@

NAVAL POSTGRADUATE SCHOOL
Monterey, California

AD-A274 955
T

DTIC

¢ ELECTE
Gy JAN26 1894

Design and Implementation of a Query Editor
for the Amadeus System.
by
Turgay Cinge
September 1993
Thesis Advisor: C. Thomas Wu
Second Reader: LCDR John A. Daley, USN

Approved for public release; distribution is unlimited.

\\bO\Q'{ 94-02
94 1 25 025 //ll//”///l/l//l”//ll///”//ﬂ//’///ﬂ/

Best
Available

Copy

m:—f

UNCLASSIrcV

REPORT DOCUMENTATION PAGE

. FRTY CLASS UNCLASSIFIED |™
= SECUR CRSSIERCATION AU TRORITY 3. DISTRIBUTION/AVAILABILTY OF REPORT
. Ul LASS K IONDOWNGRADING SCHEDUL App',oved fqr pUb.hc,release;
distribution is unlimited
" PERFORINNG ORGARIZATION REFORT NUMBET(S) S HONITORING ORGANIZATION REFORT NUMBEF(S]
B NAME OF PERFORMING OMGANIZATION . a8
omputer Science Dept. (¥ appiicable) Naval Postgraduate School
Naval Postgraduate School &
6. ADDRESS (Cty, State, and ZIP Code) 7b. ADDRESS (City, State, and ZIP Code)
o NANE OF FORDINGAPONSORIN . 3 PROCUREMENT RS TRUMENT IOENTIFICATION NUMBER
"ORGANIZATION (¥ apphcable)
8¢c. ADDRESS (City, State, and ZIP Code) 70. SOURCE OF FUNDING NUMBERS
[PROECT . [1AK . |WORKONIT |
ELEMENT NO. | NO. NO. ACCESSION NO.

11. TITLE (Incude Schrity Classiication)
Design and Implementation of a Query Editor for the Amadeus System.

Sirst Lieutenant | rgay Cinge, Turkish Army
_ SEREPOR 735, TIME COVERED 14 DATE OF REPORT (Yea, Month, Day) |15 PAGE COUNT
aster s Thesis erom 10/92 09/93 93 Sep. 164

NC) 1/

ION

The views expressed in this thesis are those ol the author and do not rellect the official pol

policy or

posmon of the Department of Defense or the United States Government.

18. SUBJECT TERMS (Continue on reverse i necessary and idanti?y by block number)
OBJECT-ORIENTED PROGRAMMING, DATA FLOW QUERY, PROGRAPH, VISUAL

PROGRAMMING, DATABASE SYSTEMS, SQL, RELATIONAL MODEL,
RELATIONAL CALCULUS, RELATIONAL ALGEBRA

19. ABSTRACT (Continue on reverse ¥ necessary and identily by block number)

17. COSATI CODES
FIELD GROUP SUB-GROUP

One side effect of the proliferation of relational databases within a single organization is that sharing of data to
access a global information base is diffi cult. People erroneously assume that since almost all of the commercially
available RDBMSs support the Structured Query Language (SQL), sharing of data is easy. Unfortunately, currently
available systems only support a specific dialect of SQL.

The Amadeus front-end system overcomes the data-sharing problem. With the Amadeus front-end system, database
users can use one common language called Dataflow Query Language (DFQL) to access heterogeneous RDBMSs. A
query specified in DFQL is correctly translated into a SQL dialect that the connected RDBMS recognizes. With this
front-end approach, the user can access data from multiple databases by writing a single DFQL query, instead of
writing multiple SQL queries. A prototype query builder is reimplemented using an object-oriented design. This
component of Amadeus interacts with the user for creating DFQL. queries. Adding a connection to a new SQL-based

UNCIDNITE Cl SAME AS RPT. [)oTic users | UNCLASSIFIED
Za. NANE OF FESPONSTBCE INDIVIDUAL TELEPHONE 2%
Professor C. Thomas Wu %‘-ggg_o’? Include Area Code) &]—'WE‘SWBU[_—

DD FORM 1473, 84 MAR 83 APR edition may be used until exhausted

All other editions are obsolete
i

SECURITY CLASSIFICATION OF THIS PAGE
UNCLASSIFIED

RDBMS requires minimum modification to the code, due to the object-oriented implementation of the query builder.
This object-oriented implementation allows the smooth integration of the additional features of the query editor into
the older version of Amadeus.

il

SECURITY CLASSIFICATION OF THIS PAGE
UNCLASSIFIED

_ii

—eeeee

Approved for public release; distribution is unlimited
Design and Implementation of a Query Editor
for the Amadeus System.
by

Turgay Cinge
First Lieutenant, Turkish Army

BS, Turkish Land Forces Academy, Ankara- Turkey, 1987

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL
September, 1

DTIC QU

ALITY [NSPECTED 8

Accesion For

/ll

Author:

-] NTIS CRA&|
Turgay Cinge DTIC TAB
Unannounced O
Justification
Approved By:
C. Thomas thesis Advisor By
Dist. ibution |
Avaiiability Codes
Dist Avail and/or

Prof. Ted Lewts, Chairman,
Department of Computer Science

-/

Special

|

iii

ABSTRACT

One side effect of the proliferation of relational databases within a single organization
is that sharing of data to access a global information base is difficult. People erroneously
assume that since almost all of the commercially available RDBMSs support the Structured
Query Language (SQL), sharing of data is easy. Unfortunately, currently available systems
only support a specific dialect of SQL.

The Amadeus front-end system overcomes the data-sharing problem. With the
Amadeus front-end system, database users can use one common language called Dataflow
Query Language (DFQL) to access heterogeneous RDBMSs. A query specified in DFQL
is correctly translated into a SQL dialect that the connected RDBMS recognizes. With this
front-end approach, the user can access data from multiple databases by writing a single
DFQL query, instead of writing multiple SQL queries. A prototype query builder is
reimplemented using an object-oriented design. This component of Amadeus interacts with
the user for creating DFQL queries. Adding a connection to a new SQL-based RDBMS
requires minimum modification to the code, due to the object-oriented implementation of
the query builder. This object-oriented implementation allows the smooth integration of the

additional features of the query editor into the older version of Amadeus.

_iv

TABLE OF CONTENTS

L INTRODUCTIONccreruerene erersersnesssssatsasessrertsstsareststsnsannatsasansstse 1
A. AMADELUSoiiceirenencnscsnseisannssasssossassasssssssesssssssssssssssssssssssssssansssssss 1

B. THESIS OVERVIEWiinininiinescnsisansessasisssssssessosssnsssssssansssasnansssnes 2

II. COMPARISION OF QUERY LANGUAGES FOR RDBMSscccoeeee.. 4
A. LINE ORIENTED QUERY LANGUAGES.........cccocrvivrvirnririnsaasnesenes 4

1. Relational AlGEDbracocciverernirinmiseiinacnsniessssssnsnsnensecsssssesssassnssses 4

2. Relational Calculuscooiiecevisicsinsisseinncseessssesssssasassnssarssssnsssasessassssnne 5

3. Structured Query Language (SQL)cccoeecervmneseenmsnosessssnsanscssinnesssasssseans 5

B. VISUAL ORIENTED QUERY LANGUAGESccccoceevurverueneccnnsnossnns 7

1. Form-Based Query Languagesccovuveeveiveeriscensnnsnsasisensesescssranacsns 8

a. Query By Example (QBE)ccccocinirercinensaiessneneesccrseesnnssessasesessnes 8

b. Summary Table By Example (STBE).......ccccoecetnuninunessverncecnssnsenssnes 9

c. A Query Language (AQL)cccoverrnrmncncnncceccncsnennenaccssessssaesassansanss 10

d. Relational Calculus/Sets (RC/S) ...ccccverrrrrereesnnsensnesseessesssresssssesnees 10

2. Entity-Relationship Model Interfacecceeenuvcinercncseccnsnsnrensennanee 11

a. Graphical Query Language (GQL)cccccovurreecrcrisuscncsernnsesnensnsane 13

b. Graphical Data Manipulation Language (GDML).......ccccceererurrenee 13

¢. Query By Diagram (QBD)cccccciriiiiinnnesrnnsensacsssssesnenseneesassesaens 14

d. Graphical User Interface for Database Exploration (GUIDE) 14

e. GRAphiCal QUery LAnguage (GRACULA)c.ccceeeeerernererrererncnees 15

III. DATA FLOW QUERY LANGUAGE (DFQL)cccecerecvrncnrensecsasannereranees 17
A. DFQL OPERATORScoccceriiersnsuesucasnsrssessessssonsansanssasasssassssessaseseses 19

1. Basic DFQL Primitive Operatorsccccecunsiecnsnsssanasnenerssessssssssessaens 19

A, SCIECE ..neonreiitirentncntnninnestnsniestssaesassasssnsssssssanssssnsssossensansanasensanten 21

Bl PIOJECE ..oneitiereciiicnncinnsenssncssnsscsnssnscssssnssnssssansesnssonssnssassnsessnssensas 21

Co JOIN coecterinsccsnincnncssssssssssissnssnscnosssssassssssorcesssssssssossssassnnssssnasases 23

Q. UNEON ..ooereeeiiiieiccaninnecencnesecncesnenasasensessessesssasassnssssssesssssnsarssssssnses 25

€. DIffErencecuvveiecvnrncninicsisnsiincnssnsssscnenssssssssannenssnssssssssssanssnssnens 25

. GIOUD COUNL........coectirisesnrncesnssesisnssesssiessssssssosssnsasatsssasasssensassasasns 26

2. Non-basic DFQL Primitive Operatorscccecsvrsnrccressncamererecncnsannes 27
A, INMETSECL ..neeneiiieiiinnicssinsencsisssessnesanssesssssssasssesnnnesasssssssssssssaansnnnnns 29

b. Grouping Aggregate OPEratorscccececsnearersenscssssasensarsasssssessones 30

C. GrOUPAISAtISEY ...cocoeuriciseneiririesicrniisnnissinsiisnssesessossssssssssssnsases 32

d. GroupNORESAtISTYccoeruiririrrririieracinisinscecsissonsssssssssasstsisasasssansnce 33

€. GTOUPNSALSTYccvuiiricerirniinicenisinestsneasnssisssscsssesssnsassassesessosns 33

3. User-Defined OPeratorscccoieversrncnccsscssnsssssesssesnsssnssssnsssssaesaassenes 34
4. Display Primitive OPeratorccovcvceivsnseencsnsssceccssnsisassssssssaasasasses 37
B. QUERY CONSTRUCTION WITH DFQLccoceueeereererercecesersensennenee 37
1. Incremental QUETIEScecovveeecerrerieeconecssrenessraesersseessaseossnsasessaseassssssssns 38
a. Incremental CONSLrUCHIONc.coeereecersererensensescnesecssssanassesesessennassees 38

b. Incremental EXECULIONcccceeirceinneinniscsensacesssssneesasssanasonssnnesaessnes 39

2. Universal QuantifiCationccoceereevseeersnscsnesssescsseessesssssesssesossasesseeses 41
3. Nesting and Functional Notationcccceeceveecencrnnsuesescsesesessnennesesneses 41
4. Graph Structure of DFQL QUETYcccceceutrruruesesesuensrnsassesnssssesesaesensens 42
C. PROS AND CONS OF DFQLccoceueneemiecucrenserensereessresssnsseessossssnsens 43
1. Power Of DFQLeooeeiicneerecrercensrensseseessaesssssssssseasssessesssascsssssassns 43
2, EXtEnSIDIIItY ceoveernriiiccinicncnncinrinnissnisncsssscnnsssssasnsnssnassanssneassnssssesassnns 4
3. EaSC-Of -USe......cuivinirnninranccncnssessucsasssasnsssscsnessssosssassnssnssssasassssssasassane 45
4. Visual INTEIfACecoecceiruirunrercrecsisicssssssessessonasaesassonensssassansssasasssassasasess 46
5. Interface Problemscocieiccicinersansercscssncsacssssosssersnnanssnsesaesssssaeseneses 47
6. Language Problemsciiiniininnricnscncnsneceiesscsssssesessnane 48

vi

A. GENERAL FEATURES...........cocvniiniiinncnrcsinmsnsarsssssissssoissssnssssssssossases 50
B. QUERY EDITOR . cressstesesesnestesiatssstssatet et ssnte bt satana st s et ansr s e e naes 52
1. Construction of QUETIESccoeeeecersurereesnesscsssancnssssessassssessaressnsesnesassse 55
a. Complete Query COnStrUCHONcccceererinsanssssscrcerssncsssssnssasosascsens 56
b. Incremental Query Constructionccccceceescvcsninecsnnssnsenssacssassanes 57
2. Formulation of User-defined Operatorscccececevreeirercenssesnsnesessncnns 57
3. Query Execution and Debuggingc.cocecmvmncncsnnsisssnisncsnssecsnssesseens 59
4. Display of Query Resultsccccccevrrensensnsanssessussenscsssnssensssscssesesssansaee 60
5. Help featurescooceveiciinecnnssscssenisnsssansssesessssssonsonsonss cenvesenessenes O2
C. RELATION EDITORccconirnininrncnisncsesnssisassisssassassessessssesnsassessesssanes 63
D. DATABASE EDITORcccocvnniesemrmsnmsissssesasssssessssesssssssesssssesssssssssssseses 64
E. DATABASE CONNECTORcocvrnrninsussessescscssosnnsessassessesssssnssnsseosees 65
E INTERFACE EDITOR......oociceinninainiisissinsnsassessmssecssssssscsssssssassassasassane 68
G. PROGRAM EDITOR.........covureiinnmnnnsissnsaissssessassaosssssssssssssasssssasssssssasoses 68
H. DATABASE ADMINISTRATION MODULEccoceeeieniruarucercuanes 69
L CONCEPTUAL DESIGN MODULEccccsuvuisennennsnsessssnsacsassasasasan 71
J. NETWORK CONNECTION MODULEccceoesumrucercassnnsassesasnssassacs 71
V. IMPLEMENTATION DETAILScoocvvirnnrenncrnnsensisnsssssssssassessessneses 73
A. OBJECT ORIENTED DESIGNccicivnicnccnniasncssssssscsessnssssesassssannses 74
B. IMPLEMENTATION OF GRAPHICAL QUERY EDITOR................. 75
C. BACK-END CONNECTIONccccccrvinumsunsnseessosesssssssassasssssassassasanssrens 79
D. SQL TRANSLATIONccocccnvininsesursniensesscssmsmsncsssssssssassesasssonsasssssssons 81
1. Traversing the Data Flow QUerycccceceveserecnncencanae . .82
2. Partial Translation...........coceecesesnsensessnsnssnnsssssssnesessssssssssassesssssssassnssees 84
3. Complete Translationcccccoveeveeresersesucnsansesesesssccsssssensessassasseasnassas 85
E. USER INFORMATIONccoceviiiirisnirueresesissnnsasssssnsssssassssssasssasassssses 86
vii

A, SUMMARY ...uiiiitnininncieisenicssssssaissssssssssssssssssansssensassssssasssssosssessas 87

B. CONCLUSIONScoiiimrierentinisssinssssesssssesisssssessssessessssssassssssssnsenss 87

C. FUTURE RESEARCH........coiicitrccnninscnnisssessisesesssssssesassssnses 88
LIST OF REFERENCESuctniitiriiisiccnisisssssssssssssssnssssssassssssssssssassssassassess 90
APPENDIX A SAMPLE DATABASEccrricriinncsiecssnisssssssacssssssanse 92
APPENDIX B TERMINOLOGY OF PROGRAPHccccooeviinirunscnsccrcecnncsassanens 97
A. LANGUAGE BASICScuiriisinnncisrensiiansessssiscsssssssssssessssons 97

1. Pictorial Representation of the Language..........cooccoeeivcninninsnsensirnncne 97

2. CoNtrol StIUCKUTESccrieeiserieresisensesenicnisesassessissosssumsmssessssessessassasessasens 98

3. Classes and Inheritanceoccecivieceriniccnnicnicinnccinscsscsisscnesnns 99

4. ATIIDULES ...coouerecninniiirenrnesninnitsecctssssssesnsscssesssesssssssasesssessssesnsssesase 100

5. Methods and Casesccvuvreniscrnnnnsssunsssscsisassesssssssesssssssssasssssssssseses 100

6. OPCTAtiONS......oeevirnruisnicrnsessecsissisacsscssasssesusasssresesosonsssssssssssssssasesssanss 101

7. Message Passingccoveveenreinncnnicnineisesniisssicssesissssensssnssnsnesessssssnes 102

8. PHMILIVES ..ccuuneierniicniincincnitiiccsssesssscsssssesssasssssessssssssssseessossssaonse 102

B. THE PROGRAPH ENVIRONMENTcccccevninincniernnesssssaneascsenanes 103

| D 7 11 (o OO 103

2, INEETPIOIET ...eocuirreiiiineieentnsensresesassasosssensssesansssssassnsossosssassesssannasasssannsss 103

C. COMPILERcoiiiieriinsinsiicssssesescssesssssssssessessssassansessssnssnsssssaness 104
APPENDIX C SOURCE CODE FORAMADEUSccococsniemrncsssiessnecsananses 105
INITIAL DISTRIBUTION LIST ...ucoiniiieriinnnsnsissesessessassssssaesessesaessensnssenses 148

_ viii _

Figure 2.1

Figure 3.1

Figure 4.1
Figure 4.2
Figure 4.3
Figure 4.4
Figure 4.5
Figure 4.6

Figure 4.7
Figure 4.8
Figure 4.9

Figure 4.10
Figure 4.11

Figure 4.12
Figure 4.13
Figure 4.14
Figure 4.15
Figure 4.16
Figure 4.17

Figure 5.1

LIST OF FIGURES

ER Diagram [Elmasri89] of sample database in Appendix A 12

This is a representation of the incremental query construction of
Query 3.19 Give the department names where all employees have a
salary greater than $30,000 and have no dependents. showing the

process level by level. ...ttt 39
Pull-down menus for Amadeus.cocceorermriinirnesinensenncenninsinnsscnens 51
Manipulation window to define and execute queries in Amadeus. 52
Warning dialog box informing violation of a query construction rule. ... 56
Creation of a user-defined operator in the manipulation window. 58

Compacted query shaded with a pattern to indicate that no
modification is allowed other than traversing into the user-defined

OPCIALOTS. .ecuviueeriruesiistesrirossessesessasseassessessssnsssssesssssessassnestossassessessssessesans 59
The SQL result of a compact query that is used between back-end and
AMAEUS. ...oovviiiriiircienierictecttintssesrs st saesste st asssssae s asss e ssassrasssssneenes 60
The default output form to display all tuples of a table at once............... 61
The default output form to display one tuple of a table at a time. 62
Operator explanation dialog box to provide information about each
DFQL OPEIALOL.coteueccieneniinseestincsessssisissesssssssstsnssessasesssnssssessssssessessns 63
On line help dialog box for key conventions in Query Editor. 64
The table definition window allows the user to define or modify
TEIALIONS. ...coceveuereisiecrereeeerarereaeeeeseessssssesssssesnnsassansercarmnssasassersossossasassiane 65
The database definition window allows the user to define or modify
the databases.ccccccreieeerrnersrcssniissssineee st s ses s sasensassees 66
The schema window that shows the table names of the current
aAlADASE.coeerenrenreereereertetee ettt s ste st e se st e sasssesess e besesstens st sraens 67
The table structure window allows the user to see the definitions of the
attributes i TEIAtIONS.c.ccoeeercenreoreneisrissisnesiecssssessissnsesssssssssssassssesenes 67
Interface Editor’s window allows the user to define customized forms.
[HArZrove3]cccciemiicsenineicoriinnisnnsssesessnsssesssessesssssinosisassssissssnens 69
The definition of a macro for this prototype incorporated with
PrOgraph.ccoiieiiciniintiniincnsieeniniseesene st sss s e sssesesses e ens 70
Utilizing a network connection for Amadeus.c.cooeecrieicnensrcncsnnens 72
The necessary classes for user interface of Amadeus.ccccccecvvinueee.e. 75

ix

Figure 5.2

Figure 5.3
Figure 5.4

Figure 5.5
Figure 5.6

Figure 5.7

Figure 5.8

Figure 5.9

Figure 5.10

Figure 6.1

Figure B.1
Figure B.2

Figure B.3
Figure B.4
Figure B.S

The OO design of the graphical editor in Prograph (other classes are

DOt SHOWI). ...t ceneeeneerenestesrees e e e nt st e aesase e enssanssesesassosesnssnsanes 76
The methods of DFQLCanvas used to control the query editor. 77
The redraw method of DFQL Canvas that uses the polymorphism of

OOPL. ...ttt sttt s rassasnasse e st e easssnen e benssreesssnsrbese st anesaes 78

The class hierarchy of the database connector module for Amadeus.79
The necessary methods of class Oracle Relation where all primitive

operators are implemented for the Oracle RDBMS....................oeeee. 80
The implementation of the primitive operator groupAllSatisfy in terms
of other simple primitive operators in the class Oracle Relation. 81

The runObj method in class DFQLOperator to recursively call the
same method for traversing the data flow diagram and process the
DFQL objects according to their connections.ccocoveecvevenrirnescsnennenee 82
The SQL translation during partial execution of DQFL query that is
given as (Give the name of employees who work more than 20 hours
ON @ Project. ON PABE 23). .ccovirriecerircrrenecranessesaeasreeseessessssesssssnestesssasaanees 84
The SQL translation for the complete execution of DQFL query given
as (Give the name of employees who work more than 20 hours on a

