi Gh] FH BA
fTZi) +i IGJI +i F ~ (2.8)-I Gth G GtFt Bp
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The condition that the tip should follow the nominal motion is equivalent to it- =0 for all

C,. This induces a relationship between the joint actuation and the distributed actuator

inputs and is obtained from the last row of the previous equation. I

F =-Gh1[),-1IGIA GliG] (FT+ BpV-). (2.9)I

Substituting this expression for the input hub torque in equation (2.8) and using the pro-

perty that = = .j2Fyields

=--(A p+B) (2.10)

Where

A 4 [-Gth- GBT(Gth Gta Gil) + G Bp (2.11)and I

B [-Gth- GBT(Gth Ga Gil) + G FT. (2.12) 3
Next we determine V;. Using Parseval's theorem, minimizing J(T,Vp) in equation

(2.4) is equivalent to minimizing MYi1 j at each w. This is a standard least squares 3
approximation problem [81 and results in the following solution for the distributed actua-

tor inputs, I

V;P = -UJ sj V*B (2.13)I

where 1, U and V define the standard singular value decomposition of A as follows

V*AU =4 1ý ]. (2.14)

Where the conjugate transpose matrix operator is denoted by *. In addition if A has rank

np, which is the number of distributed actuator inputs, then the least squares approxima-

tion yields I
vp = -(A *A )-1A" *B. (2.15)

A sufficient and necessary condition for A to have rank np is given next.

Lemma n

I
U
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I rank[A]=np iff rank[Br IBJ =np+l (2.16)

Proof

Rank [Br] 7 . rank [GBT(Gh Gii Gtl)] = 1

3 =>rank [A A• [--G,-1 GBT(G,,, G5 Ga)+G]] 2n-i.

3 Since BT = [10 0]°, it is easy to see that the null space of A is the span of [10 0].

Hence rank A is n-1. Noting that A = A Bp, the lemma follows easily. 0I
The above lemma requires that all the colurns of the input matrices BT and B,, be

3 independent. This is computationally more efficient than checking the rank of A for each

w. Next, the corresponding joint torque component, f is then evaluated from equation

I (2.9). The inverse Fourier transforms for the feedforward inputs completes the first itera-

tion and results in torques, TI and distributed inputs V/. Then the forward dynamic

analysis is carried out to compute Kc and Cc. F in the RHS of equation (2.5) is updated

3 and the process is repeated to find the new input torques and voltages. The process is

stopped at the n1h iteration if ITM•Tn-1I 2+ V,,'-V, -l 2 <ewhereeissome small

I positive constant. It may be noted that for slow motions the terms involving K, and Cc

are small relative to the other terms in equation (2.1) and the iterations converge in a few

steps [I].

I 2.4 The Algorithms for the Multi-Link Cases

3 In the previous sub-section the procedure to evaluate the joint actuations of a single

link was presented. This can be recursively extended for multi-link flexible manipulators.

3 Algorithms are presented below for both open and closed chain multi-link mechanisms.

Multi-Link Open Chain Case

I 1. Define the nominal motion (Inverse Kinematics of rigid manipulator).

3 2. For each link j, starting from the last one in the chain:

a) Compute torque (or force) Ti and distributed actuator inputs PjI
I
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imposing zi = 0 (Section 2)

b) Compute the link reaction forces Ri from equilibrium.

3. Use equation (2.1) to compute the elastic displacement and joint angles.

4. Compute the inputs for the next link, j-1. 3
Multi-Link Closed Chain Case

1. Define the nominal motion (Inverse Kinematics of rigid robot).

2. Define an independent set of joint forces and reactions equal in number to the degrees I
of freedom of the robot.

3. For each link j, starting from the last one in the chain:

a) Compute torque (or force) Ti and distributed actuator

inputs Pi imposing zi = 0 (Section 2)

b) Compute the link reaction forces R i from equilibrium. I
4. Use equation (2.1) to compute the elastic displacements and joint angles u
5. Use elastic deflections to correct the nominal motion of each link.

6. Repeat steps 3 to 5 until convergence in the forces/torques is obtained 3
This concludes the methodology. In the next section we present an application to a

two-link flexible manipulator.

3. Example U
A twolink truss experiment under development at UCSB is shown in figure 2. The

trusses are made of lexan and have lumped masses (net 2 Kg for each link) distributed

along their lengths. The first and the second links are tip loaded with 3.5 and 1 Kg

respectively. Equivalent beam properties of the trusses used in the FEM model for simu-

lations are Youngs modulus = 7 e9 GPa, Link length = 1.2 m, density = 1500 Kg/M 3, I
cross sectional area = 4.378 e- 5 m2 and cross sectional area moment of inertia = 4.7244

e- 9 in4 . Of the 10 spans in each link, two are piezo-electrically actuated. They are

I
I
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I located at the second and ninth spans as shown in the figure 2. The piezo-electric stack

actuators in those spans have the following properties. Cross sectional area, A,, = 7.3

e- 6 M 2 , piezo strain to voltage constant, d, = .731 e4 V-1, Youngs modulus, Ep - 73

e9 Gpa and distance of the actuator from the neutral axis of the truss, d, = 1.27 e- 2 M.

Following the standard Bemoulli-Euler modeling for an applied voltage V*,, the

I piezo-electric actuation can be considered as two concentrated moments M acting at the

two ends of the actuator [9] and [101. Where M is given by

M = (ds, NpEpAcsdt)V*IUt (3.1)

3 and N, = 4 is the number of piezos in each span. For the truss considered above

M = = 0.0198Vii,,a. The desired trajectory is a rest to rest motion of the structure with

I initial conditions given by 01 = 02 = 0 and final conditions 01 = 11.250 and 02 = -22.50.

Where O's are the absolute angles of the links with respect to a frame fixed on the ground

and are shown in figure 2. The nominal motion of the tip for each link are the trajectories

3 followed by the tips of the links if the structure were rigid and followed the nominal

angular motions shown in figure 3. Using the procedure in section 2.4 for open-chain

3 mechanisms, open loop simulations were performed (1) using only the joint actuation for

feedforward and (2) using the distributed piezo-electric actuators along with joint actua-

I tors in feedforward and the results are presented below.

3 Plots of the input piezo voltages and joint torques are presented in figures 4 and 5 respec-

tively. To illustrate the viability of the proposed method figures 6 and 7 show the

3 transverse structural midpoint deflections of the two links during the motion with and

without the distributed actuators. Similar plots for the elastic hub rotations are shown in

Ufigures 8 and 9.

3 Thus the piezo-electric actuators show a significant reduction in the structural vibrations

and demonstrates the viability of the proposed method. The consequent reduction in the

3 induced strains in the structure allows the use of lighter elements and smaller actuators,

especially in space structures where the loads are mainly inertial.

I



- 10I

4. Conclusion I
Typically distributed actuators like the piezo-electric ones cannot garner enough 3

actuation to cause large motions in the structure. However they could be very effective in

controlling the small structural deformations in the structure. Their use in the feedfor-

ward to aid the joint actuators for trajectory tracking is a novel idea developed in this

paper. The method proposed was shown to be extremely efficient in removing structural I
vibrations from structures as seen in the example. Thus these feedforward actuations,

obtained through the proposed inverse dynamics, augmented with joint angle feedback

based closed loop controllers seem promising in the slewing control of flexible manipula-

tors. This encouraging result motivates further work on distributed actuators in the con-

trol of flexible structures.
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Piezoelectric Actuator Design for Vibration Suppression:
Placement and Sizing

Santosh Devasia,* Tesfay Meressi,* Brad Paden,t and Eduardo Bayot
University of California, Santa Barbara, Santa Barbara, California 93106

In this paper we consider the problem of simultaneous placement and sizing of distributed piezoelectric
actuators to achieve the control objective of damping vibrations in a uniform beam. For several closed-loop

performance measures we obtain optimal placement and sizing of the actuators using a simple numerical search
algorithm. These measures are applied to the specific example of a simply-supporled beam with piezoelectric
actuators, and their relative effectiveness is discussed. We demonstrate that the controllability grammian is not
suitable to determine actuator placement for vibration suppression problems.

Nomenclature In Crawley's early work the actuator was simply placed with

Ab = cross-sectional area of the beam one bending mode in mind at the location of maximum strain
b = cross-sectional width for that mode.3 However the placement problem for the case
Cp = capacitance of the piezoelectric actuator with two or more controlled modes was not addressed. Kon-
d3l = piezoelectric constant doh et al.5 used the linear quadratic-optimal control frame-
Eý = Young's modulus of the adhesive layer work to perform sensor and actuator placement, but formu-
Eb = Young's modulus of the beam column lated the problem such that the solution is initial condition

E, = Young's modulus of the piezoactuator dependent-this dependence is removed here. Controllability
g31 = strain to voltage constant was used as a performance measure for placement of a point
1b = area moment of inertia of the beam actuator in Refs. 6 and 7. These methods are shown to yield
IEq = equivalent area moment of inertia less effective results for vibration damping in beams than those
tý = thickness of the adhesive layer based on closed-loop performance measures. Previous works
tb = thickness of the beam column on actuator placement have not dealt with the sizing problem.
t, = thickness of the piezoaczuator We incorporate this as an additional optimization parameter
v1 = voltage applied to the top piezo and show that increasing the size of the actuator is not neces-
v2 = voltage applied to the bottom piezo sarily better.
y(x) = vertical displacement of the neutral axis Questions of robustness to spillover and actuator dynamics
6' = derivative of the delta function have been raised and addressed in Refs. 1, 2, and 8, but are not
ph = density of the beam addressed here. Another important issue is the problems in-

volved in the implementation of controllers for the distributed
piezoactuators. These include depoling, nonlinearity, hyste-

1. Introduction resis, and creep effects in the actuator.' Depoling may be

T HE control of large flexible structures has been consid- avoided by maintaining the applied field below the coercive
ered for some time.' 2` However, the recent application of field. Within the depoling limits, the nonlinearity between the

piezoelectric materials by Crawley' and Bailey and Hubbard4  applied electric field and the resulting actuation strain may
for actuation of flexible structures has added new dimensions require the use of more complex models.2° An alternative is the

to the control problem. This comes from the fact that these linearization of this relationship about the operating point."

actuators can be distributed along structural members for Creep and strain rate dependence of the actuator become im-
vibration and shape control. In this paper we consider the portant at large strains and low frequencies. Hysteresis also
problem of simultaneous placement and sizing of distributed plays an important role at low frequencies. Significant perfor-

piezoelectric actuators to achieve the control objective of mance improvement over such behavior is possible by com-

damping vibrations in a uniform beam. manding the induced charge rather than the voltage applied to
Figure I shows a specific example of a simply-supported the actuator."2 Other related issues due to actuator dynamics

beam with piezoelectric actuator strips attached to both sides. are considered in Refs. 13 and 14, but not addressed in this
Our goal is to find the position and length of piezoelectric paper. We note, however, that piezoactuators have fast dy-
actuators to maximize modal damping when feedback control namics relative to electromagnetic actuators and are attractive
is applied. In contrast to previous approaches, we simulta- in this regard.
neously optimize the position and length of the actuator strips. The remainder of the paper is organized in the following

For several closed-loop performance measures we obtain opti- format. In Sec. 11 a state-space model of a piezoelectric actu-
mal placement and sizing of the actuators using a simple nu- ated beam of finite length is derived. Section III formulates
terical search algorithm, the placerr.it problem with respect to three performance cri-

Received April 13. 1992; revision received Nov. 6, 1992; accepted X
for publii.auion Nov. 14, 1992. Copyright -. 1993 by the American ",
Insuitute of Aeronautics and Astronautics. Inc. All rights reserved.
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teria. These are applied to the simply-supported beam in Sec. It is clear from Eq. (7) that the ith mode is controllable if and

IV and compared. Our conclusions are made in Sec. V. The only if BI is nonzero. In this paper we are trying to control
Appendix contains detailed calculations of the mechanics of a multiple modes with a single piezo and so there must be a
piezoactuated beam. compromise placement and sizing such that B, for each con-

trolled mode is nonzero.

1I. State-Space Model of Actuated Beam With the sensor placed as shown in Fig. 2, the output of the

In this section we develop a state-space model for the trans- sensor piezos is a linear combination of the modal amplitudes. I
v'erse vibrations of the finite beam. The boundary conditions Substituting Eq. (3) into Eq. (A9) of the Appendix yields

are any combination of pinned, clamped, or free. A pair of
piezos attached to the top side and bottom side of the beam is V, (t) = K, • r,(t) [',i(x 2)- 4",'x,)] (8)
used to actuate the beam as shown in Fig. 2. A second pair is ,= I
used as sensors. Collocation is achieved since the two pairs are
lo-ated side by side. The input to the system is the voltage v Define C, by

applied to the actuator pair and the output is the strain- I
induced voltage generated by the sensors. We show in the C, = K,[,(x2 _-i,(xi)J (9)
Appendix that the net forcing of the beam is equivalent to two

equal and opposite moments, M and -M (Fig. 3), applied to
the beam at the piezo endpoints x, and x 2. Moreover, the
moment M
is proportional to the input voltage 't C, 7h(t) (10)

M = Kv (1) If C, is nonzero then the ith mode is observable. In our case of
collocated sensors and actuators (Fig. 2), the ith mode is ob-

The partial differential equation describing the distributed pa- servable if and only if it is controllable.

rameter system is therefore If we truncate our representation to n modes, the dynamics
can be written as

Ebly4 - + pbA b/ = MV[5'(x-x 2)-6'(x-x-)] (2) I
•t)= Az(t) + Ay(t)

We assume that the effects of the actuator on the mode shapes
are negligible, which is valid if the dimensions of the piezo are K"() = CZ(t) (11)
small compared with those of the beam. [his formulation is I
simple and is sufficient for the work presented in this paper. where

More detailed models are available in Ref. 9. Our assumption T
of a finite beam with pinned, clamped, or free boundary con- z -A [•7 " '7t ... ?, ' 72 (12)
ditions guarantees a modal decomposition of the form 0,

y(x,t) ,(x),(t) (3)

where the 4,(x) are the normalized orthogonal mode shapes on. l-
and the 77,(t) are the modal amplitudes. Substituting Eqs. (1)
and (3) into (2) and projecting onto the ith mode yields decou- "I B
pled modal equationsR=161 

I

pbA,,l,(t) + Eblob,ri,(t) = [4$/(x 2)-4[(xi)]Kv(t) (4) "

where i,, determines the modal stiffness and is given by 1-A- [C 01 X] = [C1 C2 -- C- 011,] (13) 3
Lb b L,, • 4, dx (5) and f0 diag(wi..... ,,).
0 We emphasize the fact that D and C depend on the piezo

Define position and length through x, and x 2.

,and B,4_ I [1 (X2) -, K (6) 111. Optimal Placement and Sizing of Plezoactuators

pý,A PbAb A--- I In this section we formulate three optimization problems for
determining a good placement and length of the piezoactuator.

Then equation (4) can be written as In words they are the following: 1) subject to the constraint
that collocated damping control is used, find the placement

nl(t) + W, ,(t) = BIO'(t) (7) and length that maximizes damping uniformly in the modes;

. e smewihtuo. Beamfi Eq et b

Fill. 2 Beami segment with actuator. Fig. .3 Equivalent beam Segment.
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2) assuming the system is detectable and stabilizable, find The corresponding control is
the placement and length that minimizes a standard linear
quadratic cost functional uniformly in initial conditions; and v(t) = -R -JrPZ(t) (21)
3) find the placement and length that maximizes the minimum
eigenvalue of the controllability grammian (as is done only for We propose minimizing J, for the worst case initial condition
the actuator placement problem by Arbel6). and therefore pose the following optimization for computing

X, and Lp.
Passive Damping Case mi max z zzt) 2For the first optimization problem, we assume a pure collo- L, E O.LIl Z) =

cared damping control given by A" f L, 2. L, -L, 2

v(,,) = kdl (14) This method optimizes performance uniformly in initial condi-
tions in contrast to the approach by Kondoh et al.5 where a
seI'tionl sensitive to initial conditions is proposed.

where 7 = [,7 qT - ,7,] and kd is the controiler gain. With

this control, Eq. (11) can be written in vector form as Controllability Grammian Method
Finally, we describe a placement procedure based on the

01 = kdBCie (15) controllability grammian proposed by Ref. 6. This method is
useful, but has certain disadvantages discussed in the Conclu-

and the state-space description becomes sion. With the inclusion of structural damping the matrix . in
the state-space description Eq. (11) becomes

z(t) = Az(t) (16)

where= - -f 23

la Owhere " is the structural damping coefficient. Since A4, is sta-
A - -B (17) ble, as the final time Ttends to infinity, it can be shown thatL kdje the finite time controllability grammian W(0,T) approaches

The advantage of such a collocated passive control is that W, which is the solution of the Lyapunov equation

controllers designed for a finite-dimensional model retain the WAr + .,W - 911r = 0 (24)
stability of the infinite dimensional plant provided that actua- 0
tor dynamics can be neglected." Since the bandwidth of a Based on Arbel's method we perform the optimization
piezo is only limited by its capacitance, actuator dynamics can

be justifiably ignored for large space structures. The implC- max min X,(W) (25)
mentation issues of such controllers have been addressed in LJ0.L,] I
Refs. 9 and 14. . L f • 21. Lý - L, -1

We measure the system performance for a particular choice
of controller, placement, and piezo length by the rate of decay to maximize the controllability of all the modes. The three
of system states and therefore seek to place the poles of the approaches discussed here are compared via an example in the
system far into the left half of the complex plane. More for- next section.
mally, we perform the following optimization

IV. Example: Simply-Supported Beam
min max ReX,(A) (18) Consider the simply-supported actuated beam (Fig. 1) hay-

LE jO.Ll p
X. E•! L, 2. L-Lp, 21 ing the following properties.

Beam properties

where X,(A ) is the ith eigenvalue of A. We vary the length of
the piezo LP from zero to the length of the beam Lb. The piezo •=0.01 Eb = 70GPa Lb =0.5m
mu t not overlap the ends of the beam hence the center posi-
tion X, of the piezo is varied from L,/2 to Lb -Lp/2. tb = 0.01 m b = 0.05 m Pb = 2500 Kg/mi

Linear Quadratic Regulator Can• Piezoactuator-sensor properties

The linear quadratic regulator (LQR) is attractive because E, 63 GPa L, E [0,L tp = 2 x 10-' m
the controller stabilizes the closed-loop system and also allows
for user defined weights on the inputs and states. LQR opti- dl, 120 x 10- 1 m/V g3= 10.6 x 10-: Vm/N
mization has been used to reduce the structural vibrations in
the control of large flexible structures in Refs. 4 and 7 for a a, = 35 pCfixed-size actuator. Here we include placement and sizing in

the optimization. For the system described by Eq. (11), con- Adhesive properties
sider the infinite-horizon time-optimal control problem of
minimizing a quadratic cost functional given by E, = 2.4 GPa La = LP t, = 2 x 10-5 m

J, ý [Rv(t) +zr(t)Qz(t)] dt (19) Using the geometric boundary conditions

So y(O,t) =y(L,t) =y"(O,t) =y"(L,t) = 0 (26)

where R is a positive scalar and Q is a positive semidefinite
matrix such that the pair (A,Q I:) is observable. Provided sys- together with Eqs. (2) and (3), we obtain the equation for the
tem (II) satisfies the standard conditions of stabilizability and ith mode shape normalized so that
detectability, the minimum cost min J, is given by zT(to)Pz(to), '
where P is the unique nonnegative-definite solution to the alge- dX
braic Riccati equation16 .

P. .- rp - PIIR -- rTp + Q = 0 (20) •,(x) = v 2 /L6 sin(ix'/L) (2")



ý62 DEVASIA ET L.: PIEZOELECTRIC -AC7T"•TOR DESIGN

Substituting this into Eqs. (5) and (6), we have Simulations were performed for each of the optimization

i - --- Ebschem es discussed in Sec. III applied to the earlier truncated -

S 1b. ,( beam model (with the first two modes). A uniform structural
' L p•Ab (28) damping coefficient of 0.01 is considered for both of the '

modes. This implies that the system is stable and hence both
The ith component of the input vector J is obtained from detectable and stabilizable. For the passive damping case a
Eqs. (6) and (27) and is given by controller gain kd = le -6 was used. In the LQR based design

-- the placement depends on Q, especially if some states are not
ibtK'*r 2 (irx i penalized. However, to uniformly penalize all modes, Q was

-Cos -= - cos x) (29)I, 12 ,L, N L \ L oJ L taken as I414. It was observed in the simulations that the
optimum placement and sizing did not vary with R. The results

where K* and IE4 are as defined in the Appendix by equations presented are for the R = I case. The variations of the objec-
(A3) and (A4), respectively. The ith component C, of the out- tive function for the passive damping case with 1) the position
put vector e is obtained from Eqs. (9) and (27): of the center of the piezo X, (optimal over all possible actuator

-- lengths) and 2) the length of the piezo Lp (optimal over possible
btbg,11 ,, 2 F7(iX, 'irx, piezo placements) are shown in Fig. 4. Similar simulation re-

C, = -C Cos cos - (30) suits for the LQR and the controllability grammian methods
are shown in Figs. 5 and 6, respectively. Note that as the piezo

Note that a necessary condition for observability and con- length LP approaches the beam length Lb, its midpoint is
trollability of the ith mode is for the term in parentheses in pushed toward L,/2, making the second mode less control-
Eq. (30) to be nonzero. From Eq. (29) we see that B, is large if lable. Hence the cost increases as L. tends to Lb and leads to
x, and x2 are chosen to lie near two different nodes of the ith an optimal actuator length less than Lb. The optimal lengths
mode separated by an odd number of half cycles of the mode and positions for the three methods are given in Table 1.
shape (hence a bigger actuator is not necessarily better!). Also To make a comparison between our LQR method and the I
the ith (i > 1) mode becomes uncontrollable if the center of the initial condition dependent methods described in Refs. 3 and

piezo coincides with one of its nodes or the piezo length is an 5 we consider the following two different initial conditions
integral multiple of 2Lb/i. For example, if the piezo length L, ztr=[l 0 0 0] and z[=[0 1 0 01, which correspond to unit
is the same as the beam length Lb, then all of the even modes displacements in the first and the second modes, respectively. I
are uncontrollable. The variation of the cost of control over different actuator

0 0

- -002 - -0.02-

-06 -0.0

-0 0605 1 0 0.51

a) Xp/Lb b) Lp/Lb

Fig. 4 Passive damping based optimization. 3
200- 200

ISO N 150

100 -E 100 I
S. so , so

C ,0'- ' C
0 05 I 0 05

a) Xp/Lb b) Lr/Lb

Fig. S Linear quadratic retulator based optimuization.

0 .00- 001

E* 002- . n 002 I
"0 A- + 004

0 •In 05 1

a) 'p/Lb b) Lp/Lb

Fig. 6 Controllabilty grammian based optimization.
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locations for each of the earlier initial conditions is shown in rable I Results
Fig. 7. The optimization based on these initial conditions re-
sults in two different optimum piezo positions at Lb12 and Controller Optimal LE Optimal -VP

L6/4 suggesting piezo placement at locations where the strain Lb L_
is maximum for the corresponding initial condition. The opti- Passive 0.7723 0.3961
eal piezo positions for various initial conditions that are linear LQR 0.7921 0.4060
combinations of the two modes will vary widely. This problem Contr. Gramm. 0.6139 0.3267
is easily resolved by the LQR methodology proposed in this
paper as it optimizes over all initial conditions.

Next we discuss the controllability grammian method ap-
plied by Arbel. 6 The optimized minimum energy control cost This decrease in controllability can be easily illustrated
for given initial condition z(to) and final condition z(T) is through a scalar example described byequivalent to

J4 [Z(T)-eA(T- t)Z(to)]'W-I (O,T)[z(T)- eA,(T- ')Z(to)] x(t) = - ax(t) + bu(t) (35)

(31) Using Arbel's method, for a large final time T, the eigenvalue
of W(0,T) tends to b2/2a, which decreases as a increases, and

where eA'Tr-lo) is the state transition matrix.' 6 J is the energy subsequently the controllability measure deems the system as
required to deviate from the natural motion of the system, less controllable even though from a vibration reduction per-
which would have reached the state eA,(T-To)z(to) at time T spective it is more desirable. A similar effect due to the high
without the application of any control. Arbel's method is decay rate in the second mode is seen in the example of the
based on optimizing J (over all possible initial and final con- simply-supported beam. The two modes have the same damp-
ditions) and results in minimizin, the maximum eigenvalue of ing coefficient, and so the second mode has a faster decay rate.
the inverse of the controllability grammian, W-1 (0,T), over Arbel's placement method therefore assigns the second mode
different actuator positions. However, the control cost J for as less controllable relative to the first mode and hence pushes
the finite time regulator problem 1z(T) = 01 is given by the placement toward Lt/ 4 where the second mode has maxi-

mum strain. Because of a lower decay rate, control of the first
J, A [eA,(T-to)Z(to)]' W- (0,T)[eA,(T-0o)z(to)] (32) mode (which is more controllable when the placement is at the

center of the beam) is more critical from a vibration suppres-

aid is not suitably evaluated by Arbel's controllability gram- sion perspective. However, the placement obtained by Arbel's
mian approach because it fails to consider the effect of method is further away from the center of the beam and hence
eATr to) on J, in Eq. (3Z). Next we show that the maximum results in slower vibration decays in the system as compared to
eigenvalue of W - 4' 0,T) increases as the system poles move far the results obtained through LQR or passive damping methods
into the left half of the complex plane. Let -y, be an eigenvalue (Table 1). Thus for vibration reduction, passive damping or
of W and let V, be the corresponding eigenvector such that LQR based objective functions are more suitable to design the
1! V, I12 = 1. Pre- and oost-multiplying the Lyapunov Eq. (24) by placement of actuators.
V,T and V,, respectively, we obtain

V. Conch-sion
vTrwArV, + VTrASWV, + VIr/TV= 0 (33) In this paper we formulated actuator placement and sizing

methodologies for vibration suppression in uniform beams.Then Several closed-loop performance criteria were considered to
v raaTV I matX ,,(Ar)l derive objective functions for optimum placement and sizing

V,, = 2 V r (34) of piezoelectric actuators in uniform beams. The papei Ilus-
, minIX(A5 )I trated through an example that passive damping or linear

quadratic regulator based measures are more suitable than the
This result implies that for a given a the eigenvalues of W-1 controllability measure for the placement and sizing of actua-
increase if the eigenvalues of A, move far into the left half tors to obtain vibration reduction. The procedures developed
plane. Hence Arbel's approach deems the system as less con- led to solutions that are independent of initial conditions. The
trollable and therefore not desirable even though the shiffting design is also formulated as an eigenvalue problem thereby
of the poles is advantageous for vibration reduction. reducing the required computation considerably.

We also note that the measures proposed in this paper can
be applied to any general linear time invariant system and

_0. hence the actuator design for vibration suppression can be

based on these measures. The question of the existence of
701ý Solid ZlO).optimal designs over different controllers (e.g., all passive con-IDOoned •ot) z2 trollers) for general linear time invariant systems is the subject

60 of further research.

50- Appendix: Mechanics of Plezo Actuated Beam

-0 Consider a segment of the piezo beam as shown in Fig. 2. It
is assumed for simplicity that the width of the piezo is equal to
that of th, beam. Using the standard Bernoulli-Euler beam""0L approach, the moment generated by voltage applied to the

0- .piezos is given by Ref. 9

10 M bt0 E,[(A, -A,)(t,/2+ 2 .t, t,/2) (A\l)

O0 01 02 03 04 05 06 07 08 09 where
(a) XNLb d3 1 v,A, = - i = 1,2 (A2)

Fig. 7 Initial conditions based optimization. to
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ACTUATOR PLACEMENT FOR AATICULATED FLEXIBLE

MANIPULATORS AND SPACE STRUCTURES
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ABSTRACT

In this paper we consider the problem of placing piezoelectric vibration

dampers in an experimental articulated flexible structure (AFS). The placement

problem for these jointed structures is complicated by their nonlinear dynamics.

Even with small linear vibrations about a given rigid body configuration, a good

placement for one configuration should not necessarily work well after the

structure's joints are rotated. With a finite-element model, we have indeed

observed a large variation in modal frequencies (for the linearized dynamics) as

the joint angles are varied. However, we have observed that for our structure the

mode shapes are relatively invariant to joint configuration and hence uniformly

good placements are possible. We also show, using a singular perturbation argu-

ment, that such uniformly good placements can be expected in a class of AFS

with joint dominated inertias. Two methods of placement are explored. The first

is based on a simple damping controller where placements are chosen to maxim-

ize the decay rate of vibrations. The second method optimizes placement based

on closed-loop performance of Linear-Quadratic Regulator. The two methods are

contrasted using a finite-element model of our structure.

""Research Asisumt., Depararent of Mechanical & Enviromental Egineering
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1. Introduction I
Control of Articulated Flexible Structures (AFS) is important in many space and aerospace

applications. The control objectives are application dependent, for example in articulated flexible

manipulators the objective may be to track a given end-effector trajectory or to reduce the elastic

vibrations in the structure. The problem of using point actuators has been addressed in [II and [.21

where the inverse dynamics problem has been solved to obtain the control inputs. Closed loop

controllers which achieve exponentially stable trajectory tracking have been proposed by Paden I
et al [3]. However, errors in the modeling of the structure, approximations in the implementation 3
of the controllers and disturbances from external sources introduce vibrations in the structure.

