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Abstract

A multiple-input, multiple-output (MIMO) recursive least squares (RLS) algorithm is
developed to shape and control the Loran-C RF pulse of the AN/FPN-44A tube type
transmitter. The control algorithm is incorporated into a transmitter simulation program,
where it seeks to produce an optimal transmitter drive waveform (TDW). An optimal TDW
produces a near ideal RF pulse.

The control algorithm uses a MIMO reference model of the transmitter; parameters of
the model are obtained using recursive least squares multichannel time series techniques.
The MIMO reference model has the ability to adapt to the non-LTI characteristics of the
simulated transmitter.

The MIMO RLS control algorithm is implemented in both an ideal and a realistic
noisy environment. In the ideal environment, when representing the RF pulse with
parameters of its half-cycle peak amplitudes and zero-crossings, the MIMO RLS controller
is able to shape the RF pulse and control its zero-crossings. Quantization and system noise
in the non-ideal environment results in performance deterioration of the control algorithm.
The performance of the MIMO RLS algorithm is compared against another method of
control, the steepest descent algorithm.
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I. INTRODUCTION

In 1990 the Coast Guard Electronic Engineering Center initiated a multi-year project
entitled the Electronic Equipment Replacement Project [Ref. 1], which outlines the need to
redesign and upgrade the Loran-C equipment. The redesign of various portions of the
Loran-C system is necessary for equipment support structure, the desire to enhance and
expand automation, the need to respond to new system requirements, and the desire to
remain in step with new technology.

Under plan one, entitled “EPA/PGEN/LORDAC Redesign,” the monitor and control
methods are to be redesigned to provide automatic Loran-C pulse shaping and improve the
monitoring functions. The new control system generates and controls the Loran-C pulse
automatically, maintains the pulse within specifications, and records results for an
operational database.

In this thesis, a multiple input multiple output (MIMO) recursive least squares (RLS)
algorithm is developed to shape and control a Loran-C pulse. The Loran-C pulse is
successfully controlled with the AN/FPN-44A transmitter, and it meets the tolerances
provided in the Coast Guard’s Specification for the Transmitted Loran-C Signal [Ref. 2].
The Loran-C pulse is monitored at each control iteration, and data are compiled for pulse
analysis.

A MATLAB computer program that simulates the AN/FPN-44A transmitter [Ref. 3]
is used to test and analyze the MIMO RLS control algorithm. The control algorithm uses
an adaptive MIMO reference model. This MIMO model is developed using multichannel
time series techniques. The MIMO model has the ability to adapt to time variations and
non-linear changes in the transmitter’s operating characteristics.

Comparisons are made between the RLS and a steepest descent control algorithm. The
steepest descent control algorithm was developed by Peterson [Ref. 4] and implemented by

Bruckner [Ref. 3] to control the Loran-C pulse. The advantages and limitations of the RLS
algorithm are addressed.




The thesis is organized as follows: Chapter II presents a summary of the Loran-C
operation, pulse specifications, and a proposed control system. Chapter Il contains the
derivation of the RLS algorithm for a MIMO model of the transmitter. The MIMO RLS
control algorithm is derived in Chapter IV, and the results and analysis are presented in
Chapter V. In the results, the performance of the RLS algorithm is compared with that of
an alternate method of control called the steepest descent algorithm. Finally, conclusions
on the work reported and suggestions for improvement (future work) are presented in
Chapter VI. Appendix A contains the results of the MIMO RLS control algorithm operating
with the input and output waveforms at realistic SNR levels. A derivation of the MIMO
RLS control algorithm with memory and its results are included in Appendix B. Appendix
C contains the derivation of an integral control algorithm, which behaves similarly to the
steepest descent method and has similar control characteristics. Appendix D contains the
MatLab code of the control algorithms and other support programs.




II. SUMMARY OF LORANC

A. LORAN C OPERATION

Loran-C radio navigation is based on time differences between a received master
station’s pulse and several secondary stations’ pulses. A Loran receiver can obtain time
differences from as many as four secondary stations, labeled as W, X, Y, and Z. A Loran
receiver translates these time differences into hyperbolic lines of position. An intersection
of two or more hyperbolic lines of position will formulate its location at the point of
intersection.

The master and secondary stations for a specific geographical area, referred to as a
chain, all transmit a series of pulse groups at a fixed rate called the Group Repetition
Interval (GRI). The GRI for various chains vary from 40,000 to 99,900 microseconds. Each
secondary station in the chain transmits its pulse group at the same GRI, but with different
emission delays with reference to the master’s pulse group (see Figure 2.1). [Ref. 2: p. 2-5]

M X Y Z M

Figure 2.1: Emission delays from the master station.

The master station transmits a group of nine consecutive pulses. Each secondary
station then transmits its own group of eight consecutive pulses. The pulses in each group

are separated by 1000iLs except the master’s ninth pulse, which is transmitted 2000s after
the eighth pulse.




The Loran-C receiver has the ability to receive both the Loran ground waves and
skywaves. The ground wave is the one used to calculate the time difference. Pulse group
phase coding is used to distinguish the ground wave from the skywave. There are two GRI
transmission sequences that comprise a phase code interval (PCI). The phases of certain
pulses in the transmission sequence are changed by 180°. The pattern of phase changes of
the PCI is illustrated in Ref. 2, pp. 2-6. For this research, the control, testing, and analysis
are conducted on pulse one of the eight (or nine in the case of the master station) pulses
transmitted by a station in a GRI. Pulse one of the pulse sequence for all stations has a
positive phase code which corresponds to a zero phase shift.

B. LORAN-C PULSE SPECIFICATION

1. Description of the Loran-C pulse

The Loran-C signal is made up of individual pulses which must meet specific
tolerances for the signal to be acceptable. The carrier frequency of a Loran-C pulse is

100kHz; during the first 65{s, the pulse amplitude is specified by: [Ref. 2: p. 2.1]

i{t) = 0; fort<t
i(t) = A(t-1 )zexpri(—t——%” i
e L & Jsm (02t + ¢ )

for 'teStS.65+‘te (2.1)

where
A is the normalization constant related to the magnitude of the peak antenna
current in amperes,
t  is time in microseconds,
Te is the envelope to cycle difference (ECD) in microseconds, and
¢ is the phase-code parameter (in radians) which is O for positive phase code

and = for negative phase code.




The first 90ys of the ideal Loran-C pulse is shown in Figure 2.2. The first 65)s of
the standard RF pulse, as described by equation 2.1, is called the leading edge. The RF
pulse trailing edge is defined as the portion of the pulse following the maximum peak
amplitude or the 65 Us point, whichever occurs first. Different transmitters have different
decay characteristics of the pulse’s trailing edge. In this work, the AN/FPN-44A transmitter
is chosen for testing the control algorithm and analysis. The spectrum must be within the
bandwidth of 90 to 110kHz. The normalized pulse amplitude for t > 500ys is less than or
equal to 0.0014. The tolerance specifications for the trailing edge amplitude are established
to substantially decay the pulse, so the next transmitted pulse has no interference from the
previous one. [Ref. 3: p. 10]

IDEAL LORAN C WAVEFORM

9 11 13 n
K
0.8 1.

1 4
T
o8 : } J | J L
tou m D \] \/ \/
By PC wi0 ] 10 12 . ;
0 10 20 30 40 80 60 70 80 90

Eloosed Tirme, microssconds

Figure 2.2: The ideal Loran-C pulse [Ref. 3, p. 10].




The third negative to positive zeros-crossing in the Loran-C pulse provides a
reference point called the standard zero-crossing (SZC). A Loran receiver locks onto this
location by the unique amplitude ratio of the fifth and seventh peaks. The standard zero-
crossing occurs approximately 30is after the beginning of the pulse. The Loran receiver
uses the standard zero-crossing as a reference when determining time differences between
pulses from the master and secondary stations. [Ref. 2: p. 2.3, Ref. 3: p. 9-11]

2. Pulse Tests
The Coast Guard has established four tests to ensure that the Loran pulse shape
resembles the ideal Loran pulse, and the shape is identical from pulse to pulse. The four
tests are: envelope-to-cycle difference (ECD), root mean square value of half-cycle-peak
amplitudes 1-8, maximum individual error in half-cycle-peak amplitudes 1-8 and 9-13, and
the zero-crossing tolerance. [Ref. 2: p. 2.1-2.3, Ref. 3: p. 11] These four tests are fully

described in Ref. 2 and are summarized in the following sections.

a. Envelope-to-Cycle Difference (ECD)

The ECD is a time relationship between the position of the pulse envelope
relative to the position of the zero-crossings. A positive ECD has an envelope that appears
later in time by a factor of 1, (see equation 2.1), which has the appearance of the envelope

shifted to the right along the time axis. The ECD may also be negative, where the envelope
is shifted to the left. The calculation of the ECD of a Loran-C pulse is a tedious process,
and the details may be found in Ref. 3: p. 137.

The ECD of the Loran pulse can be adjusted at the transmitter to provide the
desired RF pulse shape. Once the ECD is computed for the station’s transmitted RF pulse,
it may be as::g)ed a value in the range of -2.5 to +2.5us [Ref. 2: p. 2.2]. This is called the
local or transmitted ECD value. In computing the RF pulse error, the same ECD value is
used for both the actual and the ideal RF pulse. For the half-cycle peak amplitude tests, *e
local ECD must fall within the allowable range [Ref.2: p. 2.3]. The transmitted pulse cannot
have an ECD that exceeds +0.5|Ls from the transmitted ECD value [Ref. 2: p. 3.4]. When




the RF peak amplitudes and the zero-crossings are within specification, the ECD is
automatically within the specified tolerance [Ref. 5]. The control and testing of ECD are
not addressed in this thesis. An ECD of zero is used in this thesis when generating the ideal
RF pulse, for testing the control algorithm and for the Loran pulse analysis.

b. Ensemble Tolerance of Half-Cycle Peak Amplitudes
The root mean square error between the first eight half-cycle peaks of the
ideal and the actual Loran pulse cannot exceed one percent of the peak amplitude of the
actual pulse. Let Sp, p =1,2,3,...8, be the first eight half-cycle peak amplitudes of the actual
pulse and those for the ideal be I, p=1,2,3,...8. When the maximum amplitudes of the

actual and ideal pulses are normalized, the ensemble tolerance is expressed as:

¢. Individual Tolerance of Half-Cycle Peak Amplitudes
For the first eight RF half-cycle peak amplitudes, the individual pulse peak
error between the actual and the ideal must not exceed three percent of the peak amplitude
of the pulse. For half-cycle peak amplitudes 9 through 13, the maximum individual error
must not exceed ten percent of the peak amplitude. Assuming that the actual and ideal
Loran pulses are normalized, these tolerances are expressed as:

1, —S,| <0.03 1<ps<8,
II,-S,€0.10 9<p<13.

d. Zero-crossings

Zero-crossing times and their acceptable deviation from the ideal zero-

crossings are provided in Table 2.1 for the AN/FPN-44A transmitter. All zero-crossing




times are in relation to the standard zero-crossing (SZC). The SZC is the negative to
positive zero-crossing at 30 microseconds of a positively phase coded pulse of the antenna-
current waveform. There are two categories for zero-crossing tolerances. Category 1
tolerances are for the newer model transmitters, such as the AN/FPN-44A, and category 2
are for the older transmitters, such as the AN/FPN-42. [Ref. 2: p. 2.4]

TABLE 2.1: Zero-crossing Times and Tolerances for AN/FPN-44A Transmitter

Zero-crossing () Time (us) % Tolerances (ns)
5 -25 1000
10 -20 100
15 -15 75
20 -10 50
25 5 50
30 SZC standard time reference
35 5 50
40 10 50
45 15 50
50 20 50
55 25 50
60 30 50

C. PRODUCING THE RF SIGNAL

1. The Transmitter Input and Output Waveforms

The input to a LORAN-C transmitter is called the transmitter drive waveform
(TDW). The TDW is a cosine waveform with 16 half-cycles of varying peak amplitudes
and has a constant carrier frequency of 100kHz. A damped sinusoid is added at the end of
the 16 half-cycles to lengthen the decay time of the radio frequency antenna current
waveform (RF). This eliminates undesirable high frequency components in the output. A
typical TDW is shown in Figure 2.3.

When the shape of the TDW changes, its energy varies which in turn changes the

unit sample response of the transmitter. This behavior exemplifies the transmitter as a non-




linear system. An assumption is made that the transmitter operates as an LTI system from
pulse to pulse with a fixed TDW, over a time duration of a few hours. In this work, an LTI
pole-zero model was used to simulate the transmitter at a given operating point, i.c. a fixed
TDW [Ref. 3: p.42]. By catenating a number of LTI models that cover a range of operating
points based on different TDW, a piece-wise non-linear model is developed. The simulated
AN/FPN-44A Loran-C transmitter is modeled using six poles and five zeros. The behavior
of the corresponding poles and zeros of the catenated LTI models is characterized by fitting
a polynomial curve for each of them. Each pole or zero moves along its own polynomial
curve as a function of the TDW'’s energy. [Ref. 3]

Time variations in the transmitter may occur over several hours, days, or weeks.
These time variations are modeled as slight shifts in the position of poles and zeros. Each
polynomial curve fitting the trajectory of a pole or zero drifts up and down independently
of each other when shifts occur. This allows the pole-zero transmitter model to simulate
changes in transmitter characteristics due to time variations. [Ref. 3]

There are two different possible loads on the transmitter: the antenna and the
resistive dummy load. The simulation contains an IIR model each for the antenna and the
dummy load cases. The transmitter usually starts on the dummy load, where the TDW's
half-cycle peak amplitudes converge to form an acceptable RF pulse before switching to
the antenna. The TDW can be generated on either loads to form the RF pulse.

