NAVAL POSTGRADUATE SCHOOL
Monterey, California

-A275 024
Al\?\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

DTIC

ELECTE
JANZ 7,19%4

THESIS =

I

A CONCURRENT, OBJECT-BASED
IMPLEMENTATION FOR THE TACTICAL LEVEL
OF THE RATIONAL BEHAVIOR MODEL
by
Frederick Perry Boynton Thornton, Jr.
September 1993

Thesis Advisor: Dr. Se-Hung Kwak

Approved for public release; distribution is unlimited.

S0 94-02776
IR EWARS

94 1 26 204




Form Approved

REPORT DOCUMENTATION PAGE OMB No. 0704-0188

Pubicc reporting burden for this coliection of iformetion & estumated to average | Rour Pe! rEEPaNIE NCAING ING LME revewnng MSINLCLONS 388/ChING S2BINg data sources

mmw thodul ded and leting and g he cob of informaton Send comments regarding the burden sstimate of any other aspect of this
tor red th-‘ o \o“‘ hington Headquaners Servioss Directorste for information Operations and Reports 1215 Jefterson

Dmﬂqhw Sute 120‘ Aﬂng!on VA 222024302 thmmdumc and Budget Paperwork Reduction Progct (0704-0188). Washington DC 20503

T — A —————
1. AGENCY USE ONLY (Leave Blank) 2. REPORT DATE 3. A |
September 1993 Master’s Thesis

4. TITLE AND SUBTITLE . 5. FUNDING NUMBERS
A Concurrent, Object-Based Implementation for the Tactical Level of

the Rational Behavior Model(U)

[ AUTHOR®)
Thornton Jr., Frederick Perry Boynton

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING DRGANIﬁﬁON
Naval Postgraduate School REPORT NUMBER

Monterey, CA 93943-5000

9. SPONSORING MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING: MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES . . J . .
The views expressed in this thesis are those of the author and do not reflect the official policy or position

of the Department of Defense or the United States Government.

123, DISTRIBUTION ' AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE
Unclassified/Unlimited

a

13. ABSTRACT (Maximum 200 weras)

The middle, or Tactical, level of the Rational Behavior Model (RBM) is the essential bridge linking
the top and bottom levels of the model together. To insure an autonomous vehicle maintains control and
thus exhibits rational behavior during such time-consuming tasks as search, homning, and route replanning,
the Tactical level must be able to handle concurrency. Until now, this level has been implemented in only
a limited way using an object-oriented language and sequential operations. The objective of this thesis is
to construct an implementation model that represents the concurency inherent in the Tactical level within
the framework of the design model already developed.

The method for building this implementation is to use the Ada task construct for concurrency to
represent the objects of the design model and their communication with each other.

This research creates a Tactical level implementation in Ada for the NPS Autonomous Underwater
Vehicle (AUV) simulator that successfully executes a mission scenario involving transit, search, task, and
return phases and the same mission scenario with route replanning. This work thus provides a foundation
for future development of concurrent implementations of this level of RBM.

4. SUBJECT TERMS ] ] i . } ] 15. NUMBER OF PAGES
Concurrency, Multitasking, Object-Based, Object-Oriented, Rational 142
Behavior Model, Tactical Level, Autonomous Underwater Vehicle 9
17. SECURITY CLASSIFICATION  ]18. SECURITY CLASSIFICATION Y30, SECURITY CLASSIFICATION 120 LMITATION OF ABSTRACT
OF REPORT OF THIS PAGE OF ABSTRACT
Unclassified Unclassified Unclassified
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)

i Prescribed by ANSI Std. 239-18




Approved for public release; distribution is unlimited

A CONCURRENT, OBJECT-BASED IMPLEMENTATION
FOR THE TACTICAL LEVEL
OF THE RATIONAL BEHAVIOR MODEL

by
Frederick Perry Boynton Thornton, Jr.
Captain, United States Marine Corps
B A., Duke University, 1983

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF COMPUTER SCIENCE

from the
NAVAL POSTGRADUATE SCHOOL
September 1993

Author: Z wdiche T% 2ty l’)f g21.len © A(u\ch
Frederick Perry Boynton Thomton, Jr.

( ' 7
Approved By: \fﬁ { /é", ’é

Dr. Se-HurE\!(wj(, Thesis Advisor

(Do 2 WOV

Dr. Robert B. McGhee, Second Reader

—

Dr. Ted Lewis, Chairman,
Department of Computer Science

ii




ABSTRACT

The middle, or Tactical, level of the Rational Behavior Model (RBM) is the essential
bridge linking the top and bottom levels of the model together. To insure an autonomous
vehicle maintains control and thus exhibits rational behavior during such time-consuming
tasks as search, homing, and route replanning, the Tactical level must be able to handle
concurrency. Until now, this level has been implemented in only a limited way using an
object-oriented language and sequential operations. The objective of this thesis is to
construct an implementation model that represents the concurrency inherent in the Tactical
level within the framework of the design model already developed.

The method for building this implementation is to use the Ada task construct for
concurrency to represent the objects of the design model and their communication with
each other.

This research creates a Tactical level implementation in Ada for the NPS Autonomous
Underwater Vehicle (AUV) simulator that successfully executes a mission scenario
involving transit, search, task, and return phases and the same mission scenario with route
replanning. This work thus provides a foundation for future development of concurrent

implementations of this level of RBM.

pTIC QUALITY [NSPECTED 8

DPILIC BAB 0
Yaannounoed | R]

Becessicn Jor , |
f218 OGRAAI

Justifieetion — i

By
\bieresbution/

Iﬁié'iﬁlu andsor
1st | Spectal

iii k/\ l{

Avallabil 1t_?_ Vi?odpg‘m__




TABLE OF CONTENTS

L. INTRODUCTION. . ...t L
A. BACKGROUND .. ...t 1

B. STATEMENT OF THEPROBLEM. ... .. .\oneoeeees e 1

C. SCOPE. ..ot et e e 2

D. THESIS ORGANIZATION ... ...oveoese e 3

IL PREVIOUS WORK. . . .« ene et e e 4
A. INTRODUCTION . ... e oo e, 4

B. NASAOMV ..ottt 4

C. NASAEXPLORERMMS. .. ...\ oo 4

D. NAVAL POSTGRADUATE SCHOOL AUV ... .\oeeeneeaeanen. .. 5

1. Vehicle Description................. e 5

2. SimulationEnvironment ....... ... ... .. ... i i e 6

1. THE RATIONAL BEHAVIORMODEL . . .. ...\ teeeeeeeee e 9
A. INTRODUCTION . ...\ oo et 9

B. STRATEGICLEVEL . ...\ ovonens e 10

C. EXECUTIONLEVEL. . ... ettt 10

D. TACTICALLEVEL ...\ oueneree oo 11

E. TACTICAL LEVEL REQUIREMENTS ... ..\rvenenrnanenanennn) 12
IV. TACTICAL LEVEL PROGRAMMING LANGUAGES . ... ... .\\'vonen.. .. 14
A. BACKGROUND . . .....e e 14

B. ADA. . oot 14

C. CLASSIC-ADA ..o eeeeeii e 15

D. ADAYX....... e 16

E. COMPARISON OF PROGRAMMING LANGUAGES ................... 16

V. TACTICAL LEVEL IMPLEMENTATION . . ...\ ' oeeeeereeonaneen 18
A OVERVIEW .0 .\itiiieii st 18

iv




B. DESIGNMODEL ...... ..o i it ittt iiaa e 18

C. IMPLEMENTATIONMODEL ........... ittt 20
1. Description of Communication .............cooiiiiiiiiiniiiaan. 20

2. Descriptionof Objects...........coiiiiiiiiiiiiiinernnneennannnns 24

@ OOD. ... i i i it i 24

b. Navigator. ...ttt it it 24

C. GUIdANCE ... . i i it i e i i i e 25

d. GPSControl. ... ... ittt i it it e 26

€ SonarControl. . ... ...t i i it 26

f. Dead Reckoning. .........ccouiiiiiinininiiiiiinininnnnenennn 26

g MissionReplanner..............oiiiiiiiiiiiiii 26

h. Engineer. ... ..ottt i i i i i i e 26

i. WeaponsOfficer ....... ..ottt 27

jo Command Sender......... ... ..ottt i 28

k. SensoryReceiver......... ...ttt 28

. MissionModel............ .ol 28

m. WorldModel ....... ... . i e 28

n. DataRecorder ......... ...ttt 29

3. MissionEnvironment. ........ ... ... i i i 29
VLTESTING ANDRESULTS. ... .. e 32
A. INTRODUCTION. ...ttt ittt ittt ittt i niea i iaanan 32
B. SIMULATIONENVIRONMENT .......c.0c i, 32
C. SCENARIOS . . .. i ittt ittt ittt iiae i 34
1. Multi-Phase Mission ............iiiiiiiiiiiiiiiiiiiiiiiinn., 34

2. Multi-Phase Mission With Route Replanning. ........................ 35

| I 1 ] 1) 50 35
VILCONCLUSIONS ANDFUTUREWORK...........coiiiiiiiiiiiiiine, 37
A. RESEARCHCONTRIBUTIONS . ... ..ot 37




B. SUGGESTIONS FOR FUTURERESEARCH........................... 37
APPENDIX A. TACTICALLEVELSOURCECODE........................ 39
APPENDIX B. TRACES OFMISSIONEXECUTION ...................... 112
APPENDIX C. AUV SIMULATORUSER'SGUIDE ....................... 128
LISTOFREFERENCES. . ... .. it i ittt e e eiiieaanns 130
INITIAL DISTRIBUTIONLIST .. ... i it e it eeeans 132

vi




Figure 1
Figure 2
Figure 3
Figure 4
Figure §
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15
Figure 16

LIST OF FIGURES

The Naval Postgraduate School AUVII ............. ... il 6
Original AUV Simulator Test Configuration ......................... 7
RBM StUCHUIE . .. .ottt ittt it iee i iie e aernannaaannnns 9
Tactical Level Programming Languages. ........................... 17
Tactical Level DesignModel . ........... ... i, 19
Tactical Level ImplementationModel . ............ ... . ... o ... 21
Example of Task Communication .............coiieiininnennn... 22
Router Task Communication ..........ccoviiiiiiiiiiiiniiennenns 24
Expanding Box Search Pattern and Algorithm ....................... 27
MultitaskinginRoute Replanning . . .............. ... i, 31
AUV Simulator Test Configuration and Vehicle Configuration .......... 33
Multi-Phase Mission Scenario ............ci ittt 34
“initial_state” Data File ........... ... .o i, 128
“waypoints”DataFile .......... ... ... . . i . 128
“final_goal”DataFile ........... ..ttt 129
“obstacles”DataFile ......... ... ... . i, 129




ACKNOWLEDGEMENTS

This work drew support from many quarters. First of all, I would like to acknowledge
my wife, Neva, for her patience and support during many long nights in the lab and many
distracted hours at home.

1 would like to thank Dr. Ron Byrnes and Don Brutzman for laying the foundation for
those of us working on the AUV project in the Computer Science department. Thomas
Scholz contributed to the success of this project by helping to debug a large volume of our
combined code and keeping a sense of humor in the process. Dr. Se-Hung Kwak provided
helpful guidance and encouragement all along the way.

Without the coniributions of all these people and many others, this work would not

have been possible.

viii




I. INTRODUCTION

A. BACKGROUND

Controlling autonomous vehicles through software is a challenging area of software
engineering requiring a variety of resources. Neither completely relying on a single
programming paradigm nor simply throwing together all available programming resources
can provide the long-term stability necessary for an autonomous vehicle software system.
A software architecture with multiple levels of abstraction is extremely important for
handling the complexity of autonomous operations in the real world. Such an architecture
provides for the use of specific programming paradigms to address particular levels of a
problem. Reliability and maintainability of software then become key factors in
determining the applicability of a programming paradigm to a certain level of abstraction,
and they are built into the system instead of being produced incidentally.

To model the real world, autonomous vehicle software systems need to be capable of
managing concurrency. Events, and thus behaviors, in the real world are neither sequential
in time nor centralized in a single, physical entity. Concurrency involves the twin issues of
multitasking, in which a single entity performs multiple operations at the same time, and
distribution, in which many entities perform separate tasks simultaneously. In addition,
reuse of software is very desirable in this complex development environment. The object-
oriented programming paradigm with its built-in inheritance mechanism facilitates the
reuse of existing implementations [Kwak90] [Toml89]. The capability to implement a
concurrent, object-oriented solution is a powerful tool in accurately modeling the problem

domain and an effective weapon in battling against software complexity.

B. STATEMENT OF THE PROBLEM

The Rational Behavior Model (RBM) is a multi-level, multi-paradigm software
architecture for the control of autonomous vehicles. The top, or Strategic, level consists of

general mission directives and the bottom, or Execution, level consists of specific vehicle




commands [Bym93]. Both have been specified and implemented in some detail. The
middle, or Tactical, level, is responsible for breaking down the broad guidance of the
Strategic level into simple pieces of behavior that the Execution level can carry out. This
level is thus the crucial bridge that connects the other two distinct parts of the model, but it
has been implemented in only a very limited way.

The design of the Tactical level is well-suited to the object-oriented paradigm and has
been described in [Byrmn93]. The behaviors of the Tactical level can be grouped together

quite easily under objects in an object hierarchy. Implementing the relationships of this

hierarchy requires an object-oriented or object-based languagcl. The complex, time-
consuming nature of certain tasks such as search, homing, and mission replanning make
concurrent programming facilities extremely desirable as well so that control of the vehicle
can be maintained continuously throughout a mission, insuring the vehicle’s rational
behavior. Therefore, the problem is to find a programming language to represent the
concurrency and the object-oriented nature of the Tactical level well and to build an

implementation model.

C. SCOPE

The primary goal of this research is to develop a working model of the Tactical level
of RBM in a currently available programming language using object-oriented techniques
and programming language constructs for concurrency. For this research, concurrency is
limited to multitasking, or the interleaving of multiple processes on a single processor.
Distribution is beyond the scope of this work. This thesis focuses on a few areas of research,
including representing concurrency in software, implementing object-oriented design, and

the suitability of current programming languages for these two tasks.

1. Object-based languages have features to support the principles of data abstraction and informa-
tion hiding, while object-oriented languages have mechanisms for inheritance, dynamic binding,
and polymorphism in addition to those features. However, as Booch notes, “ . . . it is possible and
highly desirable for us to use object-oriented design methods for both object-based and object-ori-
ented programming languages.” [Booc91, p. 36]




D. THESIS ORGANIZATION

Chapter II surveys previous work on software systems that have implemented object-
oriented design and concurrency. Chapter III gives an overview of RBM. Chapter IV
discusses the programming languages considered for implementing the Tactical level. In
Chapter V, the Tactical level implementation is explained in detail. Chapter VI examines
testing of the implementation in the laboratory on the AUV simulator. Chapter VII provides
a summary of conclusions and suggestions for future research. Appendix A lists the source
code for ti.2 Tactical level. Appendix B gives a trace of the execution of two multi-phase

mission scenarios. Appendix Cis a user’s guide to the AUV simulator used in this research.




II. PREVIOUS WORK

A. INTRODUCTION

There have been numerous efforts to implement concurrency using multi-tasking in
real-time software applications. Three projects with varying timing requirements are
described here. All three projects have employed some form of the Ada programming
language and have cither attempted to use or intend to use Ada’s task construct for

concurrency.

B. NASA OMV

NASA’s Orbital Maneuvering Vehicle (OMV) is a semi-autonomous spacecraft
designed to provide services to other spacecraft, including delivery, retrieval, reboosting,
and deboosting. The craft has automatic navigation and rendezvous capabilities but
requires human control for terminal operations such as docking with NASA’s Space
Station. Control for the OMYV can be provided from the space shuttle, from the ground, or
from the Space Station. The OMYV can carry various mission kits and has a nine month on-
orbit capability.

Standard Ada was used for prototyping on the software system. Tasking was rejecred
for this system, however, due to the system’s strict real-time requirements. In particular, the
need to change the priority of a task at run time and the need to specify a task as non-
preemptible by other tasks to meet certain time constraints were seen as necessary features
not provided by the Ada Run Time System (RTS). Prototype tasking algorithms were much
slower and larger than the established sequential ones. As a result, Ada tasking was not

used further in the project [Howl88].

C. NASA EXPLORER MMS
NASA’s Explorer Multimission Modular Spacecraft (MMS) is an unmanned orbiting

space vehicle with a replaceable payload. The payload is a science instrument replaced by




the space shuttle every 18 to 24 months. Control of Explorer, such as attitude commands

are generated by the ground, the onboard processor, or the onboard coprocessor.

Standard Ada was used in a benchmark test with the intent of seeing how it would
handle some of the spacecraft’s software functions, including attitude determination
support, coprocessor system monitoring, and coprocessor self-checks. Developers
considered tasking viable for this system with some changes in the task scheduler to reduce
overhead time. Published task rendezvous time of 800 microseconds was not critical for
this implementation. What was important was that task priorities could be set and
synchronous and asynchronous interrupts handled due to minimal human control
(Communication with the ground is limited to about 15 minutes every 1 1/2 hours). Planned
modifications to the Ada RTS were designed to identify the cause of an interrupt and the

portion of code involved in a telemetry report to the ground [Scot88].
D. NAVAL POSTGRADUATE SCHOOL AUV

1. Vehicle Description

The Naval Postgraduate School Autonomous Vehicle (AUV) is an unmanned,
untethered, robotic submarine. Its purpose is to provide multi-area research for students and
faculty and its projected missions include search, surveillance, mapping and intervention
activities. The current model of the vehicle, shown in Figure 1, is 7 feet long, weighs
approximately 400 pounds, and has a maximum speed of 2 knots. Due to its relatively small
size and low cost, the vehicle is an ideal research platform. Power for control surfaces and
cross-body thrusters is provided by a battery-based system which can last 2 to 3 hours on a
charge. The vehicle is controlled by two separate processors on Gespac platforms: one for
vehicle actuator control and one for mission control and navigation. Sonar, inertial
navigation, and global positioning systems are also incorporated onboard [Heal92).

Software control is provided by RBM, which is described in Chapter III. The
high-level navigation and system-monitoring functions comprise the Tactical level. Bymes

in [Byrn93] developed a Tactical level instantiation using Classic-Ada, a preprocessor for




68030/0S-9
Vehicle Control

80386/ MS-DOS
Mission Control

Computer Computer

Hard disk Storage
for Mission Data Control/Servo
and Telemetry oards

Sonar transducers

Drive motors

Top View

Tunnel thrusters

Side View

Figure 1 The Naval Postgraduate School AUV 11

the Ada language which produces object-oriented extensions such as inheritance and

dynamic binding.

2. Simulation Environment

Simulation testing is performed on the software in the laboratory before the
software is placed in the actual vehicle. Testing of the model in the laboratory was
accomplished by linking three separate processors through an Ethernet connection using
stream socket communications. The Strategic level was programmed in Prolog and CLIPS
and ran on a Sun SPARCstation 4/280 using the UNIX operating system. The Tactical level

was written in Classic-Ada and was also hosted on a Sun SPARCstation 4/280 running




UNIX. The Execution level and the simulator itself were programmed in C and ran on a
Silicon Graphics 4D/340VGX workstation using the IRIX operating system. The three-

processor test configuration is shown in Figure 2.

Sun SPARCstations Ethemet

Silicon
Graphics

workstation
(IRIX)

Strategic Tactical Execution
Level Level Level

Figure 2 Original AUV Simulator Test Configuration

This Classic-Ada implementation of the Tactical level is truly object-oriented in
the sense that it allows inheritance of object characteristics and provides dynamic binding
of operations to objects. However, this version employs a sequential approach to carry out
required behaviors which presents some problems for multiple modes of operations. This

thesis research is an extension of that work in an attempt to add Ada tasking for concurrent




operations on the Mission Control Computer to fulfill the intent of RBM. The new Tactical
level implementation relies on the Ada RTS without modification for task scheduling and

is discussed in Chapter V.




II1. THE RATIONAL BEHAVIOR MODEL

A. INTRODUCTION

The Rational Behavior Model (RBM) is an autonomous vehicle centrol software
architecture composed of three distinct levels. The levels of RBM are based on the degree
of abstraction of the problem domain, and they are, from highest to lowest: the Strategic,

Tactical, and Execution levels [Kwak92]. The structure of RBM is illustrated in Figure 3.

Programming
Paradigm _ _
. Strategic
Logic Level N
| SAMAMAMASAMMAMMAMSMAMAAMAMSMOASAAMMIAMMAAAAIARMAN
Object-oriented Tactical Level :
Imperative Execution Level

e e . l‘evel of
Abstraction

Figure 3 RBM Structure




The power of RBM for software engineering lies in its tailoring available design

resources to address the important aspects of the problem at hand. When the programming
paradigm matches the abstraction of the problem instead of being forced into it, the result
is robust and easily understood software. Such software can be modified with little

difficulty, satisfying one of the key objectives of software engineering.

B. STRATEGIC LEVEL

The Strategic level stands at the top of the RBM hierarchy. At this level, the essence
of a mission is expressed using clear, high-level logic so that the vehicle can act in a rational
manner. Logic for sequencing behaviors is encapsulated at this top level. Simplicity is
maintained by the Strategic level having no internal memory and no knowledge of
operational details. Required mission behaviors are provided by the process of goal-driven
decomposition. A root or mission goal is repeatedly refined into its constituent subgoals
until primitive goals are reached. Implementation is initiated at this point. Because the
reasoning process proceeds according to a deliberate sequence, the Strategic level can be
expressed quite naturally in a rule-based programming language like Prolog or CLIPS. The
rule set of the Strategic level is divided into mission specification and doctrine. The mission
specification part deals with knowledge unique to a mission, while the doctrine part
concemns mission-independent knowledge that is usually tied to the nature of the vehicle.

Once a primitive goal is identified, the Strategic level calls on the Tactical level to
start some type of appropriate behavior. These calls can be either queries or commands.
Queries are information requests which require a binary response. Commands are orders
requiring no feedback other than an acknowledgment of completion of the ordered task. If
more information is needed to make a decision after a command has been issued, queries

are used to poll the Tactical level [Byrn93]).

C. EXECUTION LEVEL

The Execution level lies at the other end of the RBM hierarchy. It is responsible for

the multitude of complex physical actions that comprise the primitive goals of the Strategic

10




level; therefore, it must guarantee basic vehicle stability. Stability is provided by a series of
autopilots driven by servo loops. In addition, processes with hard real-time scheduling
constraints are encapsulated at the Execution level. While computation at the Strategic
level is purely symbolic, computation at the Execution level is completely numeric to
ensure timing requirements are met. Implementation of this level requires an imperative
programming language with good numeric computation speed such as C or Fortran.

Since it is the base of the RBM hierarchy, the Execution level must act as the
intermediary between the software and the hardware. This level receives setpoints and
vehicle mode information from the Tactical level, and its autopilots must use these data
repeatedly until they are updated. Autopilot commands are sent to motors, control surfaces,
and other hardware devices using digital and analog signals. Information is received from
analog hardware devices in the form of digital readings. Changes in hardware are mostly
contained within the Execution level unless new tasks or new hardware capabilities are

added. In this case, the Tactical level must be modified as well [Byrn93).

D. TACTICAL LEVEL

The Tactical level is the middle level in the tri-level RBM hierarchy and is the focus
of this research. This level is the crucial link between the knowledge-based orientation of
the Strategic level and the numeric-based orientation of the Execution level. Therefore, the
primary objective of the Tactical level is to act as a bridge between the two end levels and
cannot be discussed without reference to these two levels. This level responds to queries
and commands from the Strategic level and inputs from the Execution level through
specific behaviors.

In its role as coordinator between the Strategic level and the Execution level, the
Tactical level must be an analyst and translator. Abstract behaviors from the Strategic level
must be analyzed and then translated into their executable details to be performed by the
Execution level. The Tactical level takes the general descriptions of what the vehicle is

supposed to do and supplements these with timing details and physical constraints of the

11




vehicle as it decomposes them into simpler and simpler behaviors. The resulting primitive
behaviors, which consist of data requests and setpoint and control mode commands, are
sent to the Execution level to be carried out [Kwak93].

Tactical level behaviors can be grouped under the entities which perform them. These
entities have state, behavior, and identity and are called software objects [Booc91].
Objects, in turn, are organized into a hierarchy such that each parent object decomposes
into one or more dependent, or child, objects. The object at the top of the hierarchy acts as
the interface between the detail-free Strategic level and the rest of the hierarchy. An object
at the Tactical level only has knowledge of its parent and its children and nothing else. To
access any other object, including its own siblings, an object must go through the parent of
that other object. The only exception to this rule is that data required by multiple objects
can be retrieved directly from specifically designated database manager objects [Byrn93].
Modifications and additions to the object hierarchy are facilitated by this structure. In
addition, parallel threads of control can be identified among objects under different parents

for concurrent execution [Kwak93].

E. TACTICAL LEVEL REQUIREMENTS

Just as the quality of a bridge depends on its keystone, the strength of the Tactical level
as an interface between the Strategic and Execution levels in RBM depends on its design
specification. An appropriate structure for the design specification of the Tactical level is a
basic requirement for implementation. The design pattern used for this research was the
watch crew of a submarine, which provides a representative, well-understood model for
Tactical level relationships [Byrn93].

