
NAVAL POSTGRADUATE SCHOOL
Monterey, California

AD-A274 955

DDTIC
EECTE

THESIS Jpd•2 6 9940

THESIS • E -

Design and Implementation of a Query Editor

for the Amadeus System.

by

Turgay rinqe
September 1993

Thesis Advisor: C. Thomas Wu
Second Reader. LCDR John A. Daley, USN

Approved for public release; distribution is unlimited.

\Q% 94M02 2128

94 1 25 025

Best
Available

Copy

UTM uLASICATM ONF TH, PAGE

REPORT DOCUMENTATION PAGE
la. FlEROMT SECURITY CLASSIFICATION UNCLASSIFIED lb. RESTRICTIVE MARKINGS

26 SECURITY CLASSIFICATION AUTHORITY 3. DISTRFBU11ON/AVAILABIUTY OF REPORT

M. MCLA561FIATODOWNG ING SCHEDULE Approved for public release;
distribution is unlimited

4. PERFORMING ORF3ANIZATION REPORT NUMBER(S) 5. MONITORING ORANIZATION REPORT NUMBER(S)

G.&NAME OFQRFORM bOR.ANIZATION Hb OFFICE, SYMBOL 79L NAME OF MONIIORING ORGANIZATIONCoputer jcence ept. (14Wk.auo) Naval Postgraduate School
Naval Postgraduate School CS

6c. ADDRESS (City. State. and ZIP Code) 7b. ADDRESS (CityM State, and ZIP Code)

Monterey, CA 93943-5000(Monterey, CA 93943-5000

ft. NAME OF FUNDING)SPONSORING 8b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION 7 1y a 0pe)

8c. ADDRESS (CityM Stae, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS
PROGRAM PROJECT TASK WORK UNIT
ELEMENT NO. NO. NO. ACCESSION NO.

11. TITLE (Incdude Security Classfication)
Design and Implementation of a Query Editor for the Amadeus System.

g.PEINAL AUT."(S)
Ar~s~tLeutenant urgay (1ince, Turkish Army

ater sF RT 13b.FM TIME 09COVERED 099 14. DATE OF REPORT (Year, AMonth Day) I15. PAGE COUNT

Mas~tlepr S espis) FROM 10/92 09/93 93Sep. 1 164
16. NOTATION The views expressed in this thesis are those of the author and do not reflect the official policy or
position of the Department of Defense or the United States Government.

17. COSATI CODES 18. SUBJECT TERMS (Continue on reverse inecessary and identiy by block number)
OBJECT-ORIEJrED PROGRAMMING, DATA FLOW QUERY, PROGRAPH. VISUAL

FEW) GROUP SUB-GROUP PROGRAMMING, DATABASE SYSTEMS, SQL, RELATIONAL MODEL,

RELATIONAL CALCULUS, RELATIONAL ALGEBRA

19. ABSTRACT (Continue on reverse if necessary and identify by block number)

One side effect of the proliferation of relational databases within a single organization is that sharing of data to
access a global information base is difficult. People erroneously assume that since almost all of the commercially
available RDBMSs support the Structured Query Language (SQL), sharing of data is easy. Unfortunately, currently
available systems only support a specific dialect of SQL.

The Amadeus front-end system overcomes the data-sharing problem. With the Amadeus front-end system, database
users can use one common language called Dataflow Query Language (DFQL) to access heterogeneous RDBMSs. A
query specified in DFQL is correctly translated into a SQL dialect that the connected RDBMS recognizes. With this
front-end approach, the user can access data from multiple databases by writing a single DFQL query, instead of
writing multiple SQL queries. A prototype query builder is reimplemented using an object-oriented design. This
component of Amadeus interacts with the user for creating DFQL queries. Adding a connection to a new SQL-based
20). DISTRJOUTIONJAVAILABILITY OF ABSTR•ACT 21. ABS]IAGT SMGUFITY GLASSIPIQATK)N

13 UNCLASSIFIED/UNLIMITED [] SAME AS RPT. [] DTIC USERS UNCLASSIFIED

22a. N RME• 07; la, ESPONSIBLE• INDIVIDUAL 22b. TELEPHONE (Include Area Code) C2cJ SYMOOL
Professor C. Thomas Wu (408) 656-33S1 q

DD FORM 1473, 84 MAR 83 APR edition may be used until exhausted SECURITY CLASSIFICATION OF THIS PAGE
All other editions re obsolete UNCLASSIFIED

UNC.ASSIRED
EU I ,IY M3W.ATM WTMTI PAGE

[19] Continued.

RDBMS requires minimum modification to the code, due to the object-oiented implementation of the query builder.
This object-oriented implementation allows the smooth integration of the additional features of the query editor into
the older version of Amadeus.

SECURITY CLASSIFICATION OF THIS PAGE

UNCLASSIFIED
_ii _

Approved for public release; distribution is unlimited

Design and Implementation of a Query Editor
for the Amnadeus Systemn.

by

Turgay (Vinfe

First Lieutenant, Turkish Army

BS, Turkish Land Forces Academty, Ankara- Turkey, 1987

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL

Septmbe, ID'rIC QUALITY INS-pCTED 5

11Accesion For
Authr wxNTIS CRA~Turgay 4;ifle DTIC TABi

Unannounced
Approved By: ~ ~~Justification -----......

C. Thoas W~esis AvisorBy ---------------

Avaliability Codes
LCD John Daley, U ,Second Reader

Avail and/orDist Special

Prof Ted Lewis, Chairman,
Department of Computer Science A4

ii _

ABSTRACT

One side effect of the proliferation of relational databases within a single organization

"is that sharing of data to access a global information base is difficult. People erroneously

assume that since almost all of the commercially available RDBMSs support the Structured

Query Language (SQL), sharing of data is easy. Unfortunately, currently available systems

only support a specific dialect of SQL.

The Amadeus front-end system overcomes the data-sharing problem. With the

Amadeus front-end system, database users can use one common language called Dataflow

Query Language (DFQL) to access heterogeneous RDBMSs. A query specified in DFQL

is correctly translated into a SQL dialect that the connected RDBMS recognizes. With this

front-end approach, the user can access data from multiple databases by writing a single

DFQL query, instead of writing multiple SQL queries. A prototype query builder is

reimplemented using an object-oriented design. This component of Amadeus interacts with

the user for creating DFQL queries. Adding a connection to a new SQL-based RDBMS

requires minimum modification to the code, due to the object-oriented implementation of

the query builder. This object-oriented implementation allows the smooth integration of the

additional features of the query editor into the older version of Amadeus.

_iv

TABLE OF CONTENTS

1. INTRODUCTION ... 1

A. AM ADEUS .. 1

B. THESIS OVERVIEW ... 2

II. COMPARISION OF QUERY LANGUAGES FOR RDBMSs 4
A. LINE ORIENTED QUERY LANGUAGES .. 4

1. Relational Algebra .. 4

2. Relational Calculus ... 5

3. Structured Query Language (SQL) ... 5

B. VISUAL ORIENTED QUERY LANGUAGES 7
1. Form-Based Query Languages ... 8

a. Query By Example (QBE) .. 8
b. Summary Table By Example (STBE) .. 9

c. A Query Language (AQL) 10

d. Relational Calculus/Sets (RC/S) .. 10
2. Entity-Relationship Model Interface ... 11

a. Graphical Query Language (GQL) .. 13

b. Graphical Data Manipulation Language (GDML) 13

c. Query By Diagram (QBD) .. 14

d. Graphical User Interface for Database Exploration (GUIDE) 14

e. GRAphiCal QUery LAnguage (GRACULA) 15

III. DATA FLOW QUERY LANGUAGE (DFQL) .. 17

A. DFQL OPERATORS .. 19

1. Basic DFQL Primitive Operators ... 19

Vn_

a. Select .. 21

b. Project .. 21

c. Join ... 23

d. Union .. 25

e. D ifference ... 25

f. Group Count ... 26

2. Non-basic DFQL Primitive Operators .. 27

a. Intersect .. 29

b. Grouping Aggregate Operators ... 30

c. GroupA llSatisfy ... 32

d. GroupNoneSatisfy .. 33

e. GroupN Satisfy ... 33

3. User-Defined Operators ... 34

4. Display Prim itive Operator .. 37

B. QUERY CONSTRUCTION WITH DFQL 37

1. Increm ental Queries ... 38

a. Increm ental Construction .. 38

b. Increm ental Execution ... 39

2. Universal Q uantification .. 41

3. Nesting and Functional Notation ... 41

4. Graph Structure of DFQL Query ... 42

C. PROS AND CONS OF DFQL .. 43

1. Power of DFQL ... 43

2. Extensibility ... 44

3. Ease-Of-U se .. 45

4. Visual Interface ... 46

5. Interface Problem s .. 47

6. Language Problem s ... 48

_vi _

IV. FEATURES OF AMADEUS ... 49

A. GENERAL FEATURES ... 50

B. QUERY EDITOR ... 52

1. Construction of Queries ... 55

a. Complete Query Construction ... 56

b. Incremental Query Construction .. 57

2. Formulation of User-defined Operators ... 57

3. Query Execution and Debugging ... 59

4. Display of Query Results ... 60

5. Help features .. 62

C. RELATION EDITOR ... 63

D. DATABASE EDITOR .. 64

E. DATABASE CONNECTOR .. 65

F. INTERFACE EDITOR ... 68

G. PROGRAM EDITOR .. 68

H. DATABASE ADMINISTRATION MODULE 69

L CONCEPFUAL DESIGN MODULE .. 71

J. NETWORK CONNECTION MODULE ... 71

V. IMPLEMENTATION DETAILS .. 73

A. OBJECT ORIENTED DESIGN ... 74

B. IMPLEMENTATION OF GRAPHICAL QUERY EDITOR 75

C. BACK-END CONNECTION .. 79

D. SQL TRANSLATION .. 81

1. Traversing the Data Flow Query ... 82

2. Partial Translation ... 84

3. Complete Translation ... 85

E. USER INFORMATION ... 86

_Vfl

VI. CO N CLU SIO N S .. 87

A. SU M M A RY .. 87

B. CO N CLU SIO N S .. 87

C. FUTURE RESEARCH ... 88

LIST O F REFEREN CES .. 90

APPENDIX A SAMPLE DATABASE .. 92

APPENDIX B TERMINOLOGY OF PROGRAPH .. 97

A. LA N G UA G E BA SICS .. 97

1. Pictorial Representation of the Language ... 97

2. Control Structures ... 98

3. Classes and Inheritance .. 99

4. A ttributes ... 100

5. M ethods and Cases .. 100

6. O perations .. 101

7. M essage Passing .. 102

8. Prim itives ... 102

B. THE PROGRAPH ENVIRONMENT .. 103

1. Editor ... 103

2. Interpreter .. 103

C. CO M PILER .. 104

APPENDIX C SOURCE CODE FOR AMADEUS ... 105

IN ITIA L D ISTRIBUTIO N LIST .. 148

viil_

LIST OF FIGURES

Figure 2.1 ER Diagram [Elmasri89] of sample database in Appendix A 12

Figure 3.1 This is a representation of the incremental query construction of
Query 3.19 Give the department names where all employees have a
salary greater than $30,000 and have no dependents. showing the
process level by level ... 39

Figure 4.1 Pull-down menus for Amadeus .. 51
Figure 4.2 Manipulation window to define and execute queries in Amadeus 52
Figure 4.3 Warning dialog box informing violation of a query construction rule ... 56

Figure 4.4 Creation of a user-defined operator in the manipulation window 58
Figure 4.5 Compacted query shaded with a pattern to indicate that no

modification is allowed other than traversing into the user-defined
operators ... 59

Figure 4.6 The SQL result of a compact query that is used between back-end and
A m adeus 60

Figure 4.7 The default output form to display all tuples of a table at once 61
Figure 4.8 The default output form to display one tuple of a table at a time 62
Figure 4.9 Operator explanation dialog box to provide information about each

DFQL operator ... 63
Figure 4.10 On line help dialog box for key conventions in Query Editor 64
Figure 4.11 The table definition window allows the user to define or modify

relations ... 65
Figure 4.12 The database definition window allows the user to define or modify

the databases . .. 66
Figure 4.13 The schema window that shows the table names of the current

database ... 67
Figure 4.14 The table structure window allows the user to see the definitions of the

attributes in relations .. 67
Figure 4.15 Interface Editor's window allows the user to define customized forms.

[Hargrove93] ... 69
Figure 4.16 The definition of a macro for this prototype incorporated with

Prograph ... 70
Figure 4.17 Utilizing a network connection for Amadeus 72

Figure 5.1 The necessary classes for user interface of Amadeus 75

_Ix _

Figure 5.2 The 00 design of the graphical editor in Prograph (other classes are
not show n) .. 76

Figure 5.3 The methods of DFQLCanvas used to control the query editor 77
Figure 5.4 The redraw method of DFQLCanvas that uses the polymorphism of

O O PL ... 78
Figure 5.5 The class hierarchy of the database connector module for Amadeus 79
Figure 5.6 The necessary methods of class Oracle Relation where all primitive

operators are implemented for the Oracle RDBMS 80
Figure 5.7 The implementation of the primitive operator groupAllSatisfy in terms

of other simple primitive operators in the class Oracle Relation 81
Figure 5.8 The runObj method in class DFQLOperator to recursively call the

same method for traversing the data flow diagram and process the
DFQL objects according to their connections 82

Figure 5.9 The SQL translation during partial execution of DQFL query that is
given as (Give the name of employees who work more than 20 hours
on a project. on page 23) ... 84

Figure 5.10 The SQL translation for the complete execution of DQFL query given
as (Give the name of employees who work more than 20 hours on a
project. on page 23) .. 85

Figure 6.1 The working diagram of Amadeus that can communicate with
RDBM Ss as back-ends ... 88

Figure B. 1 Example of the Next Case on Success Control Structure 99
Figure B.2 Prograph Class Hierarchy Representation (system classes are

show n.) ... 100
Figure B.3 Method and attribute representations of a Prograph's class 100
Figure B.4 Method calling conventions of Prograph's language 101
Figure B.5 Synchro Link to control the execution order of the methods in

Prograph ... 102

X

LIST OF TABLES

Table 1: BASIC DFQL OPERATORS AND THEIR SQL TRANSLATIONS 20
Table 2: NON-BASIC DFQL OPERATORS AND THEIR SQL

TRANSLATIONS ... 28

Tabia 3: HUMAN FACTORS ANALYSIS OF DFQL OVER SQL 47
Table 4: KEY CONVENTIONS FOR QUERY CONSTRUCTION 54
Table 5: QUERY 3.2 ... 95
Table 6: QUERY 3.3 ... 95
Table 7: QUERY 3.4 ... 95
Table 8: QUERY 3.5 ... 96
Table 9- QUERY 3.6 .. 96
Table 10: EXAMPLES OF PROGRAPH PROGRAMMING LANGUAGE

SY M BO LS ... 97
Table 11: EXAMPLES OF PROGRAPH PROGRAMMING LANGUAGE

CONTROL SYMBOLS .. 98

xi _

LIST OF QUERIES

Query 2.1 Find the name and address for all employees who work for the
"Research" department. .. 4

Query 2.2 Find the names of the employees without any dependents 5
Query 2.3 Give the department names in which all of its employees have a salary

greater than $30,000 and have no dependents 6
Query 2.4 This is the representation of (Query 2.1 Find the name and address for all

employees who work for the "Research" department.) as in QBE 8

Query 3.1 Representation of Query 2.1 (Find the name and address of all
employees who work for the "Research" department) in DFQL
form at. ... 18

Query 3.2 Give the names of male employees in the company 21
Query 3.3 Give the name, salary, and address of employees in the company 22
Query 3.4 Give the average number of hours worked on all projects in the

com pany ... 22
Query 3.5 Give the name of employees who work more than 20 hours on a

project. ... 23
Query 3.6 Give the social security numbers of the department manager's that is

located in "Houston" .. 24
Query 3.7 Give the social security numbers of employees who have a son or

daughter as a dependent .. 26
Query 3.8 List the names of employees who have a salary greater than '$25,000'

but not under the management of a supervisor who's social security
number is '333445555'. .. 27

Query 3.9 List the number of employees in each department of the company 28
Query 3. 10 Give the names of employees who have a salary of less than $30,000

and worked more than 20 hours on any project 30
Query 3.11 Group aggregate functions' examples ... 31
Query 3.12 List the department names where all of their employees are male 32

Query 3.13 Give the department names where none of the employees were born
after 1960 33

Query 3.14 Give the project names in which at least two employees have worked
more than 15.0 hours ... 34

Query 3.15 List the name, address, sex, and birth dates of employees who have a
salary of less than $30,000 ... 35

Query 3.16 List the personnel information of employees in the company under the
supervision of the manager whose ssn is '333445555' 36

xii -

Query 3.17 List male employee names under the management of "Wong,
Franklin" .. 40

Query 3.18 List department numbers where all employees have a salary less than
$40,000 ... 42

Query 3.19 Give the department names where all employees have a salary greater
than $30,000 and have no dependents ... 44

xlii _

ACKNOWLEDGEMENTS

I sincerely thank all of the people who assisted me in the conception and

implementation of this thesis.

I would like to acknowledge for the special discussions on Object-oriented design to

First Lieutenant Mustafa Eser, Turkish Army, for the precious comments and helps on

Macintosh environment to Lieutenant Commander James Phillip Hargrove, United States

Navy, and for the precious hel, : for editing my chapters to lieutenant Commander Steve

Sellner, United States Navy.

Finally, I wish to thank to my wife Pinar for her patience and sacrifice in supporting

me in this endeavor. Without her constant love and support, none of this would have been

possible.

xiv -

I. INTRODUCTION

Improvement in relational database management systems (RDBMS) in recent years

paves the way for large relational database applications. Since the relational model was first

introduced by E.F. Codd in 1969, many companies have used it in a variety of software

packages. IBM invented a manipulation language (to write queries) called Structured

Query Language (SQL) in 1974. Although ANSI and ISO have established standards of

SQL, each vendor supports its own dialect of SQL When different vendor RDBMSs are

required to work together in order to share data, as in a federated RDBMS, an

interoperability problem occurs, when a dialect of one vendor's RDBMS cannot be

recognized by another.

To solve this problem, a common query language must be used. Using this common

query language, the end user can write transactions and use individual translators to convert

it to the corresponding dialect of SQL. This implementation can work as a front end,

establishing connections between different RDBMS using their individual dialect of SQL,

and can solve the problem of interoperability in a federated RDBMS.

A. AMADEUS•,)

Amadeus is an object-oriented implementation of a prototype, which serves as a front

end for the end user and provides interoperability between different RDBMSs. Amadeus

uses Data Flow Query Language (DFQL)(2)[Clark91J as a common language for the

transactions. It is implemented in the Apple Macintoshnd environment using an object-

oriented language named Prograph(3)[TGS88a] [TGS88b] [TGS91].

(1) Amadeus is a prototype developed by several students and continued by myself under
advisement of C. Thomas Wu, Prof., Computer Science Department, Naval Postgraduate School,
Monterey, CA.
(2) DFQL was implemented by Gard J. Clark as his thesis work in N.P.S. (discussed further in
Chapter IM)
(3) Prograph is a trademark of The Gunakara Sun Systems, Ltd.

~1_

The main goal of this prototype is to provide an alternate query language which will

eliminate the differences between RDBMSs in a federation caused by different dialects of

SQL. Our implementation includes one back end, the Oracle(4) RDBMS, which is

available in the Macintosh environment. Connectivity in the federation is maintained by

means of each RDBMS' individual dialect of SQL The user cannot use data types or

aggregate functions that are not supported by the connected back-end, and this feature is

enforced by Amadeus.

