Best Available Copy
A COMPARISON OF TWO COMPUTER MODELS OF SOUND PROPAGATION FOR A WEDGE SHAPED OCEAN OVER A PENETRABLE BOTTOM

by

Charles Curtis Meisenheimer

September, 1993

Thesis Advisor: A.B. Coppens
Co-Advisor: J.V. Sanders

Approved for public release; distribution is unlimited
ABSTRACT (Maximum 200 words)

The problem of determining the acoustic pressure in a wedge shaped waveguide is examined. Two computer models, one using the method of images, the other using coupled normal modes, are compared. This comparison is over the benchmark wedge of the Acoustic Society of America. Three scenarios were examined: isovelocity water over a pressure release bottom, isovelocity water over a penetrable, lossless bottom, and isovelocity water over a penetrable, lossy bottom. In all cases good agreement was seen between both models, with some differences due to a rigid sub-bottom in the normal mode model. The strengths and weaknesses of each model is examined. An analytic solution in normal modes of the waveguide with a pressure release surface, rigid bottom, and a discontinuous speed of sound profile is presented. A brief history of research into the wedge problem is included in the introduction.
A Comparison of Two Computer Models of Sound Propagation for a Wedge Shaped Ocean Over a Penetrable Bottom

by

Charles Curtis Meisenheimer
Lieutenant, United States Navy
B.A., University of California, Los Angeles, 1984

Submitte:d in partial fulfillment of the requirements for
the degree of

MASTER OF SCIENCE IN APPLIED PHYSICS
from the

NAVAL POSTGRADUATE SCHOOL
September, 1993

Author:

Charles Curtis Meisenheimer

Approved by:

Alan B. Coppens, Thesis Advisor
James V. Sanders, Thesis Advisor
William B. Colson, Chairman, Department of Physics
ABSTRACT

The problem of determining the acoustic pressure in a wedge shaped wave guide is examined. Two computer models, one using the method of images, the other using coupled normal modes, are compared. This comparison is over the benchmark wedge of the Acoustic Society of America. Three scenarios were examined: isovelocity water over a pressure release bottom, isovelocity water over a penetrable, lossless bottom, and isovelocity water over a penetrable, lossy bottom. In all cases good agreement was seen between both models, with some differences due to a rigid sub-bottom in the normal mode model. The strengths and weaknesses of each model is examined. An analytic solution in normal modes of the waveguide with a pressure release surface, rigid bottom, and a discontinuous speed of sound profile is presented. A brief history of research into the wedge problem is included in the introduction.
TABLE OF CONTENTS

I. INTRODUCTION ... 1
 A. PARABOLIC EQUATION .. 1
 B. METHOD OF IMAGES ... 2
 C. NORMAL MODES ... 3

II. DEVELOPMENT ... 5
 A. IMAGE THEORY .. 5
 B. COUPLED MODE THEORY ... 10
 C. THE TWO LAYER WAVE GUIDE ... 11

III. PROCEDURES AND RESULTS ... 21
 A. PROCEDURES .. 21
 B. SCENARIO 1—PRESSURE RELEASE BOTTOM ... 23
 C. SCENARIO TWO—FAST, LOSSLESS BOTTOM .. 27
 D. SCENARIO 3—LOSSY BOTTOM .. 29

IV. CONCLUSIONS AND RECOMMENDATIONS ... 33

APPENDIX A ... 37
APPENDIX B ... 44
LIST OF REFERENCES .. 54
BIBLIOGRAPHY ... 57
INITIAL DISTRIBUTION LIST .. 59
LIST OF FIGURES

Figure 1 - Two Dimensional Wedge Geometry...6
Figure 2 - Incident Angle θ_{inc} Calculation (Upper Half Space).................................8
Figure 3 - Sound Velocity Profile for Comparison..11
Figure 4 - Fluid Layer Overlying an Infinite Bottom...14
Figure 5 - Two Layers Overlying a Rigid Sub-bottom..16
Figure 6 - Two Layers Overlying a Rigid Sub-bottom..18
Figure 7 - Fluid Layer over a Rigid Bottom at First Transition..20
Figure 8 - JASA Benchmark Wedge...21
Figure 9 - Scenario 1 - URTEXT Transmission Loss in dB re 1 m......................................24
Figure 10 - Scenario 1 - 30 m Receiver...25
Figure 11 - Scenario 1 - 50 m Receiver Depth..25
Figure 12 - Scenario 1 - 100 m Receiver Depth...26
Figure 13 - Scenario 1 - 150 m Receiver Depth...26
Figure 14 - Scenario 2 (Lossless Bottom) - 30 m Receiver Depth......................................27
Figure 15 - Scenario 2 (Lossless Bottom) - 50 m Receiver Depth......................................28
Figure 16 - Scenario 2 (Lossless Bottom) - 100 m Receiver Depth......................................28
Figure 17 - Scenario 2 (Lossless Bottom) - 150 m Receiver Depth......................................29
Figure 18 - Scenario 3 (Lossy Bottom) - 30 m Receiver Depth..30
Figure 19 - Scenario 3 (Lossy Bottom) - 50 m Receiver Depth..31
Figure 20 - Scenario 3 (Lossy Bottom) - 100 m Receiver Depth..31
Figure 21 - Scenario 3 (Lossy Bottom) - 150 m Receiver Depth..32
Figure 22 - Scenario 2 - 30 m comparison of PE and URTEXT..33
Figure 23 - Scenario 2 - 150 m Comparison of PE and URTEXT

Figure 24 - Scenario 3 - 30 m Comparison of PE and URTEXT

Figure 25 - Scenario 3 - 150 m Comparison of PE and URTEXT

Figure A-1 - Boundary Condition Check

Figure A-2a - Close Range Surface Interference

Figure A-2b - Long Range Surface Interference
ACKNOWLEDGMENTS

First, my thanks to Professors Alan Coppens and James Sanders for providing this topic for me. The insights I have developed during this thesis research have proved very enriching. Also, to Professor Ching-Sang Chiu for his work in his model and for graciously allowing me to use it.

Finally, I'd like to thank my wife, Cindy, for all her support during a most difficult time in my life, and to Brandie and Travis for reminding me constantly that there is life outside of school.
I. INTRODUCTION

With the recent decline in the threat of deep water submarine forces, growing emphasis is being placed on operations in relatively shallow water. In contrast to open ocean models, shallow water models of sound propagation are influenced by interaction with the bottom. Variables such as bottom composition, slope angle, sediment density, etc., make acoustic predictions difficult at best. At present there is no closed analytic solution to the problem of a penetrable, sloping bottom as found close to shorelines or along the continental shelf. However, computer models using various approximating methods are in use. Computer models are limited only by the speed and memory of the computer. With faster computers being developed, more computationally intensive models become practical. These models include the parabolic equation approximation, image theory, and adiabatic normal mode theory.

A. PARABOLIC EQUATION

By replacing the Helmholz equation with a one-way parabolic equation (PE), an acoustic field can be generated as an initial value problem. The PE method was developed for the radar community and first applied to underwater acoustics by Tappert with restrictions on the maximum angular aperture at the source [Ref 1]. Collins finally eliminated this limitation of the PE model with a higher order parabolic equation [Ref 2]. PE methods by Jensen and Kuperman [Ref 3] took advantage of improved computing power and showed valid results when compared to model tank experiments [Ref 4] for upslope propagation. This model showed modal cutoff as the sound traveled upslope. It also showed the sound propagating into the bottom at the modal cutoff depths. Jensen and Tindle used improved numerical methods to further study this problem [Ref 5].
To increase accuracy, Lee and McDaniel broke the wedge up into a number of discrete sections and applied the normal PE methods [Ref 6]. A more recent method of rotated parabolic equations by Collins has shown good results [Ref 7]. Finally, Fawcett has developed a three-dimensional computer model using PE methods combined with Fast Fourier Transform (FFT) algorithms [Ref 8].

B. METHOD OF IMAGES

Similar to the image reflections in a kaleidoscope, this method combines the contributions of the virtual sound sources to calculate the pressure field. Macpherson and Dainteth proposed a phase incoherent model for upslope propagation in 1966 using the method of images with some success [Ref 9]. Coppens et al. [Ref 10] later developed a phase coherent model to calculate the pressure amplitude along the bottom of a wedge of water overlying a fast fluid bottom in the upslope direction using the incident plane wave reflection coefficient stated by Brekhovskikh and Lysenov [Ref 11]. Baek then developed a computer model of pressure throughout the water over the fast bottom [Ref 12]. However, this model was limited to a fast bottom due to the critical grazing angle of the sound to the bottom. LeSesne used the same model as a basis for a three dimensional model, which produced pressure fields in the cross slope case [Ref 13]. He further validated his computer results with experimental results from a model tank. Kaswandi then developed the model for a slow bottom in the downslope direction [Ref 14]. Concurrently, Li introduced a model which applies to both fast and slow bottoms [Ref 15]. Nassopoulos then took all the previous models under development at the Naval Postgraduate School and combined them in the computer program URTEXT [Ref 16]. Independent of this research, Buckingham and Deane developed a similar model, which produced a transmission loss plot as a function of depth and range from the source [Ref 17].
The analytic development of the method is an ongoing process. Nassopoulos implemented the use of image doublets [Ref 16]. Livingood then developed the image doublets to the three dimensional case [Ref 18]. Presently, work on Taylor expansions of sets of four images is being done by Joyce [Ref 19].