The design specification is not very useful unless it is supported by appropriate
programming facilities. A programming language is the raw material out of which the
Tactical level bridge is built. Its utility as a bridge depends on the appropriateness and
power of the language chosen for implementation. The least that is required to represent the

relationships of this level is an object-based language, although an object-oriented

12




language is preferred to accommodate future modification and growth. Some method for
implementing concurrency is also necessary. Choosing a programming language is

discussed in the next chapter.

13




IV. TACTICAL LEVEL PROGRAMMING LANGUAGES

A. BACKGROUND

There are numerous programming languages that are object-oriented or object-based.
This number is reduced substantially when the criterion of constructs to support
concurrency is considered. Many powerful object-oriented languages such as C++ and
CLOS do not presently provide explicit support for concurrency. The remaining subset of
languages is limited to Ada and its variants. The applicability of these languages to the

Tactical level problem domain is now examined.

B. ADA
Ada is an object-based language developed for the United States Department of

Defense to handle very large, software-intensive systems. Ada has numerous features
which support object-oriented design, including packages, tasks, and generic units
[Booc91]. Since Ada has objects but does not have explicit classes, however, it has no
mechanism for inheritance, dynamic binding, or polymorphism in its present form.
Therefore, message passing between objects is detailed, complicating design in a large
software system incorporating many related classes of objects. This does not pose a
problem for the Tactical level as it is currently designed for the AUV, because an object
hierarchy is sufficient to specify relationships. Future growth and redesign would be better
accommodated by a class-based language.

Concurrency is supported in Ada through its task construct. Tasks are based on the
Communicating Sequential Processes (CSP) model [Hoar78] in which processes
synchronize and then pass messages through input and output statements. This
synchronization is called a rendezvous and is required between two processes before
communication can occur. If one task reaches the rendezvous point before the other, it must
wait or accept another task that is ready to pass a message. Exclusive access to data or a

resource is thus built in with the CSP model, since a task can only communicate with one

14




other task at any given time. Ada’s accept statements and entry calls function in the same
way as CSP’s input and output statements, respectively, with some added features. First,
communication in Ada tasks is bidirectional, while it is strictly unidirectional in CSP tasks.
Second, to CSP’s parameter copying, the Ada rendezvous adds the capability for the called
task to execute statements and return results to the calling task [Geha84]. Although tasks
cannot stand alone, they can be encapsulated as objects, providing a powerful abstraction
mechanism for object-based applications that are concurrent in nature. Task objects are an
excellent representation for the objects of the Tactical level which must perform multiple

functions.

C. CLASSIC-ADA

Classic-Ada is a preprocessor for Ada which adds capabilities needed to complete the
object-oriented paradigm. Processing Classic-Ada code yields pure Ada source code with
special data structures to support inheritance, dynamic binding, and polymorphism. Data
and behaviors for an object are written as instance variables and instance methods,
respectively. These characteristics are unique to that object and its class. An object
communicates with another object simply by using a send statement with the object name
and the instance method name [Soft92]. This extension to Ada provides a much more
concise method for message passing between objects. Messages can be passed without any
bulky or artificial syntax as in Ada. Also, a class structure can be built which facilitates
modifications to the Tactical level because of the built-in inheritance mechanism.

Concurrency is supported in Classic-Ada through the Ada task construct. However,
there is no provision for implementing tasks at the object level. Tasks can only be declared
within methods, severing the link between objects and tasks that is available in Ada. This
restriction severely limits the usefulness of Classic-Ada for implementing object-oriented

designs that involve a significant amount of concurrency, such as the Tactical level.

15




D. ADA9X
Ada 9X is a revised version of Ada which updates the 1983 ANSI Ada standard.

Although it is not yet commercially available, Ada 9X deserves examination. It will soon
become the standard for Ada, and it incorporates some object-oriented capabilities. Ada 9X
provides for inheritance, dynamic binding, and polymorphism through its ragged type
construct, which allows components to be added to a type when it is derived. Public and
private record types are the only types that can be tagged.

Ada 9X also enhances the basic task construct for concurrent programming. More
flexibility is provided in choosing priority and scheduling rules, task delay times can be
made explicit, and asynchronous transfer of control is provided by additions to the task

select statement [DoD93). Nevertheless, the object-oriented paradigm is not extended to

task types; task types cannot be tagged and thus are static in nature!. Since its task type is
unchanged from Ada, Ada 9X offers no significant advantage for representing the

concurrency of the Tactical level.

E. COMPARISON OF PROGRAMMING LANGUAGES

Ada, Classic-Ada, and Ada 9X all have advantages and disadvantages for the Tactical
level application. Ada supports concurrency well with its rendezvous, providing a high-
level model of communication to enforce mutual exclusion. Classic-Ada extends Ada but
superimposes object-oriented features at a higher level rather than integrating them with
Ada [Atki91]. The lack of object-level tasking is a serious drawback. Ada 9X offers
promise for integrating object-oriented features with Ada in many areas but not in the area
of concurrency. What is needed is a language that combines object-oriented and concurrent
concepts, considering classes, objects, and tasks together. Figure 4 illustrates the current
programming language situation. In the absence of such a language, Ada was chosen for its

availability and the flexibility of its task construct.

1. In Ada 9X. as in Ada, the number of tasks of a task type can be dynamic.

16




Ada Classic-Ada

Objects Classes
+ “— +
Tasks Objects

Classes
+

Objects
+
Tasks

Figure 4 Tactical Level Programming Languages.

17




V. TACTICAL LEVEL IMPLEMENTATION

A. OVERVIEW

The quality of the Tactical level implementation depends significantly on the quality
of its design. As mentioned in Chapter II1, the watch crew of a manned submarine offers a
natural model for representing the entities and behaviors of the Tactical level. Using this
model, an object hierarchy can be built which supports an implementation model. The
implementation model is the method of construction of the Tactical level bridge; it
determines how the raw material of the programming language gets put together on the

keystone of the design model.

B. DESIGN MODEL

The design specification for the Tactical level is given in Figure 5. The blocks in the
diagram stand for distinct entities within the Tactical level structure, and each one
corresponds to a software object. The hierarchical structure of the Tactical level
encompasses most of the objects and is indicated by the dotted lines between them. The
AUV Officer of the Deck (OOD) provides overall operational control at this level and
stands at the top of the hierarchy. The OOD also provides the sole interface between the
Strategic and Tactical levels. Top level primitive goals are handed to the OOD so that he
can activate the behaviors understood by the Tactical level to satisfy those goals. In the
watch crew, the Captain gives commands or requests the status of the submarine’s systems
from the OOD. The OOD, in turn, in gives the required orders to satisfy the goal or answer
the query issued by the Captain.

The Tactical level objects cover all the behaviors that the vehicle can perform.
Coordinating the operations of each object, the OOD insures each task is completed
appropriately. Behaviors are implemented as methods within an object. For the most part,
behaviors require the involvement of multiple objects. Communication between objects is

accomplished through message passing. As mentioned. communication is limited to

18




1pusg Rose)
UoNBULIO ] swasAsqng
10SUIG APIPA

s1ped
b_wm_v:-o_o._.

J08USS

(sawvos *sd3 10§
SUCHRANE

MO BIRp SjedIpUl
(diysuoneja1 jo wed) Ayosreldry 133(qo saedipul

[9A37T UONNIIXHY

[9AY] [BIEL

"ojidoiny
10) 53poy
SIULO,
a...-.uc.umu peolded
13RS 1PYIO
puswwo)) P M

B:...ﬂﬁox Buweiday MU ) ._Swm_...uum__au Joreope) || 10meinore
spiyay || PH0 1280} |lyoeay ssoumf| 3WWOH || SO1
SIPA) Buueiday] |3utuoxesy
SWAASAY uotsT I pea
1udugy 1oredavN

i

19A153Yy
Kiosuag

00
nv

19pI00Y
ne(

PPO

PHOM

19pON
uoISSIN

[9A9] [BI1EL

Figure 5 Tactical Level Design Model

sasuodsay pue suOBAILY [EOD) ALY

aumdo(
uoreay!

UOISSIN

[3A3] ndajeng

19




parent-child pairs. In this scheme, efficiency is sacrificed to gain modularity of code and
ease of understanding for the user.

Just as all Strategic level communications must go through the conduit of the OOD,
all contact with the Execution level is similarly constrained. Command packets comprised
of setpoints and modes are transferred solely through the Command Sender object under
the direction of the OOD. In addition, telemetry data is accepted from the Execution level
by the Sensory Receiver object exclusively. The limitations on these interfaces eliminate
command and data discrepancies.

There are a number of objects that are disconnected from the object hierarchy in the
Tactical level. These correspond to databases that serve any other requesting object any
time their respective data are needed. They contain the state of the mission (Mission
Model), the perceived state of the environment (World Model), recorded mission history

(Data Recorder), and current sensor readings (Sensory Receiver) {Byrn93].

C. IMPLEMENTATION MODEL

The implementation model gives life to the relationships expressed in the design
model. The structure of the implementation model using Ada is illustrated in Figure 6. The
methodology for this design was to provide concurrency between objects while adhering to
the control requirements of RBM. Getting the AUV to execute a mission involving multiple
modes of operation and showing that it can replan a mission in progress without giving up
control were the goals of the implementation. The code for the implementation in Ada is

found in Appendix A.

1. Description of Communication
Commands and queries are passed between Tactical level objects by means of
task entry calls with boolean flags. Each command issued to the OOD has a goal flag which
gets set to true when execution of the command is complete. A command is attempted until
the goal flag is set to true to insure that it gets executed. Each query has a return flag and a

goal flag. The return flag gets set to true when the appropriate object has received the

20




19pudg 13[j05U0)
uotreuuoju] suisisqng
losuag A3

Y

A1
bo.n:umx

-

[9A9] UONNMIIXH

[2A97] [eI1IEY,

CITETR)
ORIV Jojeind
) R

SO1
\ _ [ 7
Buiuoyo2 [osuo) [oauo)) 1noy
peed & 1vuog Sdo soueping] PVEPINO
_ [ I
roun 1m0y [ ioedune
v..-o_vr:u.mou 1304 WW» 1wmdug onad neN
Jamoy | aoo 1apioaxy 1PPON 19poly
d 3 uoi
aoo ANV PHOM 1SSIN
[9A97] [ed)E],
[9A97] 2139)eMS
uu0q %
uonedyade
UOISSIN

Figure 6 Tactical Level Implementation Model

21




query. In this case, the goal flag gets se: based on a positive or negative response to the

query. A query is attempted until the return flag is set to true to insure that the query has

- been communicated to the target object.

All upper level objects in the hierarchy are represented as tasks in Ada. Each of
these tasks consists of a set of accept statenmients, which are messages for behaviors that the
respective object or its children perform. Each accept statement further contains entry calls
to child objects, and this chain of message passing continues until an object is reached that
can execute part or all of a given command or answer a given query. An example of the

message passing pattern is shown in Figure 7.

task A is

accept QUERY_.A(GOAL_FLAG. RETURN_FLAG : out BOOLEAN) do
if QUERY_A =TRUE then
lGOAL_I-'LAG := TRUE;
else
GOAL_FLAG := FALSE;
end if;
RETURN_FLAG := TRUE;
end QUERY_A;

accept COMMAND_A(GOAL_FLAG : out BOOLEAN) do
task A_1.COMMAND_A(GOAL_FLAG_1);
if GOAL_FLAG_1 = TRUE then
GOAL_FLAG := TRUE;

else
GOAL_FLAG :=FALSE;
end if;
end COMMAND_A;
end task A

task A_lis

\s accept COMMAND_A(GOAL_FLAG_1 : out BOOLEAN) do
do COMMAND _A;
GOAL_FLAG_I := TRUE;
end COMMAND_A;
end task A_I;

—v—

Figure 7 Example of Task Communication

22




The lowest level objects are represented as procedures or functions, since these
objects consist of only basic operations. As leaves on the object hierarchy tree, these objects
require no further communication with any objects so implementing them as tasks would
introduce unnecessary overhead. However, these objects must still be able to communicate
with their parent objects while performing their respective functions to support RBM’s
control scheme. Since the parent object task is suspended while it waits for the child to
complete its required behavior, some alternate way must be used to pass messages to the
parent during this time.

The method of alternate communication used in this research was a series of

router, or relayl, tasks. A relay task waits until it is called by a task with data to send and
then immediately calls the next task in the series. This process continues until the data is
consumed. Use of these intermediary tasks allows for a loosely coupled implementation,
but this advantage must be balanced against the overhead of added tasks [Lema89]
[Niel88]. Relay tasks allow time-consuming behaviors such as search and homing to
continue while the primary route of communication is suspended awaiting an answer to
send back to the Strategic level. The situation is illustrated in Figure 8 using homing as an
example.

The database objects are also all implemented as tasks to insure only one object
at a time can access any one of them. Otherwise, Sonar Control, for example, could set the
vehicle’s mission mode in the Mission Model while the OOD is attempting to read that
value. The Ada rendezvous enforces mutual exclusion, preventing such data
inconsistencies. Only the first entry call is allowed to participate in the rendezvous. All

others are queued and serviced sequentially.

1. Relay tasks are one of three types of intermediary tasks. Buffer tasks, which have an entry to
accept data from a producer and an entry to send data to a consumer when requested, and trans-
porter tasks, which request data using an entry call to a producer task and then provide the datato a
consumer through an entry call, are the other types of intermediary tasks.

23




Command packet
Suspended | OOD OOD Router PRLclayin 2
“Do homing” command Homing setpoint commands
Suspended | Navigator I&%\:lit%z;tor Relaying
“Do homing” command Homing setpoint commands
Suspended | Guidance gg:]t::nce Relaying

“Do homing” command

Homing setpoint commands

Performing oming
homing Calculator Command
gu]d ance Sender

Figure 8 Router Task Communication

2. Description of Objects

a. 00D
This object consists of two tasks, one for the main OOD functions and one for
routing. As the top level of the object hierarchy, the main OOD task must contain accept
statements for all of the primitive goals issued by the Strategic level. Entry calls within each
accept statement activate the behaviors necessary to satisfy a particular goal. The main
OOD task must also coordinate these behaviors. The OOD relay task acts as a backup
channel to the Command Sender when the main OOD task is suspended waiting for a

command to be executed.

b. Navigator
This object also contains a main task and a routing task. The main Navigator
task is responsible for guidance, position estimation, and path replanning. This task’s view
of the world at any given time extends only from its present position to the next waypoint
to make its operation as generic as possible. All mission details are encapsulated in the
Mission Model. Following the OOD’s model, the main Navigator task passes on orders to
its subordinates using entry calls and coordinates their actions. In the case of mission

replanning, this coordination involves concurrency, as guidance for loitering must be

24




provided at the same time as the mission route is being replanned. The Navigator relay task
acts as a backup channel to the OOD when the main Navigator task is suspended waiting

for a command to be executed.

¢. Guidance
This object is comprised of a main task and a routing task as well. The
responsibility of the main Guidance task is to provide the heading and depth setpoints to be
included in the command packet sent to the Execution level. The accept statements in this
task contain calls to procedures that do various types of guidance.
For this study, line-of-sight (LOS) guidance and homing guidance were both
implemented. The new command heading to a waypoint is computed for LOS guidance as

follows:

\Pcmd (Eql)

(Ynext - Ycurr)
X. -X ]

- atan[

next curr)

where:
Xcurrs Ycurr = X, Y components of AUV’s current position.

Xnext» Ynext = X, Y components of next waypoint.

The new command heading to a target is computed for homing guidance using

the following equation:
\Pcmd = ‘Pcurr + B (Eq2)
where:

¥,,,, = Current vehicle heading.

B = Sonar relative bearing to target.

The Guidance relay task acts as a backup channel to the Navigator when the

main Guidance task is suspended waiting for a command to be executed.

25




d. GPS Control
This object is responsible for controlling the Global Positioning System
receiver and accessing it for navigation. This capability was not modeled for this research.
The GPS Control task in this implementation simply returns a positive response when a
GPS fix is requested. Research on integrating GPS in this environment is included in

[Stev93].

e. Sonar Control
This object issues sonar commands, checks for and logs objects, and monitors
the sonar for various tasks such as search. In this study, this object consists of a single task
which monitors the sonar range and bearing values while the vehicle executes the command
“do search pattern”. The task executes an expanding box search algorithm until threshold
values for both range and bearing are detected from the sonar. The search pattern and

algorithm are shown in Figure 9.

J. Dead Reckoning
This object provides present position based on a known position fix, actual
heading, and elapsed time. The Tactical level dead reckoner serves as a backup to the
Execution level dead reckoner to crosscheck its operation. The dead reckoner was not

implemented for this study.

8. Mission Replanner
This object has a single task to perform local replanning for avoiding
obstacles and global replanning to accommodate a vehicle fault. Global replanning was
modeled by using a delay statement and instantaneously changing the mission route
through the Mission Model.

h. Engineer

This object consists of one task to monitor the condition of each vehicle

system. For this study, a thruster system problem was modeled by reducing the thrust level

26




B3,

-}
Bl,
B2,
B3 | BI4 Bl,
B2,
v sun

Algorithm DO_SEARCH_PATTERN
begin

LEG_NUM :=0;

Initialize SEARCH_HEADING
loop

LEG_NUM :=1;
end if;

else --Command heading <=0

end if;
LEG_NUM :=LEG_NUM + 1;

end if;

end loop:
end DO_SEARCH_PATTERN;

NEXT_TIME := CLOCK + INTERVAL - TURN_TIME;

--Change heading to make box comer and normalize
if SEARCH_HEADING > (PI / 2) then --Command heading > 0

SEARCH_HEADING := SEARCH_HEADING - (P1/2);

NEXT_TIME := NEXT_TIME + LEG_TIME;

Receive SONAR_BEARING and SONAR_RANGE
Send SEARCH_HEADING and SEARCH_MODE
exit when SONAR_RANGE < RNG_LIMIT and ABS(SONAR_BEARING) < BRG_LIMIT;

if CLOCK > NEXT_TIME then --Change heading for new leg
if LEG_NUM = 2 then --Expand the box
LEG_TIME := LEG_TIME + INTERVAL;

SEARCH_HEADING := SEARCH_HEADING + (3 P1/2);

Bi, indicates the
position in the
search pattern

where:

i = Box number

k = Leg number

Figure 9 Expanding Box Search Pattern and Algorithm

gradually from an initial value until it moved below a given threshold. Accept statements

for all other system checks give a negative response to indicate the systems are operating

properly.

i Weapons Officer

The Weapons Officer is comprised of one task that is responsible for

monitoring and delivering the vehicle’s payload. This capability was not implemented for

this research. The command to employ weapons simply returns a positive response.

27




J. Command Sender
This object accepts command packets built by the OOD and sends them to the
Execution level. A command packet consists of command X and Y coordinates, command
heading, command depth, command speed, and mode. Since this object just relays data and
cannot be accessed by any object other than the OOD, it was implemented as a procedure.
The physical separation of the Tactical and Execution levels in this study required

additional procedures for network communications.

k. Sensory Receiver
This object consists of a single task that accepts telemetry records from the
Execution level, stores the individual values, and provides the data to other Tactical level
objects when requested. Each sensory packet contains vehicle position represented as X
and Y coordinates, altitude above the bottom, and depth. This object is also responsible for
putting a time stamp on a sensory packet before sending it to the Data Recorder, although

this feature was not implemented in this work.

L Mission Model
This object is comprised of one task to hold and manage the waypoints that
make up the mission route and the vehicle modes for the various phases of the mission. For
the purposes of this thesis, these values were entered in data files which were read in by the

Mission Model upon initialization of the simulator.

m. World Model
This object has one task to hold and manage known objects and other
environmental data. Obstacles were the only type of environmental data used in this study.
These data were entered in files and read in during initialization as the Mission Model data

was.

28




n. Data Recorder
This object consists of a single task to accept and maintain telemetry records
and other explanatory messages for post-mission analysis. This object was not modeled for

this research.

3. Mission Environment

A mission in reality involves multiple phases and the possibility of unforeseen
system problems. Such an environment requires the AUV to operate in more than one mode
and the OOD to coordinate the behaviors of Tactical level objects concurrently as well as
sequentially.

The target mission for this research was a search-and-rescue mission developed
by the 1992 National Science Foundation workshop on furthering and evaluating autonomy
in the area of underwater vehicle technology [Stee92]. In this mission, the AUV must
traverse a given search area, locate a subsurface buoy, cut the buoy’s mooring line, drop a
package as close to the buoy as possible, returm to the launch site, and surface. The
interpreted rule set for this mission written in Prolog is presented in [Byrn93]. The mission
is broken down into the following four phases: transit, search, task, and return.

The vehicle has four modes that correspond directly to the four mission phases.
Transit and return are basically the same at the Tactical level. Navigation is executed using
LOS guidance after the Navigator receives each query about whether a waypoint is reached.
The only concurrency implemented in these modes is this execution of LOS guidance as
the Tactical level releases control back to the Strategic level for the next command to be
issued, and this is minimal.

Initiation of the search mode creates problems for a sequential implementation.
The Strategic level must know the search is completed before issuing the next command,
and so it waits on the OOD. The OOD waits on the Navigator, which waits on Sonar
Control. While all these tasks are suspended, control of the vehicle must be maintained for

the search through the objects that are waiting for the search to complete. Therefore, a

29




series of relay tasks is required in Ada to provide intra-object concurrency. The situation is
the same in the task mode while homing is being performed. The OOD waits on the
Navigator, which waits on Guidance, which waits on the Homing Calculator. The sequence
of router tasks allows homing guidance commands to get through while these other tasks
await the completion of homing.

When a system problem occurs, multitasking is required to maintain control of the
vehicle during route replanning. The Strategic level issues the command to start replanning
to the Tactical level when a system problem is encountered. The Navigator must send a
command to the Mission Replanner to start replanning simultaneously with a command to
Guidance to loiter. In Ada, this is accomplished by first issuing a parameterless entry call
to the Mission Replanner, which has a simple accept call and a separate set of statements
to perform replanning. This entry call is followed by an entry cali to Guidance to loiter, and
the Navigator task is suspended until loitering is done. Suspension of the Navigator task
requires Guidance to utilize the router tasks to send commands to the Execution level as in
the case of the search and task modes. The replanning operation and loitering guidance
continue in parallel until replanning is done with the Ada RTS providing the scheduling of
the two tasks. The situation is illustrated in Figure 10. Thus, inter-object concurrency is
provided in addition to the intra-object concurrency provided by the relay tasks.

Operation of the implementation in a mission -oriented environment is discussed

in the next chapter.

30




Time

Navigator Task:

Start Replan
Loiter

RTS Mission Replanner Task:
Scheduler Delay

Replan

Guidance Task:
Loiter

Navigator Task:
Release control back
to Strategic level

Figure 10 Multitasking in Route Replanning

3




V1. TESTING AND RESULTS

A. INTRODUCTION

Testing the Tactical level implementation was accomplished using the simulation
facilities available in the laboratory. The simulation environment was set up to reflect the
actual hardware and software configuration on the NPS AUV. Mission scenarios were then
developed to represent the conditions of the search-and-rescue mission described in
Chapter V. The AUV graphical simulator provided for the entry of waypoints and obstacles
using Cartesian coordinates in a visual model of the NPS pool to support this scenario

development [Ong90].

B. SIMULATION ENVIRONMENT

To test the implementation, modifications were made to the configuration described in
Chapter II to reproduce the environment on the vehicle. Two processors were used to
represent the two processors on the actual vehicle. The Strategic and Tactical levels were
run together under the UNIX operating system on a Sun SPARCstation 3/180,
corresponding to the Mission Control Computer. The Strategic level was coded in CLIPS-
Ada, a preprocessor which compiles CLIPS code to Ada source code, to allow the Strategic
and Tactical levels to reside on the same processor. A description of this CLIPS-Ada
implementation and the code are presented in [Scho93). The Tactical level was coded in
Ada, as described in Chapter V. The Execution level used the same C code as the previous
implementation and was again run under the IRIX operating system on a Silicon Graphics
4D/340VGX Workstation, corresponding to the Vehicle Control Computer. The two-
processor test configuration is shown in Figure 11.

A sonar model was required for the simulation so that all phases of the mission could
be tested. Sonar was simulated by adding code to the Sensory Receiver to track range and

bearing to a target, which was represented by an obstacle entered into the World Model.

32




Mission Vehicle
Control S — Control
Computer Computer
80386 Paralle] 68030
AUV (DR DOS)|__Serial (0S-9)
Sun SPARCstation
(UNIX)

Silicon
Graphics
workstation
(IRIX)

AUV
Simulator

Ethernet

Strategic Tactical Execution
Level t Level Level
(CLIPS-Ada) (Ada) ©)

Figure 11 AUYV Simulator Test Configuration and Vehicle Configuration

This modification allowed the search and rask modes of the AUV to be demonstrated
realistically.