Because of the object-oriented design and implementation of this prototype, it has all

the capabilities and benefits of object-oriented programs, including extensibility, flexibility

and maintainability. For instance, if to add another RDBMS to the federation, the classes

of the back-end RDBMS have to be included with specific feature definitions and methods

providing interoperability with the front end. This simple process has the merits of

polymorphism of object-oriented language. In other words, we do not need to worry about

which class methods must be called according to the newly included class, it is done

automatically by polymorphism. As a result, the number of back-ends in Amadeus can be

increased very easily.

B. THESIS OVERVIEW

Chapter II provides a discussion of available query languages for RDBMSs and the

merits and shortcomings of these query languages. The main query language of relational

model SQL is discussed in detail, and the difficulties of this language are explained to

indicate the need for an easy-to-use common query language. In Chapter II1, the DFQL is

explained in detail, which is implemented in Amadeus as a solution to the problems of

multiplf SQL dialects. Examples are given to enhance the understanding of ideas based on

an sample database in Appendix A.

The features, pros and cons, and conventions of Amadeus are explained in Chapter IV.

Implementation details, such as object-oriented design, class hierarchies, and drawing

(4) Oracle i8 trademark of Oracle C"pontion.

2-

conventions are explained in Chapter V. Chapter VI provides a summary of the research,

and gives suggestions for future work.

As mentioned above, Appendix A provides a sample database used for queries in this

thesis. Appendix B describes Prograph, the programming language used to develop

Amadeus. Appendix C provides the major source code of classes, attributes, and methods

used in Amadeus.

I. COMPARISION OF QUERY LANGUAGES FOR RDBMSs

In this chapter, to stress the importance of DFQL, we compare the query languages

which can be used with RDBMSs. The relational model(1) is based on a table structure,

where relations between tables are established by the foreign keys. Therefore, all query

languages depend on the connections made through the use of foreign keys to use the

relationships between the tables. Query languages for this model can be classified into two

general categories: line oriented and visual oriented.

A. LINE ORIENTED QUERY LANGUAGES

Because of their nature, line-oriented queries can be written using text editors. We can

divide this category into three subclasses: relational algebra-based, relational calculus-

based and a combination of both.

1. Relational Algebra

In relational algebra-based query language, the user specifies a sequence of

relational operations to be performed on the tables of his schema to produce the desired

result In Query 2.1, there are three lines which are sequenced with one another until the

result is determined. The user can assign temporary names to the result of a previous line

to use as an input to the current line. This query language is a procedural type language

which is very similar to the dataflow query language discussed in Chapter III.

DEPT-.EM[PLS <- (DEPARTMENT *DNUMBER-DNO EMPLOYE

RESEARCH.DEPTJEM]PIS <-- DNAME."Remanh" l

(DEPTEMPLS)

Query 2.1 Find the name and address for all employees wh who= for the "Research"
department

(1) An example of a relational model is provided in Appendix A.

-4-

The main operations of this query language are project, select, and join.

Relational algebra-based query language also includes set operations like union and

intersection.

2. Relational Calculus

In this type of query language, the user provides a predicate calculus expression

which defines the characteristics of the tuples to be retrieved. Tuple variables are used to

make the logical connections between separate instances of relations being joined. In

Query 2.2, two tables are joined by the common attribute SSN and an existential quantifier

is used to retrieve the existing tuples. Since the query only wanted tuples of employees

without dependents, the negation of the logical clause is used. As you can see from the

query, the free tuple variables are used to reference the attribute names of tables.

[(e.FNA1*f, e.LNAWE I ElAlLOYEE(e) and
(not (Z_ d DEPENDENT(d)) and e.SSN = dLSSN)))

Query 2.2 Find the names of the employees without any dependents.

3. Structured Query Language (SQL)

The third subclass of the query languages is the combination of both relational

calculus and relational algebra which includes the nesting capability and block structure

established by SQL(2) This language is closer to relational calculus than relational algebra

because of its declarative nature. The user specifies the result in one statement rather than

a procedural language. SQL queries do not always present the clearest representation to

the user. To define a query which has a universal quantification, it must be represented in

negative logic and nested queries must be used. As a result, the logical expression to be

satisfied becomes quite complicated. Because of the limitations of human nature, the user

(2) SQL was invented by IBM for the relational model. Even though its name is used in many
relational query languages, almost all of them have different dialects of SQL which poses a
compatbility problem.

-5-

can best think of complex problems in sequential fashion, rather than in a declarative

fashion of looking at the entire problem at once.

The complexity of the declarative nature of SQL is compensated by embedding SQL

queries into a procedural third generation programming language. In this way, the user can

take advantage of the features of the host language to accomplish operations that are very

difficult to code in the query language. As mentioned above, expressing a universal

quantification is very difficult, seen clearly in Query 2.3.

SELECT DNAME
FROM DEPARTMENT
WHERE NOT EXISTS (SELECT*

FROM EMPLOYEE
WHERE DNULMBER = DNO AND SALARY <= 30000

AND EXISTS
(SELECT S

FROM DEPDBEN'T
WHERE SSN = ESSN)

)

Query 2.3 Give the department names in which all of its employees have a salary greater
than $30,000 and have no dependents.

Existential quantification can be done by using the quantifier EXISTS and a

nesting select statement. As above, the negative logic, NOT EXISTS must be used to

express the universal quantification. To complete the query, salary is compared as less

than or equal to 30,000 and an EXISTS logic is used for dependents.

In SQL, if two relations being used have similarly named attribute columns, a

reference must be assigned for those attribute names. This can be done by giving an alias

to the relation name EMPLOYEE (e.g., EMP) in the FROM clause and then similar

attribute names may be referenced (i.e., EMP.SSN). This process becomes extremely

difficult when similar attribute names in a relation are used in nested queries and the user

is initially unable to identify which attribute names require aliases.

-6t_

Two kinds of nesting constructs are used in this query language. One is used in

Query 2.3, and the other uses the IN operator and a nested select statement. This construct

compares attribute names in the outer query with the attribute names returned from the

nested select statement. In the previous EXISTS construct, at least one tuple must be

returned from nested select statement in order to make the EXISTS clause true. However,

all of these formats create unnecessary complexity and makes the creation of the queries

difficult for the user. Although the nesting queries can be translated into their non-nested

parts, most SQL optimizers have difficulty translating nested queries.

SQL does not present a simple, clean, and consistent structure to the user and has

numerous arbitrary restrictions, exceptions, and special rules. For this reason, this

language is called unorihogonaP). An example of an unorthogonal construct in SQL is

allowing only a single DISTINCT keyword in a select statement even if the select

statement contains other nested select statements.

As a result of all these problems, the main query language for RDBMSs cannot

be used efficiently by the user. DFQL, which is used in our prototype, solves these

problems. DFQL is an efficient query language which can operate with different dialects

of SQL in different RDBMSs.

BR VISUAL ORIENTED QUERY LANGUAGES

Visual query languages cannot be written using normal text editors, and require

special graphical editors. These types of languages are classified according to their

representations. Two categories of visual query languages are form -based representation

and entity-relationship(4) model [Chen76] representation.

(3) Orthogonality in a programming language means there is a relatively small set of primitives that
can be combined in a relatively small number of ways to build the control and data structures of the
language.
(4) The Entity Relationship Model was introduced by Chen, P. in 1976 as a pictorial conceptual
design methodology for the relational model.

7-

1. Form-Based Query Languages

This type is very similar to spreadsheet applications. Most users are already

familiar with filling in blank tables or forms; therefore, form-based query languages

represent an intuitive language for the user. The main advantage of form-based query

languages is they are easy to implement for standard text mode displays. At the time of the

creation of these languages, hardware limitations prevented implementing more complex

query languages like DFQL. Four types of form-based query languages are discussed in

this section, namely, Query By Example, Summary Table By Example, A Query Language,

and Relational Calculus/Sets.

a. Query By Example (QBE)

QBE, developed by IBM in 1976, is the first example of query languages of

this type. The user gets a form which represents the attribute names of a given table and

types example values into columns which belong to specific attributes of that table. The

DBMS then returns the tuples that match the example values provided by the user. As seen

EMPLOYEE

P_ P I 1 P I I

DEPARTMENT

"rnR e .e -rc " I -C II

Query 2.4 This is the representation of (Query 2.1 Find the name and address for all
employees who work for the "Research" department.) as in QBE

in Query 2.4, two tables involved in this query are connected by a variable "...C", according

to their primary and foreign keys. "Research" is entered for the department name to select

the tuples. After selecting the specific tuples, the DBMS retrieves only the attributes which

have a "P" written in its column to indicate that those values will be printed as a result. As

in the relational algebra-based query language, QBE usesfree domain variables to connect

the tables to each other. Specific values other than equality can be entered by inserting "<,

>, W=" symbols in front of the values entered. For more complex expressions, a separate

Condition Box can be used to make conditions more explicit

QBE had great success among users when it was created, because of its user

friendly nature. But, as the complexity of the query grows, it becomes less and less useful

and it cannot express universal or existential quantification. Therefore, it is not relationally

complete.

b. Summary Table By Example (STBE)

The representation of STBE is very much like QBE, but it is implemented for

a specific area of Statistical Database Management This language is based heavily on set

and aggregation operations. It can deal with relations that have set-valued attributes,

summary tables, and aggregate functions using queries that have a hierachical subquery

structure. Although there is no implementation of universal quantification, STBE uses set

comparison operators to achieve the same result. It can be considered as relationally

complete, since it supports all the relational operators. In addition to using a relational

model, it has extra capabilities such as supporting summary tables and relations with set-

valued attributes.

STBE introduces scoping by allowing nested queries in which table skeletons

are placed in nested windows. All the variables used in the table skeletons are bounded by

the window. In a nested query, each window contains a subquery and behaves like a

function returning an output. The output can be either an output relation skeleton or an

output summary table skeleton in the parent window. The outermost window is the root

window which returns the result of the query. This nested structure of windows can

represent a STBE query as a parse tree. Similar to QBE, a condition box can be used with

extra additions of set membership and set comparison.

-_9-

Although STBE has excellent capabilities, such as powerful aggregation,

manipulation of summary tables and relations, and nesting structures, it is a difficult

language for novice users who have no knowledge of set theory.

c. A Query Language (AQL)

This query language is implemented for the AIDE-II (An Intelligent Database

System for End Users) prototype management system which does not incorporate the

relational model. Although it is very similar to QBE, it does not have a join operator, since

the design of the AIDE-II data model does not require it. A user view includes all of the

possible relationships in the database. Before a query is defined, a user view must be

specified which includes all possible relations to be used. The condition of that specific

query can then be defined based on this user view. The disadvantages of AQL include the

inability to support the relational model, and the lack of the ability to express joins and

universal quantification.

d. Relational Calculus/Sets (RC/S)

RC/S has two graphical implementations very similar to QBE, but it is

designed very much like STBE with the ability to use only simple relations. It is a relational

calculus-based query language which uses set comparison and set manipulation operators

to replace universal quantification in query formulation. The first implementation of RC/S

uses nested windows to specify complex queries similar to STBE. The other

implementation has the same functionality as the first, but uses hierachical windows to

express the nesting concepts. As explained above, form-based query languages are

designed to be familiar to the user and implemented using current hardware technology.

QBE is the first implemented form-based query language but it is not

relationally complete and therefore cannot express some types of queries (i.e., queries using

universal quantification). STBE and RC/S attempt to solve this problem while retaining the

ease-of-use characteristics of QBE. Even though this problem is solved in these query

10

languages, these added features detract greatly from the simplicity of the language, since

the correct use of set operations requires at least some knowledge of set theory.

AQL eliminates the user-specified join operation from the actual query by

requiring a "user view" which unnecessarily separates the query building process into

schema manipulation followed by actual query specification. This is certainly not an aid to

the user. Additionally, AQL is designed for AIDE-Il DBMS which is not a relational

model.

2. Entity-Relationship Model Interface

The Entity-Relationship (ER) model was introduced by Chen in 1976 and has

been extensively used as a high-level conceptual model. The main idea of this model is to

illustrate the concepts of entities and relationships in a graphical way in order to enhance

understanding of the structure desired for a database.

As illustrated in Figure 2.1., the rectangles represent entities and the diamonds

represent relationships between entities. Both entities and relationships may have

attributes, represented by connected ovals. Figure 2.1 is intended to specify some of the

semantics contained in the sample database.

The ER model is now being used in several query languages rather than just as a

conceptual designing model. However, the ER approach has some drawbacks. Although

certain relationships are currently specified, it does not necessarily follow that there are no

other relationships existing between entities. The intent of the ER model as a query

language is to keep the user from worrying about the specific join conditions between

entities. However, it tends to force the user to depend on the specified relationships. This

is similar to AQL where user views are specified so that all joins are eliminated from the

user's view. This can be a benefit to a novice user, but as indicated before, the ability to

use a relationship without knowing how it is actually set up increases the chance of

syntactically correct queries producing invalid results.

_11 _

Sex Sub" Bfrth ~ate Rehfloumb

Figure U EPAER iga Elan9 of. sAmplES daaae nA peni

In th orgn l ERmdl eq i-on on key anI oeg esfteette

ne eltonhptoheERVII schema.

E;,PENDENTS- ,I)

S~PROJECT

Fave ERty e x queryangua es na ely rahialQur Lanuae, ahia

Figure 2.1 ER Diagram [Elmasri89 B of sample database in Appendix A

In the original ER model, equi-joins on keys and foreign keys of the entities

present no problem. However, if the user desires a thet join based on some relationship

other than equality, even if this theta-join uses the same key attributes as one of the

defined relationships, the theta-join would be impossible to perform without adding it as a

new relationship to the ER schema.

Five ER-type query languages, namely Graphical Query Language, Graphical

Data Manipulation Language, Query By Diagram, Graphical User Interface for

Database Exploration, and GRAphiCal QUery LAnguage are discussed in the following

sections.

12

a. Graphical Query Language (GQL)

GQL [Andyne9l] is a commercial product designed to run as a front end for

a user's existing relational DBMS and GQL runs on Macintosh computers. Initially, GQL

displays the appropriate ER diagram for the database the user will query. To perform single

table or entity queries, the user double clicks on the icon in the ER diagram representing

the desired entity. A window with a list of the entity's attributes is then displayed.

Attributes may then be selected by applying filtering or sorting conditions to print them on

the screen. Queries for specific items like "SSN = 123456789" are formulated with the

assistance of GQL's qualify feature. The user may connect conditions by boolean operators

as well. The information represented by the relationships is accessed by selecting the

desired relationship from the screen along with its two adjoining entities. When a query is

formed, all of the attributes from both entities are available for qualification and display.

There are several drawbacks to GQL. The possible relationships must be

entered by the database administrator(DBA). After that, these relationships are neither

changeable nor extensible by the user. When large database schemas have been reduced to

third normal form (3NF) with many join conditions, the resulting complete ER diagram

may not fit on the screen, causing confusion for the user.

b. Graphical Data Manipulation Language (GDML)

GDML [Czejdo9O] uses much of the same type of pictorial representation as

the general ER model and GQL. This query language is based on an extended version of

the ER model that incorporates various forms of generalization and specialization,

including subset, union, and partition relationships. Queries are formed in this language by

removing parts of the ER diagram. An editor is provided to allow the user to erase parts of

the ER diagram. All of the items in the database represented by the diagram remaining on

the screen are then displayed as the result of the query. A method of restriction is provided

by allowing the user to place conditions on the attributes in the diagram. Although GDML

is based on the ER model for the user interface, as implemented, it runs on top of a

_ 13-

relational DBMS. The GDML entities are simply relations from the underlying database

and it's relationships are represented by the database relations containing the appropriate

keys from each of the connected entities. As in GQL, the relationships must be established

manually as well.

c. Query By Diagram (QBD)

QBD [Angelaccio9O] is intended to be a user friendly query language based

on the ER model which allows the expression of queries with a recursive nature. This

language uses the ER diagram as a navigational tool for forming queries. The actual

conditions to be satisfied by the query are specified in separate query specification

windows.

In this language, the user first selects items of interest from a displayed ER

diagram. A window is then opened to place conditions, including recursive ones, on the

attributes of that item. By placing two separate entities on either side of the screen, join

conditions can be specified between two separate relations. So, by duplicating the same

entity on both sides of the screen, recursive queries may be specified.

Two types of windows on each side of the screei. are used to accommodate

the designer's choice to implement the query formulation process as a series of phases, but

these steps seem unnecessarily complex. The formulation of the query in the query

condition windows also identifies for the user many options which are not based on the

relationships specified in the ER model. But if a query system is to be based on the ER

model, then the implementation should stay within the bounds of that model. QBD does not

stay within the bounds of the ER model. This anomaly arises from an attempt to provide

the flexibility that is missing from the underlying ER model.

d. Graphical User Interface for Database Exploration (GUIDE)

GUIDE [Wong82] has been developed especially to allow browsing meta-

data in large databases with many complex relationships. Its design and display

methodology are based on the ER model and this query language allows the user to select

14_

a level of detail with which to look at the database. To handle meta-data, entities are

organized into a hierarchical subject directory and attributes are organized into a

hierarchical attribute directory. The purpose of these directories is to guide the user to the

part of the ER schema that is relevant to him. Also, a facility is provided to rank objects

according to their expected relevancy to a certain group of users. This ranking is based on

the objects expected importance in the system. The ranking does not necessarily

correspond to the hierarchical organization discussed above, but should reflect the interests

of the group of users and the frequency of access to that object by them.

To formulate a query, GUIDE asks the user to first select the level of detail

to display for the schema. The ER diagram is then presented at the desired level of detail.

Indirect relationships between entities are represented by dotted lines between entities.

Next, the attributes of displayed entities and relationships can be examined by selecting the

desired object and then examining that selected node. Restrictions can be placed on

selected attributes in order to specify the query. The user may select separate portions of

the schema to run partial queries, while still maintaining any previous queries. These

separate partial queries may then be combined to form a final query.

e. GRAphiCal QUery LAngtage (GRACULA)

GRACULA is implemented by IBM as a graphical language for querying and

updating a database. It is based on the definition of a database schema that is presented to

the user in the form of ER diagram. The relationships are displayed simply as directed arcs

between the entities with the appropriate relationship name attached to the arc. The

database schema is displayed in one window while the query is built up in a separate query

window. The query window is initially empty. The user selects entities from the schema

window which are then displayed in the query window for further manipulation. To

formulate the query on the items the user has placed in the query window, the items may

be expanded to show their attributes. The attributes are listed in a tabular fashion and

restriction conditions can be entered for them somewhat as in QBE. Joins between items

_15 _

which are unrelated in the schema can be performed by specifying the join attribute from

one entity in the other entities value column.

Additional power is added to this language by nesting simple entities and

relationships inside various frames. A frame is indicated by a box drawn on the screen

which may contain one or more entities and their associated conditions and relationships.

These frames are used to specify logical operations such as AND, OR. NAND, or NOR and

implication and consequent. The logical operations are scoped over any of the entities and

relationships that are contained in their frame. Nesting of operations can thus be performed

by nesting frames, providing a clear way of showing the scope of each of the operations.

The inclusion of implication and consequent frames is intended to ease the problem of

specifying universal and existential quantification. As stated previously, the predicate logic

approach for these ideas is not simple.

We have discussed the query languages which are based on ER model

representation. Each has its own way of expressing queries while adhering to the ER

diagrams for definition of the database. The ER model has a certain advantage in that it can

simplify the query and make it easy to understand. Also, the database schema is displayed

so the user does not have to memorize the specific relationships between database objects.