Tests done by Kim [Ref 20] and by LeSesne are cited to prove the validity of the image model. LeSesne compared his model with experimental conditions, while Kim compared his to a parabolic equation model developed by Jaeger [Ref 21] which used an implicit finite-difference solution. This turned out to be a favorable comparison.

While validated in comparisons with both other methods and with experiment, the method of images still has some flaws. It is very computer intensive, especially as the angle of the bottom becomes very shallow. Improvements include truncation of images that do not significantly contribute to the total pressure field.

C. NORMAL MODES

Normal mode theory is a range independent approach. However, for the wedge problem a range dependent model is needed. Pierce showed that an approximation of the normal modes can be used by performing an adiabatic separation of depth and range in the wave equation [Ref 22]. Graves, Nagl, Uberall, and Zarur then applied this method to the wedge problem using isospeed water over a rigid bottom [Ref 23]. This method achieved good agreement at large angles when compared to experimental values [Ref 24]. This approach was limited to large angles and a perfectly reflecting bottom. Buckingham developed a solution of the penetrable bottom. In this method he first calculates an effective pressure release bottom below the actual penetrable bottom. The depth of this bottom is a function of the density and speed of sound of the actual bottom. He then applied the sum of the normal modes to this new bottom [Ref 25].
A problem of the adiabatic normal mode approximation is that it does not adequately explain the transition to evanescent modes at cutoff depths [Ref 3]. By combining PE with adiabatic mode theory, a critical depth function was developed which agreed with the results of Jensen and Kuperman [Ref 26].

Another method is to combine ray acoustics with local modes [Ref 27], which leads to the development of intrinsic wave modes [Ref 28]. Also using beam displacement with ray theory has shown agreement with the two-way coupled mode solution in two dimensions over a penetrable lossy bottom [Ref 29].

To take into account coupling between the modes, a version of stepwise depth variations was applied to normal mode theory [Ref 30]. This method was used first by Chiu, Desaubies, and Miller [Ref 31], then by Chiu and Ehret into the development of a model of coupled normal modes [Ref 32]. The three dimensional analysis by Sagos [Ref 33] is the extent of published information on coupled normal modes, but improvements to the theory and the model are still being pursued.
A. IMAGE THEORY

In 1978, Coppens, Sanders, Iounnou, and Kawamura predicted and measured the pressure field and phase up slope along a wedge shaped bottom [Ref 10]. LeSesne implemented a model that was not dependent on up or down slope direction [Ref 13]. Further research cited earlier developed cross slope programs, giving three dimensional capability to the model. The theory behind these models is the method of images.

Coppens et al. provides the complete explanation of the theory but a summary is in order. In transmission within a waveguide there is a number of interactions of acoustic rays with the guide boundaries [Ref 34, p. 427]. In image theory each ray path is replaced by an image of the source, the distance of the source from the receiver being the total distance of the actual acoustic ray. For a sloping bottom the image is placed a distance from the reflecting boundary equal to the distance of the source from the boundary perpendicular to that boundary. Figure 1 illustrates this geometry.

The phase of the image is 180° out of phase from the source if there is an interaction with a pressure release surface, as in the case of the air-water interface, and in phase for a rigid surface—a hard bottom, for example. Each interaction of the sound with the boundaries implies the existence of a new image. The final pressure at the receiver can be calculated by taking the sum of the contributions from each image.
Figure 1 - Two Dimensional Wedge Geometry

For a given bottom slope angle β, the number of images N in each of the upper and lower half spaces is given by

$$N = \frac{180}{\beta}$$

where β is an integer factor of 180°. Each image is numbered from the source, with the source being image number 1 for the upper half space. For the lower half space the first image below the bottom is image number 1.

Next, the grazing angle θ_n of the nth image above or below the bottom is calculated from
\[\theta_n = n\beta - \gamma \] for \(n \) odd \hfill (2a)

\[\theta_n = (n-1)\beta + \gamma \] for \(n \) even \hfill (2b)

where \(\gamma \) is the angle of the source from the surface.

The range \(R_n \) from each image to the receiver is then calculated using

\[R_n = \sqrt{r_1^2 + r_2^2 - 2r_1r_2 \cos(\theta_n - \beta + \delta)} \] \hfill (3a)

for the upper series of images and

\[R_n = \sqrt{r_1^2 + r_2^2 - 2r_1r_2 \cos(\theta_n + \beta - \delta)} \] \hfill (3b)

for the lower series. In these equations, \(r_1 \) is the range from the wedge apex to the source, \(r_2 \) is the range from the apex to the receiver, and \(\delta \) is the angle from the surface to the receiver.

For each interaction with the surface, the reflection coefficient is -1. Each interaction with the bottom requires calculation of the reflection coefficient. This coefficient is a function of the speed of sound in each medium, the density of each medium, and the grazing angle of the ray equivalent on the bottom. It is sufficient to find the sine of this angle \(\theta_{nm} \).

For this

\[\sin \theta_{nm} = \frac{r_1 \sin(\theta_n - 2m\beta) + r_2 \sin[(2m - 1)\beta + \delta]}{R_n} \] \hfill (4a)

for the upper images and

\[\sin \theta_{nm} = \frac{r_1 \sin(\theta_n - 2m\beta) + r_2 \sin[(2m + 1)\beta - \delta]}{R_n} \] \hfill (4b)

for the lower images [Ref 16]. Figure 2 illustrates.
The reflection coefficient for each interaction R_{nm} then is given by

$$R_{nm} = \frac{\rho_2 \sin \theta_{nm} - \frac{1}{\sqrt{2}} \left(\sqrt{b^2 + a^2} + a \right) k^2}{\rho_1 \cos \theta_{nm} + \frac{1}{\sqrt{2}} \left(\sqrt{b^2 + a^2} + a \right) k^2 + j \frac{1}{\sqrt{2}} \left(\sqrt{b^2 + a^2} - a \right) k^2}$$

where ρ_1, ρ_2 are densities of the respective media, $j = \sqrt{-1}$, and a and b are given by

$$a = \left(\frac{c_1}{c_2} \right)^2 - \cos^2 \theta_{nm}$$

$$b = 2 \left(\frac{c_1}{c_2} \right)^2 \frac{\alpha}{k_2}$$

For the above, c_1, c_2 are the speeds of sound in the respective media and α/k_2 is a measure of the bottom loss coefficient. [Ref 11]. We further define k_n as the wave number in the nth medium, where

$$k_n = \frac{\omega}{c_n}$$
The pressure for each half space is given by summing the contribution for the upper
and lower images respectively

\[P_u = \sum_{n=1}^{N} \frac{1}{R_n} \exp(-jk_nR_n)(-1)^{n}(\frac{1}{2}) \prod_{m=1}^{M} R_{nm} \]

(7a)

where \(\prod R = 1 \) when \(n = 1,2 \); in (7a) and

\[P_l = \sum_{n=1}^{N} \frac{1}{R_n} \exp(-jk_nR_n)(-1)^{(n+1)}(\frac{1}{2}) \prod_{m=0}^{M} R_{nm} \]

(7b)

The number of interactions \(m \) with the bottom is related to the image number, so the limit \(M \)
is the integer of \(\left[\frac{n+1}{2} \right] \) – 1 for the \(n \)th image. For convenience we have omitted the factor
\(e^{j\phi} \) which would otherwise appear in (7a) and (7b).

Two special cases exist in the upper half space. For the case of the direct path of the
source to the receiver (\(n=1 \)), \(R \) is 1. In the case of a single reflection off the surface and no
reflections with the bottom (\(n=2 \)), \(R \) is again 1. The phase inversion of the ray is computed
by the \((-1)^{n+1}\) term of (7a).

Since the model is frequency independent, we will scale the ranges to a distance \(X_c \)
from the apex where the bottom depth is equal to the lowest normal mode cutoff depth when
the bottom is fast (i.e., when the sound speed ratio is less than 1). This cutoff distance is
calculated by

\[k_cX_c = \frac{\pi}{2\sin \theta_c \tan \beta} \]

\[\theta_c = \cos^{-1}\left(\frac{c_2}{c_1} \right) \]

(8a)

For a slow bottom an analogous scaling, convenient for the computer program is

\[k_cX_c = \frac{\pi}{2\tan \theta_s \tan \beta} \]

\[\theta_s = \cos^{-1}\left(\frac{c_1}{c_2} \right) \]

(8b)

For the total pressure at the receiver, the upper and lower contributions are combined,
thus
\[P = P_u + P_I \] \hspace{1cm} (9)

B. COUPLED MODE THEORY

Normal mode theory describes sound propagation as a collection of eigenfunctions, called normal modes, which are determined by the depth of the sound channel boundaries and the source depth. Coupling between the modes (energy transfer) in the horizontal direction occurs due to changes in sound speed, density, or bathymetry. The Chiu-Ehret model [Ref 32] determines the pressure field using numerical evaluations. Sagos [Ref 33] modified this model for three dimensions.

