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Abstract

A multiple-input, multiple-output (MIMO) recursive least squares (RLS) algorithm is

developed to shape and control the Loran-C RF pulse of the AN/FPN-44A tube type

transmitter. The control algorithm is incorporated into a transmitter simulation program,

where it seeks to produce an optimal transmitter drive waveform (TDW). An optimal TDW

produces a near ideal RF pulse.

The control algorithm uses a MIMO reference model of the transmitter; parameters of

the model are obtained using recursive least squares multichannel time series techniques.

The MIMO reference model has the ability to adapt to the non-LTI characteristics of the

simulated transmitter.

The MIMO RLS control algorithm is implemented in both an ideal and a realistic

noisy environment. In the ideal environment, when representing the RF pulse with

parameters of its half-cycle peak amplitudes and zero-crossings, the MIMO RLS controller

is able to shape the RF pulse and control its zero-crossings. Quantization and system noise

in the non-ideal environment results in performance deterioration of the control algorithm.

The performance of the MIMO RLS algorithm is compared against another method of

control, the steepest descent algorithm.
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I. INTRODUCTION

In 1990 the Coast Guard Electronic Engineering Center initiated a multi-year project

entitled the Electronic Equipment Replacement Project [Ref. 1], which outlines the need to

redesign and upgrade the Loran-C equipment. The redesign of various portions of the

Loran-C system is necessary for equipment support structure, the desire to enhance and

expand automation, the need to respond to new system requirements, and the desire to

remain in step with new technology.

Under plan one, entitled "EPA/POEN/LORDAC Redesign," the monitor and control

methods are to be redesigned to provide automatic Loran-C pulse shaping and improve the

monitoring functions. The new control system generates and controls the Loran-C pulse

automatically, maintains the pulse within specifications, and records results for an

operational database.

In this thesis, a multiple input multiple output (MIMO) recursive least squares (RLS)

algorithm is developed to shape and control a Loran-C pulse. The Loran-C pulse is

successfully controlled with the AN/FPN-44A transmitter, and it meets the tolerances

provided in the Coast Guard's Specification for the Transmitted Loran-C Signal [Ref. 2].

The Loran-C pulse is monitored at each control iteration, and data are compiled for pulse

analysis.

A MATLAB computer program that simulates the AN/FPN-44A transmitter [Ref. 3]

is used to test and analyze the MIMO RLS control algorithm. The control algorithm uses

an adaptive MIMO reference model. This MIMO model is developed using multichannel

time series techniques. The MIMO model has the ability to adapt to time variations and

non-linear changes in the transmitter's operating characteristics.

Comparisons are made between the RLS and a steepest descent control algorithm. The

steepest descent control algorithm was developed by Peterson [Ref. 4] and implemented by

Bruckner [Ref. 3] to control the Loran-C pulse. The advantages and limitations of the RLS

algorithm are addressed.



The thesis is organized as follows: Chapter IH presents a summary of the Loran-C

operation, pulse specifications, and a proposed control system. Chapter III contains the

derivation of the RLS algorithm for a MIMO model of the transmitter. The MEMO RLS

control algorithm is derived in Chapter IV, and the results and analysis are presented in

Chapter V. In the results, the performance of the RLS algorithm is compared with that of

an alternate method of control called the steepest descent algorithm. Finally, conclusions

on the work reported and suggestions for improvement (future work) are presented in

Chapter VI. Appendix A contains the results of the MIMO RLS control algorithm operating

with the input and output waveforms at realistic SNR levels. A derivation of the MIMO

RLS control algorithm with memory and its results are included in Appendix B. Appendix

C contains the derivation of an integral control algorithm, which behaves similarly to the

steepest descent method and has similar control characteristics. Appendix D contains the

MatLab code of the control algorithms and other support programs.
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11. SUMMARY OF LORAN C

A. LORAN C OPERATION

Loran-C radio navigation is based on time differences between a received master

station's pulse and several secondary stations' pulses. A Loran receiver can obtain time

differences from as many as four secondary stations, labeled as W, X, Y, and Z. A Loran

receiver translates these time differences into hyperbolic lines of position. An intersection

of two or more hyperbolic lines of position will formulate its location at the point of

intersection.

The master and secondary stations for a specific geographical area, referred to as a

chain, all transmit a series of pulse groups at a fixed rate called the Group Repetition

Interval (GRI). The GRI for various chains vary from 40,000 to 99,900 microseconds. Each

secondary station in the chain transmits its pulse group at the same GRI, but with different

emission delays with reference to the master's pulse group (see Figure 2.1). [Ref. 2: p. 2-5]

GRI
-" TD 3
•-'-TD 2--

Figure 2.1: Emission delays from the master station.

The master station transmits a group of nine consecutive pulses. Each secondary

station then transmits its own group of eight consecutive pulses. The pulses in each group

are separated by 100O except the master's ninth pulse, which is transmitted 2000ps after

the eighth pulse.
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I'e Loran-C receiver has the ability to receive both the Loran ground waves and

skywaves. The ground wave is the one used to calculate the time difference. Pulse group

phase coding is used to distinguish the ground wave from the skywave. There are two GRI

transmission sequences that comprise a phase code interval (PCI). The phases of certain

pulses in the transmission sequence are changed by 180". The pattern of phase changes of

the PCI is illustrated in Ref. 2, pp. 2-6. For this research, the control, testing, and analysis

are conducted on pulse one of the eight (or nine in the case of the master station) pulses

transmitted by a station in a GRI. Pulse one of the pulse sequence for all stations has a

positive phase code which corresponds to a zero phase shift.

B. LORAN-C PULSE SPECIFICATION

1. Description of the Loran-C pulse

The Loran-C signal is made up of individual pulses which must meet specific

tolerances for the signal to be acceptable. The carrier frequency of a Loran-C pulse is

100kHz; during the first 651is, the pulse amplitude is specified by: [Ref. 2: p. 2.1]

i(t) = 0; for t<t

F -2 (t - )!

i(t) = A(t- ce)2 exp) 65 sin (0.2ntt+ c)

fore e t 65 +" (2.1)

where

A is the normalization constant related to the magnitude of the peak antenna

current in amperes,

t is time in microseconds,

te is the envelope to cycle difference (ECD) in microseconds, and

*c is the phase-code parameter (in radians) which is 0 for positive phase code

and n for negative phase code.

4



The first 9(ps of the ideal Loran-C pulse is shown in Figure 2.2. The first 65ps of

the standard RF pulse, as described by equation 2.1, is called the leading edge. The RF

pulse trailing edge is defined as the portion of the pulse following the maximum peak

amplitude or the 65 ps point, whichever occurs first. Different transmitters have different

decay characteristics of the pulse's trailing edge. In this work, the AN/FPN-44A transmitter

is chosen for testing the control algorithm and analysis. The spectrum must be within the

bandwidth of 90 to 110kHz. The normalized pulse amplitude for t > 500ps is less than or

equal to 0.0014. The tolerance specifications for the trailing edge amplitude are established

to substantially decay the pulse, so the next transmitted pulse has no interference from the

previous one. [Ref. 3: p. 10]

IDEAL LOIRAN C WAVE"FOM

3
0

2.j'I 11 1

PC .•o 12

0 10 20 30 40 so 60 70 s0 90

Eloosed lamo, mleremeonds

Figure 2.2: The ideal Loran-C pulse [Ref. 3, p. 10].
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The third negative to positive zeros-crossing in the Loran-C pulse provides a

reference point called the standard zero-crossing (SZC). A Loran receiver locks onto this

location by the unique amplitude ratio of the fifth and seventh peaks. The standard zero-

crossing occurs approximately 30Ls after the beginning of the pulse. The Loran receiver

uses the standard zero-crossing as a reference when determining time differences between

pulses from the master and secondary stations. [Ref. 2: p. 2.3, Ref. 3: p. 9-11]

2. Pulse Tests

The Coast Guard has established four tests to ensure that the Loran pulse shape

resembles the ideal Loran pulse, and the shape is identical from pulse to pulse. The four

tests are: envelope-to-cycle difference (ECD), root mean square value of half-cycle-peak

amplitudes 1-8, maximum individual error in half-cycle-peak amplitudes 1-8 and 9-13, and

the zero-crossing tolerance. [Ref. 2: p. 2.1-2.3, Ref. 3: p. 11] These four tests are fully

described in Ref. 2 and are summarized in the following sections.

a. Envelope-to-Cycle Difference (ECD)

The ECD is a time relationship between the position of the pulse envelope

relative to the position of the zero-crossings. A positive ECD has an envelope that appears

later in time by a factor of -e (see equation 2. 1), which has the appearance of the envelope

shifted to the right along the time axis. The ECD may also be negative, where the envelope

is shifted to the left. The calculation of the ECD of a Loran-C pulse is a tedious process,

and the details may be found in Ref. 3: p. 137.

The ECD of the Loran pulse can be adjusted at the transmitter to provide the

desired RF pulse shape. Once the ECD is computed for the station's transmitted RF pulse,

it may be as, 'g-ied a value in the range of -2.5 to +2.51is [Ref. 2: p. 2.2]. This is called the

local or transmitted ECD value. In computing the RF pulse error, the same ECD value is

used for both the actual and the ideal RF pulse. For the half-cycle peak amplitude tests, +Se

local ECD must fall within the allowable range [Ref.2: p. 2.3]. The transmitted pulse cannot

have an ECD that exceeds ±O.51gs from the transmitted ECD value [Ref. 2: p. 3.4]. When

6



the RF peak amplitudes and the zero-rossings are within specification, the ECD is

automatically within the specified tolerance [Ref. 5]. The control and testing of ECD are

not addressed in this thesis. An ECD of zero is used in this thesis when generating the ideal

RF pulse, for testing the control algorithm and for the Loran pulse analysis.

b. Ensemble Tolerance of Half-Cycle Peak Amplitudes

The root mean square error between the first eight half-cycle peaks of the

ideal and the actual Loran pulse cannot exceed one percent of the peak amplitude of the

actual pulse. Let Sp, p =1,2,3,...8, be the first eight half-cycle peak amplitudes of the actual

pulse and those for the ideal be Ip, p=l,2,3,...8. When the maximum amplitudes of the

actual and ideal pulses are normalized, the ensemble tolerance is expressed as:

8

8 -!90.01

c. Individual Tolerance of Half-Cycle Peak Amplitudes

For the first eight RF half-cycle peak amplitudes, the individual pulse peak

error between the actual and the ideal must not exceed three percent of the peak amplitude

of the pulse. For half-cycle peak amplitudes 9 through 13, the maximum individual error

must not exceed ten percent of the peak amplitude. Assuming that the actual and ideal

Loran pulses are normalized, these tolerances are expressed as:

lip - SpI s 0.03 1 < p • 8,

1ip - SpI :5 0.10 9:< p S< 13.

d. Zero-crossings

Zero-crossing times and their acceptable deviation from the ideal zero-

crossings are provided in Table 2.1 for the AN/FPN-44A transmitter. All zero-crossing

7



times are in relation to the standard zero-crossing (SZC). The SZC is the negative to

positive zero-crossing at 30 microseconds of a positively phase coded pulse of the antenna-

current waveform. There are two categories for zero-crossing tolerances. Category I

tolerances are for the newer model transmitters, such as the ANIPPN-44A, and category 2

are for the older transmitters, such as the AN/FPN-42. [Ref. 2: p. 2.4]

TABLE 2.1: Zero-crossing Times and Tolerances for AN/FPN-44A Transmitter

Zew-acos (W) Tmue (P) ±Tok = (ns)

5 -25 1000
10 -20 100
15 -15 75
20 -10 50

25 -5 5o
30 SZC standard time reference

35 5 50

40 10 50
45 15 50

50 20 50

55 25 50
60 1 0 50

C. PRODUCING THE RF SIGNAL

1. The Transmitter Input and Output Waveforms

The input to a LORAN-C transmitter is called the transmitter drive waveform

(TDW). The TDW is a cosine waveform with 16 half-cycles of varying peak amplitudes

and has a constant carrier frequency of 100kHz. A damped sinusoid is added at the end of

the 16 half-cycles to lengthen the decay time of the radio frequency antenna current

waveform (RF). This eliminates undesirable high frequency components in the output. A

typical TDW is shown in Figure 2.3.

When the shape of the TDW changes, its energy varies which in turn changes the

unit sample response of the transmitter. This behavior exemplifies the transmitter as a non-
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linear system. An assumption is made that the transmitter operates as an LTI system from

pulse to pulse with a fixed TDW, over a time duration of a few hours. In this work, an LTI

pole-zero model was used to simulate the transmitter at a given operating point, i.e. a fixed

TDW [Ref. 3: p.42]. By catenating a number of LTI models that cover a range of operating

points based on different TDW, a piece-wise non-linear model is developed. The simulated

AN/FPN-44A Loran-C transmitter is modeled using six poles and five zeros. The behavior

of the corresponding poles and zeros of the catenated LTI models is characterized by fitting

a polynomial curve for each of them. Each pole or zero moves along its own polynomial

curve as a function of the TDW's energy. [Ref. 3]

Time variations in the transmitter may occur over several hours, days, or weeks.

These time variations are modeled as slight shifts in the position of poles and zeros. Each

polynomial curve fitting the trajectory of a pole or zero drifts up and down independently

of each other when shifts occur. This allows the pole-zero transmitter model to simulate

changes in transmitter characteristics due to time variations. [Ref. 3]

There are two different possible loads on the transmitter: the antenna and the

resistive dummy load. The simulation contains an IIR model each for the antenna and the

dummy load cases. The transmitter usually starts on the dummy load, where the TDW's

half-cycle peak amplitudes converge to form an acceptable RF pulse before switching to

the antenna. The TDW can be generated on either loads to form the RF pulse.

Each Loran station has two transmitters. This allows one transmitter to transmit

on the antenna while the other remains in a standby mode of operation. The term

transmitted pulse refers to the RF pulse measured at the transmitter's ground return, not the

RF pulse in the far field. The typical RF pulse transmitted on the antenna is shown in Figure

2.4. The shape of the RF pulse is determined by the amplitudes of the half-cycles of the

TDW. The TDW has 16 half-cycles. The half-cycle amplitudes of a TDW can be arranged

into a column vector, which makes computing the optimal TDW a 16 dimensional control

problem. The vector of parameters used to represent the RF pulse are comprised of the first

9



16 half-cycle peak amplitudes of the RF pulse, or it can be extended to include the RF pulse

samples at the desired zero-crossings which allows for the control of zero-crossings.