But, it has the fallowing drawbacks:

"* Using the actual schema to define queries (although this is an advantage for ease-of-
use) limits the user to predefined relationships that have been coded into schema.

"* Most ER systems assume relationships based on the equi-join of keys between
entities. This does not take into consideration relationships based on other attributes
or on other types of theta-joins.

"* The distinction between entities and relationships is not straightforward. For example,
in an airline flight, to an accountant it exists as an entity (a concrete object), but to a
scheduler, it exists as 3 relationship between a specific aircraft, aircrew, routing, etc.
This lack of concre: Lisiinction could cause problems when queries must be made
from a single ER sche~i:a by multiple users, each with a different point of view.

In the next chapter we will discuss DFQL implemented in Amadeus, and its

advantages and disadvantages.

_16-

IH. DATA FLOW QUERY LANGUAGE (DFQL)

DFQL is a visual/graphical query language for RDMSs based on a dataflow paradigm.

It has all of the capabilities of existing query languages which can be extended by the user

by creating new operators from the existing primitive or user-defined operators. DFQL
includes aggregate functions in addition to the operators of a relationally complete query

language. It has the power of expressing every kind of expression, including universal and

existential quantification. The following goals are met by DFQL [Wu91a]:

"* Employ a fully graphical environment as a user-friendly interface to the database.
"* Sufficient expressive power and functionality, including relational completeness.
"* Ease-of-use in learning, remembering, writing and reading the language's constructs.
"• Consistency, predictability, and naturalness (in both syntax and function).
"* Simplicity and conciseness of features.
"• Clarity of definition and lack of ambiguity.
"• Ability to modify existing queries to form new ones incrementally.
"• High probability that users will write error-free queries.

"* Operator extensibility(1)
To achieve these goals, DFQL adheres to relational algebra and maintains the

requirements of operational closure. It also eliminates the range variables and nesting

features used in SQL. The most important feature of DFQL is the ability of the user to treat

relations as abstract entities operated on by relational operators. As a result, the user can

compose his queries in the realm of relational algebra and does not have to worry about how

operations are carried out.

A sample query represented in DFQL form is presented in Query 3.1. Two types of
operators are used in DFQL, primitive and user-defined. Primitive operators' names are

identified by underlined texts in Query 3.1. An operator has three parts: terminals, body,

and root. According to the dataflow paradigm, data flows from the upper operators' roots

(1) Operator extensibility allows the user to create new operators in terms of existing ones,
analogous to defining a function in a programming language.

17

to the lower operators' terminals through the arcs. As soon as all the data on the terminals

of an operator are ready, that operator is fired to execute the specific process. In this query,

EMPLO)YEE DNO a DNUMBERDEPARTMENT "•

S ~DNAME a 'Research'

Input Nodes (Terminals) AME, LNAME, ADDRESS

S~DefauitForm

Opemor's Body Query 3.1

Output Node (Roof)DIPA

Query 3. Representation of Query 2.1 (Find the name and address of all employees who
work for the "Research" department) in DFQL format.

two relations (employee, department) are joined according to their primary and foreign

keys. The combined relation flows from the root of the same operator to the first terminal

of the user-defined operator named selproj. This operator is defined by the user and

combines select and project primitive operators to make the query more readable and easy

to use. When this operator is fired, it gets the combined relation, selects the tuples with

attributes of the combined relation DNAME named 'Research' and then projects the

columns of attribute names FNAME, LNAME, andADDRESS, respectively. In DFQL, each

query has to have a display operator in order to show the resultant tuples to the user in the

specified form and with the given title.

In our implementation of DFQL, an operator can be executed only once; iteration or

recursion is not permitted. These features can be added within the bounds of Amadeus'

18..

programming tool's capability(2). Orthogonality is applied to the implementation of DFQL

to maintain clarity and lack of ambiguity. The functional paradigm is fully supported by

DFQL notation and all DF-QL operators implement operational closure. In other words, the

inputs to the operators are relations or associated textual instructions, and the output from

each operator is always a relation. This idea is fundamental to the understanding of large

and complex queries. If operational closure is not enforced, some operators give a relation

as an output whereas others give some different type of data. This means that every operator

must be connected according to its type of inputs/outputs. However, this is very

cumbersome when the query being formulated is complex in its own right. Because of

operational closure in DFQL, this burden is eliminated and all operators can be connected

to each other without any concern of incompatibility.

A. DFQL OPERATORS

In this section we will explain the operators used in DFQL to build queries and provide

some examples of their usage in queries. As mentioned previously, DFQL operators are

divided into two parts, namely primitive operators and user-defined operators. User-

defined operators are not in the system and must be defined by the user. Primitive operators

have direct execution in code without any translation. Primitive operators are categorized

as basic and non-basic.

1. Basic DFQL Primitive Operators

Since this query language is relationally complete, it must have five primary

operators: select, project, union, join, and difference, is illustrated in Table 1. These

operators are implemented as a basic set of operators in DFQL. Using these five primary

operators, the user can build even more complex operators. Also, a groupCnt operator is

included as a basic operator for simple aggregation. This operator provides an easy

solution to universal quantification problem (discussed later). The SQL representations of

the basic operators are included in the table for comparison.

(2) Amadew' tools for the programmer will be diussed in Chapter IV in detail.

_19 _

As can be seen from the graphical representation of the operators, other DF;QL

objects are included in addition to the primary operators. These are textual objects which

can be fed the conditions, attribute lists, or any alias names to be used in the operator.

Relation and form objects are fed as input to operators during execution of an instance of

these objects. The DFQL objects are represented by drawing a line underneath the text.

However, the form object is represented by a double line underneath the text. Sending text

to the operator as an input is a design decision and does not violate orthogonality or

relational completeness of the query language.

SELECT DISTINCT SELECT DISTINCTr

WHERE condition FROM relton

SSELECT DISTINCT

Xeai2/FROM relation 1 rl, FROM relation!
relation2 r2 UNION

WHERE condition ISELECT DISTINCr *

V ~FROM relatioe2

JOIN UNION

rltol rltn2 SELECT ILSTINCTcutat SELECT DISTINCT
FROM relation! Uoula attrlb4 swu~piflg attribute
MINUS I COUNT(*) count aur.
SELEC DISTINCT 5 FROM relatioa

diff FROM rlazion2 gon !nt) GROUP BY
(k.5 grouping attributes

DIFERNCE GROUP COUNT

Table 1: BASIC DFQL OPERATORS AND THEIR SQL TRANSLATIONS

a. Select

This operator implements the relational algebra operation of database

selection. Its notation in relational algebra is 6 <,tOiOw(reation>). It retrieves tuples

from the relation which fits the specified condition. After the operation, the relation is

reduced in size, containing only the tuples that maintain the condition. There is no

alteration to the structure of the relation, so that it is operationally closed. Also, the resultant

relation is proper, in that there is no duplicate row. Proper relations will be discussed

exclusively in subsequent sections, unless otherwise stated.

Query 3.2 Give the names of male employees in the company.

In Query 3.2,3) a relation named employee with the condition of attribute sex

- 'M' is given as input to the select operator. The resultant relation flows out while

containing only the tuples which match the condition specified. The relation is printed to

the screen by the display operator (discussed below) with the specified name and form.

b. Project

The notation of this operator in relational algebra is 1 <Attribute list>

(<relation>) which stands for database projection. The attribute list contains the names of

attributes to be retrieved from the relation separated by commas. The result of the

projection is a proper relation which contains only the columns of specified attribute

(3) All query results in this document are presented in Appendix A.

_21 -

names. In other words, the project operator eliminates the duplicates in the remaining

columns, since the key attribute of the relation may not be desired as a result.

emplog6 loaom, fmnme , salary...

Oe fou~tNIomlple

Query 3.3 Give the name, salary, and address of employees in the company.

It can be seen from Query 3.3 that the relation employee and its attribute list

are given as inputs to the operator. A proper relation containing those attributes is then sent

to the display operator to be printed on the screen as described before. The project operator

can be used to change the attribute name in the relation when required. Instead of inputting

an attribute list, an equality condition like "-pa = grade" is input to change the attribute

grade to gpa.

Although DFQL provides complete grouping aggregate functions as separate

operators (discussed in the next section), the user can use cnt, min, avg, max, and sum

aggregate functions without grouping. They affect all tuples in the relation by using the

function name in the attribute list of project operator (i.e., "sum (salary): total of salaries").

An alias name must be given after a colon to indicate the name of the result. Another

example of aggregate function using the same notation is shown in Query 3.4.

Works-on ARU(hours): suorog..
Defoult-al-eorsPojcxompleQ

Query 3.4 Give the average number of hours worked on all projects in the company.

_22 _

C. Join

The relational algebra notation of this operator is

,elatlon1>S*,,&t1.><relation2> implemented as a theta-join in Amadeus. The

relation formed by a join operation results in all attributes from both relations combined

together as a cartesian product of tuples satisfying the specified condition. The user may

not necessarily give any condition, therefore, the join operator becomes a cartesian product.

If both of the relations have the same named attribute used in the condition, the order of the

relation comilig in to the operator is left to right. Since in the join operation there are only

two relations involved, the user must pay attention to the order of the attributes. In the

translation and communication section of the back-end, Amadeus gives range variables

prefixed to similar attributes, since all the manipulation can be done by SQL with the back-

ends. In such cases, the user has the option of providing only one attribute name to indicate

the likeness of the names and DFQL makes an equality condition for attributes coming

from both relations.

wurksý-on h our s.)P 20O. 0

• employee

S~Ineme, fnomo

Ou foult-al-ecordsn• mple

Query 3.S Give the name of employees who work more than 20 hours on a project.

-23-

An example of a theta-join is given in Query 3.5. This query shows the

employee relation joined with the result of the select operation, applying the condition of

key and foreign key attributes of these relations. In order to find the employee names in

different relations, selected employee tuples had to be joined with the relation containing

the attributes /ame andfiname. Since the attribute names in the join condition are not alike,

the user does not need to worry about the order of the relations and attribute names in this

query. This operation retains all the attributes of the result, therefore, attributes with the

same name resulting from the join must be handled differently. Since the relational model

does not allow two column names in one table, one of the similar columns can be discarded

in the equi-join condition. However, this solution is not always optimum. Hence, the

second column name is changed by suffixing a "I" at the end, preventing an equality in all

join conditions. This case is represented in Query 3.6 where the column dnumber is same

in both relations, (i.e., DEPARTMENTLOCATIONS and DEPARTMENT). Since the join

condition is an equi-join, one of the dnumber columns may be discarded since they both

have same information. In our implementation, the second dnumber is changed to

dept.Iocatlon dlocatlon - 'Houston'...

department

dnumber

Defoult-all-records JolnEmomplo

Query 3.6 Give the social security numbers of the department manager's that is located in

"Houston".

• • 24

dnumberl in the joined relation. As another example, the user may join two relations like

employee and dependent (see Appendix A) with like column names (e.g., sex). In this case,

it would be improper to discard the second column because they have different information

relating to the resultant relation. The option of discarding one of the like columns is a

special type of join called a natural join, which is not implemented in our prototype.

d. Union

The union operator implements the relational algebra operation of union and

its notation is <relationl> U <relation2>. This operator combines all the tuples from both

relations while eliminating duplicates. It does not create a new relation with different

structure, which is why both relations must be union compatible. In other words, the

number of attributes, their names and types must be the same and in the same order. This

rule is valid for all of the set operators used in DFQL The user may confuse this union

operator with mathematics' union operator. According to the mathematics definition of

union, the operation takes two sets, eliminates the duplicates and makes another set from

the combination. However, as showed here, the DFQL union does not create any new

relations other than combining the tuples of both relations.

We have used the union opcrator in Query 3.7 for union compatible relations

coming from select operators, since the select operator does not affect the structure of the

relation. Two relations, one containing tuples of employees with a son or sons as

dependents, the other containing tuples of employees with a daughter or daughters as

dependents are combined by the union operator. Since some employees can have both a son

and a daughter, these tuples will exist in the resultant relation. These duplicates will then

be discarded by the project operator to make a proper relation.

e. Difference

The relational algebra notation for this operator is <relationl> - <relatlon2>.

Relational difference returns as a result a relation that contains all the tuples that occur in

<relationl> but not in <relation2>. In other words, it renames tuples from <relatlonl>

-25

dependentrelationship -- eatosi 'SON'

Oeifault-all-records UnionExample

Query 3.7 Give the social security numbers of employees who have a son or daughter as a
dependent.

which occur in <relation2>. Like the union operator, both relations must be union

compatible.

As we can see from Query 3.8, this operator is used to discard the tuples of

employees which are under the management of a given supervisor. First, the relation of

employees having a salary of more than $25,000 is selected, and then the employees under

the management of given supervisor are selected. These two relations are union compatible

since they are derived from the same relation. The difference operator removes the tuples

from the first relation which exist in the second relation. A project operator then filters the

columns related only with the employee names.

f Group Count

This operator is provided as a primitive operator to provide the user with

some simple aggregation capabilities. It is very important for the user to be able to

formulate queries involving universal quantification 4). This operator counts the number of

the tuples in a particular grouping specified by the user. It takes a relation, a list of grouping

26

_!r 3ý250 superssn -, 333445555

Jtilame. Ineme

Defeult-all-records DlffEuemple

Quay 3.8 List the names of employees who have a salary greater than '$25,000' but not
under the management of a supervisor who's social security number is '333445555'.

attributes, and an alias name for the result. Grouping attributes can either be one attribute

or several attributes, separated by commas. The resultant relation of this operator is a

relation with grouping attributes listed in the same order and the result, which is given an

alias name. The count result is an integer providing the total number of tuples in that

grouping. As can be seen in Query 3.9, the number of employees in each department are

counted by giving dno as a grouping attribute for the relation employee. An alias name is

given to be used as the resultant column's name.

2. Non-basic DFQL Primitive Operators

Several other primitive operators have been included in DFQL of Amadeus that

can do special operations on relations. These primitives perform low level operations that

the user would not include as user-defined operations. However, all of them can be

(4) The solution of universal quantification will be discussed in section B.2. Universal

Quantification.

_27 _

dnor uum-eEmplnmpls

Query 3&9 Ust the number of employees in each department of the company.

defined from basic primitives as user-defined operators. In Table 2, non-basic primitive

operators are compared with their SQL correspondents.

An advantage of creating these operators is to use the built-in functions of the

underlying DBMS we are running as a back-end. For example, the intersection operator

can be defined in terms of the existing union and diff operator as in the formula

RInR2) .(RIuR2) - ((RI -R2)u (R2-RI)). However, many DBMSs already

provide a specific intersect operator and using the intersect operator already provided by

the back-end is more efficient. If left to the user to be implemented as a user-defined

operator, the advantage of using predefined operators from the back-end is lost. User-

defined operators induce only a little overhead to process the operator since it must access

its primitive constituents one by one and execute them. This is not a big problem, but

when compared to using the operator provided by the back-end, the difference is

significant.

relationl relation SELECT DISTINCT * • r aWg. attr.

INTERSECT• Mrpattr.,mln (aggt. Mtr.)
SELECTr DISTINCT *FROM relation

(intermsect) FROM relation2 grumnGROUP BY srpanw

INTERSECGROUP MIN

Table 2: NON-BASIC DFQL OPERATORS AND THEIR SQL TRANSLATIONS

_28-

attlr.
"ML"- aw.Sattr. aW. at'.

rela SELECT DISTINCT r atin I SELECT DISToiNCT
ar'"wlas grpar.,umK (a&r. ar.) ilyn= M .m'y (in .SQ .)

FROM wlionF FROM

g(•p-"•' GROUP BY Mpawnrr. GROUP BY Maw.

GROUPMAX GROUP AVG

rehotlon condition

attr reltim condition
reIt is. notr SE plEmetT DITICTZp.at It is not implemented

dc.t.,lym (in SQL. directly in SQL.

SGROUP BY grp~anr. CgoupAIISatisfy)
SgroupSum)

GROUP GROUPALL SATISFY

relation condition ofndiont i

grp. attro It is not implemented relatt n t w It is not implemented

I I cmia directly in SQL. nt directly in SQL.

dsrobpNoneSatisfyo
GROUP NONE SATISFY GROUP ; SATISFY

Table 2: NON-BASIC DFQL OPERATORS AND TEIMR SQL TRANSLATIONS

a. Intersect

This operator implements the relational algebra operation of intersection with the

notation of relationl1 nrelation2. It retrieves tuples which exist in both relations and

give the combination as a result relation. The input relations must be union compatible as

described for the union and diff operators. The usage of this operator is explained in Query

3.10, where this operator plays the role of the AND conjunction. At point one, two

relations are joined according to their key and foreign keys (e.g essn and ssn) in order to

manipulate the attributes needed for the query. The tuples of employees who worked more

than 20 hours are selected and the named columns are projected by a user-defined operator

at point two. At point three, employees having a salary less than $30,000 is used as the

_29 _

ample se

Quay 3.10 Give the names of employees who have a salary of less than0 0,000 ad worked

more than 20 hours on any project.

other named condition selected. A project operator is used to make the relation union

compatible with the previously selected relation at point two. Finally, the intersect

operator combines the tuples which exist in both relations to force both selection

conditions.

b. Grouping Aggregate Operators

The rest of the grouping aggregate operators in addition to groupCnt are

included in the system, to allow the user to take advantage of these functions. These

operators cannot be implemented as user-defined operators. GroupMin, groupMax,

groupSwn, and groupAvg are discussed in the following section.

" GroupMin finds the minimum value of the specified attribute in the separated sections
according to the grouping attributes. It places the grouping attributes and the
minimum values of each group in separate columns. The minimum values column is
given an alias by the user. Its example is illustrated in Query 3.11 section A. Here the
lowest valued salaries are selected for each department from the relation employee.

" groupMax is similar to the previous operator except it finds the maximum value of the
aggregating attribute according to the grouping attribute. An illustration of this

plo LowestPa In~epmts A) List the lowest salaries in

each department.

Dofault-oll-records S'

B) Give the longest times works-on. pn hours maHWorkedTime

worked on each project. Defnsultooll-rocords | arouomme" !

works-on pno hours t)talWorkedTime Q List the total hours of

Se work on each project.
Oefoull-all-rocords

.r [Ouummmple

D) Give the average amount so doe.sal e ugoment

of salary in each department.
S|lroupRu Emomple

Query 3.11 Group aggregate functions' examples.

operator is seen in the same query, section B, where the maximum working hour
values are selected for each project

* GroupSum is shown in section C of the query, to find the total of hours worked on
each project. This operator adds all of the aggregated attribute's values in each section
of grouping attributes. The grouping attributes and calculated values are again placed
in separate columns. The calculated values column is given an alias by the user.

_31 _

G GroupAvg calculates the average of the given aggregate attribute according to the
grouping attribute. In section D, the operator is illustrated finding the average salary
for each department.

c. GroupASmaidsfy

This operator is a simple universal quantification included for the user's

convenience. It takes a relation and splits the tuples according to the grouping attribute list

and then checks all tuples in individual groups according to the specified condition. If all

of the tuples satisfy the specified condition then the values of that grouping attribute list are

presented.

department dnumber ednoe

dname

Defoult-all-records

• - • groupRllSatisfy

Qu ery- 3.12 List the department names whe're all of their employees are male.

An example of groupAIUSatisfy is shown in Query 3.12. The condition is

specified to find the department names where all of their employees are male. The attribute

dno is given as a grouping attribute for the relation employee. The result from this operator

is the number of departments satisfying the specified condition in all tuples. Join and

project operators are used to find and project the department names instead of numbers.