Each Loran station has two transmitters. This allows one transmitter to transmit
on the antenna while the other remains in a standby mode of operation. The term
transmitted pulse refers to the RF pulse measured at the transmitter’s ground return, not the
RF pulse in the far field. The typical RF pulse transmitted on the antenna is shown in Figure
2.4. The shape of the RF pulse is determined by the amplitudes of the half-cycles of the
TDW. The TDW has 16 half-cycles. The half-cycle amplitudes of a TDW can be arranged
into a column vector, which makes computing the optimal TDW a 16 dimensional control

problem. The vector of parameters used to represent the RF pulse are comprised of the first




16 half-cycle peak amplitudes of the RF pulse, or it can be extended to include the RF pulse
samples at the desired zero-crossings which allows for the control of zero-crossings.

In order to solve for the optimal TDW parameters (half-cycle peak values), we
need to estimate the mapping function between the TDW and RF parameters spaces. The
mapping function must take into account the non-LTI characteristics of the actual
transmitter. A multiple input multiple output (MIMO) model is developed to represent the
Loran transmitter’s behavior on a pulse to pulse basis. The model parameters are estimated
using a MIMO recursive least squares (RLS) algorithm. Further discussion of the modeling
and control techniques are contained in Chapters III and IV, respectively.

TDW: AN/FPN 44A TRANSMITTER

2 —~ - — .

Amplitude
[«

(¢} 50 100 150 200 250 300 350 460 450
Time, microseconds

Figure 2.3: A typical TDW for the AN/FPN-44A transmitter.
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RF PULSE, AN/FPN-44A TRANSMITTER
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Figure 2.4: A typical RF Pulse from the AN/FPN-44A transmitter.

2. The VXI Based Loran-C Transmitter and Control System

Plan one of the Loran-C Electronic Equipment Replacement Project (EERP) was
started in 1990; it is called project W1180: “Timing and Control Equipment (TCE)
Redesign.” A scheme to implement data acquisition and develop an algorithm to control
the Loran-C pulse shape by adaptively generating the necessary TDW waveform were
proposed [Ref. 6]. A block schematic of the proposed control system is shown in Figure
25.

The operation of the control system in Figure 2.5 follows these steps [Ref. 3, p.
33]. The computer loads a digitized transmitter drive waveform (TDW) into *he arbitrary
function generator (AFG). The AFG produces an analog TDW signal, which is sent to the
transmitter at each timer trigger. A digital storage oscilloscope (DSO) acquires the RF pulse
with an eight bit resolution. The digitized RF pulse is stored in the computer’s memory
which is used by the control algorithm to generate an optimal TDW. The controller
computes a new TDW based on the error between the ideal and actual RF pulses. Plan one
of the EERP does not address an exact algorithm to accomplish the goal of obtaining an

11
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Figure 2.5: The VXIbus based control system [Ref.3: p. 34].

optimal TDW. In this research, we propose and develop a MIMO RLS control algorithm to
generate an optimal TDW, where the actual RF pulse is a least squares fit of the ideal RF
pulse.
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I11. MIMO MODELING

In this chapter we present the derivation of a multiple-input, multiple-output model for
the Loran-C transmitter based on a least squares data formulation. The half-cycle peaks of
the transmitter drive waveform and the RF pulse are considered as multichannel input and
output quantities. In order for the algorithm to be able to track the slow time variations in
the transmitter operating environment, an adaptive version of the least squares formulation
called the recursive least squares algorithm is proposed. Both forward and inverse models
are considered which are needed to develop suitable pulse shape control algorithms in the
following chapters.

A. MULTICHANNEL SYSTEM APPROACH

Any adaptive algorithm used to control the RF pulse requires a reference model of the
transmitter. The reference model is used to map the error in the RF pulse to the TDW input.
A reference model is obtained using a multichannel formulation when the input and output
parameters are considered to be channels. The output is expressed as:

Yi=Agx+Ax; 1+ +ApXx, (3.1

where x , is the input vector (p x 1), y, is the output vector (q x 1) at discrete time index t,
and A (s =0, 1,..., m) are the coefficient matrices (q x p) [Ref. 7: p. 237]. For p = q, the
coefficients are square matrices. We consider p = 16, where the elements of x represent the
half-cycle peaks of the transmitter drive waveform (i.e., a total of eight cycles). The output
vector y can be of size q = 16, or q = 32. For q = 16, vector y is composed of the first 16
half-cycle peaks of the RF pulse. When q = 32, vector y is expanded to include the samples
of the first 16 desired zero-crossings. When p does not equal q, rectangular coefficient
matrices result. Both cases are considered in the following chapters.

The MIMO reference model is obtained based on a least squares formulation. A least
squares estimate of the coefficient matrices is obtained by minimizing the sum of squared

errors between the actual output of the transmitter and the computed output of the model.

13




In this work a memoryless MIMO model is considered. From equation 3.1, the output
of the memoryless system is expressed as
Ye=Aogx, (32)
Additional coefficient matrices are used when a model with memory is to be realized. The
derivation of the least squares estimate for the MIMO mode! remains the same whether one

or more coefficient matrices are used.
B. THE TRANSMITTER MODEL

1. The Least Squares Method

Considering 8 memoryless model representation, the output of the multichannel

model is expressed as:
y = Ax,
where x is the vector of input parameters, and A is the single coefficient MIMO model. The
error vector, at time index i, is expressed as:
&i=Yi- ¥i (33)
where §; = Ax, and yj; is the vector of RF pulse parameters (actual transmitter output).

The weighted, squared error matrix is then given by [Ref. 10: p. € 7.3]:

n

_ n-i T

I = .le (eiei )W, (3.4)
1=

where A is called the forgetting factor; ( 1-)@)'l is a measure of the memory of the recursive
least squares algorithm; a forgetting factor of unity corresponds to infinite memory; and W
is a diagonal weighting matrix used to weight the elements of e;.

Expanding the error, ¢;, in equation 3.4 yields the following:

n
= ¥ ARy Axy (3~ Ax) TW,
im1
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n
-i T T,T T T,T
im1
Taking the partial derivative of J with respect to A in equation 3.5 and setting it to zero
yields:

n

ol -

5K = '21” H-2yxT+2axxHW = 0, (3.6)
1=

Rearranging terms in equation 3.6 gives:

n - n -
Y A (g )W = Y AR (A ) W. G
i=1 =1

Now define the following matrices: the autocorrelation matrix,

n
® = Y A ixhw. 3.8)
i=1

and tke cross-correlation matrix,

n
r =Y A igxhw. (39)
Ty

Substituting equation 3.8 and 3.9 into equation 3.7 results in a simplified matrix form:
Ad =T, (3.10)

and the least squares memoryless MIMO model is obtained as [Ref. 8: p. 380]:
A=T 0,1

2. The Recursive Least Squares Algorithm

Consider that the transmitter being modeled is slowly time-varying; accordingly,

the model coefficient is now represented as A; where n is the time index. To continuously

model the transmitter as its characteristics change with time, we propose to develop a

recursive least squares solution of A [Ref. 8: p. 477- 485].
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From equation 3.8, let
1 . T
Pil=@ = VA xx)W, (3.11)
=l
and equation 3.10 becomes
AP =T, (3.12)
At time index n+1, equation 3.12 can be written as:
-1
Asi1Ppyt = Tat Yo Xaet' W. (3.13)
Substituting equation 3.12 in 3.13 for I}, yields
Ap1 Py n+l =A, P Ly Yn+1%n+1 Tw. (3.14)
Adding (Ap Xpy1 Xnel W - Ap Xpl Xpe1? W) on the right side of equation 3.14 and
realizing that:
Pl+A Tw=a, P! 3.15
ApP." +Apxpy1 X0yl W=AL P (3.15)
and

- Ap Xpy xn+1T W+ Yn+lxn+lTw = (Yn+1 - Ag Xp41) xn+lT W, (3.16)

results in

Ay Pn-c-l Anpn-n-l + (Yn+1 - An Xn+1) Xp41 Tw, (3.17)

where (Yp41 - An Xp41) = €p41. The final form of the recursive equation for Ag,; is

Ape1=Ap + €541 Xpel L W Py (3.18)
The recursive least squares algorithm in equation 3.18 requires recursive updating

of P, [Ref 8: p.479]. At time index n+1, equation 3.11 becomes

Pl = A0 +x  x], W (3.19)

n+1

Substituting P;l = ¢, into equation 3.19 yields:
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Pl = AR 4 xg x W (3.20)
Inverting both sides of equation 3.20:
Pyt = AP;! + Xpyt 2pe "W). (3.21)

Applying the matrix inversion lemma [Ref. 8: p. 480]
(A+BCD)!=A"l. AlB(C'! + DA'IB) IDA! (3.22)
to equation 3.21 provides the required recursion for P,. Comparing the terms on the right

side of equation 3.21 to those on the left side of equation 3.22, we have

A=AP]!,
B =xp41,
C=1,
D= xn+lTw’
which yields the update equation for Py, i:
-1
1 1 1 1
Ppy1 = Xpn Y Pp xp41 (I + xg_._ 1WXP’nxn . ]1 xmlTWX Py (3.23)

The RLS algorithm is one of many possible algorithms for obtaining a reference
MIMO model for the transmitter system. The RLS algorithm is chosen because it offers a
fast rate of convergence, with negligible noise when A is unity. The computational
complexity of the algorithm is rather demanding, but it is quite simple to implement the
equations in MATLAB software. Simplifications, such as the fast RLS algorithm could be
considered to overcome the computational complexity of the RLS algorithm presented here
[Ref. 8, 10). The issue of the fast RLS algorithm for reduced complexity is not addressed
in this thesis.

3. Estimation of the MIMO Model Parameters

We now present simulation results of the RLS algorithm developed in the
previous section. The MIMO model parameters are estimated using equation 3.18. To
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implement the RLS algorithm, a set of 2000 pairs of input and output data are generated
from a Loran-C transmitter simulation model that uses a steepest descent algorithm {Ref.3].

Initially, P is set to P = 10° I, where I is an identity matrix. The matrix P and the MIMO
model are saved after 2000 iterations for later use in the pulse shaping control algorithm.
Figure 3.1 is a plot of the mean square error, MSE:

en-o»l’rem-l = (Ype1 - Anxml)T(Yn+l - ApXp, 1)
for 2000 iterations of the algorithm. Figure 3.2 is a plot of a norm, , as defined as

— (n+l) _ _(m) 2
¢= JZ):(‘ij 85 )
i]

where a;; are the elements of A for 2000 iterations. The MIMO RLS algorithm is effective

in producing a model that converges to a reasonable MSE. In Figure 3.1, the MSE decreases
to a near steady state value in less than five iterations and generally remains below le-7
after that.

In Figure 3.2, { reaches a minimum at iteration 125, which indicates the numerical
change of the elements of the model from iteration to iteration. The model obtained at the
minimum { does not differ significantly from the model taken at the end of 2000 iterations
when used to initialize the control algorithm.

The following points are noted on the P matrix. The matrix is symmetric, positive
semidefinite, and has full rank for all iterations. The condition number of P is very large,
on the order of 1e9; ill-conditioned data sequences have correlation matrices with large
condition numbers. Based on this empirical observation, the RLS algorithm presented here
can be considered robust. An algorithm is said to be robust if it operates satisfactorily with
ill-conditioned data [Ref. 8: p. 3].
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Figure 3.1: Antenna model convergence, MSE: (y - Ax).
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Figure 3.2: Norm of (Ag4 - Ap).
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4. Operation of the RLS in a Slowly Time-varying Environment

When the RLS algorithm operates in a time-varying environment, the suggested
value of A is usually less than unity. This gives the RLS algorithm a finite memory where
slow statistical changes in its environment can be tracked. However, changing the value of
A to less than unity modifies the behavior of the algorithm by inroducing misadjustment
noise and delay in the formulation of the least squares estimate. [Ref.8: p. 499]

The statistical variations in the environment are considered negligible after
several initial iterations or the transient period during which the algorithm converges to
steady state parameters. A forgetting factor of unity is used for the RLS algorithm in this
thesis; in spite of the presence of slow time variations, A = 1 provides the best parameter
tracking performance. Several tests were run with different forgetting factors, and the
following observations were made: the finite update memory for A < 1 increases the
misadjustment noise; for A < 0.98, the stalling of the algorithm updates was observed; and
the forgetting factor being less than one has not improved the convergence speed in general.

In this chapter, a MIMO memoryless model of a Loran-C transmitter is developed
with its coefficient matrix estimated using a recursive least squares algorithm. The RLS
algorithm provides fast parameter convergence, but it is computationally expensive. The
means to reduce the computational complexity is not addressed here. Even though the
forgetting factor, A, is considered an important quantity when the algorithm is operating in
a time-varying environment, best performance is achieved for A = 1. The estimated MIMO
model is used as a reference model in the MIMO RLS control algorithm. An inverse MIMO
model can be estimated on the lines of the MIMO model discussed in this chapter;
Appendix C contains a brief derivation of the inverse MIMO model.
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IV. OPTIMAL TDW ESTIMATION

An algorithm to shape the RF pulse which uses a recursive least squares formulation
is proposed. The TDW is updated using the error in the RF pulse parameters; this error is
used to correct the TDW parameters to produce an RF pulse which is a close match to the
ideal pulse (equation 2.1). A reference model of the transmitter is required to formulate the
correction. The proposed control algorithm uses a MIMO RLS estimate of the reference
model (see Chapter III). A related algorithm, called the steepest descent, which uses an
impulse response matrix as the transmitter reference model, is also briefly discussed.

A. MIMO RLS ALGORITHM FOR UPDATING TDW

A MIMO least squares algorithm is used to formulate the optimal TDW parameter
VECtor, Xopy, to produce the desired RF pulse parameter vector, Yop,. Obtaining the optimal
TDW is an adaptive process because the transmitter’s characteristics vary as the energy of
the TDW parameters in vector x changes. The transmitter reference model A is continually
updated as a MIMO RLS estimate to track the changes in the transmitter. Figure 4.1 shows
a block diagram of the proposed scheme to control the RF by continuously updating the
TDW. The “control” block generates a correction Ax at each update with reference model

parameters, RF error and the previous TDW vector as inputs.