Project. ON PAGE 23). ...cceerereeereereencsiersnnresssseessseessnssasssantessessassessesessassansen 85
The working diagram of Amadeus that can communicate with

RDBMSS as back-€nds.c.cocccceeniiviurncensieiienensssasstsneesesesssssessssnsnsanes 88
Example of the Next Case on Success Control Structureccccoene... 99
Prograph Class Hierarchy Representation (system classes are

SROWIL) ittt recrssne e cssaese s ntaeessassaesssssnssssssnssesesarsaosnns 100
Method and attribute representations of a Prograph’s class. 100
Method calling conventions of Prograph’s language.cc.ccccouvuruennee 101
Synchro Link to control the execution order of the methods in

Prograph. ...ttt eesnsaenee s sse s seesaesessesseaenes 102

Table 1:
Table 2:

Tabie 3:
Table 4:
Table S:
Table 6:
Table 7:
Table 8:
Table 9:
Table 10:

Table 11:

LIST OF TABLES

BASIC DFQL OPERATORS AND THEIR SQL TRANSLATIONS 20
NON-BASIC DFQL OPERATORS AND THEIR SQL

TRANSLATIONScoeerteeeresteereccsesresssesssssnassaesessassssseneesasssasnsssaesanssas 28
HUMAN FACTORS ANALYSIS OF DFQLOVER SQLcoccccenivuennne 47
KEY CONVENTIONS FOR QUERY CONSTRUCTION.ccccoevvrecnnnen 54
QUERY 3.2 ... eeerreteceereesneeeseesisessessnsneassssessssssassssssesasesssnness subssnesssonensns 95
QUERY 3.3 ... ceeererecrreesterrrsseessesaeesessasssssassesnsaseasasssssasstsonssssssnoseosssnnsnresns 95
QUERY 3.4ooeiteiececre s e eeeeseases e sesnssses e ares sessae st sanest subssnssnsanasnsans 95
QUERY 3.5 ... eceeereeecercrteesee st eresssassass st esnsssesssasss sssesonesnsssnsssnassesnsssusenss 96
QUERY 3.6.....eicerrseceeertrctereecsecrnssessssesssssasseasssasaesssesssosssnsssnssssssssessnssssons 96
EXAMPLES OF PROGRAPH PROGRAMMING LANGUAGE

SYMBOLSoeeeeeerteresreteeectessressesesnessesss e ssensessasssesssasssssnasnesasasssssses 97
EXAMPLES OF PROGRAPH PROGRAMMING LANGUAGE

CONTROL SYMBOLSccovoereetenrensenneesnrnsessessssessossessssessessssesaesasssassessses 98

xi

Query 2.1

Query 2.2
Query 23

Query 24

Query 3.1

Query 3.2
Query 33
Query 3.4
Query 3.5
Query 3.6
Query 3.7
Query 3.8
Query 3.9
Query 3.10
Query3.11
Query 3.12
Query3.13
Query 3.14
Query3.15

Query3.16

LIST OF QUERIES

Find the name and address for all employees who work for the

“Research” department.cccerercrineniiinisessississeissesnssisscssssisaesssssens 4
Find the names of the employees without any dependents. 5
Give the department names in which all of its employees have a salary

greater than $30,000 and have no dependents.cccovverinvcninccrersnunnes 6
This is the representation of (Query 2.1 Find the name and address for all
employees who work for the “Research” department.) as in QBE........... 8

Representation of Query 2.1 (Find the name and address of all
employees who work for the “Research” department) in DFQL
OITNALooereereeceecinnessercresesnrstesnesseesatsaeatsssestestessesesstossassostostons satssnsassnns 18

Give the names of male employees in the company.c.ccceeueeriverinnans 21
Give the name, salary, and address of employees in the company. 22
Give the average number of hours worked on all projects in the

COMPRANY. ..covrirrrersseressresseessusossssssessrsssssssssassesssssssassssassassssssssssasssasssnessssssnns 22
Give the name of employees who work more than 20 hours on a
PTOJECL eeiininiicerneestsaensnsnnsnsortnistsanessosmosnessostostosssseesnenssssssnestessessensessanss 23
Give the social security numbers of the department manager’s that is
located in “HOUSION™.coveeveicieneniininsnnseenseisassnessissessssessssssessssssssesens 24
Give the social security numbers of employees who have a son or
daughter as a dependent. ... 26

List the names of employees who have a salary greater than ‘$25 000’
but not under the management of a supervisor who’s social security

NUMDET iS ‘333445555’.coociviiriiininseintiiiniesses e ssisessassssssnes 27
List the number of employees in each department of the company. 28
Give the names of employees who have a salary of less than $30,000
and worked more than 20 hours on any project.cccevvvnieenseenerenee 30
Group aggregate functions’ examples.ccooverecivnicnnenisnnenenes 31
List the department names where all of their employees are male. 32
Give the department names where none of the employees were born
AfTE 1960,oouceeeeerennrneseesesaireisersesr sttt st st sa s e 33
Give the project names in which at least two employees have worked
more than 15.0 hOurs. ... ncsrssessessseses 34
List the name, address, sex, and birth dates of employees who have a
salary of less than $30,000.cccecveverimrisiresnncnsmsscssensscsssssssssssensassens 35
List the personnel information of employees in the company under the
supervision of the manager whose ssn is ‘333445555°.ccuueeeee. 36

xii

Query3.17 List male employee names under the management of “Wong,

Franklin”.coooiiieeieireeeennneentcseesertesnssessesscsstnnnsssssessssnessessesesssssnness 40
Query3.18 List department numbers where all employees have a salary less than

$40,000.ocereeecerrerrrreereaess et sseas st sttt b s s s e e sa b sh e 4?
Query3.19 Give the department names where all employees have a salary greater

than $30,000 and have no dependents.ocecevevvecrrrecennncrensnesesescnene 4

_ xiii _

ACKNOWLEDGEMENTS

I sincerely thank all of the people who assisted me in the conception and
implementation of this thesis.

I would like to acknowledge for the special discussions on Object-oriented design to
First Lieutenant Mustafa Eser, Turkish Army, for the precious comments and helps on
Macintosh environment to Lieutenant Commander James Phillip Hargrove, United States
Navy, and for the precious hel; - for editing my chapters to Lieutenant Commander Steve
Sellner, United States Navy.

Finally, I wish to thank to my wife Pinar for her patience and sacrifice in supporting
me in this endeavor. Without her constant love and support, none of this would have been

possible.

Xiv

I. INTRODUCTION

Improvement in relational database management systems (RDBMS) in recent years
paves the way for large relational database applications. Since the relational model was first
introduced by E.F. Codd in 1969, many companies have used it in a variety of software
packages. IBM invented a manipulation language (to write queries) called Structured
Query Language (SQL) in 1974. Although ANSI and ISO have established standards of
SQL, each vendor supports its own dialect of SQL. When different vendor RDBMSs are
required to work together in order to share data, as in a federated RDBMS, an
interoperability problem occurs, when a dialect of one vendor’s RDBMS cannot be
recognized by another.

To solve this problem, a common query language must be used. Using this common
query language, the end user can write transactions and use individual translators to convert
it to the corresponding dialect of SQL. This implementation can work as a front end,
establishing connections between different RDBMS using their individual dialect of SQL,
and can solve the problem of interoperability in a federated RDBMS.

A. AMADEUS®

Amadeus is an object-oriented implementation of a prototype, which serves as a front
end for the end user and provides interoperability between different RDBMSs. Amadeus
uses Data Flow Query Language (DFQL)@[Clark91] as a common language for the
transactions. It is implemented in the Apple Macintosh™ environment using an object-

oriented language named Prograph®)[TGS88a) [TGS88b] [TGS91].

(1) Amadeus is a prototype developed by several students and continued by myself under
advisement of C. Thomas Wu, Prof., Computer Science Department, Naval Postgraduate School,
Monterey, CA.

(2) DFQL was implemented by Gard J. Clark as his thesis work in N.P.S. (discussed further in
Chapter IT)

(3) Prograph is a trademark of The Gunakara Sun Systems, Ltd.

1

The main goal of this prototype is to provide an alternate query language which will
eliminate the differences between RDBMSs in a federation caused by different dialects of
SQL. Our implementation includes one back end, the Oracle® RDBMS, which is
available in the Macintosh environment. Connectivity in the federation is maintained by
means of each RDBMS’ individual dialect of SQL. The user cannot use data types or
aggregate functions that are not supported by the connected back-end, and this feature is
enforced by Amadeus.

Because of the object-oriented design and implementation of this prototype, it has all
the capabilities and benefits of object-oriented programs, including extensibility, flexibility
and maintainability. For instance, if to add another RDBMS to the federation, the classes
of the back-end RDBMS have to be included with specific feature definitions and methods
providing interoperability with the front end. This simple process has the merits of
polymorphism of object-oriented language. In other words, we do not need to worry about
which class methods must be called according to the newly included class, it is done
automatically by polymorphism. As a result, the number of back-ends in Amadeus can be

increased very easily.

B. THESIS OVERVIEW
Chapter II provides a discussion of available query languages for RDBMSs and the

merits and shortcomings of these query languages. The main query language of relational
model SQL is discussed in detail, and the difficulties of this language are explained to
indicate the need for an easy-to-use common query language. In Chapter III, the DFQL is
explained in detail, which is implemented in Amadeus as a solution to the problems of
multiple SQL dialects. Examples are given to enhance the understanding of ideas based on
an sample database in Appendix A.

The features, pros and cons, and conventions of Amadeus are explained in Chapter IV.

Implementation details, such as object-oriented design, class hierarchies, and drawing

{(4) Oracle is trademark of Oracle Corporation.

conventions are explained in Chapter V. Chapter VI provides a summary of the research,
and gives suggestions for future work.

As mentioned above, Appendix A provides a sample database used for queries in this
thesis. Appendix B describes Prograph, the programming language used to develop
Amadeus. Appendix C provides the major source code of classes, attributes, and methods
used in Amadeus.

II. COMPARISION OF QUERY LANGUAGES FOR RDBMSs

In this chapter, to stress the importance of DFQL, we compare the query languages
which can be used with RDBMSs. The relational model(!) is based on a table structure,
where relations between tables are established by the foreign keys. Therefore, all query
languages depend on the connections made through the use of foreign keys to use the
relationships between the tables. Query languages for this model can be classified into two

general categories: line oriented and visual oriented.

A. LINE ORIENTED QUERY LANGUAGES

Because of their nature, line-oriented queries can be written using text editors. We can
divide this category into three subclasses: relational algebra-based, relational calculus-
based and a combination of both.

1. Relational Algebra
In relational algebra-based query language, the user specifies a sequence of
relational operations to be performed on the tables of his schema to produce the desired
result. In Query 2.1, there are three lines which are sequenced with one another until the
result is determined. The user can assign temporary names to the result of a previous line
to use as an input to the current line. This query language is a procedural type language

which is very similar to the data flow query language discussed in Chapter III.

DEPT_EMPLS < (DEPARTMENT *pnuMBER=DNO EMPLOYEE)

RESEARCH_DEPT_EMPLS < O DNAMEs"Rescarch”
(DEPT_EMPLS)

_—— 3t " T y

Query 2.1 Fmdthe nax;x? and addréss for all employecs who work for the ‘csearch”
department.

(1) An example of a relational model is provided in Appendix A.
4

The main operations of this query language are project, select, and join.
Relational algebra-based query language also includes set operations like union and

intersection.

2. Relational Calculus
In this type of query language, the user provides a predicate calculus expression
which defines the characteristics of the tuples to be retrieved. Tuple variables are used to
make the logical connections between separate instances of relations being joined. In
Query 2.2, two tables are joined by the common attribute SSN and an existential quantifier
is used to retrieve the existing tuples. Since the query only wanted tuples of employees
without dependents, the negation of the logical clause is used. As you can see from the

query, the free tuple variables are used to reference the attribute names of tables.

[(¢FNAME, eLNAME | EMPLOYEE(e) and
(not (g d DEPENDENT(d)) and ¢.SSN = d.SSN))}

a——

———— —

Query 2.2 Find the names of the employees without any dependents.

3. Structured Query Language (SQL)
The third subclass of the query languages is the combination of both relational

calculus and relational algebra which includes the nesting capability and block structure

established by SQL.(?) This language is closer to relational calculus than relational algebra
because of its declarative nature. The user specifies the result in one statement rather than
a procedural language. SQL queries do not always present the clearest representation to
the user. To define a query which has a universal quantification, it must be represented in
negative logic and nested queries must be used. As a result, the logical expression to be

satisfied becomes quite complicated. Because of the limitations of human nature, the user

(2) SQL was invented by IBM for the relational model. Even though its name is used in many
relational query languages, almost all of them have different dialects of SQL which poses a

compatibility problem.

can best think of complex problems in sequential fashion, rather than in a declarative
fashion of looking at the entire problem at once.

The complexity of the declarative nature of SQL is compensated by embedding SQL
queries into a procedural third generation programming language. In this way, the user can
take advantage of the features of the host language to accomplish operations that are very
difficult to code in the query language. As mentioned above, expressing a universal
quantification is very difficult, seen clearly in Query 2.3.

SELECT DNAME
FROM DEPARTMENT
WHERE NOT EXISTS (SELECT *
FROM EMPLOYEE
WHERE DNUMBER = DNO AND SALARY <= 30000
AND EXISTS
(SELECT *
FROM DEPENDENT
WHERE SSN=ESSN)

Query 2.3 Give the department names in which all of its employees have a salary greater
than $30,000 and have no dependents.

Existential quantification can be done by using the quantifier EXISTS and a
nesting select statement. As above, the negative logic, NOT EXISTS must be used to
express the universal quantification. To complete the query, salary is compared as less
than or equal to 30,000 and an EXISTS logic is used for dependents.

In SQL, if two relations being used have similarly named attribute columns, a
reference must be assigned for those attribute names. This can be done by giving an alias
to the relation name EMPLOYEE (e.g., EMP) in the FROM clause and then similar
attribute names may be referenced (i.e., EMP.SSN). This process becomes extremely
difficult when similar attribute names in a relation are used in nested queries and the user

is initially unable to identify which attribute names require aliases.

Two kinds of nesting constructs are used in this query language. One is used in
Query 2.3, and the other uses the IN operator and a nested select statement. This construct
compares attribute names in the outer query with the attribute names returned from the
nested select statement. In the previous EXISTS construct, at least one tuple must be
returned from nested select statement in order to make the EXISTS clause true. However,
all of these formats create unnecessary complexity and makes the creation of the queries
difficult for the user. Although the nesting queries can be translated into their non-nested
parts, most SQL optimizers have difficulty translating nested queries.

SQL does not present a simple, clean, and consistent structure to the user and has

numerous arbitrary restrictions, exceptions, and special rules. For this reason, this

language is called unorthogonal®. An example of an unorthogonal construct in SQL is
allowing only a single DISTINCT keyword in a select statement even if the select
statement contains other nested select statements.

As a result of all these problems, the main query language for RDBMSs cannot
be used efficiently by the user. DFQL, which is used in our prototype, solves these
problems. DFQL is an efficient query language which can operate with different dialects
of SQL in different RDBMSs.

B. VISUAL ORIENTED QUERY LANGUAGES

Visual query languages cannot be written using normal text editors, and require
special graphical editors. These types of languages are classified according to their

representations. Two categories of visual query languages are form -based representation

and entity-relationship(4) model {Chen76] representation.

(3) Orthogonality in a programming language means there is a relatively small set of primitives that
can be combined in a relatively small number of ways 1o build the control and data structures of the
language.

(4) The Entity Relationship Model was introduced by Chen, P. in 1976 as a pictorial conceptual
design methodology for the relational model.

1. Form-Based Query Languages

This type is very similar to spreadsheet applications. Most users are already
familiar with filling in blank tables or forms; therefore, form-based query languages
represent an intuitive language for the user. The main advantage of form-based query
languages is they are easy to implement for standard text mode displays. At the time of the
creation of these languages, hardware limitations prevented implementing more complex
query languages like DFQL. Four types of form-based query languages are discussed in
this section, namely, Query By Example, Summary Table By Example, A Query Language,
and Relational Calculus/Sets.

a. Query By Example (QBE)
QBE, developed by IBM in 1976, is the first example of query languages of
this type. The user gets a form which represents the attribute names of a given table and
types example values into columns which belong to specific attributes of that table. The

DBMS then returns the tuples that match the example values provided by the user. As seen

EMPLOYEE
AME TMINITTLRAME 'BDATE [ADDRESS [SEX [SALARY [SUPERRSSN]
P P P —C
DEPARTMENT

Query 2.4 Tlﬁs is the representation of (Query 2.1 Find the name and dress for all
employees who work for the “Research” department.) as in QBE.
in Query 2.4, two tables involved in this query are connected by a variable “_C”, according
to their primary and foreign keys. “Research” is entered for the department name to select
the tuples. After selecting the specific tuples, the DBMS retrieves only the attributes which

-

have a “P” written in its column to indicate that those values will be printed as a result. As
in the relational algebra-based query language, QBE uses free domain variables to connect
the tables to each other. Specific values other than equality can be entered by inserting “<,
>, /=" symbols in front of the values entered. For more complex expressions, a separate
Condition Box can be used to make conditions more explicit.

QBE had great success among users when it was created, because of its user
friendly nature. But, as the complexity of the query grows, it becomes less and less useful
and it cannot express universal or existential quantification. Therefore, it is not relationally

complete.

b. Summary Table By Example (STBE)

The representation of STBE is very much like QBE, but it is implemented for
a specific area of Statistical Database Management. This language is based heavily on set
and aggregation operations. It can deal with relations that have set-valued attributes,
summary tables, and aggregate functions using queries that have a hierachical subquery
structure. Although there is no implementation of universal quantification, STBE uses set
comparison operators to achieve the same result. It can be considered as relationally
complete, since it supports all the relational operators. In addition to using a relational
model, it has extra capabilities such as supporting summary tables and relations with set-
valued attributes.

STBE introduces scoping by allowing nested queries in which table skeletons
are placed in nested windows. All the variables used in the table skeletons are bounded by
the window. In a nested query, each window contains a subquery and behaves like a
function returning an output. The output can be either an output relation skeleton or an
output summary table skeleton in the parent window. The outermost window is the root
window which returns the result of the query. This nested structure of windows can
represent a STBE query as a parse tree. Similar to QBE, a condition box can be used with

extra additions of set membership and set comparison.

Although STBE has excellent capabilities, such as powerful aggregation,
manipulation of summary tables and relations, and nesting structures, it is a difficult

language for novice users who have no knowledge of set theory.

¢. A Query Language (AQL)

This query language is implemented for the AIDE-II (An Intelligent Database
System for End Users) prototype management system which does not incorporate the
relational model. Although it is very similar to QBE, it does not have a join operator, since
the design of the AIDE-II data model does not require it. A user view includes all of the
possible relationships in the database. Before a query is defined, a user view must be
specified which includes all possible relations to be used. The condition of that specific
query can then be defined based on this user view. The disadvantages of AQL include the
inability to support the relational model, and the lack of the ability to express joins and

universal quantification.

d. Relational Calculus/Sets (RCIS)

RC/S has two graphical implementations very similar to QBE, but it is
designed very much like STBE with the ability to use only simple relations. It is a relational
calculus-based query language which uses set comparison and set manipulation operators
to replace universal quantification in query formulation. The first implementation of RC/S
uses nested windows to specify complex queries similar to STBE. The other
implementation has the same functionality as the first, but uses hierachical windows to
express the nesting concepts. As explained above, form-based query languages are
designed to be familiar to the user and implemented using current hardware technology.

QBE is the first implemented form-based query language but it is not
relationally complete and therefore cannot express some types of queries (i.e., queries using
universal quantification). STBE and RC/S attempt to solve this problem while retaining the
ease-of-use characteristics of QBE. Even though this problem is solved in these query

10

languages, these added features detract greatly from the simplicity of the language, since
the correct use of set operations requires at least some knowledge of set theory.

AQL eliminates the user-specified join operation from the actual query by
requiring a “user view” which unnecessarily separates the query building process into
schema manipulation followed by actual query specification. This is certainly not an aid to
the user. Additionally, AQL is designed for AIDE-II DBMS which is not a relational
model.

2. Entity-Relationship Model Interface

The Entity-Relationship (ER) model was introduced by Chen in 1976 and has
been extensively used as a high-level conceptual model. The main idea of this model is to
illustrate the concepts of entities and relationships in a graphical way in order to enhance
understanding of the structure desired for a database.

As illustrated in Figure 2.1, the rectangles represent entities and the diamonds
represent relationships between entities. Both entities and relationships may have
attributes, represented by connected ovals. Figure 2.1 is intended to specify some of the
semantics contained in the sample database.

The ER model is now being used in several query languages rather than just as a
conceptual designing model. However, the ER approach has some drawbacks. Although
certain relationships are currently specified, it does not necessarily follow that there are no
other relationships existing between entities. The intent of the ER model as a query
language is to keep the user from worrying about the specific join conditions between
entities. However, it tends to force the user to depend on the specified relationships. This
is similar to AQL where user views are specified so that all joins are eliminated from the
user’s view. This can be a benefit to a novice user, but as indicated before, the ability to
use a relationship without knowing how it is actually set up increases the chance of

syntactically correct queries producing invalid results.

1

- .

Figure 2.1 ER Diagram [Elmasri89] of sample database in Appendix

-t e St et - < i e Al

A

In the original ER model, equi-joins on keys and foreign keys of the entities
present no problem. However, if the user desires a theta-join based on some relationship
other than equality, even if this theta-join uses the same key attributes as one of the
defined relationships, the theta-join would be impossible to perform without adding itasa
new relationship to the ER schema.