_32-

A GroupNeneSatisfy

This operator is the opposite of the groupAllSatisfy operator in that it gives

the grouping attributes only if none of the tuples satisfy the condition. The notation and

usage are the same as the previous operator. This operator is used in Query 3.13, where the

department numbers are selected in which none of the employees were born after 1960. As

done in the previous query, join and project operators are used to find the department name

instead of number.

mplo ee dno bdmtm 3, *0-DEC-1960'...

department• dnumber - dno

dneme

Oefoiult-oll-records groupNoneSatlsf•Ememp...

Query 3.13 Give the department names where none of the employees were born after 1960.

e. GroupNSaisfy

This operator takes an input in addition to the other three inputs of relaton,

grouping attributes, and condition. The extra input specifies the number of tuples which

must satisfy the condition in order to pass the grouping attributes. Previously discussed

operators check the condition for all tuples or for none, but here, the user can specify a

middle number and can indicate an operator like ess than, or greater than, to specify which

_33-

side of the number will be considered. The result is the same as previously discussed

operators that pass the grouping attributes as a resultant relation.

This operator is used in Query 3.14 to find the project names in which at least

two employees worked more than the specified hours. The numeric condition (>=) is used

to force the requirement at east in the query. This query passes the project numbers in

which at least two employees have worked more than specified hours. The result is joined

with the relation project to find the project names instead of passing the project numbers.

pno hours.) 15.0

works-on

pro ect pnumber - pno

Defoult- eli-records

tjerot-SetI'Exmple

Query 3.14 Give the project names in which at least two employees have worked more than
15.0 hours.

3. User-Defined Operators

These operators give the user flexibility to define his own style of operators and

extend the capability of the language according to the user's desires. These operators look

like a primitive operator, except its name is written without underlined text, and they can

be constructed from available primitives and previously defined user operators as well.

User-defined operators can be used in any level of nesting to formulate new operators.

This feature does not decrease the power of orthogonality, since every user-defined

-34-

operator must be defined from a primitive operator or a previously-defined user operator,

which adheres to the principle of orthogonality. Some advantages of these operators are:

"* Gives the user the flexibility to extend the language according his style

"* Encapsulates the detail and makes the query more understandable
"* Saves space on the screen or in the drawing area

"* Allows the use of previously defined and correct portions of complex queries in more
than one query easily and correctly while maintaining the complexity in itself

"* Enhances the ability to write error-free queries and saves time from debugging queries
level by level after construction

"* Allows abstraction and encapsulation principles of software engineering in the field of
query languages

A user-defined operator is used in Query 3.15, which combines two primitive

operators (e.g., select and project). These two operators are very often used together in

queries to select tuples, according to the specified condition, and project the desired

columns as a result. Hence, the user can combine these two operators into a user-defined

operator and can give it a related name (here selectProject) to provide an indication of its

purpose. In the example, the desired result is employees who have a salary less then the

specified amount and the columns of personnel information as written in the query. The

SelectProject operator is very useful in this type of query, and if used, provides all of the

merits mentioned above.

emplove =

[selectPro setl •

Default-all-records u - - ample

Query 115 List the name, address, sex, and birth dates of employees who have a salary of

less than $30,000.

35 _

To define a user-defined operator, the user has to decide how many inputs

will be used, but as in all other operators, there is only one output from the user-defined

operator. The user's operator definition has two bars which stand for input and output bars.

The user connects the input nodes to his operators. The user is not required to connect

anything to the output node. As can be seen in Query 3.16, the user-defined operator may

contain a display operator which does not have any output. Here a user may prefer to create

an output operator instead of using the primitive operator display. Alternatively, the user

may prefer to see the results in his created form and he may want to see only specific

columns. To do this, the user may use a project operator to pass the selected columns and

then use the display operator with a defined form name (here MyDisplayForm) in each

query. But this is cumbersome, so the user may instead define the operator only once and

use it in any query desired. In Query 3.16, after selecting the employees under the specified

management personnel, MyDisplay is used to project the personnel information and then

display them in the form and with the titles according to the user's desires.

*mplo ee superssn - 533445555

Indem, sox, salerg ..

r t MDsI

M s Form Results

Query 3.16 List the personnel information of employees in the company under the

supervision of the manager whose ssn is '333445555'.

36

4. Display Primitive Operator

As seen from the previous queries, only one display operator is used to print the

results of the queries to the screen. This operator has three input nodes and no output node,

because it does not return a relation after execution. In our implementation, it is required

that every query must contain a display operator. Using this operator, the first input is the

relation to be displayed, the second input is the name of the form object where the data

will be displayed, and the last input is an alias to be printed as a title in the resultant form.

Since there can be more than one display operator (especially while debugging) in the

queries, this alias name is needed to distinguish the results. Also, the form object is drawn

with double lines to distinguish it from other DFQL parameter objects. Two default form

objects are included to show the results. One displays all values as one line for each tuple

in the relation, and the other displays one tuple at a time. This feature will be explained in

the next chapter in detail. Except for the relation, the other two inputs may be omitted by

the user and a default form object and title can be used for convenience.

IL QUERY CONSTRUCTION WITH DFQL

Query construction has been implicitly explained in the query examples so far. Some

important features of DFQL query construction are discussed here. DFQL is a complete

dataflow diagrant (DFD) which adheres all the rules of the DFD paradigm. The operators

and objects are connected to each other by lines called dataflow paths and all of the

information traverses these paths during execution. Except for operators, DFQL objects do

not have any input nodes and can be executed any time. They pass the relation objects,

attribute lists, or conditions to allow use by the operators. As soon as all of the input nodes

have the required/specified information, an operator can be executed or fired and produce

a relation at its output node. This relation can flow to other connected operators, making

these operators ready to fire.

Since DFQL query execution does not permit iteration and recursion, each operator

can be fired only once. Therefore, in our implementation, query execution can start from

_37 _

the bottom (from the display operator), traversing upward by checking each operator's

input nodes. If all the input nodes contain data, the query fires the operator, takes the result

and turns back; otherwise, it continues traversing upward in order to get the required data

from upper levels. The execution finishes at the starting operator, printing the results for

the user.

1. Incremental Queries

The most important feature of DFQL is to allow the user to build queries

incrementally. In other words, the user can formulate one portion of the query, check the

results, (return back if needed), and continue to build other portions of the query one by

one. This gives the user more flexibility during his work, especially when the query is

very complex. This prevents the user from loosing himself in the total query and can

provide intermediate results in order to proceed with further construction. An incremental

query can be divided into two sections, namely incremental construction and incremental

execution.

a. Incremental Construction

Incremental construction is the ability to build the query part by part while

determining the results of each part. This is very important when the complexity of the

query grows. An example is used to explain this feature.

Three sections can be seen in Figure 3.1, showing phases of incremental

construction. These phases depend on the logical portions of the required English

statement. For this complex query, the user can construct the query in three phases. First,

the user can find the "department numbers where all employees have a salary greater than

a specified amount" as in section A and check the result for correctness. If the result is not

correct, the user can make the correction, and check the intermediate result again. After one

condition of the query is satisfied, the user can then move on to section B, which formulates

the tuple "all employees with no dependents" and the department numbers satisfying the

condition are passed. The last section combines these relations according to the AND

-38-

conjunction to enforce both specified conditions and to obtain the department names and

display them.

S "A employee selary) 30000

dependent emplo so sale)3•0000

Fiue31Ti sarpisnaino h nrmet1qeycntuto of Qury.9Gv

•____ ersn

gogpstsydeedn emplo, ee

depWneens salsrn t 30000

Bdno

department

dno- dnumber

dname-

Default -all-records
• _• ComplexQuer

Figure 3.1 This is a representation of the incremental query construction of Query 3.19 Give

the department names where all employees have a salary greater than $30,000 and have no
dependents. showing the process level by level.

b. Incremental Execution

This feature is very helpful while debugging complex queries. If a complete

query does not produce the desired results, it must be checked level by level to determine

the erroneous part. The user should be allowed to see the intermediate result at any level by

39

executing the query incrementally. In @mr implementation, the user can double click at any

operator's output node to execute the query up to that point and see the results. Also, the

user can click in only those places to see the structure of the relation resulting from that

operator.

This is a quick debugging method of complex queries, but the user usually

cannot remember one intermediate result while investigating another. The user may

sometimes want to see all of the intermediate results to make a comparison and determine

the area to fix. In this case, he can use more than one display operator with appropriate alias

names attached to desired points of the query and run the entire query to get the results for

each display operator. Hence, these results can be checked simultaneously to give the exact

idea of query.

sx 'me - 'Wong' AND fn...

•anam, fnae ,•superssn

ssn - superssn

maleEpm Is e supervisedltopis

Default-oil-records fuResultlle

Is Is

Query 3.17 List male employee names under the management of "Wong, Franklin".

Query 3.17 is ready for debugging with intermediate display operators

attached to desired points of the query to determine the errors. Above the final display

operator, two additional display operators are attached to the output nodes of the project

and selectProject operators. These display operators are given aliases of

_ 40 _

"supervisedEmpls" and "maleEmpls" respectively. After the execution of the query, three

results are provided to each display operator. Two intermediate results are correct

according to the query; attention is then focused on the operator union, which must be an

intersect operator in order to perform the AND conjunction. Therefore, the wrong operator

is found easily by comparing all of the results at the same time.

2. Universal Quantification

Expressing a universal quantification is very difficult in SQL as discussed

previously. However, DFQL can use simple counting logic to achieve universal

quantification. In other words, if all tuples in a relation or a group must satisfy the

specified condition, we first count the numbers of tuples that meet the condition and then

compare it with the total number of tuples under consideration. If these two numbers are

equal, than the universal quantifier has been satisfied. We have used this idea to

implement groupAllsatisfy, groupNoneSatisfy, and groupNSatisfy operators. The user can

easily build his own quantifications as user-defined operators using the same concept,

because this concept is easier to understand than the universal or existential

quantifications.

In Query 3.18, the implementation of groupAUlSatisfy is done by primitives to

achieve universal quantification. The same counting concept is applied here: the number

of employees is counted in each department at point one, and the number of employees

which satisfies the condition specified in the query is counted at point two. The join

operator is used at point three to get only the tuples which are the same in both relations.

A project operator passes the department numbers to be printed to the screen.

3. Nesting and Functional Notation

The nesting feature in SQL exists naturally in DFQL. One by one execution of

operators to supply input data to other operators similar to the execution of an SQL query

from inside out, level by level. The lack of range variables and scoping rules in the nesting

feature of DFQL improves readability and orthogonality.

41 -

sampl_- assale c 40000

KCnt

* - d .o RND Knt

Dealtalreod UniuerselQuenlifitati...

Query 3.18 Ust department numbers where all employees have a salary less than 0

Also, functional notation is used in all of the operators of DFQL to enhance

orthogonality. Relational operational closure is implemented by the functional paradigm.

Using operators that may take more than one input but produce only one output allows for

easy combination into user-defined operators as previously discussed.

4. Graph Structure of DFQL Query

DFQL's visual representation of the query is a dataflow graph consisting of

DFQL objects connected together by lines of dataflow paths. This representation adheres

to the structure of relational algebra for the execution of the query. This graph structure

provides two benefits:

"* The internal operations of RDBMS's are based on relational algebra, therefore,
relational algebra can provide a common interface to a DBMS without the need for a
separate interpreter/compiler.

"* DFQL can be optimized by a large number of techniques developed for the
optimization of relational algebra expressions whereas most of the SQL interpreters/
compilers are not capable of performing optimization across levels of a nested query.

_42 _

By using a graph structure of relational operators, the query can be more easily

optimized than can combinations of partial queries in a textual block structured language.

Actually, work already done [Dadashzadeh9O] for converting the SQL queries into

relational algebra graphs for optimization purposes result in structures quite similar to

DFQL queries. By using a graphical, relational algebra approach to query formulation, the

user is provided with a much more consistent and straightforward interface to the

databases

C. PROS AND CONS OF DFQL

After discussing all of the features of DFQL, the advantages and shortcomings of this

query language are presented. The merits of DFQL are related to the combination of visual

representation, its dataflow structure, and its operator set. By these characteristics, DFQL

provides the user the ability to easily express both simple and complex queries intuitively.

1. Power of DFQL

DFQL can express any kind of query very easily and efficiently using its

powerful primitive operators. As mentioned previously, it is relationally complete;

therefore, it has all of the relational operators including set, grouping, and aggregate

operators. It can express universal or existential quantification by using only one primitive

operator. To show the power of DFQL, an example query previously given in SQL (Query

2.3) is provided in Query 3.19.

DFQL has the necessary operators to formulate the query in Query 3.19 and will

be explained in the next sections. The major role is played by two operators,

groupAllSatisfy and groupNoneSatisfy. At point one(5), two relations, dependent and

employee are joined together to get a cartesian product of all the possible tuples to be used

by the next set of operators. The resulting relation of dno (department numbers for "all

employees with no dependents") is determined at point two from the operator

(5) The numbers printed near the output nodes of operators in queres are not related to the queries
themselves but are used to point to specific areas during the explanations.

43-

dependent amplo @e seler) 30003

2 'no- dnumber

$ dnome

Default -all-records 01 G r
6 Complouxluerg

Query 119 Give the department names where all employees have a salary greater than

$30,000 and have no dependents.

groupNoneSatisfy, according the condition (ssn = essn) which retrieves tuples of

employees with no dependents. For "departments with all employees having a salary

greater than $30,000", we use the operator groupAllSatisfy with the mentioned condition

and get the resulting relation dno at point three. Now, the results for both sets of

conditions in the query have been ,qatisfied, making these results union compatible. The

intersect operator is then used to make an AND conjunction for the two conditions at point

four. Department names are desired as a result instead of the department numbers which is

why the relation department is joined at point five. This provides the names of the

departments easily and passes them by a project operator to point six. A display operator

is used to display the result of the query in a default form and title.

2. Extensibility

Extensibility is an important benefit of DFQL The user may extend the query

language by defining his own user-defined operators from a provided set of primitive

operators, or the user's own previously defined user operators. User-defined operators can

44

be used as new user operators at any level of nesting and number. As used in Query 3.1,

selproj is defined from two primitive operators to abstract the processes of select and

project in one operator. These operators are constructed in a way that fully supports

relational operational closure and makes them compatible with other operators. Once a

user-defined operator is properly defined, it is completely orthogonal with the provided

primitive operators.

By using user-defined operators, common operations for any given user can be

provided at whatever level of abstraction is needed. For example, the user may like to see

SSN, LNAME, MINIT, and FNAME as the result of his specified queries in his defined

form. However he may not want to use the project and display operators repeatedly and

put them in the same form. In this case, he can simply create a user-defined operator,

namely MyDisplay and use it at the end of his queries to see the same information format.

These extensions are entirely user dependent and each user can create his own style of

working.

3. Ease-Of-Use

DFQL has the capability of representing complex problems intuitively with the

aid of abstraction (embedding lower level details into user-defined operators), which is

very useful, especially when combined with the visual feature of DFQL This is because

graphical representation is also easy to read and the concepts, once learned, are easy to

remember. In the DFQL paradigm, relations are visualized as objects flowing from one

operator to another. The ability to view relations as abstract entities directly contributes to

the advantage of DFQL.

Since this language is orthogonal, it is both syntactically and semantically easier

to use than other SQLs and it provides consistency, predictability and naturalness through

the use of its operators. This feature is enforced in the user-defined operators as well, so

that every user-defined operator must be operationally closed as well. Also, because of

operational closure, the user is always certain of this result using the operators in this

-45-

language, which provides for greater case in usability. These two features, orthogonality

and closure support the user's ability to write error-free queries.

Another important ease-for-use feature of this language is the ability to create

incremental queries. This is absolutely essential for the user to see the intermediate results

of the partially built query and to continue building the query according to the

intermediate results. Since DFQL is operationally closed, the user can feed each

intermediate result to other operators, including user-defined operators. While building

queries incrementally, the user can use temporary display operators to see the results.

Also, the user can double click the roots of any operator to see the same kind of result

within the default format. This provides the flexibility of changing incorrect queries at

creation time.

4. Visual Interface

The various benefits of DFQL mentioned above are possible because of its visual

interface, which is the basic advantage of dataflow programming and DFQL Although

building queries incrementally, grasping concepts easily, and encapsulating details in

user-defined operators are advantages of DFQL, these are the merits of a visual interface

too which do not exist in text based interfaces. This feature gives the user the ability to

easily and interactively manipulate the DFQL query on the computer screen.

Having discussed the advantages of DFQL, the results of a human factors

analysis of DFQL [Clark9l] is used to compare DFQL and SQL In this experiment,

several students from different backgrounds and experiences are asked to develop three

queries for each query language.Data is taken about the correctness, time of completion

etc. After a few calculations, percentages of correctness are found. The results are

presented in Table 3 to show the advantages of DFQL over SQL.

According to these results, DFQL has a higher percentage than SQL. In the

technical and nontechnical category there is a difference of approximately 10% in both the

DFQL and SQL percentages. In the experience category there is a difference of

Technicaml 18 50 30

Non-Technical 8 42 2-1

Experience > I yr. 14 52 29
2,Experience <-- I yr 12 41 25

Table 3: HUMAN FACIORS ANALYSIS OF DFQL OVER SQL

approximately 10% in the DFQL scores and only 4% in the SQL percentages. While the

4% is not in itself statistically significant, a possible explanation for the discrepancy is that

the technical background factor may be more important than the programming experience

factor in the ability to use SQL This implies that DF'QL is easier to use than SQL for the

people with a nontechnical background.

The shortcomings of the user interface design of DFQL and the problems related

with the visual nature of DFQL itself are now discussed.

5. Interface Problems

The problems in this area are typical of problems seen in most visually oriented

applications today. Typical screen size limits the number of the DFQL objects seen at

once. As the complexity of the query grows, the objects in the drawing area become

cluttered. This problem is temporarily solved by making the drawing area scrollable.

When there are too many objects to be seen all at once, the user can scroll right/left or up/

down to a new drawing area. But this is still not a solution, since the user cannot see the

entire query at once to comprehend its construction.

When many dataflows are connected to operators which intersect each other, the

query becomes less readable and difficult to follow. This problem is also related with the

size of the screen and drawing area. A solution to both of these problems is to utilize user-

_47-

defined operators to their fullest. In other words, when the screen becomes too cluttered,

encapsulate some portion of it in a user-defined operator to make the drawing area more

readable.

6. Language Problems

Within its bounds, DFQL is a very good query language. But when it comes to

embedding this language in a textual computer language, some problems are encountered.

Incorporating graphical data into a textual form while keeping the meaning and readability

of the query intact is very difficult. DFQL queries can be compiled and inserted into

textual programs as functions. However, this provides a poor way of looking at the DFQL

code in the context of the program.

A solution to this problem is to translate the DFQL code to a textual

representation keeping the same meaning of the DFQL code. But this is still a problem,

since interpreting dataflow oriented languages such as DFQL into a purely procedural

language is not easy. Since in the implementation of Amadeus, all back-end connections

to RDBMSs are by means of the different dialects of SQL, another solution to this

problem is to use the resultant optimized SQL translation of the DFQL query. This can

solve the problem of incompatibility between textual and graphical representations. For

this solution, however, the embedded SQL translation will not have the same advantages

of DFQL.

Up to this point, DFQL has been discussed. The details of Amadeus and its

implementation issues are discussed in the following chapters.

-48_

IV. FEATURES OF AMADEUS

Amadeus is developed as a prototype front end system capable of connecting to

multiple back-end relational databases. It uses a graphical query language called DFQL for

manipulation of databases. Communication is accomplished with each back-end using its

individual dialect of SQL Because of Amadeus' object-oriented implementation,(') it is

very easy to add new back-ends simply by adding the related classes of these back-ends

called database connectors.