A'n-rl
> MODEL " >
XMIR | Yns1
} Yo + .
€n+1
CONTROL

Figure 4.1: A block diagram of the RLS control scheme.
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1. The Least Squares Formulation
The error vector, at time index i, in the feedback path of the controller (Figure 4.1)
is expressed as
€ = Yopt - ¥ir
where yoy is a vector of the ideal RF pulse parameters; vector §; = A;x, where matrix A; is
the adaptive MIMO model, and x is a vector of TDW parameters. In order to develop a least
squares formulation, x is considered to be independent of the time index i. The weighted

sum of squared esrors is expressed as
n .
— n-i
I = .EIA (ei Vei) , (4.1)
1=

where A is called the forgetting factor, and V is a diagonal weighting matrix used to weigh
the elements of ¢;. Expanding the error, ¢;, in equation 4.1 yields

n

- n-i - T - , 42
J= ~le (Yopt = AV (Ygp~ AX)) 2)
)
or
s an-i,. T T,T T
— n-1i - -
I= _Elx YoptYVopt™ A Vopt ~Yopt VA
l=

—xTA;rVAix) . 43)

Setting the partial derivative of J with respect to x in equation 4.3 equal to zero
a _ z An-i T T
F i 2 (-2A; Vyc’pt +2AVAx) =0, 4.49)
i=1

minimizes the cost function J with respect to x. Rearranging the terms in equation 4.4 yields
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n . n .
T A ATV = T ATHATVAx. 45)
i- 1 i- l

Defining the autocorrelation matrix as

n
- N-i T,
<bn = z ATTH(A 1VAi) , (4.6)
im1l
and the cross-correlation vector as
n .
v, = ¥ AN AT Vg, @)
iml

and substituting equations 4.6 and 4.7 into equation 4.5 produces a simplified matrix form
Ppx=1, 4.8)
From equation 4.8, the optimal TDW is in the form of a least squares solution

XxX= ¢n-17n. (4'9)

2. The Recursive Least Squares Algorithm

This derivation is somewhat different from the RLS algorithm developed in
Chapter I, Section B.2. For the recursive least squares update of x at time index n+1, let

P;l =, and let x be a function of the discrete time index n. Equation 4.8 is now expressed

as
Polxg =1 (4.10)
At time index n+1, equation 4.10 can be written as
-1
P14+l =Mt An-l-lT V Yopt, (4.11)
and substituting equation 4.10 in equation 4.11 for vy, gives
=p-l Ty 4.12
n+1 Xn+l1= Ty xn+An+l Yopt: 4.12)

When adding (Ap,1TV Apy1%n - Aps1? VAg,] Xy) on the right side of equation 4.12 and
realizing that
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Pl xp+ AgytT VA Xy = P % (4.13)

A1|+1T V Yopt - AIH»IT VAg1 Xp = Aml'r V (Yop: - Ans1 Xp)s (4.14)
equation 4.12 becomes
Pon 1 Xae1 = PTh | %o+ AgetT V Ggpe - Agel %), (4.15)
where (Yopt - Ansl Xn) = €py1/n- Multiplying both sides of equation 4.15 by Py, |, and
substituting (Yopt - Ap+1 Xn) = €n41/n, Yields the final recursive equation
Xp41=Xn + Pasl Ape1"V enslfe (4.16)

For the recursive update of P,, we write equation 4.6 at time index n+1 as

-1 - T
Pli=a =A0 +AT,, VA . @.17)

n n
Substituting P! = ®,, into equation 4.17 gives

P—l

-] .
L =Ap 4 AT . VALL (4.18)

and inverting both sides of equation 4.18 yields
Pos1 = AP 4+ AT VAL DL (4.19)
Apply the matrix inversion lemma
(A+BCDyl=A"l- A'lB(C! + DA IB) DA™} (4.20)

to equation 4.19 by comparing the right side of equation 4.19 to the left side of equation
4.20, where

=3p-l
A=2ap7,
C=Vv,

D= Ay,
the update equation for Py, ; becomes the right side of equation 4.20
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-1
1, 1 1 1
Poe1= 3Pa- 3 Pa AT I:V'I +A 17\PDAT,HJ Anei 3 P

When the MIMO RLS control algorithm is implemented, the elements of the inverse
correlation matrix, P,, become very small values in approximately 150 iterations. This is
typically referred to as the stalling phenomenon [Ref. 8: p. 701]. When this occurs, the
algorithm stops updating the TDW parameters, and it no longer seeks a lower MSE. A
remedy to keep the MIMO RLS control algorithm converging to a lower MSE is to reset
P, every 50 iterations or so.

B. STEEPEST DESCENT CONTROL ALGORITHM

A linear feedback control scheme using a steepest descent algorithm is discussed in
this section. This approach seeks the optimal TDW parameters by minimizing the quadratic
error surface of eTyWe y» Where W is a weight matrix and e y, = (Yo~ y) [Ref. 3, 4].

The transmitter output is

y=Hx,
where the transmitter is modeled as impulse response matrix H, vector x is the TDW half-
cycle peak parameters, and vector y is the RF half-cycle peak parameters. The simplest
form of the steepest descent control algorithm has x and y parameter with 16 half-cycle
peak amplitudes. H is formed by the half-cycle peak amplitudes of the impulse response of
the transmitter; H is a 16 x 16 matrix.[Ref. 3: p. 82]

We assume that the system matrix H is an accurate model, and the optimal TDW half-
cycle peak amplitudes in vector Xy, the ideal pulse peaks are given as

Yopt = H Xopt.
The vector of errors in the TDW half-cycle peak amplitudes is

€x = Xopt - X.
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Let the correction to the TDW parameter vector x be expressed as Ax; which updates x at
each iteration in the direction of steepest descent on the quadratic error surface. We express
Ax as

Ax

H T
(-3)A [e We ] , (4.21)
2 ex y y
where Ae is the gradient with respect to ey and |l is a small positive constant. Equation
x

4.21 is rewritten in terms of e,

Ax = (-;)Vex[eTxHTque]J. (4.22)

Taking the partial derivative of Ax with respect to e,, equation 4.22 becomes

Ax = (-p)H'WHe_. (4.23)
Substituting ey = He, in equation 4.23, the correction term

Ax = (=) HTWey :

where the adaptation constant {i is bounded as [Ref. 3, 4]

H < largest eigenvalue of [I—-ITT?\N_}-B .

The final form of the steepest descent control algorithm is

Xael = Xg + (=11) HTWey.

The MIMO RLS control algorithm and steepest descent control algorithm are
implemented in a simulated control system with a simulated transmitter which allows
testing, analysis, and comparison of the control algorithms in Chapter V. With a system
matrix, the RF error and the past TDW parameter vector, both control algorithms are able
to produce a correction to update the TDW parameters. As the RF pulse parameters

approach the ideal values, the TDW parameters converge to optimal values.
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V. RESULTS AND COMPARISONS OF TDW CONTROL
ALGORITHMS

A. INTRODUCTION

The results of the MIMO RLS control algorithm are presented in this chapter.
Comparisons are made between the MIMO RLS and steepest descent control algorithms.
The RLS control algorithm is compared against the steepest descent control algorithm
under ideal conditions of machine precision, as well as under low noise conditions with
eight bits of resolution for data acquisition; the digital storage oscilloscope used to sample
the RF pulse has an eight-bit resolution. The signal to noise ratio (SNR) used in each trial
for both the TDW and RF puise is provided in each case:

Py
SNR = 10 logjp f;’

where P; is the peak signal power and P, is the average noise power. [Ref. 3: p. 40]

The reference model for each control algorithm is derived differently, resulting in a
majcr difference in their control techniques. An adaptive MIMO RLS model is used in the
MIMO RLS control algorithm. The steepest descent control algorithm uses an impulse
response matrix for its reference model [Ref. 3: p 81].

The results will consist of examining the root mean of squared RF peak errors 1-8
(ensemble error), the maximum RF peak error in half-cycles 1-8 and 9-13 (individual
errors), the mean square error (MSE) of the RF pulse peaks 1-16, and the zero-crossing
location error in excess of the allowable tolerance. The simulated digital sampling
oscilloscope operates at its highest sampling frequency of 10MHz which improves the
accuracy in sampling the peaks and the zero-crossings.

For testing purposes, only the first pulse of the PCl is controlled for 400 iterations
starting on the dummy load and then switched to the antenna after the errors in the pulse
peaks meet a tolerance threshold. The initial TDW peak values for the first iteration of

control can be arbitrary; however, constant values of £1.70 volts were chosen.
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B. PEAK SAMPLING

In presenting the results, we consider two cases here. In the first, the TDW and RF
waveform parameter vectors are of size 16x1 each; these are the first 16 peak amplitude
values of the respective waveforms. In the second case (discussed in section C), the RF
parameter vector contains both peak amplitudes and zero-crossing values making its size
32x1 while the TDW parameter vector remains unchanged. Simulation results are also

presented for noiseless and noisy environments.

1. Results of RLS Control under Ideal Conditions

Under ideal (noise free) conditions, the TDW and RF pulse are sampled to the
computer’s machine precision, and the signals are free of any system noise usually present
in the actual transmitter. There are no deliberate variations in the simulated transmitter’s
poles and zeros; changing pole-zero locations of the model simulate time variations in the
transmitter. The simulated transmitter’s characteristics can be changed by varying the
TDW'’s energy and the power supply voltage [Ref. 2, 3]. The pole-zero locations stated
above, fluctuate with variations in the TDW’s energy and the transmitter’s power supply
droops within the GRI as RF pulses are transmitted every 1000yis.

The TDW parameters are updated, so the RF pulse half-cycle peak amplitudes
converge on the dummy load, until the three measures of RF pulse peak errors are below a
tolerance threshold. The tolerance threshold for each of these errors is different than those
described in Chapter II for the error specifications; the tolerance threshold is chosen
arbitrarily so the RF pulse peaks are in tolerance within an iteration or two during the swap
from the dummy load to the antenna. The transmitter swap from dummy load to antenna
can be observed in Figures 5.1-5.4, where the symbol & appears on the graph.

The various terms used in Figures 5.1-5.4 are explained in the following. In
Figures 5.1 - 5.4: The “F Factor” is the forgetting factor used in the RLS control algorithm
when shaping the RF pulse first on the dummy load and then on the antenna. The term

“Drift” is explained in the next section; it is not used in these simulations. The expression
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“tau” refers to the ECD, which is set to zero for all simulation trials in this thesis. The
“noise” is the variance of the additive noise. The expression “bits” indicates the number of
bits used to sample the signals; a zero indicates machine precision.

Figures 5.1 and 5.2 illustrate the performance of the RLS control algorithm. In
Figure 5.1, the convergence of three measures of RF pulse peak amplitude error (ensemble
error, maximum of individual errors 1-8, and maximum of individual errors 9-13) are
shown. Figure 5.2 illustrates the mean square error converging toward its minimum value
on the error performance surface. Figures 5.3 and 5.4 illustrate the same error convergence
for the steepest descent control algorithm. The RF pulse peak errors meet the specification
tolerances for all iterations when using a signal to noise ratio (SNR) between 81dB and
89dB for the TDW and 95dB and 97dB for the RF pulse.

In Figure 5.1, the RLS control algorithm reduces the RF peak errors below the
threshold in less than five iterations at whick time the load is swapped. This is a vast
improvement over the steepest descent’s convergence on the dummy load in Figure 5.3.
The steepest descent controller required over 50 iterations to reach the threshold (L = 0.8
of max, where j{imax is a predetermined value of 0.083).

After 400 iterations of pulse shape control, the final converged peak errors for the
RLS and steepest descent control algorithms are recorded in Table 5.1. The MSE of the
peak values (1-16), the ensemble error, the maximum error of peaks 1-8, and the maximum
error of peaks (9-13) are an order of magnitude lower or less using the RLS controller.

The zero-crossing times are calculated with reference to the standard zero-
crossing (SZC). The time difference from the maximum allowable tolerance is indicated in
Table 5.2 for both the RLS the steepest descent algorithms. The zero-crossings are not in
tolerance for either one of them.

Both control algorithms are able to shape the Loran-C pulse. The RF pulse peaks
converge to a close approximation of the ideal RF pulse peak values. This is shown in Table
5.3.a for the RLS control algorithm and Table 5.3.b for the steepest descent control
algorithm. In these tables, the actual and the ideal RF pulse parameters are normalized. The
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term “average” is the time average of the RF pulse parameters over each iteration of
control. The term “ideal” refers to the first 16 half-cycle peak amplitudes of the normalized
ideal pulse. The term “diff” is the difference between the column values specified. This
gives the error in the RF peak values.
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Figure 5.1: Convergence of peak amplitude tolerances of Loran-C error using the RLS
control algorithm (machine precision, no noise) with ‘44A’ transmitter.
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Figure 5.2: Convergence of MSE of RF peak amplitudes 1-16 using the RLS control
algorithm (machine precision, no noise) with ‘44A’ transmitter.
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Figure 5.3: Convergence of peak amplitude tolerances of Loran-C error using the steepest
descent control algorithm (machine precision, no noise) with ‘44A’ transmitter.
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2 Convergence of Output MSE
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Figure 5.4: Convergence of MSE of RF peak amplitudes 1-16 using the steepest descent
control algorithm (machine precision, no noise) with ‘44A’ transmitter.