A vehicle mode was entered along with each waypoint in the waypoint data file that
the simulator read into the Mission Model. In this way, a vehicle mode could be selected at

each waypoint based on the mission profile. Available choices for the vehicle mode include

transit, search, and returnl,

1. Task is an invalid choice because this mode is automatically triggered by the successful comple-
tion of the search mode. When the search ends, homing begins, initiating the rask mode.

33




C. SCENARIOS

1. Multi-Phase Mission
The first scenario tested was the straight four-phase search-and-rescue mission.
For this scenario, a set of three waypoints and a single obstacle were chosen to cover the

four mission phases. Figure 12 depicts the mission route. The vehicle was programmed for

Search

| Task (Homing)

)
e
aypoint \

Transit Waypoint 2/

Target

Retumn

Start
\l ! Waypoint 3

Figure 12 Multi-Phase Mission Scenario

the transit mode during the first leg, corresponding to the transit phase of the mission. The
vehicle simply executes LOS guidance between waypoints in this mode. At the first
waypoint, the vehicle was programmed to change to the search mode and execute an
expanding box search pattern, corresponding to the search phase of the mission. The
vehicle was then set to transition automatically to its fask mode, corresponding to the task
phase of the mission. The vehicle executes homing guidance in this mode with the obstacle

as its target. The vehicle completes the task upon reaching its target. After reaching the

34




target, the vehicle was programmed to change to the return mode for the last two legs,

corresponding to the return phase of the mission.

2. Multi-Phase Mission With Route Replanning

This scenario used the same mission route and vehicle modes as the first one. A
low thrust level, simulating a thruster system problem, was programmed to occur during
the transit phase. When faced with such a problem, the vehicle simultaneously loiters and
shortens its mission route to insure it reaches its final goal before system degradation
becomes too serious. Route replanning is accomplished in this implementation by sending
a message to the Mission Model requesting a shortened route. In reality, the Mission
Replanner would d - rmine this shortened route and pass the modified waypoint data to the
Mission Model in the message. The vehicle was programmed in this run to eliminate the
search and task phases of the mission and to go straight to its refurn mode for the mission’s

return phase.

D. RESULTS

In the first scenario, the vehicle successfully executed all phases of the mission,
transitioning through all its modes and reaching all waypoints and the target. There was a

problem wth communication between the Tactical and Execution levels due to the

simulator protoco]z. This problem arose because of the combination of the long line of
communication to the Command Sender and the short line of communication to the
Sensory Receiver under RBM. The problem was averted by using a short delay during the
search and task modes.

In the second scenario, the vehicle accomplished both of its simultaneous tasks. It

loitered in place after detecting the system problem for the time of the programmed delay,

2. The simulator requires an even balance between transmissions and receptions. Whenever it sends
a set of data, it must receive a command packet before it can send another set. The actual vehicle is
not subject to this constraint.

35




proceeded to the first waypoint, transitioned to the refurn mode, and completed the return
phase of the mission.
Traces of the execution of the Tactical level code under these two mission scenariosare

found in Appendix B. A user’s guide for the AUV simulator is provided in Appendix C.

36




VII. CONCLUSIONS AND FUTURE WORK

In this thesis, a concurrent, object-based implementation is developed and evaluated
for the Tactical level of the Rational Behavior Model. Previous work in this area has
focused on object-oriented implementation exclusively or minimal use of concurrent
programming facilities. However, the Tactical level is the essential bridge between the top
and bottom levels of RBM, and it must handle concurrent, as well as sequential, operations
among its objects for the success of the model in practice. In the absence of a programming
language that combines object-oriented features with constructs for concurrency, Ada
remains the best choice for an implementation of the Tactical level. The Tactical level
implementation in this work uses relay tasks for intra-object concurrency to handle
multiple phases of a mission and parameterless task entry calls for inter-object concurrency
to handle route replanning. Both of these mechanisms insure control of the vehicle is
maintained throughout a mission. Simulation testing shows that control of the vehicle is
indeed maintained continuously with such an implementation even in the face of time-

consuming tasks.

A. RESEARCH CONTRIBUTIONS

This research has numerous benefits. First, it provides an example for implementing
multitasking to aid in the control of autonomous vehicles. This capability is very important
for them to reflect rational behavior. Second, this work reiterates the value of the object-
oriented paradigm for this problem domain. Object-oriented techniques increase the
modularity and simplicity of the Tactical level implementation, improving the reliability
and maintainability of the software. Finally, this research reveals the weakness of current

programming languages in integrating concurrency with the object-oriented paradigm.

B. SUGGESTIONS FOR FUTURE RESEARCH

There are many ways to build on the foundation this research has established. One area

that was started in this work but not completed was transferring the simulator

37




implementation to the actual vehicle and testing it. Another area for future research is
developing a more complete implementation and testing how much load one processor can
bear. Extensive use of Ada tasks, especially such intermediary tasks as relay tasks, imposes
a significant amount of overhead, and time did not permit a full analysis of this factor in
this work. Finally, distributed implementations of the Tactical level represent fertile ground
for future work, since the NPS AUV is fitted with a transputer board. Progress in any of

these areas would make the Tactical level a stronger, more robust link in RBM.

38




APPENDIX A. TACTICAL LEVEL SOURCE CODE

--Title :tac_lv_s.a

--Author : F.P. Thomton Jr.

--Revised 126 Aug 93

--Compiler :VADS

--System : Unix

--Description : Specifications for procedures for Ada side of Clips-Ada/Ada
- interface for simulator version of AUV Tactical level

package TACTICAL_LEVEL1 is

procedure READY_VEHICLE_FOR_LAUNCH(GOAL_FLAG : in out INTEGER);
procedure SELECT_FIRST_WAYPOINT(GOAL_FLAG : in out INTEGER):
procedure ALERT_USER(GOAL_FLAG : in out INTEGER);
procedure IN_TRANSIT_P(GOAL_FLAG : in out INTEGER);
procedure TRANSIT_DONE_P(GOAL_FLAG : in out INTEGER);
procedure IN_SEARCH_P(GOAL_FLAG : in out INTEGER);
procedure SEARCH_DONE_P(GOAL_FLAG : in out INTEGER):
procedure IN_TASK_P(GOAL_FLAG : in out INTEGER);
procedure TASK_DONE_P(GOAL_FLAG : in out INTEGER);
procedure IN_RETURN_P(GOAL_FLAG : in out INTEGER);
procedure RETURN_DONE_P(GOAL_FLAG : in out INTEGER):
procedure WAIT_FOR_RECOVERY(GOAL_FLAG : in out INTEGER);
procedure SURFACE(GOAL_FLAG : in out INTEGER);
procedure DO_SEARCH_PATTERN(GOAL_FLAG : in out INTEGER);
procedure HOMING(GOAL _FLAG : in out INTEGER);
procedure DROP_PACKAGE(GOAL_FLAG : in out INTEGER);
procedure GET_GPS_FIX(GOAL_FLAG : in out INTEGER);
procedure GET_NEXT_WAYPOINT(GOAL_FLAG : in out INTEGER):
procedure SEND_SETPOINTS_AND_MODES(GOAL _FLAG : in out INTEGER);
procedure REACH_WAYPOINT_P(GOAL_FLAG : in out INTEGER);
procedure GPS_NEEDED_P(GOAL_FLAG : in out INTEGER):
procedure UNKNOWN_OBSTACLE_P(GOAL_FLAG : in out INTEGER);
procedure LOG_NEW_OBSTACLE(GOAL_FLAG : in out INTEGER);
procedure LOITER(GOAL_FLAG : in out INTEGER);
procedure START_LOCAL_REPLANNER(GOAL_FLAG : in out INTEGER);
procedure START_GLOBAL_REPLANNER(GOAL_FLAG : in out INTEGER);
procedure POWER_GONE_P(GOAL_FLAG : in out INTEGER);
procedure COMPUTER_SYSTEM_PROB_P(GOAL_FLAG : in out INTEGER);
procedure PROPULSION_SYSTEM_PROB_P(GOAL _FLAG : in out INTEGER);
procedure STEERING_SYSTEM_PROB_P(GOAL_FLAG : in out INTEGER);
procedure DIVING_SYSTEM_PROB_P(GOAL_FLAG : in out INTEGER);
procedure BUOYANCY_SYSTEM_PROB_P(GOAL_FLAG : in out INTEGER);
procedure THRUSTER_SYSTEM_PROB_P(GOAL_FLAG : in out INTEGER);
procedure LEAK_TEST_P(GOAL_FLAG : in out INTEGERY);
procedure PAYLOAD_PROB_P(GOAL_FLAG : in out INTEGER);

end TACTICAL_LEVEL];

39




--Title ttac_lv_ba

--Author : F.P. Thomton Jr.

--Revised 126 Aug 93

--Compiler : VADS

--System : Unix

--Description : Procedures for Ada side of CLIPS-Ada/Ada interface for
- simulator version of AUV tactical level

with TEXT_IO, OOD;
use TEXT_IO, OOD;

package body TACTICAL_LEVELI is

package FLOAT_INOUT is new FLOAT_IO(FLOAT);
package INTEGER_INOUT is new INTEGER_IO(INTEGER):
use FLOAT_INOUT, INTEGER_INOUT;

procedure READY_VEHICLE_FOR_LAUNCH(GOAL_FLAG : in out INTEGER) is
begin
THE_OOD.CREATE;
THE_OOD.READY_VEHICLE_FOR_LAUNCH(GOAL_FLAG);
PUT("READY_VEHICLE_FOR_LAUNCH GOAL FLAG =");
PUT(GOAL_FLAG, WIDTH=>3);
NEW_LINE;
end READY_VEHICLE_FOR_LAUNCH:

procedure SELECT_FIRST_WAYPOINT(GOAL_FLAG : in out INTEGER) is
begin
THE_OOD.SELECT_FIRST_WAYPOINT(GOAL_FLAG);
PUT(*SELECT_FIRST_WAYPOINT GOAL FLAG =");
PUT(GOAL_FLAG, WIDTH=>3);
NEW_LINE:;
end SELECT_FIRST_WAYPOINT;

procedure ALERT_USER(GOAL_FLAG : in out INTEGER) is
begin
loop
THE_OOD.ALERT_USER(GOAL_FIL.AG);
exit when GOAL_FLAG =1;
end loop;
PUT("ALERT_USER GOAL FLAG =*);
PUT(GOAL_FLAG, WIDTH=>3);
NEW_LINE;
end ALERT_USER;

procedure IN_TRANSIT_P(GOAL_FLAG : in out INTEGER) is
RETURN_FLAG : INTEGER :=0;
begin
loop
THE_OOD.IN_TRANSIT_P(GOAL_FLAG, RETURN_FLAG);

40




exit when RETURN_FLAG = 1;
end loop;
PUT(*IN_TRANSIT_P GOAL FLAG =");
PUT(GOAL_FLAG, WIDTH=>3);
NEW_LINE;
end IN_TRANSIT_P;

procedure TRANSIT_DONE_P(GOAL_FLAG : in out INTEGER) is
RETURN_FLAG : INTEGER :=0;
begin
loop
THE_OOD.TRANSIT_DONE_P(GOAL_FLAG, RETURN_FLAG):
exit when RETURN_FLAG = 1;
end loop;
PUT(“TRANSIT_DONE_P GOAL FLAG =*);
PUT(GOAL_FLAG, WIDTH=>3);
NEW_LINE;
end TRANSIT_DONE_P;

procedure IN_SEARCH_P(GOAL_FLAG : in out INTEGER) is
RETURN_FLAG : INTEGER :=0);

begin
loop
THE_OOD.IN_SEARCH_P(GOAL_FLAG, RETURN_FLAG):
exit when RETURN_FLAG = I;
end loop;
PUT(“IN_SEARCH_P GOAL FLAG =*);
PUT(GOAL_FLAG, WIDTH=>3);
NEW_LINE;

end IN_SEARCH_P;

procedure SEARCH_DONE_P(GOAL_FLAG : in out INTEGER) is
RETURN_FLAG : INTEGER :=0;
begin
loop
THE_OOD.SEARCH_DONE_P(GOAL_FLAG, RETURN_FLAG);
exit when RETURN_FLAG = 1;
end loop;
PUT(*SEARCH_DONE_P GOAL FLAG = "),
PUT(GOAL_FLAG, WIDTH=>3);
NEW_LINE;
end SEARCH_DONE_P;

procedure IN_TASK_P(GOAL_FLAG : in out INTEGER) is
RETURN_FLAG : INTEGER :=0;
begin
loop
THE_OOD.IN_TASK_P(GOAL_FLAG, RETURN_FLAG);
exit when RETURN_FLAG = I;
end loop;
PUT("IN_TASK_P GOAL FLAG =*);

41




PUT(GOAL_FLAG, WIDTH=>3);
NEW_LINE;
end IN_TASK_P:

procedure TASK_DONE_P(GOAL_FLAG : in out INTEGER) is
RETURN_FLAG : INTEGER :=0;
begin
loop
THE_OOD.TASK_DONE_P(GOAL_FLAG, RETURN_FLAG);
exit when RETURN_FLAG = I;
end loop;
PUT(*TASK_DONE_P GOAL FLAG =*);
PUT(GOAL_FLAG, WIDTH=>3);
NEW_LINE;
end TASK_DONE_P;

procedure IN_RETURN_P(GOAL_FLAG : in out INTEGER) is
RETURN_FLAG : INTEGER :=0;
begin
loop
THE_OOD.IN_RETURN_P(GOAL_FLAG, RETURN_FLAG);
exit when RETURN_FLAG = 1;
end loop;
PUT(“IN_RETURN_P GOAL FLAG =*);
PUT(GOAL_FLAG, WIDTH=>3),
NEW_LINE;
end IN_RETURN_P;

procedure RETURN_DONE_P(GOAL_FLAG : in out INTEGER) is
RETURN_FLAG : INTEGER :=0;
begin
loop
THE_OOD.RETURN_DONE_P(GOAL _FLAG, RETURN_FLAG),
exit when RETURN_FLAG = 1;
end loop;
PUT("RETURN_DONE_P GOAL FLAG =*);
PUT(GOAL_FLAG, WIDTH=>3);
NEW_LINE;
end RETURN_DONE_P;

procedure WAIT_FOR_RECOVERY(GOAL_FLAG : in out INTEGER) is
begin
loop
THE_OOD.WAIT_FOR_RECOVERY(GOAL_FLAG);
exit when GOAL_FLAG = I;
end loop;
PUT(“WAIT_FOR_RECOVERY GOAL FLAG=");
PUT(GOAL _FLAG, WIDTH=>3);
NEW_LINE;
end WAIT_FOR_RECOVERY;

42




procedure SURFACE(GOAL _FLAG : in out INTEGER) is
begin
loop
THE_OOD.SURFACE(GOAL_FLAG);
exit when GOAL_FLAG = 1;
end loop;
PUT(“SURFACE GOAL FLAG =*);
PUT(GOAL_FLAG, WIDTH=>3);
NEW_LINE;
end SURFACE;

procedure DO_SEARCH_PATTERN(GOAL_FLAG : in out INTEGER) is
begin
loop
THE_OOD.DO_SEARCH_PATTERN(GOAL_FLAG);
exit when GOAL_FLAG = 1;
end loop;
PUT(*DO_SEARCH_PATTERN GOAL FLAG =");
PUT(GOAL_FLAG, WIDTH=>3);
NEW_LINE;
end DO_SEARCH_PATTERN:;

procedure HOMING(GOAL_FLAG : in out INTEGER) is
begin
loop
THE_OOD.HOMING(GOAL _FLAG);
exit when GOAL_FLAG =1;
end loop;
PUT(“HOMING GOAL FLAG =");
PUT(GOAL_FLAG, WIDTH=>3);
NEW_LINE;
end HOMING;

procedure DROP_PACKAGE(GOAL_FLAG : in out INTEGER) is
begin
loop
THE_OOD.DROP_PACKAGE(GOAL_FLAG);
exit when GOAL_FLAG = 1;
end loop;
PUT(‘DROP_PACKAGE GOAL FLAG =*);
PUT(GOAL_FLAG, WIDTH=>3);
NEW_LINE;
end DROP_PACKAGE;

procedure GET_GPS_FIX(GOAL _FLAG : in out INTEGER) is
begin
loop
THE_OOD.GET_GPS_FIX(GOAL_FLAG);
exit when GOAL_FLAG =1;
end loop;
PUT("GET_GPS_FIX GOAL FLAG =*);

43




—~m

PUT(GOAL_FLAG, WIDTH=>3);
NEW_LINE;
end GET_GPS_FIX;

procedure GET_NEXT_WAYPOINT(GOAL_FLAG : in out INTEGER) is
begin
loop
THE_OOD.GET_NEXT_WAYPOINT(GOAL_FLAG);
exit when GOAL_FLAG =1;
end loop;
PUT("GET_NEXT_WAYPOINT GOAL FLAG =");
PUT(GOAL _FLAG, WIDTH=>3);
NEW_LINE;
end GET_NEXT_WAYPOINT;

procedure SEND_SETPOINTS_AND_MODES(GOAL_FLAG : in out INTEGER) is
begin
loop
THE_OOD.SEND_SETPOINTS_AND_MODES(GOAL_FLAG);
exit when GOAL_FLAG=1;
end loop;
PUT(*SEND_SETPOINTS_AND_MODES GOAL FLAG = ).
PUT(GOAL_FLAG, WIDTH=>3);
NEW_LINE;
end SEND_SETPOINTS_AND_MODES:

procedure REACH_WAYPOINT_P(GOAL_FLAG : in out INTEGER) is
RETURN_FLAG : INTEGER :=0;
begin
loop
THE_OOD.REACH_WAYPOINT_P(GOAL_FLAG, RETURN_FLAG).
exit when RETURN_FLAG =1;
end loop;
PUT("REACH_WAYPOINT_P GOAL FLAG =*);
PUT(GOAL_FLAG, WIDTH=>3);
NEW_LINE;
end REACH_WAYPOINT_P;

procedure GPS_NEEDED_P(GOAL_FLAG : in out INTEGER) is
RETURN_FLAG : INTEGER :=0;
begin
loop
THE_OOD.GPS_NEEDED_P(GOAL_FLAG, RETURN_FLAG);
exit when RETURN_FLAG = 1;
end loop:
PUT("GPS_NEEDED_P GOAL FLAG =*);
PUT(GOAL_FLAG, WIDTH=>3);
NEW_LINE;
end GPS_NEEDED_P;

procedure UNKNOWN_OBSTACLE_P(GOAL_FLAG : in out INTEGER) is

44




RETURN_FLAG : INTEGER :=0;
begin
loop
THE_OOD.UNKNOWN_OBSTACLE_P(GOAL_FLAG, RETURN_FLAG):
exit when RETURN_FLAG =1;
end loop;
PUT(*UNKNOWN_OBSTACLE_P GOAL FLAG =");
PUT(GOAL_FLAG, WIDTH=>3);
NEW_LINE;
end UNKNOWN_OBSTACLE_P;

procedure LOG_NEW_OBSTACLE(GOAL_FLAG : in out INTEGER) is
begin
loop
THE_OOD.LOG_NEW_OBSTACLE(GOAL_FLAG);
exit when GOAL_FLAG = 1;
end loop;
PUT(*LOG_NEW_OBSTACLE GOAL FLAG =*;
PUT(GOAL_FLAG, WIDTH=>3,;
NEW_LINE;
end LOG_NEW_OBSTACLE:

procedure LOITER(GOAL_FLAG : in out INTEGER) is
begin
loop
THE_OOD.LOITER(GOAL _FLAG);
exit when GOAL_FLAG = 1;
end loop;
PUT(“LOITER GOAL FLAG =*);
PUT(GOAL_FLAG, WIDTH=.-3);
NEW_LINE;
end LOITER;

procedure START_LOCAL_REPLANNER(GOAL_FLAG : in out INTEGER) is
begin
loop
THE_OOD.START_LOCAL_REPLANNER(COAL_FLAG);
exit when GOAL_FLAG = 1;
end loop;
PUT(“START_LOCAL_REPLANNER GOAL FLAG=");
PUT(GOAL_FLAG, WIDTH=>3),
NEW_LINE;
end START_LOCAL_REPLANNER;

procedure START_GLOBAL_REPLANNER(GOAL_FLAG : in out INTEGER) is
begin
loop
THE_OOD.START_GLOBAL_REPLANNER(GOAL_FLAG);
exit when GOAL_FLAG =1;
end loop;
PUT(*START_GLOBAL_REPLANNER GOAL FLAG =*);

45




PUT(GOAL_FLAG, WIDTH=>3),
NEW_LINE;
end START_GLOBAL_REPLANNER;

procedure POWER_GONE_P(GOAIL FLAG : in out INTEGER) is
RETURN_FLAG : INTEGER :=0;
begin
loop
THE_OOD.POWER_GONE_P(GOAL_FLAG, RETURN_FLAG);
exit when RETURN_FLAG =1;
end loop;
PUT(*POWER_GONE_P GOAL FLAG =*);
PUT(GOAL_FLAG, WIDTH=>3);
NEW_LINE;
end POWER_GONE_P;

procedure COMPUTER_SYSTEM_PROB_P(GOAL_FLAG : in out INTEGER) is
RETURN_FLAG : INTEGER :=(;
begin
loop
THE_OOD.COMPUTER_SYSTEM_PROB_P(GOAL_FLAG, RETURN_FLAG);
exit when RETURN_FLAG = 1;
end loop;
PUT(*COMPUTER_SYSTEM_PROB_P GOAL FLAG ="},
PUT(GOAL_FLAG, WIDTH=>3);
NEW_LINE;
end COMPUTER_SYSTEM_PROB_P;

procedure PROPULSION_SYSTEM_PROB_P(GOAL_FLAG : in out INTEGER) is
RETURN_FLAG : INTEGER :=0;
begin
loop
THE_OOD.PROPULSION_SYSTEM_PROB_P(GOAL_FLAG, RETURN_FLAG);
exit when RETURN_FLAG =1;
end loop;
PUT(*PROPULSION_SYSTEM_PROB_P GOAL FLAG =");
PUT(GOAL_FLAG, WIDTH=>3);
NEW_LINE:
end PROPULSION_SYSTEM_PROB_P;

procedure STEERING_SYSTEM_PROB_P(GOAL_FLAG : in out INTEGER) is
RETURN_FLAG : INTEGER :=0;
begin
loop
THE_OOD.STEERING_SYSTEM_PROB_P(GOAL_FLAG, RETURN_FLAG);
exit when RETURN_FLAG = I;
end loop;
PUT(“STEERING_SYSTEM_PROB_P GOAL FLAG =*);
PUT(COAL_FLAG, WIDTH=>3);
NEW_LINE;
end STEERING_SYSTEM_PROB_P;

46




procedure DIVING_SYSTEM_PROB_P(GOAL_FLAG : in out INTEGER) is
RETURN_FLAG : INTEGER :=(;
begin
loop
THE_OOD.DIVING_SYSTEM_PROB_P(GOAL_FLAG, RETURN_FLAG);
exit when RETURN_FLAG = 1;
end loop;
PUT(“DIVING_SYSTEM_PROBLEM_P GOAL FLAG =*);
PUT(GOAL _FLAG, WIDTH=>3);
NEW_LINE;
end DIVING_SYSTEM_PROB_P;

procedure BUOYANCY_SYSTEM_PROB_P(GOAL_FLAG : in out INTEGER) is
RETURN_FLAG : INTEGER :=0;
begin
loop
THE_OOD.BUOYANCY_SYSTEM_PROB_P(GOAL_FLAG. RETURN_FLAG);
exit when RETURN_FLAG = I;
end loop;
PUT(*BUOYANCY_SYSTEM_PROB_P GOAL FLAG =*);
PUT(GOAL_FLAG, WIDTH=>3);
NEW_LINE;
end BUOYANCY_SYSTEM_PROB_P;

procedure THRUSTER_SYSTEM_PROB_P(GOAL_FLAG : in out INTEGER) is
RETURN_FLAG : INTEGER :=0;
begin
loop
THE_OOD.THRUSTER_SYSTEM_PROB_P(GOAL_FLAG. RETURN_FLAG);
exit when RETURN_FLAG = 1;
end loop;
PUT(“THRUSTER_SYSTEM_PROB_P GOAL FLAG =*);
PUT(GOAL_FLAG, WIDTH=>3);
NEW_LINE;
end THRUSTER_SYSTEM_PROB_P;

procedure LEAK_TEST_P(GOAL_FLAG : in out INTEGER) is
RETURN_FLAG : INTEGER :=0;
begin
loop
THE_OQOD.LEAK_TEST_P(GOAL_FLAG, RETURN_FLAG);
exit when RETURN_FLAG =1;
end loop;
PUT(“LEAK_TEST_P GOAL FLAG =*),
PUT(GOAL_FLAG, WIDTH=>3);
NEW_LINE;
end LEAK_TEST_P;

procedure PAYLOAD_PROB_P(GOAL_FLAG : in out INTEGER) is
RETURN_FLAG : INTEGER :=0;

47




begin
loop
THE_OOD.PAYLOAD_PROB_P(GOAL_FLAG, RETURN_FLAG).
exit when RETURN_FLAG = 1;
end loop;
PUT(“PAYLOAD_PROB_P GOAL FLAG =");
PUT(GOAL_FLAG, WIDTH=>3),
NEW_LINE;
end PAYLOAD_PROB_P;

end TACTICAL_LEVELI;

48




--Tide :00d_s.a

--Author : F.P. Thornton Jr.