Five ER-type query languages, namely Graphical Query Language, Graphical
Data Manipulation Language, Query By Diagram, Graphical User Interface for
Database Exploration, and GRAphiCal QUery LAnguage are discussed in the following

sections.

12

a. Graphical Query Language (GQL)

GQL [Andyne91] is a commercial product designed to run as a front end for
a user’s existing relational DBMS and GQL runs on Macintosh computers. Initially, GQL
displays the appropriate ER diagram for the database the user will query. To perform single
table or entity queries, the user double clicks on the icon in the ER diagram representing
the desired entity. A window with a list of the entity’s attributes is then displayed.
Attributes may then be selected by applying filtering or sorting conditions to print them on
the screen. Queries for specific items like “SSN = 123456789 are formulated with the
assistance of GQL’s qualify feature. The user may connect conditions by boolean operators
as well. The information represented by the relationships is accessed by selecting the
desired relationship from the screen along with its two adjoining entities. When a query is
formed, all of the attributes from both entities are available for qualification and display.

There are several drawbacks 1o GQL. The possible relationships must be
entered by the database administrator(DBA). After that, these relationships are neither
changeable nor extensible by the user. When large database schemas have been reduced to
third normal form (3NF) with many join conditions, the resulting complete ER diagram

may not fit on the screen, causing confusion for the user.

b. Graphical Data Manipulation Language (GDML)

GDML [Czejdo%0] uses much of the same type of pictorial representation as
the general ER model and GQL. This query language is based on an extended version of
the ER model that incorporates various forms of generalization and specialization,
including subset, union, and partition relationships. Queries are formed in this language by
removing parts of the ER diagram. An editor is provided to allow the user to erase parts of
the ER diagram. All of the items in the database represented by the diagram remaining on
the screen are then displayed as the result of the query. A method of restriction is provided
by allowing the user to place conditions on the attributes in the diagram. Although GDML

is based on the ER model for the user interface, as implemented, it runs on top of a

13

relational DBMS. The GDML entities are simply relations from the underlying database
and it’s relationships are represented by the database relations containing the appropriate
keys from each of the connected entities. As in GQL, the relationships must be established

manually as well.

¢. Query By Diagram (QBD)

QBD [Angelaccio90] is intended to be a user friendly query language based
on the ER model which allows the expression of queries with a recursive nature. This
language uses the ER diagram as a navigational tool for forming queries. The actual
conditions to be satisfied by the query are specified in separate query specification
windows.

In this language, the user first selects items of interest from a displayed ER
diagram. A window is then opened to place conditions, including recursive ones, on the
attnbutes of that item. By placing two separate entities on either side of the screen, join
conditions can be specified between two separate relations. So, by duplicating the same
entity on both sides of the screen, recursive queries may be specified.

Two types of windows on each side of the screei. are used to accommodate
the designer’s choice to implement the query formulation process as a series of phases, but
these steps seem unnecessarily complex. The formulation of the query in the query
condition windows also identifies for the user many options which are not based on the
relationships specified in the ER model. But if a query system is to be based on the ER
model, then the implementation should stay within the bounds of that model. QBD does not
stay within the bounds of the ER model. This anomaly arises from an attempt to provide
the flexibility that is missing from the underlying ER model.

d. Graphical User Interface for Database Exploration (GUIDE)
GUIDE [Wong82] has been developed especially to allow browsing meta-

data in large databases with many complex relationships. Its design and display

methodology are based on the ER model and this query language allows the user to select

-14_

a level of detail with which to look at the database. To handle meta-data, entities are
organized into a hierarchical subject directory and attributes are organized into a
hierarchical attribute directory. The purpose of these directories is to guide the user to the
part of the ER schema that is relevant to him. Also, a facility is provided to rank objects
according to their expected relevancy to a certain group of users. This ranking is based on
the objects expected importance in the system. The ranking does not necessarily
correspond to the hierarchical organization discussed above, but should reflect the interests
of the group of users and the frequency of access to that object by them.

To formulate a query, GUIDE asks the user to first select the level of detail
to display for the schema. The ER diagram is then presented at the desired level of detail.
Indirect relationships between entities are represented by dotted lines between entities.
Next, the attributes of displayed entities and relationships can be examined by selecting the
desired object and then examining that selected node. Restrictions can be placed on
selected attributes in order to specify the query. The user may select separate portions of
the schema to run partial queries, while still maintaining any previous queries. These

separate partial queries may then be combined to form a final query.

e. GRAphiCal QUery LAnguage (GRACULA)

GRACULA is implemented by IBM as a graphical language for querying and
updating a database. It is based on the definition of a database schema that is presented to
the user in the form of ER diagram. The relationships are displayed simply as directed arcs
between the entities with the appropriate relationship name attached to the arc. The
database schema is displayed in one window while the query is built up in a separate query
window. The query window is initially empty. The user selects entities from the schema
window which are then displayed in the query window for further manipulation. To
formulate the query on the items the user has placed in the query window, the items may
be expanded to show their attributes. The attributes are listed in a tabular fashion and

restriction conditions can be entered for them somewhat as in QBE. Joins between items

15

which are unrelated in the schema can be performed by specifying the join attribute from
one entity in the other entities value column.

Additional power is added to this language by nesting simple entities and
relationships inside various frames. A frame is indicated by a box drawn on the screen
which may contain one or more entities and their associated conditions and relationships.
These frames are used to specify logical operations such as AND, OR, NAND, or NOR and
implication and consequent. The logical operations are scoped over any of the entities and
relationships that are contained in their frame. Nesting of operations can thus be performed
by nesting frames, providing a clear way of showing the scope of each of the operations.
The inclusion of implication and consequent frames is intended to ease the problem of
specifying universal and existential quantification. As stated previously, the predicate logic
approach for these ideas is not simple.

We have discussed the query languages which are based on ER model
representation. Each has its own way of expressing queries while adhering to the ER
diagrams for definition of the database. The ER model has a certain advantage in that it can
simplify the query and make it easy to understand. Also, the database schema is displayed
so the user does not have to memorize the specific relationships between database objects.
But, it has the fallowing drawbacks:

« Using the actual schema to define queries (although this is an advantage for ease-of-
use) limits the user to predefined relationships that have been coded into schema.

» Most ER systems assume relationships based on the equi-join of keys between
entities. This does not take into consideration relationships based on other attributes
or on other types of theta-joins. '

« The distinction between entities and relationships is not straightforward. For example,
in an airline flight, to an accountant it exists as an entity (a concrete object), but to a
scheduler, it exists as 2 relationship between a specific aircraft, aircrew, routing, etc.
This lack of concrei: ¢istinction could cause problems when queries must be made
from a single ER schei.:a by multiple users, each with a different point of view.

In the next chapter we will discuss DFQL implemented in Amadeus, and its

advantages and disadvantages.

16

1. DATA FLOW QUERY LANGUAGE (DFQL)

DRQL is a visual/graphical query language for RDMSs based on a dataflow paradigm.
It has all of the capabilities of existing query languages which can be extended by the user
by creating new operators from the existing primitive or user-defined operators. DFQL
includes aggregate functions in addition to the operators of a relationally complete query
language. It has the power of expressing every kind of expression, including universal and
existential quantification. The following goals are met by DFQL [Wu91a}:

* Employ a fully graphical environment as a user-friendly interface to the database.

* Sufficient expressive power and functionality, including relational completeness.

* Ease-of-use in learning, remembering, writing and reading the language’s constructs.
» Consistency, predictability, and naturalness (in both syntax and function).

* Simplicity and conciseness of features.

* Clarity of definition and lack of ambiguity.

* Ability to modify existing queries to form new ones incrementally.

* High probability that users will write error-free queries.

* Operator extensibility ()
To achieve these goals, DFQL adheres to relational algebra and maintains the

requirements of operational closure. It also eliminates the range variables and nesting
features used in SQL. The most important feature of DFQL is the ability of the user to treat
relations as abstract entities operated on by relational operators. As a result, the user can
compose his queries in the realm of relational algebra and does not have to worry about how
operations are carried out.

A sample query represented in DFQL form is presented in Query 3.1. Two types of
operators are used in DFQL, primitive and user-defined. Primitive operators’ names are
identified by underlined texts in Query 3.1. An operator has three parts: terminals, body,
and root. According to the dataflow paradigm, data flows from the upper operators’ roots

(1) Operator extensibility allows the user to create new operators in terms of existing ones,
analogous to defining a function in a programming language.

17

to the lower operators’ terminals through the arcs. As soon as all the data on the terminals
of an operator are ready, that operator is fired to execute the specific process. In this query,

EMPLOYEE DNO = DNUMBER
DEPARTMENT >

DNAME = ‘Research’

Input Nodes (Terminals)

Operator’s BodyW

Output Node (Root)

AME, LNAME, ADDRESS
e

!

SELPROJ

DefaultForm

Query 3.1 Representation of Query 2.1 (Find the name and address of all employees who
work for the “Research” department) in DFQL format.

two relations (employee, department) are joined according to their primary and foreign
keys. The combined relation flows from the root of the same operator to the first terminal
of the user-defined operator named selproj. This operator is defined by the user and
combines select and project primitive operators to make the query more readable and easy
to use. When this operator is fired, it gets the combined relation, selects the tuples with
attributes of the combined relation DNAME named ‘Research’ and then projects the
columns of attribute names FNAME, LNAME, and ADDRESS, respectively. In DFQL,, each
query has to have a display operator in order to show the resultant tuples to the user in the
specified form and with the given title.

In our implementation of DFQL., an operator can be executed only once; iteration or

recursion is not permitted. These features can be added within the bounds of Amadeus’

18

programming tool’s capability(?). Orthogonality is applied to the implementation of DFQL
to maintain clarity and lack of ambiguity. The functional paradigm is fully supported by
DFQL notation and all DFQL operators implement operationél closure. In other words, the
inputs to the operators are relations or associated textual instructions, and the output from
cach operator is always a relation. This idea is fundamental to the understanding of large
and complex queries. If operational closure is not enforced, some operators give a relation
as an output whereas others give some different type of data. This means that every operator
must be connected according to its type of inputs/outputs. However, this is very
cumbersome when the query being formulated is complex in its own right. Because of
operational closure in DFQL, this burden is eliminated and all operators can be connected

to each other without any concern of incompatibility.

A. DFQL OPERATORS
In this section we will explain the operators used in DFQL to build queries and provide

some examples of their usage in queries. As mentioned previously, DFQL operators are
divided into two parts, namely primitive operators and user-defined operators. User-
defined operators are not in the system and must be defined by the user. Primitive operators
have direct execution in code without any translation. Primitive operators are categorized

as basic and non-basic.

1. Basic DFQL Primitive Operators
Since this query language is relationally complete, it must have five primary
operators: selecl, project, union, join, and difference, is illustrated in Table 1. These
operators are implemented as a basic set of operators in DFQL. Using these five primary
operators, the user can build even more complex operators. Also, a groupCnt operator is
included as a basic operator for simple aggregation. This operator provides an easy
solution to universal quantification problem (discussed later). The SQL representations of

the basic operators are included in the table for comparison.

(2) Amadeus’ tools for the programmer will be discussed in Chapter IV in detail.
19

As can be seen from the graphical representation of the operators, other DFQL

objects are included in addition to the primary operators. These are textual objects which

can be fed the conditions, attribute lists, or any alias names to be used in the operator.

Relation and form objects are fed as input to operators during execution of an instance of

these objects. The DFQL objects are represented by drawing a line underneath the text.

However, the form object is represented by a double line undemeath the text. Sending text

to the operator as an input is a design decision and does not violate orthogonality or

relational completeness of the query language.

s

k o

&

relation ¢ondition

relation attribute list

N—

SELECT DISTINCT * SELECT DISTINCT
FROM relation attribute list
WHERE condition FROM relation
SELECT PROJECT
relation 1 relation1
condition | o £cT DISTINGT * " relation2 | o1 ecT DISTINCT *
elation 2 FROM relation] rl, FROM relationl
relation2 12 UNION
WHERE condition SELECT DISTINCT *
FROM relation2
JOIN UNION
relationl pelation2 relation count attr)
- SELECT DISTINCT * - - SELECT DISTINCT
FROM relationl grouping attribute
MINUS COUNT(*) count attr.
SELECT DISTINCT * FROM relation
FROM relation2 GROUP BY
grouping attributes

DIFFERENCE

a. Select

This operator implements the relational algebra operation of database

selection. Its notation in relational algebra is o <condition>{<relation>). It retrieves tuples

from the relation which fits the specified condition. After the operation, the relation is
reduced in size, containing only the tuples that maintain the condition. There is no
alteration to the structure of the relation, so that it is operationally closed. Also, the resultant
relation is proper, in that there is no duplicate row. Proper relations will be discussed

exclusively in subsequent sections, unless otherwise stated.

employes SO = ‘M’

SelectEnample

Query 3.2 Give the names of male émbldyéés in the compény, v

In Query 3.2,3 a relation named employee with the condition of attribute sex
= ‘M’ is given as input to the select operator. The resultant relation flows out while
containing only the tuples which match the condition specified. The relation is printed to
the screen by the display operator (discussed below) with the specified name and form.

b. Project

The notation of this operator in relational algebra is IT i cribute s>

(<relation>) which stands for database projection. The attribute list contains the names of
attributes to be retrieved from the relation separated by commas. The result of the

projection is a proper relation which contains only the columns of specified attribute

(3) All query results in this document are presented in Appendix A.

21

names. In other words, the project operator eliminates the duplicates in the remaining

columns, since the key attribute of the relation may not be desired as a result.

employee

iname, fname , ulac};.._

Default-eli-records ProjectExample

oo dan

Query s.slee the name salary and addrm of employeesn;ﬁe company

It can be seen from Query 3.3 that the relation employee and its attribute list
are given as inputs to the operator. A proper relation containing those attributes is then sent
to the display operator to be printed on the screen as described before. The project operator
can be used to change the attribute name in the relation when required. Instead of inputting
an attribute list, an equality condition like “cpa = grade” is input to change the attribute
grade to gpa.

Although DFQL provides complete grouping aggregate functions as separate
operators (discussed in the next section), the user can use cnt, min, avg, max, and sum
aggregate functions without grouping. They affect all tuples in the relation by using the
function name in the attribute list of project operator (i.e., “sum (salary): total of salaries”).
An alias name must be given after a colon to indicate the name of the result. Another

example of aggregate function using the same notation is shown in Query 3.4.

works_on

AUG(hours) : sverag...

Defoult-all-records Pro jectEnample2

ARG T

Query 3.4 Give the average number of hours worked on all projects in the company.

_22

c. Join

The relational algebra notation of this operator is
<relation]1>® o ondition> <relation2> implemented as a theta-join in Amadeus. The
relation formed by a join operation results in all attributes from both relations combined
together as a cartesian product of tuples satisfying the specified condition. The user may
not necessarily give any condition, therefore, the join operator becomes a cartesian product.
If both of the relations have the same named attribute used in the condition, the order of the
relation comisg in to the operator is left to right. Since in the join operation there are only
two relations involved, the user must pay attention to the order of the attributes. In the
translation and communication section of the back-end, Amadeus gives range variables
prefixed to similar attributes, since all the manipulation can be done by SQL with the back-
ends. In such cases, the user has the option of providing only one attribute name to indicate
the likeness of the names and DFQL makes an equality condition for attributes coming

from both relations.

iname, fl'lOl'l'lO

Defoult-all-records JolnExample

An example of a theta-join is given in Query 3.5. This query shows the
employee relation joined with the result of the select operation, applying the condition of
key and foreign key attributes of these relations. In order to find the employee names in
different relations, selected employee tuples had to be joined with the relation containing
the attributes Iname and fname. Since the attribute names in the join condition are not alike,
the user does not need to worry about the order of the relations and attribute names in this
query. This operation retains all the attributes of the result, therefore, attributes with the
same name resulting from the join must be handled differently. Since the relational model
does not allow two column names in one table, one of the similar columns can be discarded
in the equi-join condition. However, this solution is not always optimum. Hence, the
second column name is changed by suffixing a “1” at the end, preventing an equality in all
join conditions. This case is represented in Query 3.6 where the column dnumber is same
in both relations, (i.e., DEPARTMENT_LOCATIONS and DEPARTMENT)). Since the join
condition is an equi-join, one of the dnumber columns may be discarded since they both

have same information. In our implementation, the second dnumber is changed to

depl_location gjgcation = ‘Houston'...

department

dnumber
2

Defsult-ati-records JoinEnample2

Query 3.6 Give
“Houston”.

dnumber] in the joined relation. As another example, the user may join two relations like
employee and dependent (see Appendix A) with like column names (e.g., sex). In this case,
it would be improper to discard the second column because they have different information
relating to the resultant relation. The option of discarding one of the like columns is a

special type of join called a natural join, which is not implemented in our prototype.

d. Union

The union operator implements the relational algebra operation of union and
its notation is <relation1> U <relation2>. This operator combines all the tuples from both
relations while eliminating duplicates. It does not create a new relation with different
structure, which is why both relations must be union compatible. In other words, the
number of attributes, their names and types must be the same and in the same order. This
rule is valid for all of the set operators used in DFQL. The user may confuse this union
operator with mathematics’ union operator. According to the mathematics definition of
union, the operation takes two sets, eliminates the duplicates and makes another set from
the combination. However, as showed here, the DFQL union does not create any new
relations other than combining the tuples of both relations.

We have used the union opcrator in Query 3.7 for union compatible relations
coming from select operators, since the select operator does not affect the structure of the
relation. Two relations, one containing tuples of employees with a son or sons as
dependents, the other containing tuples of employees with a daughter or daughters as
dependents are combined by the union operator. Since some employees can have both a son
and a daughter, these tuples will exist in the resultant relation. These duplicates will then

be discarded by the project operator to make a proper relation.

e. Difference
The relational algebra notation for this operator is <relation1> - <relation2>.
Relational difference returns as a result a relation that contains all the tuples that occur in

<relation1> but not in <relation2>. In other words, it renames tuples from <relation1>

25

dopedent

relotionship = ‘DY relationship = ‘SON'

ilnlon[omple

Default-sli-records

Query 3.7 Give the social security numbers of employees who have a son or daughter as a
dependent.

which occur in <relation2>. Like the union operator, both relations must be union
compatible.

As we can see from Query 3.8, this operator is used to discard the tuples of
employees which are under the management of a given supervisor. First, the relation of
employees having a salary of more than $25,000 is selected, and then the employees under
the management of given supervisor are selected. These two relations are union compatible
since they are derived from the same relation. The difference operator removes the tuples
from the first relation which exist in the second relation. A project operator then filters the

columns related only with the employee names.

S Group Count
This operator is provided as a primitive operator to provide the user with
some simple aggregation capabilities. It is very important for the user to be able to
formulate queries involving universal quantiﬁcation(4). This operator counts the number of
the tuples in a particular grouping specified by the user. It takes a relation, a list of grouping
26

> 25000 superssn = 333445555

iname, fname

e T T T

DiffEnample

R s

""" il Zk R g i A A AR

Query 3.8 List the names of employees who have a sal eater than ‘$25,000° but not

under the management of a supervisor who's social security number is ‘333445555°.

attributes, and an alias name for the result. Grouping attributes can either be one attribute
or several attributes, separated by commas. The resultant relation of this operator is a
relation with grouping attributes listed in the same order and the result, which is given an
alias name. The count result is an integer providing the total number of tuples in that
grouping. As can be seen in Query 3.9, the number of employees in each department are
counted by giving dno as a grouping attribute for the relation employee. An alias name is

given to be used as the resultant column’s name.

2. Non-basic DFQL Primitive Operators

Several other primitive operators have been included in DFQL of Amadeus that
can do special operations on relations. These primitives perform low level operations that

the user would not include as user-defined operations. However, all of them can be

(4) The solution of universal quantification will be discussed in section B.2. Universal
Quantification .

27 _

employee
numOfEmpinDepts

_groupCntEnample

Query 3.9 List the number of employees in each department of the company.

T e

defined from basic primitives as user-defined operators. In Table 2, non-basic primitive
operators are compared with their SQL correspondents.

An advantage of creating these operators is to use the built-in functions of the
underlying DBMS we are running as a back-end. For example, the intersection operator

can be defined in terms of the existing union and diff operator as in the formula

R1nR2) « (R1UR2) - ((R1 -R2)U (R2-R1)). However, many DBMSs already
provide a specific intersect operator and using the intersect operator already provided by
the back-end is more efficient. If left to the user to be implemented as a user-defined
operator, the advantage of using predefined operators from the back-end is lost. User-
defined operators induce only a little overhead to process the operator since it must access
its primitive constituents one by one and execute them. This is not a big problem, but
when compared to using the operator provided by the back-end, the difference is
significant.

relationl pelation2

FROM relationl . }
INTERSECT grp.attr. ,min (aw attr.)
SELECT DISTINCT * FROM relation 1
FROM relation2 e GROUP BY grp.attr.