This vibration problem is compounded by backlash and friction in the motor drives which make

small amplitude vibrations difficult to control. These vibrations adversely affect the system per-

formance and are to be minimized. This problem can be mitigated by using piezoelectric or elec- I
trostricuve actuators. Substantial success in vibration reduction has been reported [4] by incor-

porating such distributed actuators in the flexible structures. To optimize the vibration reduction

with distributed actuators, synergistic structure-controller designs are necessary, [51 and [6]. A

key issue in any such design is actuator placement

In this paper the placement problem for distributed actuators in articulated flexible struc- I
tures is addressed. In contrast to this nonlinear problem the placement issue for linear systems is

well studied in literature. In Crawley's early work on systems with linear dynamics, the distri-

buted actuator was simply placed with one bending mode in mind at the location of maximum

strain for that mode [7]. However the placement problem for the case with two or more con-

trolled modes was not addressed. This was done using a controllability based performance meas-

ure by Arbel [8]. The effectiveness of measures based on closed loop controllers ([91 and[10])

over those based on the controllability grammian for vibration damping in linear flexible struc- I
tures was demonstrated by Devasia et al [( 11. However, the computations of such measures are 3
not tractable for general trajectories in systems like AFS which have nonlinear dynamics.

We introduce two measures in this paper which are useful to determine the placement of

|Ii
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actuators to achieve structural vibration reduction in AFS. The goal of vibration damping based

actuator placements is to improve the convergence rate for a set of equilibrium points. For our

case these equilibria are rigid body configurations with zero elastic deflections. Our approach can

be summarized as 1) linearizing about equilibrium points, 2) evaluation of a local cost functional

at the different equilibrium points and 3) selection of placement based on a suitably constructed

global measure (pertaining to the entire set of equilibrium points). The measures are then applied

to an example two-link flexible manipulator to solve the placement problem for a piezoelectric

actuator.

The remainder of the paper is organi:.ed in the following formal Our approach is described

in section 2. In section 3 we illustrate the methodology with an example of actuator placement in

a two-link flexif1e truss structure (figure 1). For this articulated structure, modal frequencies of

linearizations change considerably with configuration and one may expect that a uniformly good

placement is impossible. The saving fact is that, although the frequencies change, the mode

shapes are relatively invariant. This results in placements that are uniformly "good" over all

configurations. Section 4 studies a class of systems (with joint dominated inertias) where such

uniformly good placements can be expected due to mode shape invariance. Our conclusions are

* in section 5.

2. Performance Measures for Actuator Placement

In this section we formulate the problem for the placement of distributed actuators in a gen-

eral articulated flexible structure (AFS). The set of equilibria in AFS consists of rigid body

configurations with zero elastic deformations. Our objective is to damp elastic vibrations about

these rigid body equilibrium configurations. In the following section solution methodologies

based on two different measures are described in detail. We start with a description of the general

actuator placement problem.
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General Placement Problem

The general equation of motion for an articulated flexible structure can be described by a I
nonlinear differential equation as,

x(t) = f, (x, U ())

y =hp (x), (2.1)

where x is a vector of the system states and p belongs to the set of possible actuator placements

Xp. A formal de:iin prceddia Lu, sct.uaor placement involves the following: Given a set Xd of

desired state trajectories, a set U of possible inputs and a set Xp of possible placements, evaluate

the formal expression I

Prl mal- " JU (Us (Xu -xd))

where x, is the actual trajectory followed by the system when actuated by input u and

J, (u,(x.-Xd)) is a functional that defines the design objectives. The issue is to choose an

appropriate functional J. which penalizes undesirable behavior and is also computationally

viable - - an example is a cost functional which is quadratic in control input u and the state tra-

jectory error (x. - xd). However, in the general nonlinear setting (2.1) the minimax problem is

intractable.

Here we address the simpler issue of actuator placement to suppress elastic deflections I
about given rigid body configurations. Therefore, our control objective is to obtain uniformly

good regulation of elastic deformations at any equilibrium state (rigid body configuration) of the

articulated structure. This implis that the set of desired trajectories Xd, are constant trajectories.

Our approach is based on linearization of the system equations at each equilibrium point in the

set X, followed by a local cost measure evaluation at these equilibrium points. In the following

sub-section we describe this procedure.

Linearized State Space Model and Local Measures

Low amplitude elastic deformations, about a given rigid body equilibrium configuration xo I
and for a given placement p, of an articulated flexible structure can be approximated by a finite

I
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number of equations using the Finite Element Method (FEM) or assumed modes method as given

below (12]

i (t) = A.oz (t) + B,.ou (t) (2.2a)

y (t) = Co~x~z (t) , (2.2b)

where z r R14 represents deformations and deformation rates, u e R1 is a vector of the I

inputs, and y (t) e R q is the output vector.

Using the model (2.2), we introduce two measures to determine local costs for different

actuator placement. In words they are the following. (1) Subject to the constraint that a given

"passive" control is used, find the placement that maximizes damping uniformly in the elastic

modes. (2) Assuming all states of equation (2.2) are stabilizable and detectable, find the place-

ment that minimizes a standard Linear Quadratic Regulator (LQR) cost functional uniformly in

initial conditions and rigid body configurations.

Passive Control Case

We use the term "passive" to mean input-output passivity as defined by [131. A dynamical

I system is passive if, whenever its initial states xo = 0 at time to, its input u (T) e R k and output
t

3() (-e R k satisfy juT (T) y (r) dC T 0 for all time t > to. Local collocated controllers like the

rate-based damping controlleit for flexible structures fall under this category. In addition to the

simplicity of these passive controllers, they exhibit robustness to spill-over problems due to

unmodeled dynamics [141. For this optimization problem, let the feedback control input be

specified by

u (t) =-KdCp,, z . (2.3)

With this control, equation (2.2a) can be written in vector form as

i(r) = APX,z (t) (2.4)
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where

A'X, P = Ap. x0-Bp, , Kd Cp.,., . (2.5) 1
W. measure the system performance for a particular choice of controller and placement by

the decay rate of the linearized system states and therefore seek to place the poles of the system I
(2.4) far into the left half of the complex plane. More formally, we generate the following local

cost measure at a configuration xo and placement p.

I
c(p,x.) - max Re Xi(,Xp..) (2.6)

where X, (A X,)is the i't eigenvalue of AP.•..

I
Linear Quadratic Regulator Case

The Linear Quadratic Regulator (LQR) is attractive because the controller stabilizes the I
closed loop system and also allows for user defined weights on the inputs and states. LQR optim-

ization has been used to reduce the structural vibrations in the control of large flexible structures

in [91 , (10] and [151. For the system described by equation (2 2), consider the infinite-horizon

time-optimal control problem of minimizing a quadratic cost functional given by

J, A I [ Ru(t)2+ zT(t)Qz(t) ]dt (2.7)

where R is a positive scalar. Q is a positive semi-definite matrix such that the pair (Ap,,. Q /2)

is observable. Provided system (2.2) satisfies the standard conditions of stabilizability and detec-

tability, the minimum cost, min J,, is given by zT(to)Pz (to) where P is the unique positive
U

definite solution to the algebraic Ricatti equation [161 I
PAP.,, +AT.P -PBp, R-•Bp., +Q =o. (2.8)

The corresponding control is

u (t= -R-BPx, XPZ (t. (2.9)

We propose minimizing J. for the worst case initial condition and therefore evaluate the local

cost function as
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Sc(p,x) a z&Pzo=(P), zo=z(to), (2.10)

where a(P) is the maximum eigenvalue of P implicitly dependent on the placement p. This

method optimizes the local performance uniformly in initial conditions in contrast to the

approach by Kondoh et al [9] where a solution sensitive to initial conditions is proposed.

We state the placement problem in the next sub-section.

Problem Statement

Based on the local cost measures defined in the previous section we can state the placement

problem as

n ril, C(p) (2.11)

where the functional C (p) assigns a global cost for each placement by evaluating a suitable

norm on the function c (p, .): X0 --.>R 1. If for example, the set of equilibrium points, X 0 , is con-

tamined in R", then two possible choices of the the function C ( p) are the average and worst case:

Ic (x', p )dxIdx (2.12)

Iand
m a-. c(px 0 ). (2.13)

I The measures described in the above section are used to numerically solve the problem of placing

distributed piezoelectric actuators in a two-link flexible manipulator-strictive in the next section.

3. Example

The effectiveness of distributed actuators has been demonstrated for vibration reduction

([171 and [18]) and tracking control of flexible manipulators [19]. Such structures exhibit resi-

dual vibrations due to imperfections in the controller and disturbances like impacts, thermal heat-

ing and micro-gravity. For example, in space station mobile transporter units, power and weight

restrictions require that only small actuators be used at the joints. Consequently the large numbei
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of gear trains, required to amplify the torques provided by these small actuators. exhibit substan-

tial friction. stiction and backlash. Therefore the joint actuators are ineffective in controlling low

amplitude structural vibrations. The placement of distributed actuators plays a critical role in their

ability to control these vibrations. I

Experimental Set-up U
The example considered is an experimental two-link truss structure (figure 1) built at

UCSB. The structure has 16 spans and two articulations forming a planar manipulator. The

trusses are made of aluminum and have lumped masses (net 2 kg for each link) distributed along I
their lengths in order to lower the modal frequencies and hence the control sample rate. In addi-

tion, the first and the second links have tip loads of 3.5 and 1 kg respectively, and their lengths

are 1.8 and 1.1 m respectively. Actuation consists of low-inertia dc-motors at the two joints and

an active bay with four piezoelectric actuators. Sensing consists of resolvers at the joints and col-

located strain sensors on the four piezoelectric actuators. The bays structural properties are only I
minimaly affected by the addition of piezoelectric actuators as the the Youngs modulus of the

piezoelectric actuator (83 Gpa) is similar to that of the aluminum (77Gpa) used for the truss, and

the added mass is negligible compared to the lumped masses and end plates (see figure 2) at each

end of the bay. However these effects will be included in the model considered for consistency.

The entire structure is supported on air bearings and controlled with an Intel 386-based PC, servo

amplifiers for the motors and 150V servo amplifiers for the piezoelectric actuators.

Modeling Issues

Our interest is to study piezoelectric actuator placement for optimally controlling structural

vibrations. A related issue is the implementation of controllers for the distributed actuators. The

problems of implementation include depoling, nonlinearity, hysteresis, and creep effects in the

actuator [20]. Depoling may be avoided by maintaining the applied field below the coercive I
field. Within the depoling limits, the nonlinearity between applied electric field and the resulting

I
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actuation strain may require the use of more complex models [211. An alternative is the lineari-

zation of this relationship about the operating point [221. Creep and strain rate dependence of the

actuator become important at large strains and low frequencies. Hysteresis also plays an impor-

tant role at low frequencies. Significant performance improvement over such behavior is possible

by commanding the induced charge rather than the voltage applied to the actuator [23]. Other

related issues due to actuator dynamics are considered in [4] and [24], but not addressed in this

paper. We note, however, that piezoelectric actuators have fast dynamics relative to electromag-

netic actuators and are attractive in this regard.

In this section we study the placement problem to optimally control structural vibrations

when the joint motors are locked because of friction. In the flexible manipulator this corresponds

to clamped boundary conditions at the joints. Our objective is to find the best placement of the

active bay in the truss structure which minimizes the given cost functionaL We study the actuator

placement at a single shoulder joint configuration because the system dynamics are independent

of the shoulder joint angle. Also, the elbow joint e is constrained to I 5I < 900 in the experiment.

Then by symmetry it is sufticient to study the proolem for elbow joint angles between 00 and

900. Hence the set of equilibrium states X0 , containing rigid body configurations with zero elas-

tic deflections, is parametrized by the elbow joint angle 0 and is independent of the placement p.

For a given 0 and p e X., the linearized system equations for the two-link flexible manipu-

lator generated via Finite Element Method (FEM) [1] can be written as

Mp. s + Dp. 91 + K =.ex = ., (3.1a)

y = Cp'X , (3. Ib)

where x e Rm denotes the flexible degrees of freedom. Mp,., and Kp. 9 , are the mass and

stiffness matrices respectively. Dpo includes a uniform structural damping coefficient (0.001) in

the elastic modes. Hence the system is stable and thus trivially stabilizable and detectable.

up c R I is the input voltage to the actuator. The effect of the piezoelectric actuators is modeled

as two point moments M (figure 3) acting at the ends of the actuator ([201 andf25]) and is

included in the Bp.e matrix. The output y e R I is obtained from a strain gauge collocated with
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the actuator and is linear in the state [11). From equation (3.1) it is seen that at each p. the system

can be considered as a family of linear systems parametrized by 0. Noting that at each equwli-

brium point is defined byx = = 0 ,,xl, the state equation (3.1) can be rewritten in the form (2.2)

asI

z (r) = AP,6z (t) + B'O~U (t)I2a

w e ey (t ) =C P . o9z (t ) . (3 .2b )
w~here I

Z=[XT f T]T eR 2 A (3.2c)

APe on ER -" (3.2d)S~I

Bp. 9 = .E Rxl, (3.2le)

and

CPe8=t [eOfP9 x.u eR 1 ba (3. 2 f)

I
Controller Choice

The two measures defined in section 2 are used to generate solutions to the placement prob- I
lem of the piezoelectric actuators. The passive collocated damping controller considered can be

parametrized by a scalar feedback gain Kd and the feedback law can be written as I I]

U = -Kd [O01.IP,9 Ze z. (3.33)

While computing the cost, an optimization is also performed over the scalar controller gain Kd.

This implies that the local measure c (p, x. ), with the passive damping controller is given by

c(p,x 0 ) A mi5 max Rekj(Aý,.). (3.4)

For the LQR controller based measure, weighting matrix Q is chosen to be uniform in the elastic

I



displacements as

Q[ Ixn On=xn (3.5)

The choice of the weight R on the control input depends on the depoling limit of the actuator and

the initial conditions. For a given R, and optimal placement Pop, the maximum input voltage

U m&X(R ) over all the configurations is found. This variation of umx(R ) as a function of R and ca

the bound on the initial conditions i.e. I xo0 5 •a is shown in figure 4. Based on depoling limits for

the actuator, the maximum applied voltage is limited to 300V which corresponds to an applied

field of 2 MV/m. For a = le -3 which corresponds to a maximum transverse elastic deflections

of approximately 3cm, R = le -6 falls in the suitable region, with maximum input voltages

below the actuator depoling limit.

Simulaton Results

For a given elbow joint configuration the variation of the passive damping and LQR based

costs with placement are shown in figures 8 and 9 respectively. The optimal placement at each

configuration is marked by an asterik. Figure 8 shows that for all joint configurations the passive

damping based cost is minimal when the placement is at the root of the first link. For the averag-

ing global measure defined by equation (2.12), the LQR based measure resulted in a placement at

the root of the second link. To illustrate the improvements achieved by the proper placement of

the piezoelectric actuators, simulations of the equations of motions for the passive damping con-

troller case are carried out. Note that there are an uncountably infinite set of possible initial condi-

tions, and hence as many possible system responses. A major advantage of our formulation is that

the design is optimized over an entire set of initial perturbations with the same energy. The worst

case vibration response, for the passive damping case, over all configurations and all perturba-

tions of a fixed energy is shown in figure 10, which shows the decay of the systems energy

(kinetic energy + potential energy) for different placements. The rate of vibrational energy decay

is maximum when the actuators are placed at the first bay. In theory, this decay rate can be arbi-
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tranly chosen by appropriate feedback. but at the cost of larger inputs to the piezoelectric actua-

tors. To avoid the saturation of these actuators, the input is penalized in the LQR controUer based i
design measure. The average variation of these costs over the different placements is shown in

figure I1 and the resultant placement of the actuator with the LQR controller is at the the root of

the second link. 3

Discussion of Results i
As the joint angle 0 varies from 0 to 900, there is a substantial variation in the system

modal frequencies. This is represented in figure 5, where the variation of the lowest modal fre-

quency with elbow joint angle is shown. These significant (40% increase) changes in the modal

frequencies might deem uniformly good placements impossible. The uniformity of placement

location is a desirable result because it implies that a a single placement is effective in reducing i
vibrations at the different configurations. The placement based on passive damping controller is

seen to be invariant with joint configuration. when the LQR based measure is used, the resultant

global optimal placement (at the root of the second link) is not the best for certain configurations.

For example, when the structure is fully extended, i.e. the elbow joint angle is zero, the optimal

placement of the active bay (for this particular configuration) with an LQR controller is at the

root of the first link. However the increase in cost due to placing the actuator at the root of the

second link is negligible (1%, figure 9). Hence the placement is not very sensitive to gross I
changes of system configuration. This near optimality over all configurations is attributed to the

relative invariance of the rotational components of the mode shapes, and is discussed next- I
The placement invariance is due to the facL that in our example the eigenvectors are rela-

tively invariant with the joint configuration. This is illustrated in figure 6, where the projection of i

the eigenvectors. associated with the least two eigenvalues, onto the rotary elastic displacements

at the FEM nodes of the manipulator model is shown. These correspond to the spatial derivative i

of the projection of the eigenvectors onto the transverse elastic displacements of the manipulator.

Note that the rotary mode shapes shown in figure 6, vary little with joint angle. As the placement

I
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varies over the length of the manipulator, the relative control over each mode and its variation are

determined by these mode shapes [24]. Consequently, the invariance of these mode shapes with

the joint angle implies the relative invariance of the distribution of effective control over 4ifferent

modes. It is this control distribution of the different modes that determines the cost for the possi-

ble placement and therefore its invariance results in a uniformly good placement.

The performance measure based on passive damping is determined by the distance of sys-

tem eigenvalues from the imaginary axis. This distance is an estimate of the slowest decay rate of

elastic perturbations in the structure. In our example, the decay rate tends to increase with the

elbow joint-angle as shown in figure 7. This is mainly due to the increase in the system natural

frequencies, but with constant structural damping. For such a system, the elastic vibration modes

associated with higher modal frequencies tend to have higher decay rates. Thus in the case of the

passive controller based performance measure, it is the variation of the eigenvalue associated

with the lowest frequency that determines the cost and therefore the placement. To cont'ol a sin-

gle eigenvector, the optimal placement is at the location of maximum strain [26] where the effec-

tive control over that mode is maximized. Hence the passive damping based measure yields the

placement at the first span of the structure. As discussed above, this placement is uniformly good

for all joint configurations because the rotary mode shapes are relatively invariant.

The LQR based performance measure resulted in a placement where the control objective to

minimize the quadratic cost functional given by equation (2.7) is achieved. The optimization of

this quadratic cost functional results in a compromise placement between high decay rates of per-

turbations and small control effort. Note that the placement obtained on using this performance

measure is relatively good over all configurations. Thus the invariance of the mode shapes

resulted in placements which were near-optimal for each of the possible configurations. In the

next section we study a class of AFS where such uniformly good actuator placements can be

expected.

4. Mode Shape Invariance in Structures with Joint Dominated Inertias
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In this section we show that "high frequency" mode shapes are configuration invariant in

AFS with joint dominated inertias. We also show that this invariance results in actuator place-

ments which are uniformly good over different configurations. We begin with the following

lemma dealing with the eigenvalues and eigenvectors of a singularly perturbed eigenvalue prob-

lem arising in our analysis.

I
Lemma

Consider the problem of finding the eigen pair (X, v), v " [v I v 2]T, which satisfies I

M,.11+B 11 M,. 12+B 12 /v 1=0, 51[ 21+B21 MA22 /e+XSn+B 22 ] 22 -

where A R E Rxnl,, A 22 e R m x" , the other submatrices A 21 A 12, etc. have compatible dimen-

sions, and det(A 22) * 0.

Then

(1) The eigenvalues of the singalarly perturbed system arm close to the roots of I
det (lambdaA 11 +B 1 1)--0, or are close to zero. More precisely, given r >0, there exists

CO(r) > 0 such that 0 < e! < (r) implies

Ik((e)- Pi I < r , i = 1,...,n, and (5.2' I
Ixi(E)I <1 , i = n+1, ...,n +m , (5.3)

where tI31 ... .3,) are the roots of det [ OA + B I I] = 0. and (, (e), vi (e)) are solutions to

(5.1) (renumbered if necessary), with the dependence on E explicitly stated.

(2) If Xi is an eigenvalue satisfying (5.2) is not too small (i.e. Pi * 0), then the norm of vi, 2 is

small relative to vi,1. That is, for all r3i $0, given r >0, there exists el(r)>0 such that

0 < e_ el(r)implies I

I
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11Vi,2(g)2 < r 11vi, 1(E) 2, i = 1,...,n (5.4)

where (.i,vi) is the solution to(5.1) such that II v II 2= 1-.

Proof

(1) This follows from standard arguments in singular perturbations theory,

for example, see (27].

(2) if 3i 0 0, from equation (5.1),

II42/ S2+B21V. 42 2 v~1).I. (5.5)

By continuity of matrix inversion in a neighborhood of A22, given 81 > 0 there exists

ei. 2(8 1) > 0 such that, whenever0 < ei.2(80)

11 Ii A 22+Ei622 +B22)-112 < eIIl 2 (1l+6 i). (5.6)

Choose Ei.o (from first part of the theorem) such that 0 < e <5io implies that

I f3i I1xi- i < LeF-, min(ei.O, ei,2(W))
IX, - 3i I < ""2 "--".Letel,3 -

Then

Ivi.2 12 < 4 eK NA2 1vi.1 2  (5.7)

wheneverO < E : ei.3, where

K K max{ f Ii3A 21+B 2 1+ I3.il A 1] 1 2, '[1 A21+B21-I31I-1 i 2} (5.8)

I ~~~If K = 0 then choose el = E3, else choose el =gi=n,.. Ei. 3, r 2

Then for alle such that 0 < < el,1

Ili22<rHv~• 59
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and this completes the proof. ']

Next we use the lemma to show that for planar AFS (figure 12) 1) consisting of interconnected

beams and 2) having joint dominated inertias, the modal frequencies can be partitioned into two

groups. One "low frequency" set corresponds to eigenvalues that tend to zero as the joint inertias I
become large. The other group of relatively "higher frequency" modes corresponds to the eigen-

values of the AFS, simply supported at the joints. We show that these high frequency mode

shapes are joint configuration invariant Due to bandwidth restrictions, joint actuators on the AFS

are ineffective in controlling these high-frequency vibrations, but the distributed actuators are

highly effective in controlling them. Due to the invariance of these mode shapes in AFS with I
joint dominated inertias. we can expect to find distributed actuator placements that are uniformly

good over all joint configurations.

To show the mode shape invariance we generate a dynamic model for the beams Using the U
Finite Element Method (FEM), with degrees of freedom (dof) as shown in figure 13, each of the

individual beam's mass and stiffness matrices can be assembled to obtain the total mass and stiff-

ness matrices, Mt and Kt, of the structure. The system equations can be written as

M, k +Kt X =B F, (5.10)

where F is the external force. X can be partitioned into XI and X2, where the later consists of

the translational dof at the joints. Moreover, the matrices MI and Kt can be partitioned such that

the dynamic equations become

/•12 Alf22J X K 12 K 22 X = B F ,( .1lI

where

'AJ(2)

x2= i .(2) (5.12)

(n ) 
I
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represents the translational degrees of freedom at the joints. Since all degrees of freedom, except

those of the joints, are defined in local beam co-ordinates, only the joint related inertias

(M 12 , M 21, M 22) and stiffnesses (K 12, K21, K22) are dependent on the joint angles, Ok. How-

ever. M 11 e R n xn and KII e R xn", which also include terms corresponding to the rotary

degrees of freedom, are independent of Ok. The submatrix M 22 e Rmn)CP consists of two

components-- the contribution from the joint masses Mjoiu, and the contribution from the link

inertias, &22. Since Mjoinu, is large by assumption, we express it as AIL, where e is small.

Therefore M 22 can be written as

I M22 + 6•+22 (5.13)

Note that 822 depends on Ok, and M * does not. For the system described by 5.11, its eigenvalues

Xi and the corresponding eigenvectors, vi, satisfy

I
Xi Mll-KII XiM 12 -KI 2  Vij] . (5.14)

Xi M 2 1 -K 2 1  ),iM*/E+)Li& 2 2 -K 22 J Vi. 2J

I From the lemma proved earlier, in the limit as e--O (large joint inertias), the system eigenvalues

can be partitioned into the "'high frequency" group {•} and thi "low frequency"

such that

EQla Ia-P31 I =0 (.5

I l~~ I~jI =0 (.6

where Pi satisfies det [PI MI, -KI 1)= 0. Moreover, in the limit as E-+0, the eigenvectors 7i,

corresponding to ai, are those of the structure, simply supported at the joints. Hence

7i.2 = 0, (5.17)

ai MI, v', I = K11 F/,1 . (5.18)

I
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Since M 11 and K11 are independent of joint configurations, equation 5.18, and consequently the

eigenpairs (ai, vi) are also configuration invariant in AFS with joint dominated inertias. Hence

the associated "high frequency" mode shapes and in particular their rotary components do not

change much with joint configuration if e is small. This leads to placements that are good over

large variations in joint configurations as discussed in section 3. The above arguments can also be

extended for spatial AFS with complex structural connections between joints. Thus we can expect N
to find uniformly good distributed actuator placements in AFS with joint dominated inertias.

5. Conclusion

In this paper we formulated the actuator placement for Articulated Flexible Structures. Two

closed loop performance criteria were considered to derive objective functions for optimum

placement of actuators in such systems. The procedures, developed independent of initial condi-

tions and formulated as eigen-value problems, are easy to compute. In the example two-link I
manipulator, these measures are computationally tractable and effective to solve the distributed

actuator placement problem for optimal structural vibration reduction. An important observation

is that the mode shapes associated with nodal rotations for the example two-link flexible manipu-

lator are relatively invariant with joint configuration. This invariance resulted in a placement

which is effective in reducing vibrations over all the different configurations. We further investi-

gate the invariance of the mode shapes and identify a class of articulated structures, with joint

dominated mass distributions, where we can expect such uniformly good placements.

The measures suggested in this paper can also be used for actuator placement in set point con-

trollers of nonlinear systems. In this sense the approach is a modest attempt at the larger problem

of nonlinear actuator placement. The existence and computability of optimal designs for general 3
trajectory tracking in nonlinear systems is the subject of further work.
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I Redundant Actuators to Achieve Minimal Vibration Trajectory
Tracking of Flexible Multibodies: Theory and Application

SANTOSH DEVASIA and EDUARDO BAYO
Mechanical & Environmental Engineering Department, University of California, Santa Barbara, CA 93106

Abstract. We address the problem of inverse dynamics for flexible multibodies, which arises, in trajectory
tracking control of flexible multibodies such as space manipulators and articulated flexible structures. Pre-
vious research has resolved this trajectory tracking problem by computing the system inputs for feedfor-
ward control of actuators at the joints. Recently, the use of distributed actuators like electro-strictive actua-
tors in flexible structures has introduced a new dimension to this trajectory tracking problem. In this paper
we optimaly utilize such actuators to aid joint actuators for tracking control, and introduce a new inverse
dynamics scheme for simultaneously (1) tracking a prescribed trajectory and (2) minimizing ensuing elastic
deflections. We apply this scheme for trajectory tracking of a two-link two-joint planar manipulator with
joint motors and distributed electro-strictive actuators. Experimental results are presented to contrast our
new scheme with other existing methods.

Key words: Flexible articulated structures, multibody dynamics, actuator redundancy, trajectory tracking,
inverse dynamics.

1. Introduction

i Inverse dynamics provides an excellent means for trajectory tracking of flexible multibo-

dies. Methods to precompute the actuator inputs required to exactly track a given output

I trajectory of a control point on a single link flexible arm were provided by Bayo [1] and

by Kwon and Book, [2]. The solution for multi-link open-chain applications has been

I proposed by Bayo et al. [31 where the inverse dynamics and kinematics produce bounded

feedforward inputs for actuators, like motors at articulations and joint angles, to track a

I reference point on the structure. The closed-chain planar case has been recently presented

by Ledesma and Bayo [4]. If the sensors and actuators are non-collocated then the flexi-

ble structure has nonminimum phase dynamics and the only stable inverse dynamics solu-

tion to the tracking problem is non-causal [5]. Once a trajectory is specified, the feedfor-

ward control input obtained by inverse dynamics for exact trajectory tracking, has a

unique bounded solution. Therefore, the subsequent elastic structural vibrations induced

on the structure (except at the control point where these vibrations are zero) during the

trajectory tracking motion are also defined uniquely. These vibrations could be detrimen-

tal to the performance of sensitive on-board systems and hence it is desirable to minimize
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them. For some time, distributed actuators have been strongly considered successfully n

used to to control structural vibrations ([6] and [7] ). Recent success in their experimental

use [8] motivates the use of such actuators to aid joint actuators, like motors, for trajec-

tory tracking.

The trajectory tracking objective can be accomplished by the point actuators alone

[9] and in this sense the distributed actuators are redundant. In this paper we introduce I
the concept of using the extra actuation available through the distributed actuators in the

structure to not only satisfy the trajectory tracking constraint, but also minimize the

accompanying elastic displacements during the motion. A new inverse dynamics method

is presented to compute the feedforward inputs which includes the cases of redundantly

actuated structures. This use of distributed actuators for end effector trajectory control is I
contrasted with the use of only the joint actuators in feedforward. The method proposed

here is shown to substantially reduce the induced vibrations in the structure. The results

are experimentally verified using a flexible two link articulated truss structure with distri-

buted eiectro-strictive actuators and joint motors. We also present a novel strain based

control scheme for electro-strictive actuators which is very effective in reducing hyster-

isis and other non-linear effects pre-dominant in such actuators.