Chiu [Ref 35] then developed a model in MATLAB™ called BBCM. In this model the spectral pressure at the receiver is decomposed by an FFT algorithm. At each point in the pressure field and at each frequency, the amplitude envelope for each existing normal mode is calculated, then coupled to determine the total pressure by

\[P(r, z, t) = \int_{-\infty}^{\infty} S(f) \sum_{n=1}^{N} \frac{R_n}{\sqrt{r}} U_n(r; f) Z_n(z; r, f) \exp\left\{ i \left(\int_0^z k_n(r'; f) dr' - 2 \pi f t \right) \right\} dt \] \hspace{1cm} (10)

where \(S(f) \) is the source amplitude spectrum, \(Z_n \) is a linear combination of the normal modes, and \(U_n(r; f) \) is the amplitude slowly varying modulation complex envelope. It is in this calculation that the coupling of the normal modes occurs.

In the MATLAB™ version, it has several advantages:
- Can handle both discrete and broad band signals defined by \(S(f) \),
- The bottom can be varied—not limited to a smooth slope,
- FFT algorithms are extremely fast. Pressure fields are calculated in a fraction of the time that would be taken by URTEXT.

BBCM uses a rigid bottom for the waveguide, while in the upcoming comparison no such bottom is assumed. Therefore, the effect of this rigid bottom on the sound in the water column must be examined.
C. THE TWO LAYER WAVE GUIDE

Figure 3 shows a sound velocity profile of a hypothetical wave guide. In this guide the boundary conditions are a pressure release surface and a rigid bottom, with a discontinuous change in sound speed at depth L.

![Sound Velocity Profile](image)

Figure 3 - Sound Velocity Profile for Comparison

Normal mode theory produces an exact solution to the normalized Helmholtz equation for sound pressure P. This equation, given in cylindrical coordinates for a point source, is

\[
1 \frac{\partial}{\partial r} \left[r \frac{\partial}{\partial r} \right] P + \frac{\partial^2}{\partial z^2} P + \left[\frac{\omega}{c(z)} \right]^2 P = \frac{2}{r} \delta(r) \delta(z - z_0) e^{i\omega t}
\]

(11)

and has a solution of

\[
P(r, z, t) = -jne^{i\omega t} \sum_n Z_n(z_0)Z_n(z) \left[H_0^{(2)}(\kappa_n r) \right]
\]

(12)

where $Z_n(z)$ is the depth dependent normal mode, z_0 is the depth of the source, r is the range from the source, κ_n is the horizontal propagation constant of the nth normal mode,
and \(H_0^{(2)} \) is the Hankel function where \(H_0^{(2)} = J_0 - jY_0 \) [Ref 34, p. 431]. The function \(Z_n(z) \) is a solution to the homogeneous Helmholtz equation

\[
\frac{d^2 Z_n}{dz^2} + k_n^2 Z_n = 0
\]

(13)

First we examine the case where \(H = \infty \). \(Z_n(z) \) must satisfy the boundary conditions of \(Z(0) = 0 \), continuity of particle velocity and pressure across the interface at \(z = L \), and \(Z_n(z) \) must approach zero as \(z \) goes to infinity.

For the above conditions, we guess at two functions \(Z_1(z) \) and \(Z_2(z) \) to represent \(Z_n(z) \),

\[
Z_1(z) = A_n \sin(k_{1n} z)
\]

\[
0 \leq z \leq L
\]

(14)

and

\[
Z_2(z) = B_n e^{-\beta_n(z-L)}
\]

\[L < z\]

(15)

where \(k_{1n} \) is the vertical wave number of the \(n \)th depth dependent normal mode in the upper layer and \(\beta_n \) is the vertical propagation number of the exponential function in the lower layer. The numbers \(k_{1n} \) and \(\beta_n \) are related by the equation

\[
k_n^2 = \left(\frac{\omega}{c_1} \right)^2 - k_{1n}^2 = \left(\frac{\omega}{c_2} \right)^2 + \beta_n^2
\]

(16)

Evaluation of (14) at the surface proves that it is a valid solution, but the behavior of the functions at the interface of \(z = L \) needs to be determined. At the interface, continuity of sound pressure and normal particle velocity must hold. Therefore,

\[
A_n \sin(k_{1n} L) = B_n
\]

(17)

and

\[
A_n k_{1n} \cos(k_{1n} L) = -B_n \beta_n
\]

(18)

Combining (17) and (18) and manipulating gives the transcendental equation
\[
\tan(k_{1n}L) = -\frac{k_{1m}L}{\beta_n L}
\] (19)

which, by defining

\[
y = k_{1m}L
\] (20)

and

\[
a^2 = L^2 \left[\left(\frac{\omega}{c_1} \right)^2 - \left(\frac{\omega}{c_2} \right)^2 \right]
\] (21)

yields

\[
\tan y = -\frac{y}{\sqrt{a^2 - y^2}}
\] (22)

This equation can be used to solve for \(k_{1m} \), and this yields \(\beta_n \) and \(\kappa_n \), when \(y < a \).

Normalization of \(Z_n(z) \) then produces the terms \(A_n \) and \(B_n \), giving the final solution to (13).

This solution corresponds to an oscillatory function above \(L \) overlying a function which decays exponentially as \(z \) increases. An example, \(Z_2(z) \), at a frequency somewhat above cutoff, is shown in Figure 4. As can be seen, the sound energy is trapped in the upper layer with some energy leaking into the bottom.
The cutoff frequency of each normal mode can be determined at each point where a_n approaches an asymptote of $\tan y$ in (22), or where

$$a_n = \frac{\pi}{2}, \frac{3\pi}{2}, \ldots, \frac{(2n-1)\pi}{2}$$

$$n = 1, 2, 3, \ldots$$ \hspace{1cm} (23)

Substitution of (21) into (23) and manipulation yield a cutoff angular frequency of normal mode n,

$$\omega_n = \frac{(2n-1)\pi c_2}{2L\sqrt{c_2^2 - c_1^2}}$$ \hspace{1cm} (24)
We now examine the case where there is a rigid bottom at \(z = H \). The solutions of the Helmholtz equation now must fulfill the additional boundary condition \(\frac{dZ(z)}{dz} \bigg|_{z=H} = 0 \).

For the revised boundary conditions, we choose

\[
Z_1(z) = A_n \sin(k_{1n}z) \quad 0 \leq z \leq L \tag{25}
\]

and

\[
Z_2(z) = B_n \cosh[\beta_n(H-z)] \quad L < z \leq H \tag{26}
\]

The hyperbolic cosine was chosen in analogy with the exponential choice in the previous case. It satisfies the boundary conditions at \(z = H \).

Next is evaluation of (25) and (26) at the interface of \(z = L \). At the interface,

\[
A_n \sin(k_{1n}L) = B_n \cosh[\beta_n(H-L)] \tag{27}
\]

and

\[
A_n k_{1n} \cos(k_{1n}L) = -B_n \beta_n \sinh[\beta_n(H-L)] \tag{28}
\]

Combining (27) and (28) gives

\[
\tan(k_{1n}L) = -\frac{k_{1n}L \coth[\beta_n(H-L)]}{\beta_n L} \tag{29}
\]

which, by substitution of \(y \) and \(a \) yields

\[
\tan y = -\frac{y \coth\left[(H/L - 1)\sqrt{a^2 - y^2}\right]}{\sqrt{a^2 - y^2}} \tag{30}
\]

This equation can be used to solve for \(k_{1n} \) and then \(\beta_n \) and \(\kappa_n \) can be obtained. When \(y < a \) the solution is similar to that for the infinite bottom condition in that it corresponds to an oscillatory function above \(L \) and decays as \(z \) increases from \(L \) to \(H \). The sound energy in this case is trapped in the upper layer with some leakage into the lower layer (Figure 5).
Note that, from (30), as H decreases to L, y decreases to $(n - 1/2)\pi$ for $n = 1, 2, 3,...$
and the normal modes will tend to approach those for a single layer waveguide with a rigid bottom and a pressure release surface.

![Figure 5 - Two Layers Overlying a Rigid Sub-bottom](image)

The propagation of the normal mode exists in three regimes dependent upon k_{1z}. We determine β_n in terms of k_{1z} from (16) to be

$$\beta_n^2 = \left[\left(\frac{\omega}{c_1}\right)^2 - \left(\frac{\omega}{c_2}\right)^2\right] - k_{1z}^2$$ \hspace{1cm} (31)
If \(k_{1n}^2 < \left(\frac{\omega}{c_1} \right)^2 - \left(\frac{\omega}{c_2} \right)^2 \), this is equivalent to \(y < a \), and therefore (25) through (30) hold. If

\[y > a \]

then \(\beta_n \) becomes imaginary and \(Z_{za}(z) \) becomes

\[
Z_{za}(z) = -B_n \cos[k_{2n}(H - z)]
\]

where \(k_{2n} \) is defined by

\[
k_{2n}^2 = k_{1n}^2 - \left(\frac{\omega}{c_1} \right)^2 - \left(\frac{\omega}{c_2} \right)^2
\]

and is related to \(\kappa_n \) by

\[
\kappa_n^2 = \left(\frac{\omega}{c_2} \right)^2 - k_{2n}^2
\]

By applying the boundary conditions to (25) and (32) and making the appropriate substitutions for \(y \) and \(a \) we produce

\[
\tan y = -\frac{y \cos[(H/L - 1)\sqrt{y^2 - a^2}]}{\sqrt{y^2 - a^2}}
\]

This equation describes a normal mode trapped in the waveguide with a pressure release surface and a rigid bottom. How that mode propagates is dependent upon \(\kappa_n \).