In order to solve for the optimal TDW parameters (half-cycle peak values), we

need to estimate the mapping function between the TDW and RF parameters spaces. The

mapping function must take into account the non-LTI characteristics of the actual

transmitter. A multiple input multiple output (MIMO) model is developed to represent the

Loran transmitter's behavior on a pulse to pulse basis. The model parameters are estimated

using a MIMO recursive least squares (RLS) algorithm. Further discussion of the modeling

and control techniques are contained in Chapters M1 and IV, respectively.

TDW: AN/FPN 44A TRANSMITTER
2

1.52

1 o
0.5

2 100 150 200 250 300 350 400 450
Time, microseconds

Figure 2.3: A typical TDW for the AN/FPN-44A transmitter.
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RIF PULSE. AN/FPN-44A TRANSMITTER

.. . . ...

-2 . . . . . .. .' . ... . . . . . . . . . . . . . . . .. . . . . . . . . . .. . . . . . . . . -. . . . . .. . . . . . . .

-2

0 50 100 150 200 250 300 350 400 450
Time. microseconds

Figure 2.4: A typical RF Pulse from the AN/FPN-44A transmitter.

2. The VXI Based Loran-C Transmitter and Control System

Plan one of the Loran-C Electronic Equipment Replacement Project (EERP) was

started in 1990; it is called project W1180: "Timing and Control Equipment (TCE)

Redesign." A scheme to implement data acquisition and develop an algorithm to control

the Loran-C pulse shape by adaptively generating the necessary TDW waveform were

proposed [Ref. 6]. A block schematic of the proposed control system is shown in Figure

2.5.

The operation of the control system in Figure 2.5 follows these steps [Ref. 3, p.

33]. The computer loads a digitized transmitter drive waveform (TDW) into *he arbitrary

function generator (AFG). The AFG produces an analog TDW signal, which is sent to the

transmitter at each timer trigger. A digital storage oscilloscope (DSO) acquires the RF pulse

with an eight bit resolution. The digitized RF pulse is stored in the computer's memory

which is used by the control algorithm to generate an optimal TDW. The controller

computes a new TDW based on the error between the ideal and actual RF pulses. Plan one

of the EERP does not address an exact algorithm to accomplish the goal of obtaining an

11



CPU / DSO

Figure 2.5: The VX[bus based contrl~o system [Ref.3: p. 341.

optimal TDW. In this research, we propose and develop a MEMO RLS control algorithm to

generate an optimal TDW, where the actual RF pulse is a least squares fit of the ideal RF

pulse.
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V

III. MIMO MODELING

In this chapter we prebent the derivation of a multiple-input, multiple-output model for

the Loran-C transmitter based on a least squares data formulation. The half-cycle peaks of

the transmitter drive waveform and the RF pulse are considered as multichannel input and

output quantities. In order for the algorithm to be able to track the slow time variations in

the transmitter operating environment, an adaptive version of the least squares formulation

called the recursive least squares algorithm is proposed. Both forward and inverse models

are considered which are needed to develop suitable pulse shape control algorithms in the

following chapters.

A. MULTICHANNEL SYSTEM APPROACH

Any adaptive algorithm used to control the RF pulse requires a reference model of the

transmitter. The reference model is used to map the error in the RF pulse to the TDW input.

A reference model is obtained using a multichannel formulation when the input and output

parameters are considered to be channels. The output is expressed as:

Yt =A0xt+A xt. 1 + ...- + Am Xt-m, (3.1)

where x t is the input vector (p x 1), y t is the output vector (q x 1) at discrete time index t,

and A . (s = 0, 1,..., m) are the coefficient matrices (q x p) [Ref. 7: p. 237]. For p = q, the

coefficients are square matrices. We consider p = 16, where the elements of x represent the

half-cycle peaks of the transmitter drive waveform (i.e., a total of eight cycles). The output

vector y can be of size q = 16, or q = 32. For q = 16, vector y is composed of the first 16

half-cycle peaks of the RF pulse. When q = 32, vector y is expanded to include the samples

of the first 16 desired zero-crossings. When p does not equal q, rectangular coefficient

matrices result. Both cases are considered in the following chapters.

The MIMO reference model is obtained based on a least squares formulation. A least

squares estimate of the coefficient matrices is obtained by minimizing the sum of squared

errors between the actual output of the transmitter and the computed output of the model.
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In this work a memoryless MIMO model is considered. From equation 3. 1, the output

of the memoryless system is expressed as

y t = A 0 x t. (3.2)

Additional coefficient matrices are used when a model with memory is to be realized. The

derivation of the least squares estimate for the MIMO model remains the same whether one

or more coefficient matrices are used.

B. THE TRANSMITTER MODEL

1. The Least Squares Method

Considering a memoryless model representation, the output of the multichannel

model is expressed as:

9 = Ax,

where x is the vector of input parameters, and A is the single coefficient MIMO model. The

error vector, at time index i, is expressed as:

ei = Yi - 9j, (3.3)

where 9i = Axi, and yi is the vector of RF pulse parameters (actual transmitter output).

The weighted, squared error matrix is then given by [Ref. 10: p. C 7.3]:

n
i Xn-i(eieT)W. (3.4)

where X is called the forgetting factor; (1-X)" is a measure of the memory of the recursive

least squares algorithm; a forgetting factor of unity corresponds to infinite memory; and W

is a diagonal weighting matrix used to weight the elements of ei.

Expanding the error, ei, in equation 3.4 yields the following:

n
J- Xn n-i(yi-Axi) (yi-.Axi)TW,

1-1

or
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n
XP (yyT- iTAT -.AxiyT..-.AxixTAT)W. (3.5)

i-I

Taking the partial derivative of J with respect to A in equation 3.5 and setting it to zero

yields:
n

S e n-i(_2yixT+2AxixT)W = 0 (3.6)

i-i

Rearranging terms in equation 3.6 gives:

n nx:Xni(Y~xT) W XP X-1(AKXX11W (3i-I i-I

Now define the following matrices: the autocorrelation matrix,

n
(D= E ,ixT)W. (3.8)

i-1i

and the cross-correlation matrix,

nr" = n -.ni(YixT) W. (3.9)
n-n

i-1

Substituting equation 3.8 and 3.9 into equation 3.7 results in a simplified matrix form:

A On = rn; (3.10)

and the least squares memoryless MIMO model is obtained as [Ref. 8: p. 380]:

A=Fn cn".

2. The Recursive Least Squares Algorithm

Consider that the transmitter being modeled is slowly time-varying; accordingly,

the model coefficient is now represented as A. where n is the time index. To continuously

model the transmitter as its characteristics change with time, we propose to develop a

recursive least squares solution of A [Ref. 8: p. 477- 485].
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From equation 3.8, let

n
T

p =P n-i(xixT)W' (3.11)
i,,1

and equation 3.10 becomes

Anlnl- In. (3.12)

At time index n+1, equation 3.12 can be written as:

An+l Pn+ 1 I=n + Yn+I Xn+I Tw. (3.13)

Substituting equation 3.12 in 3.13 for r. yields

An+, pn+I = An pn1 + yn+iXn+IT W. (3.14)

Adding (An xa+1 Xn+ITW - An xn+1 xn+,T W) on the right side of equation 3.14 and

realizing that:

AnPnI + A. x+l xn+ITW = A.P (3.15)

and

- An Xn+1 xn+T W + Yn+lxn+l TW = (Yn+l" An Xn+l) Xn+lT W, (3.16)

results in
-1 _ =A--1,(.7

A.1l Pn+ 1 nPn+ 1 + (Yn+l" n Xn+l) Xn+lTW (.7

where (Yn+l - An Xn+l) = en+l. The final form of the recursive equation for An+, is

An+l= An + e%+1 xn+lT W Pn+l. (3.18)

The recursive least squares algorithm in equation 3.18 requires recursive updating

of P. [Ref 8: p.4 79]. At time index n+l, equation 3.11 becomes

-1= T n+xn+ 4+W. (3.19)

Substituting Pn1 = 4bn into equation 3.19 yields:
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- 1  +TW. (3.20)

Inverting both sides of equation 3.20:

Pn+1 = (XP. + xn+1 xV+lTW)-yl (3.21)

Applying the matrix inversion lemma [Ref. 8: p. 480]

(A + BCD)-' = A-' - A-'B(C"1 + DA-'B)-'DA"I (3.22)

to equation 3.21 provides the required recursion for Pn. Comparing the terms on the right

side of equation 3.21 to those on the left side of equation 3.22, we have

A =X P nI ,
n

B - Xn+1,

C =1,

D = xn+ITW,

which yields the update equation for Pn+l:

Pn+l = XPn - X Pn Xn+l + x W !Px÷ xn+ITWl Pn. (3.23)

The RLS algorithm is one of many possible algorithms for obtaining a reference

MIMO model for the transmitter system. The RLS algorithm is chosen because it offers a

fast rate of convergence, with negligible noise when X is unity. The computational

complexity of the algorithm is rather demanding, but it is quite simple to implement the

equations in MATLAB software. Simplifications, such as the fast RLS algorithm could be

considered to overcome the computational complexity of the RLS algorithm presented here

[Ref. 8, 10]. The issue of the fast RLS algorithm for reduced complexity is not addressed

in this thesis.

3. Estimation of the MIMO Model Parameters

We now present simulation results of the RLS algorithm developed in the

previous section. The MIMO model parameters are estimated using equation 3.18. To
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implement the RLS algorithm, a set of 2000 pairs of input and output data are generated

from a Loran-C transmitter simulation model that uses a steepest descent algorithm [Ref.3].

Initially, P is set to P = 104 I, where I is an identity matrix. The matrix P and the MIMO

model are saved after 2000 iterations for later use in the pulse shaping control algorithm.

Figure 3.1 is a plot of the mean square error, MSE:

en+ITen+l = (Yn+l - Anxn+l)T(yn+l-AnXn+),

for 2000 iterations of the algorithm. Figure 3.2 is a plot of a norm, C, as defined as

=" ij (a!P+l1) _ain)) 2 ,

where aij are the elements of A for 2000 iterations. The MIMO RLS algorithm is effective

in producing a model that converges to a reasonable MSE. In Figure 3. 1, the MSE decreases

to a near steady state value in less than five iterations and generally remains below le-7

after that.

In Figure 3.2, C reaches a minimum at iteration 125, which indicates the numerical

change of the elements of the model from iteration to iteration. The model obtained at the

minimum C does not differ significantly from the model taken at the end of 2000 iterations

when used to initialize the control algorithm.

The following points are noted on the P matrix. The matrix is symmetric, positive

semidefinite, and has full rank for all iterations. The condition number of P is very large,

on the order of le9; ill-conditioned data sequences have correlation matrices with large

condition numbers. Based on this empirical observation, the RLS algorithm presented here

can be considered robust. An algorithm is said to be robust if it operates satisfactorily with

ill-conditioned data [Ref. 8: p. 3].

18



MSE: (y-Ax). CONVERGENCE OF ANTENNA MODEL 44A

lop

l,o10•

10"10
0 20 40 6s 80 100

iterations
MSE: (y-Ax). CONVERGENCE OF ANTENNA MODEL 44A

lop

10p

10-1o0G

200 400 600 800 1000 1200 1400 1600 1800

iterations

Figure 3.1: Antenna model convergence, MSE: (y - Ax).
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Figure 3.2: Norm of (An.+ - AD).
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4. Operation of the RLS in a Slowly Time-varying Environment

When the RLS algorithm operates in a time-varying environment, the suggested

value of A. is usually less than unity. This gives the RLS algorithm a finite memory where

slow statistical changes in its environment can be tracked. However, changing the value of

X to less than unity modifies the behavior of the algorithm by introducing misadjustment

noise and delay in the formulation of the least squares estimate. [Ref.8: p. 499]

The statistical variations in the environment are considered negligible after

several initial iterations or the transient period during which the algorithm converges to

steady state parameters. A forgetting factor of unity is used for the RLS algorithm in this

thesis; in spite of the presence of slow time variations, X = 1 provides the best parameter

tracking performance. Several tests were run with different forgetting factors, and the

following observations were made: the finite update memory for X < 1 increases the

misadjustment noise; for X < 0.98, the stalling of the algorithm updates was observed; and

the forgetting factor being less than one has not improved the convergence speed in general.

In this chapter, a MIMO memoryless model of a Loran-C transmitter is developed

with its coefficient matrix estimated using a recursive least squares algorithm. The RLS

algorithm provides fast parameter convergence, but it is computationally expensive. The

means to reduce the computational complexity is not addressed here. Even though the

forgetting factor, X, is considered an important quantity when the algorithm is operating in

a time-varying environment, best performance is achieved for X = 1. The estimated MIMO

model is used as a reference model in the MEMO RLS control algorithm. An inverse MIMO

model can be estimated on the lines of the MEMO model discussed in this chapter;

Appendix C contains a brief derivation of the inverse MIMO model.
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IV. OPTIMAL TDW ESTIMATION

An algorithm to shape the RF pulse which uses a recursive least squares formulation

is proposed. The TDW is updated using the error in the RF pulse parameters; this error is

used to correct the TDW parameters to produce an RF pulse which is a close match to the

ideal pulse (equation 2.1). A reference model of the transmitter is required to formulate the

correction. The proposed control algorithm uses a MIMO RLS estimate of the reference

model (see Chapter MI). A related algorithm, called the steepest descent, which uses an

impulse response matrix as the transmitter reference model, is also briefly discussed.

A. MIMO RLS ALGORITHM FOR UPDATING TDW

A MIMO least squares algorithm is used to formulate the optimal TDW parameter

vector, xopt, to produce the desired RF pulse parameter vector, yopt. Obtaining the optimal

TDW is an adaptive process because the transmitter's characteristics vary as the energy of

the TDW parameters in vector x changes. The transmitter reference model A is continually

updated as a MIMO RLS estimate to track the changes in the transmitter. Figure 4.1 shows

a block diagram of the proposed scheme to control the RF by continuously updating the

TDW. The "control" block generates a correction Ax at each update with reference model

parameters, RF error and the previous TDW vector as inputs.

