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1. Introduction &/ j

The earth is inhomogeneous on a wide range of scales and a variety of methods have been
developed in seismology for analyzing the effects of these inhomogeneities. The theory of wave
scattering, as developed in the fields of optics and acoustics, has been adapted to the case of elastic
waves and has been quite useful in studying certain types of these inhomogeneities. For instance, Aki
(1973) used scattering theory to study the phase and amplitude fluctuations of waves amriving at a
seismic array, Haddon and Cleary (1974) interpreted the precursors to PKIKP as due (o scattering near
the mantle-core boundary, Aki (1969) attributed the coda waves from local earthquakes to scattering in
the lithosphere, and Aki (1980) considered the role of scattering in the attenuation of waves. In parallel
with these applications of scattering, the necessary extensions in the theory of elastic wave scattering
were also developed. Komeev and Johnson (1993a, 1993b) discuss the background for both the exact
and approximate theoretical developments in this area.  Of particular interest to the subject of this paper
are the excellent studies by Wu and Aki (19852, 1985b).

The full wreatment of elastic wave scattering is not a simple task, and most seismological studies
have employed various approximations in their use of scattering theory. These include the assumption
of only one type of wave (acoustic approximation), the assumption of a low contrast in material proper-
ties (Borm approximation), and the assumption of low frequencies (Rayleigh approximation). While
these approximations appear (0 be reasonable in many cases, a rigorous justification of their use is
difficult. One method of checking the validity of the approximations is to compare them with exact
analytical solutions. The purpose of this paper is to develop and discuss the properties of one such
solution, the scattering of plane P waves and S waves by a spherical inclusion.

A spherical inclusion is the most convenient choice as a test model for comparison with approxi-

mate solutions. It is one of the few objects for which the scattering problem has an exact and computa-
tionally tractable solution, and it has the desirable property of being describable by a minimum number




" of parameters. The wreatment of the canonical scatiering problem for the sphere has a long history. For
light scéilering it was formulated by Mie (1908) in terms of a series of spherical harmonics, and a
compeehensive discussion of this topic can be found in Van der Hulst (1957). Elastic scattering by
spherical obstacles has also been the subject of many publications, with some authors using potentials in
their approach to the problem (Ying and Truell, 1956; Truell et. al., 1969; Yamakawa, 1962; Nigul et.
al., 1974; Morochnik, 1983a, 1983b) and others using displacements (Petrashen, 1946, 1950a, 1950b,
1953; Komeev and Petrashen, 1987). The present paper follows this latter approach and a detailed
treatment of the analytical and numerical aspects of the scattering problem for P waves incident upon a
spherical inclusion can be found in Korneev and Johnson (1993a), with a discussion of various approxi-
mate solutions in Komeev and Johnson (1993b). These results are extended in the present paper to the
case of an incident S wave so that comparisons can be made between the relative scattering of P waves

and S waves by various types of spherical inclusions.

2. Statement of the problem

Consider a two-part isotropic medium consisting of a spherically symmetric inclusion V, ( part
v=1) with radius r = R having elastic parameters A, = Ai(r), p, = i)(r) and density p, = p,(r)
which is embedded in a h_omogeneous elastic surrounding medium (part v = 2 ) having elastic parame-
ters A=2A,, p=p; and density p =p,. The inclusion V, may contain a number of intemal shells
which are bounded by spherical interfaces where the material properties or their spatial derivatives are
radially discontinuous. The boundary conditions on such interfaces as well as those at the surface
r =R are linear and homogeneous. We assume that all elastic displacement fields under consideration
bave harmonic time dependence of the form ¢'® where ® is the angular frequency. Joint Cartesian
{x,¥,2} and spherical {r.8,0} coordinate systems with the origin at the center of the inclusion will be

used.
Incident from medium v = 2 is a harmonic disturbance with a displacement field given by
Uy = Uy x.y.2) e'™ 2.1)

The interaction of this incident wave with the inclusion gives rise to adlitional displacement fields both

inside and outside the inclusion, and these are denoted by
U =U,kxy2), (v=12) Q.2

Since we will be primarily interested in the properties of the additional disturbance outside the inclu-
sion, this field with subscript 2 will be referred 10 as the scattered field U, = U; . Thus, the total field




U in the outer medium v = 2 is a sum of the incident wave and scattered field

U=1YY + U, Q3)
The field U, as well as both of its individual components, must salisfy the equation of motion for a
bomogeneous isotropic clastic medium.