Table 2: NON-BASIC DFQL OPERATORS AND THEIR SQL TRANSLATIONS

SELECT DISTINCT SELECT DISTINCT
§gpattr, max (aggr. altr.) £'p-aitr.,avg (aggr. aitr)
FROM relation FROM relation
GROUP BY grp.atir. GROUP BY grp.attr.
GRO AVG
relation condition
SELECT DISTINCT attr. It is not implemented
grp.atir. sum (aggr. attr.) directly in SQL.
FROM relation
GROUP BY grp.attr. upAliSatisty
L4
GROUPSUM GROUPALL SATISFY
relation _ condition |
grp. attr. It is not implemented It is not implemented
directly in SQL. directly in SQL.
roupNoneSatisfy
"3
GROUP NONE SATISFY GROUP N SATISFY

a. Intersect

Table 2: NON-BASIC DFQL OPERATORS AND THEIR SQL TRANSLATIONS

This operator implements the relational algebra operation of intersection with the

notation of relationlnrelation2, It retrieves tuples which exist in both relations and
give the combination as a result relation. The input relations must be union compatible as
described for the union and diff operators. The usage of this operator is explained in Query
3.10, where this operator plays the role of the AND conjunction. At point one, two
relations are joined according to their key and foreign keys (e.g essn and ssn) in order to
manipulate the attributes needed for the query. The tuples of employees who worked more
than 20 hours are selected and the named columns are projected by a user-defined operator
at point two. At point three, employees having a salary less than $30,000 is used as the

Interst[uomple

T S T R T A

-B o

e A

ho have a salary of less than $30,000 and worked

Query 3.10 Give the names of employees w
more than 20 hours on any project.

other named condition selected. A project operator is used to make the relation union
compatible with the previously selected relation at point two. Finally, the intersect
operator combines the tuples which exist in both relations to force both selection

conditions.

b. Grouping Aggregate Operators
The rest of the grouping aggregate operators in addition to groupCnt are
included in the system, to allow the user to take advantage of these functions. These
operators cannot be implemented as user-defined operators. GroupMin, groupMax,
groupSum, and groupAvg are discussed in the following section.

e GroupMin finds the minimum value of the specified attribute in the separated sections
according to the grouping attributes. It places the grouping attributes and the
minimum values of each group in separate columns. The minimum values column is
given an alias by the user. Its example is illustrated in Query 3.11 section A. Here the
lowest valued salaries are selected for each department from the relation employee.

e groupMax is similar to the previous operator except it finds the maximum value of the
aggregating attribute according to the grouping attribute. An illustration of this

30

LowestPayinDepmts A) List the lowest salaries in 2

empioyes
each department.
Default-sli-records
roupMinExample
B) Give the longest times works_on P hours ouworkedTime
worked on each project.
Default-sli-records
roupMasEnample
works_on pno hours

totalWorked¥ime C) List the total hours of |§

work on each project.

_gfoupSumEnample

D) Give the average amount sugPeyment

of salary in each department.

Default-all-records

Query .n éidup aggfegate functions’ exéxhplés.

operator is seen in the same query, section B, where the maximum working hour
values are selected for each project.

e GroupSum is shown in section C of the query, to find the total of hours worked on
each project. This operator adds all of the aggregated attribute’s values in each section
of grouping attributes. The grouping attributes and calculated values are again placed
in separate columns. The calculated values column is given an alias by the user.

31_

* GroupAvg calculates the average of the given aggregate attribute according to the
grouping attribute. In section D, the operator is illustrated finding the average salary
for each department.

¢. GroupAllSatisfy
This operator is a simple universal quantification included for the user’s
convenience. It takes a relation and splits the tuples according to the grouping attribute list
and then checks all tuples in individual groups according to the specified condition. If all
of the tuples satisfy the specified condition then the values of that grouping attribute list are
presented.

depeortment

Query 3.12

An example of groupAllSatisfy is shown in Query 3.12. The condition is
specified to find the department names where all of their employees are male. The attribute
dno is given as a grouping attribute for the relation employee. The result from this operator
is the number of departments satisfying the specified condition in all tuples. Join and
project operators are used to find and project the department names instead of numbers.

32

d. GroupNoneSatisfy
This operator is the opposite of the groupAllSatisfy operator in that it gives
the grouping attributes only if none of the tuples satisfy the condition. The notation and
usage are the same as the previous operator. This operator is used in Query 3.13, where the
department numbers are selected in which none of the employees were born after 1960. As
done in the previous query, join and project operators are used to find the department name
instead of number.

bdate > "30-DEC-1960'...

department

dnumber = dno

T A T TP S ey ey

JNUDNO“.S."S' Examp...

B L ——p—

:mployecﬁerebomr 1960.

Query 313 Give the department names Where none of U

e. GroupNSalisfy
This operator takes an input in addition to the other three inputs of relation,
grouping attributes, and condition. The extra input specifies the number of tuples which
must satisfy the condition in order to pass the grouping attributes. Previously discussed
operators check the condition for all tuples or for none, but here, the user can specify a

middle number and can indicate an operator like less than, or greater than, to specify which

33 _

side of the number will be considered. The result is the same as previously discussed
operators that pass the grouping attributes as a resultant relation.

This operator is used in Query 3.14 to find the project names in which at least
two employees worked more than the specified hours. The numeric condition (>=) is used
to force the requirement af least in the query. This query passes the project numbers in
which at least two employees have worked more than specified hours. The result is joined
with the relation project to find the project names instead of passing the project numbers.

pno hours > 15.0

works_on

phumber = pno

1 g 50 ATV AT S TR S SRS 0

Default-all-records
_groupNSotlsf Example

Query 3.14 Give the project names m whxchat least twoA:mployees have worked than

15.0 hours.

3. User-Defined Operators
These operators give the user flexibility to define his own style of operators and
extend the capability of the language according to the user’s desires. These operators look
like a primitive operator, except its name is written without underlined text, and they can
be constructed from available primitives and previously defined user operators as well.
User-defined operators can be used in any level of nesting to formulate new operators.

This feature does not decrease the power of orthogonality, since every user-defined

34

operator must be defined from a primitive operator or a previously-defined user operator,
which adheres to the principle of orthogonality. Some advantages of these operators are:

* Gives the user the flexibility to extend the language according his style

* Encapsulates the detail and makes the query more understandable

« Saves space on the screen or in the drawing area

* Allows the use of previously defined and correct portions of complex queries in more
than one query easily and comrectly while maintaining the complexity in itself

« Enhances the ability to write error-free queries and saves time from debugging queries
level by level after construction

* Allows abstraction and encapsulation principles of software engineering in the field of
query languages

A user-defined operator is used in Query 3.15, which combines two primitive
operators (e.g., select and project). These two operators are very often used together in
queries to select tuples, according to the specified condition, and project the desired
columns as a result. Hence, the user can combine these two operators into a user-defined
operator and can give it a related name (here selectProject) to provide an indication of its
purpose. In the example, the desired result is employees who have a salary less then the
specified amount and the columns of personnel information as written in the query. The

SelectProject operator is very useful in this type of query, and if used, provides all of the

< 30000 ‘
Iname, fname , sddres...k :

(I
.....
......

eleala

merits mentioned above.

usrﬂpuomple

...... e e e o a0 00y

e ———— S —— . . — —
Query 3.15 List the name, address, sex, and birth dates of employees who have a salary of
less than $30,000.

_35

To define a user-defined operator, the user has to decide how many inputs
will be used, but as in all other operators, there is only one output from the user-defined
operator. The user’s operator definition has two bars which stand for input and output bars.
The user connects the input nodes to his operators. The user is not required to connect
anything to the output node. As can be seen in Query 3.16, the user-defined operator may
contain a display operator which does not have any output. Here a user may prefer to create
an output operator instead of using the primitive operator display. Altematively, the user
may prefer to see the results in his created form and he may want to see only specific
columns. To do this, the user may use a project operator to pass the selected columns and
then use the display operator with a defined form name (here MyDisplayForm) in each
query. But this is cumbersome, so the user may instead define the operator only once and
use it in any query desired. In Query 3.16, after selecting the employees under the specified
management personnel, MyDisplay is used to project the personnel information and then

display them in the form and with the titles according to the user’s desires.

superssn = 33«5555

iname, sex , salary ...

MyResults

TR e T M P e s £ 0 e oo

RN
.........

st the personnel
supervision of the manager whose ssn is ‘333445555’.

36 _

4. Display Primitive Operator

As seen from the previous queries, only one display operator is used to print the
results of the queries to the screen. This operator has three input nodes and no output node,
because it does not return a relation after execution. In our implementation, it is required
that every query must contain a display operator. Using this operator, the first input is the
relation to be displayed, the second input is the name of the form object where the data
will be displayed, and the last input is an alias to be printed as a title in the resultant form.
Since there can be more than one display operator (especially while debugging) in the
queries, this alias name is needed to distinguish the results. Also, the form object is drawn
with double lines to distinguish it from other DFQL parameter objects. Two default form
objects are included to show the results. One displays all values as one line for each tuple
in the relation, and the other displays one tuple at a time. This feature will be explained in
the next chapter in detail. Except for the relation, the other two inputs may be omitted by

the user and a default form object and title can be used for convenience.

B. QUERY CONSTRUCTION WITH DFQL

Query construction has been implicitly explained in the query examples so far. Some
important features of DFQL query construction are discussed here. DFQL is a complete
dataflow diagram (DFD) which adheres all the rules of the DFD paradigm. The operators
and objects are connected to each other by lines called dataflow paths and all of the
information traverses these paths during execution. Except for operators, DFQL objects do
not have any input nodes and can be executed any time. They pass the relation objects,
attribute lists, or conditions to allow use by the operators. As soon as all of the input nodes
have the required/specified information, an operator can be executed or fired and produce
a relation at its output node. This relation can flow to other connected operators, making
these operators ready to fire.

Since DFQL query execution does not permit iteration and recursion, each operator

can be fired only once. Therefore, in our implementation, query execution can start from

37

the bottom (from the display operator), traversing upward by checking each operator’s
input nodes. If all the input nodes contain data, the query fires the operator, takes the result
and tumns back; otherwise, it continues traversing upward in order to get the required data
from upper levels. The execution finishes at the starting operator, printing the results for

the user.

1. Incremental Queries

The most important feature of DFQL is to allow the user to build queries
incrementally. In other words, the user can formulate one portion of the query, check the
results, (return back if needed), and continue to build other portions of the query one by
one. This gives the user more flexibility during his work, especially when the query is
very complex. This prevents the user from loosing himself in the total query and can
provide intermediate results in order to proceed with further construction. An incremental
query can be divided into two sections, namely incremental construction and incremental

execution.

a. Incremental Construction

Incremental construction is the ability to build the query part by part while
determining the results of each part. This is very important when the complexity of the
query grows. An example is used to explain this feature.

Three sections can be seen in Figure 3.1, showing phases of incremental
construction. These phases depend on the logical portions of the required English
statement. For this complex query, the user can construct the query in three phases. First,
the user can find the “department numbers where all employees have a salary greater than
a specified amount” as in section A and check the result for correctness. If the result is not
correct, the user can make the correction, and check the intermediate result again. After one
condition of the query is satisfied, the user can then move on to section B, which formulates
the tuple “all employees with no dependents” and the department numbers satisfying the

condition are passed. The last section combines these relations according to the AND

38

conjunction to enforce both specified conditions and to obtain the department names and

display them.

(

> 30000

y > 30000

Default-all-records

.

Figure 3.1 This is a representation of the incremental query construction of Query 3.19 Give
the department names where all employees have a salary greater than $30,000 and have no
dependents. showing the process level by level.

b. Incremental Execution
This feature is very helpful while debugging complex queries. If a complete
query does not produce the desired results, it must be checked level by level to determine

the erroneous part. The user should be allowed to see the intermediate result at any level by

39

executing the query incrementally. In our implementation, the user can double click at any
operator’s output node to execute the query up to that point and see the results. Also, the
user can click in only those places to see the structure of the relation resulting from that
operator.

This is a quick debugging method of complex queries, but the user usually
cannot remember one intermediate result while investigating another. The user may
sometimes want to see all of the intermediate results to make a comparison and determine
the area to fix. In this case, he can use more than one display operator with appropriate alias
names attached to desired points of the query and run the entire query to get the results for
each display operator. Hence, these results can be checked simultaneously to give the exact

idea of query.

Query 3.17 List male employee names under the management of “Wong, Franklin'.

Query 3.17 is ready for debugging with intermediate display operators
attached to desired points of the query to determine the errors. Above the final display
operator, two additional display operators are attached to the output nodes of the project

and selectProject operators. These display operators are given aliases of

40

“supervisedEmpls™ and “maleEmpls™ respectively. After the execution of the query, three
results are provided to each display operator. Two intermediate results are correct
according to the query; attention is then focused on the operator union, which must be an
intersect operator in order to perform the AND conjunction. Therefore, the wrong operator
is found easily by comparing all of the results at the same time.

2. Universal Quantification

Expressing a universal quantification is very difficult in SQL as discussed
previously. However, DFQL can use simple counting logic to achieve universal
quantification. In other words, if all tuples in a relation or a group must satisfy the
specified condition, we first count the numbers of tuples that meet the condition and then
compare it with the total number of tuples under consideration. If these two numbers are
equal, than the universal quantifier has been satisfied. We have used this idea to
implement groupAllsatisfy, groupNoneSatisfy, and groupNSatisfy operators. The user can
easily build his own quantifications as user-defined operators using the same concept,
because this concept is easier to understand than the universal or existential
quantifications.

In Query 3.18, the implementation of groupAllSatisfy is done by primitives to
achieve universal quantification. The same counting concept is applied here: the number
of employees is counted in each department at point one, and the number of employees
which satisfies the condition specified in the query is counted at point two. The join
operator is used at point three to get only the tuples which are the same in both relations.

A project operator passes the department numbers to be printed to the screen.

3. Nesting and Functional Notation
The nesting feature in SQL exists naturally in DFQL. One by one execution of
operators to supply input data to other operators similar to the execution of an SQL query
from inside out, level by level. The lack of range variables and scoping rules in the nesting

feature of DFQL improves readability and orthogonality.

41

dno = dno AND uCnt =,

T R A R B ey O e

UniversaiQuantificati...

have a

salarj? less than 4 0,000.

Query 3.18 List department numbers where all emplbyee

Also, functional notation is used in all of the operators of DFQL to enhance
orthogonality. Relational operational closure is implemented by the functional paradigm.
Using operators that may take more than one input but produce only one output allows for

easy combination into user-defined operators as previously discussed.

4. Graph Structure of DFQL Query

DFQL’s visual representation of the query is a dataflow graph consisting of
DFQL objects connected together by lines of dataflow paths. This representation adheres
to the structure of relational algebra for the execution of the query. This graph structure
provides two benefits:

» The internal operations of RDBMS’s are based on relational algebra, therefore,
relational algebra can provide a common interface to a DBMS without the need for a
separate interpreter/compiler.

¢ DFQL can be optimized by a large number of techniques developed for the
optimization of relational algebra expressions whereas most of the SQL interpreters/
compilers are not capable of performing optimization across levels of a nested query.

42

By using a graph structure of relational operators, the query can be more easily
optimized than can combinations of partial queries in a textual block structured language.
Actually, work already done [Dadashzadeh90] for converting the SQL queries into
relational algebra graphs for optimization purposes result in structures quite similar to
DFQL queries. By using a graphical, relational algebra approach to query formulation, the
user is provided with a much more consistent and straightforward interface to the
databases

C. PROS AND CONS OF DFQL

After discussing all of the features of DFQL, the advantages and shortcomings of this
query language are presented. The merits of DFQL are related to the combination of visual
representation, its dataflow structure, and its operator set. By these characteristics, DFQL

provides the user the ability to easily express both simple and complex queries intuitively.

1. Power of DFQL

DFQL can express any kind of query very easily and efficiently using its
powerful primitive operators. As mentioned previously, it is relationally complete;
therefore, it has all of the relational operators including set, grouping, and aggregate
operators. It can express universal or existential quantification by using only one primitive
operator. To show the power of DFQL., an example query previously given in SQL (Query
2.3) is provided in Query 3.19.

DFQL has the necessary operators to formulate the query in Query 3.19 and will

be explained in the next sections. The major role is played by two operators,

groupAllSatisfy and groupNoneSatisfy. At point one®>), two relations, dependent and
employee are joined together to get a cartesian product of all the possible tuples to be used
by the next set of operators. The resulting relation of dno (department numbers for “all

employees with no dependents”) is determined at point two from the operator

(5) The numbers printed near the output nodes of operators in queries are not related to the queries
themselves but are used to point to specific areas during the explanations.

43

Defoult-sli-records

Query 3.19 Give the department names where all employees have a saiary greater than
$30,000 and have no dependents.
groupNoneSatisfy, according the condition (ssn = essn) which retrieves tuples of
employees with no dependents. For “departments with all employees having a salary
greater than $30,000”, we use the operator groupAllSatisfy with the mentioned condition
and get the resulting relation dno at point three. Now, the results for both sets of
conditions in the query have been <atisfied, making these results union compatible. The
intersect operator is then used to make an AND conjunction for the two conditions at point
Jour. Department names are desired as a result instead of the department numbers which is
why the relation department is joined at point five. This provides the names of the
departments easily and passes them by a project operator to point six. A display operator
is used to display the result of the query in a default form and title.

2. Extensibility
Extensibility is an important benefit of DFQL. The user may extend the query
language by defining his own user-defined operators from a provided set of primitive

operators, or the user’s own previously defined user operators. User-defined operators can

4

be used as new user operators at any level of nesting and number. As used in Query 3.1,
selproj is defined from two primitive operators o abstract the processes of select and
project in one operator. These operators are constructed in a way that fully supports
relational operational closure and makes them compatible with other operators. Once a
user-defined operator is properly defined, it is completely orthogonal with the provided
primitive operators.

By using user-defined operators, common operations for any given user can be
provided at whatever level of abstraction is needed. For example, the user may like to see
SSN, LNAME, MINIT, and FNAME as the result of his specified queries in his defined
form. However he may not want to use the project and display operators repeatedly and
put them in the same form. In this case, he can simply create a user-defined operator,
namely MyDisplay and use it at the end of his queries to see the same information format.
These extensions are entirely user dependent and each user can create his own style of

working.

3. Ease-Of-Use

DFQL has the capability of representing complex problems intuitively with the
aid of abstraction (embedding lower level details into user-defined operators), which is
very useful, especially when combined with the visual feature of DFQL. This is because
graphical representation is also easy to read and the concepts, once learned, are easy to
remember. In the DFQL paradigm, relations are visualized as objects flowing from one
operator to another. The ability to view relations as abstract entities directly contributes to
the advantage of DFQL.

Since this language is orthogonal, it is both syntactically and semantically easier
to use than other SQLs and it provides consistency, predictability and naturalness through
the use of its operators. This feature is enforced in the user-defined operators as well, so
that every user-defined operator must be operationally closed as well. Also, because of

operational closure, the user is always certain of this result using the operators in this

45

language, which provides for greater ease in usability. These two features, orthogonality
and closure support the user’s ability to write error-free queries.

Another important ease-for-use feature of this language is the ability to create
incremental queries. This is absolutely essential for the user to see the intermediate results
of the partially built query and to continue building the query according to the
intermediate results. Since DFQL is operationally closed, the user can feed each
intermediate result to other operators, including user-defined operators. While building
queries incrementally, the user can use temporary display operators to see the results.
Also, the user can double click the roots of any operator to see the same kind of result
within the default format. This provides the flexibility of changing incorrect queries at

creation time.

4. Visual Interface

The various benefits of DFQL mentioned above are possible because of its visual
interface, which is the basic advantage of dataflow programming and DFQL. Although
building queries incrementally, grasping concepts easily, and encapsulating details in
user-defined operators are advantages of DFQL, these are the merits of a visual interface
too which do not exist in text based interfaces. This feature gives the user the ability to
casily and interactively manipulate the DFQL query on the computer screen.

Having discussed the advantages of DFQL, the results of a human factors
analysis of DFQL [Clark91] is used to compare DFQL and SQL. In this experiment,
several students from different backgrounds and experiences are asked to develop three
queries for each query language.Data is taken about the correctness, time of completion
etc. After a few calculations, percentages of correctness are found. The results are
presented in Table 3 to show the advantages of DFQL over SQL.

According to these results, DFQL has a higher percentage than SQL. In the
technical and nontechnical category there is a difference of approximately 10% in both the
DFQL and SQL percentages. In the experience category there is a difference of

46

Experience > 1 yr.

Experience <=1 yr.

iy

Ry

Table T N FACTORS ANALYSIS OF DFQL OVER SQL
approximately 10% in the DFQL scores and only 4% in the SQL percentages. While the
4% is not in itself statistically significant, a possible explanation for the discrepancy is that
the technical background factor may be more important than the programming experience
factor in the ability to use SQL. This implies that DFQL is easier to use than SQL for the
people with a nontechnical background.

The shortcomings of the user interface design of DFQL and the problems related
with the visual nature of DFQL itself are now discussed.

S. Interface Problems

The problems in this area are typical of problems seen in most visually oriented
applications today. Typical screen size limits the number of the DFQL objects seen at
once. As the complexity of the query grows, the objects in the drawing area become
cluttered. This problem is temporarily solved by making the drawing area scrollable.
When there are too many objects to be seen all at once, the user can scroll right/left or up/
down to a new drawing area. But this is still not a solution, since the user cannot see the
entire query at once to comprehend its construction.

When many dataflows are connected to operators which intersect each other, the
query becomes less readable and difficult to follow. This problem is also related with the

size of the screen and drawing area. A solution to both of these problems is to utilize user-

47

defined operators to their fullest. In other words, when the screen becomes too cluttered,
encapsulate some portion of it in a user-defined operator to make the drawing area more
readable.