_• MODEL •r'

CONTROL - •

Figure 4. 1: A block diagram of the RLS control scheme.
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1. The Least Squares Formulation

The error vector, at time index i. in the feedback path of the controller (Figure 4.1)

is expressed as

ei = yqt- Yi,

where Ypt is a vector of the ideal RF pulse parameters; vector 9i = Ajx, where matrx A, is

the adaptive MIMO model, and x is a vector of TDW parameters. In order to develop a least

squares formulation, x is considered to be independent of the time index i. The weighted

sum of squared errors is expressed as

n

J = 1 1i(e vei). (4.1)
i-i

where A is called the forgetting factor, and V is a diagonal weighting matrix used to weigh

the elements of ei. Expanding the error, ei, in equation 4.1 yields

n
= ni( (Yopt- Aix)TV (yopt- Aix)) ' (4.2)

or

n
=- i (YT Vy -xTATVy TtYTVA.x

i-= opt opt I yopt- o

-xTATVAix). (4.3)

Setting the partial derivative of J with respect to x in equation 4.3 equal to zero

aj n
S An -'(-2A 1iVY + 2ATiVAix) = 0, (4.4)

i-- opt+

minimizes the cost function J with respect to x. Rearranging the terms in equation 4.4 yields
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£) -'fli(AVyt) ) n-(iVix (45)i-l i-l

Defining the autocorrelation matrix as

n
4b= E n-(ATiVAi)' (4.6)

i-i

and the cross-correlation vector as

Yn ) .i (ATiVYopt) (4.7)
i=i

and substituting equations 4.6 and 4.7 into equation 4.5 produces a simplified matrix form

IN x = yn. (4.8)

From equation 4.8, the optimal TDW is in the form of a least squares solution

x = on'lyn. (4.9)

2. The Recursive Least Squares Algorithm

This derivation is somewhat different from the RLS algorithm developed in

Chapter I, Section B.2. For the recursive least squares update of x at time index n+l, let

Pn = On, and let x be a function of the discrete time index n. Equation 4.8 is now expressedn

as

PnlIxn = Tn. (4.10)

At time index n+1, equation 4.10 can be written as

Pn+I Xn+l =yn +An+l T V Yopt, (4.11)

and substituting equation 4.10 in equation 4.11 for y. gives

P-n I xn+l = PnI x. + An+lT V Yopt. (4.12)

When adding (An+ITV An+ixn - An+iT VA.+1 X.) on the right side of equation 4.12 and

realizing that
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PI ,+1 ]Tt v X,= • , (4.13)

and

A+ 1T v y, - n+IT V,•I • = AnT V (Y. - An, xd.), (4.14)

equation 4.12 becomes

P-n' -I = -n' Xn + A.+IT V (y,, - %+I xn), (4.15)P n+ .1 X = Pn(4.15

where (yt - A+,I xn) = eD+l/n" Multiplying both sides of equation 4.15 by Pn+l, and

substituting (Yo.t" A,+l x.) = en+l/n, yields the final recursive equation

xn+l = xn + Pn+l An-ITV Ce+l/-. (4.16)

For the recursive update of P., we write equation 4.6 at time index n+l as

Pn1 =, n+ A.n+ 1  . (4.17)
In 1 = 'n+l IIVXbnn+I•

Substituting PnI = 4bn, into equation 4.17 gives

Pn-' I = XPn' + Arn+IV An+l, (4.18)
+, n

and inverting both sides of equation 4.18 yields

Pn+j = 0-PnI + ATn+ V An+l)"1. (4.19)

Apply the matrix inversion lemma

(A + BCD)-' = K' - AK'B(C"1 + DA'B)-'DA"' (4.20)

to equation 4.19 by comparing the right side of equation 4.19 to the left side of equation

4.20, where

A = XPl,

B = AT.n+l,

C=V,
D =An÷I,

the update equation for P,+l becomes the right side of equation 4.20
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I- -1
1A1 n+T IV.. 1PAT 1

Pn+l- XPn X F, Pn L~C +An+lx PnA n+ An+i•X Pn.

When the M[MO RLS control algorithm is implemented, the elements of the inverse

correlation matrix, Pn, become very small values in approximately 150 iterations. This is

typically referred to as the stalling phenomenon [Ref. 8: p. 701]. When this occurs, the

algorithm stops updating the TDW parameters, and it no longer seeks a lower MSE. A

remedy to keep the MIMO RLS control algorithm converging to a lower MSE is to reset

Pn every 50 iterations or so.

B. STEEPEST DESCENT CONTROL ALGORITHM

A linear feedback control scheme using a steepest descent algorithm is discussed in

this section. This approach seeks the optimal TDW parameters by minimizing the quadratic

error surface of eTyWe y, where W is a weight matrix and e y = (yopt- y) [Ref. 3, 4].

The transmitter output is

y = Hx,

where the transmitter is modeled as impulse response matrix H, vector x is the TDW half-

cycle peak parameters, and vector y is the RF half-cycle peak parameters. The simplest

form of the steepest descent control algorithm has x and y parameter with 16 half-cycle

peak amplitudes. H is formed by the half-cycle peak amplitudes of the impulse response of

the transmitter; H is a 16 x 16 matrix.[Ref. 3: p. 82]

We assume that the system matrix H is an accurate model, and the optimal TDW half-

cycle peak amplitudes in vector xopt, the ideal pulse peaks are given as

yopt = H xopt.

The vector of errors in the TDW half-cycle peak amplitudes is

ex = x0pt - x.
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Let the correction to the TDW parameter vector x be expressed as Ax; which updates x at

each iteration in the direction of steepest descent on the quadratic error surface. We express

Axas

,&x = *)A [e We Y1 (4.21)

where A is the gradient with respect to ex and I is a small positive constant. Equation

4.21 is rewritten in terms of ex

Ax= Vex [eTxHTWHTex]. (4.22)

Taking the partial derivative of Ax with respect to ex. equation 4.22 becomes

Ax = (-g) HTWHex (4.23)

Substituting ey = Hex in equation 4.23, the correction term

Ax = (-A) HTWey,

where the adaptation constant gi is bounded as [Ref. 3, 4]

2
S< largest eigenvalue of [HTWH]

The final form of the steepest descent control algorithm is

x+l = Xn + (-I) HTWey.

"The MIMO RLS control algorithm and steepest descent control algorithm are

implemented in a simulated control system with a simulated transmitter which allows

testing, analysis, and comparison of the control algorithms in Chapter V. With a system

matrix, the RP error and the past TDW parameter vector, both control algorithms are able

to produce a correction to update the TDW parameters. As the RF pulse parameters

approach the ideal values, the TDW parameters converge to optimal values.

26



V. RESULTS AND COMPARISONS OF TDW CONTROL
ALGORITHMS

A. INTRODUCTION

The results of the MIMO RLS control algorithm are presented in this chapter.

Comparisons are made between the MIMO RLS and steepest descent control algorithms.

The RLS control algorithm is compared against the steepest descent control algorithm

under ideal conditions of machine precision, as well as under low noise conditions with

eight bits of resolution for data acquisition; the digital storage oscilloscope used to sample

the RF pulse has an eight-bit resolution. The signal to noise ratio (SNR) used in each trial

for both the TDW and RF pulse is provided in each case:

Ps
SNR = 10 1ogl0 P,

where Ps is the peak signal power and Pn is the average noise power. [Ref. 3: p. 401

The reference model for each control algorithm is derived differently, resulting in a

majcr difference in their control techniques. An adaptive MIMO RLS model is used in the

MIMO RLS control algorithm. The steepest descent control algorithm uses an impulse

response matrix for its reference model [Ref. 3: p 81].

The results will consist of examining the root mean of squared RF peak errors 1-8

(ensemble error), the maximum RF peak error in half-cycles 1-8 and 9-13 (individual

errors), the mean square error (MSE) of the RF pulse peaks 1-16, and the zero-crossing

location error in excess of the allowable tolerance. The simulated digital sampling

oscilloscope operates at its highest sampling frequency of 10MHz which improves the

accuracy in sampling the peaks and the zero-crossings.

For testing purposes, only the first pulse of the PCI is controlled for 400 iterations

starting on the dummy load and then switched to the antenna after the errors in the pulse

peaks meet a tolerance threshold. The initial TDW peak values for the first iteration of

control can be arbitrary; however, constant values of ±1.70 volts were chosen.
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B. PEAK SAMPLING

In presenting the results, we consider two cases here. In the first, the TDW and RF

waveform parameter vectors are of size 16x1 each; these are the first 16 peak amplitude

values of the respective waveforms. In the second case (discussed in section C), the RF

parameter vector contains both peak amplitudes and zero-crossing values making its size

32x1 while the TDW parameter vector remains unchanged. Simulation results are also

presented for noiseless and noisy environments.

1. Results of RLS Control under Ideal Conditions

Under ideal (noise free) conditions, the TDW and RF pulse are sampled to the

computer's machine precision, and the signals are free of any system noise usually present

in the actual transmitter. There are no deliberate variations in the simulated transmitter's

poles and zeros; changing pole-zero locations of the model simulate time variations in the

transmitter. The simulated transmitter's characteristics can be changed by varying the

TDW's energy and the power supply voltage [Ref. 2, 3]. The pole-zero locations stated

above, fluctuate with variations in the TDW's energy and the transmitter's power supply

droops within the GRI as RF pulses are transmitted every 1000ls.

The TDW parameters are updated, so the RF pulse half-cycle peak amplitudes

converge on the dummy load, until the three measures of RF pulse peak errors are below a

tolerance threshold. The tolerance threshold for each of these errors is different than those

described in Chapter II for the error specifications; the tolerance threshold is chosen

arbitrarily so the RF pulse peaks are in tolerance within an iteration or two during the swap

from the dummy load to the antenna. The transmitter swap from dummy load to antenna

can be observed in Figures 5.1-5.4, where the symbol 1 appears on the graph.

The various terms used in Figures 5.1-5.4 are explained in the following. In

Figures 5.1 - 5.4: The "F Factor" is the forgetting factor used in the RLS control algorithm

when shaping the RF pulse first on the dummy load and then on the antenna. The term

"Drift" is explained in the next section; it is not used in these simulations. The expression
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"tau" refers to the ECD, which is set to zero for all simulation trials in this thesis. The

"noise" is the variance of the additive noise. The expression "bits" indicates the number of

bits used to sample the signals; a zero indicates machine precision.

Figures 5.1 and 5.2 illustrate the performance of the RLS control algorithm. In

Figure 5.1, the convergence of three measures of RF pulse peak amplitude error (ensemble

error, maximum of individual errors 1-8, and maximum of individual errors 9-13) are

shown. Figure 5.2 illustrates the mean square error converging toward its minimum value

on the error performance surface. Figures 5.3 and 5.4 illustrate the same error convergence

for the steepest descent control algorithm. The RF pulse peak errors meet the specification

tolerances for all iterations when using a signal to noise ratio (SNR) between 81dB and

89dB for the TDW and 95dB and 97dB for the RF pulse.

In Figure 5.1, the RLS control algorithm reduces the RF peak errors below the

threshold in less than five iterations at which time the load is swapped. This is a vast

improvement over the steepest descent's convergence on the dummy load in Figure 5.3.

The steepest descent controller required over 50 iterations to reach the threshold (i = 0.8

of gImax, where pmax is a predetermined value of 0.083).

After 400 iterations of pulse shape control, the final converged peak errors for the

RLS and steepest descent control algorithms are recorded in Table 5.1. The MSE of the

peak values (1-16), the ensemble error, the maximum error of peaks 1-8, and the maximum

error of peaks (9-13) are an order of magnitude lower or less using the RLS controller.

The zero-crossing times are calculated with reference to the standard zero-

crossing (SZC). The time difference from the maximum allowable tolerance is indicated in

Table 5.2 for both the RLS the steepest descent algorithms. The zero-crossings are not in

tolerance for either one of them.

Both control algorithms are able to shape the Loran-C pulse. The RF pulse peaks

converge to a close approximation of the ideal RF pulse peak values. This is shown in Table

5.3.a for the RLS control algorithm and Table 5.3.b for the steepest descent control

algorithm. In these tables, the actual and the ideal RF pulse parameters are normalized. The
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term "average" is the time average of the RP pulse parameters over each iteration of

control. The term "ideal" refers to the first 16 half-cycle peak amplitudes of the normalized

ideal pulse. The term "diff" is the difference between the column values specified. This

gives the error in the RF peak values.

10 Convergence of Ensemble Error, Max errs 1-8, Max erms 9-13
AWP-4A 10 MHz Antenna' Pulse i

.... ... Recursive La

10')7 Final Erros::
0: 002811-PP~.cltorimia:- t au-o

-2 Max 9-13 '.):0.0003952 Drift: O/1 blte.O

10

0 50 100 150 200 250 300 350 400
iterations, t

Figure 5. 1: Convergence of peak amplitude tolerances of Loran-C error using the RLS
control algorithm (machine precision, no noise) with '44A' transmitter.
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Convergence of Output MSE
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Figure 5.2: Convergence of MSE of RF peak amplitudes 1- 16 using the RLS control
algorithm (machine precision, no noise) with '44A' transmitter.
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Figure 5.3: Convergence of peak amplitude tolerances of Loran-C error using the steepest
descent control algorithm (machine precision, no noise) with '44A' transmitter.
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Convergence of OutputMSE
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Figure 5.4: Convergence of MSE of RF peak amplitudes 1-16 using the steepest descent
control algorithm (machine precision, no noise) with '44A' transmitter.