(A+2u) VU - p VxVxU + po®U =0 Q4

The equation of motion in any spherical shell within the inclusion has the form

oA
A +2y) VU, - py VXVXU, + a—rl VU ¢

LI 0.1

> 3 —aT[i‘-x Vx U} +p,0®U, = 0 Q.5)

We denote the velacities of the compressional and shear waves by

o —
o = A M e [ @.6)
Pv Pv

We require that the scattered ficld satisfy a radiation condition at large distances from the inclusion

A 9, -ik r A; ev -k r
,,(r L e"’ + (r L e*' , (r > o) 2.7

U, =

where k, = w/V,? and k, = w/V,*) . The functions A,(6,9) and A, (6,4) will be referred 10 as scatter-

ing diagrams of compressional and shear waves, respectively.

3. Spherical vectors

The solution will be developed using the spherical vector system of Petrashen (1945, 1949). A
fairly complete description of this system can be found in Komeev and Johnson (1993a), so only the

essential elements of the system will be listed here. The basis vectors for the sysiem are
Yin = Y5 (6,0) =r x VY, (6,4)
Yio = Y5, (0,0) = (I+]) F Yy, (8.0) — r VY, (6.4) G.0)
Yo =Y,00)=[#Y,00) +r VY, (6¢
with the usual definition of the spherical harmonic functions
Y (8,0) = €™® PP(cos® , 120, (-lsmsl)

The vectors of this system are linearly independent at any point (8,4) on a spherical surface. For 1 =0




only the one vector Yo, ® £ is nonzero.

In the space of vector functions 1(6,4) defined on the spherical surface Q
08, 0sés2n . df) =sind dO d¢

the basis vectors satisfy the orthogonality relation

-2
!v*.::" Y da = [c,.‘.:"] B, BB, G2
where the normalizing coefficients are given by the expressions
d = {ﬁn —q —m)!
e axid +1) (I +m)
1 {0 =m)!
\I ax(d + 1 (I +m) 3.3)
- _ 1 d=-m)
Cow = ‘\j axl (+m)

For vector functions f{0,9) with a finite norm

!m’ dQ -lr*-rdn <

the system of spherical vectors (3.1) is complete in the sense of convergence in the mean for a general-

ized Fourier series expansion of (6,¢)

-
) = Y Y af Y04 (34)
()b~ (=) mod
where
aw = [c,.‘..’] 1\!*,‘."- rda (359)

Using the completcness of the vector system (3.1), we can seck a solution of our scattering prob-

lem in a form of a series

Ur8.0) = Y di wisr) YE(0.0) (3:6)
& m

Because of the spherical symmetry of the present problem, the 3-D scattering problem is reduced 10 a
1-D boundary problem which must be solved for the radial functions w{¥(r) . If the fiekd U is known
on any spherical surface r = constant, then the expansion coefficients of (3.6) can be determined using
the orthogonality of the spherical vectors




d® wi(r) = [c«.‘.:"]2 l[\r*.,‘.:"(e,o)- Ur.84) dQ a.n

4. Basic expressions
In the case of elastic wave propagation in a medium with spherical symmetry a critical element is

the traction vector on a surface r = constant, which has the form
aU "
t,(U)=AV-Ug+ 2;13’— + ulf x ¥x U] 4.1)

If the fiekl U is taken to have the form (3.6), then the comresponding traction vector has the form

LU= 3 T) YE0,0) “42)
xlm

where the expansion cocfficients are given by

e - a2l 2 - ¥ | 4
Ta(r) = di [(14-2;1)[3%" ""‘“] 4u-"1‘1"- ] (4.42)
Ta(r) = 21""31 [[(1 + DA+ Gl +2)u] a:;;, + +2)[(1 + 1)1-1;1] “"7"]

" d,,,—;’,-‘T'l‘—’[a:;" - - n)L"'] (4.4b)
oty = a4 +2:)1xl+p)[a§;.. R a+z)"’f"]

di [ Vi
+ 2I“_l[lh+(3l~'-l)p 3

+ (- 1)[(1 + - lx]-vri] @.5)

Note that the coefficient d,{" remains coupled with the same vector Y{2)(8,¢) in the expressions for both
the displacement (3.6) and the traction (4.2). Differential equations for the radial functions w{(r) can
be obtained by substituting (3.6) into (2.5) and using the orthogonality of the spherical vectors. Solu-
tions in the form of power series for the general case can be found in Korneev (1983), but in this paper
the emphasis will be on the special case of a homogeneous sphere.