From (16), if \(\left(\frac{\omega}{c_1} \right)^2 - \left(\frac{\omega}{c_2} \right)^2 < k_{1n}^2 \), then \(\kappa_n \) is real, and the mode propagates horizontally in the overall waveguide. If \(\left(\frac{\omega}{c_1} \right)^2 < k_{1n}^2 \), \(\kappa_n \) becomes imaginary. The normal mode thus decays as it propagates horizontally. Figure 6 shows the vertical component of the normal mode which satisfies (35).
The condition where β_n becomes imaginary is the major difference between the infinite bottom and the rigid, finite bottom. In the infinite bottom case, decreasing the layer depth L decreases the number of modes which can be propagated. However, the finite bottom adds a propagation mode throughout waveguide which must be corrected if an accurate comparison is to be made.

Another difficulty encountered is that the above discussion is valid only when all interfaces are parallel. With parallel layers, the grazing angle θ is easily computed. With a
sloping interface $L=f(r)$, this angle changes with range. It can be approximated numerically, but no analytic solution exists.

To extend to a sloping interface in a waveguide consisting of two layers with a rigid bottom of depth H and fluid interface at depth L, all the normal modes with cutoff frequencies below the frequency of the source are excited and propagate according to (25) and (26). As the sound goes upslope, each normal mode approaches its first transition depth where $\beta_n = 0$ and the pressure amplitude of the exponential function becomes uniform over the entire lower layer (Figure 7). After the transition, the normal mode now behaves sinusoidally with depth in both layers (Figure 6). As L continues to decrease, the mode approaches the second transition point, where κ_n becomes imaginary and the mode becomes evanescent in the horizontal plane.
Figure 7 - Fluid Layer over a Rigid Bottom at First Transition
III. PROCEDURES AND RESULTS

A. PROCEDURES

For this research, the image model (URTEXT) and the coupled mode model (BBCM) were compared for the upslope case. Both models were run using MATLAB™, with URTEXT being translated from FORTRAN. Validation of this translation appears in Appendix A.

The parameters chosen were the benchmark wedge problem of the Journal of the Acoustic Society of America [Ref 36] (Figure 8). The speed of sound in the water is uniform at 1500 m/s and the standard seawater density of 1.021 g/cm³ is used. A point source transmitting a continuous wave at 25 Hz is located 4 km from the apex of the wedge and 100 m below the surface. The bottom slopes at 2.86°. The composition of the bottom will be varied to test different scenarios.

![Figure 8 - JASA Benchmark Wedge](image-url)
Three cases were run for comparisons. Scenario 1 uses a pressure release bottom, Scenario 2 has a fast bottom with no absorption loss, and Scenario 3 uses the same bottom with some absorption. Parameters for the environments are given in Table 1.

<table>
<thead>
<tr>
<th>TABLE 1 - ENVIRONMENTAL PARAMETERS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scenario 1</td>
</tr>
<tr>
<td>(c_1) (m/s)</td>
</tr>
<tr>
<td>(c_2) (m/s)</td>
</tr>
<tr>
<td>(\rho_1) (g/cm(^3))</td>
</tr>
<tr>
<td>(\rho_2) (g/cm(^3))</td>
</tr>
<tr>
<td>(\alpha) (dB/A)</td>
</tr>
</tbody>
</table>

One difficulty was the difference in measured values between the two models. BBCM uses SI units and produces transmission loss (among other values) in dB. URTEXT uses dimensionless parameters scaled to the dump distance determined by (8a) and produces a dimensionless pressure amplitude. This can be converted to dB by

\[
TL = 20 \log\left(\frac{|P|}{X_c}\right) \tag{36}
\]

where \(TL\) is the transmission loss in dB, \(P\) is the dimensionless complex pressure, and \(X_c\) is the dimensionless dump distance. For each scenario, it was necessary to convert the SI units into the dimensionless input units for URTEXT. Actual numbers will be given later.

BBCM uses input files which model the environment. These files define the overall waveguide (water column and underlying bottom) by describing the sound velocity profile, density profile, receiver ranges, receiver depths, attenuation of each normal mode, and source amplitude spectrum [Ref 35]. Depending upon the degree of resolution desired, these input files can get quite large. A program, SCENEGEN, was written to develop these input files specifically for the two dimensional wedge.
Another problem of BBCM concern the rigid bottom of the overall waveguide. As seen from the development in Chapter II this rigid waveguide floor affects the sound in the water. Depending on the overall depth of the waveguide, free propagating normal modes of the entire waveguide are excited which are coupled with the modes which are trapped only in the water layer. These free normal modes must be identified and eliminated for accurate results.

This could be done by applying a range dependent attenuation coefficient for each normal mode, so the mode is attenuated by the bottom after it reaches its first transition point. However, BBCM does not support this. The attenuation vector that is entered in the model is range independent. Therefore, the effects of the rigid sub-bottom cannot be eliminated for this problem.

B. SCENARIO 1—PRESSURE RELEASE BOTTOM

A pressure release bottom was simulated for both models. Since both models are incapable of running if either \(c_2 \) or \(\rho_2 = 0 \), an air-water interface was deemed sufficient for the bottom. Inputs for URTEXT are given in Table 2. As the sound goes closer to the apex, adiabatic theory predicts less pressure as cutoff depth for each successive normal mode is reached. The actual outputs are seen in Figure 9.

TABLE 2 - URTEXT INPUTS FOR COMPARISONS

<table>
<thead>
<tr>
<th>Scenario</th>
<th>Scenario 1</th>
<th>Scenario 2</th>
<th>Scenario 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\beta)</td>
<td>3.0°</td>
<td>2.86°</td>
<td>2.86°</td>
</tr>
<tr>
<td>(\gamma)</td>
<td>1.43°</td>
<td>1.43°</td>
<td>1.43°</td>
</tr>
<tr>
<td>(c_1/c_2)</td>
<td>4.412</td>
<td>0.8824</td>
<td>0.8824</td>
</tr>
<tr>
<td>(\rho_1/\rho_2)</td>
<td>850</td>
<td>0.6667</td>
<td>0.6667</td>
</tr>
<tr>
<td>(X_c)</td>
<td>69.87 m</td>
<td>638 m</td>
<td>638 m</td>
</tr>
<tr>
<td>(r_1)</td>
<td>57.33 (X_c)</td>
<td>6.27 (X_c)</td>
<td>6.27 (X_c)</td>
</tr>
<tr>
<td>(\alpha/k_2)</td>
<td>0.0001 dB</td>
<td>0.0001 dB</td>
<td>0.07963 dB</td>
</tr>
</tbody>
</table>
For the inputs from Table 2, normal mode theory for a rigid bottom predicts seven modes will be excited by the source. But since the source is located at the pressure node of the even numbered modes, these modes are not excited. Therefore, only four modes are excited and cutoff points for these modes should be observed. The URTEXT results show these predicted characteristics, with cutoff points for the first mode at 3400 m, the third mode at 2200 m, and the fifth mode at 1000 m. Cutoff for the seventh mode cannot be seen due to the high density of contour lines in Figure 9. Further information is seen in the transmission loss plots of Figures 10 through 13.

BBCM did not produce usable data for this scenario. This is not surprising, when one considers the original purpose of the model. BBCM was written for acoustic tomography calculations. As such, the pressure release case is not considered, since there are no actual pressure release bottoms in the ocean. The model ends up taking the sound from the water column and trapping it in the underlying bottom.

![Figure 9 - Scenario 1 - URTEXT Transmission Loss in dB re 1 m](image)
Figure 10 - Scenario 1 - 30 m Receiver

Figure 11 - Scenario 1 - 50 m Receiver Depth
Figure 12 - Scenario 1 - 100 m Receiver Depth

Figure 13 - Scenario 1 - 150 m Receiver Depth
C. SCENARIO TWO—FAST, LOSSLESS BOTTOM

In this scenario a more realistic environment was used. Inputs were as seen in Table 1. This produced the inputs for URTEXT as given in Table 2. Figures 14 through 17 are transmission loss profiles of both URTEXT and BBCM within the water column.

Only the water column is considered as URTEXT does not calculate pressures in the underlying bottom. However, areas of significant difference can be seen. These are primarily due to the effect of the rigid sub-bottom. Areas where BBCM show an increase in transmission loss are likely due to a normal mode going through transition, while areas where there is significant decrease in transmission loss are possibly due to modal interference.

![Graph showing transmission loss profiles](image)

Figure 14 - Scenario 2 (Lossless Bottom) - 30 m Receiver Depth
Figure 15 - Scenario 2 (Lossless Bottom) - 50 m Receiver Depth

Figure 16 - Scenario 2 (Lossless Bottom) - 100 m Receiver Depth
D. SCENARIO 3—LOSSY BOTTOM

The environment for this run was the same as for Scenario 2, except a loss term of 0.5 dB/λ was added for the bottom. This converted to 0.07963 dB for the loss term in URTEXT. Figures 18 through 21 show the results of this run.