TABLE 5.1: RF Pulse Peak Tolerances After 400 Iterations (Machine Precision, No Noise)

Control AIg. MSE out Ens err MaxE 1-8 MaxE 9-13

RLS 3.0e-6 2.8e-4 5.3e4 4.0e-4

Steepest Descent. 4.0e-4 4.6e-3 8.2e-3 7.6e-3

TABLE 5.2: Zero-crossing Errors (ns) After 400 Iterations (Machine Precision, No Noise)

Cont. Alg. 1 2 3 4 5 6 7 8 9 10 11 12

RIS 0 -70.4 -21.8 0 0 0 0 0 0 0 0 0

SL Desc. 0 -118.0 -9.2 0 0 0 0 0 0 0 0 0
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TABLE S.3.a: Normalized RF Peak Values Obtanied with RLS Coutrol Algorithm (Machme Precuma, No Nowe)

Peak Ideal Averge After 400 iter Diff (3-2) Diff (4-2)

1 0.0157 0.0168 0.0157 0.0011 0.0001

2 -0.0833 -0.0819 -0.0835 0.0015 -0.0002

3 0.1901 0.1905 0.1898 0.0004 -0.0004

4 -0.3158 -0.3170 -0.3163 -0.0012 -0.0005

5 0.4454 0.4450 0.4453 -0.0004 -0.0002

6 -0-5696 -0.5702 -05697 -0.0007 -0.0001

7 0.6813 0.6823 0.6817 0.0010 0.0004

8 -0.7771 -0.7771 -0.7771 -0.0000 0.0001

9 0.8556 0.8568 0.8559 0.0012 0.0003

10 -0.9164 -0.9169 -0.9166 -0.0006 -0.0002

11 0.9598 0.9608 0.9599 0.0009 0.0001

12 -0.9872 -0.9884 -0.9876 -0.0013 -0.0004

13 1.0000 1.0000 1.0000 0.0000 0.0200

14 -1.0001 -1.0014 -1.0003 -0.0013 -0.0003

15 0.9892 0.9897 0.9894 0.0005 0.0002

16 -0.9692 -0.9701 -0.9694 -0.0010 -0.0002

TABLE 5.3.b: Normalized RF Peak Values Obtained with Steepest Descent Control Algorithm (Machine
Precision, No Noise)

Peak Ideal Average After 400 iter Diff (3-2) Diff (4-2)

1 0.0157 0.0202 0.0202 0.0046 0.0046

2 -0.0833 -0.0747 -0.0751 0.0086 0.0082

3 0.1901 0.1867 0.1873 -0.0034 -0.0028

4 -0.3158 -0.3190 -0.3191 -0.0032 -0.0033

S0.4454 0.4453 0.4453 -0.0001 -0.0001

6 -0.5696 -0.5637 -0.5639 0.0059 0.0057

7 0.6813 0.6762 0.6763 -0.0052 -0.0051

8 -0.7771 -0.7759 -0.7758 0.0013 0.0013

9 0.8556 0.8542 0.8547 -0.0015 -0.0010

10 -0.9164 -0.9102 -0.9112 0.0062 0.0052

11 0.9598 0.9519 0.9522 -0.0079 -0.0076

12 -0.9872 -0.9836 -0.9829 0.0035 0.0042

13 1.0000 1.0000 1.0000 0.0000 0.0000
14 -1.0001 -0.9941 -0.9959 0.0060 0.0042

1- 0.9892 0.9761 0.9778 -0.0131 -0.0114

-6-0.9%92 -0,9716 -0.9698 -0.0024 -0,00
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2. Performance of the Control Algorithm under Non-ideal Conditions

The tracking performance of the control algorithms are tested by introducing a

noise burst into the TDW parameters once the peak amplitudes of the RF pulse have

converged for 200 iterations. White gaussian noise is added to the TDW parameters from

iteration 200 to 210. The RF pulse is driven out of tolerance and then allowed to

reconverge. Observing the RLS algorithm's tracking performance in Figures 5.5 and 5.6

after iteration 210, less than 25 control iterations were needed to bring the RF pulse's peak

amplitudes back in tolerance. The RLS control algorithm required a noise variance of 0.04

to drive the RF peak amplitudes out of tolerance. The steepest descent algorithm used a

noise with variance of 0.01 (one fourth of the noise variance used in the RLS) to drive the

RF peaks out of tolerance. The RF pulse peaks do not reconverge in tolerance until after

iteration 400, as observed in Figures 5.7 and 5.8. Using a noise burst with a variance of 0.04

in the steepest descent control drives the algorithm unstable, and it never regains control.

Convergence of Ensemble Error, Max errs 1-8, Max errs 9-13
10 -

1AN/FP-44A 10MHz Antenna Pulse 1
Recursive LS

10", Final Errors:
IErs E (-j: '0.001 7S9 I• a I tau..

Max 9-13 (.:0.002083 b)rift: 0/1 bits..0
o10 `2 -: C1-

10`3•

I~ oe

10`4

0 50 100 15,0 200 250 300 350 400
Iterations, t

Figure 5.5: Peak amplitude tolerances using the RLS control algorithm (machine precision,
no noise); tracking performance with noise burst (variance 0.04) during iterations 200-2 10.
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Convergence of ou0~ MSE

- :ANWFPN-44A: 10MI-M Antenna Pulse I
101 Reowe.e.LS

Final MSE: 0.00)1374
106 pFFeor..141 m.A.

. [•. " norso-0.0

10-1 0/1 bits-0

103

10

10 -

10° 50 1O0 150 200 250 380 350 400

Iterations, t

Figure 5.6: MSE of RF peaks 1-16 using the RLS control algorithm (machine precision, no
noise); tracking performance with noise burst (variance 0.04) during iterations 200-210.
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Figure 5.7: Peak amplitude tolerances using the steepest descent control algorithm
(machine precision, no noise); tracking performance with noise burst (variance 0.01)

during iterations 200-210.
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Figure 5.8: MSE of RF peaks 1- 16 using the steepest descent control algorithm (machine

precision, no noise); tracking performance with noise burst (variance 0.01) during
iterations 200-210.

3. Finite Bit Resolution, Additive Noise, and Ptarameter Drift

The control algorithms are implemented in machine precision; however, the RF

puilse and TDW are digitized at eight-bit resolution. The SNR of the TD)W arnd RF pulse are

lowered by adding white gaussian white noise to the signals; the white noise has a variance

of 1.166 x 10-4. The SNR of the TDW and RF pulse for these simulation results are 64dB

and 73dB.

The tracking performance of the control algorithms are tested while time

variations occur in the simulated transmitter. The time variations introduced are "drift" of

the transmitter and transmitter "switches." The poles and zeros that make up the

transmitter's 11R model are allowed to change slightly or "drift"' to a new location within

the predetermined bounds in order to simulate the transmitter's time varying characteristics

over days and weeks. These new poles and zeros correspond to "switching" to a new

transmitter when the change is abrupt. The amount of variation occurring to the poles and
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zeros with drift and transmitter switching is shown in Figure 5.9 for the RLS control

algorithm and Figure 5.10 for the steepest descent control algorithm.

In Figures 5.11-5.18, drift occurs every fourth iteration (see Figures 5.9 and

5.10), which is displayed as "Drift 4/1" in these graphs. The movement of poles and zeros

for 400 iterations corresponds to a 25 hour period of slow transmitter time variations [Ref.

3: p. 86]. Transmitter switches occur at iteration 150 and 300, as indicated by the symbol

i. It was observed that the percentage of pulse peaks in tolerance for both control

algorithms is very similar under these conditions.

The amount of fluctuation in the simulated transmitter due to drift and switching

is random; therefore, direct comparison between pulse peak errors using different control

algorithms is not beneficial. However, overall observations of how the algorithms respond

to time variations can be made. Both algorithms are able to compensate for slow time

variations in the simulated transmitter.

Figures 5.11-16 show the convergence performance of the RLS and steepest

descent algorithms under non-ideal conditions. For both the RLS and steepest descent

algorithms, as seen in Figures 5.11 and 5.14, the ensemble error occasionally exceeds the

tolerance level while the individual peak errors (see Figures 5.12, 5.13, 5.15, and 5.16)

remain in tolerance.

Figures 5.17 and 5.18 show the MSE convergence performance of the two

algorithms when slow time variations are introduced in the simulated transmitter every

fourth iteration. Both algorithms converge to a similar MSE of approximately lxl0"3 from

iteration 75 to 150. At iteration 150, a transmitter switch is simulated. It is arbitrary whether

the MSE will rise or lower. If the transmitter switch decreases the error between the

simulated transmitter and the given reference model, the MSE decreases. If the switch

provides a worse estimate of the reference model, the MSE rises. The RLS and steepest

descent algorithms have difficulty converging to a lower MSE once a switch is made. The

quantization noise and additive white noise degrade the tracking performance of the

algorithms [Ref. 9: p. 67-81]. The RLS control algorithm, as with the steepest descent
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control algorithm, is sensitive to noise and large shifts in the poles and zeros of the

transmitter model.

The error in the zero-crossing times for these trails are provided in Table 5.4 for

both control algorithms. The second and third zero-crossing that were out of tolerance in

the ideal environment are also out of tolerance in this environment, but to a greater extent.

After 400 iterations, errors in the RF pulse peaks for both control algorithms are

provided in Table 5.5 and Tables 5.6.a and 5.6.b. Table 5.5 lists the MSE, ensemble error,

and maximum individual peak error in half-cycles 1-8 and 9-13 with eight bit sampling and

a noise of variance 1.2e-4. These errors were all within tolerance specifications. Table 5.6.a

for the RLS algorithm, and Table 5.6.b for the steepest descent algorithm list individual RF

pulse peaks taken after iteration 400.

Drift Parameters (including possible step changes)
0.01

0.00 ..

0.0064

0.004 .
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-0.01-0 50 100 150 200 250 300 350 400
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Figure 5.9: Drifting of the pole and zero magnitudes including step changes for the RLS
control algorithm (8 bits, noise variance of 1.2e-4). Transmitter switches at iteration 150 &

300 and drift occurs every 4 iterations.
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Figure 5.11: Ensemble error using the RLS control algorithm ( 8 bits, noise variance of
1.2e-4). Transmitter switches at iteration 150 & 300 and drift occurs every 4 iterations.
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Figure 5.12: Maximum error of peaks 1-8 using the RLS control algorithm (8 bits, noise
variance of 1 .2e-4). Transmitter switches at iteration 150 & 300 and drift occurs every 4

iterations.
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Figure 5.13: Maximum error of peaks 9-13 using the RLS control algorithm (8 bits, noise
variance of 1.2e-4). Transmitter switches at iteration 150 & 300 and drift occurs every 4

iterations.
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Figure 5.14: Ensemble error using the steepest descent control algorithm (8 bits, noise
variance of 1.2e-4). Transmitter switches at iteration 150 & 300 and drift occurs every 4

iterations.
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Figure 5.15: Maximum error of peaks 1-8 using the steepest descent control algorithm (8
bits, noise variance of 1.2e-4). Transmitter switches at iteration 150 & 300 and drift occurs

every 4 iterations.
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Figure 5.16: Maximum error of peaks 9-13 using the steepest descent control algorithm (8
bits, noise variance of 1 .2e-4). Transmitter switches at iteration 150 & 300 and drift occurs

every 4 iterations.
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Figure 5.17: MSE of peaks 1- 16 using the RLS control algorithm (8 bits, noise variance of
1.2e-4). Transmitter switches at iteration 150 & 300 and drift occurs every 4 iterations.
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Figure 5.18: MSE of peaks 1-16 using the steepest descent control algorithm (8 bits, noise
variance of 1.2e-4). Transmitter switches at iteration 150 & 300 and drift occurs every 4

iterations.

TABLE 5.4: Zero-crossings Errors (as) After 400 Iterations (8 Bits, Noise Variance of 12e4)

Cont. Alg. 1 2 3 4 54 6 7 8 9 10 11 12

RLS 0 -306.8 -48.8 0 0 0 0 0 0 0 0 '0

St Des 0 -110.5 -49.9 0 0 0 0 0 0 0 0 0

TABLE 5.5: RF Pulse Peak Tolerances After 400 Iterations (8 Bits, Noise Variance of 1.2e-4)

Control Alg. MSE out Ens err MaxE 1-8 MaxE 9-13

RLS 0.0004 0.0044 0.0077 0.0040

Steepest Descent 0.0004 0.0052 0.0100 0.0043
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TABLE 5.6.a: Normalized RF Peak Values with RLS Control Algorithm (8 Bits, Noise Variance of 1.2e-4)

Peak Ideal Average Last iter Diff (3-2) Duff (4-2)

1 0.0157 0.0240 0.0252 0.0083 0.0096

2 -0.0833 -0.0809 -0.0840 0.0025 -0.0007

3 0.1901 0.1952 0.2017 0.0050 0.0116

4 -0.3158 -0.3212 -0.3277 -0.0054 -0.0119

5 0.4454 0.4458 0.4454 0.0004 -0.0001

6 -0.5696 -0.5700 -0.5714 -0.0004 -0.0018

7 0.6813 0.6840 0.6891 0.0027 0.0077

8 -0.7771 -0.7776 -0.7815 -0.0005 -0.0044

9 0.8556 0.8554 0.8571 -0.0003 0.0015

10 -0.9164 -0.9184 -0.9160 -0.0021 0.0004

11 0.9598 0.9607 0.9580 0.0009 -0.0018

12 -0.9872 -0.9852 -0.9832 0.0019 0.0040
13 1.0000 1.0000 1.0000 0 0

14 -1.0001 -1.0019 -1.0000 -0.0018 0.0001

15 0.9892 0.9875 0.9832 -0.0017 -0.0060

16 -0.9692 -0.9705 -0.9748 -0.0014 -0.0056

TABLE 5.6.b: Normalized RF Peak Values with Steepest Descent Control Alg. (8 Bits, Noise Variance of 1.2e-4)

Peak Ideal Average After 400 iter Diff (3-2) Diff (4-2)

1 0.0157 0.0135 0.0169 -0.0021 0.0013

2 -0.0833 -0.0699 -0.0763 0.0134 0.0071

3 0.1901 0.1870 0.1864 -0.0031 -0.0037

4 -0.3158 -0.3205 -0.3136 -0.0047 0.0022

5 0.4454 0.4464 0.4492 0.0010 0.0037

6 -0.5696 -0.5628 -0.5678 0.0068 0.0018

7 0.6813 0.6752 0.6780 -0.0061 -0.0034

8 -0.7771 -0.7761 -0.7712 0.0011 0.0059

9 0.8556 0.8548 0.8475 -0.0008 -0.0082

10 -0.9164 -0.9104 -0.9068 0.0059 0.0096

11 0.9598 0.9517 0.9492 -0.0082 -0.0107

12 -0.9872 -0.9832 -0.9746 0.0040 0.0126

13 1.0000 1.0000 1.0000 0 0

14 -1.0001 -0.9950 -0.9831 0.0051 0.0170

15 0.9892 0.9763 0.9746 -0.0129 -0.0146

16 -0.9692 -0.9706 -0.9576 -0.0015 0.0115
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Additional results on the MIMO RLS control algorithm are included in Appendix

A. In obtaining these results, the RLS algorithm is tested with the TDW and RF sampled

with eight bit resolution and additive white noise of variance 9xl0 4 . This is the same

operating environment that is used to test the steepest descent control algorithm in Ref. 3:

p. 121; the results obtained in Appendix A can be directly compared to those in Ref. 3.