In the dynamic theory of elasticity it is useful to consider displacement field as a sum of potential
(P) and solenoidal (S) fields




]

U= U + U “.6)
which satisfy the conditions
VXU’ -0, VUs = 0 (47)

and represent compressional and shear waves, respectively. Since V- w(r)Y,.(8,4) = 0 and
Vxy(r)Yep = 0 the iclds (4.6) have the form

Up = Z {Fl:a(’) Y5, +Fum(r) v,;.} 438)
120, 182

Us = {fnf.'.(r) Yo + f(r) Yo +fm(r) YE.} 4.9)
121.lm st

where for [ 2 1 the rdial functions must satisfy the equations

dF,, Fir, oF Fa,

35 " (- l)—r-— -5 (+2 ; = 0, 4.10)
Of im Sim Of im Sim
l[ > (-1 . ] + (I + l)[ 3 + (I+2)—r— = 0, 4.11)

In the case of a homogeneous isotropic elastic medium the displacement field U must satisfy the
equation of motion (2.4). Substituting the expressions (4.8) and (4.9) into (2.4) and using the ortho-
gonality of the spherical vectors, one obtains differential equations of the second order for the radial

functions. These equations have general solutions of the form

Fa(r) = agjiak,r) + ap'hy G, r)
Fiu(r) = aljiogtk,r) + aih Gk, r)
Jar) = batjratk,r) + bathy(k,r) @.12)
Tin(r) = buljiaa(k,r) + birhy_y(kr)

120 = % tk,ry + ¢2hik,r)

The solutions here have been construcied as a linear combination of two independent solutions, the
spherical Bessel functions j, (kr) and the spherical Hankel functions of the second kind A, (kr). Fields
which are regular at the origin will contiin only the spherical Bessel functions, whereas secondary scat-
tered fields which must satisty the radiation conditions of the fonn (2.7) when r — e will contin only
the Hankel functions. The differential equations (4.10) and (4.11) in this case reduce to

agt = —ay ., A+ Db = Wy , (v=12) 4.13)




We assume that the incident wave Uy, is regular at the origin so the radial functions of this wave
will contain only the spherical Bessel functions. Thus the general case for the incident field U is given
by the expression

U= Z{ I IVE + [adinthyr) + 12l )] Vi

Im

+ [-a,,‘,',j,-,(k,,r) + (l+l)b,,‘,',j,_,(k,r)]Y,;, 4.149)

with arbitrary coefficients a, for the P disturbance and coefficients b2 , ¢ for the S disturbance.

Introducing a set of "canonical” incident waves defined as
Py, = jrak, Y, 0.0) - jio (k)Y (©0.9)
SVim = Uiak, )Y, (8.0) + (141 (k)Y (8.9) 4.15)
SH,,, = ji(k, 1Y, (0,0)

we can represent (4.14) as the linear combination

U= Z{ P+ BHSVi + ChSHu } @.16)

Im

Each of the waves of (4.15) satisties the equation of motion (2.4). The wave P, is a pure compres-

sional wave and SV, and SH,,, waves are both shear waves.

Now consider the incidence of canonical waves of the form (4.16) on the inclusion V), . Substitu-
tion of the ficld U, having the form (3.6) into the equation of motion (2.5) leads to a separate set of
differential equations for radial functions for any pair of indices ! ,m. Moreover, the equation for deter-
mining yj, (r) separates from those for Wz, (r) and i, (r). Also note that and azimuth index m is not
present in any of the coctlicients of the differential equations. The boundary conditions on the surface
r = R of the inclusion are required to be linear and homogeneous. For a welded elastic-elastic inter-

face they have the form
U = U+U,. and t,*“[u‘] = n,‘”[u(, + U,,] @17

with the usual modifications for elastic-fluid and elastic-free interfaces. Again, because of the ortho-
gonality of vectors (3.1), separate boundiry equations may be obtained for any pair of indices ! ,m, and
in the present problem these equations do not depend upon the index m. The canonical field Py, will




excite in the medium v = 2 a scattered ticld of the form

vl = [a,”hm(k,,r) + lh,"sh,,,(k,r)] Y + [w,"h,-,(k,r) + (1+1)bf‘h.-,(t,r)]v,; 4.18)
The canonical ficld SV,,, will excite in the medium v = 2 a scattered field

Uy = [a,"h,,,(k,,r) + lb,""h,.,(k,r)]Y:, + [—af’h,-,(k,r) + (l+l)b1“h,-,(k,r)]¥;. 4.19)
and the field SH,,, will excite in the medium v = 2 the scattered fiekd

Ui = ofmk,rvs, (4.20)
The set of coefficients af” , ai” , b, bl* , ¢if which are contained in these expressions will be called
the canonical scatiering coefficients for the inclusion V,. They may be found as solutions of linear
systems following substitution of the relevant expressic -+ 9 the boundary conditions and using the
orthogonality of the spherical vectors. Amalytical formulas for these canonical scattering coefficients for
the the case of a homogeneous elastic spherical inclusion, as well as for the special cases of a fluid
filled spherical inclusion and a spherical cavity, are given in Appendix A. These will be discussed in
more detail later.