TABLE 5.1: RF Pulse Peak Tolerances After 400 Iterations (Machine Precision, No Noise)

Control Alg. MSE out Ens err MaxE 1-8 MaxE 9-13
RLS 3.0e-6 2.8¢c4 5.3¢4 4.0c4
Steepest Descent. 4.0c4 4.6¢-3 8.2e-3 7.6e-3

TABLE 5.2: Zero-crossing Errors (ns) After 400 Iterations (Machine Precision, No Noise)

Cont. Alg. 1 2 3 4 5 6 1 8 9 10 i 12
RLS 0 -704 -21.8 0 0 0 0 0 0 0 0 0
St. Desc. 0 -1180 92 0 0 0 0 0 0 0 0 0
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TABLE $.3.a: Normalized RF Peak Values Obtained with RLS Control Algorithm (Machine Precigsion, No Noise)

Peak Ideal Average After 400 iter Diff (3-2) Diff (4-2)

0.0157 0.0168 0.0157 0.0011 0.0001

2 -0.0833 -0.0819 -0.0835 0.0015 -0.0002

3 0.1901 0.1905 0.1898 0.0004 -0.0004

4 -0.3158 0.3170 -0.3163 -0.0012 -0.0005

5 0.4454 0.4450 0.4453 -0.0004 -0.0002
6 -0.5696 0.5702 -0.5697 -0.0007 -0.0001

7 0.6813 0.6823 0.6817 0.0010 0.0004

8 -0.7771 0.7771 -0.7771 -0.0000 0.0001

9 0.8556 0.8568 0.8559 0.0012 0.0003
10 -0.9164 <0.9169 -0.9166 -0.0006 -0.0002
11 0.9598 0.9608 0.9599 0.0009 0.0001
12 -0.9872 -0.9884 -0.9876 -0.0013 -0.0004
13 1.0000 1.0000 1.0000 0.0000 0.0000
14 -1.0001 -1.0014 -1.0003 -0.0013 -0.0003
15 0.9892 0.9897 0.9894 0.0005 0.0002
16 -0.9692 -0.9701 -0.9694 -0.0010 -0.0002

TABLE 5.3.b: Normalized RF Peak Values Obtained with Steepest Descent Control Algorithm (Machine
Precision, No Noise)

Peak Ideal Average | After 400 iter Diff (3-2) Diff (4-2)
1 0.0157 0.0202 0.0202 0.0046 0.0046
2 -0.0833 0.0747 0.0751 0.0086 0.0082
3 0.1901 0.1867 0.1873 -0.0034 -0.0028
4 -0.3158 0.3190 03191 -0.0032 -0.0033
5 0.4454 04453 04453 -0.0001 -0.0001
6 -0.5696 0.5637 0.5639 0.0059 0.0057
7 0.6813 06762 0.6763 -0.0052 -0.0051
8 0.7771 0.7759 -0.7758 0.0013 00013
9 0.8556 0.8542 0.8547 -0.0015 -0.0010
10 -0.9164 0.9102 09112 0.0062 0.0052
11 0.9598 0.9519 09522 -0.0079 -0.0076
12 -0.9872 -0.9836 -0.9829 0.0035 0.0042
13 1.0000 1.0000 1.0000 0.0000 0.0000
14 -1.0001 -0.9941 -0.9959 0.0060 0.0042
15 0.9892 09761 09778 00131 00114
16 -0.9692 09716 -0.9698 -0.0024 -0,0006
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2. Performance of the Control Algorithm under Non-ideal Conditions

The tracking performance of the control algorithms are tested by introducing a
noise burst into the TDW parameters once the peak amplitudes of the RF pulse have
converged for 200 iterations. White gaussian noise is added to the TDW parameters from
iteration 200 to 210. The RF pulse is driven out of tolerance and then allowed to
reconverge. Observing the RLS algorithm’s tracking performance in Figures 5.5 and 5.6
after iteration 210, less than 25 control iterations were needed to bring the RF pulse’s peak
amplitudes back in tolerance. The RLS control algorithm required a noise variance of 0.04
to drive the RF peak amplitudes out of tolerance. The steepest descent algorithm used a
noise with variance of 0.01 (one fourth of the noise variance used in the RLS) to drive the
RF peaks out of tolerance. The RF pulse peaks do not reconverge in tolerance until after
iteration 400, as observed in Figures 5.7 and 5.8. Using a noise burst with a variance of 0.04

in the steepest descent control drives the algorithm unstable, and it never regains control.
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Figure 5.5: Peak amplitude tolerances using the RLS control algorithm (machine precision,
no noise); tracking performance with noise burst (variance 0.04) during iterations 200-210.
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Figure 5.6: MSE of RF peaks 1-16 using the RLS control algorithm (machine precision, no
noise); tracking performance with noise burst (variance 0.04) during iterations 200-210.
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Figure 5.7: Peak amplitude tolerances using the steepest descent control algorithm
(machine precision, no noise); tracking performance with noise burst (variance 0.01)
during iterations 200-210.
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Figure 5.8: MSE of RF peaks 1-16 using the steepest descent control algorithm (machine
precision, no noise); tracking performance with noise burst (variance 0.01) during

iterations 200-210.

3. Finite Bit Resolution, Additive Noise, and Parameter Drift
The control algorithms are implemented in machine precision; however, the RF
pulse and TDW are digitized at eight-bit resolution. The SNR of the TDW and RF pulse are
lowered by adding white gaussian white noise to the signals; the white noise has a variance

of 1.166 x 104. The SNR of the TDW and RF pulse for these simulation results are 64dB
and 73dB.

The tracking performance of the control algorithms are tested while time
variations occur in the simulated transmitter. The time variations introduced are “drift” of
the transmitter and transmitter “switches.” The poles and zeros that make up the
transmitter’s IIR model are allowed to change slightly or “drift” to a new location within
the predetermined bounds in order to simulate the transmitter’s time varying characteristics
over days and weeks. These new poles and zeros correspond to “switching” to a new

transmitter when the change is abrupt. The amount of variation occurring to the poles and




zeros with drift and transmitter switching is shown in Figure 5.9 for the RLS coatrol
algorithm and Figure 5.10 for the steepest descent control algorithm.

In Figures 5.11-5.18, drift occurs every fourth iteration (see Figures 5.9 and
5.10), which is displayed as “Drift 4/1” in these graphs. The movement of poles and zeros
for 400 iterations corresponds to a 25 hour period of slow transmitter time variations [Ref.
3: p. 86]. Transmitter switches occur at iteration 150 and 300, as indicated by the symbol
%. It was observed that the percentage of pulse peaks in tolerance for both control
algorithms is very similar under these conditions.

The amount of fluctuation in the simulated transmitter due to drift and switching
is random; therefore, direct comparison between pulse peak errors using different control
algorithms is not beneficial. However, overall observations of how the algorithms respond
to time variations can be made. Both algorithms are able to compensate for slow time
variations in the simulated transmitter.

Figures 5.11-16 show the convergence performance of the RLS and steepest
descent algorithms under non-ideal conditions. For both the RLS and steepest descent
algorithms, as seen in Figures 5.11 and 5.14, the ensemble error occasionally exceeds the
tolerance level while the individual peak errors (see Figures 5.12, 5.13, 5.15, and 5.16)
remain in tolerance.

Figures 5.17 and 5.18 show the MSE convergence performance of the two

algorithms when slow time variations are introduced in the simulated transmitter every

fourth iteration. Both algorithms converge to a similar MSE of approximately 1x10°3 from
iteration 75 to 150. At iteration 150, a transmitter switch is simulated. It is arbitrary whether
the MSE will rise or lower. If the transmitter switch decreases the error between the
simulated transmitter and the given reference model, the MSE decreases. If the switch
provides a worse estimate of the reference model, the MSE rises. The RLS and steepest
descent algorithms have difficulty converging to a lower MSE once a switch is made. The
quantization noise and additive white noise degrade the tracking performance of the
algorithms [Ref. 9: p. 67-81]. The RLS control algorithm, as with the steepest descent
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control algorithm, is sensitive to noise and large shifts in the poles and zeros of the
transmitter model.

The error in the zero-crossing times for these trails are provided in Table 5.4 for
both control algorithms. The second and third zero-crossing that were out of tolerance in
the ideal environment are also out of tolerance in this environment, but to a greater extent.

After 400 iterations, errors in the RF pulse peaks for both control algorithms are
provided in Table 5.5 and Tables 5.6.a and 5.6.b. Table 5.5 lists the MSE, ensemble error,
and maximum individual peak error in half-cycles 1-8 and 9-13 with eight bit sampling and
a noise of variance 1.2e-4. These errors were all within tolerance specifications. Table 5.6.a
for the RLS algorithm, and Table 5.6.b for the steepest descent algorithm list individual RF
pulse peaks taken after iteration 400.
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Figure 5.9: Drifting of the pole and zero magnitudes including step changes for the RLS
control algorithm (8 bits, noise variance of 1.2e-4). Transmitter switches at iteration 150 &
300 and drift occurs every 4 iterations.
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Figure 5.10: Drifting of the pole and zero magnitudes including step changes for the
steepest descent control algorithm (8 bits, noise variance of 1.2e-4). Transmitter switches
at iteration 150 & 300 and drift occurs every 4 iterations
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Figure 5.11: Ensemble error using the RLS control algorithm ( 8 bits, noise variance of
1.2¢-4). Transmitter switches at iteration 150 & 300 and drift occurs every 4 iterations

39




Convergencs of Maximum of Errors 1-8
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Figure 5.12: Maximum error of peaks 1-8 using the RLS control algorithm (8 bits, noise
variance of 1.2e-4). Transmitter switches at iteration 150 & 300 and drift occurs every 4
iterations.
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Figure 5.13: Maximum error of peaks 9-13 using the RLS control algorithm (8 bits, noise
variance of 1.2e-4). Transmitter switches at iteration 150 & 300 and drift occurs every 4
iterations.
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Figure 5.14: Ensemble error using the steepest descent control algorithm (8 bits, noise
variance of 1.2e-4). Transmitter switches at iteration 150 & 300 and drift occurs every 4
iterations.

Convergence of Maximum of Errors 1-8

0
10 AL T A ¥ T R R}
Foo o " -AN/FPN-44A -~ 10MHz Antenna  Pulse 1 i
Lo -~ Steepost Descent - : 1
i Final Error:
'\‘” S Mu=0.8 & 0.3 tau=0
Eir Max 1-8 (--): [o R 009984 Wal noise=1.2e-4
10 j‘\i: R T T . Dl’lﬁ a1 bits=8 E
P yorornr S ]
§ " ‘_; .% =
2 Y : -
f‘.‘_’ " ”)’ “‘ L S el N A A T o
10.2L‘L : ! ' : ‘I\‘"\" ;’ .' : It ;l\"l' Yoo l' . RIS \'!‘JA' } ‘J*”\V .14'3
Eo o ] i L IS
£ coooa 2 4 . 1
10'3 1 " L 1 L n L
(o] 50 100 150 200 250 300 350 400

Iterations, t

Figure 5.15: Maximum error of peaks 1-8 using the steepest descent control algorithm (8
bits, noise variance of 1.2e-4). Transmitter switches at iteration 150 & 300 and drift occurs

every 4 iterations.
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Convergence of Maximum of Errors 9—13
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Figure 5.16: Maximum error of peaks 9-13 using the steepest descent control algorithm (8
bits, noise variance of 1.2¢-4). Transmitter switches at iteration 150 & 300 and drift occurs
every 4 iterations.
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Figure 5.17: MSE of peaks 1-16 using the RLS control algorithm (8 bits, noise variance of
1.2e-4). Transmitter switches at iteration 150 & 300 and drift occurs every 4 iterations.
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Convergence of Output MSE
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Figure 5.18: MSE of peaks 1-16 using the steepest descent control algorithm (8 bits, noise
variance of 1.2e-4). Transmitter switches at iteration 150 & 300 and drift occurs every 4
iterations.

TABLE 5.4: Zero-crossings Errors (ns) After 400 Iterations (8 Bits, Noise Variance of 1.2¢-4)

Cont. Alg. 1 2 3 4 54 6 7 8 9 10 11 12
RLS 0 -306.8 | 488 0 0 0 0 0 0 0
St Des 0 -1105 | 499 0 0 0 0 0 0 0

TABLE 5.5: RF Pulse Peak Tolerances After 400 Iterations (8 Bits, Noise Variance of 1.2e-4)

Control Alg. MSE out Ens err MaxE 1-8 MaxE 9-13
RLS 0.0004 0.0044 0.0077 0.0040
Steepest Descent 0.0004 0.0052 0.0100 0.0043
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TABLE 5.6.a: Normalized RF Peak Values with RLS Control Algorithm (8 Bits, Noise Variance of 1.2e-4)

Peak Ideal Aversge Last iter Diff (3-2) Diff (4-2)
1 0.0157 0.0240 0.0252 0.0083 0.0096
2 -0.0833 -0.0809 -0.0840 0.0025 -0.0007
3 0.1901 0.1952 0.2017 0.0050 00116
4 0.3158 0.3212 03217 -0.0054 00119
5 04454 04458 04454 0.0004 -0.0001
6 -0.5696 -0.5700 0.5714 -0.0004 -00018
7 06813 0.6840 0.6891 0.0027 0.0077
8 0.7771 0.7776 0.7815 -0.0005 -0.0044
9 0.8556 0.8554 0.8571 -0.0003 0.0015
10 09164 0.9184 -0.9160 0.0021 0.0004
1l 0.9598 0.9607 0.9580 0.0009 0.0018
2 0.9872 -0.9852 0.9832 0.0019 0.0040
13 1.0000 1.0000 10000 0 0
14 -1.0001 -1.0019 -1.0000 -0.0018 0.0001
15 0.9892 09875 0.9832 0.0017 -0.0060
16 -0.9692 -0.9705 0.9748 0.0014 -0.0056

TABLE 5.6.b: Normalized RF Peak Values with Steepest Descent Control Alg. (8 Bits, Noise Variance of 1.2¢-4)

Peak Ideal Average After 400 iter Diff (3-2) Diff (4-2)
1 0.0157 0.0135 0.0169 -0.0021 0.0013

2 -0.0833 -0.0699 -0.0763 0.0134 00071
3 0.1901 0.1870 0.1864 -0.0031 -0.0037
4 -0.3158 0.3205 -0.3136 -0.0047 0.0022
5 0.4454 04464 0.4492 0.0010 0.0037
6 4.5696 -0.5628 -0.5678 0.0068 0.0018
7 0.6813 0.6752 0.6780 -0.0061 -0.0034
8 0.7771 0.7761 -0.7712 0.0011 0.0059
9 0.8556 0.8548 0.8475 -0.0008 -0.0082
10 09164 -0.9104 -0.9068 0.0059 0.0096
1 0.9598 0.9517 0.9492 -0.0082 -0.0107
12 .9872 -0.9832 -0.9746 0.0040 0.0126
13 1.0000 1.0000 1.0000 0 0
14 -1.0001 -0.9950 -0.9831 0.0051 0.0170

15 0.9892 09763 0.9746 -0.0129 -0.0146
16 0.9692 -0.9706 20,9576 -0.0015 00115




Additional results on the MIMO RLS control algorithm are included in Appendix
A. In obtaining these results, the RLS algorithm is tested with the TDW and RF sampled

with eight bit resolution and additive white noise of variance 9x10*. This is the same
operating environment that is used to test the steepest descent control algorithm in Ref. 3:
p. 121; the results obtained in Appendix A can be directly compared to those in Ref. 3.