--Revised 126 Aug 93

--Compiler : VADS

--System : Unix

--Description : Specification for OOD task

package OOD is
task THE_OOD is

entry CREATE;
entry READY_VEHICLE_FOR_LAUNCH(G_FI.AG : out INTEGER);
entry SELECT_FIRST_WAYPOINT(G_FLAG : out INTEGER);
entry ALERT_USER(G_FLAG : out INTEGER);
entry IN_TRANSIT_P(G_FLAG, R_FLAG : out INTEGER);
entry TRANSIT_DONE_P(G_FLAG, R_FLAG : out INTEGER);
entry IN_SEARCH_P(G_FLAG, R_FLAG : out INTEGER);
entry SEARCH_DONE_P(G_FLAG, R_FLAG : out INTEGER);
entry IN_TASK_P(G_FLAG, R_FLAG : out INTEGER);
entry TASK_DONE_P(G_FLAG, R_FLAG : out INTEGER);
entry IN_RETURN_P(G_FLAG, R_FLAG : out INTEGER);
entry RETURN_DONE_P(G_FLAG, R_FLAG : out INTEGER);
entry WAIT_FOR_RECOVERY(G_FLAG : out INTEGER);
entry SURFACE(G_FLAG : out INTEGER);
entry DO_SEARCH_PATTERN(G_FLAG : out INTEGER);
entry HOMING(G_FLAG : out INTEGER);
entry DROP_PACKAGE(G_FLAG : out INTEGER);
entry GET_GPS_FIX(G_FLAG : out INTEGER);
entry GET_NEXT_WAYPOINT(G_FLAG : out INTEGER);
entry SEND_SETPOINTS_AND_MODES(G_FLAG : out INTEGER);
entry REACH_WAYPOINT_P(G_FLAG, R_FLAG : out INTEGER);
entry GPS_NEEDED_P(G_FLAG,R_FLAG : out INTEGER);
entry UNKNOWN_OBSTACLE_P(G_FLAG, R_FLAG : out INTEGER);
entry LOG_NEW_OBSTACLE(G_FLAG : out INTEGER);
entry LOITER(G_FLAG : out INTEGER);
entry START_LOCAL_REPLANNER(G_FLAG : out INTEGER);
entry START_GLOBAL_REPLANNER(G_FLAG :out INTEGER);
entry POWER_GONE_P(G_FLAG, R_FLAG : out INTEGER);
entry COMPUTER_SYSTEM_PROB_P(G_FLAG, R_FLAG : out INTEGER);
entry PROPULSION_SYSTEM_PROB_P(G_FLAG, R_FLAG : out INTEGER);
entry STEERING_SYSTEM_PROB_P(G_FLAG, R_FLAG : out INTEGER);
entry DIVING_SYSTEM_PROB_P(G_FLAG,R_FLAG : out INTEGER);
entry BUOYANCY_SYSTEM_PROB_P(G_FLAG, R_FLAG : out INTEGER);
entry THRUSTER_SYSTEM_PROB_P(G_FLAG. R_FLAG : out INTEGER);
entry LEAK_TEST_P(G_FLAG, R_FLAG : out INTEGER);
entry PAYLOAD_PROB_P(G_FLAG, R_FLAG : out INTEGER),
end THE_OOD;

end OOD;

49




--Title : 00d_b.a (CLIPS-Ada Simulator Version)
--Author : F.P. Thomton Jr.

--Revised 126 Aug 93

--Compiler : VADS

--System : Unix

--Description : Body for OOD task

with TEXT_IO, COMMAND_SENDER, MISSION_MODEL, WORLD_MODEL,
SENSORY_RECEIVER,
OOD_ROUTER, NAVIGATOR, ENGINEERING, WEAPONS;
use TEXT_1O, MISSION_MODEL, WORLD_MODEL, SENSORY_RECEIVER,OOD_ROUTER,
NAVIGATOR, ENGINEERING, WEAPONS:

package body OOD is

--Task to handle OOD functions

task body THE_OOD is

GOAL_FLAG_1 :BOOLEAN := FALSE; --Flags for lower level objects
RETURN_FLAG_1: BOOLEAN :=FALSE;

OOD_X : FLOAT;

OOD_Y : FLOAT;

OOD_DEPTH : FLOAT;

OOD_HEADING : FLOAT;

OOD_SPEED : FLOAT;

OOD_MODE : INTEGER;

begin
loop
--Flags for lower level objects are checked for each command or predicate
--query and then the result is sent back to the Strategic level
select
--Create tactical level objects
accept CREATE;
PUT_LINE(“Creating OOD™);
THE_MISSION_MODEL.CREATE;
THE_WORLD_MODEL.CREATE;
THE_SENSORY_RECEIVER.CREATE;
THE_OOD_ROUTER.CREATE;
THE_NAVIGATOR.CREATE;
THE_ENGINEERING.CREATE;
THE_WEAPONS.CREATE;
or
accept READY_VEHICLE_FOR_LAUNCH(G_FLAG : out INTEGER) do
THE_WORLD_MODEL.INITIALIZE(GOAL _FLAG_1);
if (GOAL_FLAG_1 = TRUE) then
THE_MISSION_MODEL.INITIALIZE(GOAL_FLAG_1);

50




if (GOAL_FLAG_1 = TRUE) then

G_FLAG:=1;
GOAL_FLAG_1 := FALSE;
else
G_FLAG =0;
end if;
else
G_FLAG :=0;
end if;
end READY_VEHICLE_FOR_LAUNCH;

or
accept SELECT_FIRST_WAYPOINT(G_FLAG : out INTEGER) do
THE_NAVIGATOR.SELECT_FIRST_WAYPOINT(GOAL_FLAG_1);
if (GOAL_FLAG_1 = TRUE) then
G_FLAG =1,
GOAL_FLAG_1 := FALSE;
else
G_FLAG =0;
end if;
end SELECT_FIRST_WAYPOINT;
or
accept ALERT_USER(G_FLAG : out INTEGER) do
PUT_LINE(“Failure detected during initialization.™);
G_FLAG:=1;
end ALERT_USER;
or
accept IN_TRANSIT_P(G_FLAG, R_FLAG : out INTEGER) do
THE_MISSION_MODEL.IN_TRANSIT_P(GOAL_FLLAG_1, RETURN_FLAG_I);
if (GOAL_FLAG_1 = TRUE) then
G_FLAG:=1;
GOAL_FLAG_1:=FALSE;
else
G_FLAG :=0;
end if;
if (RETURN_FLAG_1 = TRUE) then
R_FLAG:=1;
RETURN_FLLAG_1 := FALSE;
else
R_FLAG =0;
end if;
end IN_TRANSIT_P;
or
accept TRANSIT_DONE_P(G_FLAG, R_FLAG : out INTEGER) do
THE_MISSION_MODEL.TRANSIT_DONE_P(GOAL_FLAG_1, RETURN_FLAG_1);
if (GOAL_FLAG_1 = TRUE) then
G_FLAG:=1;
GOAL _FLAG_1 :=FALSE;
else
G_FLAG:=0;
end if;
if (RETURN_FLAG_1 = TRUE) then

51




R_FLAG = 1;
RETURN_FLAG_1 := FALSE;

else
R_FLAG =0;
end if;
end TRANSIT_DONE_P;
or

accept IN_SEARCH_P(G_FLAG, R_FLAG : out INTEGER) do
THE_MISSION_MODEL.IN_SEARCH_P(GOAL_FLAG_1. RETURN_FLAG_1);
if (GOAL_FLLAG_1 = TRUE) then
G_FLAG:=1;
GOAL_FLAG_1 := FALSE;
else
G_FLAG =0,
end if;
if (RETURN_FLAG_I = TRUE) then
R_FLAG =1;
RETURN_FLAG_1 := FALSE;
else
R_FLAG :=0;
end if;
end IN_SEARCH_P;
or
accept SEARCH_DONE_P(G_FLAG. R_FLAG : out INTEGER) do
THE_MISSION_MODEL.SEARCH_DONE_P(GOAL_FLAG_1, RETURN_FLAG_1);
if (GOAL_FLAG_1 = TRUE) then
G_FLAG = 1;
GOAL_FLAG_I :=FALSE,
else
G_FLAG:=0;
end if;
if RETURN_FLAG_! = TRUE) then
R_FLAG =1;
RETURN_FLAG_1 := FALSE;
else
R_FLAG :=0;
end if;
end SEARCH_DONE_P;
or
accept IN_TASK_P(G_FLAG, R_FLAG : out INTEGER) do
THE_MISSION_MODEL.IN_TASK_P(GOAL_FLAG_1, RETURN_FLAG_1);
if (GOAL_FLAG_] = TRUE) then
G_FLAG :=1;
GOAL_FLAG_1 :=FALSE;
else
G_FLAG:=0;
end if;
if RETURN_FLAG_1 = TRUE) then
R_FLAG:=1;
RETURN_FLAG_1 :=FALSE;
else

52




R_FLAG =0;
end if;
end IN_TASK_P;
or
accept TASK_DONE_P(G_FLAG. R_FLAG : out INTEGER) do
THE_MISSION_MODEL.TASK_DONE_P(GOAL_FLAG_1, RETURN_FLAG_1):
if (GOAL_FLAG_1 = TRUE) then
G_FLAG:=1;
GOAL_FLAG_1 := FALSE;
else
G_FLAG:=0;
end if;
if RETURN_FLAG_1 = TRUE) then
R_FLAG :=1;
RETURN_FLAG_I :=FALSE;
else
R_FLAG :=0;
end if;
end TASK_DONE_P;
or
accept IN_RETURN_P(G_FLAG, R_FLAG : out INTEGER) do
THE_MISSION_MODEL.IN_RETURN_P(GOAL_FLAG_1, RETURN_FLAG_1);
if (GOAL_FLAG_! = TRUE) then
G_FLAG:=1;
GOAL_FLAG_1 := FALSE;
else
G_FLAG:=0;
end if;
if RETURN_FLAG_1 = TRUE) then
R_FLAG:=1;
RETURN_FLAG_! := FALSE;
else
R_FLAG :=0;
end if;
end IN_RETURN_P:
or
accept RETURN_DONE_P(G_FLAG. R_FLAG : out INTEGER) do
THE_MISSION_MODEL.RETURN_DONE_P(GOAL_FLAG_l, RETURN_FLAG_1);
if (GOAL_FLAG_1 = TRUE) then
G_FLAG:=1;
GOAL_FLAG_1 := FALSE;
else
G_FLAG =0
end if;
if RETURN_FLAG_1 = TRUE) then
R_FLAG:=1;
RETURN_FLAG_1 := FALSE:
else
R_FLAG :=0;
end if;
end RETURN_DONE_P;

53




or
accept WAIT_FOR_RECOVERY(G_FLAG : out INTEGER) do
THE_NAVIGATOR.WAIT _FOR_RECOVERY(GOAL_FLAG_1);
if (GOAL_FLAG_1 = TRUE) then
G_FLAG = 1;
GOAL_FLAG_1 := FALSE;
else
G_FLAG:=0;
end if;
end WAIT_FOR_RECOVERY;
or
accept SURFACE(G_FLAG : out INTEGER) do
THE_NAVIGATOR.SURFACE(GOAL_FLAG_1);
if (GOAL_FLAG_1 = TRUE) then
G_FLAG:=1;
GOAL_FLAG_1 := FALSE;
else
G_FLAG :=0;
end if;
end SURFACE;
or
accept DO_SEARCH_PATTERN(G_FLAG : out INTEGER) do
THE_NAVIGATOR.DO_SEARCH_PATTERN(GOAL_FLAG_1),
if (GOAL_FLAG_1 = TRUE) then
G_FLAG:=1;
GOAL_FLAG_1 :=FALSE;
else
G_FLAG =0
end if;
end DO_SEARCH_PATTERN;
or
accept HOMING(G_FLAG : out INTEGER) do
THE_NAVIGATOR.DO_HOMING(GOAL_FLAG_1);
if (GOAL_FLAG_1 = TRUE) then
G_FLAG =1,
GOAL_FLAG_1:=FALSE;
else
G_FLAG:=0;
end if;
end HOMING;
or
accept DROP_PACKAGE(G_FLAG : out INTEGER) do
THE_WEAPONS.DROP_PACKAGE(GOAL_FLAG_1);
if (GOAL_FLAG_1 = TRUE) then
G_FLAG:=1;
GOAL_FLAG_1 :=FALSE;
else
G_FLAG :=0;
end if;
end DROP_PACKAGE;:
or

54




accept GET_GPS_FIX(G_FLAG : out INTEGER) do
THE_NAVIGATOR.GET_GPS_FIX(GOAL_FLAG_1);
if (GOAL_FLAG_! = TRUE) then
G_FLAG:=1;
GOAL_FLAG_1 :=FALSE;
else
G_FLAG =0;
end if;
end GET_GPS_FIX;
or
accept GET_NEXT_WAYPOINT(G_FLAG : out INTEGER) do
THE_NAVIGATOR.GET_NEXT_WAYPOINT(GOAL_FLAG_I);
if (GOAL_FLAG_1 = TRUE) then
G_FLAG =1,
GOAL_FLAG_1:=FALSE;
else
G_FLAG =0
end if;
end GET_NEXT_WAYPOINT;
or
accept SEND_SETPOINTS_AND_MODES(G_FLAG : out INTEGER) do
select
THE_NAVIGATOR.SEND_SETPOINTS_AND_MODES(GOAL_FLAG_1);
or

delay 1.0;

end select;

if (GOAL_FLAG_1 = TRUE) then
G_FLAG:=1;
GOAL_FLAG_! := FALSE;

else
G_FLAG :=0;

end if;

end SEND_SETPOINTS_AND_MODES;

or
accept REACH_WAYPOINT_P(G_FLAG. R_FLAG : out INTEGER) do
THE_NAVIGATOR.REACH_WAYPOINT_P(GOAL_FLAG_1. RETURN_FLAG_1);
if (GOAL_FLAG_1 = TRUE) then
G_FLAG =1,
GOAL_FLAG_1 :=FALSE;
else
G_FLAG :=0;
end if;
if RETURN_FLAG_1 = TRUE) then
R_FLAG =1,
RETURN_FLAG_1 := FALSE;
else
R_FLAG =0;
end if;
end REACH_WAYPOINT_P;
or
accept GPS_NEEDED_P(G_FLAG. R_FLAG : out INTEGER) do

55




THE_NAVIGATOR.GPS_NEEDED_P(GOAL_FLAG_1, RETURN_FLAG_I);
if (GOAL_FLAG_] = TRUE) then
G_FLAG:=1;
GOAL_FLAG_1 := FALSE;
else
G_FLAG =0
end if;
if RETURN_FLAG_! = TRUE) then
R_FLAG =1;
RETURN_FLAG_I := FALSE;
else
R_FLAG :=0;
end if;
end GPS_NEEDED_P;
or
accept UNKNOWN_OBSTACLE_P(G_FLAG, R_FLAG : out INTEGER) do
THE_NAVIGATOR.UNKNOWN_OBSTACLE_P(GOAL_FLAG_1.RETURN_FLAG_1);
if (GOAL_FLAG_1 = TRUE) then
G_FLAG:=1;
GOAL_FLAG_1 :=FALSE;
else
G_FLAG =0
end if;
if RETURN_FLAG_1 = TRUE) then
R_FLAG :=1;
RETURN_FLAG_1 := FALSE;
else
R_FLAG =0;
end if;
end UNKNOWN_OBSTACLE_P;
or
accept LOG_NEW_OBSTACLE(G_FLAG : out INTEGER) do
THE_NAVIGATOR.LOG_NEW_OBSTACLE(GOAL_FLAG_1I);
if (GOAL_FLAG_] = TRUE) then
G_FLAG:=1;
GOAL_FLAG_1 :=FALSE:
else
G_FLAG :=0;
end if;
end LOG_NEW_OBSTACLE;
or
accept LOITER(G_FLAG : out INTEGER) do
G_FLAG :=1;
end LOITER;
or
accept START_LOCAL_REPLANNER(G_FLAG : out INTEGER) do
THE_NAVIGATOR.START_LOCAL_REPLANNER(GOAL_FLAG_1);
if (GOAL_FLAG_1 = TRUE) then
G_FLAG:=1;
GOAL_FLAG_1 := FALSE;
else

56




G_FLAG =0
end if;
end START_LOCAL _REPLANNER;
or
accept START_GLOBAL_REPLANNER(G_FLAG :out INTEGER) do
THE_NAVIGATOR.START _GLOBAL_ REPLANNER(GOAL_FLAG_l);
if (GOAL_FLAG_1 = TRUE) then
G_FLAG :=1;
GOAL_FLAG_1 := FALSE;
else
G_FLAG =0,
end if;
end START_GLOBAL_REPLANNER;
or
accept POWER_GONE_P(G_FLAG, R_FLAG : out INTEGER) do
THE_ENGINEERING.POWER_GONE_P(GOAL_FLAG_1, RETURN_FLAG_1);
if (GOAL_FLAG_1 = TRUE) then
G_FLAG :=1;
GOAL_FLAG_1 :=FALSE;
else
G_FLAG :=0;
end if;
if RETURN_FLAG_1 = TRUE) then
R_FLAG:=1;
RETURN_FLAG_1 := FALSE;
else
R_FLAG :=0;
end if;
end POWER_GONE_P;

or
accept COMPUTER_SYSTEM_PROB_P(G_FLAG,R_FLAG : out INTEGER) do
THE_ENGINEERING.COMPUTER_SYSTEM_PROB_P(GOAL_FLAG_1, RETURN_FLAG_1):
if (GOAL_FLAG_1 = TRUE) then
G_FLAG:=1;
GOAL_FLAG_1 .= FALSE;
else
G_FLAG :=0;
end if;
if RETURN_FLAG_1 = TRUE) then
R_FLAG:=1,
RETURN_FLAG_1 :=FALSE;
else
R_FLAG :=0;
end if;
end COMPUTER_SYSTEM_PROB_P;
or
accept PROPULSION_SYSTEM_PROB_P(G_FLAG, R_FLAG : out INTEGER) do
THE_ENGINEERING.PROPULSION_SYSTEM_PROB_P(GOAL_FLAG_1, RETURN_FLAG_1);
if (GOAL_FLAG_1 = TRUE) then
G_FLAG:=1,;

57




GOAL_FLAG_1 := FALSE;
else
G_FLAG:=0;
end if;
if (RETURN_FLAG_1 = TRUE) then
R_FLAG =1,
RETURN_FLAG_1 := FALSE;
else
R_FLAG :=0;
end if;
end PROPULSION_SYSTEM_PROB_P;
or
accept STEERING_SYSTEM_PROB_P(G_FLAG, R_FLAG : out INTEGER) do
THE_ENGINEERING.STEERING_SYSTEM_PROB_P(GOAL_FLAG_1, RETURN_FLAG_1);
if (GOAL_FLLAG_1 = TRUE) then
G_FLAG :=1;
GOAL_FLAG_1 := FALSE;
else
G_FLAG :=0;
end if;
if RETURN_FLAG_1 = TRUE) then
R_FLAG =1;
RETURN_FLAG_1 := FALSE;
else
R_FLAG :=0;
end if;
end STEERING_SYSTEM_PROB_P;
or
accept DIVING_SYSTEM_PROB_P(G_FLAG, R_FLAG : out INTEGER) do
THE_ENGINEERING.DIVING_SYSTEM_PROB_P(GOAL_FLAG_1,RETURN_FLAG_1);
if (GOAL_FLAG_1 = TRUE) then
G_FLAG:=1;
GOAL_FLAG_1 :=FALSE;
else
G_FLAG:=0;
end if;
if (RETURN_FLAG_1 = TRUE) then
R_FLAG:=1;
RETURN_FLAG_1 :=FALSE;
else
R_FLAG =0;
end if;
end DIVING_SYSTEM_PROB_P;
or
accept BUOYANCY_SYSTEM_PROB_P(G_FLAG. R_FLAG : out INTEGER) do
THE_ENGINEERING.BUOYANCY_SYSTEM_PROB_P(GOAL_FLAG_1, RETURN_FLAG_1);
if (GOAL_FLAG_1 = TRUE) then
G_FLAG:=1;
GOAL_FLAG_1 :=FALSE;
else
G_FLAG:=0;

58




end if;
if (RETURN_FLAG_ 1 = TRUE) then
R_FLAG =1;
RETURN_FLAG_1 := FALSE;
else
R_FLAG :=0;
end if;
end BUOYANCY_SYSTEM_PROB_P;
or
accept THRUSTER_SYSTEM_PROB_P(G_FLAG. R_FLAG : out INTEGER) do
THE_ENGINEERING. THRUSTER_SYSTEM_PROB_P(GOAL_FLAG_1, RETURN_FLAG_1);
if (GOAL_FLAG_1 = TRUE) then
G_FLAG:=1;
GOAL_FLAG_1 :=FALSE;
else
G_FLAG :=0;
end if;
if RETURN_FLAG_1 = TRUE) then
R_FLAG :=1;
RETURN_FLAG_1 := FALSE;
else
R_FLAG :=0;
end if;
end THRUSTER_SYSTEM_PROB_P;
or
accept LEAK_TEST_P(G_FLAG, R_FLAG : out INTEGER) do
THE_ENGINEERING.LEAK_TEST_P(GOAL_FLAG_1, RETURN_FLAG_1).
if (GOAL_FLAG_! = TRUE) then
G_FLAG:=1,
GOAL_FLAG_1:=FALSE,
else
G_FLAG :=0;
end if;
if (RETURN_FLAG_1 = TRUE) then
R_FLAG =1,
RETURN_FLAG_1 := FALSE;
else
R_FLAG :=0;
end if;
end LEAK_TEST_P;
or
accept PAYLOAD_PROB_P(G_FLAG. R_FLAG : out INTEGER) do
THE_ENGINEERING.PAYLOAD_PROB_P(GOAL_FLAG_1, RETURN_FLAG_1);
if (GOAL_FLAG_1 = TRUE) then
G_FLAG:=1;
GOAL_FLAG_1 :=FALSE;
else
G_FLAG:=0;
end if;
if (RETURN_FLAG_1 = TRUE) then
R_FLAG:=1;

59




RETURN_FLAG_1 := FALSE;

else
R_FLAG :=0;

end if;

end PAYLOAD_PROB_P;
end select;
end loop;
end THE_OOD;

end OOD;




--Title : 00d_r_s.a (CLIPS-Ada Simulator Version)
--Author : F.P. Thomion Jr.

--Revised 126 Aug 93

--Compiler :VADS

--System : Unix

--Description : Specification for OOD Router task

package OOD_ROUTER is

task THE_OOD_ROUTER is
entry CREATE;
entry TAKE_NAV_COMMANDS(WAYPOINT_X : in FLOAT:
WAYPOINT_Y : in FLOAT:
NAV_HEADING : in FLOAT:
NAV_SPEED : in FLOAT;
NAV_DEPTH : in FLOAT:
NAV_MODE : in INTEGER):
entry TAKE_GUIDANCE_COMMANDS(NAV_HEADING : in FLOAT;

NAV_MODE : in INTEGER):
end THE_OOD_ROUTER:

end OOD_ROUTER;

61




--Tide : 0od_r_b.a (CLIPS-Ada Simulator Version)
--Author : F.P. Thomton Jr.

--Revised 126 Aug 93

--Compiler : VADS

--System : Unix

--Description : Body for OOD Router task

with TEXT_IO, MISSION_MODEL, COMMAND_SENDER;
use TEXT_IO:;

package body OOD_ROUTER is

--Task to handle routing of requests to OOD, required to allow time-consuming
--tasks to continue (search, homing, replanning)

task body THE_OOD_ROUTER is
OOD_X : FLOAT:
OOD_Y : FLOAT;
OOD_HEADING : FLOAT;
OOD_SPEED : FLOAT:
OOD_DEPTH : FLOAT:
OOD_MODE : INTEGER:
begin
accept CREATE;
PUT_LINE("Creating OOD ROUTER"):
loop
select
--Get Navigator commands to send to Command Sender
accent TAKE_NAV_COMMANDS(WAYPOINT_X : in FLOAT:
WAYPOINT_Y : in FLOAT;
NAV_HEADING : in FLOAT;
NAV_SPEED : in FLOAT:
NAV_DEPTH : in FLOAT,;
NAV_MODE : in INTEGER) do
OOD_X := WAYPOINT_X:
OOD_Y := WAYPOINT_Y:
OOD_HEADING := NAV_HEADING:;
OOD_SPEED := NAV_SPEED;
OOD_DEPTH := NAV_DEPTH;
OOD_MODE := NAV_MODE;
end TAKE_NAV_COMMANDS:
COMMAND_SENDER.SEND(OOD_X, OOD_Y.O0D_HEADING. OOD_SPEED,
OOD_DEPTH. OOD_MODE).
or
accept TAKE_GUIDANCE_COMMANDS(NAV_HEADING : in FLOAT:;
NAV_MODE : in INTEGER) do
OOD_HEADING := NAV_HEADING:
OOD_MODE := NAV_MODE:

62




end TAKE_GUIDANCE_COMMANDS;
COMMAND_SENDER.SEND(OOD_X. OOD_Y, OOD_HEADING. OOD_SPEED.
OOD_DEPTH. OOD_MODE);
end select;
end loop;
end THE_OOD_ROUTER;

end OOD_ROUTER,;

63




--Tite : nav_b.a (CLIPS-Ada Simulator Version)
--Author : F.P. Thomton Jr.