Once the canonical scattering coeflicients are known, an incident fiekd (4.16) specified by the

coefficients a% , b , ¢l will generate a scattered field which can be writien as

U = Y, { chcPhk, IV,

im

+ [[a,,‘,',a,’ Py blait ]h,ﬂ(k,,r) + l[a,,‘,’,b,’ 5 4 b,,‘,‘,b,'“]h,,,(k,r)] Y

+ [-[a,,‘:,a,f,” + b,;',a,-,‘;{']h,-.(k,,rn(1+1)[a,,‘,’,b,f,’;*’ + bobS ]h,_.(k,r)]Y,,‘,,} @21

This represents the complete solution for the scattered field from a spherical inclusion for an arbitrary

incident wave.

The ficld U, inside of the sphere will have the general form of (3.6) and will be linearly depen-
dent upon the source coefficients a , by . ¢ - For the special case of a homogeneous isotropic
material inside the inclusion, U, has the the same formm as (4.21) with all of the functions b, replaced
by the comresponding functions j, and with a new set of canonical coefficients for the inner medium
v=1(r <R) . For the sake of completeness, analytical expressions for this intemal set of canonical

coefficients for the cases of elastic and fluid spheres can be found in Appendix B.  However, throughout




the remainder of this paper only the scattered ticld outside of the inclusion will be considered.
One method of determining the coefficients agf,, by, and ¢ of the incident wave is to use (3.7)
and integrate the product of the incidemt lield U, with the corresponding spherical vector. Thus, for the

case of a plane P wave propagating in the direction of the positive z axis

Uy = e 2 4.22)
amd
-il(lﬂ)
all(v,l = ¢ 2 8m 0 hl::l =0, cll(l,l =0 (4'23)

For an incident plane S waves propagating in the direction of the positive z axis and polarized along the

X axis
Uy = ¢ % 4.24)
and
. K
1 —i—(l+})
ah =0 , by = -21751_)[‘“”)8”"" ~ 8,,,_.]e 2
0 RN (TSP Pt 4.25
Cim = —21(l+l) [( +l) m -1 + m.l]e ( B -)
For a point pressure source located at the point Ry, = (24,0,0) where z, > R
¢ -k, Ir-R,|
U,=-V W (4.26)
and
i = ”ik/; hy(ky, Z0)Sy, 0 b = 0, Cm = 0 @27

The scattered ficld (4.21), expressed in terms of spherical unit vectors (P,é,&), for the cases of the

incident plane P wave (4.22) and the incident plane S wave (4.24) are given in Appendix C,

The convergence of the scries (4.21) depends upon the observation distance r, the canonical
scattering coefficients, and the coetficients of the incident ficld, and each combination of these variables
may require a special investigation. The basic problem is to estimate the number of terms that should
be included in the series in order o achieve a certain level of accuracy. One general guideline is that
the number of tenns which are necessary in order to represent the incident wave on the surface of the
inclusion at the desired accuracy is a good estimate of the number of terms required in the solution

series. Korneev and Johnson (1993a) considered this problem for the scattering of a plane P wave and

9




showed that the necessary number of terms in the series could be estimated by the formula

k, R
e = =+ N (4.28)

where R is the radius of the sphere and N is a constant. A value of N = 15 is sufficient to give an

accuracy of 107%,

§. Flow of the scattered energy

A useful method of charucterizing the scattering by an object is to calculate the energy of the
scattered waves and compare it to the energy of the incident wave. Various forms of this ratio between
the scattered and incident energies are called scattering cross sections. The energy of the scattered
waves can be obtained by calculating the encrgy flux of scattered waves through a surface S that com-
pletely surrounds the object. Noling that the cnergy flux through a surface element ds having a normal
n is given by (iJ - t,[U]) and that the encrgy flux averaged over one period is @ Im{U - ¢,[U]}/2, then
the total energy flux per period through the surface § is given by

F =

N|e

lm[ (U- ¢[UD ds ' (5.1)

where (*) denoles the complex conjugate.