6. Language Problems

Within its bounds, DFQL is a very good query language. But when it comes to
embedding this language in a textual computer language, some problems are encountered.
Incorporating graphical data into a textual form while keeping the meaning and readability
of the query intact is very difficult. DFQL queries can be compiled and inserted into
textual programs as functions. However, this provides a poor way of looking at the DFQL
code in the context of the program.

A solution to this problem is to translate the DFQL code to a textual
representation keeping the same meaning of the DFQL code. But this is still a problem,
since interpreting dataflow oriented languages such as DFQL into a purely procedural
language is not easy. Since in the implementation of Amadeus, all back-end connections
to RDBMSs are by means of the different dialects of SQL, another solution to this
problem is to use the resultant optimized SQL translation of the DFQL query. This can
solve the problem of incompatibility between textual and graphical representations. For
this solution, however, the embedded SQL translation will not have the same advantages
of DFQL.

Up to this point, DFQL has been discussed. The details of Amadeus and its

implementation issues are discussed in the following chapters.

IV. FEATURES OF AMADEUS

Amadeus is developed as a prototype front end system capable of connecting to
multiple back-end relational databases. It uses a graphical query language called DFQL for
manipulation of databases. Communication is accomplished with each back-end using its

individual dialect of SQL. Because of Amadeus’ object-oriented implementation,(!) it is
very easy to add new back-ends simply by adding the related classes of these back-ends
called database connectors.

The design of this prototype incorporates modules which allow the user to build a
complete application and provides efficient interoperability between that application and
different connected RDBMS. Objectives of this prototype are:

* to provide easy to use, but powerful common language to access various types of
RDBMS

« to shield the complexity of the underlying RDBMSs

« 1o allow a multi-user, and multi-back-end environment while enforcing the security
measure for databases

* to provide error-free work for the user by implementing continuous error controls,
warnings, and helpful information

« to extend the capability of this prototype to non-RDBMSs

« to allow the user to make conceptual, structural designs interactively and manipulate
the resultant database without any conflict.

Some of these objectives are achieved in Amadeus, while the rest will be implemented
in future research. According to the objectives, the user can design the database
conceptually, translate it to a relational database, and manipulate it within the concept of
the relational model. The relational model adheres to conceptual, structural designs and for
manipulation. It is expected that users who know the relational model will very easily be
able to understand the working style of “his prototype.

(1) Implementation issues of Amadeus will be discussed in the next chapter.

- _

Amadeus uses different modules to perform different tasks.Not all of the design
modules are implemented, but Amadeus has the necessary modules to achieve the design
objectives. The design modules of Amadeus are as follows:

¢ Query Editor,
* Relation Editor,
¢ Database Editor,
¢ Database Connectors,
¢ Interface Editor,
* Program Editor,
 Database Administration Module,
» Conceptual Design Module, and
* Network Connection Module.
Each module is discussed separately in the following sections. These sections also will

be a guide to efficient use of this prototype.

A. GENERAL FEATURES
Amadeus is a complete program that can connect to back-end RDBMSs. These back-

ends must be running prior to establishing connection with the prototype. Front end and

back ends(® are currently run on the same computer for now, since the Network Connection
Module is not yet implemented. When Amadeus is run, it checks the user information file
in the current directory. If the user information file does not exist, Amadeus warns the user
to find the folder containing that information. Since this prototype has been implemented
for one user, multi-user functions are not enforced.

Upon execution of Amadeus, three pull-down menus appear as illustrated in Figure
4.1. At this stage, only new and open sections are active which allow the user to create a
new database or open a previously defined database. If the user wants to create a new
database, a dialog box asks the name of the back-end in which this database will be
included. The user makes his selections from the available back-end options provided ina

scroll list. After the selection, a database editor pops up to define the new database

(2) We have implemented only one back-end connection, the Oracle RDBMS.

50

- -—

according to the selected back-end. When the user selects open from the database menu,
Amadeus reads the database definition file for that user and asks the user to select the
database desired to be opened. After opening or creating a database, the schema window,
which contain a list of available tables belonging to the current database pops up

automatically.
(O
New %N Schema %8S Load %L
Open... ¥0 Definition %D Save %S
Sare @9 Manipulation %M User-Defined Operator=>
Sape as... New 8N

Maodify 8MF

Quit %0 include 81
Write %W}

Convert to==>
Primitive Opr. %0
UserDel. Opr. %BU
Relation %R
Parameler %P
Form 23

N\

Flgure a1 Pull-dowh menus for Amadeus.

The user can open the definition window to define a new table or the manipulation
window to define queries to be used with tables from the definition window menu. The
query menu is not active until the manipulation window opens, since it is only related with
database manipulation. When the query menu becomes active, the user can load or save
queries according to standard file operating procedures used in the Macintosh operating
system. In the “user-defined operators” section of the query menu, the user can create or
modify a user-defined operator (explained previously) and save it. He can also include in
his system a user-defined operator defined by another user or in another database.

Once the user has finished his work, he can save the current database with the same
name or with another name using the save or save as functions of the database pull-down

menu, respectively. If the modifications have not beer saved, when the user clicks the quit

51

option from the same menu, Amadeus asks whether or not to save the current database

before quitting.

B. QUERY EDITOR

The query editor is for creating and executing DFQL queries. This window is designed
to provide the previously discussed advantages of DFQL. As shown in Figure 4.2, the query
editor has a query drawing area, several pop-up menus which are used to insert various
query objects into the graph, and several function buttons.

4 Scroliable query drawing ares
Maniputation Window ‘.
Primitive @pr:
sen = ‘M’ [project v] ;
[seipro} ~] :
Docican opr: g ;
name, minit , fname ... L_Eauat >l ! |
Tadie Dama: l :
{_employee i | ?
Atrtbele Dode: 2 ;
[_solory | 3 {
Defeuit-ali-records MoleEmployees GG i ‘3
ATOregets Fonelion . :
ave v E. 5
P select-base jueuuﬂ-on-rec v] /
{ uncompect }{ compact | [show soL][Run nuery] "
'\ § Translate to SQL and Optimize
C'w Zoom Out I s
Help for conventions Close Window

Figure 4.2 Munipulation wmdow to deﬁne and execute queries in Amadeus

Before explaining query construction, some key conventions to be used during the

construction are explained in Table 4. These conventions are necessary in order to make the

52

process of query construction easy and error-free for the user. There are seven pop-up
menus containing necessary information to be inserted automatically during construction
of the query. These pop-up menus are dynamic in that they contain different items, based
on the current database, user information, and the connected RDBMS. The contents of the
pop-up menus are called table name and attribute name, depending on the current database.
The attribute name menu contains only the attributes of the table currently in the table
name menu. Each time the current table is changed, the related attributes are loaded into the
attribute name menu. The pop-up menus user-defined opr. and output form contain the
user-defined operator and form object names available for the user. The contents of these
menus change according to the definition of the new forms and user-defined operators. The
rest of the menus are related to the connected database so that only the allowed aggregate
functions and boolean operators appear in them. This feature is extremely helpful
preventing the user from using misspelled names or using attribute names which are not
defined. This also provides some convenience to the user durning the creation of queries.
The user does not have to worry about whether a function is allowed by the connected
RDBMS, nor does the user have to memorize attribute names present in ea. ", relation of the
current database.

Four buttons are provided for the purpose of inserting frequently used characters
during query formulation. By including these buttons, the user can construct his query
without typing from the keyboard. This also reduces the possibility of errors in the query
from typographical mistakes. There is a scrollable query drawing canvas which is sufficient
in size for an ordinary query. A name section has been included under the drawing area to
show the name of the current query. This is very useful when zooming in to or out of user-
defined operators in the query. This feature updates the exact path, similar to a conventional
directory description update.

Some operational buttons are included at the bottom of the window. Some of them are
icons that perform standard operations like closing the window, zoom out or in, clear,

refresh, and help. Zoom in and out buttons are used to traverse into the user-defined

§3_

| DFQL To select the object. Click on body.
| Object’s
E body To select multiple objects. Click on each body one by one.
f To move an object. Click on body, move mouse while pressing button,
| release when done.
i To move multiple objects. Select (highlight) each of them and perform move as
| described above.
i To see the operator description, Double click on an operator, on an object, or on 2
[change the text of an object, or form object respectively.
‘ launch the interface editor.
To change object type. Select object and use the query menu to convert it.
To see the contents of a user-defined | Select a user-defined operator and click the zoom in
operator. button (with the plus sign).
Root To start or finish drawing a line Click on it to finish or click on it to select (highlight)
(output connecting a terminal. and drag the mouse with the line.
node) of a
DFQi To see the table structure of the Double click on the root of the operators only.
object. resulting relation.
To see the result of the query as the Hold the command key and double click on the root
resulting relation of the operator. of the operator for partial execution.
Object’s To start or finish drawing a line Click on it to finish or click on it to select (highlight)
terminal connecting with a. and drag the mouse with the line.
(input node). - , :
You cannot double click on any terminal for debugging purposes.
Space To deselect the selected objects. Click on area where there is no object’s body or
drawing nodes.
area.
To create a DFQL object. Hold the command key and click on an area where
the object will be drawn.
_
DFQL To insert operator, table names, or Hold the command key and select the desired entry
Object. functions in objects from the pop-up menus and release it after the text is
inserted into the current dummy object.
To delete a DFQL object Select (highlight) the object to be deleted and hit the
<BackSpace> or <Delete> key from the keyboard.
aﬁ —— —

Table 4: KEY CONVENTIONS FOR QUERY CONSTRUCTION

operators from the query to see the formulation of these operators. The user can go back

and forth as long as there are user-defined operators defined to investigate. This feature is

very useful in understanding the exact process of these operators, since some of the user-

54

defined operators may not have been formulated by the user himself and have been
included in other users’ databases. The user can refresh, clear, or get information about the
key conventions any time by clicking on the individual buttons.

The user can execute the query by pressing the “Run Query” button. In order to do
that, since this is not a partial execution, the query has to contain at least one display
operator. The button “Show SQL” can be used to see the optimized SQL statement used to
perform this query in the back-end. This is possible because each communication can be
performed by SQL. This is available only when the query is finished and compacted. Once
the query is compact, it can be seen but it cannot be modified. In order to modify the query,
it must be uncompacted first. To aid the user, compacted queries have a differently shaded

background to indicate that no alteration is allowed.

1. Construction of Queries

After opening the manipulation window, the query editor is ready to formulate a
new query. The user also has the option of loading a previously defined query to modify
or execute. A DFQL object can be created by holding the command key and clicking at the
exact point in the drawing area where the object will appear. A dummy rectangle appears
on the screen with a text cursor inside to type or insert the name of the object. The user can
either type the name or insert it automatically from the pop-up menus. The name of the
operator or text is pasted into that area. This process is continued sequentially to formulate
an attribute list or condition list as long as needed. To draw the actual operator or object,
the return key <CR> must be pressed. The query editor then identifies the written text and
draws the matching DFQL object in the same spot, after clearing that portion of the
screen. By using automatic insertion, it is assured that every object is defined in the
current database. Objects can be connected by clicking on a terminal (root) of the desired
object, and then drag the moving line to the desired root (terminal) of the other object and
clicking again. The connection is established if the click point is a valid terminal or root.

The user cannot connect a root (terminal) to another root (terminal), because DFQL

5§

requires that the data must flow from the output node (root) of an object to the input node
(terminal) of another object. If this rule is violated, a warning message pops up as seen in
Figure 4.3. Root objects can be connected to more than one terminal, allowing the use of a
single result in several places, but this is not valid for terminals since only one data flow is
allowed into each terminal. If a new connection is made to a terminal object, the old
connection is deleted. This provides the ability to change connections very easily.

Repeating the connection process on a previously connected line deletes that line.

KF e ——

" Cannot connect root to root !

S

Figure 4.3 Warming dialog box informing violation of a query construction rule.

a. Complete Query Construction

The entire query construction is finished when the required DFQL objects are
drawn and their connections are complete. As previously mentioned, in order to finish the
query formulation, at least one display operator must be present in the query. This is
because every query result has to be printed on the screen in the given format and with the
given alias name. After the query formulation, the user can run the query to check its
correctness. A complete error checking is done during this execution, since some terminals
may not to be connected or they might be connected to disallowed objects. As an example,
a select operator has two input terminals in which one terminal input is a relation and the
other terminal input is a condition, but the user may accidentally reverse the order, or may
have forgotten to connect one of terminals. In this case, a warning dialog box pops up

explaining the exact error and the related object blinks in the diagram to indicate the area

56 _

requiring correction. The diagram can be reset simply by clicking on an open area to stop
the blinking. This kind of error checking cannot find semantic errors when the query works
properly but produces results different than desired.

b. Incremental Query Construction

Incremental query construction is another way of formulating the query is
explained in Chapter II1. The user can divide the query into logical sections to formulate
part by part and then combine each part. In each section, the user has to be sure the result
is correct. To do this, the user has to see the relation structure or the values produced. If the
result is incorrect, the user must correct that part and then continue query formulation. It is
easy to fix a small part of the query rather than the entire query. Two features are provided
in the editor allowing the user to see the table structure and the values of the tables at any
point of the query. The user simply clicks or (double clicks) the root of the operator to see
the table structure or (values of the table) created as an output from that operator. After
checking the result, new sections of the query can be built on the existing sections with the

knowledge that the query is correct so far.

2. Formulation of User-defined Operators

To take‘ advantage of the merits of user-defined operators in DFQL, the
capability to define user operators is included in Amadeus. The user can initiate
formulation of user-defined operators by selecting new from the query menu. The user is
asked to specify the number of input terminals for the user-defined operator, and then two
shaded bars (top and bottom of the window) are drawn with the specified number of
terminals as shown in Figure 4.4. The user can then formulate his user-defined operator by
connecting the terminals and the root of the in and out bars. Two circumstances exist
which will prevent the root of the output bar from connecting to a terminal: when a display
operator exists in the current user-defined operator or there is another user-defined

operator containing a display operator.

57

| EquaL

Taoble Dome:
(_employee w}l
ALLriDete Rome:

| fneme vl

O

hd |

Fmﬂ: Untitied\selproj

@ [uncompoct][compactJ [Show Slﬂ[nun 0uery]

Figure 4.4 Creation of a user-defined opera

The number of input terminals can later be changed by simply double clicking on
the input bar and selecting the new number of terminals from a dialog box. After the
formulation is completed, it must be saved by selecting a write command from the query
menu. Before the formulation is saved, however, a name and an explanation of the input/
output connections are requested by a dialog box. This process provides the user more
information when he double clicks on the defined operator. The newly defined operator is
then included in the system and the User-Defined Operator pop up menu is updated
making it available for use in future query formulation. The user can then retrieve the
definition of these operators at any time to make modifications. He can also include any

other user-defined operators in the system to be used with the current database.

§8

Monlpuullon Window

[EquAL

Table Doone:

{_employee
ALLridete Dame:

| fname

Figure 4.5 Compactcd query shaded with a pattern to mdxcate !bat nc modnf cauon is
allowed other than traversing into the user-defined operators.

3. Query Execution and Debugging

The user can execute the query in two ways. The first is complete execution of
the query by clicking the “Run Query” button. In order to do a complete execution, there
must be at least one display operator or a user-defined operator including this operator.
The result will be displayed according to the inputs of that display operator. The second
query execution method is to execute query up to a certain point by double clicking at the
root of an operator or relation object. The result will be displayed in a default form titled
“DISPLAY”. This method is especially suitable for debugging purposes when partial
results are need for investigating.The user also has the capability of using more than one

display operators to see intermediate results while executing the entire query.

59

There are two types of queries in the Amadeus prototype: one is an the actual
defined query and the other is a compact query with an optimized SQL translation. A
compact query can only be executed by its optimized SQL translation through the back-
end and cannot be modified. Since any modification to a compact query can change the
translation of the SQL query, it must first be converted to an uncompact type before any
alteration is performed. By keeping the queries in compact form after definition, they may
be used in application levels without fear of modification. A button is provided to see the
optimized SQL translation, as illustrated in Figure 4.6. This button is inactive if the query

is not compact, since it does not have an SQL translation®). If the user tries to modify any
portion of a compact query, a dialog box pops up to warn the user.

[SELECT DISTINCT Ineme , minit , Tname , sex , selery
FROM smployes
WHERE sex » ‘M

PR R
/] f

Figure 46 The SQL result of a compact query that is used between back-end and Amadeus.

4. Display of Query Results

As previously explained, only one display operator is available to print the query
results to the screen. To display the values of the tuples of a relation, two extra inputs must

be defined, namely the form object and an alias name. The alias name is printed as a title

(3) The difference of compact and uncompact queries are discussed in detail in the next chapter.

60

in the result window to distinguish multiple result windows. This prevent confusion when
using more than one display operator in a query for debugging purposes.

Two default forms exist in every application available to the user, selected from
the “Output Form” pop up menu. A user can also define customized forms by using the
Interface Editor (explained in Chapter V). This editor can be launched from the
Manipulation window by double clicking on the form object. The first output form is
provided to display all the tuples of a table at once. Each tuple is displayed in one row, as
seen in Figure 4.7. The form window is resizable, and depending on the number of

columns of the resulting relation, it can be adjusted to see the whole table at once. It is also

MaleEmployess
r-m mrl | neme sex salery
Borg E Jomes M $5000
JJab ber Yy Ahmad M 25000
Norayan K Ramash M 38000
Smith B John M 30000
[Wong T Frankiin M 40000

\=)

Figure 4.7 The default output form to display all tuples of a table at once.

scrollable in each direction as well, making possible to keep the window small and see the
other portions of the table as well. Attribute names are printed at the top of each column.
The values of each column are aligned according to the type of values being displayed.
For example, numeric, string values, and characters are justified right, left, and center,
respectively. Additionally, the user has the option of changing the alignment of the
columns by clicking once on the column area. The width of the columns can be changed
by clicking the edge of the column and dragging it left or right. These features provide

ease in investigating the results provided in this default form.

61 _

4 IO RN query Result SMOHE

MaleEployees

e Amad
mink ¥
ame Jabdber
s $07987967
bdate Sunday,May 18, 1976, 448:50 P
eddress 960 Dales, Houston, TX
sex M
slwy 25000
supersen $67654321
dane ¢

o) [AR ER I R R R R W

[51[5 = 1)

Figure 4.8 The default output form to dnsplay one tuple of a table at a time.

The second default form allows the user to see the results one tuple at a time, as
seen in Figure 4.8. This form can traverse the table record by using the buttons at the
bottom of the window. The user can also go to the top or bottom record of the table using
two other buttons, also at the bottom of the window. To indicate place in the search, a
record number is printed, giving the total number of records as well. The attribute names
are printed at the beginning of each value. These are right justified to make the form more
readable. Features of changing the justification and size of the column are permitted as

well. In both of the output forms, a title is printed using the alias provided to the display
operator.

5. Help features
Help features are included in the Query Editor. One feature gives a description
of the query operators, including the user-defined operators. This description includes the
names and input objects that are supposed to be connected to the terminals. An

explanation dialog box pops up when the body of an operator is clicked, as illustrated in

-62_

Figure 4.9. This gives the names of the input objects and their order from left to right.
Referring to the example in the figure, the select operator takes two inputs, relation and
condition, in that order. It produces a relation from the input relation by selecting only the
tuples which match the condition. This feature allows the user to view all the operator
connections and their exact orders, obviating the need to memorize them. This is
convenient when user-defined operators are used in the query, since of the user operators

could be ‘mported from other users’ definitions.

(EJ Operator Explanation Q
Oparater Name:
[select]

inputs:
Terminal 1 : reletion
Terminal 2 : condition
Output : result reletion

g
k 3

Figure 4.9 Operator explanation dialog box to provide i‘hfo}niétion about each DFQL
operator.

A complete on-line help window is provided for the key conventions used in this
editor, as described in Table 4. The user can open this window by clicking on the “Help”
icon at the bottom of the Manipulation Window. This help window has a scroll list of
operations; once an item is clicked in the scroll list, the related explanation appears in
other multi-line text item. This very simple but useful help window provides continues on-

line help and is shown in Figure 4.10.

C. RELATION EDITOR

This editor provides a window the user can use to define new relations or modify
existing relations. As mentioned before, these editors are dynamically changed according
to the connected back-end. For example, the user can define a type of attribute supported
only by the connected RDBMS. As a result, there are differences in the created tables which

63

([— i S—

inish draving a line for connecting with & root
Unselect the sslacted objects

Hold command key and select the desired one from pop-up menus
and release it after text inserted into current dummy object

Fﬁun 4.10 On line help dialog box for key conveuﬁo:ﬁ m Query Edltor

.

S

are not compatible with other back-ends. In order to use these relations in other RDBMSs,
they must be converted and made compatible with the desired back-end.

As shown in the table definition window in Figure 4.11, the user can give the name of
the relation and the attribute specifications used in the relation. The type of attribute can
only be selected from the “Type” pop up menu which contains the supported attribute type
of the currently connected back-end. Size and properties of the attribute must be specified
in addition to the name and type of attribute. For the relational model, every relation must
have at least one key attribute without duplicate values. These key attributes can be
indicated as the properties of the relation. Besides the key specification, the user can specify
whether the attribute can have a null value or not. After these definitions are made, the user
can add this attribute to the table. He can also select an attribute from the attributes list to
modify, delete, or change its place in the table. When the “Create Table” button is clicked
the relation is created and included in the current database. This is a simple, but efficient
editor to create and modify the tables of the relational model. This editor can be launched
from the “Database Editor” (discussed next).