The remainder of the paper is organized in the following format. Modeling of flexi-

ble multibodies with joint and distributed actuators, formulation of the problem and the

solution methodology are presented in Section 2. Section 3 deals with an application of

the proposed method to a two-link flexible truss and presents experimental results. Our

conclusions are made in Section 4.

2. Formulation

The inverse dynamics of a flexible multi-body is a non-linear problem. We solve this

non-linear problem recursively, one element of the multi-body at a time. This algorithm,

proposed by Bayo in [31, for general multi-body inverse dynamics involves, 1) studying

I
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an individual component (link) in the chain; 2) coupling the equations of the individual

links; and 3) recursively converging to the desired actuator inputs and corresponding dis-

placements. Following this general procedure, we propose a new scheme which incor-

porates distributed actuators in the solution ot the inverse dynamics problem. This

approach is presented in the following section.

2.1 Equation of motion of an individual link

We start by studying the dynamics of a single link. To simplify the equations, we con-

sider a link with a revolute joint, however the formulation is similar for a general element

of a given multibody with other types of joints like the translational type. The flexible

link depicted in Figure 1 forms part of a multi-link (multi-body) system, and has a total

Ilength L, mass per unit length i, area moment of inertia I, cross-sectional area A,

i Youngs modulus E, shear modulus G, and shear coefficient k. A tip mass of magnitude

M, is attached at one end, and a hub with rotary inertia 1h at the other end. A point P at a

i distance x from the center of the hub has undergone elastic deflections of magnitudes u,

and uY, and rotation of 0, defined with respect to a nominal position characterized by the

_I moving frame ('I, F2) that rotates at a specified angular velocity and acceleration (oh and

ah respectively, and a linear acceleration of ah. This definition of motion with respect to

the nominal frame permits the linearization of the single link's dynamic equations. Incor-

3 porating the kinematic model followed by Naganathan and Soni [101, the linear and

angular accelerations ( a, and at, respectively ) can be written in vectorial notation as

I ap = (Oh x(oih xr) + ah xr + 2 Coh xv,,i + ah + a,,, (Ia)

ap, = ah + 6' (lb)

where r - (x + ux)'l (t) + uy 2(t) , v,1 is the relative velocity of point P, whose rela-

I tive acceleration is a,,,. The components of acceleration vectors satisfy the following

equations

I ax =-oh 2ux -ahuy - 2 coih + ix - oih 2x + ah (2a)

3ay -- hu. -oh2Uy +2oh ý, + iy - ahx +ahy (2b)
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cp = Ch +0 (2c)

where the subscripts x and y denote components along the F, and F2 directions. Now

using the Timoshenko beam theory, which includes the effects of shear deformation and

rotary inertia, the principle of virtual displacements can be used directly to generate the

following equations of motion

Iira aX SuX + m ay 8uY + M r 2 2ap 80 1 dx + Ih (ch + Oh) 80 h + M a, 8u, +

I[EI 6'•6'+GAk(O -u'y)8(0 -u'y)+EAu' xu'x ]dW x = I
T 80h +Rty Suty +R, &L•4 +T t 80t (3)

where ri is the radius of gyration of the section. The subscripts h and r indicate the hub

and tip respectively, and the symbol ' denotes the spatial derivative. 5u". 8uy and 60

represent a set of virtual elastic displacements. T is the unknown torque to be applied at

the hub so that the prescribed tip motion is obtained. Note that the hub acceleration is

decomposed into the nominal acceleration a(h and the acceleration due to elastic 3
deflections. Also observe that the reactions at the hub do not have any effect in the total

virtual work. As shown later, this constraint is met by imposing the constraint that the I
hub moves .long the nominal path without any elastic deformations. The displacement

field of equation (3) can be discretized using the finite element method (FEM) as follows

Ux(X't)=.i(x)uxi(t) ; Uy(X't)=H(x)uyi(t) ; O(x't)=+H(x)Oi(t) (4)I

where Hi are interpolation functions whose order depends on the number of nodes, N, in

the elements ; u. , uY and 0 indicate the nodal deflections. It should be noted here that

other alternative approaches, like the modal superposition method may be followed to

generate the system equations. The approach chosen is dependent on the ease and accu-

racy of the particular method. Substituting equations (2) and (4) in the virtual workI

expression (equation 3), and following standard procedures for the formulation and

assemblage of element matrices [11], the equation of motion can be written as [31

I
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I~C M [cc (Cool) -+K K~~ Z =BTT+ pV,+ F. (5)

Where z is an R n vector of the finite element degrees of freedom. M and K belong to

R"n and are the conventional finite element mass and stiffness matrices respectively;

I Cc and K, E Rn n and are the time varying Coriolis and centrifugal stiffness matrices,

respectively. The Rnxn matrix C represents the internal viscous damping of the material.

T is the unknown joint actuation. F E R n contains the reactions at the end of the link,

and the known forces produced by the rotating frame effect. The distributed actuator

inputs V. c R"P are the equivalent nodal forces at the FEM degrees of freedom, where

np is the number of distributed actuator inputs. BT and Bp are constant matrices input

influence matrices of dimensions Rn and Rnxnp, respectively. The set of finite element

equations (5) is partitioned as follows

M zi + C+Cc()]h zi + K+Kc(ah ,h)] z, =

I Bp, Fh

0 T+ Bp, Vp +Fi (6)

OJ B,, BpF

,where Oh is the elastic rotation of the hub, z, is the astic deflection at the tip in the y

direction, and the other n-2 finite element degrees of freedom are included in the vector

:i. The force vector, F, and the Bp and BT matrices are also partitioned similarly.

2.2 Minimization Objective

The requirement is to accurately track the end effector of the link along the given nomi-

nal trajectory without overshoot and residual vibrations. If the distributed actuators were

not available, then the exact tip trajectory tracking requirement defines the joint input

torque T. Our objective is is to use the additional actuation available through the distri-

buted actuators to reduce the ensuing structural vibrations at locations away from the

control point during this motion by minimizing J (T,Vp), a measure of elastic deflections
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in the structure defined as follows

J(T,Vp) f Z(t)TZ(t)dt. (7)

Mathematically the objective can be stated as

mrin -J(T,Vp). (8)
(TV,) e T

Where T is the set of all pairs of stable actuator inputs that when used to actuate the

system defined by equation (6) yields zt (t) = 0 for all t.

2.3 Solution Methodology

An iterative scheme is described below for each link. Equ%,tion (6) can be rewritten as

Mi + Ci + Kz = BT T+ Bp Vp + F - Cc (Ch ) i - Kc (ah,coh) z (9) I
where the time dependent Coriolis and centrifugal terms art kept on the RHS of the

equation. A study of the influence of the Coriolis and centrifugal effects on the inverse

dynamics has been presented by Gofron and Shabana [12]. The iteration procedure starts

with the absence of the last two terms involving Cc and Kc in the right hand side. Then,

the system of equations can be transformed into independent sets of simultaneous com-

plex equations by means of the Fourier transform. For each of the evaluation frequency

w, equation (9) becomes I
Ah t [Ph] BpI

M +-C -- i + Bp, Vt, (10)[Z J LF t Bp
where the symbol stands for Fourier transform, and P represents the known forcing

terms. After the first iteration it will also include the updated contributions from the

Coriolis and centrifugal terms appearing in the RHS of equation (9). For any co * 0, the

matrix

"° I -I
- •m (11
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is a complex, symmetric and invertible matrix. For co = 0 the system undergoes a rigid

body motion and H A M, the positive definite invertible mass matrix. Let G - H- 1.

Then the above equation can be re-written as

A

S Ghh Ghi Ght

Zh [i ]i 7()Gil [ Fi + Bp, VP (12)
A Gth Gt, Gt 0,it P B

The condition that the tip should follow the nominal motion, is equivalent to it = 0 for all

co. This induces a relationship between the joint actuation and the distributed actuator

inputs and is obtained from the last row of the previous equation.

T =-Gt-[Gth G, Gi G] (P+Bp'Vp ). (13)

Substituting this expression for the input hub torque in equation (8) and using the pro-
p,-

perty thati "= -- 2 Z yields

Where

A - [-Gth-1 GBT(Gth Gti Gt) +G] Bp (15)

and

anB d B [ Gth-1 GBT(Gth Gti Gn) + G ] P. (16)

Next we determine Vp. Using Parseval's theorem, minimizing J(T,Vp) in equation (8)

is equivalent to minimizing ýizll 22 at each co. This is a standard least squares approxima-

tion problem [13] and has one of the solutions for the distributed actuator inputs as,

P =-[ 0]0 V*B (17)

where Z, U and V define the standard singular value decomposition of A as follows

U V*AU =[ ] (18)
I 1,
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and the conjugate transpose matrix operator is denoted by *. This solution is unique in I
the sense that it also minimizes 11 V II 2 over all possible 11 z I 22 minimizing solutions. In

addition if A has rank np, which is the number of distributed actuator inputs, then the

least squares approximation yields

Vp =-(A*A)-lA*B. (19)

A sufficient and necessary condition for A to have rank np is given next. I

Lemma I

rank[A]=np iff rank[BTIBp]=np+1 (20)

Proof

Rank [BTI = 1 ==> rank [GBT(Gth Gti Gtt)] = 1 I
=>rank [A 4 [-G1h-I GBT(Gth G Gt )+G]] _ n-1

because G is invertible with rank n. Since BT = [1 0 O*, it follows that [1 0 ]* lies in

the null space of A . Hence rank A is n-1. Noting that A = A- Bp, the lemma follows I
easily. 0

The above lemma states that if all the columns of the input matrices BT and B. are

independent, then the solution for Vp is given by equation (19), thus the computationally

expensive singular value decomposition given by equation (18) can be avoided. The I
independency of the input influence matrix columns imply that the different modes of the

structure are acted upon in different ratios by the different inputs. If the actuations of two

inputs were similar on all the modes, then they can be lumped together to be considered

as a single input in the computations. This distribution of actuation effort depends on the

mode-shapes of the structure and the actuator placement, and can be modeled easily U
using FEM [14). In the problem at hand, the best placement for a given trajectory

depends not only on the structure but also the component frequencies of the desired

motion. Thus the optimal placement of the actuator would in general be trajectory

I
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dependent. In most structures, such a freedom of changing the actuator placement with

the prescribed trajectory is not available. The design of such structures with fixed actua-

tor placements, is based on minimizing the induced structural vibrations over sets of dis-

turbances with a specified energy [14]. In systems where the required motions are largely

repetitive, the actuator placement can be optimized over a specified set of trajectories;

this warrants a separate treatment to be considered in a future work.

The iteration procedure continues as follows. The corresponding joint torque corn-

I ponent, t is evaluated from equation (13). An inverse Fourier transform evaluation yields

the feedforward inputs and completes the first iteration. The results of this first iteration

are the joint torques, T I and the distributed inputs Vpl. Next a forward dynamics analysis

is carried out to compute K, and C,. F in the RHS of equation (9) is updated and the

process is repeated to find the new input torques and voltages. The process is stopped at

Ithe n 1h iteration if 11 T -12+ P12 < E, where F. is some small positive

constant. It may be noted that for slow motions the terms involving K, and C, are small

relative to the other terms in equation (5) and the iterations converge in a few steps [3].

1 2.4 Algorithm for the Multi-Link Case

In the previous sub-section the procedure to evaluate the joint actuations of a single link

was presented. This is recursively extended for multi-link flexible manipulators. An algo-

rithm is presented below:

3 1. Define the nominal motion (Inverse Kinematics of rigid manipulator).

2. For each link j, starting from the last one in the chain:

a) Compute torque (or force) Ti and distributed actuator inputs P~j

3 imposing zli = 0 (Section 2)

b) Compute the link reaction forces Ri from equilibrium.

I 3. Use equation (5) to compute the elastic displacement and joint angles.



- 10- 3
4. Compute the inputs for the next link, j-1.

This concludes the methodology. In the next section we present an application to a

two-link flexible manipulator.

3. Experimental Verification

An experimental truss structure developed at UCSB is shown in Figure 2. The structure I
has 16 spans and two articulations forming a planar manipulator. The trusses are made of

aluminum and have lumped masses (net 2 Kgs for each link) distributed along their

lengths in order to lower the links modal frequencies and hence the control sample rate. 3
In addition, the first (base) and the second links have tip loads of 3.5 and I Kgs respec-

tively. These loads further increase the flexibility of the structure and the natural frequen-

cies of the first and second links with clamped free boundary conditions are 0.6 Hz and

1.2 Hz respectively. Actuation consists of low-inertia dc-motors at the two joints and an I
active bay (Figure 3) with four electro-strictive actuators. Sensing consists of resolvers at

the joints and collocated strain sensors on the four electro-strictive actuators. In addition,

an optical sensor measures the position of an infra-red LED mounted about the midpoint

of the the first link, thus providing information of the induced structural vibrations during

the tracking operation. The entire structure is supported on air bearings and controlled I
with an Intel 386-based PC, servo amplifiers for the motors and 150V servo amplifiers

for the electro-strictive actuators.

A major concern in the use of electro-strictive actuators is their non-linear applied 3
voltage to effective strain behavior. Temperature dependent variations of this relation-

ship, and the presence of hysterisis prevents their effective use as precision actuators. I
Several techniques have been discussed in [15] to alleviate this problem. These include

biasing the electro-strictor, linearizing the model for small inputs, and non-linear models.

We propose a closed loop cascade controller (see Figure 4) with a feedback control based

on the effective strain induced by these actuators. A strain gauge collocated with the I
I



electro-strictive actuator is used as sensor for feedback. In our experiments a simple pro-

portional controller yielded excellent results as seen by plot of effective strain versus the

command strain (Figure 5) where hysterisis and other non-linear behavior of the electro-

strictors are eliminated when a feedback is used. Such a cascade control scheme is partic-

ularly effective here because the actuator dynamics are much faster than the dominant

modes of the multibody.

To evaluate the proposed use of distributed actuators developed in Section 2, we

apply it to track the end-effector of the two link flexible manipulator. The desired trajec-

tory of the end-effector is a series of rest to rest motions, while the first link is stationary.

The nominal motion of the second link is shown in Figure 6. Our objective is to track the

desired trajectory and minimize the vibrations in the first link which is equipped with

electro-strictive actuators. To evaluate the vibration reduction achieved, we conduct the

following tracking experiments: (1) feedforward of torques computed without inverse

dynamics, i.e. assuming the links to be rigid; (2) using the torques computed by inverse

dynamics for only the joint actuators; and (3) incorporating the distributed electro-

strictive actuators on tihe first truss along with joint actuators in the inverse dynamics

computation and using these as feedforward. In each case a joint based PD controller was

used for controlling errors due to unmodeled dynamics, friction and other modeling

errors. The stability of such joint based controllers are discussed in [9]. The results of our

experiments are presented below.

Plots of the inputs to the electro-strictor and joint motors are presented in Figures 7,

8 and 9. Note that the actuations start before the tip trajectory begins. This non-causality

due to the propagation delays is reduced when additional actuation is available through

the piezos as seen in Figure 9. To illustrate the viability of the proposed method we plot

the transverse structural deflections at the midpoint of the first link (Figure 10) during the

motion obtained by an infra-red led mounted on the structure and an over-head optical

sensor. These elastic deflections in the structure are considerably reduced when electro-
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strictive actuators are also used in addition to the joint motors. On the contrary if inverse m

dynamics is not used and the rigid body torques are used then the resulting motion has

much larger vibrations.

Thus the incorporation of electro-strictive actuators results in a significant reduction

in the structural vibrations and demonstrates the viability of the proposed method. The

consequent reduction (50%) in the induced vibrations of the structure allows the use of I
lighter elements and therefore smaller joint actuators, especially in space structures

where the loads are mainly inertial.

4. Conclusion m

Typically distributed actuators like the electro-strictive ones cannot garner enough actua-

tion to cause large motions in the multibody system. However they could be very effec-

tive in reducing structural deformation. To reduce such vibrations by the use of distri-

buted actuators in feedforward aiding joint actuators for trajectory tracking is a novel

idea developed in this paper. The method proposed is extremely efficient as it optimaly I
reduces structural vibrations and the theory developed was verified by experiments. The

use of the redundant distributed actuators seems promising in the slewing control of flexi-

ble manipulators and other space structures, and motivates further work on distributed

actuators for the control of flexible multibodies. In particular, for systems with largely

repetitive trajectory tracking requirements, future work will address the actuator design m
problems like placement and sizing, from a vibration minimization perspective.
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Figure 1. A single flexible link.

Figure 2. Experimental smart flexible structure.

Figure 3. The active bay in link 1.

Figure 4. The closeloop contro! scheme.

Figure 5. Effect of feedback on the effective strain.

Figure 6a. Desired nominal rotations of the second link.

Figure 6b. Desired nominal accelerations of the second link.

Figure 7. Command strain inpt' to the electro-strictor.

Figure 8. Applied joint torques to link 1.

Figure 9. Applied joint torques to link 2.

Figure 10. Elastic vibrations on the first link.
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VIBRATION CONTROL OF AN EXPERIMENTAL TWO-LINK MANIPULATOR

Sanosh Devasia* Brad Paden" Eduardo Bayo**
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Abstract and uniformly good placements are possible! Two methods of
In this paper we address the problem of actuator place- placement re explored. The first is based on the simple rate

ment for articulated flexible structures. Specifically, the place- b damping contrller where placements ae chosen to mu.
mcnt of a single active bay on an articulated truss is formulated imize the decay rate of vibrations. The second method optim.
and solved for the UCSB/Astro-Aerospace truss. We observe izes placement based on closed-loop performance of Linesr.
that controllability grammian methods aem not reliable in gen- Quadratic Regulator. The two methods are contrasted using a
eral and that better placemenet are achieved using closed-loop finite-element model of our structure.
performance measures. Some preliminary vibration damping The remainder of the paper is organized in the followin1
experiments are also described, format. In section 2 we describe the experimental setup und

modeling. Section 3 formulates measures to be used for actua.
1. Introduction tor placement in linear structures and discusses the perfor.

m ce measures. Section 4 deals with the extension of the
The control of large flexible structures been con- measures to articulated flexible structures along with an exam-

sidered for some dime (1]. However, the recent application of ple and presents simulation and preliminaty experimental
piezoelectric materials by Crawley [2] for actuation of flexible results. Our conclusions are made in section 5.
structures has added a new dimension to this problem because
these actuators can be distributed along structural members for
vibration and shape control. This paper deals with the problem ErpeneialSa-UP
of actuator placement to achieve optimal damping of vibrations The effectiveness of distributed actuators has been
in articulated flexible structures (AFS) through the example of demonstrated for vibration reduction [1]. Such structures exhi-an experimental two-link two-joint truss structure. The key bit residual vibrations due to imperfections in the controller
issue in such optimizations is the use of a suitable design and distubances like impacts, thermal heating and micro-
evaluation measure. Once a numerirclly tractable measure is gravity. For example, in space station mobile transporter mni-
available, a combined structure-controlle,- design optimization pulatore, ear trains exhibit substantial friction, stiction and
can be carried out. We approach the problem in two steps, first, backlash. nder such conditions, joint actuators are ineffective
different measures to perform design evaluation in linear struc- in controlling low amplitude structural vibrations. The proper
tures are studied, and second, we extend two of these measures placement of distributed actuators is critical to the control of
to articulated flexible structures (AFS) with non-linear dynam- such vibrations.
ics. The example we consider is an experimental two-link

For structures with linear dynamics, our goal is to find truss structure (figure I and shown in the video) developed at
the placement to maximize modal damping when feedback UCSB. The structure has 16 spans and two articulations form-
control is applied. Similar problems has been studied previ- ing a planar manipulator. The trusses are made of aluminum
ously literature. In Crawley's early work the actuator was sim- and have lunped masses (net 2 Kgs for each link) distributed
ply placed with one bending mode in mind at the location of along their lengths in order to lower the modal frequencies and
maximum strain for that mode [2]. However the placement hence the control sample rate. In addition, the first and the
problem for the case with two or more controlled modes was second links have tip loade of 3.5 and 1 Kgs respectively. and
not addressed. Kondoh el al [3] used the linear quadratic- their lengths are 1.8 and 1.1 m respectively. Actuation con-
optimal control framework to perform sensor and actuator sists of low-inertia dc-motors at the two joints and one active
placement, but formulated the problem such that the solution is bay (Figure 2) with four piezo-electric actuators. Sensing con-
initial condition dependent -- this dependence is removed here. sists of resolvers at the joints and co-located strain sensors On
Controllability was used as a performance measure for place- the four piezo-electric actuators. The entire structure is sup-
ment of a point actuator in [4). Our main result for the linear ported on air bearmings and controlled with an Intel 386-based
case states that methods based on the controllability grammin PC, servo amplifiers for the motors and 150V servo amplifiers
can yield less effective placement results for vibration damping for the Piezos.
than those based on closed-loop performance measures. Our interest is to study piezo actuator placement for

Next, we consider the non-linear problem of placing optimally controlling structural vibrations. A related issue Is
piezo-electric vibration damp'sr in articulated flexible struc- the implementation of controllers for the distributed actuators.
tures (AFS). The placement problem for these jointed sawu- The problems of implementation include de-poling, nonlinear-
trres is complicated by their nonlinear dynamics. Even with ity, hysteresis, and creep effects in the piezo actuator [5]. De-
small linear vibrations about a given rigid body configuration, a poling may be avoided by maintaining the applied field below
good placement for one configuration should not necessarily the coercive field. Within the de-poling limits, the nonlinearity
work well after the smucture's joints are rotated. With a finite- between applied electric field and the resulting actuation strain
element model we have indeed observed a large variation in may require the use of more complex models [6]. An altema-
modal frequencies (for the linearized dynamics) as the joint tive is the linearization of this relationship about the operating
angles are varied. However, we have discovered that for some point [7]. Creep and strain rate dependence of the actuator
structures (and ours in particular) nodal rotations associated become important at large strains and low frequencies. Hys-
with the mode shapes are relatively invariant to configuratims teresis also plays an important role at low frequencies.

Significant performance improvement over such behavior isI Supported by the Astro Aerospace Corp. under P.O. possible by commanding the induced charge rather than the
voltage applied to the actuator [8]. Other issues related to

104236. actuator dynamics are considered in [91 and [10]. We note that
** Supported by the U.S. Airforce under grant F49620- the Piezos have fast dynamics relative to electromagnetic
91-C-95. actaators and are attractive in this regard.
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System Model where I
The modeling of actuator/structme interaction using A A A +-kI J Cl 34 I

finite dimensional models has been studied in detail in [5]. Fol- 0A-dp ti O 0 -p

lowing a similar approach, low amplitude motions relative to a
given rigid body equilibrium configuration x4 of an articulated The advantage of such a co-located passive control is
flexible structure is approximated using the Finite Element that controllers designed for a finite-dimensional model
Method (FEM) [I 11. and can be written as remains stable with the infinite dimensional plant provided that

actuator dynamics can be neglected (14]. Since the bandwidth
Mp. + Dp.eý + K,,.ex = Bp. up (2.1a) of a piezo is only limited by its capacitance, actuator dynamics

can be justifiably ignored for large space structures. The imple-
where x E RI denotes the flexible degrees of freedom. mentation issues of such controllers have been addressed in (5] 1
Mlw, , Dp.* and. Kp'. , are the mass, damping and stiffness and [101.
matrices respectively. p E R I denotes the placement, 0 c- R 2  We measure the system performance for a particular
is the joint angle vector of the structure, and up e R I is the choice of controller, placement and piezo length by the rate Of
input voltage to the actuator. Note that joint motor torques dodeaofstmsaesndhrfreektopcehe l fnot appear in the equations as the joints are assumed to be decay of system states and therefore seek to place the poles of
locked due to static friction. The effect of the piezo actuasto the system far into the left half of the complex plane. More for-
modeled as two point moments M (figure 3) actin at the eds mly epromtefloigotmzto
of the piezo ([5] and[12]) and is included in the Bk, 0 matrix. minmax Re),(A) (3.5)
The output y r R I is obtained from a strain gauge co-located P I
with the actuator and is linear in the st~ate[131 where A, (A) is the i 1 eigenvalue of A. and p is one of the

Y = Cex. (2.1b) span midpoints.

From equation (2.1) it is seen that for each placement p. the LinrI QuadraticRegulatorCase 3
system can be considered as a family of linear systems The Linear Quadrati Regulator (LQR) is attractive
parametrized by 0. Noting that at each equilibrium point is because the controller stabilizes the closed loop system and
defined by x = x Oat, the state equation (2.1) can be rewrit- also allows for user defined weights on the inputs and states.
te a LQR optimization has been used to reduce the structural vibra-

tions in the control of large flexible structures in [15] and [16) I
i (t)= Ae.0 (t)+ Be.u(t) (2.2a) but the formulations were initial condition dependent -- this

dependency is removed here. For the system described by
equation (2.2), consider the infinite-horizon time-optimal con-

where(t) = c. 9 (t). (2.2b) trol problem of minimizing a quadratic cost functional given by

where = TRv(t)2+zT(oQz(tndt (3.6)
Z=X iTT R2R , (2.2c)

where R is a positive scalar and Q is positive semi-definite 1
r1matrix such that the pair (A,.. 17 is observable. Provided[ CA I.Xis eR ~ ,(.)system (2.2) satisfies the stirdard conditions of stabilizabilityO,,a 6, R-'OA" ,(2•.d) and detectability, the mintrimum cost mim/v is given by

A.o= MF•Kb.e -M,,j o z T(to)Pz (to) where P is the unique nonnegative-definite solu-
tion to the algebraic Ricani equation[ 17)

PAp,,,+Ap,,TP -PB,.,R-IB,,,TP +Q =0. (3.7)

e R 2x (2.2a) The corresponding control is

M . 0,(2.)) = --R-BeTPz t).(3.8)

n We propose minimizing Jv for the worn case initial condition
S(2.f and therefore pose the following optimization for computing

CP.9= Ce,. O, RtX . (2.2R) theplacement.

min n•&axzP:o, Zo = z (to). (3.9)
3. Actuator Placement for Linear System This method optimizes performance uniformly in initial condi-

In this section we formulate three optimIzation problems tions in contrast to the approach by Kondoh e al [3] where a
for determining a good placement of the piezo actuator for the solution sensitive to initial conditions is proposed.
linearized system. Our objective being an actuator placement
to achieve optimal vibration damping in the elastic modes. In Controlability Grammian Method
words they are the following. (1) Subject to the constraint that Finally. we describe s placement procedure based on the
co-located damping control is used, find the placement that controllability gramnmian Fused by (4). This method is use-
maxinizes damping uniformly in the modes. (2) Assuming the ful, but has certain didvantages discussed in the following
system is detectable and stabilizable, find the placement that section. Assuming that the matrix A, 9 in the state space
minimizes a standard linear quadratic cost functional uniformly description (2.2) is stable, as the final t& T tends to infinity,in initial conditions. (3) Find the placement that maximizes the it can be shown that the finite time controlhlablity gr, rmmian
minimum eigenvalue of the controllability grani-m. (as is W(0,T) approaches W, the solution of the Lyapunov equation
done for the actuator placement problem byArbel ). WAeT + AI .. W + O Bp 9T =0. (3.10)()
Passive Damping CaseWA, 9 +,.W+ ,Bj0. (10

For the first optimization problem, we assume a pmre Based on Arbel's method we perform the optimization
co-located damping control given by max (W)(3.1)V (,t -k', Cp G (3.1) P & Im
where kd is the scalar controller gain. With this control the to maximize the controllability of all the modes. This approach

state-space description (2.2) becomes is discussed in the following sub-section.

i (t) = A z (t) (3.2)



Discussion of the ControUabdiliy Grwaman based Measure Problem Statement
We discss in thi suýsin the drawbacks of the con- A local cost fiunctional c(x.,p) is defined for every

trollability grammuimn method applied by Arbel (4]. Th1e cost placement p and rigid body configuration x, of the articulated
for the miniunm energy control given initial condition z (to) flexible structure as follows. For the passive camping con-
and final condition z (T) is troller (3.5) the local cost function is defined as

J [z(T) -e AMlT -)z (tO W-I(0,T)[z(T)-eA1-9t).z(so) c(x.,p) A max Re?,,(A) (4.1s)

(3.12) and

where eAPtOc1 -' is the state transition matrix. J is the energy c(x,,p) a *nVaxZEPzo. 20= z (to). (4.1b)
required to deviate fromn the natural m 1ion of the systern.
which would have reached the state e ' ZP 'z (to) at time T for the LQR controller (3.9). Based on cost measures evaluated
without the application of any control. Arbel's method is through local linearization (section 3) we can state the place-
based on optimizing J over all possrible inkitil andfinal co"~d- ment problem.a
tions and results in minimizing the maximum ~ei rvalue of the
inverse of the controllability gramrmiut -18T, over dif- f' ()(42
ferent actuator positions. In contrast we are interested inI C par) (4.2)
ticular final condition namely zero. Thie control cost J? for this where the functional C (p) assigns a global cost for each
finite time regulator problem (z2(T) = 0) is given by placement byý evaluating a suitable norm on the function

4 c(:,p):X. RI. If for example the set of equilibrium
1W 4 W(OT) (1 (3.13) points. X., is contained in Rm, then two possible choices of the

0)1' 0)]tho funiction C (p) we the average and worst case:
which differs from J i caty Next we show that the max--1 fJc (x., p)dxiurn eigenvalue of R'(O,T) increases as the systemn poles
move far into the left half of the complex plane. Thus J and (4.3)

Tcresesas he ystm bcoms mre ampdl et y be an
eigenvalue of W and let V be the corresponding eigenvector
such thati vI V2 = I - Pre- and post-multiplying the Lyapumov mij c(x.,p). (4.4)
equation (3. 10) by V T and V respectively, we obtain

VT*WAP.GTV +vTAP.GWV + VTBPeBP *TV = 0(3.14) T"hese measures are used to numerically solve the problem of
Thenplacing distinbuted Piezo-electric actuators in a two-link flexi-

ble manipulator-strictive in the next section.

vrB,,p.Tv lminxI)4(B;.eBop_(. For the two-link flexible manipulator (figure 1), we
2iJA~.e ms I ~(Ae)Istudy the distributed actuator placement to optimally control

for gien Bg ~small structural vibrations when the joint motors are effectively
Teabove result implies that fragvnB theimleslocked because of static friction. This corresponds to clamped

ofWIincrease if the eigenvalues of Ap ,, move into the left boundary conditions at the joints. Our objective being an
half plane. Hence Arbel's approach deemsi the system as less actuator placement in the mtrs structure to achieve optimal
controllable aid therefore not desirable even though the above vibration damping in the elastic modes over a set of rigid body
shifting of the poles is advantageous for vibration reutin equilibrium, configurations. We study the actuator placement at

This decrease in controlla~bility car, be easily illustrated a single shoulder joint configuration because the system
through a scalar example described by dynamnics are independent of the, shoulder * int angle. Also.

xQ)=-arQ+bu~t). 3.16)dte elbow joint 0 is cosrie b10 11 !590 in the experi-
.i () =--ax(t)+ b (t) (316)menL. Then by symmetry =itis Edf cietit to study the problem

UsingArbel th''for elbow joint angles between 01 and W0. Hence the set of
Uig abes methtor a large final time T, the eigenvalue eqiibimsttsX., containiing rigid body configurations

of W(O,T) tends to -a which decreases as a mncreass, and wtzeolaicdflections, is parametrized by the elbow joint

* subsequently the controllability measure deems the system asl n sidpnen ftepaeetp3 less controllable even though from a vibration reduction per- The two measures defined in the above sub-section are used to
spective it is more desirable. A similar effect is seen in flexible generate solutions to the placement problem of the piezo-
structures with large decay rates in the higher modes 113]. actuators. The passive co-located damping controller con-
Arbel's placement method would therefore push the placement sidered is parametrized by a scalar feedback gain Kd and the
towards locations where the higher moides have maximum feedback law can be written as [13]
strain. However, due to lower decay rates, control of the lowerr -1(5
modes is more critical from a vibration suppression perspec- u = Kj 1O0 1 X~. e -9 2.45
ive. Thus for vibration reduction, care must be "exeised
when using the controllability graminian based measures. While compting the cost, an optimization is also performed

over t-. t"zalar controller gain Kd. This implies that the local
4. Actuator Placement For AFS mealmu1  (p , z), with the passive damping controller is given

In this section we formulate the problem fov the place- by
metof distributed actuators in a general articulated flexible c(px,x) Amin max Re-A. (4.6)

structure (APS). The set of equilibria in AFS consists of rigid A R S e~()
body configurations with zero elastic deformations. Our control
objective is to obtain uniformly good regulation of elastic For the LQR controller based measure, weighting matrix Q is

deormations at any equilibrium state (ri~id bocho hsen to be uniform in t ) elastic displ ents; as
configuration) of the articulated structure. This implies that the IXX ~' OX.
set of desired trajectories Xd. are constant trajectories. Our Q .(4.7)
approach is based on linearization (Section 2) of the system 0. O 0O..

eqations at each equilibrium point in the set Xo foll owed by aL i
local cost measure (Section 3) evaluation at these eqjuilibrium The choice of the weight R on the control input depends
pons nte olwn u-scinw ecrb hspo on the de-poling limit of the actuator and the initial conditions.

cedure. For agiven R and oytirrul placement p,, and the maximum
209 input voltage u,()over all the congurations is found.