Substituting the total field (2.3) into (5.1) and assuming conservation of energy (no energy

absorption by the material), we obtiin
F=F 4% =2 "“[ U, - U D ds + '"‘J (U, - UDds = 0 52)

where F, is the total energy flow of the scattered ficld and F, describes the energy of coherent interac-
tion between the scattered ficld U, and the incident ficld U, . Physically, the phenomena of scattering
describes the conversion of part of the encrgy of the primary incident wave into the energy of the
secondary scattered waves. Therefore, alter the incident wave has interacted with the inclusion, it
should have lost part of its cnergy. However, the formal solution (2.3) leaves the incident wave undis-
turbed. This means that the additional ficld U, of (2.3) must include both the change in the primary
wave along with the secondary scattered waves. We will return to this problem later when considering
the scaltering cross-sections of elastic spheres.

To calculate the encrgy flow F,. of the scattered field (4.21) caused by the incident field (4.16)

we need expressions for the tractions associated with both of these fields. Since total energy flow does

10




not depend from the shape of the surface S, we let § be a spherical surface of radius 7, which is arbi-
trary so long as the inclusion is contained inside S§. The traction vector ¢t,(U,.) of the field U, on this
surface has the form

t,(U.) = Z{c,,‘,',ch,Y,‘,’,, + [[a,,,,a, + bla® ]A, + l[a,,,b + b h“]B ]Y,,.

Im

+ [[a,,‘,’,a,” + bla *’] ,-—(l+|)[a,,‘,’,h,’~" + bAb~ ]B,']v.;, } (5.3)

where
= %[’(J’llq(k‘l’) - (l+2) h’ (k‘.r)] (5.4)
Al n A (142) Iyy(k,7)
arf = [ e =20 amny o, (5.5)
B* N [ (142) bk, 1)
g = 5T W& =20 oy nyk,n) 5.6)

The traction vector for the incidence field (4.16) can be obtained from (5.3) by setting all canonical
scattering coeflicients cqual ©0 one and by substituting for all spherical Hankel functions the

corresponding Bessel function in (5.4)-(5.6).

Afier making all of the nccessary substitutions in (5.2), performing the integration over §, and

some ledious manipulations, we obtain

F,. = FL+F}
2
= 2’(A + 2u)V, Z(Zl ‘l +m) apaf? + blaf* l
lm
le i1 . 12
+ 2700+ 20V Z(zl “ *’“’ ki + m‘[(—z‘—l’-’"—f—)— + la,.‘.'.b,"’ + b:.‘.’.bf°| }(S.h)

I.m
which can also be expressed as

F. = - 27k + 200V, z(zl d “'";' lal Re(af?} + Re{a %blai")

Im

L0

Iet |
+ 1+ l)y‘[mL:—)—Rc{c,] + b0 PRe(b™) + Re(al bilbl) }} (5.7b)

This is an exact result. The part FL. corresponds (0 the energy flow of the scattered P waves and the

11




part F. corresponds 10 the encegy flow of the scattered S waves. As can seen, the combined incidence
of both P and S waves on the inclusion can cause constructive or destructive interference in the scat-
tered field.

The equation (5.7) must be true for any set of coefficients for the incident wave (4.16), which

leads to the following four independent relations between the canonical scattering coefficients

Icf? = -Re{cf) (5.8)
PP+ 14+ DY = -Re{af”) (5.9
1a#P12 + 1+ ISR = =1 + Dy'Re{b™) (5.10)
2[0,”(1,"‘" + 14+ 1)y‘b,"-"b,‘-“] = -a’™ - 14 +1rp® (5.11)

Multiplying (5.11) first by a;*f and then by b,"™ and climinating the quantity a;’?h™ leads to the expres-

sion
2 2 2 ]2
Ia,”l |1 + 2u,"'| = 1%+ l)lf’lh,”"l l 1+ 2h,-“|
Using the equivalences (5.9) and (5.10), this equation reduces to
]2 , |2
la,‘”l = 1%+ l)-{'ll),"‘l (5.12)

The equivalcnces (5.8)-(5.10) will be used in the next section in formulating optical theorems. The
last equivalence (5.12) will be used later when considering the relation between P - S and S = P
scattering. The equivalences (5.8)-(5.12) are also useful in verifying the accuracy of numerical calcula-
tions.

It is worth noting that the result (5.7) would also have been obtained if the radial functions had
been reduced to their far ficld asymplotic expressions before substituting into (5.2). This means that the
net energy flux due (o the near-field terms in the solution is zero. However, as shown by Komeev and
Johnson (1993a), these near-field terms can signiticantly affect the displacement field formed in the

vicinity of the inclusion.