In Appendix B, the MIMO RLS control algorithm is derived using a MIMO

model with memory that uses past TDW parameter vectors to update the present TDW

vector. The control algorithm with memory does not perform as well as the MIMO RLS

control algorithm without memory. The algorithm with memory is tested under ideal

conditions only; results are found in Appendix B.

C. PEAK AND ZERO SAMPLING

The control algorithm using only the RF peak amplitudes of the first 16 half-cycles

does not take into account the error in the desired locations of the zero-crossings. Letting

the MIMO RLS controller, under ideal conditions described in section B. 1 of Chapter V,

run for 1000 iterations results in the RF pulse peaks converging to the ideal peaks with an

error of approximately ±+ x 10-4 in each peak. Even with the best case, the second and third

zero-crossings are still out of tolerance. By expanding the vector parameters that represent

the RF pulse to include peak amplitudes and the sample values at the desired zero-crossing

locations, control over the zero-crossings is obtained.

The x vector containing the TDW parameters remains unchanged with the 16 half-

cycle peak amplitudes. The y vector is expanded to 32 parameters. The odd values (1,

3,...,31) are the RF pulse peaks, and the even values (2, 4,..., 32) are the desired zero

crossings. The desired zero crossing samples of the RF pulse are obtained by first locking

onto the standard zero-crossing (SZC) and then sampling at multiples of 5g1s for a total of

25gs before and 501is after the SZC. The sampling frequency is 10MHz which corresponds

to a sampling interval of 100ns.
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The desired zero-crossing tolerances are less than ± lOOns after the third zero-crossing

of the pulse; therefore, interpolation is performed to increase the accuracy in sampling the

desired zero-crossing locations. The following procedure is used for interpolation. Samples

are found on either side of the SZC and the SZC location is estimated by linear interpolation

between these points. The increase in accuracy of the SZC location is used to better

approximate the desired locations of the remaining zero-crossings. Linear interpolation is

performed based on the assumption that the RF pulse has a linear slope at crossing points.

A diagonal weighting matrix, W, is used in the TDW update (equation 4.16) to weigh

the RF parameter errors as desired. Particularly elements 4 and 6 of the RF error vector

required a higher weighting than the others; their weights were chosen to be 15 and 10,

respectively. Positions 4 and 6 of the RF error vector are the second and third zero-

crossings.

The inverse correlation matrix P. in the control algorithm is re-initialized every 50

iterations. When sampling both peaks and zero-crossings, P. is re-initialized as

P1 = Pn1 ] + Cp L

where 9p is in the range of 30 to 50, which is smaller than cp in the case of peak sampling

only.

The most impressive results are obtained when shaping the RF pulse with samples of

the RF pulse peaks and zero-crossings. Under ideal conditions, all zero-crossings are in

tolerance after 110 iterations of control, and the RF half-cycle peak amplitudes converge to

below tolerance values after 15 iterations. The convergence of the three measures of pulse

peak error is shown in Figure 5.19. Table 5.8 lists the RF pulse peak tolerances and Table

5.9 lists the individual RF pulse peak amplitude errors after 400 iterations.

Figure 5.20 illustrates the convergence of the MSE of the RF pulse peaks 1-16. The

convergence of the MSE of the RF pulse peaks 1-16, after 400 iterations, is observed to be

higher compared with the peak sampling case. This should be expected when increasing the

number of parameters required to form a least squares fit.
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The second zero-crossing is most frequently out of tolerance. Figure 5.21 illustrates

the second zero-crossing initially deviating 225ns from the desired location. After

approximately 110 iterations of control, the second zero-crossing falls within the

acceptable tolerance of lOOns.

Figure 5.22 and 5.23 show plots of the TDW and RF pulse respectively, obtained after

400 iterations. The second half-cycle of the TDW in Figure 5.22 has a peak amplitude close

to zero. This is unusual; however, the resulting RF pulse (synthetic RF pulse) in Figure 5.23

is very similar to the ideal pulse.

The performance of the RLS algorithm has degraded when tested under non-ideal

conditions of additive noise and eight bit digitization of the RF waveform. The discussion

and results reported here for the MIMO RLS control algorithm using pulse peaks and zero-

crossings do not encompass all possible scenarios of the transmitter operation; these results

may be considered preliminary. Further research is necessary to explore the strengths and

weaknesses of this approach.

Convergence of Ensemble Error, Max errs 1-8. Max errs 9-13

AN/F!P*N-44A 10 MHz Antenna Pulse I
Recursive LS

Final Errors:
Ens E (-): 0.004388 F (Dummy)-1 tau-0
Max 1-8 (--): 0.009372 F (Ant)-1 noise-0.0

10" Max 9-13 (-.): 0.009079 Drift: 0/1 bits-0

1002

0 .2 . . . .. . . _.. . .. . • ._ • - - ,•

1023 1.

103 so 100 150 200 250 300 350 400

Iterations, t

Figure 5.19: Peak amplitude tolerances using the RLS control algorithm (machine
precision, no noise) when sampling peaks and zero-crossings.

47



Convergence of OuW MSE

ANWFPN-44A 10 MHz Antenna Pulse I
... Recur.ulve LS

""Final MSE: 0.00455710" F (Purdnmy). : ta .
S.... .. .. " F (Ant)-1 noise-0.O

Drift: 0/1 bftm0O

io)-4 1
0 50 100 150 200 250 300 350 400

Iterations. t

Figure 5.20: MSE of RF peaks 1-16 using the RLS control algorithm (machine precision,
no noise) when sampling peaks and zero-crossings.

Second Zero Crossing of RF Pulse Converging in Tolerance
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Figure 5.21: Second zero-crossing error (ns) using the RLS control algorithm (machine
precision, no noise) when sampling peaks and zero-crossings.
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Final Transmitter Drive Woejorm (%&,)
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Figure 5.22: TDW produced after 400 iterations using the RLS control algorithm (machine
precision, no noise) when sampling peaks and zero-crossings.

Ideal & Synthetic RF Pulses (beginning at let hall cycle)
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Figure 5.23: Converged synthetic (dash) RF pulse with ideal (solid) after 400 iterations
using the RLS control algorithm (machine precision, no noise) when sampling peaks and

zero-crossings.
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TABLE 5.7: RF Puhe Peak Tolerances After 400 Iteration with RLS Control Algorithn (Machine Precision, No
Noim@6 Peaks and Zarouinp)

MSEout Enerr MaxE 1-8 MaxE 9-13

0.0011 0.0071 0.0111 0.0117

TABLE 5.8: Normalized RF Peak Values with iLS Control Algorithm (Machine Precimon, No Noise, Peaks and
Zero-crmagsw)

Peak Ideal Average After 400 iter. Diff (1-3) Diff (2-3)

1 0.0157 0.0210 0.0203 0.0054 0.0046
2 -0.0833 -0.0901 -0.0921 -0.0067 -0.0088
3 0.1901 0.1973 0.1976 0.0072 0.0075
4 -0.3158 -0.3122 -0.3097 0.0036 0.0061

5 0.4454 0A390 0.4379 -0.0064 -0.0076
6 -0.5696 -0.5606 -0.5585 0.0090 0.0111

7 0.6813 0.6844 0.6843 0.0030 0.0030

8 -0.7771 -0.7803 -0.7822 -0.0032 -0.0050

9 0.8556 0.8486 0.8487 -0.0071 -0.0069
10 -0.9164 -0.9195 -0.9209 -0.0031 -0.0046
11 0.9598 0.9695 0.9715 0.0097 0.0117
12 -0.9872 -0.9900 -0.9915 -0.0028 -0.0043
13 1.0000 1.0000 1.0000 0 0
14 -1.0001 -1.0034 -1.0015 -0.0033 -0.0014

15 0.9892 0.9958 0.9936 0.0066 0.0044
16 40.9692 -0.9787 -0.9735 -0.0096 -0.0043

D. RLS CONTROL ADVANTAGES AND LIMITATIONS

The MEMO RLS controller is considered to operate in a slow time-varying

environment at a given operating point. The RLS algorithm in this environment is typically

an order of magnitude faster in convergence than the steepest descent algorithm [Ref. 8: p

491-501]. This was observed in the ideal simulation environment.

The greatest advantage with the MIMO RLS control algorithm is the use of a time-

varying reference model. The MIMO RLS control algorithm uses a MEMO RLS model

50



which allows the reference model to adapt to changes and time variations in the transmitter.

On the other hand, the steepest descent algorithm uses a fixed impulse response matrix

when modeling the transmitter.

The MIMO RLS control algorithm is subject to the stalling phenomenon. The

algorithm's inverse correlation matrix, P., rapidly decreases numerically until the

algorithm stalls. The inverse correlation matrix is continually reset every 50 iterations to

overcome this problem

Another limitation of the MIMO RLS control algorithm is its computational

complexity. It requires MIMO RLS estimate of the reference model and optimal TDW half-

cycle peak amplitudes at each iteration. To decrease the number of computations, the

recursive least squares estimate of the MIMO model could be carried out every few

iterations rather than at every iteration once the algorithm reaches steady state TDW

parameters.
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VI. CONCLUSIONS

A. CONCLUSIONS

As purt of the US Coast Guard's effort to redesign and modernize the AN/FPN-44A

tube type transmitter with automatic Loran pulse shaping and control, this thesis developed

a MIMO RLS algorithm. This control algorithm shapes the transmitted RF pulse to match

an ideal pulse by producing a near optimal TDW. The MIMO RLS control algorithm uses

a MIMO RLS estimate of the transmitter as a reference model. The RLS algorithm is

implemented on a simulated transmitter, and the RF pulse peak tolerances and zero-

crossing errors are studied. The performance of the RLS algorithm is compared to another

method of control, the steepest descent algorithm.

When using the first 16 RF pulse peaks to represent the transmitter output, the MIMO

RLS control algorithm was able to shape the pulse, but it was unable to bring the zero-

crossings into tolerance. Using these 16 output parameters, the M]MO RLS control

algorithm proved to have faster convergence and better ability to match the RF pulse to the

ideal over the method of steepest descent. The use of a M4MO RLS model of the transmitter

in the RLS controller was a significant advantage. The MIMO model adapts to the non-LTI

characteristics in the trsinsmitter.

By representing the RF pulse with parameters of the first 16 pulse peaks and samples

of the first 16 desired zero-crossing locations, the MIMO RLS control algorithm was able

to decrease the half-cycle peak amplitude errors below their tolerance levels and bring the

zero-crossings to within specification. When the RF pulse parameters are expanded from

16 to 32, the least squares formulation introduces more error into the RF pulse peak

amplitudes; however, all pulse specifications are still met.

In the non-ideal simulation, where the simulated transmitter's input and output are

corrupted with white noise and digitized with eight bits, the performance of the control

algorithms degraded. The RF pulse peaks are not in tolerance for all control iterations and

the second and thir6 ,.cro-crossings do not meet specifications.
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B. RECOMMENDATIONS FOR FURTHER STUDY

To improve the controller's performance in shaping the RF pulse, noise reduction is

necessary. The control algorithms can not decrease the error in the RF pulse parameters

below the level of the noise. Filtering the noise prior to control might improve the

performance of the control algorithms.

Studying the characteristics of the RF pulse's quantization noise has lead to the

conclusion that sampling the RF pulse with eight bits or more produces noise that is

essentially white. By averaging several successively digitized RF pulses, of the same phase

code, the quantization noise can be reduced. A study of the system noise will also be

necessary to gain any advantage from waveform averaging.

If it is not possible to reduce the system noise to meet the specifications, a new set of

acceptable performance figures could be suggested. This may included redeveloping the

error tolerances for the RF peaks and zero-crossings.

Further research on controlling the RF pulse with peak and zero-crossing samples

needs to be conducted. The adjustment (i.e., shifting the zero-crossings) accomplished by

the RLS control algorithm requires further testing and analysis. Better control may be

established by an expanded RF pulse parameter vector to include samples at the quadrature

locations.

When expanding the parameters that represent the signals or using memory to match

the RF pulse to the ideal, the time required to update the TDW increases; the computational

expense of the RLS algorithm may be undesirable. To increase the speed of the RLS

calculations, the fast RLS algorithm may be an acceptable substitute [Ref. 8].
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APPENDIX A

MIMO RLS CONTROL IN A NON-IDEAL SIMULATION

In this appendix, results obtained using the MIMO RLS control algorithm under non-

ideal conditions are included. In a non-ideal simulation, the RF pulse and TDW are subject

to quantization and additive white noise. The signal to noise ratio (SNR) of the RF pulse

and TDW is approximately 67.48dB and 56.29dB. To obtain these SNR levels, the signals

are sampled with an eight-bit resolution, and white noise with a variance of 9.26xi0"4 is

added.

These results were produced to compare the performance of the MIMO RLS algorithm

with that of the steepest descent algorithm as reported in Ref. 3: p. 120. The steepest

descent algorithm was implemented under the same non-ideal conditions as those

considered here.

The following is a summary of the operating conditions for the results shown in

Figures A.1-6. The sampling frequency was 10MHz. The forgetting factor in the RLS

algorithm was unity. The ECD (c.) was set to zero. The additive noise has a variance of

9.26x10"4. An eight-bit A/D converter was used to quantize the signals.

Figure A.1 is a plot of the MSE convergence of the RF pulse peaks 1-16 to their ideal

values. The steady state MSE, shown in Figure A. i, using the RLS algorithm is a close

resemblance of the steady state MSE using the steepest descent method under the same

operating conditions [Ref. 3, p. 121, Figure 5.12.a]. The noise power is observed as the

floor of the MSE convergence in both sets of results.

The RF peak amplitudes are in tolerance for 92% of the iterations examined. In Figure

A.2, the ensemble error is occasionally out of tolerance. The other measures of peak

amplitude error are well within tolerance limits, as observed in Figures A.3 and A.4.

The second and third zero-crossings listed in Table A.1 are out of tolerance. Even in

the ideal environment, the second and third zero-crossings do not meet tolerance

specifications. These zero-crossings are most frequently out of tolerance when controlling
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the 44A Loran-C pulse, see Chapter V, Section C, for a method of control of the zero-

crossings.

After 400 iterations of control, the RF pulse peak errors are listed in Table A.2, and

the difference of the pulse peak amplitudes from their ideal values are listed in Tabie A.3.

The converged TDW is plotted in Figure A.5. The corresponding RF pulse and the ideal

pulse are plotted in Figure A.6.