This variation of um,z(R ) as a function of R and a (the bound The reader is cautioned that this invariance in the
on the initial conditions i.e. Ix,, I 5a) is shown in figure 4. mode-shapes need not be true for all AFS. The varnations in the I
Based on de-poling limits for the actuator, the maximum mode shapes and the modal frequencies with configuration can
applied voltage is limited to 300V which corresponds to an in general affect the placement. Hence it is not always possible
applied field of 2 MV/rm. For a = le-3. corresponding to a to find placements that am uniformly good over different
maximum transverse elastic deflections of approximately 3cm. configurations. In such cirumstances the placement should be
R = Ie--6 falls in the suitable region, with maximum input based on either the average performance or worst case perfor-
voltages below the actuator de-poling limit. mance described in section 2. and then the resulting placement

For the averaging global measure defined by equation (43), the yields the best achievable performance.
passive damping based measure yielded a placement at the root Preliminary experimental results for co-located passive
of the first link. while the second case of LQR based measures damping based controllers are given in figure 10, where we
resulted in a placement at the root of the second link (figures show the frequency response between the elastic vibrations at

8,9). It is seen in these figures that the placements obtained are the end of first link span 8 obtained through an optical sensor
relatively "good" over all joint configurations. and input to the base joint actuator. We obtain a 7db improve-

Discussion ment in vibration suppression at the first pin-free resonance.

As the joint angle 0 varies from 0 to 90, there is a sub- 6. Conclusion
stantial variation in the system eigenvalues. This is represented In this paper we formulated the actuator placement for
in figure 5, where the variation of the lowest modal frequencyb nthis ar we a rt ulated the sctur I t w own
with elbow joint angle is shown. This significant (40% both linear and articulated flexible structures. It was shown I
increase) change in the modal frequencies might deem that the controllability grammian based placement technique is

formly good placements impossible. The uniformity of place- not suitable for vibration damping problems. For general are-
ment location is a desirable result because it implies that a sin- culated structures, two closed loop performance criterions were
gle placement is effective in reducing vibrations at the different used to derive objective functions for optimum placement of
configurations. The placement based on passive dampi actuators. The procedures, developed independent of inial
troller is seen to be invariant with joint configuration For the conditions and formulated as eigenvalue problems, are easy to

LQR case the resultant global optimal placement is not the best compute. In the example two-link manipulator, these measures

for certain configurations, however the increase in cost is negli- are computationally tractable and effective to solve the distri-
gible (1%) as seen in figure 9a. This near optimality over all buted actuator placement problem for optimal structural vibra-
configurations is attributed to the relative invariance of the tion reduction. An important observation is that the mode

eigenvector components associated with the nodal rotations at shapes associated with nodal rotations for the example two-link

different joint angles. flexible manipulator are relatively invariant with joint
configuration. This invariance resulted in a placement which is

The placement invariance is due to the fact that in our effective in reducing vibrations over all the different I
example the eigenvectors are relatively invariant with the joint configurations.
configuration. This is illustrated in figure 6, where the projec- The measures suggested in this paper can also be used for
tion of the eigenvectors, associated with the least two eigen- ac urem set int cnoer so n e se s-
values, onto the rotary elastic displacements at the FEM nodes actuator placement in set point contollers of non-linear sys-

of the manipulator model is shown. These correspond to the te r. In this sense the approach is a modest attempt at the

spatial derivative of the projection of the eigenvectors onto the larder po blem non-linea actuator placement The existence

transverse elastic displacements of the manipulator. Note that 22 computability of optimal designs for general trajectory

these rotary mode shapes shown in figure 6. vary little with tracking in non-linear systems is the subject of further work.
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A NON-RECURSIVE LAGRANGIAN SOLUTION OF THE
NON-CAUSAL INVERSE DYNAMICS OF FLEXIBLE

MULTIBODY SYSTEMS: THE PLANAR CASE

RAGNAR LEDESMA AND EDUARDO BAYO

Department ojf Mechanical Engineering, .'niuersitv of California. Santa Barbara, CA 93106. USA.

SUMMARY

A technique Is presented for solving the inverse dynamics of flexible planar multibody systems. This
technique yields the non-causal joint efforts (inverse dynamics) as well as the internal states (inverse
kinematics) that produce a prescribed nominal trajectory of the end effector. A non-recursive Lagrangian
approach is used in formulating the equations of motion as well as in solving the inverse dynamics
equations. Contrary to the recursive method previously presented, the proposed method solves the inverse
problem in a systematic and direct manner for both open-chain as well as closed-chain configurations.
Numerical simulation shows that the proposed procedure provides an excellent tracking of the desired end
effector trajectory.

1. INTRODUCTION

Accurate positioning and vibration minimization of flexible multibody systems have generated
considerable interest from the computational dyjiamics and controls communities. The advent of
the new generation of very fast, lightweight robots and flexible articulated space structures has
made the control of structural vibrations, an important practical problem in the manufacturing
and space industries, respectively.

There is a large body of literature dealing with the forward dynamic analysis of flexible
multibody systems, i.e. the determination of the resulting motion when the joint forces and
external forces are given. Several authors' 10 have proposed the use of floating reference frames,
while others' 1" 3 have put forward the use of inertial reference frames. Winfrey' proposed the
superposition of linear deflection of flexible bodies to the non-linear rigid body motion. Bahgat
and Willmert' presented a finite element approach for vibration analysis of planar mechanisms
using the assumption that rigid body motion is determined by rigid body kinematic analysis and
the elastic response is driven by the inertial forces generated by the rigid body motion. Likins3

considered the coupling effects of rigid body motion and elastic deformation in the analysis of
tree-structured flexible systems. De Veubeke' proposed the use of quasi-co-ordinates and a mean
axis co-ordinate system to simplify the equations of motion. Song and Haug' proposed the use of
centre-of-mass co-ordinates and elastic deflections as generalized co-ordinates for the analysis of
planar mechanisms composa4 of beam elements. Shabana and Wehage6 used the generalized
co-ordinate partitioning method in the analysis of inertia-variant flexible mechanical systems.
Sunada and Dubowsky7 used four-by-four matrix methods and component mode synthesis to
analyse three-dimensional flexible robots. Agrawal and Shabana8 investigated the dynamic
characteristics of general inertia-variant flexible multibody systems using Euler parameters for
rigid body co-ordinates and different finite element mass formulations. Kim and Haug9 extended
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2726 R LEDESMA AND E BAYO

the recursive formulations for the dynamics of rigid multibodies to open-chain and closed-chain
flexible multibody systems. Vukasovic et al. "0 presented the use of fully Cartesian co-ordinates in
the analysis of flexible multibody systems. The efficiency of this approach lies in the fact that only
the coupling terms between rigid and elastic co-ordinates become time-variant.

Different approaches which use the inertial frame of reference to describe the large overall
motion of flexible beams have been proposed by Simo and Vu-Quoc,'' Cardona and Geradin'"
and Avello et al.,' 3 among others. The use of an inertial frame of reference leads to linear,
uncoupled inertia terms in the expr-esion for kinetic energy, while the expression for the potential I
energy functional becomes non-linear. Essential to this type of formulation is the use of finite
strain and finite rotation theories that are capable of treating large deformations and large
rotations. This approach has the advantage that it captures the non-linear stiffening effects that
become important at large speeds of operation. However, it has the disadvantage of having
a more involved implementation than the formulation based on the use of floating reference
frames.

On the other hand, numerous control approaches have also been proposed for the position
control of flexible mult'body systems. An early work was that of Cannon and Schmitz,"+ who
presented an optimal linear quadratic technique to control the tip trajectory of a single-link
flexible robot arm. Singh and Schy' 5 proposed a joint space close. loop control for elastic robots I
by applying a causal non-linear inversion and modal damping. Siciliano and Book" 6 presented
a singular perturbation approach to identify reduced-order systems used to obtain a collocated
control scheme. Pfeiffer'- suggested a multistage control strategy consisting of a feedforward
based on rigid body inverse dynamics, and a stabilizing feedback on the linearized system around
the rigid trajectory. De Luca et al."8 proposed a closed-loop control scheme consisting of
a model-based feedforward term and a linear feedback on joint angles. Oakley and Cannon"
implemented a multilink arm controller based on the LQG design of the linearized arm. I

Looking at the vibration minimization problem from another perspective, Bayo2 ° presented
the solution of the inverse dynamics of a single-link flexible arm in the frequency domain. The
inverse dynamics yields a non-causal or time-delayed joint torque (applied in negative time and
future time) that is capable of positioning the end effector according to a desired trajectory. Bayo
and Moulin 2" extended the inverse dynamics to the time domain by making use of a bilateral
convolution integral. Essential to the inverse dynamics of elastic muitibodies is the realization
that the joint efforts start actuating before the end effector or control point does. Consequently.
for a small amount of time the joint forces do not cause any tip motion. This effect is called

non-causality and the inverse dynamics has to account for it. This also constitutes a difference of
significant importance between the rigid and flexible multibodies because in the rigid case the I
inverse dynamics is causal (instant response), wher•-- 4t is non-causal (time-anticipatory re-
sponse) in the flexible case. As shown by Bayo and Moulin,2' the causal integration of the inverse
dynamics of the flexible case leads to unstable results. Kwon and Book2 2 also proposed a solution
for the inverse problem for a single-link fie. ible arm by dividing the inverse system into a causal
part and an anticausal part to calculate the joint torque and state variables in the time domain for
a given end effector trajectory. Bayo et al.23 solved the multilink case u-ing a recursive procedure
suitable for open-chain configurations. The importancc of using the inverse dynamics approach I
to vibration control has been demonstrated recently by Paden et al.2 ' who have used passive
feedback and feedforward of the inverse dynamics torque to achieve an exponentially stable
tracking control law that yields excellent end-point tracking of flexible multibody systems.

Recursive methods are limited to open-chain configurations, since for closed-chain systems
they require ad hoc procedures 23 that strongly depend on the given configurations. This limita-
tion motivated the research described in this paper in which we present a non-recursive

I
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Lagrangian approach for the solution of the non-causal (time-anticipatory) inverse dynamics of
flexible multibody systems. This method provides a systematic way of generating and solving the
inverse problem for open-chain as well as closed-chain systems in either the frequency or the time
domain. In the next sections, the equations of motion are formulated and a solution procedure for
the inverse dynamics of general planar flexible multibody systems is proposed. Simulation results
for open-chain and closed-chain configurations are presented to illustratc the accuracy of the
method.

2. MATHEMATICAL FORMULATION

In this paper, the floating frame of reference is used to represent the kinematics of the deformable
bodies comprising the planar multibody system. Hence, the configuration of a typical component
of a planar multibody shown in Figure 1 cin be described by two sets of co-ordinates: the first set
corresponds to the rigid body co-ordinates representing the location and orientation of the body
axes with respect to the inertial frame; the second set corresponds to the so-called deformation
co-ordinates or nodal deformations representing the deformation of the body with respect to the
body axes. Using the aforementioned choice of co-ordinates, the location of an arbitrary point
P in a planar deformable body i is given by 25

r' = R' + AVu' (I)

where R' is the location of the origin of the body axes with respect to the inertial frame, ui is the
location of point P with respect to the body axes, and A' is the rotation transformation matrix
from the body axes to the inertial frame. In the planar case, the transformation matrix is given by

A [ cos 0' - sin 0'
sin 0' cos 0i

where 0' is the angle of rotation of-the body axes with respect to the inertial frame. The vector u'
can be decomposed intc

+ = ur f (3)

IP

Il
Figure I. Reference co-ordinates for a planar body
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where u' is the position vector of point P in the undeformed state with respect to the body axes,
and u• is the deformation vector of point P with respect to the body axes. The deformation vector

uf can be expressed in terms of the nodal deformntnons by using a finite element discretization
scheme I

u- N'qf (4)

where N' is the shape function matrix and qf is the nodal deformation vector.
When reference co-ordinates such as those described above are employed in multibody

systems, the system is then represented in terms of the co-ordinates q' = [R. 0, qf]. These
co-ordinates are not independent because the motion of specific points in different bodies are
related according to the type of mechanical joint that interconnects them. Moreover, in flexible I
mechanical systems the deformation of a component affects the configuration of adjacent
components. As a consequence, the interdependence of the generalized co-ordinates is expressed
by a vector of kinematic constraint equations, such as

( (q, t) = 0 (5)

where q is the total vector of system generalized co-ordinates, t is time, and I is the vector of
linearly independent holononic constraint equations. These constraint equations can be further
classified into: (1) rigid body constraints where only rigid body variables are involved in the
constraint equation; (2) joint constraints where both rigid body and deformation co-ordinates are
included in the constraint equation; (3) time-dependent constraints wherein the constraint I
equations can be explicit functions of time as well as generalized co-ordinates, as in the case of
imposing the co-ordinates of the end-effector to follow a desired trajectory. To illustrate the
construction of constraint equations, take the case of a revolute joint which connects two flexible
planar bodies i and j at points P and Q shown in Figure 2. The two constraint equations
corresponding to the constraint condition that requires points P and Q to be coincident can be
written as

(RI + A'ui,) - (Rj +- AQ) = 0 (6) I
We note that the constraint equation exemplified by equation (6) forms a set of coupled
non-linear algebraic equations in the rigid body co-ordinates and deformation co-ordinates.

I
I

P YI

I
Figure 2. A pair of flexible planar bodies I
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Considering the rigid body and deformation co-ordinates described above as generalized
co-ordinates, and following standard procedures in multibody dynamics, the constrained equa-
tions of motion become 25

M(q)j + Cq + Kq + (¾ = Qe + Q,(q, 4) (7)

where M, C and K are the system mass, damping and stiffness matrices, respectively, . is the
vector of Lagrange multipliers associated with the constraints, *q is the constraint Jacobian
matrix, Q, is the vector of applied external forces, and Q, is the quadratic velocity vector. The
quadratic velocity vector contains the centrifugal forces and Coriolis forces that result from the
differentiation of the kinetic energy expression with respect to the generalized co-ordinates.

2.1. Forward dynamics

In a forward dynamic analysis, i.e. finding the resulting motion given the applied joint forces
and external forces, equations (5) and (7) form a mixed system of differential-algebraic equations
that have to be solved simultaneously. As explained in the next section, the solution to the inverse
dynamics problem requires a forward dynamic analysis within an iteration process. We solve the
forward dynamics problem by using the augmented Lagrangian penalty formulation.2 6 Applying
the augmented Lagrangian penalty formulation to equations (5) and (7) results in the following
equation:

M(q)[I + Cq + Kq + 0i[, + 2tto0 + = Q. + Qý{4, q) - (8)

where o is a diagonal matrix of penalty factors whose elements are large real numbers that will
assure the satisfaction of constraints, and o and p are diagonal matrices representing the natural
frequencies and damping characteristics of the dynamic penalty system associated with the
constraints. Values of o in the range 101 < o < 106 provide excellent results when working in
double precision. The augmented Lagrangian method requires an iteration for the correct value
of the Lagrange multipliers. The iterative equation for the Lagrange multipliers is given by

k*÷ ,+ k + ot[[4b + 2p0ol + wo 2 0] (9)

The iterative process described by equation (9) involves only a few additional operations during
each iteration but it significantly improves the convergence of the forward dynamics solution as
compared to the standard penalty method.2 6

The augmented Lagrangian penalty formulation has several advantages over the standard
algorithms used in solving differential-algebraic equations. First, the method obviates the need to
solve a mixed set of differential-algebraic equations and does not increase the number of
equations to account for the constraints. Second, this method allows the use of standardI unconditionally stable algorithms without the need of further stabilization techniques to control
the violation of constraints during the integration process. Third, the method can handle
redundant constraints and allows the multibody system to undergo singular positions. Fourth,
the constraint forces (Lagrange muliipliers) can be obtained as a by-product of the integration
without having to integrate additional equations. Finally, the method assures convergence
independent of the penalty values used.I
2.2. Inverse kinematics and inverse dynamics

In the context of end-point motion and vibration control, inverse dynamics refers to the
problem of finding the actuating forces or torques that will cause the end point of a flexible

I
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multibody system to follow a desired trajectory. Moulin and Bayo 2̀  showed that because of the
non-minimum-phase character of the inverse problem, the unique stable solution is found to be
non-causal. i.e. actuation in required before the end-point has started to move as well as after the
end-point has stopped. These findings have led to new theoretical discover es in the inversion of
non-linear non-minimum-phase systems such as flexible multibodies.'. In addition, the fact
that the stable solution starts at negative time and extends into future time precludes the standard
time-domain integration schemes currently available in multibody computer codes from obtain- I
ing the proper inverse solution. These codes will yield causal, and hence unstable, results and
therefore are valid only for the forward dynamics. The integration process is therefore essential to
obtain non-causal solutions, and the time-anticipatory effect can be obtained by integrating in the
frequency domain or in the time domain using the bilateral Laplace transform.

It is important to note that when the dynamic effects of the elastic modes are small (quasi-rigid
cases), causal inverse solutions may be obtained by regularizing the problem with the addition of
artificial damping either through the damping matrix or the numerical integration scheme.
However. this ad hoc process changes the nature of the problem and does not yield the desired
time delay effect.

Previous solutions2 ' 1 2 3 to the inverse problem relied on a pinned-free finite element model of I
a flexible beam. and the equation for the inverse dynamics torque was formulated by imposing the
condition that the transverse deformation of the free end of each link be zero throughout the
motion. This type of model led to a recursive scheme to solve the inverse dynamics of multilink
flexible manipulators. This recursive procedure is suitable for open-chain but not for closed-chain
configurations.

In this section, we describe a non-recursive Lagrangian approach to solve the general planar
inverse dynamics problem. Compared to the recursive procedure, this non-recursive Lagrangian I
approach is more systematic and becomes the only choice when closed-chain systems are
encountered. We model the elastic links under pinned-pinned boundary conditions. This allows
us to express the end effector trajectory in terms of the rigid body co-ordinates only and, in
addition, leads to a simplified form of the inverse kinematics equations for the internal states.
Once the correct internal states are known, the equations of motion give an explicit expression for
the inverse dynamics torque.

In partitioned form, equation (7) can be written as[MRR m F] [o0 (0 1 0 [0 0 0 0 R]
mea moe mt + 00 01 + 00 0 I
mf g m ff m J 0 Cej [f 0 0 kef qt

+ /2Q.9+ (10)

The second set of equations in equation (10) can be rearranged to expresb the externally applied

joint forces as
Q~o = m8I R + m69,0 + mfq(r + 0r. - Q,~, (11) I

Equation (11) constitutes the inverse dynamics equation that yields the joint forces (torques)
necessary for the end-point to follow a prescribed trajectory. In order to obtain Qe,8 the nodal
acceleration vector 4f is needed. This vector can be obtained from the third set of equations in I

II
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equation (10), which can be written as

mf fif + cf f If + kfqt=ý Qef + Qvf _ (DqT Xr _ mfRR - mr_ 0 (12)

The vector of applied nodal forces Qcf can be expressed in terms of the externally applied torques
through the following mapping:

Qe = GfQ,0 (13)

where in the planar case, the matrix Gf is a constant Boolean matrix which maps the externally
applied torques to the vector of externally applied nodal forces. For example, in the open-chain
planar multibody system shown in Figure 3, the Boolean matrix Gf is constructed such that the
external moment on the node located at the base of the first link is equal to the base motor torque,
the moment on the node located at the tip of the first link is the negative of the elbow motor
torque, the external moment on the node located at the base of the second link is equal to the
elbow motor torque, and all other external forces are zero. The same technique can be applied for
the closed-chain multibody system shown in Figure 9, where the Boolean matrix Gf is construc-
ted such that the externally applied nodal forces are equal to the motor torques at the rotational
degree of freedom of the nodes where the motors are located and zero elsewhere. Substituting
equations (1t) and (13) into equation (12) results in

mff4tf + cffqf + kffqf = Gfmmjf + F,(A, q,, 4ir, 4r, q, It4) (14)

where F, is a force vector that includes the inertial terms, reaction terms between contiguous
bodies and quadratic velocity terms.

The problem statement for the inverse kinematics is that of finding the non-causal internal
states qt so that the end-point co-ordinates characterized by a subset of the rigid body co-
ordinates q, follow a prescribed trajectory. The inverse kinematic equations of equation (14) are
non-linear in the variable qr. The non-linear non-causal inversion cannot be carried out by
standard numerical integration of ODEs. It requires a linearization process in either the
frequency domain or the time domain, or splitting the linearized system into its causal and
anticausal components.

The key to the linearization process for the non-recursive approach relies on decomposing the
inertial coupling submatrix mif into the sum of a time-invariant matrix and a time-varying matrix

mo = RI + mW (15)

SElbow Motor

S~Link No. 2

Lin No. I

Figure 3. Open-chain flexible multibody system
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where met and m4 are the time-invariant part and time-varyng part of mK, respectively. This
decomposition is essential for the iteration process needed to obtain the non-causal solution to
the non-linear inversion problem. Substituting equation (15) into Equation 114), we obtain the
inverse kinematics equation of motion for the nodal displacements qf:

mfftif + efftif + kffqt -- Ff(q , q,, tt, 4,, qt, tf), 4f (16)

where m

mff = tor - Gt mnf (17)

The mass matrix m* is non-symmetric and it is precisely the non-symmetry of the mass matrix
that produces internal states which are non-causal with respect to the end-point motion when
non-causal techniques are employed to obtain the proper inversion of the non-linear, non-
minimum problem characterized by equation (16). The non-linear inversion can now be carried
out efficiently in the frequency domain, since the leading matrices have been constructed such that m
they remain constant throughout the motion. We thus solve equation (16) iteratively in the
frequency domain to yield the nodal deformation vector qf that is non-causal with respect to the
end-point motion.

In the frequency domain, equation (16) can be written as a set of complex equations for
a particular frequency Co Fm 1 1 1- I

S+ -G, - a-- kff I qf,() = ()(18

where jlf(Cb) is the Fourier transform of 4((t) and t(Co) is the Fourier transform of F(t). Equation
(18) is based on the assumption that q4(t) and F(t) are Fourier-transformable. This assumption is I
valid for slewing motions which are from rest to rest. The nodal acceleration vector jf(d) can be
obtained directly from equation (18) for each frequency Co. The leading matrix of equation (18) is
a complex regular matrix that is invertible for all frequencies except & = 0. However, for C = 0,
the system undergoes a rigid body motion determined only by the invertible mass matrix m*.
However, we note that the forcing vector on the right-hand side of equation (18) depends on the
nodal deformations, velocities and accelerations. We use a successive substitution scheme to
iterate for the nodal deformations, velocities and accelerations. Finally, the nodal accelerations in I
the time domain may be obtained through the application of the inverse Fourier transform, i.e.

ti4(t) = - qr(C)e"d@ (19)

Once the non-causal nodal accelerations are known, equation (11) can be used to compute
explicitly the non-causal inverse dynamics joint efforts that will move the end effector according
to a desired trajectory. We note, however, that the inverse dynamics torque and internal states
given by equations (11) and (16), respectively, depend on the Lagrange multipliers and rigid body
co-ordinates, which in turn depend on the internal states and the applied torque. Moreover, the
rigid body co-ordinates and Lagrange multipliers are different from their nominal values when I
the components of the multibody system are flexible. Therefore, a forward dynamic analysis is
required to obtain an improved estimate of the generalized co-ordinates and Lagrange multi-
pliers. In order to ensure that the iteration process converges to obtain the joint efforts that will
cause the end-effector to follow the desired trajectory, the forward dynamics analysis is carried
out with the additional constraint that the co-ordinates of the end-point follow the desired
trajectory. These additional constraints have corresponding Lagrange multipliers which act as
correcting terms to the joint efforts that have previously been calculated.

I
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It is important to note that the computation of the nodal acceleration vector in each iteration
can also be carried out in the time domain through the use of the bilateral Laplace transform

4qf(t) = h(t - r)f(r)dr (20)

where hi(t) is the acceleration response vector to an impulse applied to the ith degree of freedom
and f,(t) is the ith component of the forcing term on the right-hand side of equation (16). We note
that the integration from - :c to xc is necessary to capture the non-causal effects.

To summarize, the procedure for obtaining the inverse dynamics solution for flexible multi-
body systems involves the following steps:

Algorithm
L. Perform a rigid body inverse dynamic analysis to obtain the nominal values of the rigid

body co-ordinates q, and Lagrange multipliers A.
2. Solve the inverse kinematics equation in the frequency domain through equation (16) or in

the time domain through equation (20) to obtain the time-delayed nodal accelerations qf.
3. Compute the inverse dynamics joint efforts Qe, using equation (11).
4. Perform a forward dynamic analysis using equation (8) to obtain new values for the

generalized co-ordinates and Lagrange multApliers.
5. Repeat steps 2-4 until convergence in the inverse dynamics torques is achieved.

It is worthwhile to compare the recursive procedure1 3 and the non-recursive Lagrangian
procedure for the inverse dynamics of multibody systems. In the former method, each body in the
multibody system is analysed sequentially starting from the last element in the chain. For each
element, the joint torques are determined first under the assumption that the rigid body
co-ordinates are moving according to the nominal trajectory. With the joint actuation known for
this component, a forward dynamic analysis is casrried out to determine the nodal deformations,

and the reaction forces from, the next element in the chain, are subsequently determined from
equilibrium considerations. This recursive method works very well for open-chain systems, but it

-- is not suitable for closed-chain systems because it requires the analyst to cut the loop of the closed
chain and account for the reaction forces at the cuts through ad hoc procedures. The non-
recursive Lagrangian method avoids this problem since the reaction between system componentsIw are automatically accounted for by the Lagrange multipliers and no distinction is made between
open-chain and closed-chain configurations. The non-recursive procedure is thus more system-
atic and general.