6. Scattering cross-sections and optical theorems

Here we consider the special cases of an incident field consisting of either a plane P wave or a
plane S wave. Ealicr we obtained the coefficients (4.23) and (4.25) which represent these waves in

terms of the spherical vectors (3.1). Now we introduce the scattering cross-section G as the ratio
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F,
[e) = —— (6. l )
F,

which is the encrgy flow F,. of the scatered field normalized by the energy flow F of the incident
wave per unit area nonnal (o the direction of propagation.

We begin with the case of the incident plane P wave (4.23). For this wave the energy flow per
unit area of the incident wave is

F§ = o+ 2wk, 3 6.2)

Substituting coefficients (4.23) into (5.7) we get the scattering cross-section

F? .
o = = = g 4P
F§

- 2 12
= ﬂ;_ 2(21 + l){la,”l + 1+ 1y Ih,”l} (6.32)
k
P 120
= -2 ¥ @1 + DRe(af?) (6.3b)
ky 120

On the other hand, putting the coefficients (4.23) into the expression (4.21) for the scattered field and

using the asymptotic representation

1 =it - Fa+
h(z) = —e : . (z > 1)

for the spherical Hankel functions, we obtiin for 8 = 0

-ik r
UZO) = Ap0)¢ r" ) 64)
where
AO® = =Y a+naf ©65)
P 120

Comparing (6.3) and (6.5) we have the equation

of = --:—'i Im{A,(0)) 66)

P
which is the optical theorem for an incident plane P wave. This equation establishes a connection

between the scattering cross-section and the amplitude of the scattered field in the forward direction.




For an incident plane S wave (4.25) the procedure for obtaining an optical theorem is similar.
The energy flow per unit area of the incident S wave is

F§ = i, % (X))

Then, using the coefficients (4.25) in (5.7) we have

F.S
0" = —"._—3- = G' +0'
@+ D| of? | 22 [ <5 ]
,‘2 TRy . §(2I+l) Ib,l | ] (6.82)
= 2= Y @1 + D Re(t® + ¢f) (6.8b)
s 2t

The forward scattered shear wave in the far field has a fonn

-il',r

USO = AgO= 69)
where

Ag(0) = 3.1_ Z(ZI +1) [h,-“"+ c,‘"] (6.10)

Y2

Comparing (6.8) and (6.10) we have

& = -3 [niA©

= - m{As(0)} 6.11)

s

which is the optical theorem (or an incident plane § wave. Optical theorems such as this and (6.6) can

be useful in studying the attenuation of waves due 1o scattering.

7. Comparison of P — S and § — P scattering

The equivalence (5.12) allows one to compare scattering of converted waves for the same
scatterer. Applying (5.12) o (6.31) and (6.8a) we see that the scattering cross-sections for converted
waves are connccted by the simple relation

o = 2o (2.1)
7
This equation says that the scatiering cross-section of P — § converted waves is significantly lasger
than that for § — P converied waves. This result is valid for any spherically symmetric scatterer.
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In practice one deals with the amplitudes of scattered waves, and 3o it is useful t0 also estimate
the mean intensity (squarcd amplitude) of the ficld. Using the far ficld approximation, the mean inten-

sity of the scattered ficld for an incident plane P wave has the form

1 2
I = Til“l"l dQ

(]

c 2 12
=7 L@ 1){]:;,”] s 10+ P 'b,"‘l}

P 120
I d PS
= 40:’2 + 4:,!7’2 = lpp + "o_y (7.2)

where the integration is taken over a spherical surface at the radius r > R in the far fickd zone. Simi-

larly, for an incident plane S wave we have

]
4 A

I o @+ 1) .wlz I % [I ol? . sl
333 aj + =5 Q@+ DHbP| + |
vhr 4= 11+ kor g

2
I dQ

U,

o.s‘.s‘

= Iyp + Iy 1.3

+
4nr? 4nr?

Y

Using the equivalence (5.12), we have for the ratio of the mean conversion intensities

Ips 1 o™ 2 (A + 21)
s b N S R 74
Isp Y o¥ Y 'y 74

Thus, if the comparison is made between the intensities of the waves rather than the energy flux of
(7.1), the asymmetry in the average conversion between P and S waves by scattering is even larger.
Note that this is a gencral result tha @ Ids for all frequencies. For the “typical” seismic situation where
¥ = 13, the ratio (7.4) is equal 0 18. For soft media, where ¥ is even smaller in a relative sense, this
ratio could be significantly krger.