The design of this prototype incorporates modules which allow the user to build a

complete application and provides efficient interoperability between that application and

different connected RDBMS. Objectives of this prototype are:

"* to provide easy to use, but powerful common language to access various types of
RDBMS

"* to shield the complexity of the underlying RDBMSs
"* to allow a multi-user, and multi-back-end environment while enforcing the security

measure for databases

"* to provide error-free work for the user by implementing continuous error controls,
warnings, and helpful information

"* to extend the capability of this prototype to non-RDBMSs
"* to allow the user to make conceptual, structural designs interactively and manipulate

the resultant database without any conflict.
Some of these objectives are achieved in Amadeus, while the rest will be implemented

in future research. According to the objectives, the user can design the database

conceptually, translate it to a relational database, and manipulate it within the concept of

the relational model. The relational model adheres to conceptual, structural designs and for

manipulation. It is expected that users who know the relational model will very easily be

able to understand the working style rd -his prototype.

(1) Implementation issues of Amadeus will be discussed in the next capter.

49-

Amadeus uses different modules to perform different tasks.Not all of the design

modules are implemented, but Amadeus has the necessary modules to achieve the design

objectives. The design modules of Amadeus are as follows:

- Query Editor,
* Relation Editor,
* Database Editor,
- Database Connectors,

* Interface Editor,
- Program Editor,

* Database Administration Module,

* Conceptual Design Module, and
- Network Connection Module.

Each module is discussed separately in the following sections. These sections also will

be a guide to efficient use of this prototype.

A. GENERAL FEATURES

Amadeus is a complete program that can connect to back-end RDBMSs. These back-

ends must be running prior to establishing connection with the prototype. Front end and

back ends(2) are currently run on the same computer for now, since the Network Connection

Module is not yet implemented. When Amadeus is run, it checks the user information file

in the current directory. If the user information file does not exist, Amadeus warns the user

to find the folder containing that information. Since this prototype has been implemented

for one user, multi-user functions are not enforced.

Upon execution of Amadeus, three pull-down menus appear as illustrated in Figure

4.1. At this stage, only new and open sections are active which allow the user to create a

new database or open a previously defined database. If the user wants to create a new

database, a dialog box asks the name of the back-end in which this database will be

included. The user makes his selections from the available back-end options provided in a

scroll list. After the selection, a database editor pops up to define the new database

(2) We have implemented only one back-end connection, the Oracle RDBMS.

50..

according to the selected back-end. When the user selects open from the database menu,

Amadeus reads the database definition file for that user and asks the user to select the

database desired to be opened. After opening or creating a database, the schema window,

which contain a list of available tables belonging to the current database pops up

automatically.

New XN Schema uS Load XL
Open... O Definition D0i Snue XS
Save :X:$ Manipation 3.M 7s=-.fl neOpertorn--
Sav'e as... New UN

Modify XM
Quit 3O Include XI

Write XW
Convert So=.

PrIm/tlu& O£r. XO
U1se' Dor. Opt. XO

Parameter MP
Farm XF

Figure 4.1 Pull-down menus for Amadeus.

The user can open the definition window to define a new table or the manipulation

window to define queries to be used with tables from the definition window menu. The

query menu is not active until the manipulation window opens, since it is only related with

database manipulation. When the query menu becomes active, the user can load or save

queries according to standard file operating procedures used in the Macintosh operating

system. In the "user-defined operators" section of the query menu, the user can create or

modify a user-defined operator (explained previously) and save it. He can also include in

his system a user-defined operator defined by another user or in another database.

Once the user has finished his work, he can save the current database with the same

name or with another name using the save or save as functions of the database pull-down

menu, respectively. If the modifications have not been saved, when the user clicks the quit

_51 _

option from the same menu, Amadeus asks whether or not to save the current database

before quitting.

IL QUERY EDITOR

The query editor is for creating and executing DFQL queries. This window is designed

to provide the previously discussed advantages of DFQL As shown in Figure 4.2, the query

editor has a query drawing area, several pop-up menus which are used to insert various

query objects into the graph, and several function buttons.
Scroflable query drawing arm

naManipulation WindowI

"-' Seam- 'M' [project v

_____ _____ ___1I SC1M

name.mini, fnnmo ... I QR

I emplo° "l

I salang

Default-all-records 0i0Jpi0J M
l eusm lo1e,

se•m.. bI Defaui,-oi-rec... "l

Fun-comPactýG jj: compa 1~o u ur

STranslate to SQL and Optimize

Help for covnin 4 1ýe I Zoo CosmW o

Figure 4.2 Mnipulation window to define and execute queries in Amadeus.

Before explaining query construction, some key conventions to be used during the

construction are explained in Table 4. These conventions are necessary in order to make the

52

process of query construction easy and error-free for the user. There are seven pop-up

menus containing necessary information to be inserted automatically during construction

of the query. These pop-up menus are dynamic in that they contain different items, based

on the current database, user information, and the connected RDBMS. The contents of the

pop-up menus are called table name and attribute name, depending on the current database.

The attribute naame menu contains only the attributes of the table currently in the table

name menu. Each time the current table is changed, the related attributes are loaded into the

attribute name menu. The pop-up menus user-defined opr. and output form contain the

user-defined operator and form object names available for the user. The contents of these

menus change according to the definition of the new forms and user-defined operators. The

rest of the menus are related to the connected database so that only the allowed aggregate

functions and boolean operators appear in them. This feature is extremely helpful

preventing the user from using misspelled names or using attribute names which are not

defined. This also provides some convenience to the user during the creation of queries.

The user does not have to worry about whether a function is allowed by the connected

RDBMS, nor does the user have to memorize attribute names present in ea. , relation of the

current database.

Four buttons are provided for the purpose of inserting frequently used characters

during query formulation. By including these buttons, the user can construct his query

without typing from the keyboard. This also reduces the possibility of errors in the query

from typographical mistakes. There is a scrollable query drawing canvas which is sufficient

in size for an ordinary query. A name section has been included under the drawing area to

show the name of the current query. This is very useful when zooming in to or out of user-

defined operators in the query. This feature updates the exact path, similar to a conventional

directory description update.

Some operational buttons are included at the bottom of the window. Some of them are

icons that perform standard operations like closing the window, zoom out or in, clear,

refresh, and help. Zoom in and out buttons are used to traverse into the user-defined

_3 _

. ":..........

DFQL To select the object Click on body.
Mod To select multiple objects. Click on each body one by one.

To move an object. Click on body, move mouse while pressing buton,
release when done.

To move multiple objects. Select (highlight) each of them and perforn move as
described above.

To see the operator description. Double click on an operator, on an object, or on a
change the text of an object, or form object respectively.
launch the interface editor.

To change object type. Select object and use the query menu to convert it

To see the contents of a user-defined Select a user-defined operator and click the zoom in
operator. button (with the plus sign).

Root To start or finish drawing a line Click on it to finish or click on it to select (highlight)
(output connecting a terminal, and drag the mouse with the line.
node) of aDFQL To see the table structure of the Double click on the root of the operators only.object. resulting relation.

To see the result of the query as the Hold the command key and double click on the root
resulting relation of the operator. of the operator for partial execution.

Object's To start or finish drawing a line Click on it to finish or click on it to select (highlight)
terminal connecting with a. and drag the mouse with the line.
(input node). You cannot double click on any terminal for debugging purposes.

Space To deselect the selected objects. Click on area where there is no object's body or
drawing nodes.
area. To create a DFQL object Hold the command key and click on an area where

the object will be drawn.

DFQL To insert operator, table names, or Hold the command key and select the desired entry
Object. functions in objects from the pop-up menus and release it after the text is

inserted into the current dummy object.

To delete a DFQL object Select (highlight) the object to be deleted and hit the
1<BackSpace> or <Delete> key from the keyboard.

Table 4: KEY CONVENTIONS FOR QUERY CONSTRUCTION

operators from the query to see the formulation of these operators. The user can go back

and forth as long as there are user-defined operators defined to investigate. This feature is

very useful in understanding the exact process of these operators, since some of the user-

_54 _

defined operators may not have been formulated by the user himself and have been

included in other users' databases. The user can refresh, clear, or get information about the

key conventions any time by clicking on the individual buttons.

The user can execute the query by pressing the "Run Query" button. In order to do

that, since this is not a partial execution, the query has to contain at least one display

operator. The button "Show SQL" can be used to see the optimized SQL statement used to

perform this query in the back-end. This is possible because each communication can be

performed by SQL This is available only when the query is finished and compacted. Once

the query is compact, it can be seen but it cannot be modified. In order to modify the query,

it must be uncompacted first. To aid the user, compacted queries have a differently shaded

background to indicate that no alteration is allowed.

1. Construction of Queries

After opening the manipulation window, the query editor is ready to formulate a

new query. The user also has the option of loading a previously defined query to modify

or execute. A DFQL object can be created by holding the command key and clicking at the

exact point in the drawing area where the object will appear. A dummy rectangle appears

on the screen with a text cursor inside to type or insert the name of the object. The user can

either type the name or insert it automatically from the pop-up menus. The name of the

operator or text is pasted into that area. This process is continued sequentially to formulate

an attribute list or condition list as long as needed. To draw the actual operator or object,

the return key <CR> must be pressed. The query editor then identifies the written text and

draws the matching DFQL object in the same spot, after clearing that portion of the

screen. By using automatic insertion, it is assured that every object is defined in the

current database. Objects can be connected by clicking on a terminal (root) of the desired

object, and then drag the moving line to the desired root (terminal) of the other object and

clicking again. The connection is established if the click point is a valid terminal or root.

The user cannot connect a root (terminal) to another root (terminal), because DFQL

55-

requires that the data must flow from the output node (root) of an object to the input node

(terminal) of another object. If this rule is violated, a warning message pops up as seen in

Figure 4.3. Root objects can be connected to more than one terminal, allowing the use of a

single result in several places, but this is not valid for terminals since only one data flow is

allowed into each terminal. If a new connection is made to a terminal object, the old

connection is deleted. This provides the ability to change connections very easily.

Repeating the connection process on a previously connected line deletes that line.

Cannot connect root to root!

Figure 4.3 Warning dialog box informing violation of a query construction rule.

a. Complete Query Construction

The entire query construction is finished when the required DFQL objects are

drawn and their connections are complete. As previously mentioned, in order to finish the

query formulation, at least one display operator must be present in the query. This is

because every query result has to be printed on the screen in the given format and with the

given alias name. After the query formulation, the user can run the query to check its

correctness. A complete error checking is done during this execution, since some terminals

may not to be connected or they might be connected to disallowed objects. As an example,

a select operator has two input terminals in which one terminal input is a relation and the

other terminal input is a condition, but the user may accidentally reverse the order, or may

have forgotten to connect one of terminals. In this case, a warning dialog box pops up

explaining the exact error and the related object blinks in the diagram to indicate the area

_6 _

requiring correction. The diagram can be reset simply by clicking on an open area to stop

the blinking. This kind of error checking cannot find semantic errors when the query works

properly but produces results different than desired.

b. Incremental Query Contwuction

Incremental query construction is another way of formulating the query is

explained in Chapter III. The user can divide the query into logical sections to formulate

part by part and then combine each part. In each section, the user has to be sure the result

is correct. To do this, the user has to see the relation structure or the values produced. If the

result is incorrect, the user must correct that part and then continue query formulation. It is

easy to fix a small part of the query rather than the entire query. Two features are provided

in the editor allowing the user to see the table structure and the values of the tables at any

point of the query. The user simply clicks or (double clicks) the root of the operator to see

the table structure or (values of the table) created as an output from that operator. After

checking the result, new sections of the query can be built on the existing sections with the

knowledge that the query is correct so far.

2. Formulation of User-defined Operators

To take advantage of the merits of user-defined operators in DFQL, the

capability to define user operators is included in Amadeus. The user can initiate

formulation of user-defined operators by selecting new from the query menu. The user is

asked to specify the number of input terminals for the user-defined operator, and then two

shaded bars (top and bottom of the window) are drawn with the specified number of

terminals as shown in Figure 4.4. The user can then formulate his user-defined operator by

connecting the terminals and the root of the in and out bars. Two circumstances exist

which will prevent the root of the output bar from connecting to a terminal: when a display

operator exists in the current user-defined operator or there is another user-defined

operator containing a display operator.

_7 _

Manipulation Window..........!i::!!:'".. i . :...... :... :.. :. u~ 'u um

.......... l
• :. , Ip o'-.........ii:ili ili.. `........:: :: : : : : :: : : : : : ::.. ,,

••••••••••••••••••••.•••••••••••.•••••••••............ "."' ' "" "" " '" '" . r~ nLviiiiiii iiiiii iiiiiiii........! i i .. .
a mploe em v

,.- .. - . .,. -. ., ..- . ,. °. , °.. -.

�b.........roj D.e.ault-one-re...-I

... c.....-...,.pact S - un 0u.- [(, .

Figure 4.4 Creation of a user-defined operator in the manipulation window.

The number of input terminals can later be changed by simply double clicking on

the input bar and selecting the new number of terminals from a dialog box. After the

formulation is completed, it must be saved by selecting a write command from the query

menu. Before the formulation is saved, however, a name and an explanation of the inputl

output connections are requested by a dialog box. This process provides the user more

information when he double clicks on the defined operator. The newly defined operator is

then included in the system and the User-Defined Operator pop up menu is updated

making it available for use in future query formulation. The user can then retrieve the

definition of these operators at any time to make modifications. He can also include any

other user-defined operators in the system to be used with the current database.

5 8 _

Manipulation Window

..,•.... ,,.........", .,,.'.'... .. 4''., ".'•.•..... . '•,.,.,,.. Q D',,,''',,., ::""", . ,,. ,,,''',,,''ii..m~ l :;;:::::;:::
.. •....."........•

..• , •... I......)

.s
ulp r uj

•l~ll: • ,Ewr~e.........t-..-r......

......... u ahei mple te e
A22"MMD~ mnum

iL -.. CD i CID M D

..... ...u..ctxmj ... ltm e- ...

Fiueh.eCmace query shadcin he"uQedy witton a oartern to idica cmlte tetxe dfcation, iser

must be at least one display operator or a user-defined operator including this operator.

The result will be displayed according to the inputs of that display operator. The second

query execution method is to execute query up to a certain point by double clicking at the

root of an operator or relation object. The result will be displayed in a default form titled

"DISPLAY". This method is especially suitable for debugging purposes when partial

results are need for investigating.The user also has the capability of using more than one
display operators to see intermediate results while executing the entire query.

_59 _

There are two types of queries in the Amadeus prototype: one is an the actual

defined query and the other is a compact query with an optimized SQL translation. A

compact query can only be executed by its optimized SQL translation through the back-

end and cannot be modified. Since any modification to a compact query can change the

translation of the SQL query, it must first be converted to an uncompact type before any

alteration is performed. By keeping the queries in compact form after definition, they may

be used in application levels without fear of modification. A button is provided to see the

optimized SQL translation, as illustrated in Figure 4.6. This button is inactive if the query

is not compact, since it does not have an SQL translation(3). If the user tries to modify any

portion of a compact query, a dialog box pops up to warn the user.

SOL Result

SELECT DISTINCT Imhme,nmit,fnem ,nex ,sliry
FROM employe
WHERE sx "M"

Figure 4.6 The SQL result of a compact query thit is used between back-end and Amadeus.

4. Display of Query Results

As previously explained, only one display operator is available to print the query

results to the screen. To display the values of the tuples of a relation, two extra inputs must

be defined, namely the form object and an alias name. The alias name is printed as a title

(3) The difference of compact and uncompact queries are discussed in detail in the next chapter.

_60 _

in the result window to distinguish multiple result windows. This prevent confusion when

using more than one display operator in a query for debugging purposes.

Two default forms exist in every application available to the user, selected from

the "Output Form" pop up menu. A user can also define customized forms by using the

Interface Editor (explained in Chapter V). This editor can be launched from the

Manipulation window by double clicking on the form object. The first output form is

provided to display all the tuples of a table at once. Each tuple is displayed in one row, as

seen in Figure 4.7. The form window is resizable, and depending on the number of

columns of the resulting relation, it can be adjusted to see the whole table at once. It is also

OQuery Result

hIalEmplogeas

in nwe fkw*e sox oduy
Berg I Jkm. Ii 55000

o' V AmAhmed M 25000
,"n K Remuh M 30000
bnet U John M 30000

ang T . fRvo* M 40000

Figure 4.7 The default output form to display all tuples of a table at once.

scrollable in each direction as well, making possible to keep the window small and see the

other portions of the table as well. Attribute names are printed at the top of each column.

The values of each column are aligned according to the type of values being displayed.

For example, numeric, string values, and characters are justified right, left, and center,

respectively. Additionally, the user has the option of changing the alignment of the

columns by clicking once on the column area. The width of the columns can be changed

by clicking the edge of the column and dragging it left or right. These features provide

ease in investigating the results provided in this default form.

_61 _

-3 Query Result Smui

welEphoV.M

&W" Ahuid
ON V

6le SWIW.MW 16,17$T.4.4$:SSPU
u*m 9 OddwHotm~onTX

$a M
airy 2000

svpeum "71654321
du 4

1'111

r-

Figure 4.8 The default output form to display one tuple of a table at a time.

The second default form allows the user to see the results one tuple at a time, as

seen in Figure 4.8. This form can traverse the table record by using the buttons at the

bottom of the window. The user can also go to the top or bottom record of the table using

two other buttons, also at the bottom of the window. To indicate place in the search, a

record number is printed, giving the total number of records as well. The attribute names

are printed at the beginning of each value. These are right justified to make the form more

readable. Features of changing the justification and size of the column are permitted as

well. In both of the output forms, a title is printed using the alias provided to the display

operator.

5. Help features

Help features are included in the Query Editor. One feature gives a description

of the query operators, including the user-defined operators. This description includes the

names and input objects that are supposed to be connected to the terminals. An

explanation dialog box pops up when the body of an operator is clicked, as illustrated in

62.

Figure 4.9. This gives the names of the input objects and their order from left to right.

Referring to the example in the figure, the select operator takes two inputs, relation and

condition, in that order. It produces a relation from the input relation by selecting only the

tuples which match the condition. This feature allows the user to view all the operator

connections and their exact orders, obviating the need to memorize them. This is

convenient when user-defined operators are used in the query, since of the user operators

could be -nported from other users' definitions.

Operator ENplenation
Operator Now:

Iselect
Input:

Termiml 1: relation
Terminl 2 condition

Output result relation

Figure 4.9 Operator explanation dialog box to provide information about each DFQL
operator.

A complete on-line help window is provided for the key conventions used in this

editor, as described in Table 4. The user can open this window by clicking on the "Help"

icon at the bottom of the Manipulation Window. This help window has a scroll list of

operations; once an item is clicked in the scroll list, the related explanation appears in

other multi-line text item. This very simple but useful help window provides continues on-

line help and is shown in Figure 4.10.

C. RELATION EDITOR

This editor provides a window the user can use to define new relations or modify

existing relations. As mentioned before, these editors are dynamically changed according

to the connected back-end. For example, the user can define a type of attribute supported

only by the connected RDBMS. As a result, there are differences in the created tables which

_63 _

Informetion

Start or finish draving a inm for oonoctiag with a root
Uelct tdo selecled objects

Create a DFLohec
Wnert Operator. tbeas.or functkons in -*oltets

Hold commzt keymd ielct the dmoid oed from pop-up mens
and releue it after tei muserted jto cur dauany object

Figure 4.10 On line help dialog box for key conventions in Query Editor.

are not compatible with other back-ends. In order to use these relations in other RDBMSs,

they must be converted and made compatible with the desired back-end.