2 Convergence of Output MSE
10 ... ..

AN/FPN-44A 10 MHz Antenna Pulse I
Recursive LS

10t Final MSE: 0.001 44

F Faotor -1 &1 tau-0

100 none-O.54%
. . :Drift: 011 bits-8

10-1

10-2

1043

0 50 100 150 200 250 300 350 400
Iterations, t

Figure A.1: MSE of peaks 1-16 using the RLS control algorithm (8 bits, noise variance of
9.3e-4).
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10.' Conlvergence of, Ensemble Error

AN0`FPN-44A 10 MHz Antenna Pulse I
Recursive LS

Final Error:
Eno E (-: 0-006532 F Factor -1 & 1 teu0

nossm0.54%
Drift: 0/1 bda-8

10-

0 50 100 150 200 250 300 350 400
Iterations, t

Figure A.2: Ensemble error using the RLS control algorithm (8 bits, noise variance of
9.3e-4).

100:Convergence of Maximum of Errors 1 -8

ýAN/VPN-44A 10 MHz, Antenna. Pulse 1
Recursive LS

Final Error:.1~ ~~~ Mx18.:0.16 FFactor -1&1I tau-0
Max 1-8 0.1796nos-0 .54%

107 Drift: 011 bits-48
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Figure A.3: Maximum error of peaks 1-8 using the RLS control algorithm (8 bits, noise
variance of 9.3e-4).
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Convergonce of Maximum ot Errors 9-13

AN/FPN-,44A 10 MHz Antenna Pule I
Recurisive LS -

Final Error:
F Factor -1 a I tau-O

rnoise-0.54%
10 Max 9-13T(-.): O.00671 Drift:0/1 bits,, .1bism
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Figure A.4: Maximum error of peaks 9-13 using the RLS control algorithm (8 bits, noise
variance of 9.3e-4).

Final Transmitter Drive Waveform (tdw)
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Figure A.5: TDW produced after 400 iterations using the RLS control algorithm (8 bits,
noise variance of 9.3e-4).
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Ideal & Synthetic RF Pulses (beginning at 1st half cycle)
6

Recursive LS
F Factor -1 & #&/FPN-44•0 M z A na •we

4-- 400 Iteratiors - Drift 1
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-4 ................ . . b,

-6• 1 , _______.. A A
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Figure A.6: Converged synthetic (dash) RF pulse with ideal (solid) after 400 iterations
using the RLS control algorithm (8 bits, noise variance of 9.3e-4).

TABLE A.I: Zero-crossings Errors (ns) After 400 Iterations with RLS Control Algorithm (8 Bits, Noise Variance
of 9.3e-4)

0 -231.3 1-6.91 0 1 l0 1 l0 1 l0 0 0 1 0 0 0 0

TABLE A.2: RF Pulse Peak Tolerances After 400 Iterations with RLS Control Algorithm (8 Bits, Noise Variance
of 9.3e-4)

MSE out Ens err MaxE 1-8 MaxE 9-13

0.0017 0.0085 0.0180 0.0069
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TABLE A.3: Normalized RF Peak Values with RLS Control Algorithm (8 Bits, Noise Variance of 9,.e-4)

Peak Ideal Average After 400 iter. Diff (3-2) Diff (4-2)

1 0.0157 0.0289 0.0336 0.0132 0.0180

2 -0.0833 -0.0853 -0.0840 -0.0020 -0.0007

3 0.1901 0.1969 0.1933 0.0067 0.0032

4 -0.3158 -0.3226 -0.3193 -0.0068 -0.0035

5 0.4454 0.4476 0.4538 0.0022 0.0084

6 -0.5696 -0.5714 -0.5714 -0.0018 -0.0018

7 0.6813 0.6844 0.6807 0.0030 -0.0007

8 -0.7771 -0.7780 -0.7899 -0.0009 -0.0128

9 0.8556 0.8561 0.8487 0.0005 -0.0069

10 -0.9164 -0.9179 -0.9160 -0.0016 0.0004

11 0.9598 0.9603 0.9580 0.0005 -0.0018

12 -0.9872 -0.9850 -0.9832 0.0022 0.0040

13 1.0000 1.0000 1.0000 0 0

14 -1.0001 -1.0018 -1.0000 -0.0017 0.0001

15 0.9892 0.9864 0.9832 -0.0029 -0.0060

16 -0.9692 -0.9701 -0.9748 -0.0010 -0.0056
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APPENDIX B

OPTIMAL TDW ESTIMATION WITH MEMORY

In this appendix, we derive the a MIMO RLS control algorithm with memory. This

derivation, in section A, presents a recursive least squares procedure similar to the

memoryless RLS algorithm in Chapter Hf, Section A.1 and A.2. In section B of this

appendix, results are presented for the MIMO RLS algorithm under ideal conditions.

A. MIMO RLS CONTROL ALGORITHM WITH MEMORY

The MIMO RLS controller uses a reference model A. The reference model A is a

MIMO RLS estimate of the transmitter at each control iteration (see Chapter III). The

transmitter model output at time i is expressed as

9i =Axi

where A - [LAO] [Al] ... [AN]],

xl
Xn

and xi. Xn- 1

XnNj

Column vector xi is composed of the current TDW parameter vector, xn, and past TDW

parameter vectors, (Xn.1, xn.2,..., Xn.N). Each submatrix of A has a column width equal to

the number of parameters in vector x. (TDW parameter vector), and the number of rows

are equal to the length of 9i (RF parameter vector). N is the order of the system [Ref. 14].

1. The Least Squares Method

The vector of errors is expressed as

ei = yopt -9i'
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where Yt is a vector of ideal RF pulse parameters. The sum of squared errous is

n
S (Yopt -Aixi) T(Yopt -Aixi)

i-O

or is expanded to become

n . T(YTT T xTAT(B 1J YoptYopt-XTAy i YoptoptAixi-iiTAx)" (.)
i.0

N NSubsituingA = A(') x(i) in.u
Substituting Aixi Z J n-j - Ajx-j inequation B.l, where i is the time index;

jo0 j.0 n-

we then have

n n N

o E E Yoptopt- 1 Xn A!Yopt}
i-O i0.

n N n N N
yp Akxn-k- E E xjATAkXn-k}}

i.O k.0 iO0tj-0 k. .

We assume xn is independent of time index i. Setting the partial derivative of J with respect

to vector x. equal to zero

n iN0

switching the index of summation of i and k and rearranging terms in equation B.2 yields

n n N n

0 (AA 0 ) xn- 6 Yopt - 1 {-A A'AkXn~k}. (B.3)
i-O i-O kk-i i 0

Let the autocorrelation matrix be

n
4m2 ATAo0 (B.4)

i-O
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and the cross-corlation vector be

n N n
y A0 AAkxn (B.5)

Tn-i.O opik.O0 -kI

Substituting equations B.4 and B.5 into equation B.3. produces a simplified matrix form

'On x n = 'n, (B.6)

and letting Pn"1 = On yields

Pn 1 xn = n- (B.7)

The least squares solution for x. from equations B.6 and B.7 is

Xn = 4iC'1 n = Pn Tn.

2. The Recursive Least Squares Method

For the recursive update of xn, we express equation B.7 at time index (n+1)

Pn+1"l xn+l =¥n+ A (n.IT N A()T÷0 ot E 0 Tkn l•n-k" (B-8)

k.1

Substituting equation B.7 for y. in equation B.8 yields

N T
Pn+l'I Xn+l = Pn-'l Xn+ A~nb (A0n YTA÷ 01)

k.1

Adding (A0 1)TAg(+1) x ( A0n 1xn) on the right side of equation B.9 and

grouping terms such that

Pn-1 xn + (0)n 1Tb+ )n =Pn+l-1Xn'

and

N N T
(A(÷' An : ( T• 1)Xk - - ( (An+ 1) A n k'

k-l k-0

equation B.9 becomes
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ln+1)T N J()a÷)T ne.1
Pn+"I- x8+1 = Pn+' 72+ A opt :(n Ak Xnk" (B.10)

k.0

Multiplying both sides of equation B.10 by Pn+j, and expressing

+r N Am+IT (n~l)lx jn)T( N (11
Yopt- "A0 k A X as A -EA lxn -

(A0  n-kj 0~ Yopt c ~ n
k.0 I, k.0

yields the final recursive equation for x,+I

& (÷+bT (y N 1)÷ ~
Xn+l =Xn +Pn+1 I , opt-:., kn -k' (B3.11)

0N k.0

N
opt-1: k n-k ecn+I/n)'where Y opt- Z Akn "' i

k-0

For the recursive solution of Pn., let

I I acn+ l)T(n÷ I)
SPn+l'l =XPn'l +A"10 "A0 -(B. 12)

Following on the lines of equation 4.17 - 4.20 the recursive equation for Pn.. becomes

= 1 P 1 n÷ ln)T'l I +• 1+ iIPnlA(n+ 1)T-I)Pn+l = XPn"-Xný PnnA+ T A(n+1 X1 Pn.

B. RESULTS OF MIMO RLS CONTROL ALGORITHM WITH MEMORY

The MIMO RLS control algorithm is tested under ideal conditions, as in Chapter V,

Section B.1. The signal to noise ratio (SNR) of the TDW and RF pulse are approximately

81dB and 99dB, respectively. The 16 parameters that represent the TDW and RF pulse are

the first 16 half-cycle peak amplitudes. Let N = 2, so xi becomes a vector of size 48 x 1,

and A becomes a matrix of size 16 x 48. A forgetting factor of X = I is used.

Figure B.1 shows the three measures of RF pulse peak error (ensemble error,

maximum of individual peak errors 1-8 and 9-13). The RF pulse peak errors converge to
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acceptable levels by iteration 50; however, undesirable perturbations occur after iterations

300 and 350 which drive the pulse errors out of tolerance.

Figure B.2 illustrates the convergence of the MSE of RF pulse peak errors 1- 16. When

using memory in the MIMO RLS control algorithm, there is no observable improvement in

the pulse peak errors or the MSE. The pulse peaks are in tolerance for 96.9% of iterations

examined.

Table B. I provides a listing of the zero-crossings after 400 iterations that exceed

tolerance specifications. The second zero-crossing in Table B. 1 is out of tolerance while all

others are acceptable. The RF pulse peak tolerances are listed in Table B.2 and the

individual RF pulse peak errors (1-16) are listed and analyzed in Table B.3.; both after 400

iterations. The pulse peak tolerances were met using the MIMO RLS algorithm, but zero-

crossings were not.

Comparing the convergence of the MSE using the RLS algorithm without memory, in

Figure 5.2, to the MSE convergence with memory, in Figure B.2, the convergence without

memory (past TDW information) performs better. The spurious disturbances observed in

the MSE for the RLS algorithm with memory are absent for the RLS without memory.

When white noise with a variance of 1.2e-4 is added to the TDW and RF pulse or the

signals are sampled with eight bit resolution, the results are unsatisfactory. The lower SNR

accentuates the perturbations and degrades the tracking ability of the MEMO RLS

algorithm with memory.
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Figure B. 1: Peak amplitude tolerances using the RLS control algorithm with N =2
(machine precision, no noise).
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Figure B.2: MSE of RF peaks 1-16 using the RLS control algorithm with N =2 (machine
precision, no noise).

65



TABLE B.I: Zro-cremap Errors (us) After 400 Iteratiou with RLS Control Algorithin where N = 2 (Machine
Precision, No Noie)

0 -104.3 0 0 0 110 10 0 0 0 0 0 1

TABLE B.2: RF Pule Peak Tolerances After 400 Iteration with RLS Control Algo"ithm where N = 2 (Machine
Precison, No Noie)

MSE out Ens er MnE 1-8 MaxE 9-13

0.0027 0.0031 0.0055 0.0052

TABLE 3B3: Normalized RF Peak Values with RLS Coatrol Algorithm where N = 2 (Machine Precision, No
Noise)

Peak Ideal Average After 400 iter. DiE (1-3). Diff (2-3)

1 0.0157 0.0202 0.0191 0.0045 0.0034

2 -0.0833 -0.0791 -0.0817 0.0043 0.0016

3 0.1901 0.1906 0.1948 0.0005 0.0047

4 -0.3158 .0.3163 -0.3181 -0.0005 -0.0023

0.4454 0.4431 0.4438 -0.0024 -0.0016

6 -0.5696 -0.5681 -0.5690 0.0015 0.0006

7 0.6813 0.6830 0.6868 0.0017 0.0055

8 -0.7771 -0.7739 -0.7756 0.0032 0.0015

9 0.8556 0.8549 0.8557 -0.0007 0.0001

10 -0.9164 -0.9179 -0.9179 -0.0015 -0.0015

11 0.9598 0.9579 0.9546 -0.0020 -0.0052

12 -0.9872 -0.9894 -0.9906 -0.0022 -0.0035

13 1.0000 1.0000 1.0000 0 0
14 -1.0001 -0.9996 -0.9986 0.0005 0.0015

1 0.9892 0.9892 0.9934 -0.0000 0.0042

16 -9,92 -0,968 -09733 0.001 .0.0041
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APPENDIX C

INTEGRAL CONTROL ALGORITHM

In this appendix we derive a MIMO inverse model using RLS estimation techniques

used in Chapter H11 for the forward MIMO model. The inverse model is used in an integral

control algorithm, which updates the TDW parameters to drive the RF to the ideal pulse

described in equation 2.1

A. MIMO RLS ALGORITHM FOR THE INVERSE MODEL

The memoryless inverse MIMO model is obtained by reversing the roles of x and y

vectors in the RLS algorithm presented in the previous section. The inverse model allows

direct mapping of the errors in the RF parameters to the TDW parameters. The output of

the inverse model is expressed as:

1 - By,

where vector y is the RF pulse parameters of the transmitter output, B is the coefficient

matrix of the inverse model, and vector k is the estimated TDW half-cycle peak

amplitudes. The error vector, at time index i, is given by:

ei = xi - •i' (C.I1)

where xi is a vector of the actual TDW parameters. Forming a performance measure as a

sum of squared errors and following on the lines of the development in equation 3.4 to

equation 3.7 yields

n n

EXn-i(xiyT)w = ?,n-iB(yiyT)w (C.2)i-li

Defining the autocorrelation matrix,
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n

Cz ~ Xf i~yT) W ,(C.3)

i-i

and the cross-correlation matrix,

n An ••n-ioiyT) W ,(C.4)

ii

provides the solution

Derivation for the recursive least squares estimate of the inverse MIMO reference

model, B, again follows the same procedure as the forward MIMO reference model, A,

developed in the previous section. The recursive update equation for the inverse M1MO

model parameters is

Bn+ := Bn + en+l yn+1 T W pn+l,

where en+1 = (x,+1 - Bn yn+l), and the recursive expression for the inverse autocorrelation

matrix is
-I

pn ~I I • T W(XIpn• iI I

B. INTEGRAL CONTROL ALGORITHM

By employing an inverse reference model, the error between the ideal and the actual

RF pulse parameters can be used to update the TDW parameters. This relationship is

expressed as

ex(n1) =Bey, (C.5)
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where vector eyW = (yap - yn), and B is the inverse reference model. The error vector e.ý)

is scaled and then summed with the TDW parameter vector xn to produce the updated TDW

parameters xn+,. The expression of the integral control scheme is

xn+1 = xn + a e(A), (C.6)

where 0 < a < 1.