3. SIMULATION RESULTS

In this section we present the results of numerical simulations that verify the procedure discussed
above. First, we apply the proposed non-recursive Lagrangian approach to an open-chain flexible
multibody system and compare the results with those obtained by the recursive method2 3 to test
the validity of the proposed procedure. Next, we present the results of the application of the
non-recursive Lagrangian approach to a closed-chain flexible multibody system to determine the
inverse dynamics torque that will produce the desired motion at the end effector.

3 3.1. Open-chain multibody system

Figure 3 shows a two-link flexible multibody system in the horizontal plane. The end-point of
the second link is specified to move along the x-axis according to the acceleration profile

I
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Figure 4. End-point acceleration along the x-axis

described by Figure 4, which corresponds to an end-point displacement of 0483 meters along the
x-axis. The geometric and material properties of the links are as follows: I
First link:

Length 0.66 m
Cross-sectional area 1[2 x 10' m2

Cross-sectional second moment of area 2"3 x 10- 1o m'

Second link:
Length: 0.66 m
Cross-sectional area 4-0 x 10 m
Cross-sectional second moment of area 8.5 x 10- 2 m'

The two links share the following properties:

Young's modulus 14 GPa
Mass density 2715 kg/m3  I
In Figure 5, the inverse dynamics torque profile for the base motor using the non-recursive

method is superimposed on the inverse dynamics torque profile determined by the recursive
method. The inverse dynamics torque profiles for the elbow motor computed by the two I
aforementioned methods are superimposed in Figure 6. Both the recursive and non-recursive
formulations yield the same result and can be superimposed on each other (solid curve), thus
validating the proposed method. The corresponding rigid body torques are also shown as dashed
curves in Figures 5 and 6 to illustrate the pre-actuation and post-actuation present in the inverse
dynamics flexible torque profiles.

Figure 7 shows comparison of the elastic angular rotation at the base of the second link
obtained by a feedforward of the inverse dynamics torque (solid curve) to that obtained by I
a feedforward of the rigid body torque (dashed curve). We observe that while the inverse
dynamics torque does not induce residual vibration, the rigid body torque induces substantial
residual oscillation.

I
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Figure 6. Elbow motor inverse dynamics (- ) and rigid (...... ) torques

Figure 8 shows a comparison of the vertical tip error obtained by a feedforward of the inverse
dynamics torque obtained using the non-recursive approach (solid curve) and the vertical tip
error obtained by a feedforward of the rigid body torque (dashed curve). We observe that while
the inverse dynamics torque provides an excellent tracking of the tip trajectory, the rigid body
torque induces a large oscillation in the tip motion.

3.2. Closed-chain mulibody system

Figure 9 shows a closed-chain flexible multibody system made up of four flexible links with two
joints which are fixed against translation relative to the ground. As in the open-chain case, the
multibody system is assumed to lie on a horizontal plane so that gravity effects are neglected. The
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desired trajectory of joint 5 is a straight line at 45' with respect to the x- and y-axis. The x- and
y-components of the acceleration of joint 5 are specified to follow the acceleration profile shown
in Figure 10. The four links share the following geometric and material properties:

Length 0.60 m
Cross-sectional area 4.0x 10-1 m2

Cross-sectional second moment of area 8.5 x 10" m'
Young's modulus 14 GPa
Mass density 2715 kg, m3

Figure II shows the inverse dynamics torque profile at joint 1 obtained by the non-recursive
method (solid curve). The rigid body inverse dynamics torque profile is superimposed for

I_ 5 05 " 0

0. 0 t

0 t.0

--00 0 5 1.0 1 5 2.0

Time (Sec

Figure 10. End-point acceleration along the x- and y-axis
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Figure I I. Joint I inverse dynamics (--) and rigid ( .... torques
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comparison (dashed curve). The fig ire shows the non-causal (time-anticipatory) character of the
solution for the inverse problem. Figu:e 12 shows the inverse dynamic torque profile (solid curve)
at joint 3 superimposed with the corresponding rigid body torque profile (dashed curve). Again, I
the time delay due to the non-causality of the solution is seen in this figure.

Figure 13 shows the elastic angular rotation at the base of the first link obtained by a feedfor-
ward of the inverse dynamics torque (solid curve). Superimpossed in the same figure is the
corresponding elastic angular rotation obtained by a feedforward of the rigid body torque
(dashed curve). Whereas the rigid body torque produces residual angular rotations, the inverse
dynamic torque does not show residual angular rotations. As a matter of fact, it was observed in
the simulations that the rigid body torques produced residual vibration in all the nodal I
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deformations while the inverse dynamics torques eliminated the residual oscillation. Further-
more, the inverse dynamics torques produced nodal deformations which exhibited non-causal
characteristics with respect to the end-point motion. Figure 14 shows a comparison of the ve- tical
tip error at joint 5 obtained by a feedforward of the inverse dynamics torque (solid curve) with the
tip error resulting from a feedforward of the rigid body torque (dashed curve). This figure shows
that the inverse dynamics torque provides an excellent tracking of the desired end effector
trajectory whereas the rigid body torque again induces substantial vibration on the end-point
motion.

The numerical simulations reported in this paper were carried out using a single-processor Sun
Sparcstation 1. For the open-chain multibody system, the CPU time was 14 s for the recursive
method and 37 s for the non-recursive method. As expected, the recursive method is more efficient
than the non-recursive method for open-chain problems since the former solves the system
equations one link at a time, hence significantly reducing the dimension of the problem. However
the non-recursive method can easily be amended to take advantage of parallel processors, hence

enabling the method to become more attractive when multiprocessors are used.
For the closed-chain multibody system presented above, the non-recursive method was used to

solve the inverse dynamics problem with a CPU time of 96 s. The use of the recursive procedure
for the closed-chain system would require an ad hoc procedure where the analyst must decide
where to cut the chain and impose proper boundary conditions on the resulting tree-structured
open-chain system. Hence, the recursive method becomes too cumbersome for the inverse
dynamics of closed-chain systems, and for this reason it was not used to simulate the closed-chain
system.

4. CONCLUSION

A non-recursive Lagrangian approach for the inverse dynamics of flexible multibody systems has
been presented. The procedure is capable of solving for the non-causal inverse dynamics torque
profiles of both open-chain and closed-chain flexible multibody systems in a unified and

systematic manner. The method is found to produce an excellent tracking of the desired trajectory
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of the end effector In a ruture paper, we will address the inverse dynamics problem for flexible
multibody systems undergoing motion in three dimensions. New problems arise in the three-
dimensiorndi case, since the actuating torque vectors have directions which are time-varying and

non-linear functions of the rigid body co-ordinates, in contrast to the planar case where the
applied torque vectors have directions fixed perpendicular to the plane of the multibody system.
In addition. controllability and accessability issues need to be addressed.3
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ABSTRACT

This paper addresses the problem of end-point trajectory tracking in

flexible multibody systems through the use of inverse dynamics. A global

Lagrangian approach is employed in formulating the system equations of

motion, and an iterative procedure is proposed to achieve end-point trajec-

tory tracking in three-dirnensional, flexible multibody systems. Each itera-

tion involves firstly, a recursive inverse kinematics procedure wherein

elastic displacements are determined in terms of the rigid body coordi-

nates and Lagrange multipliers, secondly, an explicit computation of the

inverse dynamic joint actuation, and thirdly, a non-recursive forward

dynamic analysis wherein generalized coordinates and Lagrange multi-

pliers are determined in terms of the joint actuation and desired end-point

coordinates. In contrast with the recursive methods previously proposed,

this new method is the most general since it is suitable for both open-chain

and closed-chain configurations of three-dimensional multibody systems.

The algorithm yields stable, non-causal actuating joint torques and associ-

ated Lagrange multipliers that account for the constraint forces between

flexible multibody components.



I
-2-

1. Introduction U
The effect of elastic deformation on the dynamics of multibody systems has been

vigorously studied during the past thirty years. In particular, the modeling of muitibody

components as elastic beams has received considerable attention as made evident in the

survey papers of Lowen and Jandrastis,1 Erdman and Sandor,2 Modi, and more recently

by Lowen and Chassapis. 4 A specific area of interest with regards to flexible multibody

systems, especially in the aerospace and robotics industries, is in controlling the motion

of a specified point in the multibody system. In most cases, the control objective is to

have the end-point of the multibody system follow a desired trajectory. Various feedback

control strategies for the problem of end-point trajectory tracking have been proposed,

and the survey papers of Balas5 and Book6 present some of the approaches advanced by I
the controls community towards this problem.

The problem of end-point trajectory tracking in flexible multibody systems has led I
to the development of computational methods commonly referred to as inverse dynamics.

Inverse dynamics deals with the problem of determining the joint actuation that will

cause a specified control point in the flexible multibody system to follow a desired trajec-

tory. The pioneering work of Reference 7 on the trajectory control of a single flexible I
link through inverse dynamics showed that the inverse dynamic torque is non-causal

with respect to the end-point motion, i.e., actuation is required before the end-point has I
started to move as well as after the end-point has stopped. Moulin8 demonstrated that

because of the non-minimum phase character of the inverse dynamics for the trajectory I
tracking problem, the only bounded solution for the inv-rse dynamic torque has to be

non-causal. Bayo, et. al.,9 extended the inverse dynamics to planar, multiple-link systems

using an iterative frequency domain approach. The recursive method proposed in that

study is suitable for planar open-chain systems, but required an ad hoc procedure for

planar closed-chain systems. A time domain inverse dynamics technique based on the

non-causal impulse response function was presented by Bayo and Moulin 10 for the single

link system, with provisions for extension to multiple link systems. An equivalent time

domain approach for a single link arm was proposed by Kwon and Book" where the

U
I
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non-causality of the computed torque was captured by dividing the inverse system into

causal and anticausal parts. Recently, a more systematic and more general non-recursive,

frequency domain method for the inverse dynamics of planar multibody systems was

proposed in Reference 12. This method includes the constraint forces between the multi-

body components in the equations of motion, and the method is found suitable for both

open-chain and closed-chain configurations of planar multibody systems. The effect of

Coriolis forces and centrifugal forces on the inverse dynamics of constrained mechanical

systems was presented by Gofron and Shabana. 13

The inverse dynamics approach to end-point trajectory tracking of open-chain flexi-

ble multibody systems was recently applied to the three-dimensional problem by

Ledesma, et. al.,14 where a recursive procedure was proposed to simultaneously track a

desired end-point trajectory and minimize motion-induced vibrations through the com-

bined use of lumped inverse dynamic torques and distributed piezoelectric actuators. The

recursive procedure required a controlled motor at each intermediate revolute joint and

three motors at the ground. This procedure is effective for open-chain systems, but it is

not valid for closed-chain systems because in such systems, the number of required con-

trol inputs is less than the number of joints.

In this paper, we present a general computational approach for the solution of the

non-causal inverse dynamics of three-dimensional, flexible multibody systems, that is

suitable for both open-chain and closed-chain configurations. With this work, we present

a methodology that is suitable for all multibody systems, ranging from the single link

case to three-dimensional systems with general topologies. The equations of motion are

formulated in Section 2 and an iterative algorithm is subsequently developed. Simulation

results for open-chain and closed-chain configurations are presented in Section 3 to

demonstrate the validity and accuracy of the method.
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2. Problem Formulation I
In this section, we derive the governing equations of motion for a flexible multibody

system by using a global Lagrangian approach, and develop a solution for the inverse

dynamics problem that is suitable for both open-chain and closed-chain configurations. 1

Crucial to the success of the proposed procedure is the use of the correct, non-causal

Lagrange multipliers that account for the constraint forces between flexible multibody

components. These Lagrange multipliers are determined in a forward dynamic analysis,

which in turn, require the unknown inverse dynamic actuations. Therefore, the proposed

solution is an iterative procedure which converges to the stable, non-causal inverse

dynamic actuations and the associated Lagrange multipliers.

Consider an n-body flexible multibody system such as that shown in Fig. 1. A typi-

cal multibody component, say body i, is shown in Fig. 1 along with the floating reference

frame associated with that body. The generalized coordinates consist of rigid body coor-

dinates qý which describe the position and orientation of the floating reference frame

associated with each multibody component, and deformation coordinates qj which

describe the deformation of the flexible body with respect to its floating reference frame.

The rigid body coordinates q) consist of the Cartesian coordinates R! which describe the

position of the origin of the floating reference frame associated with body i, and a set of

Euler parameters Oi which describe the orientation of the floating frame. The use of Euler

parameters among several choices of orientation coordinates will be explained later in

the section describing the inverse dynamics solution procedure. The deformation from

the nominal configuration is assumed to be small, so that the different bending and tor-

sional modes are decoupled. For the sake of completeness, we summarize in the follow- I
ing equations the basic kinematic expressions that lead to the general equations of motion

for flexible multibody systems. A more detailed formulation is found in Reference 15. I
With the above choice of coordinates, the position of an arbitrary point P in body i is

given by I
ri = Ri + Ai ui (1)

I
I
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where Ri is the location of the origin of the body axes with respect to the inertial frame,

Ui is the location of point P with respect to the body axes, and Ai is the rotation transfor-

mation matrix from the body axes to the inertial frame. In the three-dimensional case, the

rotation transformation matrix is given by

2(0• + 0?) - 1 2(0102 - 0003) 2(0103 + 0002)["
Ai = 2(0102 + 0003) 2(Oj + 01) - 1 2(0203 - 0001) (2)

2(0103 - 0002) 2(0203 + 0001) 2(0& + 01) - 1

where the orientation coordinates are represented by four Euler parameters 06, 0i, 0, and

I0 which satisfy the following identity:
k•(0h)2 ==1.(3

0t(9) (3)

The position vector with respect to the body axes, ui, can be decomposed into
Ui = Ui + uJ (4)

where ui is the position vector of point P in the undeformed state with respect to the

body axes, and uj is the deformation vector of point P with respect to the body axes.

The deformation vector uj can be expressed in terms of the nodal deformations by using

a finite element discretization scheme, hence

uI = Ni qj (5)

where Ni is the shape function matrix and qj is the nodal deformation vector. Differen-

tiating Eq. (1) with respect to time, we obtain the following expression for the velocity

vector in terms of the rigid body coordinates and nodal deformation coordinates: 15

V=~-Ai fi' E'4i +.Ai Ni 4; (6)

where () represents differentiation with respect to time, Ei is a matrix that depends

linearly on the Euler parameters and is given by

--@1 0o 03 -2
Ei= 2 -03 00 01 (7)

-03 02 41 00
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and ii' is a 3 x 3 skew-symmetric matrix given by I
[ ou u -. (8)

in which ux, uy, and u, are the coordinates of the generic point P with respect to the

body axes, in the deformed configuration.

Considering the reference coordinates qT = [ RT,eT,qf ] as generalized coordinates

for the flexible multibody system, these coordinates are not independent because the
motion of specific points in different bodies are related according to the type of mechani-

cal joints that interconnect them. Moreover, in flexible mechanical systems, the defor-

mation of a component affects the configuration of adjacent components. As a conse-

quence, the interdependence of the generalized coordinates is expressed by a vector of

kinematic constraint equations, such as

(D(q,t) = 0 (9)

where q is the total vector of system generalized coordinates, t is time, and 0 is the vec- 3
tor of linearly independent holonomic constraint equations. These constraint equations

can be further classified into:

1. rigid body constraints where only rigid body variables are involved in the constraint

equation;

2. joint constraints where both rigid body and deformation coordinates are included in

the constraint equation; and

3. rheonomic constraints wherein the constraint equations can be explicit functions of 3
time as well as generalized coordinates.

The third type of constraint becomes active, for example, in the case of imposing

the coordinates of the end-effector to follow a desired trajectory. To illustrate the con-

struction of constraint equations, take the case of a spherical joint which connects two

flexible bodies i and j at points P and Q shown in Fig. 2. The three constraint equations

corresponding to the constraint condition that requires points P and Q to be coincident 3
I
I
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can be written as

I [Ri +Ai uAJ tR + Ai u6) = 0. (10)

We note that the constraint equation exemplified by Eq. (10) forms a set of coupled non-

linear algebraic equations in the rigid body coordinates and deformation coordinates.

Considering the ngid body and deformation coordinates described above as general-

ized coordinates, and following standard procedures in multibody dynamics, the con-

strained equations of motion become 15

M(q) 4j + C 4 + K q + (DT X = Qe + Qv(q,4) (11)

I where M, C and K are the system mass, damping and stiffness matrices, respectively, X

is the vector of Lagrange multipliers associated with the constraints, Dq is the constraint

Jacobian matrix, Q. is the vector of applied external forces, and Q, is the quadratic velo-

city vector. The quadratic velocity vector contains the centrifugal forces and Coriolis

forces that result from the differentiation of the kinetic energy expression with respect to

the generalized coordinates. Geometric stiffening due to high rotation rates can also be

added to the vector Q,.

2.1. Forward Dynamics

In a forward dynamic analysis, i.e., finding the resulting motion given the applied

1 joint forces and external forces, Eqs. (9) and (11) constitute a mixed system of

differential-algebraic equations that have to be integrated simultaneously. As explained

I in the next section, the solution to the inverse dynamics problem requires a forward

dynamic analysis within an iteration process. We solve the forward dynamics problem

by using the augmented Lagrangian penalty formulation. 16 Applying the augmented

Lagrangian penalty formulation to Eqs. (9) and (11) results in the following equation:

M(q) j + C 4 + K q +* oDTa[-6 + 2 .o2c?] =Qe + QI(q',q)

(D~q (12)
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I
where a is a diagonal matrix of penalty factors whose elements are large real numbers

that will assure the satisfaction of constraints, o and g. are diagonal matrices representing

the natural frequencies and damping characteristics of the dynamic penalty system associ-

ated with the constraints. Values of a in the range 103 < aX < 106 provide excellent

results when working in double precision. The augmented Lagrangian method requires

an iteration for the correct value of the Lagrange multipliers. The iterative equation for 3
the Lagrange multipliers is given by

X,. = X.* + a [6) +2 .t 0• , 2+ •D] . (13)

The iterative process described by Eq. (13) involves only a few additional operations dur-

ing each iteration but it significantly improves the convergence of the forward dynamics I
solution as compared to the standard penalty method. 16

The augmented Lagrangian penalty formulation has several advantages over the I
standard algorithms used in solving differential-algebraic equations. First, the method

obviates the need to solve a mixed set of differential-algebraic equations and does not

increase the number of equations to account for the constraints. Second, this method

allows the use of standard unconditionally stable algorithms without the need of further

stabilization techniques to control the violation of constraints during the integration pro-

cess. Third, the method can handle redundant constraints and allows the multibody sys-

tem to undergo singular positions. Fourth, the constraint forces (Lagrange multipliers)

can be obtained as a by-product of the integration without having to integrate additional I
equations for them. Finally, the method assures convergence independent of the penalty

values used. U
2.2. Inverse Kinematics and Inverse Dynamics

Gofron and Shabana17 have proposed a solution to the inverse dynamics problem by

integrating Eq. (12) directly and solving for the joint actuation from the Lagrange multi- I
pliers thus obtained. This method leads to a causal solution which relies on the presence

of damping forces in order to obtain a stable solution. In contrast, the method presented I
I
I
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in this paper does not rely on damping to produce a stable solution. Moulin and Bayo 18

recognized that because of the non-minimum phase character of the inverse problem, the
unique stable solution should be non-causal, i.e., actuation is required before the end-

point has started to move as well as after the end-point has stopped. These findings have

been corroborated by Paden and Chen 19 in their theoretical work on the inversion of non-

linear non-minimum phase systems such as flexible multibodies. The proper integration

is of crucial importance in obtaining non-causal solutions, and as previously demon-

strated in the planar inverse dynamics problem, the time-anticipatory effect can be

automatically obtained by integrating in the frequency domain 9 or in the time domain by

using the non-causal impulse response function and the bilateral Laplace transform. 10

A previously proposed solution to the three-dimensional inverse dynamics prob-

lem14 relied on a pinned-free finite element model of a flexible beam, and the equation

for the inverse dynamics torque was formulated by imposing the condition that the tor-

sional deformation and the two transverse deformations of the free end of each link be

zero throughout the motion. This limited type of model led to a recursive scheme to solve

the inverse dynamics of flexible multibody systems, and is found suitable for open-chain

configurations but not for closed-chain configurations.

In this section, we describe an iterative Lagrangian procedure to solve the three-

dimensional inverse dynamics problem for either open-chain or closed-chain topologies.

Our overall strategy is to first solve the inverse kinematics problem, i.e., finding the unk-

nown rigid body coordinates %. and flexible body displacements qf-, given the desired

end-point coordinates as explicit functions of time. Having determined the correct gen-

eralized coordinates and their time derivatives, the inverse dynamics joint torques can be

obtained explicitly from the equations of motion. Compared to the recursive procedure

cited above, this new approach is more systematic and becomes the only choice when

closed-chain systems are encountered. We model the elastic links under pinned-pinned

boundary conditions. Furthermore, since torsional deformations cause deviations from

the nominal configuration further down the chain, we model the elastic link as fixed with

respect to torsion at the distal end of the link.
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Our goal then is to formulate an inverse kinematics equation that is linearized about

the nominal motion, so that the elastic displacements, which are non-causal with respect

to the end-point motion, can be determined through a frequency domain analysis. This is

possible only if the leading matrix of the linearized equation is time-invariant and if the

forcing term is Fourier transformable. This objective has been achieved in the planar case

with the use of reference coordinates for the rigid body variables to describe the position

and orientation of the floating reference frame. 12

The three-dimensional inverse kinematics problem presents additional difficulties

not found in the planar case. First, unlike the planar case, the three-dimensional torque

vectors change directions in time, so that the external force vector Qe in Eq. (11)

becomes a nonlinear function of the rigid body orientation coordinates. To overcome this

difficulty, a proper parametrization of the rigid body coordinates and proper bases for the

joint torques are necessary to attain the stated objectives in forming the linearized inverse

kinematics equations. As described later in this section, the desired form of the linearized

inverse kinematics equation is possible if Euler parameters are used to describe the rigid 3
body orientation and if the base torque vector of each multibody component is expressed

in terms of components along the associated floating reference frame.

A second difficulty that appears in the three-dimensional inverse dynamics problem

is that the end-point vibration in the lane defined by the revolute joint axis and the

member axis can not be controlled by the torque applied at the revolute joint. This sug-

gests that additional actuation is necessary to control the end-point motion when the mul-

tibody system reaches an "inaccessible" configuration. 20 This problem has been

addressed in Reference 14 wherein one motor at each intermediate joint and three motors

at the ground were proposed to control the end-point motion for all possible

configurations of a certain class of open-chain, flexible multibody systems. The problem

of "inaccessibility" in open-chain systems, however, can be completely avoided simply

through a judicious design of the orientation of the joint motors so that end-point vibra- 3
tion is controllable for all possible configurations. For closed-chain systems, "inaccessi-

ble" configurations do not occur, hence the controllability of the end-point motion is 3
I
I



assured without the need for extra actuation.

Consider again the system equations of motion expressed by Eq. (11). For a typical

multibody component, say body i, the equations of motion can be written in the follow-

ing partitioned form:[MRR MR@ MRfQ [iIQ1

m IJ ÷ + CL i + ý

The elements of the mass matrix and quadratic velocity force vector corresponding to an

isoparametric, three-dimensional curved beam finite element are given in the Appendix.

Let us define 'i as the torque vector at the base of body i, whose three components

""t, Ti, and Ti are parallel to the associated floating reference axes ri, si, and ti, respec-

,dvely. If we use Euler parameters as the rigid body orientation coordinates, the externally

applied joint forces Qie associated with the rigid body rotation of body i can be

expressed as

Qio =[Gi IT ({ - [AiIT Ai +1 +tI) (15)

where Ti is the base torque acting on body i and whose components are parallel to the

floating reference axes associated with body i; 'i+1 is the vector of joint torques and

reaction moments transmitted from body i to body i+1, and whose components are

parallel to the floating reference axes associated with body i+1; Ai and Ai+ 1 are body

axes to inertial axes rotation transformation matrices for bodies i and i+l, respectively;

m and Gi is a matrix that maps the derivatives of the Euler parameters describing the orien-

tation of the reference frame of body i to the angular velocity of this reference frame,

m and is given by G = 2 Ei. Cbmbining Eq. (15) with the second set of equations in Eq.

(14) yields

m [Gi]T (ri -[Ai]T Ai+lri+l}=n4R Ri +m4e ii +n rnf •i

I + 4ý X - Qvi. (16)

If we pre-multiply both sides of Eq. (16) by +Gi and use the identityII
I
I
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¼GGT =13 (17) 1
where 13 is the 3 x 3 identity matrix, we can get the following result after expanding the 3
inertia matrices and quadratic velocity vectors found in Eq. (16), (the reader is referred to

the Appendix for the expressions for the inertia matrices and quadratic velocity vectors in 3
terms of the invariants of the motion):

"Ci =A[Ai]T A i+1 + +Gi m4R Ri + Ji Gi 6i + JI Q + 'Gi ¢• X

+ +Gi [6ilIT (Ji Gi 6' +Jj 4jj) (18)

where Ji is the 3 x 3 inertia tensor of body i with respect to the origin of the floating

reference frame and measured relative to this frame, and Jj is the inertia matrix coupling

the rigid body rotation and the elastic deformation. The key to obtaining a time-invariant

leading matrix, that is necessary in transforming the linearized equations of motion into

the frequency domain, is the fact that the inertial coupling matrix JJ can be decomposed

into the sum of a time-invariant matrix and a time-varying matrix, i.e.,

Ji = PC +Ji (19) I
where Jjc and JJt are the time-invariant part and time-varying part of JP, respectively.

This decomposition is essential to the formulation of the inverse kinematics equations 3
that lead to non-causal solutions to the nonlinear inversion problem. This is also the rea-

son for selecting Euler parameters as rigid body orientation coordinates over other types

of singularity-free coordinates such as natural coordinates, 2 1 where the decomposition of

the inertial coupling matrix into time-invanant and time-varying parts is multiplicative 3
rather than additive as in Eq. (19). Introducing this decomposition into Eq. (18) results in

the following expression for the base torque on body i:

Ti = [A IT Ai+I Ti+l +Tt+J + iJ (20) I
I
I
I
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where Tj is a torque vector given by

Tý =-Gi rr4R Ri + Ji Gi 0' + Jjt c+ +Gi Odi X

+ Vi [di[]T (Ji Gi 6' + Jj Q}. (21)

Considering the equations of motion associated with the elastic degrees of freedom,

the externally applied force vector due to the joint torques acting on body i can be

expressed as

Qif = NNT'i - N[ [Ai IT Ai+ Ti+1  (22)

where Nb and Nt are the shape function matrices associated with a torque vector acting

on node b (base) and at node t (tip) of the finite element mesh, respectively. Combining

Eq. (22) with the third set of equations in Eq. (14) yields the following inverse kinemat-

ics equations for body i:

If ibh + cif QJ + kt qj = Fi (23)

where the modified mass matrix is given by

ihis =mj,- Ný JIc (24)

I and the motion-induced force vector acting on the elastic degrees of freedom is given by

Fi = N[ {[Ai IT Ai+,ti+l + Tj} - NT [Ai IT Ai+1 T1+ 1

I +Qi/-DTýXM-mR imi -re'0. (25)

I The modified mass matrix ThJf is nonsymmetric and it is precisely this nonsym-

metry that produces elastic displacements which are non-causal with respect to the end-

I point motion when non-causal techniques are employed to obtain the proper inversion of

the nonlinear, non-minimum phase systems. Furthermore, inspection of Eqs.(23)-(25)

shows that the inverse kinematics equation for body i assumes that the base torque vector

"t"'i is known beforehand. This suggests some form of recursive algorithm for the inverse

I kinematics, i.e., finding the elastic displacements starting from the end-point, and
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proceeding to the base of the multibody system (inboard direction). This procedure is i
straightforward for open-chain configurations. However, for closed-chain configurations,

we need to take the additional step of cutting the chain at the joint that is defined as the i
end-point, and then proceed as in the open-chain case, since the constraint forces at the

cut are automatically accounted for by the vector of Lagrange multipliers. i
The nonlinear inversion can now be carried out efficiently in the frequency domain

since the leading matrices have been constructed such that they remain constant

throughout the motion. Our strategy is to solve Eq. (23) in the frequency domain to

obtain the nodal deformation vector qf that is non-causal with nspect to the end-point

motion. In the frequency domain, Eq. (23) can be written as a set of complex equations

for a particular frequency coi

ihf +-1 c,- - 'j k- (o)F =w) (wt) (26)

where (wi) is the Fourier transform of cij(t) and P' (w) is the Fourier transform of

Fi (t). Eq. (26) is based on the assumption that 4ii (t) and Fi (t) are Fourier transformable.

This assumption is valid for slewing motions which are from rest to rest. The nodal

acceleration vector (cio) can be obtained directly from Eq. (26) for each frequency (o.