As shown in the table definition window in Figure 4.11, the user can give the name of

the relation and the attribute specifications used in the relation. The type of attribute can

only be selected from the "Type" pop up menu which contains the supported attribute type

of the currently connected back-end. Size and properties of the attribute must be specified

in addition to the name and type of attribute. For the relational model, every relation must

have at least one key attribute without duplicate values. These key attributes can be

indicated as the properties of the relation. Besides the key specification, the user can specify

whether the attribute can have a null value or not. After these definitions are made, the user

can add this attribute to the table. He can also select an attribute from the attributes list to

modify, delete, or change its place in the table. When the "Create Table" button is clicked

the relation is created and included in the current database. This is a simple, but efficient

editor to create and modify the tables of the relational model. This editor can be launched

from the "Database Editor" (discussed next).

D. DATABASE EDITOR

This editor can be opened from the "Window" pull down menu to modify the current

database, or from the "Database" pull down menu by selecting "New" to create a new

_64 _

Table Definition I

HMI UI' N Idepartment

g Idnaeme Am in* We key numnd

T o e J ! h l iId d is Nme© ur1 Y

Prp" I D'] I <"l"°dfy

[] non null

~ hr J ~ Fi~___,.. y o Moo+(.,

Figure 4.11 The table definition window allows the user to define or modify relations.

database. This editor allows the user to launch the table editor and then work with the two

editors together. After definition of the tables, each table's name appears in the scroll list

of this editor's window, as seen in Figure 4.12. The connected DBMS's name is provided

to inform the user about the back-end. The user has the option of deleting, creating, or

modifying the database by selecting the specific relation. To create the defined database,

the "Create DB" button must be pressed. The definitions of the current database can be

updated this way and saved with the same name or with a different name.Each database is

specific to the connected back-end and database or relation definition cannot be done

without connecting to a back-end. This is enforced by Amadeus to make sure no

incompatibility occurs during manipulation.

E. DATABASE CONNECTOR

A specific Database Connector for each connected back-end is incorporated in

Amadeus which encapsulates all the information and methods to communicate with each

_6S

Define New Database

rompanu I

department oTeeJ

project
D elete Table]J

[Modill, Teblia

Figure 4.12 The database definition window allows the user to define or modify the

databases.

back-end RDBMSs. Amadeus communicates using SQL statements particular to each

back-end instead of using a kernel database connector to make the translation between

them. Therefore, these connectors are responsible for connecting and communicating with

the specific RDBMSs in their own dialect of SQL This module must enforce the

compatibility of the definitions and manipulations with the connected RDBMS.

After opening the desired database and establishing the connection with the back-end,

the Database Connector opens a schema window that shows the available relations, as

illustrated in Figure 4.13. The user can double-click on any table name in the window to

open a table structure window showing the definitions of the attributes of the selected

relation. The user can open as many structure windows as necessary to see the entire

database relation definitions. The relation structure window shown in Figure 4.14 does not

Scheme Window

d0 :compang-tc

ampiogoe
works&-oe
dependent
department
depLJocation
project

Figure 4.13 The schema window that shows the table names of the current database.

allow the user to make any modification. This feature is included here for information

purposes only. Related implementation issues are discussed in the next chapter.

111=11 Table Information

employee

Mane chlr is N Y
nir char I N N
bums chir 15 N Y
M chir $ N Y
bW~e char I N N
addrM chef 30 N N
seX chr I N N

ri 22 N N
supern clha 0 N N
dno in 22 N N

Figure 4.14 The table structure window allows the user to see the definitions of the attributes
in relations.

_67-

F. INTERFACE EDITOR

This module is implemented for the same environment as part of another research

effort [Hargrove93] but is not yet included in this prototype. This module can be invoked

from the "Window" pull down menu or from inside the Query Editor. The interface editor

is capable of designing customized forms in which the query result will be displayed. Each

form has an associated DFQL form object and can be used in the queries after the definition

of the form. Also, these forms are specific to each database and connected back-end like

the other editors. These customized forms are called output forms and in the original

implementation of Amadeus, are used only to see the data. This implementation of editor

supports inputforms that can be used to enter values in the tables and send them to the

related database connector to do the update operations. Additionally, this editor allows the

user to print the forms directly to a printer instead of the screen using the same format. The

user can personalize his application by customizing his forms and can get hard copies of

the results.

G. PROGRAM EDITOR

The Program Editor is not yet implemented in Amadeus. A complete program editor

is needed to use definitions of a language that can create applications. A third-generation

language capable of embedding objects created by other modules of Amadeus is needed to

take advantage of the features of a third generation language. The problem for DFQL and

Amadeus is determining a third generation language capable of holding these objects. The

problems of structured sequential programming languages discussed previously prevent

their use in a prototype that uses a visual graphical representation of queries. Therefore, a

visual dataflow programming language is more suitable for Amadeus. A language like

Prograph [TGS88a] [TGS88b][TGS91], providing the advantages of visual and object-

oriented programming, generated the design of the main features of DFQL The necessary

extensions can be provided to this language to make possible the use of every kind of object

_68 _

13 Interface Editor Window

fw1' 3 131Al3 12:30

ctn DO: COMPANY j

m_ _

Figure 4.15 Interface Editor's window allows the user to define customized forms.
[Hargrove93]

in this prototype. Since Prograph is a visual dataflow programming language that uses the

object-oriented features, incorporating it as a program editor presents few difficulties.

Although it is not implemented, an example of incorporating Amadeus into Prograph

as illustrated in Figure 4.16 (see Appendix B for language's syntax). In this example, a

small method which can be considered as macros gets a list of query objects and executes

a loop to run each query. This is done by selecting the related table and saving the list of

results to the disk for future use.

H. DATABASE ADMINISTRATION MODULE

This module is responsible for all of the security issues of the prototype. This module

is a very important component of Amadeus which must be implemented as a separate

_69 _

empl e.e. departmeete werks....

-male eM Is **S. Manal*r mamS...

* I.s

/run quer g

Figur 4.16 The definition of a macro for this prototype incorporated with Prograph.

research. For now, only a fixed, hard coded user name and password is available to access

the back-end; all other security issues are open. This module can be used only by the

Database AdMinislrator (DBA) or a super-user who has all the responsibility of the security

issues of the applications. Objectives of this module are as follows:

"• A specific user name and password can be assigned to each user to limit the access to
the applications and related stored data.

"* To be able to specify access rights to owner, groups, and other users for the user
created databases, forms, queries, and user-defined operators.

"* To prevent the extraction of data from shared databases according to access privileges
by enforcing some type of security model.

"* To prevent conflicts of resources when multiple users try to modify them at the same
time.

"* To furnish sufficient back up procedures to protect the data and the applications from
unexpected problems.

Once these goals are achieved, this prototype will be much more secure, and will add

additional merit to this development.

_70 _

L CONCEPTUAL DESIGN MODULE

In the design of this prototype, a complete conceptual design module has been

introduced expressing real life in a conceptual model. The prototype can convert the

conceptual design to the relational model and create the necessary relations automatically.

This feature is very useful, since from beginning to the end, the user has every kind of tool

available to convert the desired features into an application.

This module is also not implemented and remains in the design phase level of the

prototype. Amadeus is designed to use the ER-model [Chen76] as mentioned in Chapter II

(Entity-Relationship Model Interface on page 11). In order to do this model, a graphical

editor, like the DFQL editor, must be implemented to draw the ER diagrams easily. Then,

an interactive translator must be implemented to convert this diagram into a relational

schema. This must be interactive, since the relational model cannot represent all of the

constraints expressed in the ER model. Therefore, the decisions of the user must be

carefully considered during the translation to eliminate constraints that cannot be enforced

in the relational schema.

J. NETWORK CONNECTION MODULE

This module is designed to use a network to connect the various back-end RDBMSs

located in different places. This module is also not implemented because of hardware

problems inherent in connecting Macintosh computers through a network. Including this

feature in the prototype will prevent need to run the back-ends on the same computer. A

local talk connection is established between computers but its data transfer rate is not fast

enough for the prototype. Additionally, current memory capacity of Macintosh computers

on hand does not permit running Amadeus and more than one RDBMS simultaneously.

Connecting the prototype through a network provides the flexibility of locating the

back-end RDBMS virtually anywhere and solves the memory shortage problems of

computers. This module allows the prototype to accommodate a large application that

71 -

ORDBMS1

~

RRDMM

S

Amadeus

Network Connection

Figum 4.17 Utilizing a network connection for Amadeus.

works with many back-ends containing large databases. This module can be used as

depicted in Figure 4.17.

In the next chapter, the implementation issues of Amadeus are discussed, including a

discussion of object-oriented design and the application of object-oriented features in this

prototype.

_72 _

V. IMPLEMENTATION DETAILS

Amadeus is implemented using a a visual object-oriented programming language

named Prograph (see Appendix B) which uses the data flow paradigm as an interface. This

language is currently available in the Macintosh environment. Prograph was chosen for

several reasons. First of all, its visual data flow structure is very similar to the approach

taken for DFQL. This similarity helped stimulate the development of DFQL. Also, the

ability of Prograph to take advantage of the Macintosh visual interface greatly aided in the

development of the Amadeus prototype. Since Prograph is object oriented, it allows use of

the many powerful features of the object-oriented paradigm. This also greatly improved the

modularity and maintainability of the resultant code.

Prograph is a "very high-level, pictorial object-oriented programming

environment" that integrates four key trends in computer science: a visual

programming language, object orientation, data flow, and an application-

building toolkit. ([Wu9lb] on page 77)

The Oracle relational DBMS, running on Macintosh computer with operating system

version 7.0, is the only back-end currently connected to this prototype. Additionally

included is the native database connector of a programming language, although its

connection and other features are not yet fully tested. Both Amadeus and Oracle run on one

computer, since a network connection module is not yet implement. The host computer's

current memory capacity (8 MB) can run only the prototype and one back-end(l). For this

reason, implementation of more database connectors for other RDBMSs is not done. This

is not considered a major problem for this prototype, since it is very easy to add a new

database connector using the object oriented features of Prograph.

(1) The use of virtual memory is limited, because of the degradation of data retrieval efficiency.

_73 _

A. OBJECT ORIENTED DESIGN

This prototype is designed to take advantage of the object-oriented paradigm. These

advantages are:

"* Abstraction
"• Encapsulation
"* Inheritance
"• Polymorphism
"* Reliability
"* Extensibility

These features make this prototype reusable, sharable, integrable, and extensible.

Examples of using these advantages will be provided throughout the discussion of

Amadeus' implementation.

Prograph has an application editor that allows the user to create menus, windows, and

dialog boxes for an application.It also provides to the user all necessary classes for the

application and the user interface. As depicted in Figure 5.1, the pull-down menus and

windows are inherited from related system classes and the necessary methods and attributes

are added to them. The inheritance feature of the object-oriented paradigm is used here to

abstract the common methods and attributes in the parent classes whereas different

methods and attributes are included only in needed child classes. As many instances as of

the classes necessary to be used in our application can be created.

Since communication between classes is done by sending messages back and forth, a

message can be sent by including the instance of a child class. If that child class does not

have that method to receive the message, it propagates the message to the parent class. The

common methods in parent classes are called very easily using this feature. This working

style of object oriented languages enforce the reliability of the programs. There is no doubt

that included classes can work together when they are integrated in an application. Since

the individual modules are robust and error-free, they can be integrated very easily with a

reliable mechanism of object oriented programs (OOP).

_74 _

t
; ,an

Error
flo ,w

owr

FFuLCarVes Tple L .4,

S~eplti-m V de~w

~ I SRbmat small
Tabi.Srte V10deW

Sp~mllhmDig

P~stme~bIf Doti Reul Dies" Ii

Figure &I1 Te necessary classes for user mnterface ofAindus.

The DFQL queries can be saved on a disk and loaded back with the same graphical

representations. Instances of relations and definitions of user-defined operators are not

included in the storage file. These types of objects and definitions are linked together after

retrieval of the query from the disk. The main reason for this operation is to keep this data

updated and avoid using older versions of tables and user-defined operators in case of

recent modifications to them. Updating is an automatic process right after loading the

query. If a table no longer exists in the current database, a warning message appears and

cancels the loading operation. Implementation of three main sections graphical editor, SQL

translation, and back-end connection are discussed in the next sections.

B, IMPLEMENTATION OF GRAPHICAL QUERY EDITOR

As illustrated in Figure 5.2, two separate classes, DFQLObject and Connector, are

used and the necessary child classes are inherited from them. The instances of class

connector are used as attributes in the DFQLObject class and the instances of this class are

stored in the class DFQLCanvas which is inherited from a graphical drawing window item

called Canvas. The item Canvas is used in Manipulation Window as a main drawing area

_75 _

The class DFQLCanvas is responsible for controlling the drawing process for the query

editor, but the DFQLObject and its child classes are responsible for storing all the

connections, positions, sizes, and information related with the query.

AeelISatl"M Vidv HOW VbWde

DF•LCavas rrpule LW

Rel a T 'io
DFO~re l a Dr QL s

Figure5.2 Te design of the graphical editor in Prograph (r casses are not shown).

Three main sections of drawing objects that appear on the canvas, DFQLOperator,

DFQLNonOpr, and DFQLBar are created as illustrated in Figure 5.2. The last section is

used during the definition of user-defined operators. Two subclasses of DFQLOperator are

similar to drawing process, but they have different contents. Primitive operators execute the

main query operators whereas user-defined operators have a link to the contents of defined

operators and establish the connection to its constituents during execution.

DFQLNonOperators have a different drawing representation from the operators, and so

have their own drawing methods. Non-operators such as relation, parameter, and form are

separated from the operators. Relation stores the relational table in its attribute called

rootValue, whereas form stores an object defined by the interface editor, and parameter has

only text of the condition or attribute list in it.

_ 76-_

The class DFQLCanvas consists of 13 methods that perform the control of drawing

area as shown in Figure 5.3. The main role is played by the method called "process click"

which gets the mouse clicks on the drawing area, finds the object at the click point, and then

dispatches the related operation. It checks the click point ti determine whether a terminal,

root, or object's body has been selected. If the click is a double click, then the process click

calls the related operation to start a partial execution, operator information, or text edit

dialog box respectively. If the click is a drag, it moves the selected (highlighted) objects to

the next point according to their relative positions. If a terminal or root is selected, then

process click goes through a line drawing process. If none of the above explained happens,

then process click deselects an object or creates an object if the command key is pressed.

The connection is determined by storing the terminal (root) object inside the other

connected root (terminal) object. For example, to find the connected objects of an

operator's terminals, simply get the list of the terminal objects stored in that operator,

retrieve the values stored in the connectedTo attributes which are the root objects of the

connected objects (it is NULL, if not connected). Then, the values of the attributes called

partOf are retrieved which are the actual connected objects. This linkage is two way, so

query execution may be traversed either way. All connectors know their places relative to

position of their objects' bodies. Each time the body moves, the relative positions must be

recalculated.

precoss click create DFQLObject remeve DFQLObjects

0 @ 91 0
bodftRet is allPwed? init draw end draw pdate

erase draw lime erase lime reset redraw

Fture 5.3 The methods of DFQLCanvas used to control the query editor.

_77 -

The draw method used in the graphical editor provides a good example of

polymorphism. This feature of OOP languages gives a big advantage to programmers by

executing the draw method by giving the instances of different DFQLObjects.

Polymorphism can then determine the related draw method, depending on the instance

being used. An example of this convention is shown in Figure 5.4. This is usually used for

refresh purposes and called by the system to redraw the canvas, or by the process click

method to draw the objects again when a relocation or deletion occurred. In the figure, this

method gets the DFQLCanvas as an input and retrieves the DFQLObjects stored in the

same named attribute. This is a list of DFQL objects passed into the loop calling their

related draw methods. Draw methods for classes DFQLOperator, DFQLPrimOpr,

DFQLNonOperator, DFQLBar, and DFQLForm. are defined. There is no definition of

draw method in the other object classes listed above since they have the same kind of DFQL

representation. Their draw method is generalized into the class DFQLNonOperator. Also,

a draw method defined in the class DFQLPrimOpr overrides its definition in its parent

class, because the name of the primitive operators is written as underlined text. Therefore,

a separate method to draw each individual object is not defined.

f

',nvert selected one

MitlCar-se-rM

Fure .4 The reraw me of DFQLCanvas that uses e polymorphism of OOPL.

_78 _

C. BACK-END CONNECTION

There are three classes created for databases namely, Database, Relation, and

Atribute, that contain the necessary attributes and methods to define a relational database.

The Attri3ute class stores the information for the definition of each column in relational

tables like name, type, and properties. Instances of this class are stored in the Rekation class

to define a relation. Since a relation object is returned from the execution of each DFQL

operator in the query, this class contains the necessary attributes to store the parsing and

SQL translation information in it. The database class stores the relation objects to build the

relational database. It also has the necessary information about the back-end RDBMS to

which it will be connected since the database class is responsible for establishing the

connection to the back-end and retrieval operations. Each database connector classes has

its child class for each individual back-end RDBMSs. These child classes store information

like allowed types, aggregation functions etc. to be used by Amadeus. The class hierarchy

of the database connector is depicted in Figure 5.5.

~M

ANpiaieVmwH Vimd"v

M D atabasAo~

DOL:.Evalvater Iv MO Iive "ieie It re* Attr

Figure 5.5 e c ass herarc y o e dataas" connector ;Mule oTr Amadeus.

A good example of the extensibility feature of OOPL is seen here, when it is desired

connect more back-ends into the prototype. By inheriting the necessary classes for that

79

RDBMS, and implementing the specific methods in the child classes directly related to that

back-end. All the specific implementations are encapsulated in those individual classes,

ensuring the newly connected back-end will function. The 00 paradigm is reliable in

integrating the classes and using them, the extensibility of the prototype is assured.

The related child classes of the class relation have all the methods that are

implemented for DFQL primitive operators. Because each primitive operator has a direct

execution through the database connector that can be translated to SQL language of that

specific RDBMS directly, these methods can access the back-end, execute the operator and

get the result. The methods of the class Oracle Relation are provided as an example,

illustrated in Figure 5.6. Some error checking methods used during the parsing operation

will be explained in the next section.

•le I~ et eedispla es• S• I•s~et delete

MOV qrsN4mt stuff'4• teesa• **ad
e r e D ~ t t e m P-t rI

4~a w g r e q• g e at t vi b et . I

y.4igIU~ati~fg grmpA~llSatlsfg gireuUa.Satrf .Iqt.lseite

Figure . e necessary methods of class Oracle eldaton where palrimnynutve operators
are implemented for the Oracle RDBMS.

These methods perform the partial execution and the SQL translation of the optimized

query. They are called by DFQL objects during traversing of the query and must return a

relation back to the query. Two kinds of query execution exist in this prototype, namely,

partial and complete execution. There are two main cases of these methods, named with the

names of primitive operators. One of them is for partial execution which takes the

necessary inputs, creates the resultant relation object and passes the SQL command to the

80 _

back-end to create a similar temporary view in the RDBMS. Hence, the query can be

executed up to a specific point and the result e displayed, since the necessary temporary

views are created during the execution of previous operators. For the complete execution,

however, rather than sending the SQL commands to the back-end for each operator to

create temporary views, the optimized SQL translation of the query is sent to the back-end.

Some complex primitive operators are defined in terms of other simple primitive

operators simply by calling them in correct order. The implementation of the DFQL

primitive operator groupAllSatisfy is implemented in this way and is illustrated in Figure

5.7. This notation is explained in Chapter III (Universal Quantification on page 41), using

the counting function of the query language.