For this scenario, another difficulty was encountered. While the benchmark calls for attenuation by the bottom for the source frequency, that attenuation must be applied to the normal modes of interest. Therefore, a range dependent attenuation coefficient must be determined. Since no such coefficient can be applied, the results developed are rough approximations at best near or around modal cutoff.

BBCM runs were not accurate but are estimates. BBCM was run with three normal modes. Application of the attenuation term is a difficult exercise, first because it needs to be range dependent to more accurately eliminate the rigid sub-bottom, and second because the term must be distributed among the modes. Further research in this problem is necessary.
Again, good correlation is noted between the models. The addition of the attenuation term has no great effect on the sound in the water column. However, there is a significant drop-off at the end of the BBCM graphs. These are the points where the receivers are now in the bottom. Here the attenuation is significant.

Another significant feature is in Figure 18 at 150 m range. Here a dip is seen in URTEXT which is not seen in BBCM. At this relatively short range surface interference is noted. URTEXT picks this up (see Appendix A) but BBCM does not. Again, the original purpose of BBCM is to make predictions at relatively long ranges, significantly greater than the influence of surface interference [Ref 35]. At these longer ranges, BBCM is a robust model.

![Figure 18 - Scenario 3 (Lossy Bottom) - 30 m Receiver Depth](image-url)
Figure 19 - Scenario 3 (Lossy Bottom) - 50 m Receiver Depth

Figure 20 - Scenario 3 (Lossy Bottom) - 100 m Receiver Depth
Figure 21 - Scenario 3 (Lossy Bottom) - 150 m Receiver Depth
IV. CONCLUSIONS AND RECOMMENDATIONS

Figures 22 through 25 show the results of Jensen and Ferla using a PE method compared to the results of URTEXT [Ref 36].

Figure 22 - Scenario 2 - 30 m comparison of PE and URTEXT
Figure 23 - Scenario 2 - 150 m Comparison of PE and URTEXT

Figure 24 - Scenario 3 - 30 m Comparison of PE and URTEXT
Figure 25 - Scenario 3 - 150 m Comparison of PE and URTEXT

For the cases examined—upslope propagation over both a lossless and lossy bottom, both URTEXT and BBCM have good agreement between the two. In the close range, BBCM does not show surface interference while URTEXT does. However, BBCM does develop a pressure field in the underlying bottom while URTEXT is effective only in the water column. Furthermore, BBCM is much quicker to create the pressure field. Using a range resolution of 25 m, BBCM created a pressure field for each scenario in 2.5 hours per run. Using the same equipment, URTEXT took 10 hours each run to develop the same resolution without calculating transmission loss in the bottom. BBCM therefore is more time effective.

Other strengths of BBCM are its flexibility. Because the input files model of the environment, different conditions can be simulated by changing the input files. Upslope, downslope, cross-canyon, stratified water or bottom layers can all be simulated. URTEXT is
limited only to the condition of the wedge shaped bottom. It is still a good tool for analysis of the specific problem, but BBCM is a more flexible tool for real world conditions.

Areas of further research present themselves. URTEXT needs to be sped up. MATLAB is very fast with matrix arithmetic and manipulation. A revision of URTEXT which takes advantage of this capability would be handy in the analysis of the wedge problem. Also, new developments to the image problem include using doublets and sets of four images. Perhaps including these as subroutines would speed up URTEXT.

The examination of a sloping interface over a rigid sub-bottom needs to be investigated. A modification of URTEXT to include this condition promises interesting results. Furthermore, a solution of the above problem which take incident angle needs to be determined.

Finally, both the downslope and cross-slope cases need to be investigated with BBCM. The upslope case is a standard comparison with other models, but predictions in either conditions might prove useful.
APPENDIX A

To develop a comparison standard between the image model and the coupled mode model, we translated the image program URTEXT from FORTRAN to MATLAB™ [Ref 37]. MATLAB is a high level scripting language which runs on a variety of computer operating systems including VAX, MS-DOS, UNIX, and Macintosh. This improved the flexibility of the image model to let it be run on desktop computers and advanced workstations. Furthermore, since the coupled mode model is also written in MATLAB, comparison of CPU run times can be made.

Validation of the MATLAB version of URTEXT, called URTEXTBAT, was conducted by comparing the results of URTEXTBAT to those of URTEXT as run on the IBM 3033 located at the Naval Postgraduate School. Table A-1 shows the input conditions of the programs. Pressure amplitudes were computed for scaling distances from three to ten dump distances from the wedge apex and at receiver angles from the surface to the bottom.

<table>
<thead>
<tr>
<th>Table A-1</th>
</tr>
</thead>
<tbody>
<tr>
<td>β</td>
</tr>
<tr>
<td>γ</td>
</tr>
<tr>
<td>r_1</td>
</tr>
<tr>
<td>ρ_1/ρ_2</td>
</tr>
<tr>
<td>c_1/c_2</td>
</tr>
<tr>
<td>α/k_2</td>
</tr>
<tr>
<td>γ_0</td>
</tr>
</tbody>
</table>

Tables A-2, A-3, and A-4 show the results of the comparison. The major error at the surface is due to the difference in precision of the different languages. FORTRAN uses single precision variables, accurate to six decimal places. MATLAB is precise to 13 places,
therefore at the small pressures near the surface the round-off errors are extreme. Excluding
the errors at the boundaries, the average absolute difference of the field was 0.00206.