The leading matrix of Eq. (26) is a complex regular matrix that is invertible for all fre-

quencies except for o = 0. However, for o) = 0, the system undergoes a rigid body

motion, and the leading matrix will be determined only by mf which is positive definite

and therefore invertible. We note, however, that the forcing vector on the right hand side

of Eq. (26) depends on the elastic deformations, velocities and accelerations. Therefore,

an iterative process is needed to obtain the solution to the differential equations which

are nonlinear in qj. We start the iteration process by assuming zero elastic deformations,

velocities and accelerations for the initial calculation of the forcing vector Fi (t), and use

a successive substitation scheme to converge to the correct solution. Finally, the elastic

displacements and their derivatives in the time domain may be obtained through the I
application of the inverse Fourier transform, e.g.,

I
I
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f iJ(co)ei°x dco. (27)

Alternately, the computation of the elastic displacements and their derivatives in

each iteration can also be carried out in the time domain through the use of the non-

causal impulse response function and the bilateral Laplace transform, e.g.,

0J =
4lf (t f • hj (t -.-r) fj (r) drc (28)

where hj (t) is the non-causal acceleration response vector to an impulse applied to the

jth degree of freedom and fj (:) is the jth component of the forcing term on the right

hand side of Eq. (23). We note that the integration from -o0 to o0 is necessary to capture

the non-causal effects.

Once the non-causal elastic displacements and their derivatives are known, Eq. (18)

can be used to explicitly compute the non-causal inverse dynamics joint efforts that will

move the end effector according to a desired trajectory. We note, however, that the joint

torques and elastic displacements given by Eqs. (18) and (23), respectively, depend on

the Lagrange multipliers and rigid body coordinates, which in turn depend on the elastic

displacements and the applied torque. Moreover, the rigid body coordinates ana

Lagrange multipliers are different from their nominal values when the components of the

multibody system are flexible. Therefore, a forward dynamic analysis is required to

obtain an improved estimate of the generalized coordinates and Lagrange multipliers. In

order to ensure that the iteration process converges to obtain the joint efforts that will

cause the end-effector to follow the desired trajectory, the forward dynamics analysis is

carried out with the additional constraint that the coordinates of the end-point follow the

desired trajectory. These additional constraints have corresponding Lagrange multipliers

which act as correcting terms to the joint efforts that have been previously calculated. We

also note that this iteration process takes into account the effect of the nonlinear coupling

between the rigid body coordinates and the deformation coordinates in the computation

of the joint efforts. The iterative procedure is found to be convergent for multibody
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systems with moderately flexible members and with moderate rotation rates. I
To summarize, the procedure for obtaining the inverse dynamics solution for three-

dimensional, flexible multibody systems involve the following steps:

Algorithm:

1. Perform a rigid body inverse dynamic analysis to obtain the nominal

values of the rigid body coordinates q, and Lagrange multipliers X.

2. Solve the inverse kinematics equation in the frequency domain through

Eq. (23) or in the time domain through Eq. (28) to obtain the

time-delayed elastic displacements and their time derivatives.

3. Compute the inverse dynamics joint efforts c using Eq. (18).

4. Perform a forward dynamic analysis using Eqs. (12) and (13) to obtain new

values for the generalized coordinates and Lagrange multipliers.

5. Repeat steps 2 through 4 until convergence in the inverse dynamics

torques is achieved.

It is worthwhile to compare the recursive procedure proposed in Reference 14 and

the algorithm proposed in this paper. The most important difference between the two

methods is that the former method assumes that the dependence of rigid body coordinates

on the elastic displacements are made negligible through the action of control forces so

that the rigid body coordinates take on values corresponding to the nominal motion. This

assumption is not made in the present method and consequently, the solution of the

inverse kinematics equation of Eq. (23) would require an iteration for the rigid body

coordinates q, as well as the Lagrange multipliers X that are needed as inputs to the

inverse kinematics equation. A consequence of the above assumption in the previously

proposed recursive procedure is that control inputs were required at all intermediate

joints ,n Lh- multibody system. This requirement is acceptable in open-chain

configurations, but not practical in closed-.,hialn configurations because the number of

system degrees of freedom is less than the number of joints in a closed-chain multibody

system. The present procedure takes advantage of this fact and allows the analyst to

I
I
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choose a priori which joints in the multibody systen- are the control joints. Therefore, the

present algorithm is more general and more systematic than the previously proposed pro-

cedure, although it requires more computational effort.

3. Simulation Results and Discussion

We present in this section some results of the numerical implementation of the pro-

cedure discussed above. First, we apply the procedure proposed in this paper to the

inverse dynamics of a two-link, open-chain flexible multibody system undergoing motion

in three-dimensional space, and compare the results with those obtained by the previ-

ously proposed recursive procedure. 14 Next, we present some simulation results of the

application of the present procedure to the inverse dynamics of a closed-chain, flexible

multibody system undergoing three-dimensional motion.

3.1. Open-Chain Multibody System -

The iterative procedure discussed in the preceding section is applied to the three-

dimensional open-chain flexible manipulator shown in Fig. 3. The multibody system is

controlled by three motors at the base and one motor at the intermediate revolute joint.

The desired motion is to have the end-point remain in the x2-x3 plane with the x2 coordi-

nate and x 3 coordinate of the end-point following the trajectories shown in Fig. 4. Gravi-

tational forces are neglected. The two links share the following geometric and material

properties:

Length: 1.0 m

Cross section dimensions: 1.0 cm x 1.0 cm

Young's modulus: 70 GPa

Shear modulus: 27 GPa

Mass density: 2715 kg/m 3

Ti;p mass: 0.1 kg
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We perform two sets of computations for the example considered: 1) using the i

recursive procedure proposed in Reference 14; and 2) using the iterative procedure pro-

posed in this paper. In the open-chain case, each intermediate joint needs to be con-

trolled, and we therefore expect very similar results from both methods. Plots of inverse

dynamic joint torques needed to track the desired end-point trajectory are shown in Figs.

5a and 5b. The results obtained from the two methods superimpose, thus validating the

method proposed in this paper. Plots of the corresponding rigid body torques are also

shown in the figures to illustrate the non-causal nature of the inverse dynamic torques. In

Figs. 5a-b, the dashed curves refer to the inverse dynamic torques, while the solid curves I
refer to the rigid body torques. Transverse deflections induced by the motion at third

points in the two links are shown in Figs. 6-7. In these figures, the dashed curves are

transverse deflections caused by the inverse dynamic torques, while the solid curves are

deflections caused by the rigid body torques. In Fig. 6, one vibration mode with a fre- i
quency of approximately 30 Hz dominates the response, while in Fig. 7, two vibration

modes at frequencies of approximately 3.4 Hz and 30 Hz dominate the response. The

higher frequency corresponds to the first bending mode of a single link and characterizes

the so-called "fast subsystem" while the lower frequency corresponds to the "slow sub-.

system" formed by the assembly of the multibody components. Rayleigh damping was

used in the numerical simulation, with damping coefficients of 0.4% and 3.8%

corresponding to frequencies of 3.4 Hz and 30 Hz, respectively. We observe that the

inverse dynamic torques minimize the residual structural vibratior _- that would otherwise

be present if rigid body torques were used to actuate the flexible multibody system. I
3.2. Closed-Chain Multibody System

Fig. 8 shows a closed-chain, three-dimensional flexible multibody system, where

the selected control torques are shown in the figure. Joints 1-4 are revolute joints while

joint 5 is a spherical joint. The desired end-point (joint 5) trajectory is a motion in the

x2-x 3 plane with the x2 coordinate and x3 coordinate of the end-point following the tra-

je•,Zories shown in Fig. 9. As in the open-chain case, gravitational forces are not

I
I
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considered in order to focus on the inertial effects on the dynamics of the system. The

four links share the following geometric and material properties:

Length: 1.0 m
Crcss sect--n dimensions: 1.0 cm x 1.0 cm

Young's modulus: 40 GPa

Shear modulus: 15 GPa

Mass density: 2715 kg/rn 3

Tip mass: 0.1 kg

The present procedure is applied to the closed-chain system by introducing a cut at

the end-point (joint 5), thus creating two open-chain systems. The internal constraint

forces exposed by the cut are automatically taken into account by the Lagrange multi-

pliers in the equations of motion. Figs. 10a and 1Ob show joint torques T2 and T3, respec-

tively, that are needed to achieve the desired end-point trajectory. In these figures, the

dashed curves refer to the inverse dynamic torques obtained by the present procedure,

while the solid curves refer to the corresponding rigid body torques. Figs. 11 and 12

show the transverse deflections at a third point in link #2, obtained from a feedforward of

the inverse dynamic torques (dashed curve) and the corresponding deflection obtained

from a feedforward of the rigid body torque (solid curve). Again, we observe that the

inverse dynamic torques minimize the residual structural vibrations that are otherwise

present when rigid body torques are used to actuate the system. It is also interesting to

look at the Lagrange multipliers that represent the reaction forces between multibody

components. Fig. 13 shows a typical Lagrange multiplier associated with the inverse

dynamic torques (dashed curve) and the corresponding nominal Lagrange multiplier

associated with the rigid multibody system (solid curve). We observe that pre-actuation

and post-actuation are also exhibited by the Lagrange multipliers in an inverse dynamics

calculation.
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4. Conclusion I
We have presented a new iterative procedure for determining the inverse dynamic

torques that are needed for end-point trajectory tracking in three-dimensional flexible

multibody systems. An iterative procedure is necessary because of the interdependence

between the elastic coordinates, the rigid body coordinates and the associated Lagrange

multipliers in the system equations of motion. This procedure is valid for both open-

chain and closed-chain configurations, and differs from the previously proposed recursive

procedures in the sense that the rigid body coordinates are not assumed to follow the

nominal motion. The conditions for trajectory tracking are now met in a more general

way through the satisfaction of rheonomic constraint conditions. The new method is

shown to yield the same results as those obtained with the recursive procedures for

open-chain systems with normal link flexibilities and normal rotation rates. For closed-

chain systems, however, this new method is the only valid procedure for determining the

inverse dynamic torques since in this case, the number of control torques is smaller than

the number of joints and thereforc, the recursive methods can not be applied.

Further research is needed to address the inverse dynamics problem wherein the

contribution of the quadratic force vector Qf to the generalized elastic forces is consid-

erable enough to yield errors in the feedforward control law. This case arises when the

rotation rates are high or when the structural components are extremely compliant. It has

been reported that this problem can be mitigated by introducing damping into the struc-

ture. 17 An issue that still needs to be resolved is how to introduce distributed actuation

that may necessary beyond that provided by structural damping that is inherent in the

material. In a separate paper, 14 we have addressed this issue through the use of electros-

trictive actuators that are distributed along the span of the structure.
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Appendix

The elements of the mass matrix and quadratic velocity force vector in Eq. (14) can

De expressed in terms of the so-called invariants of the motion which need to be com-

puted only once at the start of the simulation. For each component of the flexible multi-

body system, the invariants of the motion can be expressed by the following integrals:

ZI = ur p dV (A.1)

Z2 = N p dV (A.2)

2 _u+uUr Ur2UrU U,+ 1
3 U, (ur, (U Ur3 ) UrzUr, p dV (A.3)

-Ur 3Ur1 I Ur3Ur2 (Uri + 2

Z4i =ur, Njp dV, i, j = 1,2.3 (A.4)

zi=t NT Nj p dV, i, j = 1,2,3 (A.5)

where p is the mass density, V is the volume of the component, N is the shape function

matrix, and Ni is the jph row of the shape function matrix. We observe that the motion

invariant Z1 is a measure of the first moment cf the undeformed component about the

body axes, and the motion invariant Z3 is the inertia tensor of the undeformed component

with respect to the body axes.

Closed-form expressions for the motion invariants corresponding to the three-

dimensional, Bernoulli-Euler straight beam element are given in Reference 15. In this

paper, however, we use the variable-node, isoparametric, three-dimensional curved beam

element developed by Bathe and Bolourchi 22 to model the flexible links. As a result, the

motion invariants can be expressed in terms of integrals which are evaluated numerically

through Gaussian quadrature.

The components of the mass matrix, expressed in terms of the invariants of the

motion are given by the following:
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mRR = m 13 (A.6) I
mRO= -A S G (A.7)

mRf A Z2  (A.8)

moo =GT J G; J = [Z 3 + J1 + J21 (A.9)

mef =GT Jf ; Jf=[Jfc +Jft] (A.10)

m = + Z +Z2 + Z 3  (A. 11)

where, in Eq. (A.6), m is the total mass of the component, and the tilde symbol above the

vector in Eq. (A.7) refers to the skew-symmetric matrix operator. The matrices S, j'c,

JP, J 1, and J2 are given by

S = Z + Z2 qf (A.12)

J/c Z= Z2- ZP~ (A. 13)
Z42 - zJ1

qJ (Z?- Z?2)
Jft qT (Z31 - Zý3)1  (A.14)

qJ (Z52 - Z2)J

(P22 +P33) -P12 -P13
J, = -P21 (PIi+P33) -P23 (A.15)

-P31 -P32 (p1+P22n)

(q 2 2 +q33) -q 12  -q13
J2= -q21 (qjj-t-q33) -q23 (A.16)

L -q31 -q32 (qll +q22) j

in which

Ptj = [Z4 + ZdiJ q/, i, j = 1,2,3 (A.17)

and

qij =qJZ. q,;, i,j = 1,2,3. (A.18) I
I
I
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The quadratic velocity force vectors are given by

QR = -A ({o2 S + 2 t(o Z2 4If} (A. 19)

Qo= 26T[ (jWo+Jfi4f (A.20)

Qf = - [Cu2]* [Z41 + Z,• + Z22]T - [t21rnmf qf - [2 Co]* ruff 4f (A.21)

where cw is the absolute angular velocity of the body axes, whose components arm

expressed with respect to the body axes and given by

wo = G (A.22)

and the matrices [co2]* and [2 co] are b!ock diagor I matrices whose diagonal elements

are CO2 and 2 •o, -espectively.
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ABSTRACT

This paper addresses the problem of inverse dynamics for three-

dimensional flexible manipulators with both lumped and distributed actua-

tors. A recursive procedure is presented for computing the lumped inverse

dynamic torques and the distributed piezoelectric actuator inputs for

simultaneously tracking a prescribed end-point trajectory and reducing

induced vibrations in the manipulator. The procedure sequentially solves

for the non-causal inverse dynamic torques and piezoelectric voltages

applied to each link in the manipulator, starting from the last element in

the chain and proceeding to the base element. The method allows trajec-

toiy tracking wherein controllability of the structural vibrations is assured

in all possible configurations through the use of only one motor at each

intermediate joint and three motors at the ground. Numerical simulation

shows that the elastic vibrations can be reduced significantly through the

use of distributed actuators while at the same time satisfying the trajectory

tracking requirement through the use of inverse dynamics.
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1. Introduction

The control of flexible manipulators is becoming a more important area of research

as more stringent demands are placed on these multibody systems.. For example, current

developments in orbiting space manipulators and cranes require their different corn-

ponents to be positioned accurately in order to fulfill, mission requirements. In most

cases, the control objectives for these structures are end-point tracking in a slewing

maneuver and minimizing the structural vibrations that result from the slewing motion.

Several approaches towards these objectives have been suggested from different seg-

ments of the scientific community. Some researchers have suggested the improvement of
the dynamic properties of the structure through the use of composite materials tailored 3
for higher damping capabilities along with shape optimization to maximize the stiffness
to mass ratio.' A second approach is to implement feedback control on the joint actuators

through the use of a variety of control strategies (the reader is referred to Reference 2 for

a survey of the state of the art in the control of flexible manipulators). Recent studies in

this area which include valuable experimental results have been reported in References
345 and 6. Thirdly, the use of distributed active control members such as piezoceramics 3

7to damp out the elastic vibrations has been proposed. Finally, a fourth method is to com-
pute the inverse dynamic joint torques that will cause the control point to follow the

desired trajectory.8910 The computed torque technique has been validated with experi-
mental results in the study done by Paden, et. al.,"1 wherein passive feedback and feed-

forward of the inverse dynamic torques were used to achieve an exponentially stable

tracking control law in flexible, multi-link systems. However, it is desirable to not only

track a desired trajectory but also minimize the subsequent elstic deformations in the
structure. To achieve this goal, we combine the third and fourth approaches and present

in this paper a new scheme for simultaneous trajectory tracking and vibration minimiza-
tion for open-chain flexible articulated structures. The major contributions of this paper
are the extension of the inverse dynamics formulation to three-dimensional open-chain I
manipulators and the combined application of inverse dynamics and distributed

piezoelectric actuation to track trajectories and reduce vibrations simultaneously. 3
Trajectory tracking in planar flexible articulated structures has been addressed by

Bayo,8 Bayo and Moulin, 9 and also by Kwon and Book.1 0 The researchers cited above I

I
I
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have considered the non-minimum phase character of the system when solving for the

inverse dynamic torques that are required for end-point trajectory tracking in slewing

motions that are confined in a plane. The results of the above studies lead to the conclu-

sion that the unique stable solution for the inverse dynamic torques are non-causal with

respect to the end-point motion. This non-causality can be captured either through

integration in the frequency domain, 8 or by computing for the inverse transfer function in

the frequency domain and subsequently integrating in the time domain through the use of

bilateral convolution integrals, 9 or by dividing the solution into causal arnd anticausal

parts and integrating in the time domain. 10 In our opinion, the frequency domain

approach involves a simpler formulation than the time domain approach, when the equa-

tions of motion can be linearized about th: nominal motion so that the Fourier transforms

of the deformation coordinates and base torques can be explicitly expressed. Bayo, et.

al., 12 extended the computed torque technique to multiple flexible links in a planar,

open-chain configuration by using a recursive method that computes for the inverse

dynamic torques starting from the last component in the chain and continuing to the first

link at the base of the chain. The recursive method entails an inverse dynamic analysis

for the non-causal joint torques and a forward dynamic analysis for the reaction forces

between contiguous links in the chain. The inverse dynamic torques so determined

achieve end-point tracking but do not minimize the elastic vibrations. In this paper, we

extend the application of inverse dynamics to simultaneous trajectory tracking and vibra-

tion reduction by combining inverse dynamic joint torques with distributed piezoelectric

actuators in three-dimensional, open-chain flexible manipulators. In the present work, the

inverse dynamic torques and the piezoelectric voltages are simultaneously computed so

that the non-causal joint torques assure end-point tracking while the distributed

piezoelectric actuators reduce the elastic vibrations that are induced by the slewing

motion.

We develop in the present study a recursive computational algorithm that allows

end-point trajectory tracking of three-dimensional open-chain manipulators through the

use of only one motor at each intermediate joint and three motors at the ground, as

opposed to the method proposed in Reference 13 where three motors were proposed at

each joint. Our method achieves the trajectory tracking requirement with the use of
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reduccd number of actuators and in addition, the elastic vibrations are reduced through

the use of distributed piezoelectric actuators. The extension of the frequency domain 3
recursive inverse dynamics procedure 12 to three-dimensional flexible manipulators is not

trivial and presents two main difficulties. First, unlike the two-dimensional case, the 3
three-dimensional joint torque v,-:ors chIinge direction in time and become functions of

the rigid body orientation coordinates. Consequently, if the torque vectors are expressed

in terms of components along the inertial frame axes, the force vectors due to these

torques become nonlinear functions of rigid body orientation coordinates and torque

components, for which the Fourier transforms may not exist. Second, in the three-

dimensional case, the end-point vibration in the plane defined by the revolute joint axis at 3
the base of the link and the member axis can not be controlled by the torque applied at

the revolute joint.

The two previously mentioned problems are solved by taking the following steps in

the formulation of the solution. First, the nonlinearity in the forcing term due to the joint 3
torques is avoided by expressing the base torque in terms of components along the float-

ing reference frame associated with each multibody component. The base torques am 3
then expressed independent of the rigid body configuration, and as a consequence these

torques are Fourier transformable. Secondly, having expressed the base torques in this 3
manner, the bi-axial bending and torsional deformations are decoupled when deforma-

tions from the nominal motion are small. Hence, one of the base torque components

described above, which refers to the joint torque applied to the revolute joint, controls the

end-point deformation in one direction, while the remaining two torque components can 3
be treated as a reaction torsional moment which controls the end-point torsional deforma-

tion and a reaction bending moment which controls the lateral deformation in the other

direction, respectively. These reaction moments are treated as unknowns which are to be

determined along with the inverse dynamic joint torques. Here, it is important to note

that in the three-dimensional case, the torsional deformation at the end-point needs to be

controlled, since the torsional deformation will result in a displacement from the nominal 3
configuration further down the chain.

The recursive procedure can then be formulated as follows. The last multibody

component at the end of the chain is analyzed first to determine the actuating torque and

3
I
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reaction moments at the base of that muldbody component. Each of the other com-

ponents are subsequently analyzed for the base torques at the proximal end given the

desired reaction forces and reaction moments at the distal end. The actuating torques at

the base of the chain can then be determined by a simple projection of moments, where

the projection matrix depends on the nominal rigid body orientation coordinates.

Through the use of the proposed recursive procedure, the end-point trajectory tracking

problem of three-dimensional, open-chain flexible manipulators can be accomplished by

using only one motor at each intermediate joint and three motors at the ground. In con-

trast with other proposed approaches that rely on three motors at each intermediate

joint, 13 the use of only one motor at each intermediate joint for control purposes minim-

izes the inertial forces acting on the system, thereby increasing the speed under which the

system can effectively operate.

2. Mathematical Formulation

In this section, we formulate the problem and present a solution of simultaneous tra-

jectory tracking and vibration reduction for three-dimensional open-chain flexible mani-

pulators. The problem formulation starts with the equations of motion for each com-

ponent of an n-link manipulator that is indergoing motion in three dimensional space.

The combined objectives of trajectory tracking and vibration reduction are ten

expressed in the form of a minimization problem that is suitable for numerical computa-

tion. The solution procedure presented in this section is a recursive procedure which

solves for the required actuating torques and piezoelectric voltages starting from the last

multibody component at the end of the chain and proceeding to the first component at the

base of the chain.

2.1. Problem Formulation

Consider an n-link, open-chain flexible manipulator shown in Fig. 1. The recursive

procedure developed in this paper consiszs in analyzing each multibody component for

the piezoelectric voltages applied across the distributed actuators and the base torques at

the proximal end, given the inertial forces due to the nominal motion and the reactions

coming from the next component at the other end. A typical multibody component, say
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body i, is shown in Fig. 1 along with the floating reference frame associated with that

body. The generalized coordinates consists of rigid body coordinates qr which describe

the position and orientation of the floating reference frame associated with each multi-

body component, and deformation coordinates qf which describe the deformation of the

flexible body with respect to its floating reference frame. The deformation from the nom-

inal configuration is assumed to be small, so that the different bending and torsional

modes are decoupled. Using the aforementioned coordinates, the equations of motion for

a flexible multibody component can be written as 14  3
M•M f .f. LQ,,,. Q f>

where mr. is a configuration-dependent matrix representing the mass and inertia tensor

of the deformed body, associated with the rigid body coordinates; mf. and nri are

configuration-dependent matrices representing the inertial coupling between the rigid

body coordinates and deformation coordinates; and min,, cff , and kft are the consistent

finite element mass, damping, and stiffness matrices, respectively. The force vector Q,

represents the applied external forces, control forces, and reaction forces coming from 3
adjacent multibody components, while the force vector Q, represents the quadratic velo-

city force vector which includes centrifugal forces and Coriolis forces. Geometric stiffen- 3
ing due to high rotation rates can also be added to the vector Q4f.

The dependence of the rigid body coordinates on the deformation coordinates can

be mitigated by assuming that we can find control forces so that the rigid body coordi-

nates follow the nominal motion and therefore, the resulting equations of motion become U
mff if + eff 4! + kff qf = %f + Qy -mnfe 4r (2)

where iý takes values along the nominal motion. Furthermore, the external force vector I
Qaf can be decomposed into applied torques, equivalent moments coming from the dis-

tributed piezoelectric actuators and reaction forces coming from adjacent multibody

components, i.e.,

S= Bt + Bp Vp + R (3)

where B¶ and BP are constant matrices that describe the placement of the motors and 3
I
I
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piezoelectric actuators, respectively; T is the vector of base torques measured with

respect to the floating reference frame; V. is the vector of applied piezoelectric voltages;

and R is the vector of reaction forces coming from adjacent multibody components. The

reaction force vector R consists of three force components and three torque components

acting at both ends of the multibody component. The force and torque components are

taken along the body axes associated with the multibody. As shown in Fig. 2, these force

and torque components are transferred from body j to body i through the rotation

transformation

a' A (4)

and

T= Aij J (5)

where ai and ti are the reaction forces and reaction moments, respectively, measured

along the body axes of body i, and AiJ is the rotation transformation matrx which pro-

jects forces and moments from body j to body i. The transformation matrix Ai' depends

on the nominal values of rigid body coordinates q) and q/.

Following the model proposed by Crawley and Anderson, 15 the piezoelectric actua-

tion can be considered as two self-equilibrating concentrated moments acting at the two

ends of the actuator. The magnitude of the concentrated moment is proportional to the
voltage applied across the piezoelectric actuator, hence

M = k V (6)

where the proportionality constant k. is a function of the dimensions and material pro-

perties of the piezoceramic material and the link components. As an example, for a 3-

element model where the middle element has piezoelectric actuators attached on four

sides to control bending in two directions, the influence matrix B. can be expressed as
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where the rows having the non-zero coefficients correspond to the rotational degree of

freedom of the element in which the piezoelectric actuators are attached. Each column of

B. corresponds with a specific voltage of a pair of actuators. Hence, B. will have as

many columns as the number of pairs of piezoelectric actuators. In general, the influence

matrix B. depends .n the sizing and placement of the distributed actuators. Issues con-

cerning the design of so-called smart structures are discussed in Reference 16. In the

cited work, the researchers conclude that the optimal placement and sizing of piezoeletric

actuators depends on the free vibration modes of the flexible manipulator, the frequency

content of the desired motion, and the choice of vibration modes that need to be con- 3
trolled. As a general rule, distributed actuators are most effective in controling the vibra-

tion modes which do not have nodes near the distributed actuator. 3
There are two important reasons for expressing the base torques in terms of com-

ponents along the floating reference frame. First, the influence matrix Bc becomes a con-

stant Boolean matrix because each of the base torque components is associated with a

specific rotational deformation degree of freedom. Constant influence matrices B, and B,,

are necessary in order to obtain the non-causal base torques and piezoelectric voltages in

the frequency domain aswiiU be seen in the following section. Second, the base torque

components which are associated with the torsional moment and the two bending

moments are independent of each other if the corresponding modes of deformation are

decoupled, as in the case of small deformation from the nominal configuration. Hence,

the influence matrix B¶ has independent columns, and this property is useful in finding

the solution to the minimization problem described in the next section.

I
I
I
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Combining Eqs. (2) and (3), the equations of motion for each multibody component

become

mU 4f +cff f +kff qf =Brt+B Vp +F (8)

where

F = R + Qf - mfr ,. (9)

Having derived the equations of motion for each multibody component, the problem

statement that this paper addresses can be stated as follows. Given the nominal motion of

an open-chair. flexible manipulator, we wish to find: 1) the inverse dynamic torques that

will cause the end-point of each multibody component to follow the nominal motion; and

2) the piezoelectric voltages that will minimize the induced elastic vibrations during the

motion. The problem of simultaneous trajectory tracking and vibration reduction can be

stated mathematically as the following minimization problem:

min J (?,V,) (10)(,.v,) G f

where T is the set of all pairs of stable joint torques and distributed actuator voltages that

cause the end-point to follow the nominal motion, and J (t,Vp ) is a measure of the elastic

vibrations and defined as

J('t,Vp)= f qf (,)Tqf (t) dt. 011)

2.2. Solution Procedure

The minimization problem described in the previous subsection presents some

unique features that are associated with non-minimum phase systems such as flexible

manipulators. The requirement that the pair (@c,V,) should cause the end-point to follow

the nominal trajectory admits only non-causal solutions as stable solutions to the minimi-

zation problem. 17 As demonstrated by Bayo, er. al.,12 the recursive frequency domain

approach can be employed to capture the non-causal (time-anticipatory) nature of the

actuating torques in the case of multi-link, planar manipulators. In our approach, each

multibody component is modeled by a pinned-free beam and the requirement that the
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end-point follows the desired trajectory is satisfied by imposing the condition that the

elastic displacement at the tip is zero. In the three-dimensional case, however, we have to 3
impose the additional constraint that the elastic torsional deformation at the tip is zero,

because torsional deformations would cause displacements from the nominal

configuration further down the chain.

In the frequency domain, Eq. (8) can be expressed as a set of complex equations for 3
a particular frequency (0

mff + mCfJ - -=-kff f • =( •)= •(co)+Bp •(o) +FRo) (12)

where : (o_), i(), V^ (co), and F(co) are the Fourier transforms of i•/(:), r(:), Vp (t), and 3
F(r), respectively. Eq. (12) is based on the assumption that the aforementioned Fourier

transforms exist, an assumption which is valid for rest to rest slewing motions. We also 3
take note of the fact that the Fourier transforms of the base torques and applied

piezoelectric voltages can be explicitly expressed because their respective influence

matrices are constant. The leading matrix

)= [mf, + i•C - I.. kf.] (13) I
is a complex regular matrix that is invertible for all frequencies except for w = 0. How-

ever, for o) = 0, the system undergoes a rigid body motion, and the leading matrix will be

determined only by m/f which is positive definite and therefore invertible. Making use 3
of the fact that the leading matrix is invertible for all frequencies, Eq. (12) can be

expressed in the following partitioned form: 3
4 + B I V,,(o$+ I ,(W) (14)1

% 01c)) [Gth Gli Go jBu P#] [Ft (ca))

where G(o.) is the inverse of I.(o) and 13 is the (3 x 3) identity matrix. The subscript h

refers to the rotational degrees of freedom at the hub, the subscript t refers to the defor- 3
mation degrees of freedom at the tip which are to be controlled, and the subscript i refers

to the remaining elastic degrees of freedom. The expression for the influence matrix B,

I
I



-li-

on the right hand side of Eq. (14) makes use of the fact that each of the components of

the base torque vector "r is associated with a specific rotational deformation degree of

freedom and is independent of the other components.