'p
re1r

Figure 5.7 The implementation of the primitive operator groupA atisfy in terms of other
simple primitive operators in the class Oracle Relation.

D. F'1L TRANSLATION

The translation of a DFQL query into SQL is a very important part of this

implementation. The features of SQL and DFQL, have been discussed previously (see

Chapter II and Chapter III respectively). Since SQL has a declarative nature and DFQL has

a procedural nature it is very difficult to translate a DFQL query (a procedural language) to

_81 _

SQL (a declarative one). Amadeus is designed to use the native language (individual

dialects of SQL) of the back-ends instead of using a kernel language. This results in a

performance gain for the back-ends during execution. Two types of SQL translation,

partial translation and complete translation are available depending on to the execution

methods of query editor. However, a discussion of traversing the data flow query according

to queries' formulations to execute the operators is presented first.

1. Traversing the Data Flow Query

Traversing the query is necessary for two purposes. The first reason is to build an

optimized complete SQL query called "parsing". The other reason is to execute the DFQL

objects, one by one, for partial execution, according to their dependencies. Traversing can

start from a display operator or from an operators' root by double clicking to start the

partial execution to that point. Every DFQL object has a method called runObj (except

similar objects) used during the traversal, as illustrated in Figure 5.8. These methods

check the terminals of the object for availability of data. If all of the terminals have their

inputs ready, then that object can be executed. Since DFQLParameter, DFQLRelation,

and DFQLForm have no terminals, they can be fired any time. Their methods simply

return attribute list, condition string, form, or relation objects to the other operators.

Figure S.8 The runO j met in c ass QLOperator to recursively call the same method
for traversing the data flow diagram and process the DFQL objects according to their connections.

82

The illustrated method (in Figure 5.8) belongs to the class called DFQLPrimOpr

which plays an important role here. This method gets the terminals of the operator, finds

the connected DFQL objects, and calls the same method for each connected object

recursively. If one of the terminals is an operator, it continues to call other objects

recursively until it gets back data. After execution of the methods for each object, error

checking is done to look for errors. After this, original operator implemented in the

database connector of the connected back-end is called by passing all necessary

information along. Since every operator has to return a relation object, these results are

stored in the operator objects' attribute called rootVal. This prevents traversing the same

part of the query over and over if an operator's result is fed to more than one terminal.

Polymorphism is used here to recursively call the same method for different

objects. While getting the connected objects of the operator, a syntax check of the

operators connections is performed, since some terminals of some operators may not be

connected properly. For example, if no condition is given to a join operator, it must be

interprted as a cartesian product. A semantic check of the operator connections checks

that each operator's terminals is connected to the correct DFQL object. For instance, the

second terminal of a select operator can be connected only to DFQLParameter, whereas

the third terminal of the join operator can be disconected. These error checking

procedures are used for every DFQL object to enforce the formulation of error-free

queries.

The traversal is very simple for the user-defined operators, because they have

other primitive or user-defined operators as their constituents. The runObj method for this

type of operator finds the connected DFQL object connected to the user-defined

operator's root, and calls the same method for that object. This can easily be done even

through other user-defined operators are used in the formulation of the current operator.

83 _

2. Partial Translation

This translation is used only for partial execution of the query for debugging

purposes. Temporary views are used for each executed operator to store the resultant

relation in the back-end. These temporary views can be used in subsequent operators. This

is the easiest way of executing the query partially, rather than resorting to complete

translation. The created temporary views are deleted from the back-end after each partial

execution. As seen in Figure 5.9, if the user wants to execute the query up to the end of the

join operator, then tempi is created for the definition of the select operator. Temp2 is then

created by using that temporary view. and then tenp2 can be retrieved and displayed to the

user. Since it is difficult to determine the user's behavior during debugging which sections

will be executed, this implemientation seems sufficient for this purpose.

SELET .9Ttod nn hours eu 20.0

(GiER thnmefs empoye wh okmoeta00 or na rjc0n ae2)

....... empiouee

F re~et Dm ~ r, i................. ...
[i FU•M ~ .•t~• : :':""" Ineme. fneme

.... Oo..°--..

Defoult-91-eod onxml

Su~ad diqklye.

Figure &.9 The SQL translation during partial execution of DQFL query that is given as
(Give the name of employees who work more than 20 hours on a project. on page 23).

3. Complete Translation

This translation is performed when the query is converted to a compact type.

Since modification of the query is not allowed, the complete translation of the query can

be defined and used to run the query. This form of query permanently saves the definition,

making it available for use in applications later on.

work.-on hours 3 20.0

S~......
PRN nefts.• •Inmo nim

Figure R10 The SQL translation for the complete eXecution of DQFL query given as (Give

the name of employees who work more than 20 hours on a project on page 23).

The translation is done incrementally until some specific conditions are

encountered as shown in Figure 5.10. The steps of translation are fairly clear in that figure.

Some exceptions of the integration of previous SQL translation and the operator being

translated are that if an SQL translation is presented instead of a table, it is not possible to

embed the definitions of some operators in that translation. For example, if two SQL

translations for a join operator are presented instead of two table names, then one cannot

be embedded in the other definition(2). A temporary view as discussed in the previous

(2) Nested SQL statements are not desired under these conditions, since they can be used in only a
few occasions and they decrease the performance diring the back-end process.

..............

section is created for one of them and the view name is embedded into the other definition.

Translation after a grouping operator is not allowed, because the group by clause creates

an entirely different table when used in SQL Therefore, the same solution is used under

these conditions during translation. Using temporary views is not the best solution to

translate a DFQL query to SQL, but this seems the only translation technique working

correctly for now.

E. USER INFORMATION

A separate class called EndUser was created in this design that takes care of user

information such as the user-defined operators, user's login names and passwords for the

back-ends. This type of information is loaded from a file each the time user runs the

prototype. As mentioned before, the Database Administration Module, responsible for user

information and access rights is not implemented. An instance of the EndUser class is

stored as an attribute in the class called Amadeus which performs all the application

operations. The instance of EndUser is stored to a disk automatically before quitting the

application with a file extension name UsrInfo.

I8

VI. CONCLUSIONS

A. SUMMARY

In recent years a broad variety of commercial RDBMSs have become available to the

user. All of them use a dialect of SQL for a query language, and are incompatible with each

other. If there are several of these products being used in a company in different

departments, it is difficult to join them in a federated database system or to share or transfer

data between the individual RDBMSs. Using different SQL query language for each

database is also very hard for the employees, since some conventions allowed in one

RDBMS are not necessarily allowed in another RDBMS.

The purpose of this thesis is to implement a front end system called Amadeus, and use

the RDBMSs as back-ends (see Figure 6.1) communicating with their own dialect of SQL

through the front end. A new query language was developed that eliminates the

disadvantages of SQL, and by using the front end system, the same RDBMSs can still be

used. Data Flow Query Language (DFQL) is implemented in Amadeus, which is based on

the dataflow paradigm and has many advantages over SQL

RL CONCLUSIONS

Amadeus is implemented with DFQL to provide the advantages of the system

discussed in Chapter IV. The user can define a database and its relations, manipulate them

using the DFQL query language, and retrieve data from the connected RDBMS. DFQL has

been proven to be a workable query language with many benefits over the current SQL. It

provides many advantages (see Chapter Three) to the user to enforce error-free definitions

of queries. Its procedural nature allows the user to express details very easily, including

universal and existential quantification. It allows the user to abstract the details into user-

defined operators, using them as desired. The debugging features of DFQL, namely

87-

DFQL SQLCLE

DFQLL

xBASE
front end

DFQL SQL PNGRES

nd usersback-ends

Fkure 6.1 The working diagram of Amadeus that can communicate with RDBMSs as back-
ends.

incremental execution and construction are very useful when the formulation contains

semantic errors.

Amadeus eliminates the problems of using different RDBMSs simultaneously and can

transfer stored data from different databases. Its object oriented design provides many

advantages, like extensibility, modifiability, and maintainability. The number of backc-end

RDBMS can be increased easily by including the database connector containing the

necessary classes for the connection. It is easily alterable using the encapsulation and

abstraction features of the object-oriented programming. Amadeus also gives the user

many advantages in its interface module, allowing him to define customized input/output

forms in which the user can see the results.

C. FUTURE RESEARCH

There is still work to do in Amadeus in its various modules (see Chapter IV). Since all

modules designed to be included in this system are not implemented, the capability of

Amadeus is currently limited.

Future research areas of the Amadeus prototype system are:

"* Integrate the Interface Module in the current implementation of Amadeus

"* Including more Database Connectors to reach more RDBMSs as back-ends

"* To extend the translation of DFQL to non-relational database query languages in order
to reach to those DBMSs as well

"* To implement a Program Editor like Prograph to define programs and applications
that can use current modules

"• To implement a Database Administration Module to maintain the secrecy and
integrity of the data for a multi-user environment and allow the propagation of the
definitions according to their access rights

"* Design and implement a Conceptual Design Module to define the applications in a
model and translate them automatically to the relational model

"* Establish a network connection and using secure network protocols to reach the back-
ends located in another computer

These primary research areas will increase the capability of the Amadeus system.

Some are currently difficult to design and implement, but improvement in software

development will provide more convenient languages and tools to complete their design

and implementation easily in the future.

89-

LIST OF REFERENCES

[Andyne9l] Andyne Computing Limited, GQL: Graphical Query Language;
GQL/User Demo Guide, Kingston, Ontario, March 1991.

[Angelaccio9O] Angelaccio, M., Ctarci, T., and Santucci, G. QBD: Graphical Query
Language with Recursion, IEEE Transactions on Software
Engineering, v. 16, pp. 1150-1163, October 1990.

[Chen76] Chen, P. The Entity Relationship Mode-- Toward a Unified View of
Data, TODS, March 1976.

[Clark9l] Clark, Gard, and Wu, C.T., Dataflow Query Language for Relational
Databases, Department of Computer Science Naval Postgraduate
School, Monterey CA.

[Czejdo90] Czejdo, B., A Graphical Data Manipulation Language for an
Extended ER Model, IEEE Computer, v.23, pp. 26-36, March 1990.

[Dadashzadeh90] Dadashzadeh, M., and Stemple, D., "Converting SQL queries into
relational algebra" Information & Management, v. 19, pp. 307-323,
December 1990.

[.lmasri89] Elmasri, R. and Navathe, S., Fundementals of Database Systems,
Benjamin/Cumming Publishing Company, 1989.

[Hargrove93] Hargrove, James Phillip and Wu, C.T. , Design And Implementation
of an Interface Editor for the Amadeus Multi-Relational Database
Front-end System, Department of Computer Science Naval
Postgraduate School, Monterey CA.

[TGS88a] The Gunakara Sun Systems, Prograph Tutorial, 1988

[TGS88b] The Gunakara Sun Systems, Prograph Reference, 1988.

ITGS90] The Gunakara Sun Systems, Prograph 2.0 Technical Specifications,
1990.

[TGS91] The Gunakara Sun Systems, Prograph 2.5 Updates, 1991.

[Wong82] Wong, H. K T., and Kuo, I., GUIDE: Graphical User Interface for
Database Exploration Proceedings of the Eighth International
Conference on very Large Databases, pp. 22-32, September 1982.

.90-

[Wu9la] Wu, C.Thomas, and Clark Gard J., DFQL: Dataflow Query Language
for Relational Databases, Department of Computer Science Naval
Postgraduate School, Monterey CA.

[Wu9lb] Wu, C.T, OOP + Visual Dataflow Diagram = Prograph, Journal of
Object Oriented Programming, pp 71-75, June 1991.

-91-

APPENDIX A

SAMPLE DATABASE

All queries and examples are built from this relational database example called

Company Database. [ElmasriB9J throughout this thesis.

V'- EMýPLOYýEE

Nnc~~jSNIWA TEJDRS SXIAAYIUE

vDEPARTMEENT

IDEPT..LOCATIONS
PROJECT

WORKS.. MON

DEPENDEqT

-92-_

The arrows shows the references established by foreign keys. In order to use this

database to build some example queries, some values are entered, as shown in tables.

EMPLOYEE

IFNAME MINT iEiAME SSN BDATE ADDRESS SEX SALARY SUPERRSSN DNO

John B Smith 123456789 09-JAN-55 731 Fondren, Houston, TX M 30000 333445555 5
Franklin T Wong 33344555S O&DEC-45 638 Voss, Houston, TX M 40000 88665$S 5

Alicia J Zelaya 999887777 19-JUI,58 3321 Castle, Spring. TX F 25000 987654321 4
Jennifer S Wallace 987654321 20-JUN-31 291 Berry, Bellaire, TX F 43000 88866WS 4

Ramesh K Narnyan 666884444 15-SEP-52 975 Fire Oak, Humble, TX M 38000 333445SSS S
Joyce A English 4S3453453 31-JUL-62 5631 Rice, Houston, TX F 2S000 333445555 5

Ahmad V Jabbar 987987987 29-MAR-S9 980 Dallas, Houston, TX M 25000 987654321 4
.Ja• " E Borg I888665S5 10-NOV-27 450 Stone, Houston, TX RM 5 0ull I

DEPARTMENT

DNAME DNUMBER MGRSSN IMGRSTARTDATE

Research J 5 3334455SfS 22-MAY-78 1
Adminkstrtion f 4 9876543211 01-JAN-85
Headquarters 1 88866555 19-JUTN-71

DEPT..LOCATIONS

DNUMBER DLOCATION

1 Houston

4 Stafford

5 Bellaire

$ Sugarland

5 Houston

PROJECT_

PNAME PNUMBER PLOCATION DNUM

ProductX 1 Bellaire 5
ProductY 2 Sugarland S

ProductZ 3 Houston 5
Computerization 10 Stafford 4

Reorganization 20 Houston 1

Newbenefits 30 Stafford 4

_93-

WORKS-ON

ESNPNO HOURS
123456789 1 325

123456789 2 7J

666884444 3 40.0

453450450 1 20.0
453453453 2 20.0

333445SSS 2 10.0

333445555 3 10.0

3334455 10 10.0

33344SS$ 20 10.0

999887777 30 30.0

999887777 10 10.0

987987987 10 35.0

987987987 30 50
987987987 30 20.0

987987987 20 15.0

888665555 20 nun

EPENDENT
" SN DEPENDENT-NAME SEX BDATE RELATIONSHIP

333445555 Alice F 05-APR-76 DAUGTER

333445555 Theodore M 25-OCT-73 SON

33344SSSS Joy F 03-MAY-48 SPOUSE

987654321 Abner M 29-FEB-32 SPOUSE

123456789 Michael M 01-JAN-78 SON

123456789 Alice F 31-DEC-78 DAUGHTER

123456789 Elizabeth F 05-MAY-57 SPOUSE

The rest of this section is filled out with some result values of the queries that are given

as examples in Chapter II. These results are taken from Query editor by executing the same

queries.

94 _

Table 5: QUERY 3.2

Table 6: QUERY 3.3

fname minit lname ssn bdate address sex salary superssn dno

Ahmnad V Jabbar 987987987 November 25, 980 Dallas, M 25000 987654321 4
1957 Houston,

TX

Franklin T Wong 333445555 April 23, 638 Voss, M 40000 888665555 5
1956 Houston, TX

James E Borg 888665555 February 11, 450 Stone, M 55000 NULL
1921 Houston, TX

John B Smith 123456789 October 22, 731 Fonren, M 30000 333445555 5
1955 Houston, TX

Ramesh K Narayan 666884444 March 20, 975 Fire M 38000 333445555 5
1963 Oak,

Humble, TX

Table 7: QUERY 3.4

Iname fname salary address

Borg James 55000 450 Stone, Houston, TX

English Joyce 25000 5631 Rice, Houston, TX

Jabbar Ahmad 25000 980 Dallas, Houston, TX
Narayan Ramesh 38000 975 Fire Oak, Humble, TX

Smith John 30000 731 Fonren, Houston, TX
Wallace Jennifer 43000 291 Berry, Bellaire, TX
Wong Franklin 40000 638 Voss, Houston, TX

Zelaya Alicia 25000 3321 Castle, Spring, TX

_95-

Table 8: QUERY 3.5

averageHours

Table 9: QUERY 3.6

lname fname
Jabbar Ahmad
Narayan Ramesh
Smith John
Zelaya Alicia

• " ' I I

"APPENDIX B

TERMINOLOGY OF PROGRAPH

A. LANGUAGE BASICS

1. Pictorial Representation of the Language

Prograph programs are composed entirely of icons and amplifying text. Table 10

shows common icons used in constructing Prograph programs.

This symbol stores the This is a simple
rew•,,t constant values like operator that contains

integers, strings, and the methods of
lists, classes.

This is used to read a This is used to store a
value of an attribute in value into an attribute
any class. in any class.

This is used to create a This allows to get/set
new instance (object) • a value from/to
of a class to be used in persistent storage of
program. the language.

This encapsulates This performs a
some other methods i calculation of its
like a subprogram. inputs a and b and

gives the result back.

This is a loop that This performs the
carries the result to same method to each
subsequent iterations. item of given list.

Table 10. EXAMPLES OFPROGRAPH PROGRAMMING LANGUAGE SYMBOLS

_97-

2. Control Structures

Prograph Control Structures control the flow of execution within a program.

Control structures are composed of icons (either an 'X' or a '/') that are attached to the

right-hand side an operator, and are activated on either the success or failure of the

associated operation.

........ in

If the incoming data If the incoming data
does not match then matches then fire
fire next case. next case.

If method fails If method runs
tcasso... fafaxj during execution Cs, . u - ,.- without failing then

then fire the next fire the next case.
case.

If method fails If method fails then
during execution make this method to
then continue on this fail too.
case.

If method fails then If method fails then
.rmbate terminate the finish the iteration

execution. and stop execution.

Table 11: EXAMPLES OF PROGRAPH PROGRAMMING LANGUAGE CONTROL SYMBOLS

The default control structure is success. Operations fail in one of three ways in a

match operation:

(1) The items being compared do not match,

(2) A Boolean operation returns a FALSE value, or

(3) A FAIL condition is propagated to a particular operation.

Operations may also generate errors under certain conditions, including: type

mis-matches, syntax errors, or a specific program condition which cannot be satisfied by

98

the particular control structure. Table II shows typical Prograph control structures. An

'X' within a control structure indicates that it is activated if the associated operation fails.

A check mark (-') indicates that the control structure is activated if the associated

operation succeeds. Other graphics inside the control structure icon indicate additional

action to be taken.

The most basic Prograph conditional execution format is the Next Case with an

accompanying match operation or conditional test. Figure B. 1 depicts a conditional test

with a match on success control structure which tests for a specific condition to determine

which of two case windows will be executed.

ii then Else 1:2 -NM 3 if then Else 2:2

if sodftion is satisfied
Wlm owO Owt " %•a•o

wot° of owe I was
tifed, so ekm e

017. u11 I Yi

Figure]. Example of the Next Case on Success Control Struture

3. Classes and Inheritance

Classes of objects, and all inheritance relationships, appear on the screen as trees

of icons. The Prograph class system provides a means for constructing a new class from an

existing ciass through inheritance. A Prograph class can inherit from at most one parent.

Multiple inheritance is not currently allowed in this language.

The class iccid is a hexagon which is divided into two parts: attributes on the left,

and methods on the right. Double-clicking on the left half of a class icon displays the

attributes of the class, while double-clicking on the right half displays the class methods.

The class hierarchy and inheritance links are shown in Figure B. 2.

caesses

Aep-0at6 Pans Plam Rom V*iWwV |

Fupre B. 2 Prograph Class Hierarchy Representation (system classes are shown.)