<table>
<thead>
<tr>
<th>δ</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>0.00324</td>
<td>0.00813</td>
<td>0.0026</td>
<td>0.00158</td>
<td>0.00118</td>
<td>0.00118</td>
<td>0.00118</td>
<td>0.00153</td>
</tr>
<tr>
<td>9</td>
<td>1.1393</td>
<td>0.75924</td>
<td>0.63381</td>
<td>0.4346</td>
<td>0.30078</td>
<td>0.2086</td>
<td>0.13697</td>
<td>0.0337</td>
</tr>
<tr>
<td>8</td>
<td>2.13245</td>
<td>1.17088</td>
<td>1.16923</td>
<td>0.80956</td>
<td>0.56091</td>
<td>0.38328</td>
<td>0.20159</td>
<td>0.14456</td>
</tr>
<tr>
<td>7</td>
<td>2.86145</td>
<td>1.4393</td>
<td>1.52998</td>
<td>1.07776</td>
<td>0.74823</td>
<td>0.47362</td>
<td>0.34154</td>
<td>0.34534</td>
</tr>
<tr>
<td>6</td>
<td>3.24737</td>
<td>1.6604</td>
<td>1.66464</td>
<td>1.20835</td>
<td>0.84126</td>
<td>0.5739</td>
<td>0.56706</td>
<td>0.5354</td>
</tr>
<tr>
<td>5</td>
<td>3.26776</td>
<td>1.93661</td>
<td>1.56257</td>
<td>1.19399</td>
<td>0.8313</td>
<td>0.79333</td>
<td>0.74299</td>
<td>0.67374</td>
</tr>
<tr>
<td>4</td>
<td>2.97124</td>
<td>2.06111</td>
<td>1.25278</td>
<td>1.05485</td>
<td>0.91045</td>
<td>0.9172</td>
<td>0.82486</td>
<td>0.72998</td>
</tr>
<tr>
<td>3</td>
<td>2.51693</td>
<td>1.97233</td>
<td>0.80655</td>
<td>0.84476</td>
<td>0.98048</td>
<td>0.90308</td>
<td>0.79069</td>
<td>0.68846</td>
</tr>
<tr>
<td>2</td>
<td>2.39419</td>
<td>1.65642</td>
<td>0.51872</td>
<td>0.72407</td>
<td>0.84396</td>
<td>0.74538</td>
<td>0.64007</td>
<td>0.55031</td>
</tr>
<tr>
<td>1</td>
<td>1.65191</td>
<td>1.13991</td>
<td>0.3643</td>
<td>0.54176</td>
<td>0.54487</td>
<td>0.46663</td>
<td>0.39299</td>
<td>0.33296</td>
</tr>
<tr>
<td>0</td>
<td>0.75925</td>
<td>0.48278</td>
<td>0.14244</td>
<td>0.15337</td>
<td>0.14283</td>
<td>0.11185</td>
<td>0.08627</td>
<td>0.06728</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>δ</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>0.0003</td>
<td>0.0008</td>
<td>0.0003</td>
<td>0.0002</td>
<td>0.0001</td>
<td>0.0001</td>
<td>0.0002</td>
<td>0.0003</td>
</tr>
<tr>
<td>9</td>
<td>1.1378</td>
<td>0.7536</td>
<td>0.6319</td>
<td>0.4337</td>
<td>0.3004</td>
<td>0.2087</td>
<td>0.1377</td>
<td>0.0358</td>
</tr>
<tr>
<td>8</td>
<td>2.1323</td>
<td>1.1668</td>
<td>1.1681</td>
<td>0.8093</td>
<td>0.5612</td>
<td>0.3845</td>
<td>0.2038</td>
<td>0.1422</td>
</tr>
<tr>
<td>7</td>
<td>2.8627</td>
<td>1.4368</td>
<td>1.5293</td>
<td>1.0781</td>
<td>0.7494</td>
<td>0.4822</td>
<td>0.3388</td>
<td>0.343</td>
</tr>
<tr>
<td>6</td>
<td>3.25</td>
<td>1.6586</td>
<td>1.6652</td>
<td>1.2094</td>
<td>0.8436</td>
<td>0.571</td>
<td>0.5643</td>
<td>0.5336</td>
</tr>
<tr>
<td>5</td>
<td>3.2716</td>
<td>1.9359</td>
<td>1.5637</td>
<td>1.1955</td>
<td>0.8286</td>
<td>0.7897</td>
<td>0.7412</td>
<td>0.6726</td>
</tr>
<tr>
<td>4</td>
<td>2.9753</td>
<td>2.0614</td>
<td>1.2543</td>
<td>1.0564</td>
<td>0.9016</td>
<td>0.9152</td>
<td>0.824</td>
<td>0.7296</td>
</tr>
<tr>
<td>3</td>
<td>2.5161</td>
<td>1.9736</td>
<td>0.8081</td>
<td>0.8451</td>
<td>0.9778</td>
<td>0.9026</td>
<td>0.7908</td>
<td>0.6887</td>
</tr>
<tr>
<td>2</td>
<td>2.3904</td>
<td>1.6583</td>
<td>0.5202</td>
<td>0.721</td>
<td>0.8439</td>
<td>0.746</td>
<td>0.6408</td>
<td>0.551</td>
</tr>
<tr>
<td>1</td>
<td>1.6515</td>
<td>1.1421</td>
<td>0.3659</td>
<td>0.5405</td>
<td>0.5463</td>
<td>0.468</td>
<td>0.3941</td>
<td>0.3339</td>
</tr>
<tr>
<td>0</td>
<td>0.7354</td>
<td>0.485</td>
<td>0.1428</td>
<td>0.1557</td>
<td>0.1449</td>
<td>0.1134</td>
<td>0.0875</td>
<td>0.0683</td>
</tr>
<tr>
<td></td>
<td>Absolute Difference</td>
<td>r_2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---------------------</td>
<td>--------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
</tr>
<tr>
<td>10</td>
<td>0.00294</td>
<td>0.00733</td>
<td>0.00230</td>
<td>0.00138</td>
<td>0.00108</td>
<td>0.00108</td>
<td>0.00133</td>
<td>0.00280</td>
</tr>
<tr>
<td>9</td>
<td>0.00150</td>
<td>0.00564</td>
<td>0.00191</td>
<td>0.00090</td>
<td>0.00038</td>
<td>0.00010</td>
<td>0.00073</td>
<td>0.00210</td>
</tr>
<tr>
<td>8</td>
<td>0.00015</td>
<td>0.00408</td>
<td>0.00113</td>
<td>0.00026</td>
<td>0.00029</td>
<td>0.00122</td>
<td>0.00221</td>
<td>0.00236</td>
</tr>
<tr>
<td>7</td>
<td>0.00125</td>
<td>0.00250</td>
<td>0.00068</td>
<td>0.00034</td>
<td>0.00117</td>
<td>0.00858</td>
<td>0.00274</td>
<td>0.00234</td>
</tr>
<tr>
<td>6</td>
<td>0.00263</td>
<td>0.00180</td>
<td>0.00056</td>
<td>0.00105</td>
<td>0.00234</td>
<td>0.00290</td>
<td>0.00276</td>
<td>0.00180</td>
</tr>
<tr>
<td>5</td>
<td>0.00384</td>
<td>0.00071</td>
<td>0.00113</td>
<td>0.00151</td>
<td>0.00270</td>
<td>0.00363</td>
<td>0.00179</td>
<td>0.00114</td>
</tr>
<tr>
<td>4</td>
<td>0.00406</td>
<td>0.00029</td>
<td>0.00152</td>
<td>0.00155</td>
<td>0.00885</td>
<td>0.00200</td>
<td>0.00086</td>
<td>0.00038</td>
</tr>
<tr>
<td>3</td>
<td>0.00083</td>
<td>0.00127</td>
<td>0.00155</td>
<td>0.00034</td>
<td>0.00268</td>
<td>0.00048</td>
<td>0.00011</td>
<td>0.00024</td>
</tr>
<tr>
<td>2</td>
<td>0.00379</td>
<td>0.00188</td>
<td>0.00148</td>
<td>0.00307</td>
<td>0.00006</td>
<td>0.00062</td>
<td>0.00073</td>
<td>0.00069</td>
</tr>
<tr>
<td>1</td>
<td>0.00041</td>
<td>0.00219</td>
<td>0.00160</td>
<td>0.00126</td>
<td>0.00143</td>
<td>0.00137</td>
<td>0.00111</td>
<td>0.00094</td>
</tr>
<tr>
<td>0</td>
<td>0.02385</td>
<td>0.00222</td>
<td>0.00036</td>
<td>0.00233</td>
<td>0.00207</td>
<td>0.00155</td>
<td>0.00123</td>
<td>0.00102</td>
</tr>
</tbody>
</table>

To see if the MATLAB is more precise, a run was made on an 18° slope with the data taken from the surface to 2° below sampled every 0.1°. Figure A-1 shows pressure falls off linearly as the sound nears the surface. This implies the model is valid at the boundaries.
To further explore the differences between the two models, a third model, called WEDGESLO was used. This model was validated by Kaswandi [Ref 14]. This program is written in BASIC to be run on an MS-DOS based computer, but used double precision variables. A single run at $r_2=5$ showed correlation between WEDGESLO and URTEXTBAT to four places, including at the boundary.

Some special cases were run on URTEXTBAT before it was considered valid. First, to verify reciprocity of the field, the source was set at $r_f=10$ and γ varied from 0° to 10°. The receiver was fixed at $\delta = 5^\circ$ and at $r_2=2$. Table A-5 shows the results and an error comparison. The errors are within the round off tolerance of the program, showing URTEXT as valid for both the upslope and downslope fields as well as validating the acoustic reciprocity of the model.

Figure A-1 - Boundary Condition Check

![Graph showing receiver range and angle from surface](image)
TABLE A-5 - RECIPROCITY CHECK

<table>
<thead>
<tr>
<th>δ</th>
<th>Pressure</th>
<th>Difference</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>0.00310</td>
<td>0.00310</td>
</tr>
<tr>
<td>9</td>
<td>0.03349</td>
<td>0.00021</td>
</tr>
<tr>
<td>8</td>
<td>0.14344</td>
<td>0.00112</td>
</tr>
<tr>
<td>7</td>
<td>0.34385</td>
<td>0.00149</td>
</tr>
<tr>
<td>6</td>
<td>0.53402</td>
<td>0.00138</td>
</tr>
<tr>
<td>5</td>
<td>0.67274</td>
<td>0.00100</td>
</tr>
<tr>
<td>4</td>
<td>0.72949</td>
<td>0.00049</td>
</tr>
<tr>
<td>3</td>
<td>0.6885</td>
<td>0.00004</td>
</tr>
<tr>
<td>2</td>
<td>0.55086</td>
<td>0.00055</td>
</tr>
<tr>
<td>1</td>
<td>0.33387</td>
<td>0.00091</td>
</tr>
<tr>
<td>0</td>
<td>0.06837</td>
<td>0.00109</td>
</tr>
</tbody>
</table>

Another test was run using matched acoustic impedance of the water and the bottom. The bottom then becomes transparent and the pressure field will be that of a surface interference effect (Lloyd's Mirror). Density and speed of sound ratios were set to .9999 and slope angle was set to 18°. The receiver was set at the same depth as the source and moved downslope. The pressure field predicted is approximated by the equation

\[P(r, h) = \frac{2A}{r} \left| \sin \left(\frac{khd}{r} \right) \right| \]

(A-1)

where \(h \) and \(d \) are depths of the receiver and the source, \(A \) is the pressure amplitude at the source at one meter, and \(k \) is the wave number. Frequency used was 1000 Hz.

Figure A-2 shows a plot of pressure as a function of range from the source. Interference maxima and minima from URTEXTBAT match those predicted by equation (A-1).
Figure A-2a - Close Range Surface Interference

Figure A-2b - Long Range Surface Interference
As seen from the above, URTEXTBAT has undergone extensive proofing. When compared with previous versions in FORTRAN and BASIC, it is more flexible both in platforms run and model variables. While the program does not take full advantage of the features of MATLAB, and has significant room for optimizations, the program in its present form is more than sufficient for the purposes of this research.
APPENDIX B

%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% % URTTEXT for MATLAB
% % Adapted from FORTRAN
% %%%%%%%%%%%%%%%%%%%%%%%%
% Enter Input Variables
% Required are: Range of Source and Receiver
% Wedge angle in Degrees
% Source and Receiver angles from the Bottom
% Speed of sound ratio and density ratios
% Bottom loss coefficient and cross slope range
%%%%%%%%%%%%%%%%%%%%%%%%%%%%

B=input('Enter bottom wedge angle: ');
G=input('Enter source angle from the surface: ');
D=input('Enter receiver angle from the surface: ');
rhol=input('Enter Density ratio, water to bottom: ');
CC=input('Enter speed ratio, water to bottom: ');
r1=input('Enter range of source from apex: ');
r2=input('Enter range of receiver from apex: ');
AL=input('Enter bottom loss coefficient: ');
y0=input('Enter cross-slope range: ');