The condition that the tip should follow the nominal motion is equivalent to impos-

g the constraint q* (w) = 0 for all w. This constraint results in a relationship between the

base torques 'r and the distributed piezoelectric actuator inputs V.. This relationship can

be obtained from the last set of equations of Eq. (14) when q, (w) is set to zero, hence

giving the following result:

G,,C Gt1B V()FCO)) (15)

where the existence of the inverse of Gth is assured when the torsional deformation and

the bi-axial bending modes are decoupled, which is consistent with the assumption of

small deformation from the nominal configuration. Substituting the above expression for

the base torque "t(ci) in Eq. (13) and using the Fourier transform property q =W 4
yields the following expression for the elastic displacements in compact form:

4f (0~) -i(AVp + B) (16)

where

A - •B. ,,- (GdGt(i + d] Bp (17)

and

Employing Parseval's theorem, minimizing J (rV..) is equivalent to minimizing the

2-norm //4 ((o)//l for each (a. The minimization problem of Eq. (10) then reduces to a

standard least squares approximation problem with the solution

19 = - (A"A)-I A* B (19)

where A* denotes the conjugate transpose of A. A necessary and sufficient condition for

the inverse of A*A to exist is that all the columns of the constant matrices BH and B, are

independent. This condition is automatically satisfied because the base torques and the
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equivalent concentratod moment due to the distributed piezoelectric actuators do not act

on the same degree of freedom in the finite element model.

Having determined the piezoelectric voltages V(W-) for each frequency (a from Eq.

(19), the base torques T(o)) and the elastic displacements 4f (0) can be determined from

Eqs. (15) and (16), respectively, for the same frequency. The base torques, elastic dis-

placements, and piezoelectric voltages do not need to be determined for the frequency

S= 0 because the zero frequency content of these variables can be determined from the

zero initial conditions. The base torques, elastic displacements, and the piezoelectric vol-

tages in the time domain can then be obtained by using their respective inverse Fourier

transforms

1 0t@=~f i((o~)e" dcw (20)

q/ (t) = f 4f (•co)" el,()i dc (21)

- Iand3

V" (t)=-L V(u)) e ~d w. (22)

We note, however, that the forcing vector F(t) in Eq. (8) depends on the elastic

nodal deformations and nodal velocities. Therefore, an iteration p.ocess is needed to 1

obtain the solution to the nonlinear differential equations. We start the iteration process

by assuming zero elastic deformations and velocities for the initial calculation of the

forcing vector F(t) and use a successive substitution scheme to converge to the correct

solution. For normal robotics applications, convergence is achieved in two or three itera-

tions.

Once the base torques and the elastic deformations have been determined, the reac- 3
tions coming from the next multibody component in the proximal direction can be deter-

mined from dynamic equilibrium considerations. The reaction forces between com-

ponents will generally consist of three force components and three torque components.

As shown in Fig. 2, the three torque components at the base for body j consist of a 3
I
I
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revolute joinS actuating torque t, a reaction bending moment 7- that controls the end-

point displacement 8t in the plane defined by the revolute joint axis and the component's

body axis, and a reaction torsional moment "r, which controls the end-point torsional

deformation 0, for this multibody. Having determined the reaction forces and moments

between this multibody and the next multibody component in the proximal direction, the

latter multibody can be analyzed using the inverse dynamics procedure discussed above.

This multibody component has, at its distal end, the previously computed reaction forces

and reacdon moments coming from the previous multibody cor-ponent. These forces and

moments are transferred from the previous multibody component to the present multi-

body by a projection of forces and moments, where the projection matrix depends on the

rigid body coordinates. The inverse dynamics analysis therefore involves a procedure

which analyzes each multibody body component, starting from the end of the chain and

proceeding towards the base of the chain. For each multibody component, the oase

torques are determined such that the end-point follows the desired trajectory and in addi-

tion, the reaction forces and moments at the end-point are in dynamic equilibrium with

the previously computed base torques and base forces of the adjacent multibody com-

ponent in the distal direction. Finally, the bas- torques of the multibody component at the

base of the chain are projected onw a reference frame that defines the joint axes of the

three motors at the ground. The three torque components that result from this projection

are the required base motor torques at the ground.

To summarize, the procedure for obtaining the inverse dynamic torques ar'" distri-

buted piezoelectric voltages that will simultaneously track a desired end-point trajeccory

and minimize elastic vibrations in open-chain flexible manipulators involve the following

steps:
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Algorithm:

1. Define the nominal motion (rigid body inverse kinematics).

2. For each link in the chain, starting from the last link:

a) Determine the piezoelectric voltages for this link.

b) Determine the base torques for this link.

c) Determine the elastic displacements, velocities and accelerations.

d) Repeat steps (a), (b), and (c) until the base torques and

voltages converge to within a desired tolerance.

e) Determine the reaction forces to the next link by considering

dynamic equilibrium for this link. I
3. Proceed to the next link in the chain.

The recursive approach presented above solves the trajectory tracking problem one

link at a time. In general, there may be global solutions to the nonlinear inversion prob-

lem associated with end-effector trajectory tracking, which can potentially have many

solutions. Our method, however, yields a solution which can be efficiently computed due

to the linearization process that takes place when the ends of each link are constrained to

move along their respective nominal trajectories.

In the next section, we consider an example of a class of spatial, open-chain, flexi-

ble manipulators where all intermediate joints are revolute joints and all intermediate

joint axes are parallel in the nominal configuration. For this class of flexible manipula-

tors, at least three motors are required at the ground in order to achieve end-point track-

ing for all possible configurations. We illustrate the preceding statement through a simple

example involving a single-link flexible manipulator supported by a rotating base and

controlled by only two motors at the ground, as shown in Fig. 3. When the manipulator is

in the vertical position, the end-point displacement 8t can not be controlled by two

ground motors alone. This is so because as the manipulator gets closer to the vertical

position, the torque that is required to control this displacement component becomes so II
large that it saturates the capacity of the ground motor. Likewise, when the manipulator

is in the horizontal position, the end-point rotational displacement 0, can not be con-

trolled by the two motors alone. Hence, a minimum of three motors at the ground is

I
I
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necessary to assure that the end-point elastic displacements are controllable for all possi-

ble configurations. The requirement of having three motors at the ground is not restrictive

because it does not increase the mass that is distributed on the links, and therefore this

requirement does not increase the inertial forces acting on the system. The simple algo-

rithm presented herein, and the minimal number of motors required to implement the tra-

jectory tracking procedure should make the proposed approach very attractive in the

design and experimentation of spatial, open-chain, flexible manipulators.

3. Simulation Results and Discussion

The recursive procedure discussed in the preceding section is applied to the three-

dimensional open-chain flexible manipulator shown in Fig. 4 to demonstrate the validity

of the proposed procedure for solving the simultaneous end-point trajectory tracking and

vibration reduction problem. The desired motion is to have the end-point remain in the

x2-x3 plane with the x2 coordinate and X3 coordinate of the end-point following the tra-

jectories shown in Fig. 5. The two links share the following geometric and material pro-

perties:

Length: 1.0 m

Cross section dimensions: 1.0 cm x 1.0 cm

Young's modulus: 70 GPa

Shear modulus: 27 GPa

Mass density: 2715 kg/mr3

Tip mass: 0.5 kg

The piezoelectric actuators are distributed uniformly on the middle third span of

each link. This placement of the distributed actuators assures that the first mode of vibra-

tion is minimized. For the example considered herein, the equivalent concentrated

moment that results from the applied voltage to the piezoelectric actuator is

Mp =0.2 Vp. (23)

We perform two sets of computations for the example considered: 1) inverse

dynamic torques acting alone; and 2) inverse dynamic torques applied together with
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distributed piezoelectric actuators. We can compare the results of the two separate

numerical experiments to illustrate the effectiveness of the distributed actuators in I
minimizing ceastic vibration; "while simultaneously tracking a desired end-point trajec-
tory.I

Plots of the inverse dynamic motor torques needed to track the desired end-point

trajectory are shown in Figures 6-9. In these plots, the solid curve refers to the inverse

dynamic torques that are needed when they are acting alone, and the dashed curves refer

to the required inverse dynamic joint torques that are acting together with piezoelectric I
actuators. We take note of the observation that the inverse dynamic torque profiles exhi-

bit pre-actuation and post-actuation with respect to the end-point motion for both sets of I
curves. We also note that the inverse dynamic torques are only slightly perturbed by the

presence of the distributed piezoelectric actuators. I
Figures 10 and 11 show the elastic deformations along the two transverse directions

at the proximal third point in each of the two links. The solid curve refers to the elastic I
deflection caused by the joint actuators acting alone, and the dashed curves refer to the

elastic deflection that results when joint torques are acting together with the distributed I
piezoelectric actuators. The figures show that the distributed actuators can significantly

reduce the elastic vibrations that are induced by the slewing motion. Plots of the I
piezoelectric voltages that are required to obtain the above reductions in the elastic vibra-

tions are shown in Figure 12.

4. Conclusion

We have presented a new recursive computational procedure for determining the

inverse dynamic torques and distributed piezoelectric actuator voltages that are needed to

simultaneously achieve end-point trajectory tracking and vibration minimization in

three-dimensional, open-chain flexible manipulators. The trajectory tracking requirement I
is achieved for the three-dimensional case with the use of a single actuator at each inter-

mediate joint, as opposed to previous approaches where three actuators have been pro-

posed at each joint. The non-causal inverse dynamic torques and piezoelectric voltages

are obtained through integration in the frequency domain. The transformation of the

equations of motion into the frequency domain is greatly simplified by expressing the I
I
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base torques in terms of components along the associated floating reference frame for

each multibody component. End-point displacements in the plane defined by the associ-

ated revolute joint axis and the body axis can be controlled by treating the base torque

controlling this displacement as an unknown internal reaction moment which is to be

determined. Through a recursive procedure, the actuating torques at the proximal revo-

lute joints are determined so that the desired internal reaction moments described above

are attained. Finally, the minimal number of motors required at the intermediate joints to

implement the tracking control procedure substantially reduces the control effort and

weight of the manipulator, and this is an important contribution in the design and experi-

mentation of spatial, open-chain, flexible manipulators.

Further research is needed to address the problem of simultaneous trajectory track-

ing and vibration minimization of general (open-chain or closed-chain) three-

dimensional flexible manipulators. The sensitivity of the method to modeling errors

needs to be addressed as well.
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Buckling Control of a Flexible Beam the axial compressive load P in an initially straight beam in-creases, the beam remains straight and undeformed until the l

Using Piezoelectric Actuators load reaches a certain critical value P(r.1, where the stable
equilibrium of the first bending mode bifurcates into one un-
stable and two stable equilibria (pitchfork bifurcation). The

Tesfay Meressi* and Brad Padent two stable equilibria correspond to buckled configurations.
University of California, Santa Barbara, Here we use piezoelectric actuators and strain gauge sensors

Santa Barbara, California 93106 to show that buckling of a simply supported beam can be
postponed beyond the first critical load. The load deflection
characteristic for large deflections of a beam in a buckledIntroduction configuration is highly nonlinear and involves numerical solu-

A CTIVE damping and control of flexible structures has tion of elliptic integrals. Figure la shows a typical load deflec-
LIL been an area of research focus for some time.' However, tion curve where P,.• is the buckling load of the nth mode.
the recent application of distributed piezoelectric actuators to If P <P=,, the undeflected beam is stable. For P,,., <P I
structure control by Crawley and De Luise and Bailey and <P1,.,÷ all modes are stable except for the first n bending

hchallenging problems. Following modes. The idea reflected in this Note is the use of feedbackthe initial expehiments of these researchers, where a single control in conjunction with piezoactuators to stabilize the first
vibrational mode is controlled, Fisher" addressed the actuator bending mode beyond P,,1 and achieve a bifurcation diagram I
placement problem to control several modes. of the form shown in Fig. Ib, where the buckling force P. 1 is

In this Note we address the new problem of buckling control greater than that for the uncontrolled beam.
using smart materials. In contrast to the dynamic stability We begin by deriving the linearized equation of motion and

issues of vibration control, buckling is a static instability of the associated modal equations of a simply supported flexible
axially loaded members of a structure. It is well known that as beam with piezoelectric actuators subjected to slowly varying

axial load. This is followed by the state-space model of the
Received Feb. 25. 1992: revision received Oct. 10, 1992; accepted for reduced order system and the design of a controller to increase

publication Oct. 19. 1992. Copyright © 1992 by the American Insti- the stiffness or impedance of the first bending mode. We dis- I
tute of Aeronautics and Astronautics, Inc. All rights reserved. cuss the effect of the unmodeled higher order residual modes

•Research Assistant, Department of Mechanical Engineering. and methods of reducing this effect. Our conclusions are made
tAssociate Professor, Department of Mechanical Engineering. in the last section.
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P p arP. a simply supported uniform beam (El constant) of length L,
we obtain

" 7 z"i ,1ý(t) = sin(wct + #) and o.(x) = D,,sin(n wx/L)

n=1, 2,3 ... (3)

)ib) " If 0. is normalized so that 110j. dx = 1, the unforced dynamics

Fig. I Load deflection coure of a) uncontroUed beam and b) con- in modal form becomes
trolled beam.

y.(x,t) = vr2/L sin(nhrx/L)sin(w,,t +,k) (4)

To see how the load affects the natural frequencies of the
M P . p beam, substitute Eq. (4) in Eq. (2) and simplify to get

Eq (4) 2 Eq. (2)± iplf

1 (5)

Fig. 2 Simply supported column with piezoelectric actuators.
From Eq. (5) we see that the nth pole pair *ijw. moves along
the imaginary axis toward the origin as P increases from 0

System Model of a Beam with Piezoactuators P,,- lT2IL me a fo r H
when P = P,., the beam loses all of its stiffness and buckles in

In this section we use a truncated modal expansion of the the nth buckling mode.
deflection of a beam to derive a linear finite-dimensional
model. We emphasize that the beam is assumed to be uniform Forced Respome
with no manufacturing imperfections. Since the aim is to stabi- The deflection of the beam can be written in terms of the
lize the beam in its straight configuration, it is natural to modal deflections as
assume small deflections and linearize the equations of motion
about this configuration. Note that the strain induced by
piezoelectric actuators is usually small and, therefore, the y(xt) Mx")

small deflection assumption is consistent with the capacity of Substituting this in Eq. (2) we obtain
the actuators.

Figure 2 shows a simply supported uniform beam with .........
piezoelectric actuators of equal thickness bonded to both sides P pA ,. + • EI07,, + P.
by a suitable adhesive. The beam of width b and thickness tb ,. n-i R..

is subjected to an axial compressive load, and control moments M [6, (x - x') - a, (x - X)] (6)
are applied by the piezoactuators. The actuator being modeled
is a piezoelectric polymer, poly vinylidene fluoride. For an (If the piezoelectric actuators are bonded along the total length
axially polarized piezo, a voltage applied across its thickness of the beam, x, = 0 and x2 = L.) Multiplying both sides of
results in strain along its length. For simplicity the width of Eq. (6) by 0,,, integrating with respect to x over the beam
each piezolayer is assumed to be the same as that of the beam. length, and using the orthogonality of the mode shapes yields

The strain A, developed in an unconstrained piezo is given
by A = v,(t)d3/t, where Pi(t); i 1,2 is the voltage applied to I if nisodd
the ith piezostrip, d31 the piezoelectric strain constant, and t. -2n rM 2
the thickness of the piezolayer. If P, and P2 are the voltages '9. + = - Z (7)
applied on the top and bottom piezolayers, resrtively. and pAL L if n is even
E, is the Young's ,odulus of the piezo, we resi2ti•g mow.ent
on the piezobeam segment is given by If 1'=- P14, we have Mf-i2k*P and Eq. (7) becomes

= bEptp(A2-A,) L +t,+ m+ 117=iBP where

S) AL 0 if n is even

The equation of motion of the beam can be derived using
Hamilton's variational principleW Under small deflection as- Since the n even modes are uncontrollable, we expect the beam
sumption Hamilton's principle yields to buckle in the second mode when P •P,. 2 .

Many control problems aimed at vibration suppression use
pAy + (Ely')' + (Py')' = M[5'(x-x2)-6'(x -xi)] (2) piezoelectric materials as sensors in the feedback loop. How-

ever, due to charge leakage, piezoelectrics are not useful as
where A is the density of the beam; y is the transverse deflec- sensors near 0 Hz as required in this application. Therefore,

tion; . and y' are the time and spatial derivatives of y, respec- resistive strain gauge sensors are used as modeled in the next
tively; El is the stiffness of the beam; A is the cross-sectional section.
area of the beam; 6' is the spatial derivative of the delta func-
tion; and x, and x2 are the locations of the two ends of the Sensor Modeling
piezolayer. The solution to Eq. (2) is obtained as follows. Modal states are estimated from strain gauge measurements

at discrete locations. It is easy to see that observability of the
Unforced Dynamics modes of the system depends on the location of the sensors; a

The unforced system dynamics are defined by the condition mode with its node at the location of a strain gauge is unob-

M = 0 in Eq. (2). Using separation of variables, we have servable with that sensor. To reduce the number of sensors,
y,(x.t) = •,(x)i7.(t). Substituting this in Eq. (2) and assuming modal control of flexible structures is usually based on the first
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few modes of vibration. This is justified by the fact that higher first and the fifth modes are included in the reduced order
vibrational modes are in general difficult to excite and have model and a structural damping coefficient " is assumed, then
higher structural damping. However, the unrmodeled dynamics
can cause instability through what are known as control and0 1 0 0
observation spillover. It has been shown' that both control and 0 1 0 0
observation spillover of unmodeled modes are necessary to -w -2 0 0
cause instability in a closed-loop system. A, = 0 0 1

The sensors are placed so that the second and third modes
and their multiples are unobservable. Thus the first and fifth 0 0 - -
modes are the first two modes in a minimal realization of the
system. We ignore higher order modes and discuss the associ- 7
ated spillover problems later. If a small amount of structuralo 0F v3
damping is preseit, all of the unobservable modes remain
stable even in the presence of spillover. Similarly the dynamics - 41rk* _2 1 T
of the even modes are not affected by the control, and hence B, - C0 = 25v- 0
they remain stable. A

We model the sensors as follows. The bending moment at 0 - 25V'3
the location of a strain gauge, a distance x from the left end of (14)

tba ig.2 x
2

. A controller is designed using standard linear quadratic regu-
Mb = -EblzqY'(X,t) 44, Eb - n7smn--- (9) lator (LQR) design to minimize a cost functional of the form

where Eb is the Young's modulus of the beam material and 1,J = (,Q i', + JR v) dt (I 5
is the equivalent moment of inertia of the composite piezo-
beam segment based on beam material. The resulting strain in where Q and R are positive semidefinite and positive definite
a strain gauge attached to one side of the beam is weighting matrices, respectively; and a is a scalar. The solution I

of the corresponding Riccati equation in this method gives an
Mb [(tb/2) + t, + t,] p optimal state feedback solution of the form v(t) = -K,71,(t),

= Ebl, AeE 6  (10) where K, is a constant feedback gain matrix. The following
parameters were used for simulation.

Beam properties:I
where Aq is the equivalent area based on beam material. The

sign of the first term in Eq. (10) depends on which side of the bb = 25.4 mm tb = I mm Eb = 5 GPa
beam the strain gauge is bonded to. Therefore, the output of
a differential strain gauge is independent of the load P and is Pb = 1000 kg/m 3  Lb = 152.4 mmgiven by

Piezoactuaor properties:Fý=2kt 2 jL [(tb /2) +t, +t P],Ir•* I.
LZ n E b, = bb t, = 110um EI = 2 OPa L, = Lb

/'nx\ --- .nx Pp = 1780 kg/m 3  d3, = 23 x 10- 12 m/V

x nzn. sin (-L k, n',Insiny-•-/' (11) A strain gauge constant k, =0.01 V/g strain and structural I
damping coefficient r = 0.01 are assumed. The thickness of the

where k, is the strain gauge constant. If differential strain adhesive layer is neglected.
gaugesare placthed tri xau = constandtx-2L /3, andiffere sumaiThe optimal feedback gain matrix K, is computed for
gauges are placed atx=L/3 andx=2L/3, and the sum of P=4.1P~,. using Q- CTC,, R = 1, and a,=0.05. The first
their measurements is taken as the system output, we have mode is stabilized at a load exceeding P,.2 = 4P,., and at this

load the uncontrolled second mode is unstable (i.e., the beam
PA ( L+ ( =2Lis forced to buckle in the second mode). However, it remains

vov 3 +vs x to check that this controller stabilizes the system for loads less
than 4.1 Pa.,. For the reduced order system this problem can be
reduced to checking the roots of a fourth-degree interval poly-

/'- .n . 2n x- nomial with each coefficient varying monotonically when the
= fknn1,7, sinT+sin-'--) (12) load varies from P=0 to P=4.1Pc,.i. The stability of the

system under any fixed axial load Ps 4.1 P&1 was verified by
checking the stability of the two Kharitonov polynomials 6

associated with the fourth-order characteristic equation of the
Controller Design system. The same robustness result can also be obtained nu-

If n modal amplitudes and their rates are taken as the merically using a root locus plot parameterized by P.
states of the system, the state-space representation of the The resulting closed-loop response to nonzero initial condi-
2n dimensional reduced order model with a state vector tions and the control input voltage to the actuators for the
7T= = [7 1 '1 17m J.1 becomes controlled model with a load of P - 3.8PM , are shown in

Fig. 3a. The effect of the unmodeled dynamics and methods of

= Ai, + BP and V0 = C"7, (13) reducing this effect is the subject of the next section.

where A, is a 2n x2n block diagonal matrix, B, is a 2n x I Numerical Evaluation of Spillover I
input matrix, and P is input to the system. We assume that the To see the effect of spillover, the same gain K, is used with
derivative of the sensor output can be computed and define an extended evaluation model containing modes 7 and 11 in
Vr _ 1 v voI; and C, is a 2 x 2n output matrix. If only the addition to modes I and 5. To reduce the effect of spillover the
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0.6 .100, using smart materials, a static instability of axially loaded

> 0.41!. members of a structure. We showed that the buckling of a
flexible beam can be postponed beyond the first critical load

02by means of feedback using piezoelectric actuators and strain
K:o -:. gauge sensors. It is observed that a controller design based on•, >0. 0-,0 a fixed axial load Pn, stabilizes the modeled modes for any

4 P<--P,. and, therefore, is robust to slow load variations.
04 0.005 o.o0 0 o.oo5 o.o0 Hence buckling in the first mode is inhibited, and the beam

nine Isl a) rine (I can support a load up to the second critical load. Actuator
and sensor placement is discussed with regard to problems of

0.6,1 • spillover. Finally, spillover has not posed serious problems

o. so as we are able to design the controller, in the case of a beam,

S o0.z using a low-order model and verify stability for a high-order,Z 0 .o I. - model.
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STABLE INVERSION OF NONLINEAR NONMINIMUM PHASE SYSTEMS

Degang Chen Brad Paden
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Abstract these inversion results is the notion of relative degree which is
This paper addresses the inversion of a nonlinear system nimportant in our work also (although a clear exposition of rela-

of the form x=f(x)+g(x)u. y=n(x) from the perspective of rave degree for nonlinear systems is fairly recent [14]).

noniinear geometric control theory. We use the notion of zero Although stable inversion has not been studied in the framework

dynamics for obtaining stable, though noncausal, inverses for of Brockett and Mesarovic and Hirschorn. approximate non-

nonminimum phase systems. This contrasts with the causal causal inversion has been used, for example, in linear quadratic

inverses proposed by Hirschorn where unstable zero dynamics optimal tracking (15]. etc..

result in unbounded solutions to the inverse problem. Our results In this chapter we derive bounded inverses to nonlinear
reduce to those of Hirschom in the case of stable zero dynamics, systems in an effort to find feed-forward signals for tracking
however. A numerical example is described and the input gen- controllers. For systems with unstable zero dynamics these are
erated using inversion is compared with that produced using necessarily noncausal. These results are new for linear as well
recent results in nonlinear regulation. as nonlinear systems and were motivated by the successful

inversion of a flexible manipulator model by Bayo er al. [2]

Key Words: inversion, output tracking, nonlinear systems. non- using iterative linearization and solution with the Discrete
rrrnum phase. Fourier Transform. Here we seek a geometric interpretation andtime-domain solution of the inversion problem for the system

1. Introduction is =f (x)-g (X)U

Output tracking control for nonlinear systems is a chal- y=h W.
lenging problem encountered in the control of articulated flexi-
ble space structures, flexible manipulators and elsewhere. There We show that inversion is equivalent to solving a two-point
are two basic approaches to this problem. First. asymptotic boundary value problem in the general case of unstable zero
t:acking contol using feedback and, second, inversion coupled dynamics. The stable and unstable manifolds of the zero
with stabilization. The second approach offers the potential of dynamics play a central role in the ideas developed.
exact output tracking without transients, but introduces the prob- The remainder of the chapter is organized as follows. In
lem of inverting nonlinear systems with unstable zero dynamics. the next section we define the class of reference trajectories
Motivated by new results in the control of articulated flexible under consideration and state the problem of stable inversion.
structures (1. 2. 31. we address the second approach and solve Section 3 contains the main result and shows that the stable
the inversion problem for a class of nonlinear systems with inversion problem reduces to a two-point boundary value prob-
unstable zero dynamics. lem of reduced-order ordinary differential equations. Section 4

For the linear multivariable case. the asymptotic tracking contains an example of a fourth order nonlinear nonminimum-
problem was solved by (4. 51 and subsequently crystalized as phase system: our stable inversion approach is worked out in
the internal model principle (6]. The matrx equations defining detail and compared to the approximate inverse obtained from a
an asymptotic tracking controller for linear systems were nonlinear regulator. Simulation results demonstrate the value of
transiated to nonlinear partial differential equations in the non- our inverse for dead-beat output tracking.
linear case (see Isidori and Byrnes (7]). Although nonlinear
PDE's are only numerically tractable for systems of low order. 2. Framework and Problem Statement
solutions for tracking periodic trajectories have developed based We consider a nonlinear system of the form
on Fourier series (8, 9]. Transient response remains a problem.
however. " =f(x)+g(x)is (1)

Transient behavior can be precisely controlled using sta- y = h(X). (2)
bilizing feedback together witn feed-forward generated b- an defined on a neighborhood X of the origin of R'. with input
inverse system. For linear multivariable systems the inversion ,, I R" and output y e Rp. The functions f(x). g;(x) (the
problem has been resolved to a large degree by Brockett and ith column of g(x)) i 1. 2. -- m are smooth vector fields
Mesarovic [101 and Silverman (111. However, these inverses and h,(x) for i = 1. 2. • • . p are smooth functions on X, with
are all causal. Conditions for the invernibility of nonlinear real-
anaiytic systems have been derived by Hirschom (12. 13]. Here
again. only causal inversion is addressed. Deeply rooted in
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In the context of the above system pose the following r r 2+r2  + r,., and write

Stable Inversion Problem: Given a smooth reference output tra- d' Y1
jectory yd(t) with compact support. find a control input ud(t) dt 1
and a state trajectory x4(t) such that d 2 :y
1) u, and x, satisfy the differential equation ('2

id t) f (xd t )) .+ g (xd(t))Ud(t), (3) d y.. _

2) exact output tracking is achieved: dt

h(xQ(t))=ydt)( (4) We will use the bold number 1 to denote the vector

3) ud and xd are bounded and (., . 1)' so that

ud(t)-+O. xd(t)-+O as t-ý±eo. (5) ()=. dy1  dyZ dy.
dt 'dt ' dt'

If y: IR"-*lR" andf]: RM -- ,IR4 , we define
Note that here we require yd(t) to have compact support. If ' w

that is. there exist to and t. such that vy(t) = 0 for all t S5 t o and L/. I
all t >r:. However. the development in this chapter can be L 7Y2extended with little effort to cover desired trajectories whose Liy (10)
first derivatives have compact support. The extension covers a
large class of realistic trajectories. 