--Revised 126 Aug 93

--Compiler : VADS

--System : Unix

--Description : Specification for Navigator task

package NAVIGATOR is

task THE_NAVIGATOR is
entry CREATE;
entry SELECT_FIRST_WAYPOINT(G_FLAG_] : out BOOLEAN):
entry WAIT_FOR_RECOVERY(G_FLAG_1 : out BOOLEAN);
entry SURFACE(G_FLAG_1 : out BOOLEAN);
entry DO_SEARCH_PATTERN(G_FLAG_] : out BOOLEAN);
entry DO_HOMING(G_FLAG_1 : out BOOLEAN):
entry GET_GPS_FIX(G_FLAG_I : out BOOLEAN):
entry GPS_NEEDED_P(G_FLAG_1,R_FLAG_1: out BOOLEAN):.
entry GET_NEXT_WAYPOINT(G_FLAG_1 : out BOOLEAN):
entry REACH_WAYPOINT_P(G_FLLAG_1.R_FLAG_1 : out BOOLEAN):
entry SEND_SETPOINTS_AND_MODES(G_FLAG_1 : out BOOLEAN):
entry UNKNOWN_OBSTACLE_P(G_FLAG_1. R_FLAG_1 : out BOOLEAN);
entry LOG_NEW_OBSTACLE(G_FLAG_] : out BOOLEAN):
entry START_LOCAL_REPLANNER(G_FLAG_] : out BOOLEAN);
entry START_GLOBAL_REPLANNER(G_FLAG_1 : out BOOLEAN):
end THE_NAVIGATOR;

end NAVIGATOR:




--Title : nav_b.a (CLIPS-Ada Simulator Version)
--Author : F.P. Thomton Jr.

--Revised 126 Aug 93

--Compiler :VADS

--System : Unix

--Description : Body for Navigator task

with TEXT_IO, MATH, MISSION_MODEL. SENSORY_RECEIVER, OOD_ROUTER.
NAVIGATOR_ROUTER, GUIDANCE. GPS_CONTROL, SONAR_CONTROL.

MISSION_REPLANNER;

use TEXT_IO, MATH, MISSION_MODEL, SENSORY_RECEIVER, OOD_ROUTER.
NAVIGATOR_ROUTER, GUIDANCE, GPS_CONTROL, SONAR_CONTROL,

MISSION_REPLANNER;

package body NAVIGATOR is

--Task 10 handle navigation functions

task body THE_NAVIGATOR is

GOAL_FLAG_2 :BOOLEAN := FALSE: --Flags for lower level objects
RETURN_FLAG_2 : BOOLEAN := FALSE:

STARTED : BOOLEAN := FALSE: --Flag to start comm protocol
REPEATED : BOOLEAN := FALSE: --Flag to continue comm protocol
NAV_X : FLOAT;

NAV_Y : FLOAT:

NAV_DEPTH : FLOAT:

NAV_HEADING : FLOAT:

NAV_SPEED : FLOAT:

NAV_MODE : INTEGER:

NAV_BEARING : FLOAT:

NAV_RANGE : FLOAT:

WAYPOINT_X : FLOAT:

WAYPOINT_Y : FLOAT;

WAYPOINT_DEPTH : FLOAT:

EPSILON : constant FLOAT :=20.0:  --Tolerance for achieving waypoint
SURFACE_LIMIT : constant FLOAT := 5.0; --Tolerance for Surface condition

begin
--Create Navigator’s subobjects
accept CREATE:;
PUT_LINE("Creating NAVIGATOR™).
THE_NAVIGATOR_ROUTER.CREATE:
THE_GUIDANCE.CREATE;
THE_GPS_CONTROL.CREATE;
THE_MISSION_REPLANNER.CREATE;
THE_SONAR_CONTROL.CREATE;
--Receive initial state and first waypoint




accept SELECT_FIRST_WAYPOINT(G_FLAG_1 : out BOOLEAN) do
THE_MISSION_MODEL GIVE_FIRST_WAYPOINT(NAV_X, NAV_Y,.NAV_DEPTH.
NAV_MODE,
NAV_HEADING.NAV_SPEED, WAYPOINT_X.
WAYPOINT_Y, WAYPOINT_DEPTH);
G_FLAG_I := TRUE;
end SELECT_FIRST_WAYPOINT:
loop
select
accept WAIT_FOR_RECOVERY(G_FLAG_! : out BOOLEAN) do
G_FLAG_] :=TRUE;
end WAIT_FOR_RECOVERY;
--Loop under Tactical level control until signaled for mission
--download
loop
--Delay to comply with simulator Tactical-Execution comm protocol
--For every set of data received a set of commands must be sent
delay 0.2:
THE_SENSORY_RECEIVER.RECEIVE(NAV_X.NAV_Y.NAV_DEPTH.NAV_HEADING.
NAV_BEARING.NAV_RANGE):
WAYPOINT_DEPTH :=0.0;
NAV_SPEED := 0.0;
THE_OOD_ROUTER.TAKE_NAV_COMMANDS(WAYPOINT_X. WAYPOINT_Y,
NAV_HEADING,
NAV_SPEED, WAYPOINT_DEPTH. NAV_MODE),
end loop:
or
accept SURFACE(G_FLAG_1 : out BOOLEAN) do
loop
--Simulator protocol delay
delay 0.2:
THE_SENSORY_RECEIVER. RECEIVE(NAV_X.NAV_Y,NAV_DEPTH, NAV_HEADING.
NAV_BEARING. NAV_RANGE):
exit when NAV_DEPTH < SURFACE_LIMIT:
WAYPOINT_DEPTH = 0.0:
THE_OOD_ROUTER.TAKE_NAV_COMMANDS(WAYPOINT_X. WAYPOINT_Y,
NAV_HEADING, NAV_SPEED,
WAYPOINT_DEPTH. NAV_MODE):
end loop;
G_FLAG_! :=TRUE;
end SURFACE,;
or
accept DO_SEARCH_PATTERN(G_FLAG_! : out BOOLEAN) do
THE_SONAR_CONTROL.DO_SEARCH_PATTERN(GOAL_FLAG_2, NAV_HEADING);
if (GOAL_FLAG_2 = TRUE) then
G_FLAG_] := TRUE;
GOAL_FLAG_2 := FALSE:
else
G_FLAG_1:=FALSE;
end if;
end DO_SEARCH_PATTERN:




or
accept DO_HOMING(G_FLAG_1 : out BOOLEAN) do
THE_GUIDANCE.DO_HOMING(GOAL _FLAG_2);
if (GOAL_FLAG_2 = TRUE) then
G_FLAG_1 := TRUE;
GOAL _FLAG_2 :=FALSE.
else
G_FLAG_1:=FALSE;
end if;
end DO_HOMING:;
or
accept GET_GPS_FIX(G_FLAG_1 : out BOOLEAN) do
THE_GPS_CONTROL.GET_GPS_FIX(GOAL_FLAG_2);
if (GOAL_FLAG_2 = TRUE) then
G_FLAG_! := TRUE;
GOAL_FLAG_2 :=FALSE.
else
G_FLAG_1:=FALSE:
end if;
end GET_GPS_FIX;
or
accept GPS_NEEDED_P(G_FLAG_1.R_FLAG_] : out BOOLEAN) do
G_FLAG_1:=FALSE:
R_FLAG_1 := TRUE:
end GPS_NEEDED_P:
or
accept GET_NEXT_WAYPOINT(G_FLAG_1 : out BOOLEAN) do
THE_MISSION_MODEL.GIVE_NEXT _WAYPOINT(WAYPOINT_X.WAYPOINT_Y,
WAYPOINT_DEPTH. NAV_SPEED,
NAV_MODE):
G_FLAG_1 :=TRUE;
end GET_NEXT_WAYPOINT:
or
accept REACH_WAYPOINT_P(G_FLAG_1.R_FLAG_1 : out BOOLEAN) do
if SQRT(WAYPOINT_X - NAV_X)**2 + (WAYPOINT_Y - NAV_Y)**2)
< EPSILON then --Reached waypoint
G_FLAG_1 := TRUE:
PUT_LINE("*****At waypoint, coming to new heading*****").
else
G_FLAG_] :=FALSE;
end if;
R_FLAG_1 := TRUE;
end REACH_WAYPOINT_P;
--Do guidance in the background
if not REPEATED then --Update navigation
if STARTED then
--Get current status values from Sensory Receiver
THE_SENSORY_RECEIVER.RECEIVE(NAV_X NAV_Y NAV_DEPTH, NAV_HEADING,
NAV_BEARING.NAV_RANGE),
end if;
--Send for new commands from Guidance

67




THE_GUIDANCE.GET_GUIDANCE_COMMANDS(NAV_X . NAV_Y NAV_DEPTH.
NAV_HEADING NAV_SPEED, WAYPOINT_X,
WAYPOINT_Y. WAYPOINT_DEPTH);
STARTED := TRUE;
REPEATED := TRUE;
end if;
or
accept SEND_SETPOINTS_AND_MODES(G_FLAG_1 : out BOOLEAN) do
THE_OOD_ROUTER.TAKE_NAV_COMMANDS(WAYPOINT_X, WAYPOINT_Y,
NAV_HEADING, NAV_SPEED,
NAV_DEPTH, NAV_MODE).
G_FLAG_! := TRUE;
REPEATED :=FALSE;
end SEND_SETPOINTS_AND_MODES:
or
accept UNKNOWN_OBSTACLE_P(G_FLAG_1, R_FLAG_1: out BOOLEAN) do
THE_SONAR_CONTROL.UNKNOWN_OBSTACLE_P(GOAL_FL.LAG_2, RETURN_FLAG_2);
if (GOAL_FLAG_2 = TRUE) then
G_FLAG_1 :=TRUE;
GOAL_FLAG_2 := FALSE:
else
G_FLAG_1:=FALSE;
end if;
if RETURN_FLAG_2 = TRUE) then
R_FLAG_! := TRUE;
RETURN_FLAG_2 :=FALSE:
else
R_FLAG_1 :=FALSE;
end if;
end UNKNOWN_OBSTACLE_P;
or
accept LOG_NEW_OBSTACLE(G_FLAG_! : out BOOLEAN) do
THE_SONAR_CONTROL.LOG_NEW_OBSTACLE(GOAL_FLAG_2);
if (GOAL_FLAG_2 = TRUE) then
G_FLAG_1 := TRUE;
GOAL_FLAG_2 :=FALSE:
else
G_FLAG_1:=FALSE:
end if:
end LOG_NEW_OBSTACLE;
or
accept START_LOCAL_REPLANNER(G_FLAG_1 : out BOOLEAN) do
THE_MISSION_REPLANNER.START_LOCAL_REPLANNER;
THE_GUIDANCE LOITER(NAV_X,. NAV_Y,NAV_DEPTH, NAV_HEADING, NAV_SPEED.
NAV_MODE);
G_FLAG_] :=TRUE;
end START_LOCAL_REPLANNER;
or
accept START_GLOBAL_REPLANNER(G_FLAG_1 : out BOOLEAN) do
THE_MISSION_REPLANNER.START_GLOBAL_REPLANNER;
THE_GUIDANCE.LOITER(NAV_X.NAV_Y,NAV_DEPTH, NAV_HEADING, NAV_SPEED,

68




NAV_MODE);
G_FLAG_1 := TRUE:

end START_GLOBAL _REPLANNER:

end select;
end loop;
end THE_NAVIGATOR:

end NAVIGATOR;

69




--Tite : nav_r_s.a (CLIPS-Ada Simulator Version)
--Author : F.P. Thomton Jr.

--Revised 126 Aug 93

--Compiler :VADS

--System : Unix

--Description : Specification for Navigator Router task

package NAVIGATOR _ROUTER is
1ask THE_NAVIGATOR_ROUTER is

entry CREATE;
entry TAKE_GUIDANCE_HEADING(GUIDANCE_HEADING : in FLOAT;
GUIDANCE_MODE : in INTEGER);

entry TAKE_LOITER_COMMANDS(GUIDANCE_X : in FLOAT:
GUIDANCE_Y : in FLOAT:
GUIDANCE_HEADING : in FLOAT:
GUIDANCE_SPEED : in FLOAT:
GUIDANCE_DEPTH : in FLOAT:
GUIDANCE_MODE : in INTEGER:
LOITER_GUIDANCE_DONE : out BOOLEAN).

entry REPLAN_DONE;

end THE_NAVIGATOR_ROUTER:

end NAVIGATOR_ROUTER;

70




--Tite : nav_r_b.a (CLIPS-Ada Simulator Version)
--Author : F.P. Thomton Jr.

--Revised : 17 Aug 93

--Compiler : VADS

--System : Unix

--Description : Body for Navigator Router task

with TEXT_IO, OOD_ROUTER;
use TEXT_IO, OOD_ROUTER;

package body NAVIGATOR_ROUTER is

--Task to handle routing of requests through Navigator

task body THE_NAVIGATOR_ROUTER is

NAV_X: FLOAT;

NAV_Y : FLOAT;

NAV_DEPTH : FLOAT;

NAV_SPEED : FLOAT:

NAV_HEADING : FLOAT:

NAV_MODE : INTEGER:

NAV_REPLAN_DONE : BOOLEAN := FALSE: --Flag to signal replan done

begin
accept CREATE:
PUT_LINE("Creating NAVIGATOR ROUTER ™).
loop
select
accept TAKE_GUIDANCE_HEADING(GUIDANCE_HEADING : in FLOAT:
GUIDANCE_MODE : in INTEGER) do
NAV_HEADING := GUIDANCE_HEADING:
NAV_MODE := GUIDANCE_MODE:
end TAKE_GUIDANCE_HEADING:
--In Search mode so take search commands immediately
THE_OOD_ROUTER.TAKE_GUIDANCE_COMMANDS(NAV_HEADING. NAV_MODE).
or
accept TAKE_LOITER_COMMANDS(GUIDANCE_X : in FLOAT:;
GUIDANCE_Y : in FLOAT:
GUIDANCE_HEADING : in FLOAT:
GUIDANCE_SPEED : in FLOAT;
GUIDANCE_DEPTH : in FLOAT,
GUIDANCE_MODE : in INTEGER;
LOITER_GUIDANCE_DONE : out BOOLEAN) do
NAV_X := GUIDANCE_X;
NAV_Y := GUIDANCE_Y:
NAV_HEADING := GUIDANCE_HEADING:
NAV_SPEED := GUIDANCE_SPEED:

71




NAV_DEPTH := GUIDANCE_DEPTH:
NAV_MODE := GUIDANCE_MODE;
LOITER_GUIDANCE_DONE := NAV_REPLAN_DONE;
end TAKE_LOITER_COMMANDS:
THE_OOD_ROUTER.TAKE_NAV_COMMANDS(NAV_X,NAV_Y . NAV_HEADING,
NAV_SPEED,NAV_DEPTH, NAV_MODE):
or
accept REPLAN_DONE;
NAV_REPLAN_DONE := TRUE;
end select;
end loop:
end THE_NAVIGATOR_ROUTER;

end NAVIGATOR_ROUTER;




--Title : engin_s.a |
--Author : F.P. Thomton Jr. |
--Revised 126 Aug 93

--Compiler : VADS

--System : Unix

--Description : Specification for Engineering task

package ENGINEERING is

task THE_ENGINEERING is
entry CREATE;
entry POWER_GONE_P(G_FLAG_1.R_FLAG_1 : out BOOLEAN);
entry COMPUTER_SYSTEM_PROB_P(G_FLAG_1.R_FLAG_1 : out BOOLEAN);
entry PROPULSION_SYSTEM_PROB_P(G_FLAG_1, R_FLAG_1 : out BOOLEAN);
entry STEERING_SYSTEM_PROB_P(G_FLAG_1.R_FLAG_! : out BOOLEAN);
entry DIVING_SYSTEM_PROB_P(G_FLAG_1,R_FLAG_1 : out BOOLEAN);
entry BUOYANCY_SYSTEM_PROB_P(G_FLAG_1.R_FLAG_1 : out BOOLEAN):
entry THRUSTER_SYSTEM_PROB_P(G_FLAG_1. R_FLAG_1 : out BOOLEAN):
entry LEAK_TEST_P(G_FLLAG_1.R_FLAG_] : out BOOLEAN);
entry PAYLOAD_PROB_P(G_FLAG_1.R_FLAG_1I: out BOOLEAN);

end THE_ENGINEERING;

end ENGINEERING:

73




--Tide :engin_b.a

--Author : F.P. Thomton Jr.
--Revised 126 Aug 93

--Compiler : VADS

--System : Unix

--Description : Body for Engineering task

with TEXT_]O. MATH, CALENDAR:
use TEXT_]O, MATH, CALENDAR;

package body ENGINEERING is

--Task to handle engineering functions such as monitoring onboard systems

task body THE_ENGINEERING is

THRUSTER_LEVEL : FLOAT := 100.0:
THRUSTER_MIN : FLOAT := 80.0:
THRUSTER_L.OSS : FLOAT := 1.0:

begin
accept CREATE:
PUT_LINE("Creating ENGINEERING™);
loop
select
accept POWER_GONE_P(G_FLAG_1.R_FLAG_] : out BOOLEAN) do
G_FLAG_) :=FALSE:
R_FLAG_1 := TRUE:
end POWER_GONE_P;
or
accept COMPUTER_SYSTEM_PROB_P(G_FLAG_1.R_FLAG_1 : out BOOLEAN) do
G_FLAG_1:=FALSE:
R_FLAG_1 := TRUE:
end COMPUTER_SYSTEM_PROB_P:
or
accept PROPULSION_SYSTEM_PROB_P(G_FLAG_1,R_FLAG_1 : out BOOLEAN) do
G_FLAG_1:=FALSE;
R_FLAG_1 := TRUE;
end PROPULSION_SYSTEM_PROB_P;
or
accept STEERING_SYSTEM_PROB_P(G_FLAG_1.R_FLAG_I : out BOOLEAN) do
G_FLAG_] :=FALSE:
R_FLAG_1 := TRUE:
end STEERING_SYSTEM_PROB_P:
or
accept DIVING_SYSTEM_PROB_P(G_FLAG_1.R_FLAG_! : out BOOLEAN) do
G_FLAG_1:=FALSE:
R_FLAG_l := TRUE:

74




end DIVING_SYSTEM_PROB_P;
or
accept BUOYANCY_SYSTEM_PROB_P(G_FLAG_1.R_FLAG_! : out BOOLEAN) do
G_FLAG_1:=FALSE;
R_FLAG_l1 := TRUE;
end BUOYANCY_SYSTEM_PROB_P;
or
accept THRUSTER_SYSTEM_PROB_P(G_FLAG_1.R_FLAG_I : out BOOLEAN) do
if THRUSTER_LEVEL > THRUSTER_MIN then
THRUSTER_LEVEL := THRUSTER_LEVEL - THRUSTER_LOSS:
G_FLAG_1 :=FALSE:
else
G_FLAG_1 := TRUE:
end if;
R_FLAG_1 = TRUE;
end THRUSTER_SYSTEM_PROB_P;
or
accept LEAK_TEST_P(G_FLAG_1.R_FLAG_1: out BOOLEAN) do
G_FLAG_1 :=FALSE;
R_FLAG_1 := TRUE:
end LEAK_TEST_P;
or
accept PAYLOAD_PROB_P(G_FLAG_1.R_FLAG_! : out BOOLEAN) do
G_FLAG_1:=FALSE:
R_FLAG_1 .= TRUE;
end PAYLOAD_PROB_P:
end select;
end loop:
end THE_ENGINEERING:

end ENGINEERING:




--Tite : weapon_s.a (CLIPS-Ada Simulator Version)
--Author : F.P. Thomton Jr.

--Revised  :26 Aug 93

--Compiler : VADS

--System : Unix

--Description : Specification for Weapons task

package WEAPONS is
task THE_WEAPONS is
entry CREATE:
entry DROP_PACKAGE(G_FLAG_! : out BOOLEAN):
end THE_WEAPONS:

end WEAPONS;

76




--Tite : weapon_b.a (CLIPS-Ada Simulator Version)
--Author : F.P. Thomton Jr.

--Revised 126 Aug 93

--Compiler :VADS

--System : Unix

--Description : Body for Weapons task

with TEXT_IO;
use TEXT_IO;

package body WEAPONS is

--Task to handle functions of weapons officer

task body THE_WEAPONS is

begin
accept CREATE,;
PUT_LINE("Creating WEAPONS™):
loop
accept DROP_PACKAGE(G_FLAG_]1 : out BOOLEAN) do
G_FLAG_1:=TRUE;
end DROP_PACKAGE:
end loop;
end THE_WEAPONS;

end WEAPONS;

77




--Tile : sender_s.a (CLIPS-Ada Simulator version)
--Author : FP. Thomton Jr.

--Revised : 26 Aug 93

--Compiler :VADS

--System : Unix

--Description : Specification for Command Sender

package COMMAND_SENDER is

procedure SEND(NEW_X : in FLOAT:
NEW_Y :in FLOAT;
NEW_HEADING : in FLOAT;
NEW_SPEED : in FLOAT;
NEW_DEPTH : in FLOAT;
NEW_MODE : in INTEGER):

end COMMAND_SENDER:

7%




--Title : sender_b.a (CLIPS-Ada Simulator Version)
--Author : FP. Thomton Jr.

--Revised : 26 Aug 93

--Compiler :VADS

--System : Unix

--Description : Body for Command Sender

with TEXT_IO, MATH, TRIG_MATH. NETWORK_SW:
use TEXT_IO, MATH. TRIG_MATH, NETWORK_SW:

package body COMMAND_SENDER is
package FLOAT_INOUT is new FLOAT_IO(FLOAT);

package INTEGER_INOUT is new INTEGER _IO(INTEGER);
use FLOAT_INOUT. INTEGER_INOUT:

--Procedure to send tactical level information to the execution level

procedure SEND(INEW_X : in FLOAT:
NEW_Y :in FLOAT;
NEW_HEADING : in FLOAT;
NEW_SPEED : in FLOAT:
NEW_DEPTH : in FLOAT:
NEW_MODE : in INTEGER) is

begin
--Write updated command values to execution level
PUT_FLOAT(RAD_TO_DEG(NEW_HEADING)):
PUT("Commanded Heading is: **);
PUT(RAD_TO_DEG(NEW_HEADING). FORE=>3.AFT=>2. EXP=>0).
NEW_LINE.

PUT_FLOAT(NEW_DEPTH):

PUT(*Commanded Depth is: **);
PUT(NEW_DEPTH. FORE=>3 AFT=>2. EXP=>0):
NEW_LINE:

PUT_FLOAT(NEW_SPEED):

PUT(“Commanded Speed is: **);
PUT(NEW_SPEED, FORE=>3. AFT=>2, EXP=>0):
NEW_LINE:

PUT_FLOAT(NEW_X):

PUT("Commanded X is: **):

PUT(NEW_X. FORE=>3, AFT=>2. EXP=>0);
NEW_LINE;

PUT_FLOAT(NEW_Y),

79




PUT("Commanded Y is: **);

PUT(NEW_Y, FORE=>3, AFT=>2,  EXP=>0):

NEW_LINE;

PUT_MODE(NEW_MODE):
PUT(*Commanded Mode is: *);
case NEW_MODE is
when 1 =>
PUT(*“Transit™);
when 2 =>
PUT("“Search™):
when 3 =>
PUT(*Task™);
when 4 =>
PUT("Return™);
when § =>
PUT("Recover™);
when others =>
PUT("Invalid Mode™):
end case;
NEW_LINE(2);
end SEND;

end COMMAND_SENDER:

8O




--Tide : guid_s.a (CLIPS-Ada Simulator Version)
--Author : F.P. Thomton Jr.

--Revised : 26 Aug 93

--Compiler :VADS

--System : Unix

--Description : Specification for Guidance task

package GUIDANCE is

task THE_GUIDANCE is
entry CREATE:
entry GET_GUIDANCE_COMMANDS(NAV_X : in out FLOAT:;
NAV_Y :inout FLOAT,;
NAV_DEPTH : in out FLOAT;
NAV_HEADING : in out FLOAT;
NAV_SPEED : in out FLOAT;
WAYPOINT_X : inout FLOAT;
WAYPOINT_Y : in out FLOAT;
WAYPOINT_DEPTH : in out FLOAT):
entry LOITER(NAV_X : in FLOAT:
NAV_Y : in FLOAT;
NAV_DEPTH : in FLOAT:
NAV_HEADING : in FLOAT;
NAV_SPEED : in FLOAT:
NAV_MODE : in INTEGER):
entry DO_HOMING(G_FLAG_2 : out BOOLEAN):
end THE_GUIDANCE;

end GUIDANCE:

81




--Title : guid_b.a (CLIPS-Ada Simulator Version)
--Author : F.P. Thomton Jr.