For the case of homogeneous spherical inclusion (elastic, fluid, or cavily), an even stronger result
can be obtaincd which involves no spatind averaging. First note that the converted far field for the

incident plane P wave (4.22) is easily obtained from (C.1) and has the form

- -+
. e " dP(cos9) . L
Ups = -.'2 @ + 1) b = ’(..Q %y - Ars(w,8)*—8 1.5

121
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where Aps(,0) is a scattering cocflicient for converted P — § waves. Similarly, for the incident
plane S wave (4.24) the converted far field can be derived from (C.3)
-k r -‘ 4

2+ 1 s
Usp = —i mwz : el 1; e "kpr PlcosO = A,,(mu)——r .6)

with the scattering cocllicient Agp(0,6,0) . Now for the case of a homogeneous inclusion it follows

from the solutions listed in Appendix A that

a’t = Hii + )l an
Using (7.7) in (7.5) and (7.6) we have the relation

Asp(©8.0) = - YicosdrAp(,8) (18)

Thus, in the far ficld the scattering cocfficients of the converted waves have the same functional depen-
dence on frequency @ and angle 8 . For the case of an incident P wave the problem has axial sym-
metry so Apg has no dependence upon ¢, but this is it true of Agp.

Aki (1992) arrives at a results similar (0 (7.4) and (7.8) using a more general approach involving
the reciprocal theorem.  1le considered only the case where the polarization of the P and S waves was
in the same plane (¢ = 0), and 1hus obtiined an equation similar o0 (7.8) without the cos¢ term. Conse-
quently, because the average value of cos’@ is 172, his equation for the squared amplitudes does not
contain the factor of 2 found in (7.4). The appraach of Aki (1992) is extended in Appendix D 10 con-
sider polarized § waves and it is shown that generl reciprocal relations can be established in the far
field for an arbitrury localized scatterer.  However, it appears that results such as (7.8), which involve
total amplitudes of the P and S waves incident from the same direction, can only be established for

scatterers with a high degree of symmetry.

8. Homogeneous sphere

The results that have been presented up to this point are valid for any inclusion that has spherical
symmetry. To proceed further requires that solutions be obtained for the canonical scattering
coefficients, and in order to do this it is necessary to specify the intermal structure of the inclusion.
Here we consider the special case where the material properties of the inclusion are independent of the
radial coordinate, in which case it is possible to obtain analytical solutions for the canonical scatiering
coefficicnts.

The scattering of planc P waves by a homogencous sphere was treated in our previous papers
(Komeev and Johnson, 1992a, 1993b) where detailed interpretations of the scattered fiekls were
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presented.  That set of solutions has been expanded 1o include the scatiering of S waves and the com-
plete set of canonical scaticring coefficients for a homogencous spherical inclusion is given in Appeadix
A. In addition to the clastic inclusion, fonnulas are also given for the special cases of a fluid inclusion
and an empty cavity.

Consider the solutions given in Appendix A in the limit of low frequency. Then the most
significant scattering coeflicicnts are given by the asympiotic expressions

3
v S4A) + ) -y
al? = & 2 @.1)

6 % (‘;’11 + )+
aff = -i%i[% - 1]. b = i%i[% - 1] 8.2)
R T TR AR A TR @
ot = 0321 R 80
ot F Rt (R @9
e = —i%[% - l]. o = ::"1; 4’;‘21‘: (8.6)
where
E=kR . n=kR ®.7)
Y= :—P , D = |+-135-[%-1](3+2ﬂ (8.8

The coefficients ¢} and ¢§ are obviously much smaller than the others and may be neglected at low
frequencies. The case of a fluid inclusion is easily obtiined from (8.1)48.5) by putting u, = 0. The
coefficients (8.1)-(8.5) may wlso be considered for the case of intrinsic attenuation inside the inclusion
by assuming that the clastic parameters A; and ft; have complex values. In this case the coefficients for
I =1 depend only upon the density contrist of the inclusion, whereas the other coefficients in the limit

of large intrinsic atenuation go to the values

3 2 3
af = i%— . aff = izg-‘;‘iz—_r;, bs = 'i%—x_}z_f (89)
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= -8 —1— -
ai’ i 28 a7 b¥ = in? 1*2',

These formulas represent the case of a small absorbing inclusion which captures all of the energy which
crosses its boundary.