•im
We call x, the desired state trajectory and ud the nominal 1

control invut. These can be incorporated into a dead-beat con-
troller by using the nominal control input as a feed-forward sig- Consider a nonlinear system of the form (1) and (2) with
nal and x - x, as an error signal for feedback. The design of the same number m of inputs and outputs which we expand in
the feedback compensator has no general solution yet, but con- the following form:
-roiers for specific systems have been developed (see e.g. Paden

et al. [1]). ,X =f() + Egi(X)ui
it=

In solving for the nominal trajectories x, and u, the con-
ceots of stable and unstable manifolds of an equilibrium point Y1 = ht(X)

anse naturally [16]. For the sake of completene;s we review the .. I
definitions here. Let z = 0 be an equilibrium point of an auto-
nomous system defined in a open neighborhood U of the origin Y. = h., (x)

of R': We assume that the system has we!l-defined relative 1
z =f(z), (6) degree r = (rl, rZ, • - . r.) at the equilibrium point 0. that is.

and 6,(z) be the flow passing through z at t =0. We define the 0) for all i a m n m for allo t i om. for all k < r1 -1 and

(local) stable and unstable manifolds W'. W' as follows: f

V'= (z E UI1,(z)E U Vt > 0.0,(z)--*O as t-..oo) (7) LI) '(x)=OG1

WV" = z E U IO,(z) G U Vt a 0,0, (z )--*0 as t ---+oo) (8) (ii) the mxm matrix

The equilibrium point z = 0 is said to be hyperbolic if L -L, -h(x) ... L L -' ;,(X)
2-1 Pl' I

the .acobian matrix Df off at z = 0 has no eigenvalues on the Lt 1L; th2 (x) ... Lr, LI" h2 (x)
j'ca axis. Let n' denote the number of eigenvalues of Df in the (x) = ... ... ... (12)
open left half complex plane, and n" the number in the open --

right half plane. Stable and unstable manifolds W' and WV L 1tL;" h.,(x) .-. LLf- h,.(x)
exist locally in the neighborhood of hyperbolic fixed point and
have dimensions n' and n' respectively, is nonsingular in a neighborhood of the origin.

For convenience, we will use the following notation. Let Under this assumption, the system can be partially linear-

14=f 10. 1. 2. • • • . r ='(r ,r:, • . r. ), e I" and ized. Todothis, we differentiate y; until at least one u-. appears I
y = y I(t). y:(t). . y,(t)]'; t e R. Then we define explicitly. This will happen at exactly the rith derivative of y.

due to (11). Define Z =y~i't for i = 1, m and

I
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r=i. -. r•.and denote P (y, 4,. T1) (2;)

" .. Y.. )' where

=(Y. , Y , '',Ya" ,- ',y,.Y )2. (13) 1 qt(ýd, i) + ( , [(• l-t )- ( ).(-)
Choose 11, an n - I rI dimensional function on R" such that

(•'. TVl)' = W(x) forms a change of coordinates with wxJ) = 0 It is clear now that an integration of the reference dynamics

[14]. In this new coordinate system. the system dynamics of gives rise to a trajectory of the original state through the inverse

equadi'in (I) becomes coordinate transformation x = T-1 ) and an input trajectory by

f-i = ý equation (19). Now the question is how to integrate the refer-
... ence dynamics to generate a bounded input solving the stable

for i = ,-. -m, (14) inversion problem, since the reference dynamics may be

unstable in both positive and negative time directions in general."-a= t•(4, TI) + Pi, (ý, -n0" For reference trajectories with compact support, the refer-

q = (,,l. T q (S, TI)U ence dynamics become autonomous zero dynamics for t outsidethe compact interval (to, t ] Assuming that T = 0 is a hyvper-

which. in a more compact form. is equivalent to bolic equilibrium point of the autonomous zero dynamics. then

y, = 'tt,,I) + M.(• )u, (15) there exist stable and unstable manifolds IV' and W'. Locally

V= can be defined by an equation B'(il) = 0 and. similarly, ;V'
= qI(•,. TI) + qz2(. T1) a (16) can be ded'ed by B'(TI) = 0. The following theorem is our

where main result.

Theorem: The stable inversion problem has a solution if and
Y Y 2' Y.,Y- only if the following two-point boundary value problem has a

"U (u, u2, U. ",.)'. solution:

a(;. TI) Lih (wI' (:. TI)). (17) TI p(Y.i, d, 11). (23)

P TI) = I 'h(W-:(1 TI)). (18) subject to

Here 5 is ac,"ually the same p(x) matrix defined in th" equation B"(rl(to)) 0.(

(12). ai0, 0) = 0 since f(0) = 0, and B'(rl(t,)) =0.

h(x) = [hl(x). hz(x).. , h..(x)]', Proof: (necessity) Suppose xd(t) and ud(t) solve the stable

inversion problem. Then x,(t) and ul(t) satisfy the differential
g(x) = Cg1(x). gz(x). g.,(x)l. equation (1). Let (', il')' = w(xXd). Then ý and TI satisfy (1) or

Since by the relative degree assumption. P3(. TI) is nonsingular. equivalently (14) with u substituted by ud. Besides. since

the following feedback control law y = h (xd) yd by assumption. 5 = , and y = =. Tee-C
fore by equation (15)

,, = [13(,. T fl)]tfv - ,.:t(X . TI)] (19)1A 'I]-Ifv- Uýý TIAyj') = t(ý,. TI) + 03(4. Tl)u•,

is well defined and partially linearizes the system such that the

input-output relationship is given by a chain of integrators: which yields

Vt,) = V (2o) [0( 4 [ d. T1)l-t(yJr) - a(!. il)).

where v R' is the new ccntrol input. Assume both y and yd Substituting this into the TI dynamics of equation (16) and com-

start from rest and choose paring the resulting right-hand side with the definition of

p (yd. ,. Tr) in equation (24). we recognize that TI satisfy equa-
V =y,). (21) don (22).

Then immediately we have Now we only need to show that T1 also satisfies the boun-

t. t -dary condition. This is easy. Since by assumption. xd(t)--+O as

t --- oo and xW(0) =0. thus Tr(I)- 0  as t- -- o also. By

_= (Yi. I,. " " " . Y12. y. ,, )' (22) definition of the unstable manifold. Tl(t) e IV* for all r : tq.
Therefore. Bt (rTI(o)) = 0. Similar arguments show Juat

and equation (16) becomes, which we call the reference dynam- Therefo) = =.

.cs, or the zero dynamics driven by the reference output trajec- D'(TI('A) S 0.;ory. (suffikiency) Suppose Tli solvcs the above two pt.tint

tory.(sff
boundary value problem. Then. T•d is bounded, and TI, t )--(I as
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I

t--.oo since n,(tf) e W' and L(t)--0 as t -+--oo since 4. An Example 3
i,(to)) e W". Also. , - 0 for t S to and for t Ž tif. In this section. both the inversion and regulator

Let approaches will be applied to a simple nonlinear nonminimum-
phase system. The example system is selected such that both

Xd = M't(, . ), the integration of the reference dynamics and the solution to the

S= [f3(d, 1,)-I (yJ) - a(• , r 4A)) nonlinear partial differential equations are manageable. The per-
formance of the two -pproaches is compared.

Then. x, and u, are bounded, and x,(t). uj(t)-+O as t---oo or Now consider a slightly nonlinear single-input single- U
t-a*. since V-'(0, 0) = 0 and a(0. 0) = I. And by the output system descrbed by the following equations:

deEnition of s, y = y•.

This completes the proof. I _-XI,+-X2 0

geometric interpretation of the .:(t) evolution is shown -3x1  + x 2 sx

in Figure 1. The noncausal part of the nominal control drives 1' + L 2 0

the internal states of the system along the unstable manifold of
the zero dynamics manifold to a particular initial condition y =xt- 3x 3.

xd(to) while maintaining zero system output. This initial condi-

tion guarantees two things: I) the desired reference output tra- The reference output tajectory is given by:

Jectory is easily reproduced with boumded input and states; 2) 2(1 - cos(t)) t e (0, 2n),
,,he `.nternal states land on the stable manifold of the zero Yd=f 0 otherwise,

dynamics manifold at the end of u'put tracking. With this nice

,nal condition, the internal states will converge to zero along and is depicted in Figure 2 with a dotted curve.

the stable manifold without affecting the output. 7his geometri- First, let us consider the regulator approach. The rcfcr-

cal picture is shown in Figure I where for clarity, we showed a ence signal can be exactly generated by the following linear

case of output slewing so that the t0 and ti zero dynamics mari- time-invarian: exo~ystem:
:'oids are separate.W2Here we see that the stable inversion probLem is = I
ransformed into a two-point boundary value problem for which *, = -Wi, I
-he number of equations is reduced. However. it is still a non-

tnvial numerical problem. The difficulty arises because of the "3 = 0.

-.stabilit of the reference dynamics in both positive and nega- Yd= w_- w.
tive time. Existing approaches, for example the shooting The initial conditions are set and reset as follows:
method, do not perform well numerically for unstable systems.

In the case of minimum-phase s,.items. the reference wl(-ao)-- wZ(--OO w 3 (--) = 0:
dynamics is asymptoticaily stable in the forward time. The size wI(O) = w-(O) = 2. wl(O) = 0;
of ,he stable manifold is the same as tJ'.t of the zero dynamics

manifold and the unstable manifold reduces to the origin only. wt(2tt) = w-(2) = w3(21) = 0.

T7hcrefore, the boundary condition B' (q(t 0 )) = 0. reduces to The zero erro, manifold. x = x(w) and £s=.s(w), is obtai-ed by

,I(to) = 0 and B'(11(tf)) = 0 imposes no extra constraints. And solving a system of nonlinear partial differential equatons.
,he two-point boundary value problem reduces to a simple initial which is in general extremely difficult if not impossiole. For

condition problem with an asymptotically stable dynamics, and this example, the partial differential equations are as follows:

can be easily integrated in the forward time. This is Hirschorn's thi I
a 0 .oach. Similarly. if the zero dynamics is completely ýx,.(w) ýx,(w)

- I---- ----wi 2 w, = -XI(w) --x(w).
unstable, the two-point boundary value problem reduces to a ow awl

final-value problem and can ',e easily integrated in backward x, x
time. - " = -3x 2(w) + x 1

3 (w) + (2 + sinlx,(w))u~w),

Another simple situation is when the stable and unstable
part of the reference dynamics can be decoupled by change of W w2 - --- ww =Ix1 (w)- 2x3(w),

c-,ordinates. This happens when the reference dynamics is a

lincar time-invariant system driven by the reference output and a(W) W, - 8 ,(W). =-. ,(w )- + •;-w,

its derivatives. In such cases, we can easily integrate the stable awl - w1

part in forward time and the unstable part in backward time. sublect to

x 1 ) - , 3x3(w) -- w1.
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I Fortmnately, we are able to get a closed-form solution as fol- The inverse transformation is given by:

lows:
5 3 10

XI(w) 2 • -•'_2- -2w. =000 1 (26)2 0001 t"(7
ix(w) = - 7wt -4w, - 2w 3, 0 0 0I L
x3(w) =-(w 1 +w2) - W3, Using the feedback of equation (26), the system in the new"2 coordinates becomes:

X,(w) 1 270wz -3.,w 1 ,
2- ' 20 10 Y = y ', (23)

u(w) = 17w - 7w2 + 18w3) / (2 + sin~x,(w))f, 7t + Y.

Now note that with u = 0. the forward system is locally asymp- -rh + rlZ.

totically stable since the Jacobian matrix of f(x) at x = 0 is Since we assume partially (the output part) correct initial condi.
clearly tions, equation (28) leads to

11 1 00 Y =Yd-
-3 0 Then the above ri dynamics with y substituted with ya charac-

S0 -2 0terize our reference dynamics. And for t outside [to, rf],
0 0 0 yd = 0. giving the zero dynamics:

and has all its eigenvalues negative. Therefore, for simplicity, ýl = T11

3 we can choose the feedback gain to be zero.

*This completes the regulator design. The simulation 'i= -T2+r1"

results are shown in Figure 2 to 4. Figure 2 compares the This is an autonomous system. It is clearly hyperbolic, since its
* desired and actual output trajectory, Figure 3 shows the state tra- first order approximation has eigenvalues I and -1. Therefore

jectories solving the partial differential equations, and Figure 4 there exist stable and unstable manifolds. The stable manoid
L.he acual state trajectories. Note that the output generated by can be easily seen to be characterized byI .eregulator does asymptotically track the reference trajectorye .
as predicted by theory. This is evidenced by the segments Croma
, -- 4 to t = 2% and t > 9. However, there are substantial tran- And the unstable manifold is characterized by
sicit tracking error both when getting onto the zero error mani-

I foid and getting off the manifold. This phenomenon is not a 71z = 'T9)
speciai case of ,his example, but rather generic.

Next. let us consider the stable inversion approach. 7o Therefore the two-point boundary value problem is given by:* paiaily linearize the system. we differentiate the output y to Vi = Ti + Yj, 7m1(ti) O.

Y = X - 3-i3 = -- z 6x 3 .+T=-rh +l. X2(+6)3= 3

I Since the control u does not appear explicitly, we differentiate y This particular example is in a triangular form and can be easily

agan to yield solved. For the first equation is antistable with a final value
condition, it can be easily integrated backward in time to give

-= -4(-x1 + x:) - 3x1 +~ x (2 - sin'x4)iL + 6(x1 - 2x') i. The integration is continued into the time t < to andI = 1  - 7x2 - 12.x• 3s-xt ) + (2 + sin'x,)u • a(x) - (x)u. stopped when I tI is sufficiently small. Once we have n'1, .he
second equation is a stable system with an initial condition and

Now not only does u appear. its coefficient O(x) 0 for all x. driven by a %.own input 7111. Integration forward in timc is no
SHence, wL. can SCE problem either. For :he part of T12 before to. we use the simple

u(s)= - )(y - s(x )) (26) oalgebraic re!ation of equation (29) since the trajectory remains
U 3(X)=OW(d-O ) on the unstable manifold.

and introduce a change of coordinates: Once ill and 12 are calculated, the desired trajectory of
m the original states can be obtained using the inverse coordinate

IX11 transformation in cquation (27) with V =Yd and y 7 hcni ! 61 x1 the nominal control input is calculated according to the lincariz-

Ill0 x ing feedback law in equation (26). Note that the rI's are
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I

Abstract able systems the inversion problem has been resolved to a large degree by

Mesarovic and Brockett [5) and Silverman [6]. However, these inverses are

This paper addresses the inversion of nonlinear systems of the form all causal. Conditions for the invertibility of nonlinear real-analytic systems

= f (x) + g (x)u; y = h (x) from the perspective of nonlinear geometric have been derived by Hirshom [71. Here again. only causal inversion is f
control theory. We use the notion of zero dynamics for obtaining stable, addressed. Deeply rooted in these inversion results is the notion of relative U
though noncausal. inverses for nonminimum phase systems. This contrasts degree and is important in our work also (although a clear exposition of rela-

with the causal inverses proposed by Hirschom where unstable zero dynam- tive degree for nonlinear systems is fairly recent(81 ).

ics result in unbounded solutions to the inverse problem. We show that
hyperboliciry of the zero dynamics equilibrium guarantees invernibility.

In this paper we prove a connection between the hyperbolicity of zero
dynamics and the invertibility of nonlinear nonminimum phase systems For

I. Introduction systems with unstable zero dynamics these inverses are necessanly non-

Inversion of nonlinear nonminimum-phase systems is a challenging causal.

problem encountered in the control of articulated flexible space structures. ,

flexible manipulators and elsewhere. A nominal input. derived by inversion. The remainder of the paper is organized as follows. In section 2 we review

which produces a desired output is an excellent feedforward control which some concepts from nonlinear geometric control theory and fornulate our

can then be stabilized with feedback. Motivated by i, -v results in the control inversion problem. Section 3 contains the main result and shows that inm er-

of articulated flexible structures [I1 we explore the inversion approach to tibilty can be tested by examining the zero-dynamics of the system in ques.

nonlinear systems with unstable zero dynamics. tion. Our conclusions are made in section 5. The appendix contains a key

technical result on the Frechet differentiability of solutions of ordinary f-. ii

An alternative approach is to apply the nonlinear regulator theory and solve ferential equations with respect to a control.

the associated partial differential equations. For the linear multivanable

case, the asymptotic tracking problem was solved by [21 and subsequently
crystalized the internal model principle. The matrix equations defining a 2. Framework and Problem Statement

asymptotic tracking controller for linear systems are easily solvable but We consider a nonlinear system of the form
translate to nonlinear partial differential equations in the nonlinear case x =f (x) + g(x)u 13
which pose severe comptational problems (see Isidori and Bymes [31 ). y=h(x), 2.b) 3
This was avoided in flexible robot control by tracking periodic trajectories
where Founer series methods have been applied [4]. The class of periodic defined on a neighborhood X of the origin of R'I, with input u e R" and

trajectones is poorly suited to such systems however, output y e RP. f (x). g (x) (the i th column of g (x )) i ='i. 2. .m are

smooth vector fields and h,(x) for i=l. 2. ,p are smooth functions on

Transient behavior is an issue in tracking control in contrast to inversion X, with f (O)=O and h (O)=O.

approaches where deadbeat control can be acheived. For linear multivanr. In the context of the above system pose the following

37
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Stable Inversion Problem: Given a smooth "desired" output trajectory Lfy =Lf (LfI-y) and

Y,(t) with compact support (0, T, find a corresponding control input ud(,I,) y I
and a state trajectory xd (t) such that Fy
) Ud and xd satisfy the differential equation L ? Y(2

id (t) = f (xd (0)) + g(x (t U))d (t) (2.2)

2) exact output tracking is achieved:

hi(xd(t)) = yW(t). (2.3) 3. Inversion of Partially Linearizable Systems

3) ud andxd are bounded and Consider a nonlinear system of the form (2.1) with the same number m
u*(t-0, .,(t)-- as t.-.,_+o. (2.4) of inputs and outputs which we expand in the following form:

We call .rd the desired state trajectory and Ua the desired control =f(X) +, g,(X)ui, (3.1a)

corresponding to the desired output trajectory. These can be incorporated h 1W

into a dead-beat controller by using Ud as a feedforward signal and x - xd as

an error signal for feedback. The design of the feedback compensator has no

general solution, but controllers for specific systems have been developed y.=hý (x) (3.1b)

(e eWe assume that the system has well-defined relative degree
r =(r I. r 2, ". " r,, ) at the equilibrium point 0, that is.

In solving for the trajectories xd and ud the concepts of stable and

I unstable manifolds of an equilibrium point arise naturally. For the sake of (i) for all I ! j 5 m, for all I S i 5 m, for all k < r, - I, and for all x in a

completeness we review the definitions here. Let z =0 be an equilibrium neighborhood of the origin,

point of an autonomous system defined in a open neighborhood U of the on-

gin of R ": LgLLh, (x)=0. (3.2)

I =f (z), (2.5) (ii) the m xm matrix

and 0,(z) be the solution passing through z at t--O. We define the (local) LgLLi -h1(x) • Lg,Lj'
1
-h,(x)

* stable and unstable manifolds W5. Wu as follows: LgLP- 'h 2(x) ... LLj .ih2 (x)
* U3(x)= .U ... ... (3.2)
W

5
=(z eU I 0,(z)--Oast-o.ando,(z)E U Vt 50) Lg.Li-1hm(x) Lg. L;" h.(x

WU=(z e U I ,(z)--Oast-€-.-o.and0(z)E U V t0}. is nonsingular in a neighborhood of the origin.

The equilibrium point z =0 is said to be hyperbolic if the Jacobian Under this assumption, the system can be partially linearized. To do
matrix Df of f at z =0 has no eigenvalues on the j io axis. Let n I denote the this, we differentiate yj until at least one uj appear algebraically. This will

number of eigenvalues of Df in the open left half complex plane, and n I happen at exactly the r, th derivative of yr. Define •4=y( -1) for

I the number in the open right half plane. In this case, stable and unstable i=1, . m and k=l . , ri, and denote

manifolds W- and W" exist locally and have dimensions ns n ," respec- = (, •, ... , . 42, ... , ''' )r (34)

tively. . , (3. 4)

For convenience, we will use the following notation: N--O. 1,2, .(Yt,Yi, I y.t-).y,, fy2- "...... - 1)r

r=(rl, r 2 , "",r) e N1 and y=(Y (t), Y2(t), y,,(t))ýt eR. Also Choose t)(x), an n - r I dimensional function on R' such that

define (4T, l.(r)T = W(x) forms a change of coordinates with I) Y((O) = 0 and 2) the

"I I system dynamics (3.1) become [81

dt't

dt",',- =- for i =l 1. -... m, (3.5a)

We will use the bold number I to denote the vector (1.1, , . 1)r so that YI = q t(4. '1) + q2 ( A, )u. (3.5b)

y = -"i- "'=- dy.T . which, in a more compact form. is equivalent to

If y: R4 -R' and f:R4--.RA. we define Lfy = df(x). { =at(4.'?)(+,04.T)u (3.6)
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where Y = Proof: L.et 4a

(Y y V) = )ry) (3.1a)

U = (U 1, U2 U. .. u, )T. I = p (L,"I) (3.14b)

(4, Ti) = Lih("V-(4. 11)). be the normal form of the system with initial conditions 0 at - and v

3(4, TI) = L ILf - lh(Wi('( )). chosen to cause tracking of the desired output. We need to find a solution to

This 13 is actually the same 3(x) matrix defined in the above, and the TI dynamics such that the input u tends to zero at ±cc. Define 0- be the

flow of the rl dynamics (3.14b) from time r to time t. Note that there exists
he) = [h1(x ). h 2€x ), ••.. (x)I, an interval, say, [0.T] outside which y and its derivatives are zero. Hence

g (x)= [g (x). g 2(x). W . g, (x )I. the Ti dynamics before 0 and after T are simply the zero dynamics. Since

a, and 13, are the i th row of cc and P3 respectively. By the relative degree the stable and unstable manifolds of the equilibrium point 0 are indeed

assumption, 13(., Ti) is nonsingular so we can define the feedback control law smooth manifolds there exists smooth functions
Bs :R( - Ir, I).....R(n - 1, 1 -,.) and B" R(" - IA Ii....R(, - R I ,) which define

the stable and unstable manifolds.
This control linearizes the input-output behavior to a chain of integrators:

y(V) = v (3.8) We claim that 0or(W" )nW, is nonempty (an element of this set defines an

where v E R , is the new control input. Assume both y () a 0 and Yd(t) o 0 initial condition for selecting our solution to (3.14b)). That is. the image of

for t < 0 and choose the unstable manifold of 0 under the flow tor intersects the stable manifold

v = yJt ). (3.9) of 0. This is equivalent to the existence of a solution to

"Then immediately we have f (TI .4= - B S(7 1))] = 0 (3.16)

For • = 0 there is a solution since the stable and unstable manifolds intersect

= : at 0. We now employ the implicit function theorem to show existence of

(Yd I .ýd I - YJI'iYd2 , Y .... . ... y.~ - (3.10) solution for I I _ is not too large. Since the intersection of the stable and

unstable manifolds intersect transversally at the equilibrium 0 we have that
and equation (3.6) becomes. D4 (0,0) is Also,D~ 00 san isomorphism.Alo

TI = p (4d, -YJ", 11) (3.11) D DB (0)oD 0 J ( 1

%here D1f(0.0)= . (3017i

P(yd. ;.d. TI):= q 1(--- The function Bu is smooth and, by the corollary to the proposition in the

For brevity we define & = (E 4 ,yJ•.)) and write (3.11) as
Appendix, Do- is continuous. Hence, by the implicit function theorem.

Ti =P(-a, i). (3.11") there exists a solution 1rT to 3.16 when I L , is not too large. By flowing

We call (3.11') the ýd dynamics. Equation (3.11) together with (3.8) deter- this solution point forward and backward in time we can obtain the inverse.

mine the linearizing input through (3.7). Our goal is to choose a particular

solution of (3.11') such that the resulting input tends to zero at ±o0 and Define the desired rl trajectory by

meets the other requirements of being and inverse to Yd. Tid(t) = 0,(Ti,-) (3 )

For reference trajectories with compact support [0,T], the reference

dynamics become autonomous zero dynamics for t outside the interval From this and the desired ý trajectory we construct the npui

(0. T 1. The following theorem is our main result. u (t) = [3(•,d ,•T -i(YPt) - a(-. .'Ta)). Since TIT is on the stable manifold and
the &j dynamics are the zero dynamics after time T, we have that rY--O as I

Theorem (State-space conditions for existence of inverse): Consider the t--)•. Also, 4(t )=-0 as t--4•o because yd has compact support. If follows

system that both u and x tend to zero as r ---o,. A similar argument applies in back-
f W+ g W"u (3.13a) ward time. On the interval [0,T] solutions are bounded since they depend I

continuously on L and I ELI _ is bounded. Hence and inverse exists. _0

y =h(x) (3.13b)

-here f. g and h are smooth. Let 0 be an equilibrium point of i f (x ) and In the case of minimum phase systems, the reference dynamics is

assume without loss of generality that h (0) = 0. If Yd (t) is a smooth desired asymptotically stable in forward time. The stable manifold is the dimension

output with compact support [0. TI and 0 is a hyperbolic equilibrium point as the zero dynamics manifold and the unstable manifold reduces to the on-

of the zero dynamics then there is a solution to the inverse problem provided gin only. Therefore. the boundary condition B'(q)--O, reduces to T=O and

i Ed1 : P.r 2 is not too large. 8'(T)---0 imposes no extra constraints. The inverse can be easily integrated

in the forward time. This is Hirshom's approach.

Similarly. if we consider the system as evolving backward in time, and
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this reversed system has only the origin as the stable manifold of its zero The one-sided derivative of e is

dynamics then the two point boundary value problem reduces to a final £_() = _

value problem and can be easily integrated in backward time.

Another simple situation is when the stable and unstable part of the =-..c(t)f (0n,,(tx 0),u(t))- I (0W) (t •. O),U (I (A.7)

* reference dynamics can be decoupled by change of coordinates. This hap- where m+[x ,y I is the directional derivative of the 2-norm:

pens when the reference dynamics is a linear time-invariant system driven + Ix+hv -lxi

by the reference output and its derivatives. In such cases, we can easily m[xyJ L& h The smoothness of/f implies its local

integrate the stable part in forward time and the unstable part in backward Lipschitz continuity (in both arguments). Since m +Ix ,y ] < lyi we have

time. If (0u1(:,xo),u i(t ))-f (0u(: ,xo),u2(' ))l

S K[e(t)+lu1 (t)-u2(t)I (A8)

4. Conclusion for some real K. This implies

The primary contribution of this paper is the proof existence of inverses E- 5 K [e + I u1 - u 21 . (A,9)

when zero dynamics are hyperbolic. These results, in conjunction with

Hirschom's show that there are multiple inverses for nonminimum phase

nonlinear system -- bounded, noncausal solutions produced with our method e(M) : (IuI -u21 )K jeK(t
1 dt (Al •0)

I and unbounded, and causal solutions produced using Hirschom's method. I

These inversion techniques are fundamental to nonlinear tracking controllers Therefore we have the desired Lipschitz property with Lipschitz constant

which use feedforward in conjunction with stabilizing feedback. Future K reK(t - )d-.

work will include input-output characterizations for existence of solutions to 0

the inverse problem.
Proof of Proposition (see [ 101 proposition 5.3 for related proof techniques).
Let e > 0. By the Lipschitz continuity of 0. t ýxo) proven in the lemma and

P the smoothness off, there exists r e (0, (M - I ;I ) I such that
Proposition: Consider the system

x = f (xu); x (0) = xO (A. l) 0f.((t), ) -f(0(t (x0),u ) -0)

on the interval 10, TJ where f:R" xR'" -.+R4 is smooth in x and u and O(: .x 0 )] - "("u((,x0.u)(t)II 2 Sl 11 - (A.l I)

=u I su. Iu l WI(t 2 < w; T ischosen such thatsolutionsexiston [OT] f al te 2 and 1

for all u r L satisfying the bound.
between a solution Ou (t ,xo) and a perturbed solution 0,•(t .xO) by

Let 0,(tz 0 ) denote the solution of the differential equation on [0,T]. The 5(t) = 0.4(t .xO) - u (t.xo). (A. 12)

Frechet derivative. D 4,0, (tx o): L m[0,T]-+L _.0,T] of the map (The idea of the proof is to bound &(t) - A*(r) where A(t) is the right-hand

S(1 )--•D ( 0 ) (A.2) side of equation (A.3). We integrate this bound to get a bound on 5(t) - %(r)

and, finally, we show that 5(t) = A(t) in the limit I 1I -- 0.)

O (txo)= t,) [(o (d(A.3) Differentiating 6(t) yieldsI 4wher (C a 0 )-i (t.t) TL (A.3u6(tf) 
= f (0g.r(tfxo),iu(t) + (;)) -f (0"(txo),ut ()) (A.13)

where 00,T) is the state transition matrix for but this is just the first two terms in (A. 11). Hence

0. x .L (t a 0).U (0)]x (A.4) p &6t) - *% I--(1 iX 0))8 - ML 41(t.XO)Q S EI 1 - (A. 14)
Def ne p (t)=I 8(tr) - A(t )I, The one-sided derivative of p (t) is given by

I = m.(8t1) - a(t). 6(t) - ý(t

Before proceeding with the proof we establish the following Expanding A in the second argument, using A.14 and the property
m Ixy+ ]'•m +x .y + I :I we have

Lemma: The mapping from L [O,T -L _[O.T Igiven by 1( 
)z] 5 [ x w

I p hXO)p .() S m+ & t-A(t),. (a ( o).U(t ))(6(t) - A(t + EI ýl (A.15)

is Lipshitz in u. !5 Bp (1) + El ;I C (A. 16)

I Proof: Define where B is a uniform bound on -x (0w( ,xo),u ()) for t e [0,TI and u satis-

(r) = ,( - 02. (A.6) ying lu I_ < M. The existence of the bound follows from basic existence

and uniqueness theory for ordinary differential equations, boundedness of u

and smoothness off.
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