% Determine number of image pairs
% and convert to radians. Also determine constants

% Function rads(A) converts degrees into radians
% Contained as a separate M-File in the MATLAB Toolbox

function X=rads(A)
% Converts degrees into radians
X=A*pi/180;
end

Nl=fix(180/B);
B=rads(B);
G=rads(G);
D=rads(D);
c2=CC^2;

% Determine scaling for fast or slow bottom

if CC<1,
tq1=acos(CC);
tq2=sin(tq1);
else
 tq1=acos(1/CC);
tq2=tan(tq1);
end;
tqq3=2*tqq2*tqq;
t4=pi/tqq3;
q1=1/sqrt(2);
d2=r1^-2+r2^-2+y0^-2;
r3=2*r1*r2;
s1=1;

%%%%%%%%%%%%%%%%%%%%%%
% Determine range to receiver for each image
%%%%%%%%%%%%%%%%%%%%%%

for n=1:1:N1,
 if s1>0
 t1(n)=(n-1)*B+G;
 else
 t1(n)=n*B-G;
 end;
s1=-s1;
r8(n)=sqrt(d2-r3*cos(t1(n)-D));
r9(n)=sqrt(d2-r3*cos(t1(n)+D));
end;
p1=0;p2=0;
for n=1:1:N1,
 s2=(-1)^(fix(n/2));
%%%%%%%%%%%%%%%%%%%%%%
% Calculate Reflection Coefficient for Upper Space
%%%%%%%%%%%%%%%%%%%%%%

wl=2*c2*AL;
il=fix((n-1)/2);
for i=1:1:il,
 s(i)=abs(r1*sin(t1(n)-2*i*B)+r2*sin(2*i*B-D))/r8(n);
 if s(i)>=1,
 s(i)=1;
 end;
c(i)=sqrt(1-(s(i)^2));
t=s(i)/rho1;
w0=(-c2+(c(i)^2));
y=sqrt((w0^2)+(wl^2));
z=abs(w0);
 if y<=z,
 y=z;
 end;
y1=q1*sqrt(y+w0);
y2=-q1*sqrt(y-w0);
zi=t-y2;
z2=-y1;
z3=zi/(z1^2+z2^2);
z4=-z2/(z1^2+z2^2);
z1=t+y2;
z2=y1;
z5=z1*z3-z2*z4;
z6=z1*z4+z2*z3;
e(i)=z5;
f(i)=z6;
end;

%%%%%%%%%%%%%%%%%%%%%%
% Determine Pressure Contribution for each upper image
%%%%%%%%%%%%%%%%%%%%%%
if n>2,
for i=1:1:il,
 z1=e(i);
 z2=f(i);
 z3=z5;
 z4=z6;
 z5=z1*z3-z2*z4;
 z6=z1*z4+z2*z3;
end;
end;
z1=z5;
z2=z6;
t=t4*r8(n);
z3=cos(t);
z4=-sin(t);
z5=z1*z3-z2*z4;
z6=z1*z4+z2*z3;
p1=p1+s2*z5/r8(n);
p2=p2+s2*z6/r8(n);
il=il+1;

% Determine Reflection Coefficient for the Lower Images

for i=1:1:il,
 s(i)=abs(r1*sin(t1(n))-2*(i-1)*B)+r2*sin(2*(i-1)*B+D))/r9(n);
 if s(i)>1,
 s(i)=1;
 end;
 c(i)=sqrt(1.0001-s(i)^2);
 t=s(i)/rho1;
 w0=-c2+c(i)^2;
 y=sqrt(w0^2+w1^2);
 z=abs(w0);
 if y<=z,
 y=z;
 end;
 y1=q1*sqrt(y+w0);
 y2=-q1*sqrt(y-w0);
 z1=t-y2;
 z2=-y1;
 z3=z1/(z1^2+z2^2);
 z4=-z2/(z1^2+z2^2);
 z1=t+y2;
 z2=y1;
 z5=z1*z3-z2*z4;
 z6=z1*z4+z2*z3;
 e(i)=z5;
 f(i)=z6;
end;

% Find Pressure Contribution for Lower Images

z1=0;z2=0;z3=0;z4=0;z5=1;z6=0;
for i=1:1:il,
 z1=e(i);
\[z_2 = f(i); \]
\[z_3 = z_5; \]
\[z_4 = z_6; \]
\[z_5 = z_1 * z_3 - z_2 * z_4; \]
\[z_6 = z_1 * z_4 + z_2 * z_3; \]

end;
\[z_1 = z_5; \]
\[z_2 = z_6; \]
\[t = t_4 * r_9(n); \]
\[z_3 = \cos(t); \]
\[z_4 = -\sin(t); \]
\[z_5 = z_1 * z_3 - z_2 * z_4; \]
\[z_6 = z_1 * z_4 + z_2 * z_3; \]
\[p_1 = p_1 + z_2 * z_5 / r_9(n); \]
\[p_2 = p_2 + z_2 * z_6 / r_9(n); \]

end;

\[\text{Total Pressure at the reciever is:} \]
\[\text{Total Pressure at the reciever is:} \]
\[p_z = \sqrt{p_1^2 + p_2^2}; \]
end;
% This program determines a 2 dimensional
% Sound pressure field over a sloping bottom

% Enter Input Variables
% Required are: Range of Source
% Maximum range of the Receiver
% Wedge angle in Degrees
% Source angle from the Surface
% Speed of sound ratio and density ratios
% Bottom loss coefficient and cross slope range.
% The program determines receiver angles over 10 increments
% and range from source range + one dump distance to the
% maximum receiver range

B=input('Enter bottom wedge angle: ');
G=input('Enter source angle from the surface: ');
rhol=input('Enter Density ratio, water to bottom: ');
CC=input('Enter speed ratio, water to bottom: ');
rl=input('Enter range of source from apex: ');
range=input('Enter maximum receiver range: ');
AL=input('Enter bottom loss coefficient: ');
b=B/10;countk=0;countl=0;
yO=input('Enter cross slope range: ');

time=clock;
Nl=fix(180/B);
B=rads(B);
G=rads(G);

% Loop for field calculation

for k=rl+1:range/10:range,
 r2=k;
 countk=countk+1;
 for l=0:b:b*10,
 D=l;countl=countl+1;
 D=rads(D);
 c2=CC^2;

 tqq=tan(B);
 if CC<1,
\[\text{tqql} = \cos(\text{CC}); \]
\[\text{tqq2} = \sin(\text{tqql}); \]
\[\text{else} \]
\[\text{tqql} = \cos(1/\text{CC}); \]
\[\text{tqq2} = \tan(\text{tqql}); \]
\[\text{end}; \]
\[\text{tqq3} = 2 \times \text{tqq2} \times \text{tqq}; \]
\[\text{t4} = \pi / \text{tqq3}; \]
\[\text{q1} = 1 / \sqrt{2}; \]
\[\text{d2} = r1^2 + r2^2 + y0^2; \]
\[\text{r3} = 2 \times r1 \times r2; \]
\[s1 = 1; \]

\[
\begin{align*}
\text{++++++++++++++++++++++}
\text{\% Determine range for each image to receiver} \\
\text{++++++++++++++++++++++}
\end{align*}
\]

\[
\begin{align*}
\text{for } n = 1:1:N1, \\
\text{\% if } s1 > 0 \\
\text{\% tl(n) = (n-1)B + G;} \\
\text{else} \\
\text{\% tl(n) = nB - G;} \\
\text{end;} \\
\text{s1 = -s1;} \\
\text{r8(n) = sqrt(d2 - r3 \times \cos(tl(n) - D));} \\
\text{r9(n) = sqrt(d2 - r3 \times \cos(tl(n) + D));} \\
\text{end;} \\
\text{pl = 0; p2 = 0;} \\
\text{for } n = 1:1:N1, \\
\text{++++++++++++++++++++++}
\text{\% Find reflection coefficient for upper images} \\
\text{++++++++++++++++++++++}
\end{align*}
\]

\[
\begin{align*}
\text{s2} &= (-1)^{(\text{fix}(n/2))}; \\
\text{w1} &= 2 \times c2 \times \text{AL}; \\
\text{i1} &= \text{fix}((n-1)/2); \\
\text{for } i = 1:1:i1, \\
\text{\% s(i) = abs(r1 \times \sin(tl(n) - 2 \times iB) + r2 \times \sin(2 \times iB - D)) / r8(n);} \\
\text{\% if } s(i) > 1, \\
\text{\% s(i) = 1;} \\
\text{end; } \\
\text{c(i) = sqrt(1 - (s(i)^2));} \\
\text{t = s(i) / rhol;} \\
\text{w0 = (-c2 + (c(i)^2));} \\
\text{y = sqrt((w0^2) + (w1^2));} \\
\text{z = abs(w0);} \\
\text{\% if } y < z, \\
\text{\% y = z;} \\
\text{end;} \\
\text{yl = q1 \times sqrt(y + w0);} \\
\text{y2 = -q1 \times sqrt(y - w0);} \\
\text{z1 = t - y2;} \\
\text{z2 = -yl;} \\
\text{z3 = z1/(z1^2 + z2^2);} \\
\text{z4 = -z2/(z1^2 + z2^2);} \\
\text{z1 = t + y2;} \\
\text{z2 = y1;} \\
\text{z5 = z1 \times z3 - z2 \times z4;} \\
\text{z6 = z1 \times z4 + z2 \times z3;} \\
\text{e(i) = z5;}
\end{align*}
\]
\[f(i) = z6; \]
\[z1 = 0; z2 = 0; z3 = 0; z4 = 0; z5 = 1; z6 = 0; \]
if \(n > 2, \)
for \(i = 1; 1: il, \)
\[z1 = e(i); \]
\[z2 = f(i); \]
\[z3 = z5; \]
\[z4 = z6; \]
\[z5 = z1 + 3 - z2 * z4; \]
\[z6 = z1 + 4 + 2 * z3; \]
end;
end;