4. Attributes

Prograph attributes are displayed in an Autributes Window. There are two types

of Prograph attributes: instance and class. An instance attribute may have a different value

for each instance of a class. Class attributes, however, have one value for the class as a

whole. Therefore, the value of a class attribute is shared by all instances of the class. The

attribute icon is a downward pointing triangle. A typical attribute window of a class is

shown in Figure B. 3.

-ý O Window V app"catio J

0
at Pd t Ke w eM O M D OW N I M

Ts

Close OP Vbl ~a repbrql To Frost "~em

NULL

Figre B. 3 Method and attribute representations ol a Prograph's class.

S. Methods and Cases

A Prograph method consists of a sequence of one or more dataflow, called cases.

A case consists of an input bar, an output bar, operations and datalinks, Data flows into a case

via the input bar, and out through the output bar.

100

* Window/calling methods

X. W 2. 4. U

F'kue 3. 4 Method calling conventions of Prograph's language.

Methods are referenced in one of four ways: universal, data-determined, explicit

and context-determined (see Figure B. 4). These terms correspond to the terms global,

regular, early-bound and self, which are more commonly used in object-oriented

programming literature ([Wu91b] p. 71). Essentially, the calling format determines where

Prograph looks for the referenced method in the class hierarchy.

"* Data-determined. Prograph looks for the referenced method in the class of the object
which flows into the leftmost terminal of the method.

"* Explicit. Prograph looks for the referenced method in the class which is explicitly
listed to the left of the "/" in the method icon. If the method is not found in the
explicitly listed class, then Prograph uses inheritance links to check ancestor classes
for the method.

"* Universal. This is a call to a global method.

"* Context-determined. Prograph looks for the referenced method in the same class as
the current method that contains the method referencing operation. This allows a
method to send a message to itself.

6. Operations

An operation is the basic executable component of a case. Operations have a

name, zero or more inputs, zero or more outputs and a distinctive icon. Data flows into an

operation through terminals located on the top of the operation icon, and out through roots

located on the bottom of the icon. Prograph provides a special icon, called a synchro link

which forces a specific execution order on a pair of operations (see Figure B. 5).

1 01 _

However, the synchro link does not guarantee that the operations will execute

consecutively, only that one will execute before the other. ([TGS88b] p. 7) In the example

shown below, number one will execute before number two. However, there is no

guarantee that number two will execute immediately after number one, since there is no

way to determine when number three will execute.

MOM flow control 1: 1 lWl

st

2

Figure B. S Synchro Link to control the execution order of the methods in Prograph.

7. Message Passing

Message passing in Prograph is similar to most other object-oriented languages.

Some differences occur, however, because of the dataflow nature of the Prograph

language. Essentially, in Prograph objects flow into operations to initiate actions. In a
"standard" object-oriented programming language, a stationary object sends a message to

another stationary object. Although the models are somewhat different, the basic concepts

are the same. (rTGS88a] p. 93)

8. Primitives

Prograph primitives are calls to compiled methods, and are categorized into

sixteen groups, including: Application, Bit, Data, File, Graphics, Instances, Interpreter

Control, I/O, Lists, Logical/Relational, Math, Memory, Strings, System, Text and Type.

102_

Primitives comprise the kernel of Prograph's functionality. Unlike other object-oriented

programming languages, Prograph primitives do not belong to any class, This, and the fact

that the language supports regular data types such as string, integer, Boolean and real

make Prograph a hybrid object-oriented programming language. ([Wu9lbJ p. 72)

IL THE PROGRAPH ENVIRONMENT

The Prograph language is seamlessly integrated with the Prograph development

environment. An editor provides a visual interface for creating and modifying programs,

while an interpreter contains features which allow dataflow diagrams to be displayed

during execution, in effect graphically animating the flow of data throughout a program as

each operation is executed ([TGS90] p. 21).

1. Editor

The Prograph editor is context sensitive, so syntax errors are caught at the time

they are created, eliminating the need for a traditional debugger. During program

execution, run-time errors are flagged, program execution is halted and the appropriate

dataflow diagram displayed. This enables the user to correct the error and immediately

resume execution. An on-line help system is also available and is fully integrated into the

editor.

2. Interpreter

The Prograph interpreter is highly interactive. Program execution may be paused

at any point and dataflow diagrams and data values examined, allowing simultaneous

execution and editing of applications. Additionally, program execution may be traced step

by step, allowing the flow of data through a program to be traced visually. If a dataflow

diagram is changed while execution is paused, the interpreter backs up to the change and

continues execution from that point.

_103 _

C. COMPILER

The Prograph compiler generates stand-alone application programs, and allows

linking to modules developed with other programming languages such as MPW Cn' and

Think Cm. The compiler also includes an intelligent Project Manager which keeps track of

the files needed to build a particular application. The Project Manager selects only the code

actually required when building a stand-alone application and informs the user of any

missing code. If the compiler detects an error in a Prograph file, the user can enter the

editor/interpreter to see the operation that generated the error.

A certain amount of overhead is normally introduced when creating stand-alone

applications. In Prograph, stand-alone applications which do not use system classes require

an additional 5OKbytes of overhead, while those with system classes require an additional

130Kbytes. However, the execution speed of compiled Prograph code is, on the average,

15 times faster than the same interpreted code ([TGS90] p. 33-36).

_104

"APPENDIX C

SOURCE CODE FOR AMADEUS

(1) Class hierarchy.

(2) Important Class Methods and Attributes(1):

"* Amadeus
"* Oracle Relation
"* Oracle DB
"* DFQL Relation
"* DFQLUsrOpr
"• DFQLPrimOpr

"* DFQLObject
"* DFQLCanvas
"* Manipulation Window

(l)Local methods are not included for simplicity.

105_-

WCjasses C -- >;

ý DFQLObj..t_,

Appliaton M enu W lndq,- ýH ftn Item D Q ~ n p

AdesDatabase Menu QUO ~~ t DQ~r DQO

Amd~s nIbalpionU Window
DDFQL lotion OFQLPrim~pr

Window Item, Qacatit Snum

SDFQLPar meter DFQLUsrOpr

Canvas

4 DFQLForm

wFQLCanvas Tuple List Connector

DRelation
Attribute Root Terminal

4 OraD 4 Oracle Relation Naiv Oracle Attr

Native DS Native Relation Native Atr DFQLEvaluator End User

Amudeus 2.S.2.firal Tue, Aug 31, 1993 12:01 PM

fromen

v~e

FAL
v-

ewe.
vM
V o

-tie.

-

- -DO

-00101

v

,4w"pp.. w
T " m m

ado 4 ft" Grow"

Yeet ON*

Sto Me No

1 0o1w" O9WUKft

on ~ Win am "

SreUl a to,"

4 'e meALot.

"NOVAe 2.S2 owm T"e. A.@ 3, Ie.s 3:2 Pas

awtdmus/s us int ~o I. I

flmudus/get wnsnt db i:1

O*amdous/ausilable OBS 1:1

ORfMadeus/get usr farms 1. 1

a.

inRmadeus/init 1:1I

kinW ZS 2 tW T 1se ..q i. 22 ISPM

dM~Musimii ua A 1:1

mrlaamaais/Mf diM 1:2

Ibs

Ofmadeus/sinus dbs 2:2

WLL

5I Cnsaw
~UuI~I

*Rfmadousiget prim inprs 1:1

*Amudous/get usr opts i: i

td'if t£ W Aq3.II :2P

swasegofaet bm

Vov

.. lu Oman" slow am
V to

FALS -FI- 08b

or m
.4FQ~iw6,oMgo ~q~gdww AWONA

V who.

FALS -TWA aim me mow 0
V ffsobs~ ad UK w Ova.

*O0racie Relallan

In~p Si mu meoo

Iaet eaEd" swnes r

hIU SiSN o LL*A W t Agg 31. 153s~t 2:1 P

of I

m.1. S.eaiVmpmi 2:2w

cowade Reationloo ta tribueHS 1.2

£I =Colo a""

Orudle UefattI./go attribute Nst 2:2

TWA uY.h ~ U 1

.Met

600rcie fletalluade~te 1:2

'-=

am* IS ar. S

SM22 ORSI S i

lMWWe UdaIsmbiaZ2

Um

W&Nds inuatifnIlouaSOM 1:2

M~racic Rse~sU~n/9rauP~u2 2:2

*IracI. RmletiuA/group#44 1 :2

I
WAL

I

m....... ndqfp mug1:

SIrud. Rton./tetch 1:1

Orais eeatiua/.oeN 2:2

---- - --- -- - -- --- -

I-m

Oruc=m Kulatlaw/famc 1:2

bceRe~tat~n/aemmu 2:2

krafm a S-2 Ow T". A" as. ins a it pu

ellinm ba mdifwnis 2:2

mac. mmtmekwso 12

ox

=or"*. Rosinsien/psm 2:

mom ftiwom -:

us,.ce mesWalo/ruCntf 1:2

ow. don)

UN~rde Rtletion/graupnt 2:2

lowI

.3.W&260T&A 1 19 :2P

=Srwb leWsHbdiwq SOL): I

EOnicle mgatg./pmujoct 1:2

-ý x

ODcMe KeetlonlProJect 2:2

IaDWO efaI~o/setuct 1:2

sm.m a, amu. so

280raM~ flelatio/select 2:2

AMBN ttfig SWa Af 01. 1999 SIl'S

ar&cIN maaueeJJVOUPb 1:2

O rucla ReIation/gropa 2:2

inarale Relation/groupe~atii 1:2

-MO LUAJ Tmk fto 31, 1993312 Pie

SirMi kIatbM/iWP~ueS~V 2:5

7

Beat

/600

ace

ant~c Goofu/rtaA~tIt

Am

*OaceAeutohguudfl1a0g :

*OTI eltc/lr ge :

7ma t

Tw tl a g"1 I. ff3 SIR PM

fudo biwo/sm UL 1:5

inreds RwitImwemm OL 2-5

~~"W als fi1

~ ~ m UALt

*OrMdO Rcletlanldlsplaq 2L:3

dma

AMi~Sv

Mormcs- flltiAq SI.i~sp 21:P

oteve mosauee.sMo 3.3

UgOr*cle RaiatMWOW~ecto 1: 1

60rucle Rotatian/groupStal 1:4

sm

=Oracle Relatimn/groupStat 5:4

a1 WT S.I)SI

IMucie UftwitU/grM*~Sta 4:4

=Oracl Poftlion/sat opeator 12

=Oracle Relation/sat operator 2:2

WOracle Relationlinsert 1:3

rawl u~tm/nar :

II *vm

""tooaS2 listg~l laXin

fom - m ft/lear

o~racleU

V eWas at

now Imoam

area

tassumea

*gracis 9s

C1A m* me

~~~~s tablSU t e

Juste CANs Como wag"

to be Cmu a " 0u

*MOracle 03/crusts hackend 1: 1

Mrn~dssZ2.S.2S TULA931.1993,tiami



~aImoel US/u t 1: 1

U0ggcle Moral 1: 1

I-G-

=Oracle OS/surN 1:1

=oracle OS/orin i: o

=Oracle W/UIspUos 1:1

2ve1g2.S.2. Tve. AMD 31, 1913 313 PM



Do~rais U/Nbrm 1:1

=oracle wasopil 1 1

*UMIQd 08/lemI PalnaMe 1: 1

Umorscle flS/dscuwwet I: I



iorvdo W/L. 1:2

Di•Nrde IIOILM 2.2

irasde U/onmn 1:1

"4Or1c.e 0S/reset I :

Mosl goero I: I

/sumC.It

00racle OS/connfect 1:1

Morscel OS/reset 1: 1

A.Uidi L&2.Fm TM~ Awe 31.93 3:12 PMi



MALS U/e 3:

T c/da fai

*WOWm embWy~m am:*

M" - mm womum

~m tWn - ~w Sw

MAL UG p iUS

iih

m~m mm emmm

uwmmpý4" Pon

OMOALt~rea rotmI

ARM@"0 tlkt.m Tm ^q 21 19 3P



Vwwoetlmwpli cintints I 2

in LMOEIudm UIe.pa Cglt.ts 2:2

40qm- -Dw

mIGLfegation/run Obj I: I

to u 4or.a%

v~cae

ViOLUs~i

oSL " A b
NULL -~Tmwwbh

cpayv bmObm um

of00 go catopm
iti op" f

^rM IAemKA 2.10 2 8O



mmmmx

doo lo~INone-

am.v/am me~ NNW" 1:1 d

MIIFU~ue/put coftents 1:1

WAIW

ON

SES.Usa'gr/nm obj 1:2

NUL Ed

OVOLUsr~rrwi obj 2:2

-sof

LOB~ T ~I.I33.3P



NUvwIw/vrl cotU 1:1

VOSFOLMMOe

MLWS6Gb5M -NO %*

we"
100 so a AN" of f N

Vbed
Pau-

INALSE f ?

DOFULMMPrIW

t&& my- to

ANOMM I3*aW TUL ". 31. 193 333 PM



amftm '/i *am:

arm

inhULPv~tmOwrnm ON Z:3

""s VA "Mm is

O VLDftSw/o ob 3:

owm ~ ~ MOA com

MDFL bjos

OV CUW~tM
igWea ti 40i
o020mys an5 %a

PAL=
v

-4Mto

Apsalsts I..3."Slp



~g me ousr

d mms -ps-

WuINN='rm~csuJ :

aEssincupI oW~I :

"Moa "

mFLrntwAe I

O0OLabJectlget root rect 1: 1

'S

TuMAN123W 1~R*31.109233.133 I



UIF1.i1jsctffloull" 1:2

inWOLObject/Imrlur 2:2

WOFOLObJect/hodgltect center t1:1

FM CuIMM of. Come Pu" (raft)
of now Fommgm

EOFL~bJect/maus to 1:1

NOW Imr

feet slo fMe Kne

Awatw. &S2IAM Tui " 31. 1193 3:13 M



W=O JGftijsCt/dkCor t 1:1

Eam 0"Nnaa



v Pcawus

TOW

v
FA
v
MP~
#*An

(001
v

a-.

VI
vft

vetoot

avfl

10001
V

400 wake

FAA.
v

owows.
127liviS

v

VeotdTauba

doo cursIemuy

saoao

Vý mowd tm I t*I

sade 0.8=i



pg ~ ~ k d -wýs

#6fteaft"N am66

mnrLawus famlmed g:

*flOLCanuas/as allowed? 1:2

2 MWv.

*IWOLCanuas/bsalowd?~c 22

omm

U6

III. ~ ~ ~ ~ ~ S I4dad s Tao dH

sm O mNp su

Drawem~ am oft am m p

awn

5wi 11 naT 14I. 52 1P



MIGcomm5/rust o:i

-PA~ - 0.
MOM- -FALKJ

-,M am M AL

I0

ONGLCuMBS/pVUCOSS Click 1.4

*WQFLCWS~wS/PrACOSS Click 2.4

$OA* VO *a w

ton~i dwk x

IMUlLCanuas/process Click 3:4

can" PON?

*flFOLCanuas/process Click 4.4

Imsv daWWM It If N
0~ - 20 OW

m.ms wpma m
, , w g ip n m is

Amd&Am. L2.ftw1 t IP13P



OVOCaIOMS/Cillibl hFOLOhJeCt 1:2

awuS.Cis/creste VOL~bject ZZ

muQLCanussas/res 1:2

St. 100Ioscosm

OnWOLConues/erass 2:2

61 tooSoo scoI

*DOFOLCanuas/radraw 1: 1



mvaLC~..J s/MIda 1:1

maOLCamwes/mnd &ruu 1:1

SOFOLCanuah/Updinte 1:1I

*lOFUzuwwas/mmoeu. OFOLObJects 1:1

anzs~u o.*mkw N~~t



ammt
"'UL
v

PAM

M".
v

wbu 443Sýi

,av

v
.=IF

0 me' 9tw mob*

Smanlouatimn winaow

mm k WN ms

.m S0 C p"" menUG

on womm
octwation m Pop" fl PWý

-e' jo' k

town or d

U" u SW- - 60'

do "M moomp

Awft ts0g* muk AND $I.9In tf P



W4.isamottm. Uinw/compatt 1:2

owwu

Allow

el

AmmubeI/smal2

OMaepsIa111iA~ ~dwft 1801aj wl 2:Z

2 tteb-r

Enmamuipflaon window/find disfiqa oprs 2:3

orqph xS5~T~h I 0 U



amwwsuelm m/W4IgI

MMm~sdsti~n UildaOW/gO~Utifftinua 1: 1

fin"n

Ii ILA 1 13219



6m4001- m Slmette 1

-mme a-

a-m

Opaktntfw /rfes)wws~

T)
F 9 ý lw lw

Smaae

""a"i~~e UIaU/afwlc~a :

11WI-
SON-

IMuORphaiam kwa/ninta uro :

~mmm~~~Zug

Mad~Ij Sao an -UP"a-mrpaa
Mae.

S~afloAadalon UWR~mu/nsert at cursor 2:3

eta-

AL- OW mimN

Ssaam Tht eq at. mi*S am



4MMidWAUgaM SifbimwINW16ul 01 awwsr 3:5

"IN

GnapeOabllo. Uindowdumibf inpa1Ste 1: 1

4xqac.. t G M a ndp uaU a Window /D E lLC aiwaS LUCk 1: 1

I

I~inimlto Wito/PR1

sm"Ov"

PAL



a4siaI~iAo UPodo/Vsw OVALajet 1: 1

-PMAU rndW/@ prea 1:

77'

soo or *A is piniseA

Mam"Psaetalati gw/wshmu SOL I: I

IfAIV

*#4uniwauatlu, Uwndo/gst relation 1:2

AirNW &U-40 Ts AM 31. IfS 2:4



EW"palation WUMM/re~sel buttIon [I.

WManotdation Window/idle process 1:3

4 
~.I

sor

*OManipuajalon Windowlidle process 3.3

Ig~anipulatiaf Window/done 1: 1

ma 8 IS.Z.ow TWL 0laSt. 1"S 2:14 Ri



UMMiP*IaIbg UIaiOW/Cwwurt OEGL~bJe 1:2

Sx

4aaWhflatif WWASImdmCwoute Vitibjest 2:

MULL

G3M4ftnljlmto Window/uncomwal 1: 1

AM~ 2.m2j2*W T~t Ag St. 1"S 3:14 PM



INITIAL DISTRIBUTION LIST

Defense Technical Information Center 2
Cameron Station
Alexandria, VA 22304-6145

Dudley Knox Ubrary 2
Code 52
Naval Postgraduate School
Monterey, CA 93943-5002

Chairman, Code CS 2
Computer Science Department
Naval Postgraduate School
Monterey, CA 93943-5002

Professor C. Thomas Wu, Code CS/Wu 2
Naval Postgraduate School
Monterey, CA 93943-5002

LCDR John A. Daley, USN, Code CS/Da
Naval Postgraduate School
Monterey, CA 93943-5002

Kara Kuvvetleri Komutanligi
Kutuphanesi
Bakanliklar / ANKARA
TURKEY

Kara Harp Okulu
Kutuphanesi
Dikmen I ANKARA
TURKEY

T.C. Genet Kurmay Baskanligi
Kutuphanesi
Bakanliklar / ANKARA
TURKEY

148



Mustafa Eser
Evsat IvLah. Ozdilek cad. I l.Sok. No:6A
42700 Beysehir I KONYA
TURKEY

Top. Kd.Utgm. Turgay Cince
Sukraniye mah. Yuksel sL No:34
BURSA
TURKEY

LCDR. Steve Sellner
26 Revere Rd. La Mesa.
Monterey, CA 93943

149_