--Revised 126 Aug 93

--Compiler : VADS

--System : Unix

--Description : Body for Guidance task

with TEXT_IO, SENSORY_RECEIVER, GUIDANCE_ROUTER, NAVIGATOR_ROUTER.
LOS_CALCULATOR, HOMING_CALCULATOR;
use TEXT_IO, SENSORY_RECEIVER, GUIDANCE_ROUTER, NAVIGATOR_ROUTER;

package body GUIDANCE is

--Task to handle guidance functions such as Homing and LOS calculations

task body THE_GUIDANCE is

GOAL_FLAG_3: BOOLEAN :=FALSE; --Flag for lower level objects
GUIDANCE_X : FLOAT:

GUIDANCE_Y : FLOAT:

GUIDANCE_DEPTH : FLOAT;

GUIDANCE_WAYPOINT_X : FLOAT;

GUIDANCE_WAYPOINT_Y : FLOAT:
GUIDANCE_WAYPOINT_DEPTH : FLOAT:

GUIDANCE_HEADING : FLOAT:

GUIDANCE_SPEED : FLOAT;

GUIDANCE_MODE : INTEGER:

GUIDANCE_BEARING : FLOAT;

GUIDANCE_F ANGE : FLOAT;

LOITER_GUIDANCE_DONE : BOOLEAN := FALSE: --Flag to signal replanning done

begin
accept CREATE:
PUT_LINE(*Creating GUIDANCE™):
THE_GUIDANCE_ROUTER.CREATE:
loop
select
accept GET_GUIDANCE_COMMANDS(NAV_X : in out FLOAT:
NAV_Y :inout FLOAT;
NAV_DEPTH : in out FLOAT;
NAV_HEADING : in out FLOAT:
NAV_SPEED : in out FLOAT:
WAYPOINT_X : in out FLOAT;
WAYPOINT_Y :in out FLOAT:
WAYPOINT_DEPTH : in out FLOAT) do
LOS_CALCULATOR.DO_LOS_GUIDANCE(NAV_X,NAV_Y.NAV_DEPTH,
WAYPOINT_X, WAYPOINT_Y,
WAYPOINT_DEPTH. NAV_SPEED,




NAV_HEADING).
end GET_GUIDANCE_COMMANDS;
or
accept DO_HOMING(G_FLAG_2 : out BOOLEAN) do
HOMING_CALCULATOR.DO_HOMING_GUIDANCE(GOAL _FLAG_3).
if (GOAL_FLAG_3 = TRUE) then
G_FLAG_2 .= TRUE;
GOAL_FLAG_3 := FALSE;
else
G_FLAG_2:=FALSE;
end if;
end DO_HOMING;
or
accept LOITER(NAV_X : in FLOAT;

NAV_Y : in FLOAT,;

NAV_DEPTH : in FLOAT:

NAV_HEADING : in FLOAT;

NAV_SPEED : in FLOAT;

NAV_MODE : in INTEGER) do
GUIDANCE_WAYPOINT_X := NAV_X:
GUIDANCE_WAYPOINT_Y := NAV_Y;
GUIDANCE_WAYPOINT_DEPTH := NAV_DEPTH:
GUIDANCE_HEADING := NAV_HEADING:

GUIDANCE_SPEED := NAV_SPEED:

GUIDANCE_MODE := NAV_MODE:

loop

--Simulator protocol delay

delay 0.5;

THE_SENSORY_RECEIVER .RECEIVE(GUIDANCE_X, GUIDANCE_Y. GUIDANCE_DEPTH.
GUIDANCE_HEADING. GUIDANCE_BEARING,
GUIDANCE_RANGE);

LOS_CALCULATOR.DO_LOS_GUIDANCE(GUIDANCE_X, GUIDANCE_Y.
GUIDANCE_DEPTH.
GUIDANCE_WAYPOINT_X,
GUIDANCE_WAYPOINT_Y,
GUIDANCE_WAYPOINT_DEPTH,
GUIDANCE_SPEED, GUIDANCE_HEADING),
THE_NAVIGATOR_ROUTER.TAKE_L OITER_COMMANDS(GUIDANCE_WAYPOINT_X.
GUIDANCE_WAYPOINT_Y.
GUIDANCE_HEADING,
GUIDANCE_SPEED,
GUIDANCE_WAYPOINT_DEPTH,
GUIDANCE_MODE,
LOITER_GUIDANCE_DONE):
exit when LOITER_GUIDANCE_DONE:
end loop:
end LOITER:
end select;
end loop:
end THE_GUIDANCE:
end GUIDANCE:




--Tite : guid_r_s.a (CLIPS-Ada Simulator Version)
--Author : F.P. Thomnton Jr.

--Revised : 26 Aug 93

--Compiler :VADS

--System : Unix

--Description : Specification for Guidance Router task

package GUIDANCE_ROUTER is

task THE_GUIDANCE_ROUTER is
entry CREATE;
entry TAKE_HOMING_HEADING(HOMING_HEADING : in FLOAT:
HOMING_MODE : in INTEGER).
end THE_GUIDANCE_ROUTER:

end GUIDANCE_ROUTER;




--Tide : guid_r_b.a (CLIPS-Ada Simulator Version)
--Author : FP. Thomton Jr.

--Revised 126 Aug 93

--Compiler :VADS

--System : Unix

--Description : Body for Guidance Router task

with TEXT_IO, NAVIGATOR_ROUTER;
use TEXT_IO, NAVIGATOR_ROUTER:

package body GUIDANCE_ROUTER is

--Task to handle routing of requests through Guidance

task body THE_GUIDANCE_ROUTER is

GUIDANCE_HEADING : FLOAT:
GUIDANCE_MODE : INTEGER:

begin
accept CREATE;
PUT_LINE("Creating GUIDANCE ROUTER™);
loop
accept TAKE_HOMING_HEADING(HOMING_HEADING : in FLOAT;
HOMING_MODE : in INTEGER) do
GUIDANCE_HEADING := HOMING_HEADING:
GUIDANCE_MODE := HOMING_MODE;
end TAKE_HOMING_HEADING:;
THE_NAVIGATOR_ROUTER.TAKE_GUIDANCE_HE ADING(GUIDANCE_HEADING,
GUIDANCE_MODE).
end loop:
end THE_GUIDANCE_ROUTER;

end GUIDANCE_ROUTER;

85




--Tide : gps_s.a (CLIPS-Ada Simulator Version)
--Author : F.P. Thomton Jr.

--Revised 126 Aug 93

--Compiler :VADS

--System : Unix

--Description : Specification for GPS Control

package GPS_CONTROL is
task THE_GPS_CONTROL is

entry CREATE;

entry GET_GPS_FIX(G_FLAG_2 : out BOOLEAN);
end THE_GPS_CONTROL.:

end GPS_CONTROL;

86




--Title : gps_b.a (CLIPS-Ada Simulator Version)
--Author : F.P. Thomton Jr.

--Revised : 26 Aug 93

--Compiler : VADS

--System : Unix

--Description : Body for GPS Control

with TEXT_IO:
use TEXT_IO;

package body GPS_CONTROL is
task body THE_GPS_CONTROL is

begin
accept CREATE;
PUT_LINE(‘Creating GPS CONTROL"):
loop
accept GET_GPS_FIX(G_FLAG_2: out BOOLEAN) do
G_FLAG_2 :=TRUE:
end GET_GPS_FIX:
end loop:
end THE_GPS_CONTROL:

end GPS_CONTROL.:

87




--Title : sonar_s.a (CLIPS-Ada Simulator Version)
--Author : F.P. Thomnton Jr.

--Revised 126 Aug 93

--Compiler : VADS

--System : Unix

--Description : Specification for Sonar Control task

package SONAR_CONTROL is

task THE_SONAR_CONTROL is
eniry CREATE;
entry DO_SEARCH_PATTERN(G_FLAG_2 : out BOOLEAN;
NAV_HEADING : in FLOAT);
entry UNKNOWN_OBSTACLE_P(G_FLAG_2.R_FLAG_2 : out BOOLEAN).
entry LOG_NEW_OBSTACLE(G_FLAG_2 : out BOOLEAN);
end THE_SONAR_CONTROL.:

end SONAR_CONTROL:

88




--Title : sonar_b.a

--Author : FP. Thomton Jr.
--Revised 126 Aug 93
--Compiler :VADS

--System : Unix

--Description : Body for Sonar task

with TEXT_10, MATH, CALENDAR, NAVIGATOR_ROUTER, MISSION_MODEL,
SENSORY_RECEIVER;

use TEXT_IO, MATH, CALENDAR. NAVIGATOR_ROUTER, MISSION_MODEL.,
SENSORY_RECEIVER;

package body SONAR_CONTROL is

--Task to handie Sonar Control functions including search, checking for
--obstacles, and logging new obstacle position

task body THE_SONAR_CONTROL is

SECONDS : constant DURATION := 1.0;

LEG_TIME : DURATION := 15 * SECONDS:--15 sec legs (+ 15 sec in turns)
TURN_TIME : constant DURATION := 15.0;

INTERVAL : constant DURATION := 15 * SECONDS:--Amount to increase box
NEXT_TIME : TIME:

LEG_NUM : INTEGER :=0;

RANGE_LIMIT : constant FLOAT := 300.0: --Limits for sonar in Search mode
BEARING_LIMIT : constant FLOAT := P1/3.0:

SONAR_X : FLOAT:

SONAR_Y : FLOAT:

SONAR_DEPTH : FLOAT;

SONAR_HEADING : FLOAT:

SONAR_BEARING : FLOAT:

SONAR_RANGE : FLOAT:

SONAR_MODE : INTEGER := 2:

SEARCH_HEADING : FLOAT:

begin
accept CREATE;
PUT_LINE("Creating SONAR CONTROL");
loop
select
--Do expanding box search patiern
accept DO_SEARCH_PATTERN(G_FLAG_2 : out BOOLEAN;
NAV_HEADING : in FLOAT) do
SEARCH_HEADING := NAV_HEADING;
NEXT_TIME := CLOCK + INTERVAL - TURN_TIME;
loop
if CLOCK > NEXT_TIME then --Change heading for new leg of search

89




if LEG_NUM = 2 then —-Expand the box
LEG_TIME := LEG_TIME + INTERVAL;
LEG_NUM:=I;
end if;
--Change heading to make box comner and normalize
if (SEARCH_HEADING > (P1/ 2.0)) then --Commanded heading > 0
SEARCH_HEADING := SEARCH_HEADING - (P1/2.0).
else --Commanded heading <=0
SEARCH_HEADING := SEARCH_HEADING + ((3.0* P) / 2.0);
end if;
LEG_NUM :=LEG_NUM+ I;
NEXT_TIME := NEXT_TIME + LEG_TIME;
end if;
--Simulator protocol delay
delay 0.5;
THE_SENSORY_RECEIVER.RECEIVE(SONAR_X, SONAR_Y, SONAR_DEPTH.
SONAR_HEADING, SONAR_BEARING,
SONAR_RANGE);
--Send commanded heading to Navigator
THE_NAVIGATOR_ROUTER.TAKE_GUIDANCE_HEADING(SEARCH_HEADING,
SONAR_MODE):
--Check for valid range and bearing from sonar to end search
exit when (SONAR_RANGE < RANGE_LIMIT and
ABS(SONAR_BEARING) < BEARING_LIMIT);
end loop;
--Transition to Task mode
SONAR_MODE := 3;
THE_MISSION_MODEL.SET_MODE(SONAR_MODE);
G_FLAG_2:=TRUE:
end DO_SEARCH_PATTERN:
or
accept UNKNOWN_OBSTACLE_P(G_FLAG_2. R_FLAG_2 : out BOOLEAN) do
G_FLAG_2:=FALSE:
R_FLAG_2 := TRUE:
end UNKNOWN_OBSTACLE_P:
or
accept LOG_NEW_OBSTACLE(G_FLAG_2 : out BOOLEAN) do
G_FLAG_2:=TRUE:
end LOG_NEW_OBSTACLE:
end select:
end loop;
end THE_SONAR_CONTROL;

90




--Tide : replan_s.a (CLIPS-Ada Simulator Version)
--Author : FP. Thomton Jr.

--Revised 126 Aug 93

--Compiler :VADS

--System : Unix

--Description : Specification for Mission Replanner task

package MISSION_REPLANNER is

task THE_MISSION_REPLANNER is
entry CREATE:;
entry START_LOCAL_REPLANNER:
entry START_GLOBAL_REPLANNER:
end THE_MISSION_REPLANNER;

end MISSION_REPLANNER:

91




--Tide : replan_b.a (CLIPS-Ada Simulator Version)
--Author : FP. Thomnton Jr.

--Revised 126 Aug 93

--Compiler :VADS

--System : Unix

--Description : Body for Mission Replanner task

with TEXT_IO, MISSION_MODEL, NAVIGATOR_ROUTER;
use TEXT_lO, MISSION_MODEL, NAVIGATOR_ROUTER;

package body MISSION_REPLANNER is

--Task to handle local and global replanning due to obstacles and system
--faults

task body THE_MISSION_REPLANNER is

begin
accept CREATE;
PUT_LINE("Creating MISSION REPLANNER"™):
loop
select
accept START_LOCAL_REPLANNER:
--Delay to simulate replan time
delay 30.0;
THE_MISSION_MODEL.SET_REPLAN_ROUTE:
THE_NAVIGATOR_ROUTER.REPLAN_DONE:
or
accept START_GLOBAL_REPLANNER:
--Delay to simulate replan time
delay 30.0;
THE_MISSION_MODEL.SET_REPLAN_ROUTE:
THE_NAVIGATOR_ROUTER.REPLAN_DONE.:
end select;
end loop:
end THE_MISSION_REPLANNER:

end MISSION_REPLANNER;

92




--Title : los_s.a (CLIPS-Ada Simulator Version)
--Author : F.P. Thomton Jr.

--Revised : 26 Aug 93

--Compiler :VADS

--System : Unix

--Description : Specification for LOS Calculator

package LOS_CALCULATOR is

procedure DO_LOS_GUIDANCE(FROM_X : in FLOAT;
FROM_Y :in FLOAT,;
LOS_DEPTH : in out FLOAT:
TO_X : in FLOAT;
TO_Y : in FLOAT:
TO_DEPTH : in FLOAT;
LOS_SPEED : in FLOAT:
LOS_HEADING : in out FLOAT):

end LOS_CALCULATOR;




--Tite : los_b.a (CLIPS-Ada Simulator Version)
--Author : FP. Thomton Jr.

--Revised 126 Aug 93

--Compiler :VADS

--System : Unix

--Description : Body for LOS Calculator

with MATH, TRIG_MATH;
use MATH, TRIG_MATH.

package body LOS_CALCULATOR is

--Procedure 10 calculate updated heading to next waypoint

procedure DO_LOS_GUIDANCE(FROM_X : in FLOAT:;
FROM_Y :in FLOAT:
LOS_DEPTH : in out FLOAT:
TO_X : in FLOAT:
TO_Y :in FLOAT:
TO_DEPTH : in FLOAT:
LOS_SPEED : in FLOAT:
LOS_HEADING : in out FLOAT) is
TIME_OF_ARRIVAL : FLOAT:
DELTA_TIME : FLOAT := 10.0:
begin
--Calculate updated heading to waypoint and normalize to 360 degrees
LOS_HEADING := ATAN2((TO_X - FROM_X),(TO_Y - FROM_Y))
if LOS_HEADING < 0.0 then
LOS_HEADING := LOS_HEADING + 2.0 * Pl
end if;
--Calculate updated depth
TIME_OF_ARRIVAL := SQRT((TO_X - FROM_X)**2 + (TO_Y - FROM_Y)**2)/
(LOS_SPEED /60.0):
LOS_DEPTH := LOS_DEPTH + ((TO_DEPTH - LOS_DEPTH) *
(DELTA_TIME / TIME_OF_ARRIVAL)):
end DO_LOS_GUIDANCE.

end LOS_CALCULATOR:

94




--Tide : homing_s.a (CLIPS-Ada Simulator Version)
--Author : F.P. Thomton Jr.

--Revised 126 Aug 93

--Compiler : VADS

--System : Unix

--Description : Specification for Homing Calculator

package HOMING_CALCULATOR is

procedure DO_HOMING_GUIDANCE(G_FLAG_3 : out BOOLEAN):.

end HOMING_CALCULATOR:

95




--Title : homing_b.a (CLIPS-Ada Simulator Version)
--Author : FP. Thomnton Jr.

--Revised 126 Aug 93

--Compiler : VADS

--System : Unix

--Description : Body for Homing Calculator

with TEXT_IO, MATH, SENSORY_RECEIVER, GUIDANCE_ROUTER:
use TEXT_IO, MATH, SENSORY_RECEIVER, GUIDANCE_ROUTER:

package body HOMING_CALCULATOR is

--Procedure to calculate heading for homing

procedure DO_HOMING_GUIDANCE(G_FLAG_3 : out BOOLEAN) is
HOMING_X : FLOAT;
HOMING_Y : FLOAT;
HOMING_DEPTH : FLOAT;
HOMING_HEADING : FLOAT:;
HOMING_BEARING : FLOAT:
HOMING_RANGE : FLOAT:;
HOMING_MODE : INTEGER := 3; --Initialize to task mode
EPSILON : constant FLOAT := 20.0; --Tolerance for reaching target
begin
loop
--Simulator protocol delay
delay 0.5;
THE_SENSORY_RECEIVER .RECEIVE(HOMING_X. HOMING_Y. HOMING_DEPTH,
HOMING_HEADING. HOMING_BEARING. HOMING_RANGE):
--Calculate updated heading to target
HOMING_HEADING := HOMING_HEADING + HOMING_BEARING:
--Normalize heading to 360 degrees
if HOMING_HEADING < 0.0 then
HOMING_HEADING := HOMING_HEADING + (2.0 * PI);
elsif HOMING_HEADING >= (2.0 * PI) then
HOMING_HEADING := HOMING_HEADING - (2.0 * PI);
else
null;
end if;
-Send guidance commands to Guidance
THE_GUIDANCE_ROUTER. TAKE_HOMING_HEADING(HOMING_HEADING,
HOMING_MODE),
exit when HOMING_RANGE < EPSILON:;
end loop;
G_FLAG_3:=TRUE:
end DO_HOMING_GUIDANCE ;
end HOMING_CALCULATOR;

96




--Tide : miss_s.a

--Author : FP. Thomton Jr.

--Revised : 26 Aug 93

--Compiler :VADS

--System : Unix

--Description : Specification for MISSION MODEL task

package MISSION_MODEL is

task THE_MISSION_MODEL is
entry CREATE;
entry INITIALIZE(G_FLLAG_1 : out BOOLEAN);
entry GIVE_FIRST_WAYPOINT(INITIAL_X : out FLOAT:
INITIAL_Y : out FLOAT;
INITIAL_DEPTH : out FLOAT:
INITIAL_MODE : out INTEGER;
INITIAL_HEADING : out FLOAT:
INITIAL_SPEED : out FLOAT:;
FIRST_WAYPOINT_X : out FLOAT;
FIRST_ WAYPOINT_Y : out FLOAT:
FIRST_WAYPOINT_DEPTH : out FLOAT):
enury IN_TRANSIT_P(G_FLAG_1.R_FLAG_1 : out BOOLEAN).
entry TRANSIT_DONE_P(G_FLAG_1.R_FLAG_1 : out BOOLEAN):
entry IN_SEARCH_P(G_FLAG_1,R_FLAG_1 : out BOOLEAN);
entry SEARCH_DONE_P(G_FLAG_1, R_FLAG_I : out BOOLEAN);
entry IN_TASK_P(G_FLAG_1,R_FLAG_1 : out BOOLEAN);
entry TASK_DONE_P(G_FLAG_1.R_FLAG_1 : out BOOLEAN);
entry IN_RETURN_P(G_FLAG_1.R_FLAG_! : out BOOLEAN).
entry RETURN_DONE_P(G_FLAG_1.R_FLAG_1 : out BOOLEAN):
entry GIVE_NEXT_WAYPOINT(NEXT_X : out FLOAT:
NEXT_Y : out FLOAT:
NEXT_DEPTH : out FLOAT:
NEXT_SPEED : out FLOAT;
NEXT_MODE : out INTEGER);
entry SET_REPLAN_ROUTE:
entry SET_MODE(MISSION_MODE : in INTEGER):
entry GET_MODEMISSION_MODE : out INTEGER);
end THE_MISSION_MODEL;

end MISSION_MODEL;

97




--Title : miss_b.a (CLIPS-Ada Simulator Version)
--Author : F.P. Thomton Ir.

--Revised 128 Aug 93

--Compiler :VADS

--System : Unix

--Description : Body for Mission Model task

with TEXT_IO, NETWORK _SW;
use TEXT_IO, NETWORK_SW;

package body MISSION_MODEL is
package FLOAT_INOUT is new FLOAT_IO(FLOAT):

package INTEGER_INOUT is new INTEGER_IO(INTEGER).
use FLOAT_INOUT, INTEGER_INOUT;

--Task 10 manage mission database

task body THE_MISSION_MODEL is

INITIAL_STATE_FILE : FILE_TYPE:
WAYPOINT_FILE : FILE_TYPE;
FINAL_GOAL _FILE : FILE_TYPE:
--Data structure to hold waypoints
type WAYPOINT is
record
X : FLOAT:
Y : FLOAT;
DEPTH : FLOAT:
HEADING : FLOAT;
MODE : INTEGER:
SPEED : FLOAT:
end record:
INITIAL : WAYPOINT:
FINAL : WAYPOINT,;
MAX_WAYPOINTS : INTEGER := 25;
type WAYPOINTS is array (INTEGER range 1.MAX_WAYPOINTS) of WAYPOINT;
WAYPOINT_LIST : WAYPOINTS:
WAYPOINT_COUNT : INTEGER:

1. INTEGER := 1; --Counter for total number of waypoints

K:INTEGER = ]; -Counter for current waypoint

CURRENT_MODE : INTEGER := |, --Initialize mode to Transit
begin

accept CREATE:

PUT_LINE(“Creating MISSION MODEL"):

loop

select

98




--Initialize Mission Model with initial state, waypoints, final goal
accept INITIALIZE(G_FLAG_1 : out BOOLEAN) do
begin

--Load initial state from file
OPEN(INITIAL_STATE_FILE, MODE => IN_FILE, NAME => “initial_state™);
GET(INITIAL _STATE_FILE, INITIAL .X):
GET(INITIAL_STATE_FILE, INITIAL.Y);
GET(INITIAL_STATE_FILE, INITIAL.DEPTH):
GET(INITIAL_STATE_FILE, INITIAL . HEADING);
PUT_FLOAT(INITIAL.X);
PUT_FLOAT(INITIAL.Y);
PUT_FLOAT(INITIAL.DEPTH);
PUT_FLOAT(INITIAL.HEADING);
CLOSE(INITIAL_STATE_FILE).