D. DATABASE EDITOR

This editor can be opened from the “Window” pull down menu to modify the current

database, or from the “Database” pull down menu by selecting “New” to create a new

64

I Tobie Definition HREEEEEEEERE

Neme of how iEdle: Eepartmenl

Name: [dneme |

e prove souwny

1
i

Cencel Create Table

i

Figure 4.11 The table definition window allows the user to define or modify relations.

database. This editor allows the user to launch the table editor and then work with the two
editors together. After definition of the tables, each table’s name appears in the scroll list
of this editor’s window, as seen in Figure 4.12. The connected DBMS’s name is provided
to inform the user about the back-end. The user has the option of deleting, creating, or
modifying the database by selecting the specific relation. To create the defined database,
the “Create DB” button must be pressed. The definitions of the current database can be
updated this way and saved with the same name or with a different name.Each database is
specific to the connected back-end and database or relation definition cannot be done
without connecting to a back-end. This is enforced by Amadeus to make sure no

incompatibility occurs during manipulation.

E. DATABASE CONNECTOR

A specific Database Connector for each connected back-end is incorporated in

Amadeus which encapsulates all the information and methods to communicate with each

65

f Define New Dotabase IENNNEEENNNEEES
| Meme fer the detei>ane:

| [Company |
| DEs Type: Ocsr

| | Telbioe:
r New Tabls
department
; project
Delete Table
Modify Table
Create DB

Cancel

po— i
o &

Figure 4.12 The database definition window allows the user to define or modify the
databases.

back-end RDBMSs. Amadeus communicates using SQL statements particular to each
back-end instead of using a kernel database connector to make the translation between
them. Therefore, these connectors are responsible for connecting and communicating with
the specific RDBMSs in their own dialect of SQL. This module must enforce the
compatibility of the definitions and manipulations with the connected RDBMS.

After opening the desired database and establishing the connection with the back-end,
the Database Connector opers a schema window that shows the available relations, as
illustrated in Figure 4.13. The user can double-click on any table name in the window to
open a table structure window showing the definitions of the attributes of the selected
relation. The user can open as many structure windows as necessary to see the entire

database relation definitions. The relation structure window shown in Figure 4.14 does not

schema Window IS
Bame :compeny-tc

smployee
werks.on
dependent
depsrtment
dept_location
project

\\

e
%
. . . B S L e

Figure 4.13 The schema window that shows the table names of the current database.

allow the user to make any modification. This feature is included here for information

purposes only. Related implementation issues are discussed in the next chapter.

' EEESRREE Tobie information HRRNE|
employee
fname cher 15 N Y
mink cher 1 N N
iname char 15 N Y
an char $ N Y
bdste Cher T N N
address chy 3 N N
sex char 1 N N
salery int 2 N N
up chey 9 N N
dno nt 22 N N

in relations.

67

F. INTERFACE EDITOR

This module is implemented for the same environment as part of another research
effort[Hargrove93] but is not yet included in this prototype. This module can be invoked
from the “Window” pull down menu or from inside the Query Editor. The interface editor
is capable of designing customized forms in which the query result will be displayed. Each
form has an associated DFQL form object and can be used in the queries after the definition
of the form. Also, these forms are specific to each database and connected back-end like
the other editors. These customized forms are called output forms and in the original
implementation of Amadeus, are used only to see the data. This implementation of editor
supports input forms that can be used to enter values in the tables and send them to the
related database connector to do the update operations. Additionally, this editor allows the
user to print the forms directly to a printer instead of the screen using the same format. The
user can personalize his application by customizing his forms and can get hard copies of

the results.

G. PROGRAM EDITOR

The Program Editor is not yet implemented in Amadeus. A complete program editor
is needed to use definitions of a language that can create applications. A third-generation
language capable of embedding objects created by other modules of Amadeus is needed to
take advantage of the features of a third generation language. The problem for DFQL and
Amadeus is determining a third generation language capable of holding these objects. The
problems of structured sequential programming languages discussed previously prevent
their use in a prototype that uses a visual graphical representation of queries. Therefore, a
visual dataflow programming language is more suitable for Amadeus. A language like
Prograph [TGS88a][TGS88b][TGS91], providing the advantages of visual and object-
oriented programming, generated the design of the main features of DFQL. The necessary

extensions can be provided to this language to make possible the use of every kind of object

68

[Interface Editor Window

13183 12:0
&tive DB COMPANY
Save. Net nseded
o
0|

&ntcrnela)[Quit J

i R

Figure 4.15 Interface Editor’s window allows the user to define customized forms.
[Hargrove93]

in this prototype. Since Prograph is a visual dataflow programming language that uses the
object-oriented features, incorporating it as a program editor presents few difficulties.

Although it is not implemented, an example of incorporating Amadeus into Prograph
as illustrated in Figure 4.16 (see Appendix B for language’s syntax). In this example, a
small method which can be considered as macros gets a list of query objects and executes
a loop to run each query. This is done by selecting the related table and saving the list of
results to the disk for future use.

H. DATABASE ADMINISTRATION MODULE
This module is responsible for all of the security issues of the prototype. This module

is a very important component of Amadeus which must be implemented as a separate

69 _

A AL SIS LTSS I LSS LSS SIS S AL

“employee , department, works_o...

“male employees, manager names...

research. For now, only a fixed, hard coded user name and password is available to access
the back-end; all other security issues are open. This module can be used only by the
Database Administrator (DBA) or a super-user who has all the responsibility of the security
issues of the applications. Objectives of this module are as follows:

* A specific user name and password can be assigned to each user to limit the access to
the applications and related stored data.

* To be able to specify access rights to owner, groups, and other users for the user
created databases, forms, queries, and user-defined operators.

* To prevent the extraction of data from shared databases according to access privileges
by enforcing some type of security model.

* To prevent conflicts of resources when multiple users try to modify them at the same
time.

* To furnish sufficient back up procedures to protect the data and the applications from
unexpected problems.

Once these goals are achieved, this prototype will be much more secure, and will add

additional merit to this development.

70

L. CONCEPTUAL DESIGN MODULE

In the design of this prototype, a complete conceptual design module has been
introduced expressing real life in a conceptual model. The prototype can convert the
conceptual design to the relational model and create the necessary relations automatically.
This feature is very useful, since from beginning to the end, the user has every kind of tool
available to convert the desired features into an application.

This module is also not implemented and remains in the design phase level of the
prototype. Amadeus is designed to use the ER-model [Chen76) as mentioned in Chapter 11
(Entity-Relationship Model Interface on page 11). In order to do this model, a graphical
editor, like the DFQL editor, must be implemented to draw the ER diagrams easily. Then,
an interactive translator must be implemented to convert this diagram into a relational
schema. This must be interactive, since the relational model cannot represent all of the
constraints expressed in the ER model. Therefore, the decisions of the user must be
carefully considered during the translation to eliminate constraints that cannot be enforced

in the relational schema.

J. NETWORK CONNECTION MODULE

This module is designed to use a network to connect the various back-end RDBMSs
located in different places. This module is also not implemented because of hardware
problems inherent in connecting Macintosh computers through a network. Including this
feature in the prototype will prevent need to run the back-ends on the same computer. A
local talk connection is established between computers but its data transfer rate is not fast
enough for the prototype. Additionally, current memory capacity of Macintosh computers
on hand does not permit running Amadeus and more than one RDBMS simuitaneously.

Connecting the prototype through a network provides the flexibility of locating the
back-end RDBMS virtually anywhere and solves the memory shortage problems of

computers. This module allows the prototype to accommodate a large application that

-n_

V
o
- //H BRDBMS3

& Network Connection

H

Figure 4.17 Utilizing a network connection for Amadeus.

works with many back-ends containing large databases. This module can be used as

depicted in Figure 4.17.
In the next chapter, the implementation issues of Amadeus are discussed, including a

discussion of object-oriented design and the application of object-oriented features in this

prototype.

72 _

A

V. IMPLEMENTATION DETAILS

Amadeus is implemented using a a visual object-oriented programming language
named Prograph (see Appendix B) which uses the data flow paradigm as an interface. This
language is currently available in the Macintosh environment. Prograph was chosen for
several reasons. First of all, its visual data flow structure is very similar to the approach
taken for DFQL. This similarity helped stimulate the development of DFQL. Also, the
ability of Prograph to take advantage of the Macintosh visual interface greatly aided in the
development of the Amadeus prototype. Since Prograph is object oriented, it allows use of
the many powerful features of the object-oriented paradigm. This also greatly improved the
modularity and maintainability of the resultant code.

Prograph is a “very high-level, pictorial object-oriented programming
environment” that integrates four key trends in computer science: a visual
programming language, object orientation, data flow, and an application-

building toolkit. ((Wu91b] on page 77)

The Oracle relational DBMS, running on Macintosh computer with operating system
version 7.0, is the only back-end currently connected to this prototype. Additionally
included is the native database connector of a programming language, although its
connection and other features are not yet fully tested. Both Amadeus and Oracle run on one

computer, since a network connection module is not yet implement. The host computer’s
current memory capacity (8 MB) can run only the prototype and one back-end(}). For this
reason, implementation of more database connectors for other RDBMSs is not done. This
is not considered a major problem for this prototype, since it is very easy to add a new

database connector using the object oriented features of Prograph.

(1) The use of virtual memory is limited, because of the degradation of data retrieval efficiency.

73 _

A. OBJECT ORIENTED DESIGN
This prototype is designed to take advantage of the object-oriented paradigm. These
advantages are:

¢ Abstraction

« Encapsulation
* Inhenitance

¢ Polymorphism
* Reliability

* Extensibility

These features make this prototype reusable, sharable, integrable, and extensible.
Examples of using these advantages will be provided throughout the discussion of
Amadeus’ implementation.

Prograph has an application editor that allows the user to create menus, windows, and
dialog boxes for an application.It also provides to the user all necessary classes for the
application and the user interface. As depicted in Figure 5.1, the pull-down menus and
windows are inherited from related system classes and the necessary methods and attributes
are added to them. The inheritance feature of the object-oriented paradigm is used here to
abstract the common methods and attributes in the parent classes whereas different
methods and attributes are included only in needed child classes. As many instances as of
the classes necessary to be used in our application can be created.

Since communication between classes is done by sending messages back and forth, a
message can be sent by including the instance of a child class. If that child class does not
have that method to receive the message, it propagates the message to the parent class. The
common methods in parent classes are called very easily using this feature. This working
style of object oriented languages enforce the reliability of the programs. There is no doubt
that included classes can work together when they are integrated in an application. Since
the individual modules are robust and error-free, they can be integrated very easily with a

reliable mechanism of object oriented programs (OOP).

74

e necessary classes Tor user interlace of Amadeus.

The DFQL queries can be saved on a disk and loaded back with the same graphical

Figure 5.1 ‘

representations. Instances of relations and definitions of user-defined operators are not
included in the storage file. These types of objects and definitions are linked together after
retrieval of the query from the disk. The main reason for this operation is to keep this data
updated and avoid using older versions of tables and user-defined operators in case of
recent modifications to them. Updating is an automatic process right after loading the
query. If a table no longer exists in the current database, a warning message appears and
cancels the loading operation. Implementation of three main sections graphical editor, SQL

translation, and back-end connection are discussed in the next sections.

B. IMPLEMENTATION OF GRAPHICAL QUERY EDITOR

As illustrated in Figure 5.2, two separate classes, DFQLObject and Connector, are
used and the necessary child classes are inherited from them. The instances of class
connector are used as attributes in the DFQLObject class and the instances of this class are
stored in the class DFQLCanvas which is inherited from a graphical drawing window item

called Canvas. The item Canvas is used in Manipulation Window as a main drawing area.

75

The class DFQLCanvas is responsible for controlling the drawing process for the query
editor, but the DFQLObject and its child classes are responsible for storing all the

connections, positions, sizes, and information related with the query.

g &

Application Vindow Hem Yindev

b 6.8 8
ra e’

DFQLCaavas Tuple List DFOLNeaOpr DFoLEar ater
@ m@......
Conngotor DFQLPrimOpr
DFOLParameter

Ront Tesminal DFQLFerm DFQLUSIOpr

it

FigureS5.2 The 00 design of the gmphlcal editor in Prograph(other 3 [asses are not shown).

Three main sections of drawing objects that appear on the canvas, DFQLOperalor,
DFQILNonOpr, and DFQLBar are created as illustrated in Figure 5.2. The last section is
used during the definition of user-defined operators. Two subclasses of DFQLOperator are
similar to drawing process, but they have different contents. Primitive operators execute the
main query operators whereas user-defined operators have a link to the contents of defined
operators and establish the connection to its constituents during execution.
DFQILNonOperators have a different drawing representation from the operators, and so
have their own drawing methods. Non-operators such as relation, parameter, and form are
separated from the operators. Relation stores the relational table in its attribute called
rootValue, whereas form stores an object defined by the interface editor, and parameter has

only text of the condition or attribute list in it.

76

The class DFQLCanvas consists of 13 methods that perform the control of drawing
area as shown in Figure 5.3. The main role is played by the method called “process click”
which gets the mouse clicks on the drawing area, finds the object at the click point, and then
dispatches the related operation. It checks the click point tu determine whether a terminal,
root, or object’s body has been selected. If the click is a double click, then the process click
calls the related operation to start a partial execution, operator information, or text edit
dialog box respectively. If the click is a drag, it moves the selected (highlighted) objects to
the next point according to their relative positions. If a terminal or root is selected, then
process click goes through a line drawing process. If none of the above explained happens,
then process click deselects an object or creates an object if the command key is pressed.

The connection is determined by storing the terminal (root) object inside the other
connected root (terminal) object. For example, to find the connected objects of an
operator’s terminals, simply get the list of the terminal objects stored in that operator,
retrieve the values stored in the connectedTo attributes which are the root objects of the
connected objects (it is NULL, if not connected). Then, the values of the attributes called
partOf are retrieved which are the actual connected objects. This linkage is two way, so
query execution may be traversed either way. All connectors know their places relative to
position of their objects’ bodies. Each time the body moves, the relative positions must be
recalculated.

B B

precess click create DFQLObject remeve DFQLOM jects

x & [[(1

bedyRect is allewed? init drav end draw wpdate

) (=) (]

erase drav line erase line reset redraw

— I —
e ot m—

Figure 5.3 The methods of DFQLCanvas used to control the query editor.

77

The draw method used in the graphical editor provides a good example of
polymorphism. This feature of OOP languages gives a big advantage to programmers by
executing the draw method by giving the instances of different DFQLObjects.
Polymorphism can then determine the related draw method, depending on the instance
being used. An example of this convention is shown in Figure 5.4. This is usually used for
refresh purposes and called by the system to redraw the canvas, or by the process click
method to draw the objects again when a relocation or deletion occurred. In the figure, this
method gets the DFQLCanvas as an input and retrieves the DFQLObjects stored in the
same named attribute. This is a list of DFQL objects passed into the loop calling their
related draw methods. Draw methods for classes DFQLOperator, DFQLPrimOpr,
DFQILNonOperator, DFQLBar, and DFQLForm. are defined. There is no definition of
draw method in the other object classes listed above since they have the same kind of DFQL
representation. Their draw method is generalized into the class DFQLNonOperator. Also,
a draw method defined in the class DFQLPrimOpr overrides its definition in its parent
class, because the name of the primitive operators is written as underlined text. Therefore,

a separate method to draw each individual object is not defined.

LLI LIS LSS LSS LSS LSS SSS LSS LS ALY

l Einvort selected omsz i]
> 1)) 323 32

Figure 5.4 The redraw method of DF QLCanvas that uses the polymorphism of OOPL.

18

C. BACK-END CONNECTION

There are three classes created for databases namely, Database, Relation, and
Attribute, that contain the necessary attributes and methods to define a relational database.
The Antribute class stores the information for the definition of each column in relational
tables like name, type, and properties. Instances of this class are stored in the Relation class
to define a relation. Since a relation object is returned from the execution of each DFQL
operator in the query, this class contains the necessary attributes to store the parsing and
SQL translation information in it. The database class stores the relation objects to build the
relational database. It also has the necessary information about the back-end RDBMS to
which it will be connected since the database class is responsible for establishing the
connection to the back-end and retrieval operations. Each database connector classes has
its child class for each individual back-end RDBMSs. These child classes store information
like allowed types, aggregation functions etc. to be used by Amadeus. The class hierarchy
of the database connector is depictea in Figure 5.5.

i
8 ®

A"Iiea“o- Vh‘ov Hem Vh‘ov

AﬂrMo
oaunn ""“"
tu User
&‘“k Relation o'.“. Attr
Orul' []
DFOLEvalan.r Mative DB Rative Relation Rative Attr

Figure S5 The class hierarchy of the database connector module for Amadcus

A good example of the extensibility feature of OOPL is seen here, when it is desired
connect more back-ends into the prototype. By inheriting the necessary classes for that

79 _

RDBMS, and implementing the specific methods in the child classes directly related to that
back-end. All the specific implementations are encapsulated in those individual classes,
ensuring the newly connected back-end will function. The OO paradigm is reliable in
integrating the classes and using them, the extensibility of the prototype is assured.

The related child classes of the class relation have all the methods that are
implemented for DFQL primitive operators. Because each primitive operator has a direct
execution through the database connector that can be translated to SQL language of that
specific RDBMS directly, these methods can access the back-end, execute the operator and
get the result. The methods of the class Oracle Relation are provided as an example,
illustrated in Figure 5.6. Some error checking methods used during the parsing operation

will be explained in the next section.

select projest display gisplag SOL insert

set eperater {atersest unien ot A
groupStat grewplat grovpMin groupAvy growpiiax grompSum 90t attribate Mst

groupliSatisfy greupAliSatisfy greupliemeSatisfy

tokenizebohesk sondition [

Figure 5.6 The necessary met Al primitive ’:)perators
are implemented for the Oracle RDBMS.

These methods perform the partial execution and the SQL. translation of the optimized
query. They are called by DFQL objects during traversing of the query and must return a
relation back to the query. Two kinds of query execution exist in this prototype, namely,
partial and complete execution. There are two main cases of these methods, named with the
names of primitive operators. One of them is for partial execution which takes the

necessary inputs, creates the resultant relation object and passes the SQL command to the

80

back-end to create a similar temporary view in the RDBMS. Hence, the query can be
executed up to a specific point and the result e displayed, since the necessary temporary
views are created during the execution of previous operators. For the complete execution,
however, rather than sending the SQL commands to the back-end for each operator to
create temporary views, the optimized SQL translation of the query is sent to the back-end.
Some complex primitive operators are defined in terms of other simple primitive
operators simply by calling them in correct order. The implementation of the DFQL
primitive operator groupAllSatisfy is implemented in this way and is illustrated in Figure
5.7. This notation is explained in Chapter III (Universal Quantification on page 41), using

the counting function of the query language.

\ LLLILLLLTTILS S ILILLL LIPS LSS LSS

T oomes - . : . S i"‘j{
Figure 5.7 The implementation of the primitive operator groupAllSatisfy in terms of other
simple primitive operators in the class Oracle Relation.

D. S£9L TRANSLATION

The translation of a DFQL query into SQL is a very important part of this
implementation. The features of SQL and DFQL, have been discussed previously (see
Chapter II and Chapter 11l respectively). Since SQL has a declarative nature and DFQL has
a procedural nature it is very difficult to translate a DFQL query (a procedural language) to

-81_

SQL (a declarative one). Amadeus is designed to use the native language (individual
dialects of SQL) of the back-ends instead of using a kernel language. This results in a
performance gain for the back-ends during execution. Two types of SQL translation,
partial translation and complete translation are available depending on to the execution
methods of query editor. However, a discussion of traversing the data flow query according

to queries’ formulations to execute the operators is presented first.

1. Traversing the Data Flow Query

Traversing the query is necessary for two purposes. The first reason is to build an
opiimized complete SQL query called “parsing”. The other reason is to execute the DFQL
objects, one by one, for partial execution, according to their dependencies. Traversing can
start from a display operator or from an operators’ root by double clicking to start the
partial execution to that point. Every DFQL object has a method called runObj (except
similar objects) used during the traversal, as illustrated in Figure 5.8 These methods
check the terminals of the object for availability of data. If all of the terminals have their
inputs ready, then that object can be executed. Since DFQLParameter, DFQLRelation,
and DFQLForm have no terminals, they can be fired any time. Their methods simply

retum attribute list, condition string, form, or relation objects to the other operators.

IS LLSLSLLLLSSLLLI SIS I L7 IS

SLLPSILILLLLLLPIS SO ILS LS 1L IS Y,

Figure 5.8 The runObj method in class DF QLOperator to recursively call the same method
for traversing the data flow diagram and process the DFQL objects according to their connections.

The illustrated method (in Figure 5.8) belongs to the class called DFQLPrimOpr
which plays an important role here. This method gets the terminals of the operator, finds
the connected DFQL objects, and calls the same method for each connected object
recursively. If one of the terminals is an operator, it continues to call other objects
recursively until it gets back data. After execution of the methods for each object, error
checking is done to look for errors. After this, original operator implemented in the
database connector of the connected back-end is called by passing all necessary
information along. Since every operator has to return a relation object, these results are
stored in the operator objects’ attribute called rootVal. This prevents traversing the same
part of the query over and over if an operator’s result is fed to more than one terminal.

Polymorphism is used here to recursively cail the same method for different
objects. While getting the connected objects of the operator, a syntax check of the
operators connections is performed, since some terminals of some operators may not be
connected properly. For example, if no condition is given to a join operator, it must be
interpreted as a cartesian product. A semantic check of the operator connections checks
that each operator’s terminals is connected to the correct DFQL object. For instance, the
second terminal of a select operator can be connected only to DFQLParameter, whereas
the third terminal of the join operator can be disconnected. These error checking
procedures are used for every DFQL object to enforce the formulation of error-free
queries.