In Appendix B, the MIMO RLS control algorithm is derived using a MIMO
model with memory that uses past TDW parameter vectors to update the present TDW
vector. "I'he control algorithm with memory does not perform as well as the MIMO RLS
control algorithm without memory. The algorithm with memory is tested under ideal
conditions only; results are found in Appendix B.

C. PEAK AND ZERO SAMPLING
The control algorithm using only the RF peak amplitudes of the first 16 half-cycles

does not take into account the error in the desired locations of the zero-crossings. Letting
the MIMO RLS controller, under ideal conditions described in section B.1 of Chapter V,
run for 1000 iterations results in the RF pulse peaks converging to the ideal peaks with an

error of approximately *1x 107 in each peak. Even with the best case, the second and third
zero-crossings are still out of tolerance. By expanding the vector parameters that represent
the RF pulse to include peak amplitudes and the sample values at the desired zero-crossing
locations, control over the zero-crossings is obtained.

The x vector containing the TDW parameters remains unchanged with the 16 half-
cycle peak amplitudes. The y vector is expanded to 32 parameters. The odd values (1,
3,...,31) are the RF pulse peaks, and the even values (2, 4,..., 32) are the desired zero
crossings. The desired zero crossing samples of the RF pulse are obtained by first locking
onto the standard zero-crossing (SZC) and then sampling at multiples of 5ys for a total of
25Us before and 50ys after the SZC. The sampling frequency is 10MHz which corresponds
to a sampling interval of 100ns.
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The desired zero-crossing tolerances are less than +100ns after the third zero-crossing
of the pulse; therefore, interpolation is performed to increase the accuracy in sampling the
desired zero-crossing locations. The following procedure is used for interpolation. Samples
are found on either side of the SZC and the SZC location is estimated by linear interpolation
between these points. The increase in accuracy of the SZC location is used to better
approximate the desired locations of the remaining zero-crossings. Linear interpolation is
performed based on the assumption that the RF pulse has a linear slope at crossing points.

A diagonal weighting matrix, W, is used in the TDW update (equation 4.16) to weigh
the RF parameter errors as desired. Particularly elements 4 and 6 of the RF error vector
required a higher weighting than the others; their weights were chosen to be 15 and 10,
respectively. Positions 4 and 6 of the RF error vector are the second and third zero-
crossings.

The inverse correlation matrix Py in the control algorithm is re-initialized every 50
iterations. When sampling both peaks and zero-crossings, Py, is re-initialized as

Pp=Pp+0lL
where ¢ is in the range of 30 to 50, which is smaller than ¢ in the case of peak sampling
only.

The most impressive results are obtained when shaping the RF pulse with samples of
the RF pulse peaks and zero-crossings. Under ideal conditions, all zero-crossings are in
tolerance after 110 iterations of control, and the RF half-cycle peak amplitudes converge to
below tolerance values after 15 iterations. The convergence of the three measures of pulse
peak error is shown in Figure 5.19. Table 5.8 lists the RF pulse peak tolerances and Table
5.9 lists the individual RF pulse peak amplitude errors after 400 iterations.

Figure 5.20 illustrates the convergence of the MSE of the RF pulse peaks 1-16. The
convergence of the MSE of the RF pulse peaks 1-16, after 400 iterations, is observed to be
higher compared with the peak sampling case. This should be expected when increasing the

number of parameters required to form a least squares fit.




The second zero-crossing is most frequently out of tolerance. Figure 5.21 illustrates
the second zero-crossing initially deviating 225ns from the desired location. After
approximately 110 iterations of control, the second zero-crossing falls within the
acceptable tolerance of 100ns.

Figure 5.22 and 5.23 show plots of the TDW and RF pulse respectively, obtained after
400 iterations. The second half-cycle of the TDW in Figure 5.22 has a peak amplitude close
to zero. This is unusual; however, the resulting RF pulse (synthetic RF pulse) in Figure 5.23
is very similar to the ideal pulse.

The performance of the RLS algorithm has degraded when tested under non-ideal
conditions of additive noise and eight bit digitization of the RF waveform. The discussion
and results reported here for the MIMO RLS control algorithm using pulse peaks and zero-
crossings do not encompass all possible scenarios of the transmitter operation; these results
may be considered preliminary. Further research is necessary to explore the strengths and
weaknesses of this approach.
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Figure 5.19: Peak amplitude tolerances using the RLS control algorithm (machine
precision, no noise) when sampling peaks and zero-crossings.
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Figure 5.20: MSE of RF peaks 1-16 using the RLS control algorithm (machine precision,
no noise) when sampling peaks and zero-crossings.
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Figure 5.21: Second zero-crossing error (ns) using the RLS control algorithm (machine
precision, no noise) when sampling peaks and zero-crossings.
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Figure 5.22: TDW produced after 400 iterations using the RLS control algorithm (machine
precision, no noise) when sampling peaks and zero-crossings.
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Figure 5.23: Converged synthetic (dash) RF pulse with ideal (solid) after 400 iterations
using the RLS control algorithm (machine precision, no noise) when sampling peaks and
zero-crossings.
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TABLE 5.7: RF Pulse Peak Tolerances After 400 Iterations with RLS Control Algorithm (Machine Precision, No

TABLE 5.8: Normalized RF Peak Values with RLS Coutrol Algorithm (Machine Precision, No Noise, Peaks and

Noise, Peaks and Zero-crossings)
MSE out Ens err MaxE 1-8 MaxE 9-13
0.0011 0.0071 0.0111 0.0117

Zero-crossings)

Peak Ideal Average _ After 400 iter. Diff (1-3) Diff (2-3)

1 0.0157 0.0210 0.0203 0.0054 0.0046
2 0.0833 0.0901 0.0921 -0.0067 -0.0088

3 0.1901 0.1973 0.1976 0.0072 0.0075
4 0.3158 0.3122 0.3097 0.0036 0.0061
5 0.4454 0.4390 0.4379 -0.0064 -0.0076
6 0.5696 -0.5606 £.5585 0.0090 0.0111
7 0.6813 0.6844 0.6843 0.0030 0.0030
¥ 0.7771 -0.7803 0.7822 -0.0032 -0.0050
9 0.8556 0.8486 0.8487 -0.0071 -0.0069
10 0.9164 0.9195 0.9209 0.0031 -0.0046
11 0.9598 0.9695 0.9715 0.0097 0.0117
12 -0.9872 -0.9900 0.9915 £0.0028 -0.0043
13 1.0000 1.0000 1.0000 0 0

14 -1.0001 -1.0034 -1.0015 0.0033 0.0014
15 0.9892 0.9958 0.9936 0.0066 0.0044
16 0.9692 09787 0.9735 -0.0096 -0.0043

D. RLS CONTROL ADVANTAGES AND LIMITATIONS

The MIMO RLS controller is considered to operate in a slow time-varying
environment at a given operating point. The RLS algorithm in this environment is typically
an order of magnitude faster in convergence than the steepest descent algorithm [Ref. 8: p
491-501). This was observed in the ideal simulation environment.

The greatest advantage with the MIMO RLS control algorithm is the use of a time-
varying reference model. The MIMO RLS control algorithm uses a MIMO RLS model
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which allows the reference model to adapt to changes and time variations in the transmitter.
On the other hand, the steepest descent algorithm uses a fixed impulse response matrix
when modeling the transmitter.

The MIMO RLS control algorithm is subject to the stalling phenomenon. The
algorithm’s inverse correlation matrix, P, rapidly decreases numerically until the
algorithm stalls. The inverse correlation matrix is continually reset every 50 iterations to
overcome this problem

Another limitation of the MIMO RLS control algorithm is its computational
complexity. It requires MIMO RLS estimate of the reference model and optimal TDW half-
cycle peak amplitudes at each iteration. To decrease the number of computations, the
recursive least squares estimate of the MIMO model could be carried out every few
iterations rather than at every iteration once the algorithm reaches steady state TDW

parameters.
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V1. CONCLUSIONS

A. CONCLUSIONS

As part of the US Coast Guard’s effort to redesign and modernize the AN/FPN-44A
tube type transmitter with automatic Loran pulse shaping and control, this thesis developed
a8 MIMO RLS algorithm. This control algorithm shapes the transmitted RF pulse to match
an ideal pulse by producing a near optimal TDW. The MIMO RLS control algorithm uses
a MIMO RLS estimate of the transmitter as a reference model. The RLS algorithm is
implemented on a simulated transmitter, and the RF pulse peak tolerances and zero-
crossing errors are studied. The performance of the RLS algorithm is compared to another
method of control, the steepest descent algorithm.

When using the first 16 RF pulse peaks to represent the transmitter output, the MIMO
RLS control algorithm was able to shape the pulse, but it was unable to bring the zero-
crossings into tolerance. Using these 16 output parameters, the MIMO RLS control
algorithm proved to have faster convergence and better ability to match the RF pulse to the
ideal over the method of steepest descent. The use of a MIMO RLS model of the transmitter
in the RLS controller was a significant advantage. The MIMO model adapts to the non-LTI
characteristics in the transmitter.

By representing the RF pulse with parameters of the first 16 pulse peaks and samples
of the first 16 desired zero-crossing locations, the MIMO RLS control algorithm was able
to decrease the half-cycle peak amplitude errors below their tolerance levels and bring the
zero-crossings to within specification. When the RF pulse parameters are expanded from
16 to 32, the least squares formulation introduces more error into the RF pulse peak
amplitudes; however, all pulse specifications are still met.

In the non-ideal simulation, where the simulated transmitter’s input and output are
corrupted with white noise and digitized with eight bits, the performance of the control
algorithms degraded. The RF pulse peaks are not in tolerance for all control iterations and

the second and thirc .ero-crossings do not meet specifications.
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B. RECOMMENDATIONS FOR FURTHER STUDY

To improve the controller’s performance in shaping the RF pulse, noise reduction is
necessary. The control algorithms can not decrease the error in the RF pulse parameters
below the level of the noise. Filtering the noise prior to control might improve the
performance of the control algorithms.

Studying the characteristics of the RF pulse’s quantization noise has lead to the
conclusion that sampling the RF pulse with eight bits or more produces noise that is
essentially white. By averaging several successively digitized RF pulses, of the same phase
code, the quantization noise can be reduced. A study of the system noise will also be
necessary to gain any advantage from waveform averaging.

If it is not possible to reduce the system noise to meet the specifications, a new set of
acceptable performance figures could be suggested. This may included redeveloping the
error tolerances for the RF peaks and zero-crossings.

Further research on controlling the RF pulse with peak and zero-crossing samples
needs to be conducted. The adjustment (i.e., shifting the zero-crossings) accomplished by
the RLS control algorithm requires further testing and analysis. Better control may be
established by an expanded RF pulse parameter vector to include samples at the quadrature
locations.

When expanding the parameters that represent the signals or using memory to match
the RF pulse to the ideal, the time required to update the TDW increases; the computational
expense of the RLS algorithm may be undesirable. To increase the speed of the RLS
calculations, the fast RLS algorithm may be an acceptable substitute [Ref. 8].
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APPENDIX A

MIMO RLS CONTROL IN A NON-IDEAL SIMULATION
In this appendix, results obtained using the MIMO RLS control algorithm under non-
ideal conditions are included. In a non-ideal simulation, the RF pulse and TDW are subject
to quantization and additive white noise. The signal to noise ratio (SNR) of the RF pulse
and TDW is approximately 67.48dB and 56.29dB. To obtain these SNR levels, the signals

are sampled with an eight-bit resolution, and white noise with a variance of 9.26x 104 is
added.

These results were produced to compare the performance of the MIMO RLS algorithm
with that of the steepest descent algorithm as reported in Ref. 3: p. 120. The steepest
descent algorithm was implemented under the same non-ideal conditions as those
considered here.

The following is a summary of the operating conditions for the results shown in
Figures A.1-6. The sampling frequency was 10MHz. The forgetting factor in the RLS

algorithm was unity. The ECD (1,) was set to zero. The additive noise has a variance of

9.26x104. An eight-bit A/D converter was used to quantize the signals.

Figure A.1 is a plot of the MSE convergence of the RF pulse peaks 1-16 to their ideal
values. The steady state MSE, shown in Figure A.1, using the RLS algorithm is a close
resemblance of the steady state MSE using the steepest descent method under the same
operating conditions [Ref. 3, p. 121, Figure 5.12.a]. The noise power is observed as the

floor of the MSE convergence in both sets of results.

The RF peak amplitudes are in tolerance for 92% of the iterations examined. In Figure
A2, the ensemble error is occasionally out of tolerance. The other measures of peak
amplitude error are well within tolerance limits, as observed in Figures A.3 and A 4.

The second and third zero-crossings listed in Table A.1 are out of tolerance. Even in
the ideal environment, the second and third zero-crossings do not meet tolerance

specifications. These zero-crossings are most frequently out of tolerance when controlling
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the 44A Loran-C pulse, see Chapter V, Section C, for a method of control of the zero-
crossings.

After 400 iterations of control, the RF pulse peak errors are listed in Table A.2, and
the difference of the pulse peak amplitudes from their ideal values are listed in Tabie A.3.
The converged TDW is plotted in Figure A.5. The corresponding RF pulse and the ideal

pulse are plotted in Figure A.6.
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Figure A.1: MSE of peaks 1-16 using thegR;.,S control algorithm (8 bits, noise variance of
3e-4).
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Convergence of Ensembie Error
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Figure A.2: Ensemble error using the RLS control algorithm (8 bits, noise variance of

9.3e-4).
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Figure A.3: Maximum error of peaks 1-8 using the RLS control algorithm (8 bits, noise
variance of 9.3e-4).
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Convergence of Maximum ot Errors 9-13
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Figure A 4: Maximum error of peaks 9-13 using the RLS control algorithm (8 bits, noise

variance of 9.3e-4).
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Figure A.5: TDW produced after 400 iterations using the RLS control algorithm (8 bits,

noise variance of 9.3e-4).
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Figure A.6: Converged synthetic (dash) RF pulse with ideal (solid) after 400 iterations
using the RLS control algorithm (8 bits, noise variance of 9.3¢-4).