--Load waypoints from file

OPEN(WAYPOINT_FILE. MODE => IN_FILE, NAME => “waypoints”):

GET(WAYPOINT_FILE, WAYPOINT_COUNT):

SKIP_LINE(WAYPOINT_FILE);

PUT_FLOAT(FLOAT(WAYPOINT_COUNT)):

while not END_OF_FILE(WAYPOINT_FILE) loop
GET(WAYPOINT_FILE. WAYPOINT_LIST(1).SPEED):
GET(WAYPOINT_FILE. WAYPOINT_LIST(I).X):
GET(WAYPOINT_FILE, WAYPOINT_LIST(I).Y):
GET(WAYPOINT_FILE, WAYPOINT_LIST(1).DEPTH);
GET(WAYPOINT_FILE, WAYPOINT_LIST(1).MODE):
SKIP_LINE(WAYPOINT_FILE).
PUT_FLOAT(WAYPOINT_LIST(I).SPEED}:
PUT_FLOAT(WAYPOINT_LIST(I).X):
PUT_FLOAT(WAYPOINT_LIST(I).Y).
PUT_FLOAT(WAYPOINT_LIST(1).DEPTH):
I'=1+1;

end loop;

CLOSE(WAYPOINT_FILE):

--Load final goal from file

OPEN(FINAL_GOAL_FILE. MODE => IN_FILE. NAME => “final_goal™);
GET(FINAL_GOAL _FILE, FINAL X):

GET(FINAL_GOAL_FILE. FINAL.Y):

PUT_FLOAT(FINAL.X):

PUT_FLOAT(FINAL.Y);

CLOSE(FINAL_GOAL _FILE):

G_FLAG_1 := TRUE:
exception
when others =>
PUT_LINE(*“Error in mission files™);
G_FLAG_] :=FALSE;
end;
end INITIALIZE;
or

99




--Select initial state and first waypoint values

accept GIVE_FIRST_WAYPOINT(INITIAL _X : out FLOAT;
INITIAL_Y : out FLOAT;
INTTIAL_DEPTH : out FLOAT:
INITIAL_MODE : out INTEGER;
INITIAL_HEADING : out FLOAT;
INITIAL_SPEED : out FLOAT;
FIRST_WAYPOINT_X : out FLOAT;
FIRST_WAYPOINT_Y : out FLOAT:
FIRST_WAYPOINT_DEPTH : out FLOAT) do

INITIAL _X := INITIAL.X;
INITIAL_Y := INITIAL.Y;
INITIAL_DEPTH := INITIAL.DEPTH;
INITIAL_HEADING := INITIAL.HEADING:
INITIAL_MODE := CURRENT_MODE;
INITIAL_SPEED := WAYPOINT_LIST(1).SPEED:
FIRST_WAYPOINT_X := WAYPOINT_LIST(1).X:
FIRST_WAYPOINT_Y := WAYPOINT_LIST(1).Y:
FIRST_WAYPOINT_DEPTH := WAYPOINT_LIST(1).DEPTH:

end GIVE_FIRST_WAYPOINT;

or

--Entries to determine mission mode

--Integer values equate to modes:

-- 1 = Transit, 2 = Search. 3 = Task, 4 = Return. 5 = Recover

accept IN_TRANSIT_P(G_FLAG_1.R_FLAG_] : out BOOLEAN) do
if CURRENT_MODE = 1 then
G_FLAG_] := TRUE;
else
G_FLAG_! :=FALSE:
end if;
R_FLLAG_1 := TRUE;
end IN_TRANSIT_P;
or
accept TRANSIT_DONE_P(G_FLAG_1.R_FLAG_1: out BOOLEAN) do
if CURRENT_MODE > 1 then
G_FLAG_] :=TRUE:
else
G_FLAG_] :=FALSE;
end if;
R_FLAG_1 := TRUE;
end TRANSIT_DONE_P:
or
accept IN_SEARCH_P(G_FLAG_1,R_FLAG_I : out BOOLEAN) do
if CURRENT_MODE = 2 then
G_FLAG_] := TRUE;
else
G_FLAG_1 :=FALSE;
end if:
R_FLAG_1 := TRUE;

100




end IN_SEARCH_P;
or
accept SEARCH_DONE_P(G_FLAG_1.R_FLAG_1 : out BOOLEAN) do
if CURRENT_MODE > 2 then
G_FLAG_] := TRUE;
else
G_FLAG_! :=FALSE;
end if;
R_FLAG_1 := TRUE;
end SEARCH_DONE_P:
or
accept IN_TASK_P(G_FLAG_1.R_FLAG_1 : out BOOLEAN) do
if CURRENT_MODE = 3 then
G_FLAG_! := TRUE;
else
G_FLAG_! :=FALSE:
end if;
R_FLAG_] := TRUE:
end IN_TASK_P;
or
accept TASK_DONE_P(G_FLAG_1.R_FLAG_1 : out BOOLEAN) do
if CURRENT_MODE > 3 then
G_FLAG_] := TRUE;
else
G_FLAG_1 := FALSE:
end if;
R_FLAG_! := TRUE:
end TASK_DONE_P:
or
accept IN_RETURN_P(G_FLAG_1.R_FLAG_1 : out BOOLEAN) do
if CURRENT_MODE = 4 then
G_FLAG_! := TRUE:
else
G_FLAG_1:=FALSE:
end if;
R_FLAG_1 := TRUE:
end IN_RETURN_P;
or
accept RETURN_DONE_P(G_FLAG_1.R_FLAG_1: out BOOLEAN) do
if CURRENT_MODE > 4 then
PUT_LINE(““"““"GO&] Reached““"““"):
G_FLAG_1:=TRUE:
else
G_FLAG_1 :=FALSE;
end if;
R_FLAG_1 := TRUE:
end RETURN_DONE_P;
or
--Retrieve next waypoint for Navigator
accept GIVE_NEXT_WAYPOINT(NEXT_X : out FLOAT;
NEXT_Y : out FLOAT:

101




NEXT_DEPTH : out FLOAT;
NEXT_SPEED : out FLOAT;
NEXT_MODE : out INTEGER) do
NEXT_MODE := WAYPOINT_LIST(X).MODE;
NEXT_SPEED := WAYPOINT_LIST(K).SPEED;
if (CURRENT_MODE = 1) or (CURRENT_MODE = 2) or
(CURRENT_MODE = 4) then --Normal case:use next waypoint X.Y DEPTH
NEXT_X := WAYPOINT_LIST(K + 1).X;
NEXT_Y := WAYPOINT_LIST(K + 1).Y;
NEXT_DEPTH := WAYPOINT_LIST(KX + 1).DEPTH;
CURRENT_MODE := WAYPOINT_LIST(K).MODE;
K=K+1;
else --Odd case:use current waypoint XY DEPTH
NEXT_X := WAYPOINT_LIST(K).X;
NEXT_Y := WAYPOINT_LIST(K).Y;
NEXT_DEPTH := WAYPOINT_LIST(K).DEPTH:
CURRENT_MODE := WAYPOINT_LIST(K).MODE;
end if;
end GIVE_NEXT_WAYPOINT;
or
--Change waypoint. mode, and speed for replan route
accept SET_REPLAN_ROUTE do
K:=1-3;
WAYPOINT_LIST(K).MODE := 4;
WAYPOINT_LIST(X).SPEED := WAYPOINT_LIST(K + 1).SPEED:
end SET_REPLAN_ROUTE;
or
accept SET_MODE(MISSION_MODE : in INTEGER) do
CURRENT_MODE := MISSION_MODE;
end SET_MODE;
or
accept GET_MODE(MISSION_MODE : out INTEGER) do
MISSION_MODE := CURRENT_MODE:
end GET_MODE;
end select;
end loop:
end THE_MISSION_MODEL;

end MISSION_MODEL;

102




--Tite : world_s.a (CLIPS-Ada Simulator Version)
--Author : F.P. Thomnton Jr.

--Revised 126 Aug 93

--Compiler :VADS

--System : Unix

--Description : Specification for World Model task

package WORLD_MODEL is

task THE_WORLD_MODEL is
entry CREATE;
entry INITIALIZE(G_FLAG_1 : out BOOLEAN).
entry GET_SONAR_CONTACT(SONAR_X : out FLOAT:
SONAR_Y : out FLOAT);
entry ADD_OBSTACLE(OBSTACLE_X : in FLOAT:
OBSTACLE_Y : in FLOAT:
OBSTACLE_DEPTH : in FLOAT):
end THE_WORLD_MODEL;

end WORLD_MODEL;




--Tite : world_b.a (CLIPS-Ada Simulator Version)
--Author : FP. Thomnton Jr.

--Revised 126 Aug 93

--Compiler :VADS

--System : Unix

--Description : Body for World Model task

with TEXT_1O, NETWORK_SW;
use TEXT_1O, NETWORK_SW;

package body WORLD_MODEL is
package FLOAT_INOUT is new FLOAT_IO(FLOAT);
package INTEGER_INOUT is new INTEGER_IO(INTEGER);
use FLOAT_INOUT, INTEGER_INOUT:

--Task 10 manage world database, which includes obstacles

task body THE_WORLD_MODEL is

OBSTACLE_FILE : FILE_TYPE:
--Data structure to hold obstacles
type OBSTACLE is
record
X : FLOAT;
Y : FLOAT:
DEPTH : FLOAT;
end record:
CURRENT_OBSTACLE : OBSTACLE:
NEXT_OBSTACLE : OBSTACLE:
MAX_OBSTACLES : INTEGER := 25;
type OBSTACLES is array (INTEGER range 1. MAX_OBSTACLES) of OBSTACLE:
OBSTACLE_LIST : OBSTACLES;
OBSTACLE_COUNT : INTEGER:
1 . INTEGER := 1; --Counter for total number of obstacles

begin
accept CREATE:
PUT_LINE("Creating WORLD MODEL");
loop
select
--Initialize World Model by loading obstacles
accept INITIALIZE(G_FLAG_1 : out BOOLEAN) do
begin
OPEN(OBSTACLE_FILE. MODE => IN_FILE, NAME => “obstacles”™):
GET(OBSTACLE_FILE. OBSTACLE_COUNT);
SKIP_LINE(OBSTACLE_FILE);
PUT_FLOAT(FLOAT(OBSTACLE_COUNT))
while not END_OF_FILE(OBSTACLE_FILE) loop

104




GET(OBSTACLE_FILE, OBSTACLE_LIST(J).X);
GET(OBSTACLE_FILE, OBSTACLE_LIST(J).Y);

GET(OBSTACLE_FILE, OBSTACLE_LIST(J).DEPTH)

SKIP_LINE(OBSTACLE_FILE);
PUT_FLOAT(OBSTACLE_LIST({).X);
PUT_FLOAT(OBSTACLE_LIST{).Y):
PUT_FLOAT(OBSTACLE_LIST(J).DEPTH);
I=)+1:

end loop;

CLOSE(OBSTACLE_FILE);

NEXT_OBSTACLE := OBSTACLE_LIST(J);
G_FLAG_l := TRUE;
exception
when others =>
PUT_LINE("Error in world files™);
G_FLAG_1:=FALSE:
end;
end INITIALIZE.
or
--Get an obstacle for sonar target
accept GET_SONAR_CONTACT(SONAR_X : out FLOAT:
SONAR_Y : out FLOAT) do
SONAR_X := OBSTACLE_LIST(1).X;
SONAR_Y = OBSTACLE_LIST(1).Y;
end GET_SONAR_CONTACT;
or
--Add a new obstacle
accept ADD_OBSTACLE(OBSTACLE_X : in FLOAT:
OBSTACLE_Y :inFLOAT,;
OBSTACLE_DEPTH : in FLOAT) do
NEXT_OBSTACLE.X := OBSTACLE_X;
NEXT_OBSTACLE.Y := OBSTACLE_Y;
NEXT_OBSTACLE.DEPTH := OBSTACLE_DEPTH;
NEXT_OBSTACLE := OBSTACLE_LIST(J).
Ji=]+1;
end ADD_OBSTACLE:
end select:
end loop;
end THE_WORLD_MODEL;

end WORLD_MODEL;

105




--Tile : receiv_s.a (CLIPS-Ada Simulator Version)

--Author : F.P. Thomton Jr.
--Revised : 26 Aug 93
--Compiler : VADS

--System : Unix

--Description : Specification for Sensory Receiver task

package SENSORY_RECEIVER is

task THE_SENSORY_RECEIVER is
entry CREATE;
entry RECEIVE(CURRENT_X : in out FLOAT;
CURRENT_Y : in out FLOAT:
CURRENT_DEPTH : in out FLOAT;

CURRENT_HEADING : in out FLOAT:
CURRENT_BEARING : in out FLOAT;

CURRENT_RANGE : in out FLOAT):
end THE_SENSORY_RECEIVER:

end SENSORY_RECEIVER:

106




--Title : receiv_b.a

--Author : FP. Thomton Jr.

--Revised 126 Aug 93

--Compiler :VADS

--System : Unix

--Description : Body for Sensory Receiver task

with TEXT_IO, MATH, TRIG_MATH, NETWORK_SW, WORLD_MODEL.
use TEXT_IO. MATH, TRIG_MATH, NETWORK_SW, WORLD_MODEL.

package body SENSORY_RECEIVER is
package FLOAT_INOUT is new FLOAT_IO(FLOAT):

package INTEGER_INOUT is new INTEGER_IO(INTEGER):;
use FLOAT_INOUT. INTEGER_INOUT;

--Task to get navigation status values from execution level and provide
--them to the tactical level

task body THE_SENSORY_RECEIVER is

RECEIVED : BOOLEAN := FALSE:
CURRENT_ALT : FLOAT,
CURRENT_SPEED : FLOAT:
SONAR_X : FLOAT:

SONAR_Y : FLOAT:

begin
accept CREATE:;
PUT_LINE(Creating SENSORY RECEIVER"™).
loop
accept RECEIVE(CURRENT _X : in out FLOAT:
CURRENT_Y :in out FLOAT;
CURRENT_DEPTH : in out FLOAT;
CURRENT_HEADING : in out FLOAT:
CURRENT_BEARING : in out FLOAT:
CURRENT_RANGE : in out FLOAT) do
CURRENT_X := get_float:
PUT("Current X = );
PUT(CURRENT_X, FORE=>3, AFT=>2 EXP=>0);
NEW_LINE:

CURRENT_Y := get_float;

PUT(“Current Y = *);

PUT(CURRENT_Y, FORE=>3, AFT=>2 EXP=>0);
NEW_LINE;

CURRENT_ALT := get_float:

107




CURRENT_DEPTH := get_float:

PUT("Current Depth = *);

PUT(CURRENT_DEPTH. FORE=>3, AFT=>2 EXP=>0);
NEW_LINE;

CURRENT_HEADING := DEG_TO_RAD(get_float);

PUT(“Current Heading = *);

PUT(RAD_TO_DEG(CURRENT_HEADING). FORE=>3, AFT=>2 EXP=>0);
NEW_LINE:

--Speed does not come from the simulator
CURRENT_SPEED := 0.0;

--Calculate bearing and range to simulated sonar contact
if not RECEIVED then
THE_WORLD_MODEL.GET_SONAR_CONTACT(SONAR_X. SONAR_Y):
RECEIVED := TRUE:
end if;
CURRENT_BEARING := CURRENT_HEADING -
ATAN2((SONAR_X - CURRENT_X).(SONAR_Y - CURRENT_Y)):
--Normalize to 360 degrees but keep negative values for bearing
if CURRENT_BEARING < 0.0 then
CURRENT_BEARING := ABS(CURRENT_BEARING):
elsif CURRENT_BEARING > PI then
CURRENT_BEARING := (2.0 * PI) - CURRENT_BEARING:
else --0.0 <= CURRENT_BEARING <= PI
CURRENT_BEARING := 0.0 - CURRENT_BEARING:
end if;
PUT("*Current Bearing = **);
PUT(RAD_TO_DEG(CURRENT_BEARING), FORE=>3. AFT=>2, EXP=>0):
NEW_LINE;

CURRENT_RANGE := SQRT((SONAR_X - CURRENT_X)**2 +
(SONAR_Y - CURRENT_Y)**2):
PUT(*Current Range =*);
PUT(CURRENT_RANGE. FORE=>3. AFT=>2. EXP=>0);
NEW_LINE:
end RECEIVE:
end loop;
end THE_SENSORY_RECEIVER:

end SENSORY_RECEIVER:

108




--Title :trig_mth.a

--Author :R.B. Bymes

--Revised : 18 Aug 93 by F.P. Thomton Jr.
--Compiler : VADS

--System : Unix

--Description : Trigonometric and conversion functions

with MATH;
use MATH;

package TRIG_MATH is
LOWER_LIMIT : constant FLOAT := 0.000001;
funcion ATAN2(Y.X : FLOAT) retum FLOAT;
function RAD_TO_DEG(X : FLOAT) return FLOAT;
function DEG_TO_RAD(X : FLOAT) retumm FLOAT;
end TRIG_MATH;

package body TRIG_MATH is

--Trig functions for heading and bearing calculations

function SIGNUM (R : FLOAT) return FLOAT is
begin
if R < 0.0 then
return -1.0;
else
return +1.0;
end if;
end SIGNUM;

function ATAN2(Y.X : FLOAT) retum FLOAT is
begin
if ABS(X) > LOWER_LIMIT then
if X > 0.0 then
return ATAN(Y/X):
else
return ATAN(Y/X) + (SIGNUM(Y) * PI);
end if;
else
retum SIGNUM(Y) * (P12.0);
end if;
end ATAN2;

--Conversion functions for angles

function RAD_TO_DEG(X : FLOAT) return FLOAT is

109




begin
rewmn X * (180.0/PI):
end RAD_TO_DEG:

function DEG_TO_RAD(X : FLOAT) return FLOAT is
begin

retumn X * (P1/ 180.0):
end DEG_TO_RAD;

end TRIG_MATH;

110




--Title :netwk_i.a

--Author  :R.B. Bymes

--Revised  :30Jul 93 by F.P. Thomton Jr.
--Compiler : VADS

--System  : Unix

--Description : Interface to C communication routines

package NETWORK _SW is

-- CLIENT comms, supporting Tactical<->Execution level
procedure start_comms; -- make connection to E-level
procedure put_float (X : FLOAT): -- send float to E-level
function get_float return FLOAT; -- receive float from E-Jeve)
procedure put_mode (X : INTEGERY); -- send mode to E-level
procedure stop_comms;  -- close connection to E-level

-- System clock access function. Better than Ada’s

procedure get_time:
private
pragma INTERFACE(C, start_comms):
pragma INTERFACE(C. put_float);
pragma INTERFACE(C. get_float);
pragma INTERFACE(C. stop_comms):
pragma INTERFACE(C. put_mode):
pragma INTERFACE(C, get_time);
pragma LINK_WITH("network_sw.0"). -- lump all above files together

end NETWORK_SW;

111




APPENDIX B. TRACES OF MISSION EXECUTION

L

CLIPS> (assert
(run)

CLIPS>
Creating
Creating
Creating
Creating
Creating
Creating
Creating
Creating
Creating
Creating
Creating
Creating
Creating
Creating

MULTI-PHASE MISSION

{start))

0.0)8)

MISSION MODEL
WORLD MODEL
SENSORY RECEIVER
OOD ROUTER
NAVIGATOR
ENGINEERING
WEAPONS
NAVIGATOR ROUTER
GUIDANCE

GPS CONTROL
MISSION REPLANNER
SONAR CONTROL
GUIDANCE ROUTER

READY_VEHICLE_FOR_LAUNCH GOAL FLAG = 1
SELECT_FIRST_WAYPOINT GOAL FLAG = 1
IN_TRANSIT_P GOAL FLAG = 1
POWER_GONE_P GOAL FLAG = 0
COMPUTER_SYSTEM_PROB_P GOARL FLAG = 0
PROPULSICON_SYSTEM_PROB_P GOAL FLAG = 0
STEERING_SYSTEM_PROB_P GOAL FLAG = 0
No crit-system-prob branch successful!
GPS_NEEDED_P GOAL FLAG = 0
REACH_WAYPOINT_P GOAL FLAG = 0
DIVING_SYSTEM_PROBLEM_P GOAL FLAG = 0

1]
o

BUOYANCY_SYSTEM_PROB_P GOAL FLAG
THRUSTER_SYSTEM_PROB_P GOAL FLAG
LEAK_TEST_P GOAL FLAG = 0
PAYLOAD_PROB_P GOAL FLAG = 0
No red-cap-system-prob branch successful!
UNKNOWN_OBSTACLE_P GOAL FLAG = 0
Commanded Heading is: 45.00

Commanded Depth is: 5.89

Commanded Speed is: 250.00

Commanded X is: 250.00

Commanded Y is: 250.00

Commanded Mode is: Transit

1]
o

112




SEND_SETPOINTS_AND_MODES GOAL FLAG = 1
TRANSIT_DONE_P GOAL FLAG = 0
IN_SEARCH_P GOAL FLaAG = 0

IN_TASK_P GOAL FLAG = 0

IN_RETURN_P GOAL FLAG = 0
IN_TRANSIT_P GOAL FLAG = 1
TRANSIT_DONE_P GOAL FLAG = 0
POWER_GONE_P GOAL FLAG = 0
COMPUTER_SYSTEM_PROB_P GOAL FLAG = 0
PROPULSION_SYSTEM_PROB_P GOAL FLAG = 0
STEERING_SYSTEM_PROB_P GOAL FLAG = 0
No crit-system-prob branch successful!
GPS_NEEDED_P GOAL FLAG = 0

Current X = 8.81

Current Y = 0.00

Current Depth = -0.00

Current Heading 89.00

Current Bearing = -21.92

Current Range = 641.87

REACH_WAYPOINT_P GOAL FLAG = 0
DIVING_SYSTEM_PROBLEM_P GOAL FLAG = 0
BUOYANCY_SYSTEM_PROB_P GOAL FLAG = 0
THRUSTER_SYSTEM_PROB_P GOAL FLAG = 0
LEAK_TEST_P GOAL FLAG = 0

PAYLOAD PROB_P GOAL FLAG = 0

No red-cap-system-prob branch successful!
Commanded Heading is: 43.97

Commanded Depth 1is: 6.00

Commanded Speed is: 250.00

Commanded X is: 250.00

Commanded Y is: 250.00

Commanded Mode is: Transit

i}
[y

SEND_SETPOINTS_AND_MODES GOAL FLAG
IN_SEARCH_P GOAL FLAG = 0
IN_TASK_P GOAL FLAG = 0
IN_RETURN_P GOAL FLAG = 0
IN_TRANSIT_P GOAL FLAG = 1
TRANSIT_DONE_P GOAL FLAG = 0
POWER_GONE_P GOAL FLAG = 0
COMPUTER_SYSTEM_PROB_P GOAL FLAG = 0
PROPULSION_SYSTEM_PROB_P GOAL FLAG

"
O




STEERING_SYSTEM_PROB_P GOAL FLAG = 0
No crit-system-prob branch successful!

GPS_NEEDED_P GOAL FLAG = 0
Current X = 17.39

Current Y = -~0.05

Current Depth = -0.01
Current Heading = 88.00
Current Bearing = -21.23

Current Range = 634.00

REACH_WAYPOINT_P GOAL FLAG = 0
DIVING_SYSTEM_PROBLEM_P GOAL FLAG = 0
BUOYANCY_SYSTEM_PROB_P GOAL FLAG
THRUSTER_SYSTEM_PROB_P GOAL FLAG =
LEAK_TEST_P GOAL FLAG = 0
PAYLOAD_PROB_P GOAL FLAG = 0

No red-cap-system-prob branch successful!
Commanded Heading is: 42.93

Commanded Depth is: 6.09

Commanded Speed is: 250.00

Commanded X is: 250.00

Commanded Y is: 250.00

Commanded Mode is: Transit

non
o o

GPS_NEEDED_P GOAL FLAG = 0
Current X = 240.39

Current Y = 234.65

Current Depth = 48.17
Current Heading = 32.00

Current Bearing = 55.56

Current Range = 359.94

REACH_WAYPOINT_P GOAL FLAG = 0
DIVING_SYSTEM_PROBLEM_P GOAL FLAG = 0
BUOYANCY_SYSTEM_PROB_P GOAL FLAG = 0
THRUSTER_SYSTEM_PROB_P GOAL FLAG = 0
LEAK_TEST_P GOAL FLAG = 0
PAYLOAD_PROB_P GOAL FLAG = 0

No red-cap-system-prob branch successful!
Commanded Heading is: 32.04

Commanded Depth is: 52.38

Commanded Speed is: 250.00

114




Commanded X is: 250.00
Commanded Y is: 250.00
Commanded Mode is: Transit

SEND_SETPOINTS_AND_MODES GOAL FLAG = 1
IN_SEARCH_P GOAL FLAG = 0

IN_TASK_P GOAL FLAG = 0

IN_RETURN_P GOAL FLAG = 0

IN_TRANSIT_P GOAL FLAG = 1
TRANSIT_DONE_P GOAL FLAG = 0
POWER_GONE_P GOAL FLAG = 0
COMPUTER_SYSTEM_PROB_P GOAL FLAG = 0
PROPULSION_SYSTEM_PROB_P GOAL FLAG = 0
STEERING_SYSTEM_PROB_P GOAL FLAG = 0

0 crit-system-prob branch successful!