The traversal is very simple for the user-defined operators, because they have
other primitive or user-defined operators as their constituents. The runObj method for this
type of operator finds the connected DFQL object connected to the user-defined
operator’s root, and calls the same method for that object. This can easily be done even

through other user-defined operators are used in the formulation of the current operator.

83

———-—

2. Partial Translation

This translation is used only for partial execution of the query for debugging
purposes. Temporary views are used for each executed operator to store the resultant
relation in the back-end. These temporary views can be used in subsequent operators. This
is the easiest way of executing the query partially, rather than resorting to complete
translation. The created temporary views are deleted from the back-end after each partial
execution. As seen in Figure 5.9, if the user wants to execute the query up to the end of the
Join operator, then temp] is created for the definition of the select operator. Temp2 is then
created by using that temporary view. and then ter:p2 can be retrieved and displayed to the
user. Since it is difficult to determine the user’s behavior during debugging which sections

will be executed, this implenientation seems sufficient for this purpose.

([

..
..............................

works_on

SELECT DISTINCT *
FROM works_on
WHERE heurs > 20.0

..
..............

..
...................

.......

OO0
..............
............
........
..........

SELECT DISTINCT iname, faame
FROM temp2

......... e s T

hours > 20.0

iname, fname

Jolniample

re 5.9 The SQL translation during partial execution of DQFL query that is given as

(Give the name of employees who work more than 20 hours on a project. on page 23).

3. Complete Translation
This translation is performed when the query is converted to a compact type.
Since modification of the query is not allowed, the complete translation of the query can
be defined and used to run the query. This form of query permanently saves the definition,

making it available for use in applications later on.

works_on yoyre> 20.0

SO0
........

Iname, fname

000 55
..............
.......

oS

" Default-ali-records

JoinEsemple

WHERE hours > 20.0 AND eson = ssn

o
R G R PR e R e G o e e

R T T R T
et

Figure 5.10 The SQL translation for the complete execution of DQFL query given as (Give
the name of employees who work more than 20 hours on a project. on page 23).

The translation is done incrementally until some specific conditions are
encountered as shown in Figure 5.10. The steps of translation are fairly clear in that figure.
Some exceptions of the integration of previous SQL translation and the operator being
translated are that if an SQL translation is presented instead of a table, it is not possible to
embed the definitions of some operators in that translation. For example, if two SQL

translations for a join operator are presented instead of two table names, then one cannot

be embedded in the other definition(®). A temporary view as discussed in the previous

(2) Nested SQL statements are not desired under these conditions, since they can be used in only a
few occasions and they decrease the performance during the back-end process.

8§

section is created for one of them and the view name is embedded into the other definition.
Translation after a grouping operator is not allowed, because the group by clause creates
an entirely different table when used in SQL. Therefore, the same solution is used under
these conditions during translation. Using temporary views is not the best solution to
translate a DFQL query to SQL, but this seems the only translation technique working

correctly for now.

E. USER INFORMATION

A separate class called EndUser was created in this design that takes care of user
information such as the user-defined operators, user’s login names and passwords for the
back-ends. This type of information is loaded from a file each the time user runs the
prototype. As mentioned before, the Database Administration Module, responsible for user
information and access rights is not implemented. An instance of the EndUser class is
stored as an attribute in the class called Amadeus which performs all the application
operations. The instance of EndUser is stored to a disk automatically before quitting the

application with a file extension name Usrinfo.

V1. CONCLUSIONS

A. SUMMARY

In recent years a broad variety of commercial RDBMSs have become available to the
user. All of them use a dialect of SQL for a query language, and are incompatible with each
other. If there are several of these products being used in a company in different
departments, it is difficult to join them in a federated database system or to share or transfer
data between the individual RDBMSs. Using different SQL query language for each
database is also very hard for the employees, since some conventions allowed in one
RDBMS are not necessarily allowed in another RDBMS.

The purpose of this thesis is to implement a front end system called Amadeus, and use
the RDBMSs as back-ends (see Figure 6.1) communicating with their own dialect of SQL
through the front end. A new query language was developed that eliminates the
disadvantages of SQL, and by using the front end system, the same RDBMSs can still be
used. Data Flow Query Language (DFQL) is implemented in Amadeus, which is based on
the dataflow paradigm and has many advantages over SQL.

B. CONCLUSIONS

Amadeus is implemented with DFQL to provide the advantages of the system
discussed in Chapter IV. The user can define a database and its relations, manipulate them
using the DFQL query language, and retrieve data from the connected RDBMS. DFQL has
been proven to be a workable query language with many benefits over the current SQL. It
provides many advantages (see Chapter Three) to the user to enforce error-free definitions
of queries. Its procedural nature allows the user to express details very easily, including
universal and existential quantification. It allows the user to abstract the details into user-
defined operators, using them as desired. The debugging features of DFQL, namely

87 _

Q DFQL soL bhas

DFQL - SoL
<_FQ;> AMADEUS @

xBASE
front end
o g
NGRES
& end users back-ends |

Figure 6.1 The working diagram of Amadeus that can communicate with RDBMSs as back-
ends.

incremental execution and construction are very useful when the formulation contains
semantic errors.

Amadeus eliminates the problems of using different RDBMSs simultaneously and can
transfer stored data from different databases. Its object oriented design provides many
advantages, like extensibility, modifiability, and maintainability. The number of back-end
RDBMS can be increased easily by including the database connector containing the
necessary classes for the connection. It is easily alterable using the encapsulation and
abstraction features of the object-oriented programming. Amadeus also gives the user
many advantages in its interface module, allowing him to define customized input/output

forms in which the user can see the results.

C. FUTURE RESEARCH
There is still work to do in Amadeus in its various modules (see Chapter I'V). Since all
modules designed to be included in this system are not implemented, the capability of

Amadeus is currently limited.

Future research areas of the Amadeus prototype system are:

« Integrate the Interface Module in the current implementation of Amadeus
« Including more Database Connectors to reach more RDBMSs as back-ends

 To extend the translation of DFQL to non-relational database query languages in order
to reach to those DBMSs as well

 To implement a Program Editor like Prograph to define programs and applications
that can use current modules

» To implement a Database Administration Module to maintain the secrecy and
integrity of the data for a multi-user environment and allow the propagation of the
definitions according to their access rights

* Design and implement a Conceptual Design Module to define the applications in a
model and translate them automatically to the relational model

« Establish a network connection and using secure network protocols to reach the back-
ends located in another computer

These primary research areas will increase the capability of the Amadeus system.
Some are currently difficult to design and implement, but improvement in software
development will provide more convenient lJanguages and tools to complete their design

and implementation easily in the future.

89

[Andyne91])

{Angelaccio90]

{Chen76]

[Clark91]

[Czejdo90]

[Dadashzadeh90]

[Elmasri89]

[Hargrove93]

[TGS88a]
[TGS88b]
[TGS90]

[TGS91]
[Wong82}

LIST OF REFERENCES

Andyne Computing Limited, GQL: Graphical Query Language;
GQL/User Demo Guide, Kingston, Ontario, March 1991.

Angelaccio, M., Ctarci, T., and Santucci, G. @QBD: Graphical Query
Language with Recursion, 1EEE Transactions on Software
Engineering, v. 16, pp. 1150-1163, October 1990.

Chen, P. The Entity Relationship Mode-- Toward a Unified View of
Data, TODS, March 1976.

Clark, Gard, and Wu, C.T., Dataflow Query Language for Relational
Databases, Department of Computer Science Naval Postgraduate
School, Monterey CA.

Czejdo, B., A Graphical Data Manipulation Language for an
Extended ER Model, 1EEE Computer, v.23, pp. 26-36, March 1990.

Dadashzadeh, M., and Stemple, D., "Converting SQL queries into
relational algebra” Information & Management, v. 19, pp. 307-323,
December 1990.

Elmasri, R. and Navathe, S., Fundementals of Database Systems,
Benjamin/Cumming Publishing Company, 1989.

Hargrove, James Phillip and Wu, C.T., Design And Implementation
of an Interface Editor for the Amadeus Multi-Relational Database
Front-end System, Department of Computer Science Naval
Postgraduate School, Monterey CA.

The Gunakara Sun Systems, Prograph Tutorial, 1988
The Gunakara Sun Systems, Prograph Reference, 1988.

The Gunakara Sun Systems, Prograph 2.0 Technical Specifications,
1990.

The Gunakara Sun Systems, Prograph 2.5 Updates, 1991.

Wong, H. K. T., and Kuo, 1., GUIDE: Graphical User Interface for
Database Exploration Proceedings of the Eighth International
Conference on very Large Databases, pp. 22-32, September 1982.

-90-

[Wu9la]

[WuS1b}

Wu, C.Thomas, and Clark Gard J., DFQL: Dataflow Query Language
for Relational Databases, Department of Computer Science Naval
Postgraduate School, Monterey CA.

Whuy, C.T., OOP + Visual Dataflow Diagram = Prograph, Journal of
Object Oriented Programming, pp 71-75, June 1991.

91-

APPENDIX A
SAMPLE DATABASE

All queries and examples are built from this relational database example called
Company Database.[Elmasri89] throughout this thesis.

DEPT_LOCATIONS

[TDRUMBER. | DLOCATION |
PROJECT
WORKS_ON
DEPENDENT

The arrows shows the references established by foreign keys. In order to use this

database to build some example queries, some values are entered, as shown in tables.

EMPLOYEE

MINIT [LNAME| SSN BDATE ADDRESS SEX [SALARY [SUPERRSSN |DNO]|
John | B | Smith [123456789 | 09-JAN-55 |731 Fondren, Houston, TX| M | 30000 | 333445555 | 5
Franklin| T | Wong |33344855508-DEC-d45 | 638 Voss, Houston, TX | M | 40000 | 888665555 | §
Alicia | J | Zelaya |999887777] 19-JUL-S8 | 3321 Castle, Spring, TX | F | 25000 | 987654321 | 4
Jennifer | S | Wallace |987654321 | 20-JUN-31 | 291 Berry, Bellaire, TX | F | 43000 | 838665555 | 4
Ramesh | K |Narayan |666884444 | 15-SEP-52 |975 Fire Oak, Humble, TX| M | 38000 | 333445555 | S
Joyce | A | English [453453d53] 31.JUL-62 | 5631 Rice, Houston, TX | F | 25000 | 333445555 | 5
Ahmad | V| Jabbar |987987987 [29MAR-59| 980 Dallas, Houston, TX | M | 25000 | 987654321 | 4

James E Borg 888665553 10-NOV-27| 450 Stone, Houston, TX | M | 55000 null =‘l=

DEPARTMENT
e —
DNUMBER [MGRSSN [MGRSTARTDATE
s 333445555 22.MAY-78 H

4 987654321 01-JAN-8§

uHeadquarters 1 888665555 19-JUN-71
DEPT_LOCATIONS
 DNUMBER | DLOCATION
1 Houston ||
4 Stafford H
5 Bellaire
] Sugariand II
5 Houston |l
PROJECT
[PNAME | PNUMBER |PLOCATION | DNUM |
ProductX 1 Bellaire]
ProductY 2 Sugariand s
ProductZ 3 Houston 5
Computerization 10 Stafford 4
Reorganization 20 Houston 1
Newbenefits 30 Stafford 4
— —
_93

The rest of this section is filled out with some result values of the queries that are given

as examples in Chapter III. These results are taken from Query editor by executing the same

queries.

999887777 10

987987987 10 35.0 I

987987987 30 50

“ 987987987 30 20.0 I
987987987 20 15.0
888665555 20 null
DEPENDENT
ESSN |DEPENDENT_NAME [SEX| BDATE |RELATIONSHIP

333445558 Alice F | 05-APR-76 DAUGTER
333445555 Theodore M |25-0OCT-73 SON
333445555 Joy F |03-MAY-48 SPOUSE
987654321 Abner M | 29-FEB-32 SPOUSE
123456789 Michael M | 01-JAN-78 SON
123456789 Alice F |31-DEC-78 { DAUGHTER
123456789 Elizabeth F |0S-MAY-57 SPOUSE

Table 5: QUERY 3.2

Table 6: QUERY 33
fname | minit | Iname ssn bdate address sex | salary | superssn | dno
Ahmad |V Jabbar | 987987987 | November25, | 980 Dallas, | M | 25000 | 987654321 |4 ||
1957 Houston,
X
Franklin | T Wong 333445555 | April 23, 638 Voss, M | 40000 | 888665555 | 5
1956 Houston, TX
James E Borg 888665555 | February 11, 450 Stone, M | 55000 | NULL 1
1921 Houston, TX
John B Smith 123456789 | October 22, 731 Fonren, | M | 30000 | 333445555 | 5 h
I 1955 Houston, TX h
Ramesh | K Narayan | 666884444 | March 20, 975 Fire M | 38000 | 333445555
1963 Oak,
Humble, TX
Table 7: QUERY 3.4
fname address
James 450 Stone, Houston, TX
English Joyce 25000 5631 Rice, Houston, TX
Jabbar Ahmad 25000 980 Dallas, Houston, TX
Narayan Ramesh 38000 975 Fire Oak, Humble, TX
{Smith John 30000 731 Fonren, Houston, TX
[Wallace Jennifer 43000 291 Berry, Bellaire, TX
IWong Franklin 40000 638 Voss, Houston, TX
Alicia 3321 Castle, Spring, TX l

Table 8: QUERY 3.5

| averageHours

AL

APPENDIX B
TERMINOLOGY OF PROGRAPH

A. LANGUAGE BASICS

1. Pictorial Representation of the Language
Prograph programs are composed entirely of icons and amplifying text Table 10

shows common icons used in constructing Prograph programs.

..........................

...............

Q OO0 0
'''

This is a simple
operator that contains

the methods of
classes.

This symbol stores the |
Coastant constant values like §
—v— |.)

integers, strings, and
lists.

This is used to read a |
W value of an attribute in }
any class. 3

This is used to store a
@ value into an attribute
in any class.

This allows to get/set

Gaemtem) |2 Vvalue from/to
) persistent storage of |
the language. ‘

This is used to create a |

@9 new instance (object) |

of a class to be used in |}
program. :

This performs a

m calculation of its

inputs a and b and |
gives the result back.

This encapsulates
|72 some other methods
o like a subprogram. |

This performs the
@ same method to each
item of given list.

This is a loop that |

@ carries the result to

subsequent iterations.

Table 10. EXAMPLES OF PROGRAPH PROGRAMMING LANGUAGE SYMBOLS

97

2. Control Structures

Prograph Control Structures control the flow of execution within a program.
Control structures are composed of icons (either an ‘X’ ora ‘v*) that are attached to the

right-hand side an operator, and are activated on either the success or failure of the

associated operation.
e %) does not match then matches then fire
fire next case. next case.
If method fails “ If method runs
Diext Coze on 0] x) | during execution || Giext cese onswweeszg~) | Without failing then
then fire the next J fire the next case.
case. ! ‘
If method fails If method fails then II
during execution) make this method to
then continue on this fail too. J
case. I
If method fails then If method fails then
% Z 04 terminate the AL finish the iteration
execution. and stop execution.

Table 11: EXAMPLES OF PROGRAPH PROGRAMMING LANGUAGE CONTROL SYMBOLS
The default control structure is success. Operations fail in one of three ways in a
match operation:
(1) The items being compared do not match,
(2) A Boolean operation returns a FALSE value, or

(3) A FAIL condition is propagated to a particular operation.
Operations may also generate errors under certain conditions, including: type

mis-matches, syntax errors, or a specific program condition which cannot be satisfied by

98

the particular control structure. Table 11 shows typical Prograph control structures. An
X within a control structure indicates that it is activated if the associated operation fails.
A check mark (\/) indicates that the control structure is activated if the associated
operation succeeds. Other graphics inside the control structure icon indicate additional
action to be taken. ‘

The most basic Prograph conditional execution format is the Next Case with an
accompanying match operation or conditional test. Figure B. 1 depicts a conditional test
with a match on success control structure which tests for a specific condition to determine

which of two case windows will be executed.

(" ECEE @ 11 then Eise 1:2 BERUEEIE f then Eise 2:2

LISILLLILELLIIIII 180 S EP A S EI I L)) 7 e

#f “condition® is satisfied
then go 0 the next cese

condition of case | was
satisfied, so this case
s executed.

o
d
o G IR A R L L B R R e)

3. Classes and Inheritance

Classes of objects, and all inheritance relationships, appear on the screen as trees
of icons. The Prograph class system provides a means for constructing a new class from an
existing ciass through inheritance. A Prograph class can inherit from at most one parent.
Multiple inheritance is not currently allowed in this language.

The class iccii1s a hexagon which is divided into two parts: aftributes on the left,
and methods on the right. Double-clicking on the left half of a class icon displays the
attributes of the class, while doutie-clicking on the right half displays the class methods.
The class hierarchy and inheritance links are shown in Figure B. 2.

\| O RRIY I HER SO0 RA VG BNIQRIRR Y 4 RA LGN ERIRIRR LY
QIO Bttt ol B Sl e)| O)

Figure B. 2 Prograph Class Hierarchy Representation (system classes are shown.)

4. Attributes
Prograph attributes are displayed in an Attributes Window. There are two types
of Prograph attributes: instance and class. An instance attribute may have a different value
for each instance of a class. Class attributes, however, have one value for the class as a
whole. Therefore, the value of a class attribute is shared by all instances of the class. The
attribute icon is a downward pointing triangle. A typical attribute window of a class is

shown in Figure B. 3.

d

- jal

Muuto Wo Key Mbovt e

Clese Open Vind Draw Prep Bring Te Fremt

"

T

; u_-m&%ﬁl&ﬁi’][’:

Figure B. 3 Method and attribute representations of a Prograph’s class.

S. Methods and Cases
A Prograph method consists of a sequence of one or more dataflow, called cases.
A case consists of an input bar, an output bar, operations and datalinks, Data flows into a case

via the input bar, and out through the output bar.

100

o) W

Figure B. 4 Method calling conventions of Prograph’s language.

Methods are referenced in one of four ways: universal, data-determined, explicit
and context-determined (see Figure B. 4). These terms correspond to the terms global,
regular, early-bound and self, which are more commonly used in object-oriented
programming literature ([Wu91b] p. 71). Essentially, the calling format determines where
Prograph looks for the referenced method in the class hierarchy.

¢ Data-determined. Prograph looks for the referenced method in the class of the object
which flows into the leftmost terminal of the method.

« Explicit. Prograph looks for the referenced method in the class which is explicitly
listed to the left of the “/” in the method icon. If the method is not found in the
explicitly listed class, then Prograph uses inheritance links to check ancestor classes
for the method.

* Universal. This is a call to a global method.

e Context-determined. Prograph looks for the referenced method in the same class as
the current method that contains the method referencing operation. This allows a
method to send a message to itself.

6. Operations
An operation is the basic executable component of a case. Operations have a
name, zero or more inputs, zero or more outputs and a distinctive icon. Data flows into an
operation through terminals located on the top of the operation icon, and out through roots
located on the bottom of the icon. Prograph provides a special icon, called a synchro link

which forces a specific execution order on a pair of operations (see Figure B. 5).

101 _

However, the synchro link does not guarantee that the operations will execute
consecutively, only that one will execute before the other. ([TGS88b] p. 7) In the example
shown below, number one will execute before number two. However, there is no
guarantee that number two will execute immediately after number one, since there is no
way to determine when number three will execute.

fli:l- flow control 1:1 BERDEEOR

N

Figure B. § Synchro Link to control the execution order

—

of the methods in Prograph.

7. Message Passing
Message passing in Prograph is similar to most other object-oriented languages.
Some differences occur, however, because of the dataflow nature of the Prograph
language. Essentially, in Prograph objects flow into operations to initiate actions. In a
“standard” object-oriented programming language, a stationary object sends a message to
another stationary object. Although the models are somewhat different, the basic concepts
are the same. ([TGS88a] p. 93)

8. Primitives

Prograph primitives are calls to compiled methods, and are categorized into
sixteen groups, including: Application, Bit, Data, File, Graphics, Instances, Interpreter
Control, I/0, Lists, Logical/Relational, Math, Memory, Strings, System, Text and Type.

102

Primitives comprise the kernel of Prograph’s functionality. Unlike other object-oriented
programming languages, Prograph primitives do not belong to any class. This, and the fact
that the language supports regular data types such as string, integer, Boolean and real
make Prograph a hybrid object-oriented programming language. ([Wu91b] p. 72)

B. THE PROGRAPH ENVIRONMENT

The Prograph language is seamlessly integrated with the Prograph development
environment. An editor provides a visual interface for creating and modifying programs,
while an interpreter contains features which allow dataflow diagrams to be displayed
during execution, in effect graphically animating the flow of data throughout a program as
each operation is executed ([TGS90] p. 21).

1. Editor
The Prograph editor is context sensitive, so syntax errors are caught at the time
they are created, eliminating the need for a traditional debugger. During program
execution, run-time errors are flagged, program execution is halted and the appropriate
dataflow diagram displayed. This enables the user to correct the error and immediately
resume execution. An on-line help system is also available and is fully integrated into the
editor.
2. Interpreter
The Prograph interpreter is highly interactive. Program execution may be paused
at any point and dataflow diagrams and data values examined, allowing simultaneous
execution and editing of applications. Additionally, program execution may be traced step
by step, allowing the flow of data through a program to be traced visually. If a dataflow
diagram is changed while execution is paused, the interpreter backs up to the change and

continues execution from that point.