TABLE A.1: Zero-crossings Errors (ns) After 400 Iterations with RLS Control Algorithm (8 Bits, Noise Variance
of 93e-4)
Lo
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TABLE A.2: RF Pulse Peak Tolerances After 400 Iterations with RLS Control Algorithm (8 Bits, Noise Variance
of 9.3e-4)

MSE out

Enserr

MaxE 1-8

MaxE 9-13

0.0017

0.0085

0.0180

0.0069
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TABLE A.3: Normalized RF Peak Values with RLS Coatrol Algorithm (8 Bits, Noise Variance of 93¢-4)

Peak Ideal Average After 400 iter. Diff (3-2) Diff (4-2)
1 0.0157 0.0289 0.0336 0.0132 0.0180
2 -0.0833 -0.0853 -0.0840 -0.0020 <0.0007
3 0.1901 0.1969 0.1933 0.0067 0.0032
4 0.3158 0.3226 0.3193 -0.0068 <0.0035
5 0.4454 04476 04538 0.0022 0.0084
6 -0.5696 0.5714 40.5714 -0.0018 0.0018
7 0.6813 0.6344 0.6807 0.0030 -0.0007
8 0.7771 -0.7780 0.7899 -0.0009 -0.0128
9 0.8556 0.8561 0.8487 0.0005 -0.0069
10 0.9164 0.9179 -0.9160 -0.0016 0.0004
11 0.9598 0.9603 0.9580 0.0005 -0.0018
12 -0.9872 <0.9850 -0.9832 0.0022 0.0040
13 1.0000 1.0000 1.0000 0 0
14 -1.0001 -1.0018 -1.0000 -0.0017 0.0001
15 0.9892 0.9864 0.9832 -0.0029 -0.0060
16 0.9692 -0.9701 -0.9748 -0.0010 -0.0056
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APPENDIX B

OPTIMAL TDW ESTIMATION WITH MEMORY
In this appendix, we derive the a MIMO RLS control algorithm with memory. This
derivation, in section A, presents a recursive least squares procedure similar to the
memoryless RLS algorithm in Chapter III, Section A.1 and A.2. In section B of this
appendix, results are presented for the MIMO RLS algorithm under ideal conditions.

A. MIMO RLS CONTROL ALGORITHM WITH MEMORY

The MIMO RLS controller uses a reference model A. The reference model A is a
MIMO RLS estimate of the transmitter at each control iteration (see Chapter IIT). The

transmitter model output at time i is expressed as

y; =Ax
where A= [[AO} [A 1} [ANJJ s
- X q
and X, = xnz-l .
*n-N|

Column vector x; is composed of the current TDW parameter vector, x,,, and past TDW
parameter vectors, (Xp.1, Xp-2,-.., X.N). Each submatrix of A has a column width equal to

the number of parameters in vector x, (TDW parameter vector), and the number of rows
are equal to the length of §, (RF parameter vector). N is the order of the system [Ref. 14].
1. The Least Squares Method
The vector of errors is expressed as

€ = Yopt - ¥;»




whereyq,,isavectaofidealkauhepanmem.Thesumof:qwedwasis

n
T
T ¥ Oopt=Ai%) Gopr=AiXy-
i=-0
or is expanded to become
n
T xI T _JT T T
ie
N |
Substituting A.x, = Z Aj‘l’ ‘1’ Z n. JmequatnonB 1, where i is the time index;
j=0
we then have
Z yoptyopt Z {Z xn =i’ yopt}
n N /N T
Zyoptz A¥n_ k- Z(){Z;,){Exn _]A_] Ag¥n. k”
1=V )=

We assume x,, is independent of time index i. Setting the partial derivative of J with respect

to vector x, equal to zero

N
T T
ax_ - Z{ -24 yOPt+kZO2A0Akxn-k} =0 B.2)

switching the index of summation of i and k and rearranging terms in equation B.2 yields

n n N

T T
Y, (AgApx, = Y AgYopt™ Y {ZAoAk"n k} (B.3)
1-0 i-0 k-=11.0

Let the autocorrelation matrix be

n
® - Y AJA,, (B.4)
i-0
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and the cross-correlation vector be
N

= ZAoyopt L {ZAgAk n- k} ®.5)
k-11i.0
Substituting equations B.4 and B.S into equation B.3, produces a simplified matrix form
Dy X 5 = Yo, (B.6)
and letting P! = &, yields
Py 1x n =Y B.7)

The least squares solution for x, from equations B.6 and B.7 is
"n=q)n-1 Y =PoYp

2. The Recursive Least Squares Method

For the recursive update of x;, we express equation B.7 at time index (n+1)

N
T T
Posi ! Xae1 = Yot AG D v~ ¥ ATV AT X L B

Substituting equation B.7 for vy, in equation B.8 yields

- - + T + T +
Pyl Ixn+l=Pnl"n"’Aé)n b yopt Z (A(tl b An l) X0k (B.9)

T T
Adding (AJ*D AZVx ) - (AF*D T AZ*Vx ) on the right side of equation B.9 and
grouping terms such that
(n+ l)T @+ 1
Pn Xy + (AO Ay x = Pn+1 Xp,

and

T
- m+1) (n+1) (n+l> m+1 n+l) n+l
(Ao A n 2: (Ao A )x = Z: (AO A n-k’
k-0

equation B.9 becomes

62




Pooi! Xpy1 = Poer  xg + A‘"’l’ Yopt™ EAO"“’ "’lx ok (B.10)

Multiplying both sides of equation B.10 by Pp,;, and expressing

N
'r T T( )
(n+1) @+ 4 @+l (@+1) - (n+1)
{Ao’ Yopt™ Z (Ag "~ Ay ”‘n-k} as {Ao [Yopt k):o Ay xn-kJ}’

yields the final recursive equation for x,,)

Xnel = Xn+ Ppyl A(n’h L°pt ZA""I’ , (B.11)

\_._/

N
(n+ l)
where Yopt~ Z Ay *a k™ Sm.ln

For the recursive solution of Py, 1, let

T
Pa =AP T4 A AR (B.12)

Following on the lines of equation 4.17 - 4.20 the recursive equation for P, | becomes
" -1

1 (m+1) el 7T @+1) 1

Ppe1= Xpn‘ T P Aq I+ Aon ’—P Ag’ .Y % Py

B. RESULTS OF MIMO RLS CONTROL ALGORITHM WITH MEMORY

The MIMO RLS control algorithm is tested under ideal conditions, as in Chapter V,
Section B.1. The signal to noise ratio (SNR) of the TDW and RF pulse are approximately
81dB and 99dB, respectively. The 16 parameters that represent the TDW and RF pulse are
the first 16 half-cycle peak amplitudes. Let N = 2, so x; becomes a vector of size 48 x 1,
and A becomes a matrix of size 16 x 48. A forgetting factor of A = 1 is used.

Figure B.1 shows the three measures of RF pulse peak error (ensemble error,
maximum of individual peak errors 1-8 and 9-13). The RF pulse peak errors converge to
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acceptable levels by iteration 50; however, undesirable perturbations occur after iterations
300 and 350 which drive the pulse errors out of tolerance.

Figure B.2 illustrates the convergence of the MSE of RF pulse peak errors 1-16. When
using memory in the MIMO RLS control algorithm, there is no observable improvement in
the pulse peak errors or the MSE. The pulse peaks are in tolerance for 96.9% of iterations
examined.

Table B.1 provides a listing of the zero-crossings after 400 iterations that exceed
tolerance specifications. The second zero-crossing in Table B.1 is out of tolerance while all
others are acceptable. The RF pulse peak tolerances are listed in Table B.2 and the
individual RF pulse peak errors (1-16) are listed and analyzed in Table B.3.; both after 400
iterations. The pulse peak tolerances were met using the MIMO RLS algorithm, but zero-
crossings were not.

Comparing the convergence of the MSE using the RLS algorithm without memory, in
Figure 5.2, to the MSE convergence with memory, in Figure B.2, the convergence without
memory (past TDW information) performs better. The spurious disturbances observed in
the MSE for the RLS algorithm with memory are absent for the RLS without memory.

When white noise with a variance of 1.2e-4 is added to the TDW and RF pulse or the
signals are sampled with eight bit resolution, the results are unsatisfactory. The lower SNR
accentuates the perturbations and degrades the tracking ability of the MIMO RLS
algorithm with memory.
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Figure B.1: Peak amplitude tolerances using the RLS control algorithm with N = 2
(machine precision, no noise).
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Figure B.2: MSE of RF peaks 1-16 using the RLS control algorithm with N = 2 (machine
precision, nc noise).
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TABLE B.1: Zero-crossings Errors (ns) After 400 Iterations with RLS Coatrol Algorithm where N = 2 (Machine
Precision, No Noise)

0 -1043 0 0 0 0 0 0 0 0 0 0

TABLE B.2: RF Pulse Peak Tolerances After 400 Iterations with RLS Coutrol Algorithm where N = 2 (Machine

Precision, No Noise)
MSE out Ens err MaxE 1-8 MaxE 9-13
0.0027 0.0031 0.0055 0.0052

TABLE B.3: Normalized RF Peak Values with RLS Control Algorithm where N = 2 (Machine Precision, No

Noise)
Peak Ideal Aversge After 400 iter. Diff (1-3). Diff (2-3)
1 0.0157 0.0202 00191 0.0045 0.0034
2 0.0833 0.0791 0.0817 0.0043 0.0016
3 0.1901 0.1906 0.1948 0.0005 0.0047
4 03158 03163 03181 -0.0005 0.0023
5 04454 04431 04438 -0.0024 0.0016
6 -0.5696 -0.5681 0.5690 0.0015 0.0006
7 0.6813 0.6830 0.6868 0.0017 0.0055
8 0.7771 0.7739 0.7756 0.0032 0.0015
9 0.8556 0.8549 0.8557 0.0007 0.0001
10 09164 09179 09179 -0.0015 0.0015
1 09598 0.9579 0.9546 -0.0020 -0.0052
12 09872 -0.9894 0.9906 -0.0022 0.0035
13 1.0000 10000 1.0000 0 0
14 -1,0001 -0.9996 -0.9986 0.0005 0.0015
Y 0.9892 0.9892 0.9934 -0.0000 0.0042
16 -0.9692 -0,9680 0.9733 0.0011 -0.0041




APPENDIX C

INTEGRAL CONTROL ALGORITHM
In this appendix we derive a MIMO inverse model using RLS estimation techniques
used in Chapter III for the forward MIMO model. The inverse model is used in an integral
control algorithm, which updates the TDW parameters to drive the RF to the ideal pulse
described in equation 2.1

A. MIMO RLS ALGORITHM FOR THE INVERSE MODEL

The memoryless inverse MIMO model is obtained by reversing the roles of x and y
vectors in the RLS algorithm presented in the previous section. The inverse model allows
direct mapping of the errors in the RF parameters to the TDW parameters. The output of

the inverse model is expressed as:

iSBy,

where vector y is the RF pulse parameters of the transmitter output, B is the coefficient

matrix of the inverse model, and vector X is the estimated TDW half-cycle peak

amplitudes. The error vector, at time index i, is given by:

& =X-X

(C.1)

i9
where x; is a vector of the actual TDW parameters. Forming a performance measure as a

sum of squared errors and following on the lines of the development in equation 3.4 to

equation 3.7 yields
n . T n 3 T
21 A.n'l(xiyi YW = 21 Al-lp (y;¥;, )W, (C.2)
la }

Defining the autocorrelation matrix,
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n
n-i T
‘bn = Z A (yiyi YW, (C3)

i=1
and the cross-correlation matrix,
n . T
r =Y A" oy Hw, (C4)
el
provides the solution
B=T, &,

Derivation for the recursive least squares estimate of the inverse MIMO reference
model, B, again follows the same procedure as the forward MIMO reference model, A,
developed in the previous section. The recursive update equation for the inverse MIMO
model parameters is

Bas1 =Bo+ €41 Ynet' WPy,
where e,,1 = (Xp41 - B Yn41), and the recursive expression for the inverse autocorrelation
matrix is

-1
lp _1 1 1
Ppy1 = ipn' Y P, Yn+[l+y§+1W(XPn)yn+J yn+1TW 3 P,.

B. INTEGRAL CONTROL ALGORITHM

By employing an inverse reference model, the error between the ideal and the actual
RF pulse parameters can be used to update the TDW parameters. This relationship is
expressed as

ex(ll) = Bey(n), (C.5)




wherevectorey(“)=(yop¢-yn).mdBistheinvemereferemmodel.'l‘hemvectore,m
is scaled and then summed with the TDW parameter vector x,, to produce the updated TDW

parameters x,.,.;. The expression of the integral control scheme is

Xge1 = Xg + 0 &), (C6)
where0<a < 1.
Figure C.1 shows the block diagram for the integral controller; the initial TDW
parameters are set to arbitrary values. The closed loop transfer function [Ref. 11, 12] of
Figure C.1 with an integrator in the forward path is

1
Ba(m)’r oBT

- z-(1-a(BT)) °’

Y (2)

T (C7

@ 1
t R
op 1+Ba(z_1)T

where T represents the actual transmitter, and B is the estimated inverse model of the
transmitter.

If B is an accurate inverse model where BT = 1, then the controller will have a pole at
(1- a). A small value for a puts the pole close to the unit circle. The controller is marginally
stable for a very small a.

If B is not an exact inverse model so that BT = 1 + ¢, then the controller will have a
pole at (1 - a (1 + €)). For guaranteed stability, 0 < o < 1. Small values of o between 0.1
and 0.001 were used in the actual control algorithm, which produced the best TDW update
performance.