GPS_NEEDED_P GOAL FLAG = 0

***x** At waypoint, coming to new heading****~
Current X = 245.06

Current Y = 241.97

Current Depth = 49.04

Current Heading = 32.00

Current Bearing = 56.70

Current Range = 355.04

REACH_WAYPOINT_P GOAL FLAG = 1
GET_NEXT_WAYPOINT GOAL FLAG = 1
DIVING_SYSTEM_PROBLEM_P GOAL FLAG = 0
BUOYANCY_SYSTEM_PROB_P GOAL FLAG = 0
THRUSTER_SYSTEM_PROB_P GOAL FLAG = 0
LEAK_TEST_P GOAL FLAG = 0
PAYLOAD_PROB_P GOAL FLAG = 0

No red-cap-system-prob branch successful!
Commanded Heading is: 31.61

Commanded Depth is: 53.26

Commanded Speed is: 250.00

Commanded X is: 450.00

Commanded Y is: 150.00

Commanded Mode is: Search

SEND_SETPOINTS_AND_MODES GOAL FLAG = 1
IN_SEARCH_P GOAL FLAG = 1

Current X = 249.73

Current Y = 249.32

115




Current Depth = 49.82
Current Heading = 32.00
Current Bearing = 57.89
Current Range = 350.27
Commanded Heading is: 31.61
Commanded Depth is: 53.26
Commanded Speed is: 250.00
Commanded X is: 450.00
Commanded Y is: 150.00
Commanded Mode is: Search
Current X = 254.40

Current Y = 256.71

Current Depth = 50.51
Current Heading = 32.00
Current Bearing = 59.11
Current Range = 345.66
Commanded Heading is: 31.61
Commanded Depth is: 53.26
Commanded Speed is: 250.00
Commanded X is: 450.00
Commanded Y is: 150.00
Commanded Mode is: Search
Current X = 259.08

Current Y = 264.11

Current Depth = 51.21
Current Heading = 32.00
Current Bearing = 60.37
Current Range = 341.22
Commanded Heading is: 31.61
Commanded Depth is: 53.26
Commanded Speed is: 250.00
Commanded X is: 450.00
Commanded Y is: 150.00
Commanded Mode is: Search
Current X = 301.47

Current Y = 222.07

Current Depth = 54.45

116




Current Heading 123.00
Current Bearing -38.35
Current Range = 299.84
Commanded Heading is: 121.61
Commanded Depth is: 53.26
Commanded Speed is: 250.00
Commanded X is: 450.00
Commanded Y is: 150.00
Commanded Mode is: Search

DO_SEARCH_PATTERN GOAL FLAG = 1

SEARCH_DONE_P GOAL FLAG = 1

[ E XA AR AR R R R R RS R R RS RRERRS SR RN

* SEARCH SUCCESSFUL. *
I EEXEEEE A EEE A SRS S R AR SRR R ERERERERRRSERESNSS.
IN_SEARCH_P GOAL FLAG = 0
IN_TASK_P GOAL FLAG = 1

Current X = 308.74

Current Y = 217.49

Current Depth = 54.45

Current Heading = 123.00

Current Bearing = -39.37

Current Range = 293.07

Commanded Heading is: 82.63
Commanded Depth 1is: 53.26
Commanded Speed is: 250.00
Commanded X 1is: 450.00

Commanded Y is: 150.00

Commanded Mode is: Task

Current X = 316.03
Current Y = 212.91

Current Depth = 54.45
Current Heading = 123.00
Current Bearing = -40.44

Current Range = 286.38
Commanded Heading is: 82.56
Commanded Depth is: 53.26
Commanded Speed is: 250.00
Commanded X is: 450.00
Commanded Y is: 150.00
Commanded Mode is: Task

117




Current X
Current Y
Current
Current
Current
Current
Commanded
Commanded
Commanded
Commanded
Commanded
Commanded

Current X
Current Y
Current
Current
Current
Current
Commanded
Commanded
Commanded
Commanded
Commanded
Commanded

Current X
Current Y
Current
Current
Current
Current
Commanded
Commanded
Commanded
Commanded
Commandea
Commanded

Depth =
Heading =
Bearing =
Range =

Depth =
Heading =
Bearing =
Range =

Depth =
Heading =
Bearing =
Range =

= 323.31

= 208.28

54.45
121.00
-39.58

279.82
Heading is: 81.42
Depth is: 53.26
Speed is: 250.00
X is: 450.00

Y is: 150.00

Mode is: Task

576.69

243 .88

56.06
76.00
-0.71

24.10

Heading 1s: 75.29

Depth is: 53.26

Speed is: 250.00

X is: 450.00

Y is: 150.00

Mode is: Task

585.25

246.07

56.06
76.00
-0.93

15.27

Heading is: 75.07

Depth is: 53.26

Speed is: 250.00

X is: 450.00

Y is: 150.00

Mode is: Task

HOMING GOAL FLAG = 1

118




DROP_PACKAGE GOAL FLAG = 1
GET_GPS_FIX GOAL FLAG = 1
GET_NEXT_WAYPOINT GOAL FLAG = 1
TASK_DONE_P GOAL FLAG = 1

222222222 RREERRllRRAls RS RSN

* TASK SUCCESSFUL. *

[ EEEEEEEEEE AR AR E R ERA R R R RS RERRERES RN
IN_TASK_P GOAL FLAG = 0

IN_RETURN_P GOAL FLAG = 1
POWER_GONE_P GOAL FLAG = 0
COMPUTER_SYSTEM_PROB_P GOAL FLAG = 0
PROPULSION_SYSTEM_PROB_P GOAL FLAG = 0
STEERING_SYSTEM_PROB_P GOAL FLAG = 0
No crit-system-prob branch successful!
GPS_NEEDED_P GOAL FLAG 0
IN_TRANSIT P GOAL FLAG 0

Current X 593.81

Current Y = 248.26

Current Depth = 56.06

Current Heading 76.00

Current Bearing -1.74

Current Range = 6.43

REACH_WAYPOINT_P GOAL FLAG = 0
DIVING_SYSTEM_PROBLEM_P GOAL FLAG = 0
BUOYANCY_SYSTEM_PROB_P GOAL FLAG = 0
THRUSTER_SYSTEM_PROB_P GOAL FLAG = ¢
LEAK_TEST_P GOAL FLAG = 0
PAYLOAD_PROB_P GOAL FLAG = 0

No red-cap-system-prob branch successful!
Commanded Heading is: 235.66

Commanded Depth is: 47.08

Commanded Speed is: 360.00

Commanded X is: 450.00

Commanded Y is: 150.00

Commanded Mode is: Return

SEND_SETPOINTS_AND_MODES GOAL FLAG = 1
IN_SEARCH_P GOAL FLAG = 0

IN_TASK_P GOAL FLAG = 0

RETURN_DONE_P GOAL FLAG = 0
IN_RETURN_P GOAL FLAG = 1

POWER_GONE_P GOAL FLAG = 0

COMPUTER_SYSTEM_PROB_P GOAL FLAG = 0

119




PROPULSION_SYSTEM_PROB_P GOAL FLAG = 0
STEERING_SYSTEM_PROB_P GOAL FLAG = 0
No crit-system-prob branch successful!
GPS_NEEDED_P GOAL FLAG = 0
IN_TRANSIT_P GOAL FLAG = 0

Current X = 602.39

Current Y = 250.45

Current Depth = 56.06

Current Heading = 76.00

Current Bearing = -176.59

Current Range = 2.43
REACH_WAYPOINT_P GOAL FLAG = 0
DIVING_SYSTEM_PROBLEM_P GOAL FLAG = 0
BUOYANCY_SYSTEM_PROB_P GOAL FLAG = 0
THRUSTER_SYSTEM_PROB_P GOAL FLAG = 0
LEAK_TEST_P GOAL FLAG = 0

PAYLOAD_ _PROB_P GOAL FLAG = 0

No red-cap-system-prob branch successful!
Commanded Heading 1i1s: 236.61

Commanded Depth is: 47.49

Commanded Speed is: 360.00

Commanded X is: 450.00

Commanded Y is: 150.00

Commanded Mode is: Return

]
o

GPS_NEEDED_P GOAL FLAG
IN_TRANSIT_P GOAL FLAG
Current X = 308.61
Current Y = 43.42
Current Depth = 20.17
Current Heading = 220.00

Current Bearing = -165.33

Current Range = 357.18

REACH_WAYPOINT_P GOAL FLAG = 0
DIVING_SYSTEM_PROBLEM_P GOAL FLAG = 0
BUOYANCY_SYSTEM_PROB_P GOAL FLAG
THRUSTER_SYSTEM_PROB_P GOAL FLAG
LEAK_TEST_P GOAL FLAG = 0
PAYLOAD_PROB_P GOAL FLAG = 0
No red-cap-system-prob branch successful!

"
o

nou
o o

120




Commanded Headirg is: 212.68
Commanded Depth is: 19.53
Commanded Speed is: 360.00
Commanded X is: 3G0.00
Commanded ¥ is: 30.00
Commanded Mode is: Return

SEND_SETPOINTS_AND_MODES GOAL FLAG

n
[

IN_SEARCH_P GOAL FLAG = 0

IN_TASK_P GOAL FLAG = 0
RETURN_DONE_P GOAL FLAG = 0
IN_RETURN_P GOAL FLAG = 1
POWER_GONE_P GOAL FLAG = 0
COMPUTER_SYSTEM_PROB_P GOAL FLAG = 0
PROPULSION_SYSTEM_PROB_P GOAL FLAG = 0
STEERING_SYSTEM_PROB_P GOAL FLAG = 0
No crit-system-prob branch successful!
GPS_NEEDED_P GOAL FLAG = 0
IN_TRANSIT_P GOAL FLAG = 0

**x* ¥ At waypoint, coming to new heading*****
Current X = 300.79

Current Y = 34.16

Current Depth = 19.81

Current Heading = 217.00

Current Bearing = -162.81

Current Range = 368.93

REACH_WAYPOINT_P GOAL FLAG = 1l
GET_NEXT_WAYPOINT GOAL FLAG = 1
DIVING_SYSTEM_PROBLEM_P GOAL FLAG = 0
BUOYANCY_SYSTEM_PROB_P GOAL FLAG = 0
THRUSTER_SYSTEM_PROB_P GOAL FLAG = 0
LEAK_TEST_P GOAL FLAG = 0
PAYLOAD_PROB_P GOAL FLAG = 0

No red-cap-system-prob branch successful!
Commanded Heading is: 190.82

Commanded Depth is: 22.45

Commanded Speed is: 360.00

Commanded X is: 0.00

Commanded Y is: 0.00

Commanded Mode is: Recover

SEND_SETPOINTS_AND_MODES GOAL FLAG = 1
IN_SEARCH_P GOAL FLAG = 0

121




IN_TASK_P GOAL FLAG = 0
"*"’"*"Goal Reachedtt'tw'**a*

RETURN_DONE_P GOAL FLAG = 1

IN_RETURN_P GOAL FLAG = 0

WAIT_FOR_RECOVERY GOAL FLAG = 1
t'tttttttﬁ**ttt'fﬁtttt**'iti*icurrent x = 293.27
Current Y = 24.58

Current Depth = 19.54
Current Heading = 214.00

Current Bearing = -160.31

Current Range = 380.66

L X & & &

* RETURN SUCCESSFUL. -

IR E 22 EE S 2 REE R A A RS R RS RES RS RN R RENESEES.

r»xxwxrrCommanded Heading is: 214.00
Commanded Depth is: 0.00
Commanded Speed 1is: 0.00
Commanded X 1is: 0.00

Commanded Y 1is: 0.00

Commanded Mode 1is: Recover

[ E 2 E AR ERERER R RESER RSN EREEES,]

* MISSION EXECUTED SUCCESSFULLY. *

* AUV IS WAITING FOR RECOVERY... *
ti*it'.t*"**ititt'*****t'*tcurrent x - 286.27
Current Y = 14.60

Current Depth = 19.32

Current Heading 208.00

Current Bearing = -154.88&

Current Range = 392.22

LR B A 5 5 B S

122




2. MULTI-PHASE MISSION WITH ROUTE REPLANNING

CLIPS> (assert
CLIPS> (run)

(start))

Creating
Creating
Creating
Creating
Creating
Creating
Creating
Creating
Creating
Creating
Creating
Creating
Creating
Creating

00)8)

MISSION MODEL
WORLD MODEL
SENSORY RECEIVER
OOD ROUTER
NAVIGATOR
ENGINEERING
WEAPONS
NAVIGATOR ROUTER
GUIDANCE

GPS CONTROL
MISSION REPLANNER
SONAR CONTROL
GUIDANCE ROUTER

READY_VEHICLE_FOR_LAUNCH GOAL FLAG = 1
SELECT_FIRST_WAYPOINT GOAL FLAG = 1

WARNING: Reset Command may not be performed during the
execution of a rule

IN_TRANSIT_P GOAL FLAG = 1
POWER_GONE_P GOAL FLAG = 0
COMPUTER_SYSTEM_PROB_P GOAL FLAG = 0
PROPULSION_SYSTEM_PROB_P GOAL FLAG = 0
STEERING_SYSTEM_PROB_P GOAL FLAG = 0
No crit-system-prob branch successful!
GPS_NEEDED_P GOAL FLAG = 0
REACH_WAYPOINT_P GOAL FLAG = 0
DIVING_SYSTEM_PROBLEM_P GOAL FLAG = 0
BUOYANCY_SYSTEM_PROB_P GOAL FLAG = 0
THRUSTER_SYSTEM_PROB_P GOAL FLAG = 0
LEAK_TEST_P GOAL FLAG = 0
PAYLOAD_PROB_P GOAL FLAG = 0

No red-cap-system-prob branch successful!
UNKNOWN_OBSTACLE_P GOAL FLAG = 0
Commanded Heading is: 45.00

Commanded Depth is: 5.89

Commanded Speed is: 250.00
Commanded X is: 250.00
Commanded Y is: 250.00
Commanded Mode is: Transit

123




SEND_SETPOINTS_AND_MODES GOAL FLAG = 1

TRANSIT_DONE_P GOAL FLAG = 0
IN_SEARCH_P GOAL FLAG = 0

IN_TASK_P GOAL FLAG = 0

IN_RETURN_P GOAL FLAG = 0

IN_TRANSIT_P GOAL FLAG = 1
TRANSIT_DONE_P GOAL FLAG = 0
POWER_GONE_P GOAL FLAG = 0
COMPUTER_SYSTEM_PROB_P GOAL FLAG = 0
PROPULSION_SYSTEM_PROB_P GOAL FLAG = 0
STEERING_SYSTEM_PROB_P GOAL FLAG = 0

No crit-system-prob branch successful!
Current X = 8.81

Current Y = 0.00

Current Depth = -0.00

Current Heading 89.00

Current Bearing = -21.92

Current Range = 641.87

REACH_WAYPOINT_P GOAL FLAG = 0
DIVING_SYSTEM_PROBLEM_P GOAL FLAG = 0
BUOYANCY_SYSTEM_PROB_P GOAL FLAG
THRUSTER_SYSTEM_PROB_P GOAL FLAG
LEAK_TEST_P Co2o FLAG = 0
PAYLOAD_PPOR_P GOAL FLAG = 0
No red-cap-system-prob branch successful!
Commanded Heading is: 43.97

Commanded Depth 1is: 6.00

Commanded Speed is: 250.00

Commanded X is: 250.00

Commanded Y is: 250.00

Commanded Mode is: Transit

nn
o o

Current X = 124.75

Current Y = 81.84

Current Depth = 18.64

Current Heading = 38.00

Current Bearing = 32.51

Current Range = 504.12

REACH_WAYPOINT_P GOAL FLAG = 0
DIVING_SYSTEM_PROBLEM_P GOAL FLAG = 0

124




u

BUOYANCY_SYSTEM_PROB_P GOAL FLAG
THRUSTER_SYSTEM_PROB_P GOAL FLAG
commanded Heading is: 36.68

u

Commanded
Commanded
Commanded
Commanded
Commanded

SEND_SETPOINTS_AND_MODES GOAL FLAG

LOITER GOAL FLAG = i
Current X = 129.81

Currernt Y = 88.16

Current Depth = 19.87
Current Heading = 38.00
Current Bearing = 33.01
Current Range = 497.26
commanded Heading is: 218.71
Commanded Depth is: 24.87
Commanded Speed is: 250.00
Commanded X is: 124.75
Commanded Y is: 81.84
Commanded Mode is: Transit
Current X = 134.89

Current Y = 94.49

Current Depth = 21.11
Current Heading = 38.00
Current Bearing = 33.51
Current Range = 490.42
Commanded Heading is: 218.73
Commanded Depth is: 24.87
Commanded Speed is: 250.00
Commanded X is: 124.75
Commanded Y is: 81.84
commanded Mode is: Transit
Current X = 140.03

Current Y = 100.77

Current Depth = 22.37
Current Heading = 36.00
Current Bearing = 36.02
Current Range = 483.57

Depth is:
Speed 1is:
X is:
Y is:
Mode 1is:

24.87
250.00

250.00
250.00

Transit

N




Commanded Heading is: 218.92
Commanded Depth is: 24.87
Commanded Speed is: 250.00
Commanded X is: 124.75
Commanded Y is: 81.84
Commanded Mode is: Transit

Current X = 241.34
Current Y = 237.36
Current Depth = 48.08

Current Heading = 35.00

Current Bearing = 52.98

Current Range = 358.88

REACH_WAYPOINT_P GOAL FLAG = 0
DIVING_SYSTEM_PROBLEM_P GOAL FLAG = 0
BUOYANCY_SYSTEM_PROB_P GOAL FLAG = 0
THRUSTER_SYSTEM_PROB_P GOAL FLAG = 1

Commanded Heading is: 34.40
Commanded Depth is: 53.30
Commanded Speed is: 250.00
Commanded X 1is: 250.00
Commanded Y is: 250.00
Commanded Mode is: Transit

SEND_SETPOINTS_AND_MODES GOAL FLAG = 1
IN_SEARCH_P GOAL FLAG = 0

IN_TASK_P GOAL FLAG = 0

IN_RETURN_P GOAL FLAG = 0

IN_TRANSIT_P GOAL FLAG = 1
TRANSIT_DONE_P GOAL FLAG = 0
POWER_GONE_P GOAL FLAG = 0
COMPUTER_SYSTEM_PROB_P GOAL FLAG = 0
PROPULSION_SYSTEM_PROB_P GOAL FLAG = 0
STEERING_SYSTEM_PROB_P GOAL FLAG = 0

No crit-system-prob branch successful!
*****Ar waypoint, coming to new heading*****
Current X = 245.89

REACH_WAYPOINT_P GOAL FLAG = 1

Current Y = 244.09

Current Depth = 48.99

126




Current Heading = 35.00
Current Bearing = 54.04
Current Range = 354.16
GET_NEXT_WAYPOINT GOAL FLAG =

DIVING_SYSTEM_PROBLEM_P GOAL FLAG

BUOYANCY_SYSTEM_PROB_P GOAL FLAG
THRUSTER_SYSTEM_PROB_P GOAL FLAG
Commanded Heading is: 34.83
Commanded Depth is: 54.84
Commanded Speed is: 360.00
Commanded X is: 450.00

Commanded Y is: 150.00

Commanded Mode is: Return

127

1

=

-
=

1




APPENDIX C. AUV SIMULATOR USER’S GUIDE

To run the AUV simulator, the following is required: a file with a set of CLIPS
rules, an executable file for CLIPS-Ada, an executable file for the AUV graphical
simulator, and four data files for inputs to the simulator. The CLIPS rule file serves as the
Strategic level. The executable file for CLIPS-Ada allows the CLIPS rules to call the
Tactical level procedures. The executable file for the graphical simulator acts as the
Execution level as well as the physical vehicle itself. The four data files for input are
“initial_state”, “waypoints”, *“final_goal”, and “obstacles”. These files must be initialized
first.

Data is entered into the “initial_state” file in the format illustrated in Figure 1.

O.TO O.f) 00\90)\

X Y Depth Heading

Figure 13 “initial_state” Data File

Data is entered into the “waypoints™ file in the format illustrated in Figure 2.

3<¢——Number of Waypoints
250.0 100.0 100.0 20.0 2
300.0 200.0 150.0 30.0 4
300.050.0 50.0 10.05

Mode key:
1 = Transit
2 = Search
4 = Return

Speed X Y Depth Mode 5 =Recover

Figure 2 “waypoints” Data File

128




Data is entered into the “final_goal” file in the format shown in Figure 3.

5?.0 50.0
X Y

Figure 3 “final_goal” Data File

Data is entered into the “obstacles™ file in the format shown in Figure4.

] --— Number of Obstacles
50.0 100.0 20.0
X Y Depth

Figure 4 ‘“obstacles” Data File

Once the data files are set up, the simulator can be run from any Silicon Graphics
workstation in the Graphics laboratory. First, two window shells must be called up- the first
to run the Execution level/graphical simulator and the second to run the Strategic/Tactical
level. In the first window, the executable file ““auv2” is run. In the second window, an rlogin
to Virgo must be done and then either the “str_tac1”’ (multi-phase mission) or the “str_tac2”
(multi-phase mission with route replanning) executable file for CLIPS-Ada must be run. At
the prompt, the host name is entered as “irisn”. Then the appropriate CLIPS rule set is
loaded by entering “(lcad strlevx™). Finally, to start the simulation, a “start” fact must be
asserted (“(assert (start))”) and the run command must be given (“(run)”). The simulation

can be stopped by killing the “auv2” process.

129




[Atki91]

[Booc87)

[Booc91])

[Byrn93)

[DoD93]

[Geha84)

[Heal92]

{Hoar78]

(Howlg§]

[Kwak90]

[Kwak92]

[Kwak93]

LIST OF REFERENCES

Atkinson, C., Object-Oriented Reuse, Concurrency and Distribution: An
Ada-Based Approach, ACM Press, New York, NY, 1991.

Booch, G., Sofrware Engineering with Ada, 2d ed,Benjamin/Cummings,
Menlo Park, CA, 1983.

Booch, G., Object-Oriented Design with Applications, Benjamin/Cummings,
Redwood City, CA, 1991.

Bymnes, R. B. , The Rational Behavior Model: A Multi-Paradigm, Tri-Level
Software Architecture for the Control of Autonomous Vehicles, PhD
Dissertation, Naval Postgraduate School, Monterey, CA, March 1993

Introducing Ada 9X: Ada 9X Project Report, Office of the Under Secretary of
Defense for Acquisition, Washington, DC, 1993.

Gehani, N., Ada: Concurrent Programming, Prentice Hall, Inc., Englewood
Cliffs, NJ, 1984.

Healey, A. J., et al., “Research on Autonomous Underwater Vehicles at the
Naval Postgraduate School”, Naval Research Reviews, Vol. 44, No. 1, pp.
16-30, August 1991.

Hoare, C. A. R., Communicating Sequential Processes, Communications of
the ACM., Vol. 21, No. §, pp. 666-677, August 1978.

Howle, W. T., “Ada in Real-Time Embedded Systems: Orbital Maneuvering
Vehicle (OMV)”, Proceedings of TRI-Ada’88, pp. 363-370, Charleston, WYV,
Oct 24-27, 1988.

Kwak, S. H., Rule-Based Motion Coordination for the Adaptive Suspension
Vehicle on Ternary-Type Terrain, Technical Report NPSCS-91-006, Naval
Postgraduate School, Monterey, CA, December 1990.

Kwak, S. H., McGhee, R. B., and Bihari, T. E., Rational Behavior Model: A
Tri-Level Multiple Paradigm Architecture for Robot Vehicle Control
Software, Technical Report NPSCS-92-003, Naval Postgraduate School,
Monterey, CA, March 1992

Kwak, S. H., Rational Behavior Model: A Tri-Level Multiple Paradigm
Architecture, Technical Report NPSCS-93-006, Naval Postgraduate School,
Monterey, CA, September 1993.

130




[Lema89]

[Niel88]

[Ong90)

[Scho93)

[Scot88]

[Soft92]
[Stee92]

[StevO3]

[Teml89]

Lemanski, W. ], and Hartrum, T. C., “An Assessment of the Development of
a Tracking System Using Concurrent Ada”, Proceedings of the 1989
National Aerospace and Electronics Conference,pp. 466-473, Dayton, OH,
May 22-26, 1989.

Nielsen, K. W. and Shumate, K., Designing Large Real-Time Systems with
Ada, Multiscience Press, Inc., New York, 1988.

Ong, S. M., A Mission Planning Expert System with Three-Dimensional Path
Optimization for the NPS Model 2 Autonomous Underwater Vehicle,
Master’s Thesis, Naval Postgraduate School, June 1990.

Scholz, T., The State Transition Diagram with Path Priority and Its
Applications, Master’s Thesis, Naval Postgraduate School, Monterey, CA,
September 1993.

Scott, Barbara, “Explorer Platform Ada Flight Software™, Proceedings of
TRI-Ada’88, pp. 325-343, Charleston, WV, October 24-27 1988.

Classic-Ada User's Manual, Software Productivity Solutions, 1992.

Steer, B., Dunn, S., and Smith, S., Advancing and Assessing Autonomy in
Underwater Vehicle Technology Through Inter-Institutional Competitions
andlor Cooperative Demonstrations, Department of Ocean Engineering,
Florida Atlantic University, Boca Raton, FL, May 1992.

Stevens, C. D., A Software Architecture for a Small Autonomous Underwater
Vehicle Navigation System (SANS), Master’s Thesis, Naval Postgraduate
School, Monterey, CA, June 1993.

Tomlinson, C., and Scheevel, M., “Concurrent Object-Oriented
Programming Languages”, Object-Oriented Concepts, Databases, and
Applications, W. Kim and F. H. Lochovsky, eds., pp. 79-124, ACM Press/
Addison-Wesley, New York, 1989,

131




INITIAL DISTRIBUTION LIST

Defense Technical Information Center
Cameron Station
Alexandria, VA 22304-6145

Dudley Knox Library
Code 52

Naval Postgraduate School
Monterey, CA 93943-5002

Director, Training and Education
MCCDC, Code C46

1019 Elliot Road

Quantico, VA 22134-5027

Ted Lewis, Professor and Chairman
Department of Computer Science
Code CSLt

Naval Postgraduate School
Monterey, CA 93943-5118

Computer Technology Programs
Code 37

Naval Postgraduate School
Monterey, CA 93943-5119

Dr. S. H. Kwak, Code CS/Kw
Department of Computer Science
Naval Postgraduate School
Monterey, CA 93943-5118

Dr. R. B. McGhee, Code CS/Mz
Department of Computer Science
Naval Postgraduate School
Monterey, CA 93943-5118

LCDR M. K. Shields, Code EC/SL

Department of Electrical and Computer Engineering
Naval Postgraduate School

Monterey, CA 93943-5121

132




CAPT F. P. B. Thornton, Jr.

Director, MCOTEA
3035 Barnett Avenue
Quantico, VA 22134-5014

133