103

C. COMPILER

The Prograph compiler generates stand-alone application programs, and allows
linking to modules developed with other programming languages such as MPW C™ and
Think C™. The compiler also includes an intelligent Project Manager which keeps track of
the files needed to build a particular application. The Project Manager selects only the code
actually required when building a stand-alone application and informs the user of any
missing code. If the compiler detects an error in a Prograph file, the user can enter the
editor/interpreter to see the operation that generated the error.

A certain amount of overhead is normally introduced when creating stand-alone
applications. In Prograph, stand-alone applications which do not use system classes require
an additional SOKbytes of overhead, while those with system classes require an additional
130Kbytes. However, the execution speed of compiled Prograph code is, on the average,
15 times faster than the same interpreted code ([TGS90] p. 33-36).

104

APPENDIX C
SOURCE CODE FOR AMADEUS

(1) Class hierarchy.

(2) Important Class Methods and Attributes(1):

¢ Amadeus

¢ Oracle Relation

* Oracle DB

* DFQL Relation

e DFQLUsrOpr

* DFQLPrimOpr

* DFQLObject

e DFQLCanvas

* Manipulation Window

(1)Local methods are not included for simplicity.

108

@Classes

(2o

@

Application Meny Window™ Menu item

/@ w DFQLNonOpr DFQLBar DFQLOperator
Query Result

Database Manu

Amadeus Mani don W
DFQLRelation DFQLPrimOpr
Window Item QResuit Small
DFQLParameter DFQLUsSrOpr
Canvas

DFQLForm %

DFQLCanvas Tuple List Connector

@ ® @ @ @

Datab'as. Attribute
) @ & B
Oracle D8 Oracle Refation Oracle Atwr @ @
Native DB Native Relation Native Atur DFQLEvatuator End User

Amadeus 2.5.2.final Tue, Aug 31, 1993 12:01 PM

V Amadeus

< ja:fjor got

! -
1€

lg:

£

L = {Ci !qg

"

-~

G:!q

‘Gc l@c t
.

-»
<<ng Usar> <€nd User>
Y wipicms
owTest wner

(RI) o oos mom oree
ialg Gaog

@ﬁm adeus

s 2 ety cresies ®

2 It

it P
ot grim opre

i’;’—! retum 8 svalenie

user detined
R ww opre opersors

rotums obs of
ot <Relations>

ot hese relstions

retams 3 UR of
R avelietle Dekend
svalntte DBe'*S MFes. O o)

Amedeus 2.5.2 ey

Tus, Aug 31, 1993 3:12 P

@Amadeus/sauvs usr info 1:\

E2Amadeus/get current ¢b 1:1

@2Amadeus/avallable DBs 1:1

LSS IO A ISP

@Amadeus/get usr forms 1:1

LS SIS TSI IIII LS IIIEIIIIIIIL S

T,

§1. ("Defmst-one-recorns® Detmt-sl-records’)

@ZZAmadeus/init 1:t

S 7IIIIIII I EIIE SISO IIIT IS S

R

Ameceus 2320 Tus Ag 31. 1993 312 MM

EDAmadeus/a0d new @ 1:1

CBAmadeus/saue dbs 1:2

Z)Amadeus/save dbs 2:2

@Z3Rmadeus/get prim oprs i:1

ILEIIIIIIETIIIEIAEI TP TAL I ST AL 1T 50

@Z3Amadeus/get ysr oprs 1:1

Amadeus 2.5.2.0a Tue, Aug 31, 1993 3:12 MM

1 s

Eamadeus/get base reiations 1:1

¥ Oracie Retation

@Doracie Reiation

-c m ' [L’J

-y

4

»

8

1y greupANSatisty

i

ot
3 oo
288

Amacews 2.5.2.0 Tus, Aug 31, 1993 312 MM

]

@Boracie Relstion/groupsum 1:2

@0racie Asistion/groupSum 2:2

oracie Relation/create view §:1

CA0racie Retation/get attributs list 1:2

ZZ30racie Relation/get attribute list 2:2

Arotem 2.5.2. 900 Tee, Aug 31, 1993 312 M

EBoracie Ralation/ tokanizadcheck condition 1:2

<Nt 01 DESioNn tROND SENNStES Wit beus Spre. >

E0recis Reiation/tokenizebcheck condition 2:2

@0racie Relation/delete 1:2

@30racie Relation/delete 2:2

@30racie Relation/bing 1:2

AP A1 R EIILEI I IIIII IS PP I IS IIIS S

Aruteus 25290 Tun, Aug 3V, 1999 B:12PM

@B0rucia Asiation/bing 2:2

<solt> - of swiane
! » ting
aver & binding

EB0racie Relatisn/diff 1:t

L2 L

@0racis Relation/unian 1:1

EQ0racie Relation/groupug 1:2

ZB0racie Relation/ groupfug 2:2

EZ0racie Relation/grouphin 1:2

217111211 IIPIFIEII LA RIS IEI1 7271 s

Amatouy 2.5.2.% Tus Aug 31, 1992 312 P

ERtrecie Ruletion/grevphiin 2:2

SB0racie Reistion/errer mag 1:)

EB0racie Relation/felch):)

00

G0racie Retation/ofen 131

€D0racie Relation/venec 1:2

@0rscie Relation/oenec 2:2

Amatous 2.5.2. fng Tue, Aup 31, 1993 3:12 P

@0racie Relstion/eselS 1:2

@l0racie Relatien/esqS 2:2

@Doracie Relation/ectese 1:2

ED0racie Retation/eciess 2:2

@BOracie Ralstion/sepen 1:2

@BOracie feiation/sepen 2:2

Anssu 2320w Twe. Aup 3). 1003 3:92 e

EDtracie Rslation/defne 11

Y

Far eosh Run posiies
« e sultes B, este
0 PEregrise N Wufter

0racie Asistion/convert 1:2

@Oracia Relstion/convert 2:2

&00racie Reiation/desiiocste 1:1

@A0racie Relation/groupCnt 1:2

1. “cowm(®) *

@B0racie Ralstion/groupCnt 2:2

$1. “cownt(’) xom®

Amstum 2.5.2.fnst Tus. Aug 30, 1993 3:92 P

@trecie Selstion/intersect 1:1

§20racie Relation/dispiay SOL 1:1

EB0rscie Ralation/project 1:2

220racie Retation/project 2:2

C20racie Relation/select 1:2

ED0racie Relation/select 2:2

Anmtam 2.5.2.at Tue, Aug 9). 1993 312 M

@B0racie Asistion/chr(13) 123

EB0recie Relation/ join 1:2

E30racie Relation/ join 2:2

@D0racle Reilation/groupMan §:2

2D0racie Relation/groupMan 2:2

@0racie Relation/groupNSatisfy 1:3

Avwtens 2.3.2.00w Tus, Aug 31, V998 3:12 MM

@H0racis Retation/QroupNsatisty 3

&B0racie Nelaiion/groupNsatisfy 3:3

E20racie Relation/grouphiiSatisty 1:1

@20racie Relation/groupNonesSatisty 1:1

0racia Relation/attr types 1:1

Amotons 252 Tue. Aug 3). 1993 312 /M

ED0rucie Relstion/snsc DOL 1:3

EB0racis Aeiation/enec DL 2:3

220racie Relation/exec DOL 3:3

DIIIIII 1111011210 IIIAEL D030 s

ZA0racie Relation/dispiay 1:3

0racie Relation/display 2:3

o 4, ph
iz s e 7 7)

Arndeus 25.2.f0m Tue, Aup 31, 1993 3:12 MM

ERoracie Relatien/display 33

Roracie Relation/allecate 121

vz Tesmwin
vosnms ¢4 Gire werkd

Z20racie Relation/groupStat 1:4

Z20racie Relation/groupStat 2:4

EAoracie Relation/groupsStat 3:4

Amggeus 2.5.2.0ne Tus, Aug 51. 1993 3:12 P

E30racie Relation/groupstat 4:4

@30racie Relation/set operator §1:2

e R ren

Z20racie Relation/set operator 2:2

SIIIEIITILIIIAIIIPI SIS I FICIIIIILISS

opwater

LIIIIITIIIL A EI IS IIIIE IS RS AT L

@Qoracie Relation/insert 1:3

FIIIIIIIIIEILITEIEL AT IIAITIIAIIII LS

€Z40oracie Relation/insert 2:3

§1. Oracie Retetion

Amedeus 2.3.2.0n0 Tus. &g 21, 1993 2:13 PM

GB0racie Asiation/insart 3:3

Rr e g 8 of
wreng type. of wreng
UGS asue § gyen

V Orscie 08

it of relstiers Mored
n s ®

aggrepite Amotions
wes

'll-l- 7 10 ogon ds

M
< Aw'ar-dm

l‘l

m P to hOWt A

wes

Eoracie 8

@30racie 0B/create backend 1:1

<orecis &>
Wtter wilt De implemented
10 credte Pew databases

Amedeus 2.5.2.finel Tus. Aug 7). 1993 313 MM

@BOrscie 08/add tobis 1:}

XOrscie D8/UID 121

@30racie DB/orol 1:1

@A0racte DB/0com 1:1

@B0racie 0B/orion 1:§

SII1IIISIIIILII LIS I IIA LN 1051 E0 1S

EAnracie DB/dispose 1:1

ez

LA 18I0 P 0 RIS

Aradeus 252 Tus Aug 31, 1993 313 MM

D0racis OB/sbreak 1:1

@B0racie D8/0lagol 1:1

JB0racie DB/HOR 1:2

B0racie DB/HOA 2:2

@0racie D8/1emp Reiname 1:1

SIS IIILIS SIS IITIR I TSI

Z20racie DB/disconnect 1:1

S AIIASITIIIIIALIS) £4T 1510 I0I D 20ty

PIPIIIIIPSEILSSFIIPIAIL S A2/ 1071175

Amudous 2.5.2.00a0 Tus. Aug 31. 1993 2:10 MM

20recie 0B/LOA 1:2

2D0racie DB/LDA 2:2

Z30racis DB/olon 1:1

E20racis DB/error 1:4

@oracie 08/connect 1:1

V7T 2 AP IS IS O

@0racie D8/reset 1:1

2717 IEIIIIPIP SO PILILS A2 F TS

Amadeus 25.2.%w Tus, Aug 31, 1993 213 M

Eloracia 88/0pen 1:1

@0racie 08/allowedBooilprs 1:1

|

G B0 sslend WO DRSS WRer R

9 LAl

$). CAND" 0N WOR)
B2 (5° ¢ % 2a® Sca® Yo%)

V OfQLRelation

MAL DFQLONSSt which kel
v Whcaisem IR B W
awner PV s Na

MAL SO0> bt

reet
{ 00 20 O 40Cation of its Body

bedyRost
NAL

v

roetVaue
PALSE

teststring

v

dlepstriag

DoraLrsiation

F) oenes e ([oo o oo v e oo
- ey ne centute
-sempaet obj Rt TeVE

Z20F0LAeiation/reset rootial 1:1

2P 1JIIIIIIIIIIIIIILS LTI IINIIIEIS IS

Amsoeus 2.5.2.fn Tus, Aug 3). 1993 313 MM

ENFeLAsletion/uncampact ab) 1:1

@DOFQLAsIstion/put contents 1:2

@20F0LAsiatian/pul contents 2:2

C20F0LAeIation/run ob) 1:1

V OFQLUsrOpr

MAL OFQLOBjeCE which Reeit
v Sinchged . TR is 0
owngr MTY TWn it

{20 0 28 0 SO objsx

o
100 20 0 40cstiee of ks Dogy

Sodyfest
v
rentValue
FaLSE
v

!

F
5

of <Tormimas>
Gewrect fromOBjnstrum))

i<

fnt of the DFQLobjects
R is composed of.

<

Amstont 2.5.2.7n8 Tux, Aug 31. 1993 3:03 MM

@oreLyerter

BOF QL UsrGpe/uncompact obj 1:4

CB0FOLUSIOps/put contents 1:1

E20FQLUSIOpr/run obj 1:2

EBOFQLUsrOpr/run 0b) 2:2

Aveons 25200 Tus Aug 2). 1993 313 P

ED0reLiartyr/get tarminals cnt 1:1

@DOFOLUsrOpr/reset recttial 120

V GFQLPrim0pr
WAL OPCR.Obest which oust -
v (3 TSy Y]
owaer WOV ten Nat
{ 20 0 28 0 FVOL> bR
v
oot
100 20 0 #ocstion of ks Yody
A4
Sedyfost
AL
\
rentValue
raLst
\4
selested?
v
eprasme .
MAL et of <Termenat>
v =((xermrect fromouemtum))
terwiasis
EDorFoLPrimapr
r" retams Relation
[995 reprasonted by ths
un any OBOCt (opersser)
[1' arow Reelt on e
PJ curenty
Orow OO0 with wndurine text
Amateus 2.5.2.00m Tus. Aug 21, 1993 313 PM

GBS OLPrimbpr/drew |:)

GBOFQLPrimOpr/run ohj 1:3

E0FOLPrimOpr/run ob) 23

A0FOLPrimOpr/run obj 3:3

V DFQLOD ject

{ 00 20 0 ‘ocation oF s bowy

reetVaive
Fase

Amotons 25.2.f0m Tus. Aug 31. 1993 X:13 M

@Der aLon juct

L L)
oape
i" -bve & t0 We
|9 aew westinn ij
"ve W La

E30FOL00 jact/uncompact o) 1:1

EDB0FULOb Ject/put contents 1:1

ZB0FOLOD ject/blink 1:1

E20F0LOD ject/get root rect 1:1

Aregas 2.5.2.08 Tue, Aug 31. 1992 3:10 MM

EOFOLOS juct/get reet):1

GBOFOLOb ject /invert 1:2

E30FOLOD ject /invert 2:2

Z20FQLOD ject/bodyRect center 1:1

LALSISIIIIIIIIEI IS 9] TP 1017 E 0,

Z20FTLOb ject/move ta 131

£)701TIIIA) LIS IFILIE IS IS 11 1SS

Amateus 2.3.2.fn3 Tue Aug 31. 1992 3113 MM

EDSFOLOB jact/teggie 1:1

CHOFOLORject /disconnect 1:1

Araceus 251708 Tee, Aug 31, 1993 213 P4

V ofaL.Canvas

jjeie

ieija

id

-

€

|

@ joi e ie

d

Qi

varei?

e of currently
26i0C100 ORjICES

bilitedObjests

v
ttDisplgte
arent OFQLObeots shawed
" canves.
DFQLObjeste
92 of objecty’ st whixh
% is nosted from left to Hght.
- ~nom-¢nwna
(] ZERO at query level, murier
V woremented i weerOpr feve!
sening levet
FALSE UUe if ODHCTS we
modfied sise tuse
wmeditios?
12 of cbject which
Nes arrors 10 be ndcmed.

Mty ojs

Armtes 25.2.fma Tue, Aug 31, 1993 3113 P

@oroLCanvas
B B _®B=E=
8 8
T a8 8
; BBz
L]

C20F0t.Canvas/is sliowed? 1:2

050810 10T 1R

@A0FaLCanvas/is allowed? 2:2

CB0FQLCanuas/draw line)1

@20FQLCanvas/bodyfect 1:1

SIS IIE SIS

Amadeus 2.5.2 Tl Tus, Aug 3V, 1993 3113 PM

—<—

GOFOLCanvas/reset 1:1

GA0FOLCanuas/process cilck 1:4

C30FaLCanuas/pracess click 2:4

S1/ 9412111 IPSPIIIIITIIE 170 S P00

ED0FqLCanuas/process click 3:4

SAPIIIIILILILISIIII IS S 111 SIS

EA0FaLCanvas/pracess click 4:4

PSPPI PRSI IS SIS IIIIIIIIII SIS LIS

vkt wii

Touss CIOK OFF § BISRK SO
it there is ay selected
connector, detetect it if mot,
28k owiner wintiow to dispivy
e inputter OFCLEER. DFQLESR
putter signae the owmer
Wndow when the <retIm> i
pronsed

S/ IAIIEIT SIS IS 1271170070170 20 227727

Amadous 2.5.2.fna0 Tus, Aug 31, 1993 313 MM

@B0FQL.Canvas/creste DFOLOD joct 1:2

E)0FoLCanyas/croste DFOLOb ject 222

EB0FgLCanvas/erass 1:2

$1. 100 300 300}

20FL.Canvas/erase 2:2

§1. {0 0 500 500]

Z20FQLCanvas/redraw 1:)

SPSIIIIIIIIEIIIS I 1S TSI 0SS

Amaceus 2.5.2.fnal Tus. Aug 31, 1993 513 PM

@BOFOLCanvas/aress Uns 1:1

st

,*I;
J)h
2y,

GROFOLCanwas/init draw 121

C20FGLCanvas/end draw 1:1

P2 b IIIIIIIII PSS S

@20FGLCanvas/update 1:1

(T R

CZ0FOLCanvas/remove DFQLOD jects 1:1

U1 IIELLIARIIERIIIISIIITIESEI SIS IR IS S

Amstas 25.2.fn80 Tus, Aug 3). 1999 3:13 PM

V Maniguistion Wingow

faijaile gcﬁ ld @ Ii‘

ile
i

H

4

3

el

-y methes

@JManiputation Window

= B .::";.7."::;

“Ml

R . T e

Fe-, -m:“m E’! uynu-':f«::‘

wy prom
_ﬂ: retwrng <Relstion>
l T) ===
o’ reven

f== m
insert | ewswr

-mu:hm
'When there i an error.
i i
e query
nesded methes, |12] 1o0ded to activate method
ﬁ’j uﬁu:a;. r“! insert &t ewsor by » aton
aodmiter

8 9 8.0
Fi‘!

m
m

Amstess 252708 Tue, Aug 31, 1993 313 PM

W

SManipulstion Window/compact 1:2

EBaniputation Windsw /compact 2:2

2™Msnipuistion Window/find display oprs 1:3

EZ3Manipuistion Window/find display oprs 2:3

22Msnipulation Window/find display oprs 3:3

Amateus 2.5.2.m Tus. Aug 31, 1993 3:13 MM

Etonipuiation Windew/decrresting 1:1

EManipuiation Windew/incriesting 1:1

@2Manipulation Window/goinnerievsl 1:)

@Manipulation Window/goluttertevel 1:1

Emanipulation Window/help 1:1

Amston 1320w Tee, Aug 31, 1993 2.3 MM

Eanipuietion Windew/solimiter 1:1

@enipulstion Windew/run query 1:1

E2Maniputation indow/refresh canvas 1:1

EManipulation Window/insert at cursor 1:3

ZManiputation Window/insert at cursor 2:3

Amstem 252008 Tue Amy 31, 1908 313 MM

_—

@4anipuiation Windsw/insert at cursor 3.3

|

O nowing

Qeesune commend iy @ 2ot grenasd far seriies
o meed & ast sotivased Sum <talle st
OGP NN B QPP %0 CRENGS TR ERFIRAS NENIS
of &8 i

Eanipuistion Window/hide inputier 3:1

ZManipulation Window/display inputter 1.1

SEpys SO On COMEs & pt

G3Manipuiation Window /0FOLCanvas click 1:1

EBManipulation Window/open 1:1

Amoteus 2.5.2.0n8 Tus Aug 3). 1993 3:14 Pt

———

_

Ganipuistion Windew/sew DFOLOD ject):)

Eanipulation Bindow /key press 1:1

3Manipuiation Window/show SOL 1:t

@Manipulation Window/get relation 1:2

Zmanipulation Window/ge! relation 2:2

-

#0 match fums 59

Amageus 2.3.2.%0w Tus. Aug 31, 1902 314 MM

@Banipulation Window/reset OFOLCanuas 1:1

EDManipuistion Window /reset button 1:1

Z3Manipulation Window/idle process t:3

EManipulation Window/idle process 2:3

LSLIIIIIIIIS IS IITIIIIIE) 121505 S

@Manipuistion Window/idle pracess 3:3

Manipulation Window/done 1:1

Ametem 252w Tue Aug 31 1993 314 PM

EBManipulstion Windew /conuert DFOLOD Ject 1:2

@manipuistion Window /conuert DFOLOb Ject 2:2

Z23Manipulation Window/uncompact 1:1

Amatewy 2.3.2.7n8 Tue, Aug 31. 1993 314 P

INITIAL DISTRIBUTION LIST

Defense Technical Information Center
Cameron Station
Alexandria, VA 22304-6145

Dudiey Knox Library

Code 52

Naval Postgraduate School
Monterey, CA 93943-5002

Chairman, Code CS

Computer Science Department
Naval Postgraduate School
Monterey, CA 93943-5002

Professor C. Thomas Wu, Code CS/Wu
Naval Postgraduate School
Monterey, CA 93943-5002

LCDR John A. Daley, USN, Code CS/Da
Naval Postgraduate School
Monterey, CA 93943-5002

Kara Kuvvetleri Komutanligi
Kutuphanesi

Bakanliklar / ANKARA
TURKEY

Kara Harp Okulu
Kutuphanesi
Dikmen / ANKARA
TURKEY

T.C. Genel Kurmay Baskanligi
Kutuphanesi

Bakanliklar /| ANKARA
TURKEY

148

Mustafa Eser

Evsat Iviah. Ozdilek cad. 11.Sok. No:6A
42700 Beysehir / KONYA

TURKEY

Top. Kd.Utgm. Turgay Cince
Sukraniye mah. Yuksel sk. No:34
BURSA

TURKEY

LCDR. Steve Sellner
26 Revere Rd. La Mesa.
Monterey, CA 93943

149