The integral control algorithm closely resembles the steepest descent control
algorithm, discussed in Chapter IV. The factor o, is comparable to the adaptive constant i
of the steepest descent algorithm. The overall performance of the integral control algorithm
is similar to that of the steepest descent method discussed in Chapter V; therefore, detailed
results of the tests and analysis ai¢ not included in this report.
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Figure C.1: A block diagram of the integral control scheme.

The most important result was found when testing the algorithm with samples of the
RF pulse peaks and the desired zero-crossings. The RF parameter vector is simply
expanded to 32 elements; the odd values (1,3,...,31) are the first 16 pulse peaks, and the
even values (2,4,...,3"" are the first 16 samples of the desired zero-crossings. The integral
control algorithm was able to control the RF pulse half-cycle peak amplitudes and force the
zero-crossings in tolerance when the simulated transmitter was run under ideal conditions.
A weighting matrix was used to emphasize second and third zero-crossings.

Any degradation to the TDW or the RF pulse due to waveform quantization and
additive noise limits the integral control algorithm’s ability to meet zero-crossing
tolerances in Table 2.1. Additive noise also decreases the algorithms performance to match
the RF half-cycle peak amplitudes to the ideal amplitudes. Even though the noise is a
limiting factor, the integral control algorithm has pulse shaping capabilities.
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APPENDIX D

MATLAB PROGRAM LISTING

The MatLab program control algorithms are called by the simulated transmitter’s main
file SIMZ. The following MatLab M-files include the algorithm to develope an initial
MIMO reference model for the control algorithm, and the MIMO RLS control algorithms
with and without memory; and the integral control algorithm of Appendix C is also
included. [Ref. 15]

Two MatLab programs from the initial development of the tranmsmitter simulator,
written by Bruckner [Ref. 3], have been modified to accomodate for the MIMO RLS
controller and the integral controller. The revised M-files are SETUP and DISPZ, these two
programs are not listed here. The M-file ENVEL was modified to sample the half-cycle
peaks and the desired zero-crossing locations,; it is named ENVELPZ and listed below.

MIMO RLS Model Estimation

% convA.m

% Estimates a model (M,(D+1)*N) from x,y pairs obtained from steepest

% descent algorithm.

% model initialized as zeros(M,(D+1)*N)

% PgainM initialized as 100000*eye((D+1)*N,(D+1)*N), initialize loop = 1, ff = 1
% forgetting factor < 0.98 drives Pgain to zero matrix

% MIMO RLS Model Algorithm by John D. Wood 5/25/93

N=16; % # of input parameters
M=1, % # of output parameters
D=2; % # of delays in Model
ff=1;
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load datad4 % load converged RF and TDW parameters for 44A
% transmitter both dummy load and antenna
PgainM = 100000*eye((D+1)*N,(D+1)*N); % initialize P

model = zeros(M,(D+1)*N); % initialize MIMO model
x = fliplr(tdw44a(:,1:1+D)); % create TDW parameter
x =reshape(x,(D+1)*N,1); % vector with possible prior
% TDW parameters
y =rf44a(:;,D+1); % RF paramter vector
for loop = (1):(2000-D-1) % 2000 x, y pairs to train
% MIMO model
if loop/100 == fix(loop/100)
loop
end % Compute MIMO RLS Model

Kgain =ff*PgainM * x * inv(1 + x’ * ff * PgainM * x);
PgainM =ff*PgainM- Kgain * x’ * ff * PgainM;

msel(loop) = mse(y,(model*x)); % MSE of model tracking
stomodel = model;

ee = y-model*x; % model error

model = model + ee * x’ * PgainM; % RLS update equation

norm1(loop) = sqrt(sum(sum((stomodel-model)."2)));% identify change in model by

% taking norm of difference

% between old and new models
x = fliplr(tdw44a(:,Joop+1:lo0op+D+1)); % update x with new TDW parameters
x = reshape(x,(D+1)*N,1);
y = rf44a(:,loop+D+1); % update y with new RF parameters
end

% display MSE of model convergence

subplot(211), semilogy(mse1(1:100))
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title(“MSE: (y-Ax), CO” "VERGENCE OF ANTENNA MODEL 44A°)
xlabel(‘iterations’), ylabel(‘magnitude’)
subplot(212), semilogy(msel)
title(‘MSE: (y-Ax), CONVERGENCE OF ANTENNA MODEL 44A°)
xlabel(‘iterations ‘), ylabel(‘magnitude’)
print convA48a.ps, pause
% display model norm
subplot(211), semilogy(norm1(1:100))
title(‘NORM OF A(n+1) - A(n)’)
xlabel(‘iterations ‘), ylabel(‘magnitude’)
subplot(212), semilogy(norm1)
xlabel(‘iterations ), ylabel(‘magnitude’)
title(‘NORM OF A(n+1) - A(n)’)
print convA48b.ps

Initialize RLS Controller/ with or without memory

% RLS_INI: Initializes the recursive least squares algorithm

% and provides the function call in a

% text string which is evaluated by the main program.

% RLSMENU changes the values in the simulation.

% See also RLS, RLSMENU, RLSHEAD, RLS_SWP

% All algorithms must at a minimum initialize the following

% variables: yOA, yOD, energy_out, x, tdw, y0, f_call,

% max_volts_A, max_volts_D, for both transmitters, as shown.

% John D. Wood, 4/4/93, rev. 7[1/93
tdw_pci=zeros(len,length(control)); % Input pulse buffer
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rf_pci =zeros(len,length(control));
eval([‘y0’,num2str(N),’_scpt’])

if xmtr_id==2

max_volts_A=5;

x=1.7*sign(-cos(pi*(1:16)"));
tdw=pgen(x,0,ETA);

yOA=max_volts_A*envel(ideal(0,tau));

boost=1.0015;

if N==
max_volts_D=23.7;
f1=10,2=1.0;
elseif N==4
max_volts_D=22.26;
f1=1.0,f2=1.0;
elseif N==2

max_volts_D=22.35;
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% Output pulse buffer

% Load ideal half-cycle peak vals
% for dummy load pulse building
% (variable yOD). Note: ECD

% does not apply.

% 44A Transmitter

% Set desired output max voltage
% (steady-state)

% Initial TDW half-cycle values
% Produce input vector to xmtr
% (positive phase code here--

% phase code is added when

% tdw_pci is filled in SETUP).
% Obtain ideal half-cycle peak
% vals for local ECD, pos

% phase code.

% Used to scale tdws in pulses

% after the one being controlled
% so convergence is faster for

% each one.

% N is decimation factor

% forgetting factor in RLS
% £1 for Dummy load
% {2 for Antenna




f1=1.0; f2=1.0;

elseif N==1
max_volts_D=22.47;

£f1=1.0; f2=1.0;

else

error(‘N must equal 1,2,4 or 8°)
end
yOD=max_volts_D*y0D(:,2),
load rls44_ini

else

max_volts_A=22.24,

x = 4*sign(-cos(pi*(1:16)"));
tdw=pgen(x,0,ETA),

yOA=max_volts_A*envel(ideal(0,tau));

boost=1.02;

if N==8;
max_volts_D=8.14;
f1=1.0;f2=1.0;
elseif N==4
max_volts_D=8.15;
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% Select column & scale

% Initializes Ant & Dum model,
% and P for Ant and Dum Load,
% for 44A Transmitter

% Initializes for 42 transmitter

% Set desired output max voltage
% (steady-state)

% Initial TDW half-cycle values
% Produce input vector to xmtr
% (positive phase code here--

% phase code is added when

% tdw_pci is filled in SETUP).
% Obtain ideal half-cycle peak

% vals for local ECD, pos

% phase code.

ot W




fl1=10,f2=10;

elseif N=2
max_volts_D=8.07;
f1=10;f2=1.0;

elseif N==1
max_volts_D=8.27;
f1=10,2=10;

else

error(‘N must be 1,2,4 or 8’)
end
yOD=max_volts_D*y0D(.,1);
load rls42_ini

end
Fl=num2str(f1),
F2=num2str(f2),

% Select column & scale

% Initializes Ant and Dum model,
% P for Ant and Dum Load

% 42 xmtr

% Initial f factor (dummy load)
% f factor after switch from

% dummy load to antenna

% *** No delays, Model is 16x16, PgainM and PgainC are 16x16 *****x

if xmtr_load=="Antenna *

ff=f2; model = Amod; PgainM = PgainA;
PgainC = 100*eye(16,16);

yO=y0A;

ff=f1; model = Dmod; PgainM = PgainD;
PgainC = 100*eye(16,16);
y0 = yOD;

end
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% load initial parameters

% Dummy load




% BERESREERE Mwel h‘d 2 &l.ys' m - (16:48) mu-ix 222333222222 334323
%if xmtr_load=="Antenna

% initializes model, PgainM, & x with delays for antenna

%load model48a;

% load PgainM48a;

%PgainC = 100*eye(16,16);

%clse

Yoinitializes model, PgainM, & x with delays for dummy

%load model48d;

%load PgainM48d;

%PgainC = 100*eye(16,16);

%end

% ke e 3k 2k 3k 2k 35 2 3¢ 2 56 2 3¢ 2 a8 3 ok ok 34 e 24 3 ke 2 S ok a3 2 e e o e 2 e 3k 3 o ke ke s 3¢ e ok ok 2k 3k 3k o 3k ke 2k ke ak ke 3k ok ok ok ok ok ok ok
disp(‘Initializing RLS’) % control algorithm

f_call = ’[tdw,x,y,model,PgainC,PgainM,loop] =
ris(rf,tdw,PC,ETA, y0,x,ff, model,PgainC,PgainM,loop);’;

boostl = boost.A[O:len_p/2-1 O:len_p/2-1]; % boost for droop , p = pulse #
for p = 1:length(control) % Load simulated buffer for AFG
tdw_pci(:,p) = boostl(control(p))*tdw*(-1)*phasecode(control(p));

end

clear boostl

RLS Contoller without Memory / Also Used for Peaks and Zeros

function [tdw,x,y,model,PgainC,PgainM,loop]=
ris(rf,tdw,PC,ETA, y0,x,ff, model, PgainC,PgainM,loop)
% Recursive Least Squares Control Algorithm using first 16 RF half-cycle peaks
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% This RLS controller can be modified to control Peaks and Zeros by
% substituting envelPZ( ) for envel( ) in the beginning and

% added to the last line y = envel( ).

% A RLS estimate is provided for the transmitter model

% and used to generate a RLS estimate of x optimal.

% John D. Wood 6/1/93 rev(7/6/93)
% PgainC = 100*eye(16,16) initially
% x initial parameters are arbitrary

% model, PgainM, initial parameters are loaded in ris_ini.m
% model and PgainM parameters were converged with convA.m

global mse3 mse4 msel xmtr_id zc ztimes

y = envel(rf,tdw,PC),

if loop/50 == fix(loop/50) & xmtr_id =

PgainC = PgainC + 100*eye(16,16);
loop

end

if loop/50 == fix(loop/50) & xmtr_id =

PgainC = PgainC + 10*eye(16,16);
loop
end

if loop/10 == fix(loop/10)

[z_err, zc_ns]=zcross(rf,tdw,PC);
zc(:,loop) = abs(zc_ns - ztimes);

end

disp(‘model’)

if loop/50 == fix(loop/50) & xmtr_id ==
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% Obtain output half-cycles

% Substitute envelPZ for envel
% when samp peaks & zeros
% 44 transmitter

% Re-initialize PgainC

% 42 transmitter
% Re-initialize PgainC

% store zero-crossing times

% relative to SZC

% 44 transmitter
% every 50 iteratios display




loop

(PgainM)

rank((PgainM))

cond((PgainM))

eig((PgainM))’

disp(‘controller’)

(PgainC)

rank((PgainC))

cond((PgainC))

eig((PgainC))’

end

% if 1oop > 200 & loop<211 % for added noise burst

% x=x+randn(16,1)*.2;

% end

ee =y - model*x; % error for model update
% shut off model udate when
% MSE < 2e-5 to reduce comput

% if mean((y0*(-1)*PC-y).*2) > 2e-5

KgainM =ff*PgainM * x * inv(1 + x’ * ff*PgainM * x); % inverse correlation
% matrix update

PgainM =ff*PgainM - KgainM * x’ * ff*PgainM;

model = model + ee * x’ * PgainM,; % RLS estimate of model

Yoend

KgainC = PgainC*model’*inv(eye(16,16)+model*PgainC*model’);

PgainC = PgainC - KgainC*model*PgainC; % controller inverse

error = yO*(-1)APC - model * x; % correlation matrix update
x = x + PgainC*model’*error; % RLS estimate of optimal x
mse4(loop) = mean(error.A2); % mse of rls to optimal x

79




mse3(loop) = mean((y0*(-1\PC-y).A2), % mse to ideal y

msel(loop) = mean(ee.A2); % mse of model tracking

loop = loop +1;

tdw=pgen(x,PC,ETA); % Added envel( ) at end when
% y = envel(rf,tdw,PC); % sampling RF peaks and zeros

RLS Controller with memory

function [tdw,x,y,model,Pgain,PgainM,loop] =
ris(rf,tdw,PC,ETA,y0,x,ff, model, Pgain,PgainM, loop)

% Recursive Least Squares Control Algorithm with memory

% two previous TDW parameter vector used in control

% model is 16x48, PgainM = 48x48

% A recursive least squares estimate is provided for the transmitter model
% and used to generate a recursive least squares estimate of x optimal
% John D. Wood 6/15/93 rev(7/6/93)

% Pgain = 100*eye(16,16) initially

% x initial parameters are arbitrary

% model, PgainM, initial parameters are loaded in rls_ini.m

% mode] and PgainM parameters were converged with convA.m

global mse3 mse4 msel

y=envel(rf,tdw,PC); % Obtain output half-cycles
if loop/50 == fix(loop/50) % every 50 iterations display
loop % iteration number
(yO*(-1)PC)’ % ideal parameters

y’ % REF pulse parameters
Pgain = Pgain + 100*eye(16,16), % Re-initialize Pgain

end
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eec =y - model*x; % Model error
% Shut off model estimation
%if mean((y0-y).A2) > 2¢-5
KgainM =ff*PgainM * x * inv(1 + x’ * ff*PgainM * x),
PgainM =ff*PgainM - KgainM * x’ * ff*PgainM; % Recursive update of P
model = model + ee * x’ * PgainM; % RLS estimate of model
Yoend
Kgain= Pgain*model(;,1:16)’*inv(eye(16,16)+model(:,1:16)*Pgain*model(:,1:16)’);

Pgain = Pgain - Kgain*model(;,1:16)*Pgain; % inverse corr matrix update
error = yO*(-1)APC - model * x; % error in RF pulse

xx = x(1:16)+Pgain*model(:,1:16) *error; % RLS estimate of x
mse4(loop) = mean(error.A2); % mse of rls to optimal x
mse3(loop) = mean((y0*(-1)APC-y).A2), % mse to ideal y

msel(loop) = mean(ee.A2); % mse of model tracking

loop = loop +1;

tdw=pgen(xx,PC,ETA); % Use updated parameters to
% form TDW
x = [xx; x(1:32)]; % x using past tdw paramters

Initialize the Integral Control Algorithm

% INTEG_INTI: Initializes the integral control algorithm

% and provides the function call in a

% text string which is evaluated by the main program.