% Find Pressure contribution of upper images

\[z1 = z5; \]
\[z2 = z6; \]
\[t = 4 * r8(n); \]
\[z3 = \cos(t); \]
\[z4 = \sin(t); \]
\[z5 = z1 * 3 - z2 * z4; \]
\[z6 = z1 * 4 + 2 * z3; \]
\[p1 = p1 + 2 * s5 / r8(n); \]
\[p2 = p2 + 2 * z6 / r8(n); \]
\[il = il + 1; \]
for \(i = 1; 1: il, \)
for \(i = 1; 1: il, \)
% Find refection coefficient for lower images
\[s(i) = \text{abs}(r1 * \sin(tl(n) - 2 * (i - 1) * B) + 2 * \sin(2 * (i - 1) * B + D)) / r9(n)); \]
if \(s(i) > 1, \)
\[s(i) = 1; \]
end;
\[c(i) = \sqrt{1.0001 - s(i) \cdot 2}; \]
\[t = s(i) / \rho o h; \]
\[w0 = c2 + c(i) \cdot 2; \]
\[y = \sqrt{w0 \cdot 2 + w1 \cdot 2}; \]
\[z = \text{abs}(w0); \]
if \(y < z, \)
\[y = z; \]
end;
\[y1 = q1 * \sqrt{y + w0}; \]
\[y2 = q1 * \sqrt{y - w0}; \]
\[z1 = t - y2; \]
\[z2 = t + y2; \]
\[z3 = z1 / (z1^2 + z2^2); \]
\[z4 = z2 / (z1^2 + z2^2); \]
\[z1 = t + y2; \]
\[z2 = t - y2; \]
\[z5 = z1 - 3 - z2 * z4; \]
\[z6 = z1 + 4 + z2 * z3; \]
\[e(i) = z5; \]
\[f(i) = z6; \]
end;
\[z1 = 0; z2 = 0; z3 = 0; z4 = 0; z5 = 1; z6 = 0; \]
for \(i = 1; 1: il, \)
50
\[z_1 = e(i); \]
\[z_2 = f(i); \]
\[z_3 = z_5; \]
\[z_4 = z_6; \]
\[z_5 = z_1 \cdot z_3 - z_2 \cdot z_4; \]
\[z_6 = z_1 \cdot z_4 + z_2 \cdot z_3; \]
\]
\]
\text{\textbf{end;}}

\textbf{\% Find Pressure contribution for lower images}

\[z_1 = z_5; \]
\[z_2 = z_6; \]
\[t = t_4 \cdot r_9(n); \]
\[z_3 = \cos(t); \]
\[z_4 = -\sin(t); \]
\[z_5 = z_1 \cdot z_3 - z_2 \cdot z_4; \]
\[z_6 = z_1 \cdot z_4 + z_2 \cdot z_3; \]
\[p_1 = p_1 + s_2 \cdot z_5 / r_9(n); \]
\[p_2 = p_2 + s_2 \cdot z_6 / r_9(n); \]
\]
\text{\textbf{end;}}

\textbf{\% Total pressure at the reciever is:}

\[p_2(z) = \sqrt{p_1^2 + p_2^2}; \]

\textbf{\% Reset variables}

\[\text{\textbf{clear} c; \text{\textbf{clear}} c_2; \text{\textbf{clear}} d_2; \text{\textbf{clear}} e; \text{\textbf{clear}} f; \text{\textbf{clear}} i; \text{\textbf{clear}} i_1; \text{\textbf{clear}} n; \text{\textbf{clear}} p_1; \text{\textbf{clear}} p_2; \text{\textbf{clear}} q_1; \text{\textbf{clear}} r_3; \text{\textbf{clear}} r_8; \text{\textbf{clear}} r_9; \text{\textbf{clear}} s; \text{\textbf{clear}} s_1; \text{\textbf{clear}} s_2; \text{\textbf{clear}} t; \text{\textbf{clear}} t_1; \text{\textbf{clear}} t_2q; \text{\textbf{clear}} t_2q_1; \text{\textbf{clear}} t_2q_2; \text{\textbf{clear}} t_2q_3; \text{\textbf{clear}} w_0; \text{\textbf{clear}} w_1; \text{\textbf{clear}} y; \text{\textbf{clear}} y_1; \text{\textbf{clear}} y_2; \text{\textbf{clear}} z; \text{\textbf{clear}} z_1; \text{\textbf{clear}} z_2; \text{\textbf{clear}} z_3; \text{\textbf{clear}} z_4; \text{\textbf{clear}} z_5; \text{\textbf{clear}} z_6; \text{\textbf{end;}} \]
\[\text{\textbf{count}1} = 0; \]
\[\text{\textbf{et}} = \text{\textbf{etime}}(\text{\textbf{clock, time})}; \]
\textbf{end;}

51
This program creates input files for BBCM, the coupled mode model by Dr. C.S. Chiu. This program creates the inputs for a wedge shaped ocean overlying a fluid bottom. Both water and bottom are considered uniform in characteristics in depth. No irregularities in the bottom depth are generated, nor stratifications in sound velocity profile.

% Input all the pertinent data
B=input('Enter wedge angle: ');
B=rads(B);
z=input('Enter maximum depth of the water column: ');
w=input('Enter length of the waveguide: ');
dw=input('Enter range resolution: ');
dz=input('Enter depth resolution: ');
c1=input('What is the speed of sound in the water? ');
c2=input('What is the speed of sound in the bottom? ');
r1=input('What is the density of the water? ');
r2=input('What is the density of the bottom? ');
n=input('How many modes? ');
ak=input('What is the bottom loss coefficient?');
f=input('What is the source frequency? ');

% Build data files -- range
r=0:dw:w;
save r.dat r /ascii;

% receiver depth
zr=0:10:z;
save zr.dat zr /ascii;

% attenuation matrix
for i=1:1:n,
 attenu(n)=ak;
end;
save attenu.dat attenu /ascii;

% sound speed profile
a=w/dw; b=z/dz;
t=tan(B);
for i=1:1:a+1,
 for j=1:1:b+1,
 if t>(j-1)*dz/(w-(i-1)*dw),
 c(j,i)=c1;
 else
 c(j,i)=c2;
 end;
 end;
end;
dummy=c(1:b,:);
for i=1:1:b,
 dummy(i,1)=c2;
end;
for i=2:1:a,
 dummy(:,i)=dummy(:,i-1);
end;
c=[c; dummy; dummy; dummy; dummy; dummy; dummy; dummy; dummy; dummy];
save c.dat c /ascii;

% density profile
for i=1:1:a+1,
 for j=1:1:b+1,
 if t>(j-1)*dz/(v-(i-1)*dw),
 rho(j,i)=r1;
 else
 rho(j,i)=r2;
 end;
 end;
dummy=rho(1:b,:);
for i=1:1:b,
 dummy(i,1)=r2;
end;
for i=2:1:a,
 dummy(:,i)=dummy(:,i-1);
end;
rho=[rho; dummy; dummy; dummy; dummy; dummy; dummy; dummy; dummy; dummy];
save rho.dat rho /ascii;

% Source Spectrum Density Profile
ssp=[0 0;f=0.005 1;f 1;f+0.005 1;1000 0];
save ssp.dat ssp /ascii;
LIST OF REFERENCES

BIBLIOGRAPHY

INITIAL DISTRIBUTION LIST

<table>
<thead>
<tr>
<th>No. Copies</th>
<th>Initial Distribution List</th>
</tr>
</thead>
</table>
| 1. | Defense Technical Information Center
Cameron Station
Alexandria, VA 22304-6145 | 2 |
| 2. | Director, Submarine Warfare Division (N87)
Chief of Naval Operations
Washington, DC 20350-2000 | 1 |
| 3. | Library, Code 52
Naval Postgraduate School
Monterey, CA 93943-5002 | 2 |
| 4. | Dr. A. B. Coppens, Code PH/Cz
Department of Physics and Chemistry
Naval Postgraduate School
Monterey, CA 93943-5002 | 2 |
| 5. | Dr. J. V. Sanders, Code PH/Sd
Department of Physics and Chemistry
Naval Postgraduate School
Monterey, CA 93943-5002 | 2 |
| 6. | Dr. C.S. Chiu, Code OC/Ci
Department of Oceanography
Naval Postgraduate School
Monterey, CA 93943-5002 | 2 |
| 7. | LT C. C. Meisenheimer
ASW Curriculum, Code 3A
Naval Postgraduate School
Monterey, CA 93943-1849 | 2 |