Figure C.A shows the block diagram for the integral controller; the initial TDW

parameters are set to arbitrary values. The closed loop transfer function [Ref. 11, 12] of

Figure C. I with an integrator in the forward path is

Ba( I) TY(z) B z-I) aBT
Y (Z) = aBT (C.7)

Yopt(Z) l+Ba(z- )T z- (T-a(BT))
Z-1

where T represents the actual transmitter, and B is the estimated inverse model of the

transmitter.

If B is an accurate inverse model where BT = 1, then the controller will have a pole at

(1 - a). A small value for a puts the pole close to the unit circle. The controller is marginally

stable for a very small a.

If B is not an exact inverse model so that BT = 1 + e, then the controller will have a

pole at (I - a (I + e)). For guaranteed stability, 0 < a < 1. Small values of a between 0.1

and 0.001 were used in the actual control algorithm, which produced the best TDW update

performance.

The integral control algorithm closely resembles the steepest descent control

algorithm, discussed in Chapter IV. The factor a, is comparable to the adaptive constant g

of the steepest descent algorithm. The overall performance of the integral control algorithm

is similar to that of the steepest descent method discussed in Chapter V; therefore, detailed

results of the tests and analysis aie not included in this report.
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Figure C. 1: A block diagram of the integral control scheme.

The most important result was found when testing the algorithm with samples of the

RP pulse peaks and the desired zero-crossings. The RF parameter vector is simply

expanded to 32 elements; the odd values (1,3,...,31) are the first 16 pulse peaks, and the

even values (2,4,...,3^' are the first 16 samples of the desired zero-crossings. The integral

control algorithm was able to control the RF pulse half-cycle peak amplitudes and force the

zero-crossings in tolerance when the simulated transmitter was run under ideal conditions.

A weighting matrix was used to emphasize second and third zero-crossings.

Any degradation to the TDW or the RF pulse due to waveform quantization and

additive noise limits the integral control algorithm's ability to meet zero-crossing

tolerances in Table 2.1. Additive noise also decreases the algorithms performance to match

the RF half-cycle peak amplitudes to the ideal amplitudes. Even though the noise is a

limiting factor, the integral control algorithm has pulse shaping capabilities.
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APPENDIX D

MATLAB PROGRAM LISTING

The MatLab program control algorithms are called by the simulated transmitter's main

file SIMZ. The following MatLab M-files include the algorithm to develope an initial

MEMO reference model for the control algorithm, and the MIMO RLS control algorithms

with and without memory; and the integral control algorithm of Appendix C is also

included. [Ref. 15]

Two MatLab programs from the initial development of the tranmsmitter simulator,

written by Bruckner [Ref. 3], have been modified to accomodate for the MIMO RLS

controller and the integral controller. The revised M-files are SETUP and DISPZ, these two

programs are not listed here. The M-file ENVEL was modified to sample the half-cycle

peaks and the desired zero-crossing locations; it is named ENVELPZ and listed below.

MIMO RLS Model Estimation

% convA.m

% Estimates a model (M,(D+I)*N) from x,y pairs obtained from steepest

% descent algorithm.

% model initialized as zeros(M,(D+l)*N)

% PgainM initialized as 100000*eye((D+I)*N,(D+I)*N), initialize loop = 1, ff = I

% forgetting factor < 0.98 drives Pgain to zero matrix

% MIMO RLS Model Algorithm by John D. Wood 5/25/93

N = 16; % # of input parameters

M = 1; % # of output parameters

D = 2; % # of delays in Model

ff=1
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load data44 % load converged RF and TDW parameters for 44A

% transmitter both dummy load and antenna

PgainM = 100000*eye((D+I)*N,(D+1)*N); % initialize P

model = zeros(M,(D+1)*N); % initialize MIMO model

x = flipir(tdw44a(:,1: 1 +D)); % create TDW parameter

x = reshape(x,(D+1)*N,1); % vector with possible prior

% TDW parameters

y = rf44a(:,D+1); % RF paramter vector

for loop = (1):(2000-D-1) % 2000 x, y pairs to train

% MIMO model

if loop/100 =- fix(loop/100)

loop

end % Compute MIMO RLS Model

Kgain =ff*PgainM * x * inv(1 + x' * if * PgainM * x);

PgainM --ff*PgainM- Kgain * x' * ff * PgainM;

msel(loop) = mse(y,(model*x)); % MSE of model tracking

stomodel = model;

ee = y-model*x; % model error

model = model + ee * x' * PgainM; % RLS update equation

norm l(loop) = sqrt(sum(sum((stomodel-model).A2)));% identify change in model by

% taking norm of difference

% between old and new models

x = fliplr(tdw44a(:,loop+l:loop+D+1)); % update x with new TDW parameters

x = reshape(x,(D+1)*N,I);

y = rf44a(:,loop+D+1); % update y with new RF parameters

end

% display MSE of model convergence

subplot(21 1), semilogy(msel (1: 100))
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title('MSE: (y-Ax), CO"-VERGENCE OF ANTENNA MODEL 44A')

xlabel('iterations'), ylabel('magnitude')

subplot(212), semilogy(msel)

tidle('MSE: (y-Ax), CONVERGENCE OF ANTENNA MODEL 44A')

xlabel('iterations '), ylabel('magnitude')

print convA48a.ps, pause

% display model norm

subplot(21 1), semilogy(norm 1(1: 100))

title('NORM OF A(n+1) - A(n)')

xlabel('iterations '), ylabel('magnitude')

subplot(212), semilogy(norm 1)

xlabel('iterations '), ylabel('magnitude')

title('NORM OF A(n+1) - A(n)')

print convA48b.ps

Initialize RLS Controller/ with or without memory

"% RLS_INI: Initializes the recursive least squares algorithm

"% and provides the function call in a

"% text string which is evaluated by the main program.

"% RLSMENU changes the values in the simulation.

"% See also RLS, RLSMENU, RLSHEAD, RLSSWP

"% All algorithms must at a minimum initialize the following

"% variables: yOA, yOD, energy out, x, tdw, yO, f_call,

% maxvolts_A, max voltsD, for both transmitters, as shown.

% John D. Wood, 4/4/93, rev. 7(/93

tdw_.pci=zeros(len,length(control)); % Input pulse buffer
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rf..pci --zeros(lenlength(control)); % Output pulse buffer

eval(['yO',num2str(N),'_scpt']) % Load ideal half-cycle peak vals

% for dummy load pulse building

% (variable yOD). Note: ECD

% does not apply.

if xmtrid-2 % 44A Transmitter

max_volts_A=5; % Set desired output max voltage

% (steady-state)

x= 1.7*sign(-cos(pi*(l: 16)')); % Initial TDW half-cycle values

tdw=pgen(x,0,ETA); % Produce input vector to xmtr

% (positive phase code here--

% phase code is added when

% tdw pci is filled in SETUP).

yOA--maxvoltsA*envel(ideal(0,tau)); % Obtain ideal half-cycle peak

% vals for local ECD, pos

% phase code.

boost=l.0015; % Used to scale tdws in pulses

% after the one being controlled

% so convergence is faster for

% each one.

if N=8 % N is decimation factor

maxvoltsD=23.7;

fl = 1.0; f2 = 1.0; % forgetting factor in RLS

elseif N--=4 % fl for Dummy load

maxvoltsD=22.26; % f2 for Antenna

fl = 1.0; f2 = 1.0;

elseif N-=2

maxvoltsD=22.35;
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fl=l.0; f2=1.0;

elseif N= 1

maxvolts._D=22.47;

fl= 1.0; f2=1.0;

else

error('N must equal 1,2,4 or 8')

end

y0D=max._yoltsD*y0D(:,2); % Select column & scale

load rls44 ini % Initializes Ant & Dum model,

% and P for Ant and Dum Load,

% for 44A Transmitter

else % Initializes for 42 transmitter

maxvoltsA=22.24; % Set desired output max voltage

% (steady-state)

x = .4*sign(-cos(pi*(1:16)')); % Initial TDW half-cycle values

tdw=pgen(x,0,ETA); % Produce input vector to xmtr

% (positive phase code here--

% phase code is added when

% tdwpci is filled in SETUP).

yOA=max_voltsA*envel(ideal(O,tau)); % Obtain ideal half-cycle peak

% vals for local ECD, pos

% phase code.

boost=l.02;

if N==8;

max volts_D=8.14;

fl= 1.0; f2 = 1.0;

elseif N==4

maxvolts_D-=8.15;
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fl = 1.0; f2 = 1.0;

elseif N 2

max_volts_D--8.07;

fl = 1.0; f2 = 1.0;

elseif N= 1

max_volts_D=8.27;

fl = 1.0; f2 = 1.0;

else

error('N must be 1,2,4 or 8')

end

yOD=max voltsD*yOD(:,1); % Select column & scale

load rls42_ini % Initializes Ant and Dum model,

% P for Ant and Dum Load

% 42 xmtr

end

Fl--num2str(fl); % Initial f factor (dummy load)

F2--num2str(f2); % f factor after switch from

% dummy load to antenna

% *** No delays, Model is 16x 16, PgainM and PgainC are 16x16 *

if xmtrload=='Antenna'

ff---f2; model = Amod; PgainM = PgainA; % load initial parameters

PgainC = 100*eye(16,16);

"y-=y0A;

else % Dummy load

fffl; model = Dmod; PgainM = PgainD;

PgainC = 100*eye(16,16);

yO =yOD;

end
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% Model had 2 delays, Model = (16x48) matrix *

%if xmtr.load=-'Antenna'

% initializes model, PgainM & x with delays for antenna

%load model48a;

% load PgainM48a;

%PgainC = 100*eye(16,16);

%else

%initializes model, PgainM, & x with delays for dummy

%load mode148d;

%load PgainM48d;

%PgainC = 100*eye(16,16);

%end

disp('Initializing RLS') % control algorithm

f_call = '[tdw,x,y,model,PgainC,PgainMloop] =

rls(rf,tdw,PC,ETA,yO,xff,model,PgainC,PgainM,loop);';

boost1 = boost.A[O:len__p/2-1 O:len_p/2-1]; % boost for droop , p = pulse #

for p = 1 :length(control) % Load simulated buffer for AFG

tdw_.pci(:,p) = boost I (control(p))*tdw*(- 1)"phasecode(control(p));

end

clear boostl

RLS Contoller without Memory / Also Used for Peaks and Zeros

function [tdw x,y~model,PgainCPgainMloop]=

rls(rf,tdw,PC,ETA,yO,x,ff,model,PgainC,PgainM,loop)

% Recursive Least Squares Control Algorithm using first 16 RF half-cycle peaks
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% This RLS controller can be modified to control Peaks and Zeros by

% substituting envelPZ( ) for envel( ) in the beginning and

% added to the last line y = envel().

% A RLS estimate is provided for the transmitter model

% and used to generate a RLS estimate of x optimal.

% John D. Wood 6/1/93 rev(7/6/93)

% PgainC = 100*eye(16,16) initially

% x initial parameters are arbitrary

% model, PgainM, initial parameters are loaded in rls_ini.m

% model and PgainM parameters were converged with convA.m

global mse3 mse4 msel xmtr_id zc ztimes

y = envel(rf,tdwPC); % Obtain output half-cycles

% Substitute envelPZ for envel

% when samp peaks & zeros

if loop/50 = fix(loop/50) & xmtr_id == 2 % 44 transmitter

PgainC = PgainC + 100*eye(16,16); % Re-initialize PgainC

loop

end

if loop/50 =- fix(loop/50) & xmtrid == 1 % 42 transmitter

PgainC = PgainC + 10*eye(16,16); % Re-initialize PgainC

loop

end

if loop/10 =- fix(loop/10) % store zero-crossing times

[z-err, zc.ns]---zcross(rftdwPC); % relative to SZC

zc(:,loop) = abs(zc_ns - ztimes);

end

if loop/50 = fix(loop/50) & xmtrid == 2 % 44 transmitter

disp('model') % every 50 iteratios display
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loop

(PgaiaM)

rank((PguinM))

cond((PgaWn))

eig((PgainM)'

disp('controller')

(PgainC)

rank((PgainC))

cond((PgainC))

eig((PgainC))'

end

% if loop > 200& oop<211 % for added noise burst

%x = x + randn(16,1)*.2;

% end

ee, = y - nlodel*x; % error for model update

% shut off model udate when

% MSE < 2e-5 to reduce comput

% if mean((yO*(- l)APC-y).A2) > 2e-5

KgainM =fIf*PgainM * x * inv(I + x' *ff*PgaintM * x); % inverse correlation

% matrix update

PgainM --ff *Pgain.M - KgainM * x' * ff *PgainM;

model = model + ee * x' * PgainM; % RLS estimate of model

96end

KgainC =PgainC*model'*inv(eye( 16, 16)+niodel*PgainC*model');

PgainC =PgainC - KgainC*model*PgainC; % controller inverse

error = yO*(- 1)APC - model * x;% correlation matrix update

x = x + PgainC*model'*error; %RLS estimate of optimal x

mse4(loop) = mean(error.A2); % mse of rls to optimal x
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mse3(loop) = mean((yO*(- I)APC-y).A2); % mse to ideal y

msel(loop) = mean(ee.A2); % mse of model tracking

loop = loop +1;

tdw--pgen(x,PCETA); % Added envel() at end when

% y = envel(rftdwPC); % sampling RF peaks and zeros

RLS Controller with memory

function [tdw,x,y,model,PgainPgainMloop] =

rls(rf,tdw,PC,ETA,yO,x,ff,model,Pgain,PgainM,loop)

% Recursive Least Squares Control Algorithm with memory

% two previous TDW parameter vector used in control

% model is 16x48, PgainM = 48x48

% A recursive least squares estimate is provided for the transmitter model

% and used to generate a recursive least squares estimate of x optimal

% John D. Wood 6/15/93 rev(7/6/93)

% Pgain = 100*eye(16,16) initially

% x initial parameters are arbitrary

% model, PgainM, initial parameters are loaded in rls ini.m

% model and PgainM parameters were converged with convA.m

global mse3 mse4 mse I

y=envel(rf,tdw,PC); % Obtain output half-cycles

if loop/50 == fix(loop/50) % every 50 iterations display

loop % iteration number

(y0*(-1)APC)' % ideal parameters

y' % RF pulse parameters

Pgain = Pgain + 100*eye(16,16); % Re-initialize Pgain

end
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ee = y - model*x; % Model error

% Shut off model estimation

%if mean((yO-y).A2) > 2e-5

KgainM =ff*PgainM * x * inv(1 + x' * ff*PgainM * x);

PgainM --ff*PgainM - KgainM * x' * ff*PgainM; % Recursive update of P

model = model + ee * x' * PgainM; % RLS estimate of model

%end

Kgain= Pgain*model(:, 1:16)'*inv(eye(16,16)+model(:, 1:l16)*Pgain*model(,1:,16)');

Pgain = Pgain - Kgain*model(:,l: 16)*Pgain; % inverse corr matrix update

error = yO*(-1)APC - model * x; % error in RF pulse

xx = x(l:16)+Pgain*model(:,l: 16)'*error; % RLS estimate of x

mse4(loop) = mean(error.A2); % mse of rls to optimal x

mse3(loop) = mean((yO*(-1)APC-y).A2); % mse to ideal y

msel(loop) = mean(ee.A2); % mse of model tracking

loop = loop +1;

tdw=pgen(xx,PCETA); % Use upd.ated parameters to

% form TDW

x = [xx; x(1:32)]; % x using past tdw paramters

Initialize the Integral Control Algorithm

% INTEGINI: Initializes the integral control algorithm

% and provides the function call in a

% text string which is evaluated by the main program.