% INTEGMENU changes the values in the simulation.

% See also INTEG, INTEGMENU, INTEGHEAD, INTEG_SWP

% All algorithms must at a minimum initialize the following
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% variables: yOA, yOD, energy_out, x, tdw, y0, f_call,

% max_volts_A, max_voits_D, for both transmitters, as shown.

% John D. Wood, 4/4/93, rev. 6/7/93

tdw_pci=zeros(len,length(control));
rf_pci =zeros(len,length(control));
eval([‘y0’ ,num2str(N),”_scpt’])

if xmtr_id==2
max_volts_A=S5;
x=1.7*sign(-cos(pi*(1:16)"));
tdw=pgen(x,0,ETA);

load integ44_ini

yOA=max_volts_A*envel(ideal(0,tau));

boost=1.0015;

if N==8
max_volts_D=23.7,
f1 =1; f2 =1; alpha = .03;
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% vector control = pulses to

% control in PCI

% len = length of pulse

% Input pulse buffer

% Output pulse buffer

% Load ideal half-cycle peak vals
% for dummy load pulse building
% (variable yOD). Note: ECD

% does not apply.

% xmtr_id = 2 is 44A Transmitter
% Set desired output max voltage
% Initial TDW half-cycle values
% Produce input vector to xmtr
% load P and Inverse Model for
% Antenna/Dummy

% Obtain ideal half-cycle peak

% vals for local ECD, pos

% phase code.

% Used to scale tdws in pulses

% after the one being controlled
% so convergence is faster for

% each one.

%N 1is decimation factor

% f1 forgetting factor dum load




elseif N==4
max_volts_D=22.26;

f1 =1; 2 =1, alpha =.03;
elseif N==2
max_volts_D=22.35;

fl=1; f2=1; alpha = .03;
elseif N==1
max_volts_D=22 47,

fl=1; f2=1; alpha = .03,

else

error(‘N must equal 1,2,4 or 8’)
end
yOD=max_volts_D*y0D(:,2);
else

max_volts_A=22.24,

load integ42_ini

x=.4*sign(-cos(pi*(1:16)"));
tdw=pgen(x,0,ETA);

yOA=max_volts_A*envel(ideal(0,tau));

boost=1.012;
if N==8;
max_volts_D=8.14;
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% 2 forgetting factor antenna
% alpha is the error gain

% Select column & scale

% Set desired output max voltage
% load P and Inverse Model

% for Antenna and Dummy Load
% Initial TDW half-cycle values
% Produce input vector to xmtr
% (positive phase code here--

% phase code is added when

% tdw_pci is filled in SETUP).
% Obtain ideal half-cycle peak
% vals for local ECD, pos

% phase code.




fl=1,; f2 = 1.0; alpha = .03;
elseif N==4
max_volts_D=8.15;

fl = 1; f2 = 1.0; alpha = .03;
elseif N==2
max_volts_D=8.017;

fl =1; f2 =1.0; alpha = .03;
elseif N==1
max_volts_D=8.27;

fl =1; f2 =1.0; alpha = .03;
else

error(‘N must be 1,2,4 or 8’)

end

yOD=max_volts_D*y0D(:,1); % Select column & scale
end

if xmtr_load=="Dummy Load’ % Initialize inverse model, P,

% forgetting factor, yO
yO=y0D; InModel=Emod; Pgain=PgainE,; ff=f1;, % Dummy load parameters
else

yO=y0A; InModel=Bmod; Pgain = PgainB; ff=f2; % Antenna parameters

end

Fl=num2str(f1); % Initial f factor (dummy load)
F2=num2str(f2); % f factor for antenna
ALPHA=num2str(alpha); % error gain in control
loop=1;

W =eye(16,16); % create weighting matrices:
forh=1:4 % W is in controller
W(h,h)=1; V(h,h)=1; % V is in model estimation
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end % weight error vectors
forh=5:8
W(h,h)=1; V(hh)=1;

end

forh=9:12
W(h,h)=1; V(h,h)=1;
end

forh=13:16
W(h,h)=1; V(h,h)=1;

end

f_call="[tdw,x,y,I]nModel,Pgain,loop,alpha)] = % control algorithm
integ(rf,tdw,PC ,ETA, y0,x,ff,InModel,Pgain,loop,alpha,W,V),’;
boostl=boost.A[0:len_p/2-1 O:len_p/2-1]; % compensate for droop

for p = 1:length(control) % Load simulated buffer for AFG
tdw_pci(:,p)=boostl(control(p))*tdw*(-1)*phasecode(control(p));

end

clear boost1

Integral Control Algorithm

function [tdw,x,y,InModel,Pgain,loop,alpha] =
integ(rf,tdw,PC ETA,y0,x,ff, InModel,Pgain,loop,alpha,W,V)

% Variables loaded from INTEG_INI : Pgain, InModel, x, ff, loop, W, V, y0, alpha
% x initialized from arbitrary tdw parameters

% InModel initialized as converged inverse model

% Pgain initialized as converged P matrix

% start loop = 1
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% W and V are weighting matrix,

% forgetting factor < 1 drives Pgain to zero

% alpha between .1 and .001 best

% Integral Control Algorithm by John D. Wood 5/1/93

global msel mse3

y=eavel(rf tdw,PC); % Obtain RF half-cycles peaks
%oif loop > 200 & loop<211 % Added noise burst

% x = x +randn(16,1)*.2;

%end

Kgain =ff*Pgain * y * inv(1 + y* * ff * V * Pgain * y);

Pgain =ff*Pgain - Kgain * y’ * ff * V * Pgain; = %update inverse corr matrix

ee = x-InModel*y; % error in model estimate

InModel = InModel + ee * y’ * V * Pgain; % RLS estimate of Inverse
% Model

x = x + alpha * InModel * W * (y0-y); % Integral Control of x

mse3(loop) = mse(x,(InModel*y)); % MSE of mode! tracking

mse1(loop) = mse(y0,y);

loop =loop+1;

tdw=pgen(x,PC,ETA);

Samples the First 16 RF Pulse Half-cycle Peaks and First 16 Desired Zero-crossings

function yPZ = envelPZ(rf,tdw,PC,fs_pk)

% Function yPZ =ENVELQ(rf,tdw,PC.fs_pk): Computes the first 16 half-
% cycle peak values of the Loran-C transmitter output

% and samples the values at the desired zero crossings (rf feedback).

% If tdw is included, the function auto-synchronizes rf to find
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% correctly the beginning of the first half-cycle. If tdw is absent
% or if tdw==0, then sample 1 of rf is taken to be the beginning of
% the first half cycle.
% Vector rf must be interpolated to a
% higher sample freq (>=10.0 MHz) to find accurate half cycle
% peak values and zero crossing values.
% Calls: INTERP, FLIPUD
% Uses global vars: xmtr_id, xmtr_load, fs
global xmtr_id xmtr_load fs
% usually fs = 10e6;
% usually xmtr_id=2;
% usually xmtr_load = ‘Antenna *;
% Variables:
% bin = Half-cycle number (1-16)
% bin_start = First sample in bin (half-cycle)
% bin_width = Number of samples per half cycle
% fs_pk = Higher sampling frequency (used internally only)
% in interpolation process.
% fs = Sampling frequency used in rf, tdw
% PC = Pulse phase code (0=pos, 1=neg)
% rf = Transmitter output (radio frequency feedback)
% tdw = Transmitter drive waveform
% y = Output half-cycle peak values
% Fernando Pires, 1/15/92; rev. by Dean C. Bruckner, 9/2/92,
% rev. by John D. Wood 7/3/93
%*********************** Fmd Smdard ZCI'O CrOSSins OfRF ook e ook ok e oo ok ek ok
if nargin < 2;
tdw = 1; of_start = I;
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else

for i = 1:length(tdw) % Auto-synchronize: find 1st

if abs(tdw(i)) > .1, break % sample of sin pulse at fs

end

end

rf_start = round(20/5¢6*fs) + i; % Normal delay: start of tdw to
%beginning of 1st half cycle
% is 25 samples at S Mhz

end

f =rf-mean(rf);

intp_fact = round(10e6/fs);

if intp_fact ==1

rf_temp = rf (rf_start: rf_start + 18 * 5e-6 * fs); % interp to 10Mhz

else

rf_temp = interp(rf(rf_start: rf_start + 18 * 5e-6 *fs),intp_fact);

end
% sample rf at freq 10Mhz starting at beginning of bin 1.
% Keeping 18 half cycles leaves enough rf

s = sign(rf_temp);

f = find(s(2:650) - s(1:649)~=0); % Find samples nearst zero crossings
f300 = find(f>275 & £<325), % find index of SZC sample in rf_temp
SZC = 1(f300); % finding exact zero crossing of SZC

delta = 1 - 2*abs(rf_temp(SZC+1)/(rf_temp(SZC+1)-rf_temp(SZC-1)));

% 35 e e e 2 2k e e e e e e e 3 s e e e afe s e 26 e e e s e s e e e e e 3¢ e e e e e e e e ke e e s 2k ol s e e e e sk ke e e ek
% Determine Values at Ideal Zero Crossing Locations

% sample every 1.25 usec from start of 1st half-cycle to 16th

% half-cycle going through SZC

yPZ = zeros(32,1);
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if SZC >=270
fork=1:16
i=SZC - 300 + 50*k;

yPZ(2*k,1) = ((rf_temp(i+1)-rf_temp(i-1))/2)*delta + rf_temp(i);

end

end;

if SZC <270

Disp(‘ Error in find first zero crossing ‘)

end

% ****** Determine Peak Values in first 16 Half - Cycles **¥****

if nargin<4;fs_pk=>5e6;end
if nargin<3;PC=0;end
if xmtr_id==2

if xmtr_load=="Antenna *
cut=14;

else

cut=-1;

end

else

if xmtr_load=="Antenna *
cut=20;

else

cut=18;

end

end

if nargin<2;

rf_start=1,

elseif tdw==0;
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% Default: 5 MHz
% Default: pos phase code
% Input to Output delay in samp

% Default externally synchron




rf_start=1;
else

for i=1:length(tdw)

if abs(tdw(i)) > 0.1, break

end % lower sample freg, fs)
end
rf_start=round(cut/5e6*fs) + i;
if rf_start<1;rf_start=1;end
end

intp_fact=round(fs_pk/fs);

if intp_fact<=1

rf=rf(rf_start: rf_start + 18 * 5e¢-6 * fs),
bin_width=>5e-6 * fs;

else

% Auto-synchronize (find 1st
% sample of sine pulse, at

% Start of 1st output half-cycle

% Number of samp per half cycle

rf=interp(rf(rf_start: rf_start + 18 * 5e-6 * fs),intp_fact),

bin_width=5e-6 * fs_pk;

end

Yoplot(rf),grid,pause
bin_start=1;
if PC==0

for bin=1:4:29 % Peak value of each half-cycle
yPZ(bin)=max(rf(bin_start: bin_start+bin_width));

% Number of samp per half cycle
% Samp rf at higher freq (fs_pk),
% starting at beginning of

% bin 1. Keeping 18 half-

% cycles leaves enough

% of rf to work with.

% plot(rf(bin_start:bin_start+bin_width)),title(num2str(yPZ(bin))),pause

bin_start=bin_start+bin_width;




yPZ(2+bin)=min(rf(bin_start:bin_start+bin_width));
% plot(rf(bin_start:bin_start+bin_width)),title(num2str(yPZ(2+bin))),pause
bin_start=bin_start+bin_width;

end
else

for bin=1:4:29 % Peak value of each half-cycle

% plot(rf(bin_start:bin_start+bin_width)),pause
yPZ(bin)=min(rf(bin_start:bin_start+bin_width));
bin_start=bin_start+bin_width;

%% plot(rf(bin_start:bin_start+bin_width)),pause
yPZ(2+bin)=max(rf(bin_start:bin_start+bin_width));
bin_start=bin_start+bin_width;

end

end

% b 2k 2 s 35 e o ke e 3¢ 3 afe dfe ok ok ok 3k PLOT RF Pulse alld Samples s sk ook ok ke ok ke e kokok ok
%plot(rf_temp(1:900)) % Plot RF\
%hold on

Yofork = 1:16

% plot((k*50)+SZC-300,yPZ(2*k,1),’0’); % PLOT Zero Crossings\

% end

%bin_start=1;

%for bin = 1:8

% Peak value of each half-cycle\

% val=max(rf_temp(bin_start:bin_start+bin_width));

% plot(find(rf_temp(bin_start:bin_start+bin_width)==val)+bin_start-1,val,’0’)

% bin_start=bin_start+bin_width;
% val=min(rf_temp(bin_start:bin_start+bin_width));

% plot(find(rf_temp(bin_start:bin_start+bin_width)==val)+bin_start-1,val,’0’)
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% bin_start=bin_start+bin_width;
% end
%hold off
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