% INTEGMENU changes the values in the simulation.

% See also INTEG, INrTEGMENU, INTEGHEAD, INTEGSWP

% All algorithms must at a minimum initialize the following
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% variables: yOA, yOD, energy_-out, x, tdw, yO, Lcall,

% max-volts_A, max_voltsD, for both transmitters, as shown.

% John D. Wood, 4/4/93, rev. 6/7/93

% vector control = pulses to

% control in PCI

% len = length of pulse

tdw.._.ci--zeros(len,length(control)); % Input pulse buffer

rf pci --zeros(lenlength(control)); % Output pulse buffer

eval(['y0',num2str(N),'_scpt']) % Load ideal half-cycle peak vals

% for dummy load pulse building

% (variable yOD). Note: ECD

% does not apply.

if xmtr_id=-2 % xmtrid = 2 is 44A Transmitter

max_volts_A=5; % Set desired output max voltage

x=l.7*sign(-cos(pi*(1: 16)')); % Initial TDW half-cycle values

tdw=pgen(x,0,ETA); % Produce input vector to xmtr

load integ44_ini % load P and Inverse Model for

%Antenna/Dummy

yOA--max_voltsA*envel(ideal(O,tau)); % Obtain ideal half-cycle peak

% vals for local ECD, pos

% phase code.

boost=1.0015; % Used to scale tdws in pulses

% after the one being controlled

% so convergence is faster for

% each one.

if N=-8 %N is decimation factor

max_volts_D=23.7;

f1 =1; f2 =1; alpha = .03; % f1 forgetting factor dum load
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elsaif N==4 % f2 forgettfg factor antenna

maxvolts_D=22.26; % alpha is the error gain

f1 =1; f2 =1; alpha = .03;

elseif N-=2

maxvoltsD=22.35;

fl=l; f2=1; alpha = .03;

elseif N= I

maxvolts_D=22.47;

fl=1; f2=l; alpha = .03;

else

error('N must equal 1,2,4 or 8')

end

yOD=maxvoltsD*yOD(:,2); % Select column & scale

else

maxvoltsA=22.24; % Set desired output max voltage

load integ42_ini % load P and Inverse Model

% for Antenna and Dummy Load

x=.4*sign(-cos(pi*(l: 16)')); % Initial TDW half-cycle values

tdw-pgen(x,O,ETA); % Produce input vector to xmtr

% (positive phase code here--

% phase code is added when

% tdw.pci is filled in SETUP).

yOA-maxvoltsA*envel(ideal(0,tau)); % Obtain ideal half-cycle peak

% vals for local ECD, pos

% phase code.

boost=l.012;

ifN--8;

maxvolts_D=8.14;
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f1=1; f2 1.0; alpha = .03;

elseif N==4

maxvolts_D=8.15;

fl = 1; f2 = 1.0; alpha = .03;

elseif N-=2

max_volts_-....8.017;

fl = 1; f2 = 1.0; alpha =.03;

elseif N= 1

maxvoltsD=8.27;

fI = 1; f2 = 1.0; alpha = .03;

else

error('N must be 1,2,4 or 8')

end

yOD=max voltsD*yOD(:,l); % Select column & scale

end

if xmtr_load=='Dummy Load' % Initialize inverse model, P,

% forgetting factor, yO

yOyOD; InModel=Emod; Pgain=PgainE; ff=fl; % Dummy load parameters

else

yO=yOA; InModel=Bmod; Pgain = PgainB; f--f2; % Antenna parameters

end

Fl=num2str(fl); % Initial f factor (dummy load)

F2--num2str(f2); % f factor for antenna

ALPHA=num2str(alpha); % error gain in control

loop= 1;

W = eye(16,16); % create weighting matrices:

for h = 1:4 % W is in controller

W(h,h)=l; V(hh)=l; % V is in model estimation
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end % weight error vectors

for h = 5:8

W(h,h)=1; V(hh)=1;

end

for h = 9:12

W(h,h)=l; V(hh)=1;

end

for h = 13:16

W(h,h)=l; V(h,h)=-;

end

f_call='[tdw,x,y,InModel,Pgain,loop,alpha] = % control algorithm

integ(rf,tdw,PCETA,yO,x,ff,InModel,Pgainloopalpha,W,V);';

boost1=boost.A[O:len.p/2-1 0:len.p/2-1]; % compensate for droop

for p = 1:length(control) % Load simulated buffer for AFG

tdw...pci(:,p)=boostl(control(p))*tdw*(-1)Aphasecode(control(p));

end

clear boostl

Integral Control Algorithm

function [tdw,x,y,InModel,Pgain,loop,alpha] =

integ(rf,tdw,PC,ETA,yO,x,ff,InModel,Pgain,loop,alpha,W,V)

% Variables loaded from INTEGNI: Pgain, InModel, x, if, loop, W, V, yO, alpha

% x initialized from arbitrary tdw parameters

% InModel initialized as converged inverse model

% Pgain initialized as converged P matrix

% start loop = 1
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% W and V am weighting matrix.

% forgetting factor < 1 drives Pgain to zero

% alpha between .1 and .001 best

% Integral Control Algorithm by John D. Wood 5/1/93

global msel mse3

y=envel(rf,tdw,PC); % Obtain RF half-cycles peaks

%if loop > 200 & loop<211 % Added noise burst

% x = x + randn(16,1)*.2;

%end

Kgain --ff*Pgain * y * inv(1 + y' * if * V * Pgain * y);

Pgain --f'*Pgain - Kgain * y' * if * V * Pgain; %update inverse corr matrix

ee = x-InModel*y; % error in model estimate

InModel = InModel + ee *y'* V *Pgain; % RLS estimate of Inverse

% Model

x = x + alpha * InModel* W *(yO-y); % Integral Control of x

mse3(loop) = mse(x,(InModel*y)); % MSE of model tracking

msel(loop) = mse(yO,y);

loop = loop+ 1;

tdw=pgen(xPC,ETA);

Samples the First 16 RF Pulse Half-cycle Peaks and First 16 Desired Zero-crossings

function yPZ = envelPZ(rf,tdwPCfs.pk)

% Function yPZ =ENVELQ(rf,tdwPC,fs.pk): Computes the first 16 half-

% cycle peak values of the Loran-C transmitter output

% and samples the values at the desired zero crossings (if feedback).

% If tdw is included, the function auto-synchronizes rf to find
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% correctly the beginning of the first half-cycle. If tdw is absent

% or if tdw==O, then sample 1 of rf is taken to be the beginning of

% the first half cycle.

% Vector rf must be interpolated to a

% higher sample freq (>=10.0 MHz) to find accurate half cycle

% peak values and zero crossing values.

% Calls: INTERP, FLIPUD

% Uses global vars: xmtr_id, xmtrjoad, fs

global xmtr_id xmtrload fs

% usually fs = 10e6;

% usually xmtr_id=2;

% usually xmtr_load = 'Antenna';

% Variables:

% bin = Half-cycle number (I-16)

"% binstart = First sample in bin (half-cycle)

"% bin-width = Number of samples per half cycle

"% fs..pk = Higher sampling frequency (used internally only)

"% in interpolation process.

"% fs = Sampling frequency used in rf, tdw

"% PC = Pulse phase code (0=pos, 1-neg)

% rf = Transmitter output (radio frequency feedback)

% tdw = Transmitter drive waveform

% y = Output half-cycle peak values

% Fernando Pires, 1/15/92; rev. by Dean C. Bruckner, 9/2/92,

% rev. by John D. Wood 7/3/93

%*********************** Find Standard Zero Crossing of RF *

if nargin < 2;

tdw = 1; rfjstart = 1;
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for i = .:lcngth(tdw) % Auto-synchronize: find 1st

if abs(tdw(i)) > .1, break % sample of sin pulse at fs

end

end

if_start = round(20/5e6*fs) + i; % Normal delay: start of tdw to

%beginning of 1st half cycle

% is 25 samples at 5 Mhz

end

rf =zf-mean(rf);

intpjfact = round(10e6/fs);

if intp-fact =1

rf_temp = if(rf start: if_start + 18* 5e-6 * fs); % interp to 10Mhz

else

if_temp = interp(rf(rfistart: ifstart + 18 * 5e-6 *fs),intp_fact);

end

% sample if at freq l0Mhz starting at beginning of bin 1.

% Keeping 18 half cycles leaves enough rf

s = sign(rftemp);

f = find(s(2:650) - s(1:649)-=0); % Find samples nearst zero crossings

f300 = find(f>275 & f<325); % find index of SZC sample in rf-temp

SZC = f(f300); % finding exact zero crossing of SZC

delta = 1 - 2*abs(rftemp(SZC+1)/(rfjtemp(SZC+1)-rftemp(SZC-1)));

% Determine Values at Ideal Zero Crossing Locations

% sample every 1.25 usec from start of 1st half-cycle to 16th

% half-cycle going through SZC

yPZ = zeros(32,1);
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if SZC >= 270

for k = 1:16

i = SZC - 300 + 50*k;

yPZ(2*k, 1) = ((rLtemp(i+ l)-rf_temp(i- l))/2)*delta + rLtemp(i);

end

end,

if SZC < 270

Disp(' Error in find first zero crossing')

end

% ****** Determine Peak Values in first 16 Half- Cycles*******

if nargin<4;fs.pk=5e6;end % Default: 5 MHz

if nargin<3;PC=0;end % Default: pos phase code

if xmtr_id==2 % Input to Output delay in samp

if xmtr.load-'Antenna'

cut=14;

else

cut=-l1;

end

else

if xmtrload--'Antenna'

cut=20;

else

cut--18;

end

end

if nargin<2; % Default externally synchron

rf.start=l;

elseif tdw==O;
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else

for i=1l:length(tdw) % Auto-synchronize (find 1st

if abs(tdw(i)) > 0.1, break % sample of sine pulse, at

end % lower sample freq, fs)

end

rf_start=round(cut/5e6*fs) + i; % Start of 1st output half-cycle

if rf~start<1;rLstart=1l;end

end

intpjfact--round(f spklf s);

if intp-fact<=-1

rf--rf(rf_start: if~start + 18 * 5e-6 * fs);

bin-width=5e-6 * fs; % Number of sarnp per half cycle

else

rf--interpf(rf~start: if-start + 18 * 5e-6 *fs),itpJact);

bin--width=5e-6 * fs...pk; % Number of samp per half cycle

end % Samp if at highier freq (fs-pk),

% starting at beginning of

%bin 1. Keeping 18 half-

% cycles leaves enough

% of if to work with.

%6plotfrf),grid,pause

bin-start=1l;

if PC==0

for bin=1 :4:29 % Peak value of each half-cycle

yPZ(bin)--max(rf(bin..start:bin-start+bin_width));

% plot(rf(bin...start: bin_start+bin-width)),title(num2str(yPZ(bin))),pause

bin-start--bin_start+bin_width;
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yPZ(2+bin)--min(rf(bin..start:bin-start+bin-width));

% plot(rf(bin..sti:binutart+bin...width)),title(num2str(yPZ(2+bin))),pause

bin~start-bin-start+bin-width;

end

else

for bin=1:4:29 % Peak value of each half-cycle

% plot(rf(bin-.start:bin start+bin-width)),pause

yPZ(bin)--min(rf(bin...start: bin_stw+biA~width));

bii~start--bin~start+bin~width;

%% plot(rf(bin~start bin-start+bin-width)),pause

yPZ(2+bin)=-max(rf(bin-start: bin_start+bin_width));

bin-start--bin-start+bin-width;

end

end

% ******** PLOT RF Pulse and Samples *******

%plot(rf...temp(I:900)) % Plot RR\

%hold on

%for k= 1: 16

% plot((k*5O)+SZC-3OO,yPZ(2*k,1),'o'); % PLOT Zero Crossings\

% end

%bin...start= 1;

%for bin = 1:8

% Peak value of each half-cycle\

% val-niax(rf-temp(bin~start:bin~start+bin-width));

% plot(find(rfjemp(bin-start: bin-start+bin_width)==val)+bin..start-l1,val,'o')

% bin-start--bin~start+bin-width;

% val--inm(rfjtemp(bin~start:bin_start+binwidth));

% plot(find(rfjemp(bin-start:bin-start+bin-width)--val)+bin..start-l,val,'o')
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% bin~startabinjtart+bin~width;

% end

%hold off
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