(8.10)

It is convenient 0 describe the energy scattered by a homogeneous spherical inclusion with a
non-dimensional normalized scatiering cross section. Dividing the ¢ from (6.1) by the area of the
geometrical shadow, we have

o
Oy = ;‘sz (8.11)

For an incident P wave in the low-frequency limit we have

3 2
=(A-A, 2
o’ = cPP + a’-‘ = ig 2 : -H“l-“z + .l_. _p—l-l + — -f ”l—”z
N o N 9 3 3| pa 45" | wD
-2-1.+u:+2uz : -

8 1P M2
+ —E—{— -
27 g‘{r’ [Pz ] HaD r}

3
_ ig 5(11-12)“'“1'#2 Lo 2 W2, 8
) 3 ¥y 45

%Mﬂh‘*zuz

mD 7

L l [271+-3-] (8.12)

Similarly, for an incident S wave we get

S = aiP w_ 4 L ﬂl‘#z
Oy = Oy + Oy = 27 'ﬂ‘r‘{[p- 1 l.hD
+ 3 P K-
27 P2 5 '11D
= in‘{[-p—' - I] F+2+ < (27‘ +3) u'-"’ I’} (8.13)
27 P2
For the low-contrast case, where
A =A,l | | [ |
A A H ] P P
the expressions (8.12) and (8.13) can be simplified to
P o_ M ~ =
= 27 A+2u ' [ ][H ] 1’[2r’+ ]




2 2 2
= g L[300e28u  218pf  8f8u
= 27{‘{3 %+ 2 +Y,-' > +5 "I} 8.15)

s _ 4 Jle)n, . 2|l
o8 = n‘{[p](urns u‘(ﬁ”)}

2 ?
s 8 gl , 3N
oy = 27n‘{[p] + 3 "l} (8.16)

For the scalar low-contrast case the nomnalized scattering cross-section may be described by the

simple formula (Van der lulst, 1957)

oy = 2 - isina + -ﬂ,- (1 - cosa) 8.17)
a a-
where
v L @R
a = 2[] - ve } W (8.18)

and where the V™) are chosen as cither VY or V), according 1o the nature of the incident wave. This
result can be explained by the interference of the incident and refracted waves propagating in the for-
ward direction, where the parumeter a is just the phase difference between these two waves in the far
ficld. Morochnik (19834, 1983b) derived this siume expression for the low-contrast elastic case. More
recently (Komeev and Johnson, 1993b) compared this result with the exact solution for an incident
plane P wave and found good agreement for contrasts of about 40%, except at very low frequencies.

It is clear that formula (8.17) is asymptotic to the value 2 in the high-frequency limit. This is the
result of the manner in which the problem was formulated, whereby, as mentioned in section S, the
secondary diffracted ficld contains both the scattered waves and any modifications of the primary
incident wave. For the perfectly absorbing sphere, in which case there will not be any waves that are
actually scattered, the secondary ficld U, must have a value sufficient to cancel the incident wave in

the shadow and the nonnadized scattering cross-section will have an asymptotic value of 1.
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9. Low-frequency scattered ficlds
Expressions (8.1)-(8.5) for the canonical scattering coefficients of a homogencous elastic sphere
may be used to oblin low-frequency asymptotics for the scattered field (4.21). Thos, for the incident P

wave (4.22) we have the tur fickd asymptotic solution

ul = uf+ uf 9.1)
3(1 AU -1
W TAY 12

UL = A —-;- + [ﬂ - 1] cosB + %[— - 1]-71 (1-3cosO)bF  (92)
—(—llﬂll)ﬂh P2 Ha

uf = B HB'- - 1} sin@ + [ﬂ - 1]-})- sinze}é 9.3)

and for the incident § wave (4.24) the lar ficld asympiotic solution has the form

Ul = Ui + U} 9.4)

s AR I TR I A .
Up = A { [p» l] sin@ [u; l] D .\11\29} cosd F 9.5)

L ot i A
Ui = 8B {[-0—3- - l} cosf - [;—;— - l]l—) c()\ZO} cosp @

P Hy | S T
+B {-[-‘-):- - l] + [E - l] m cnsﬁ}.\lm ¢ 9.6)

, V = 7‘:—1:11" 9.7

The case of a low contrast between the material propenties of the inclusion and the surrounding

material (Bom approximation) is defined by the conditions

1A-2,! (TR I |
Al Ay < 1 L TR <1, Bpl | Bt < 1 9.3)

AT T M, p P2

and then the expressions (9.1)-(Y.6) become the sie as those oblained by Gubernatis et al. (1977a,

1977b). For an incident P wave these are

Po_ __o S o 2u 9
Up = A { e + > coso A+ 2 Cos9 i 99
ul = 8 {-% sin® + y%isinze}é (9.10)
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and for an incident S wave they are

Ui = A { %’-sine - 1—85 sinze} cosg F ©.11)
Ui = B {§p2 cosf - %cusZO} cosg® + B {—% + %cme} sing ¢ 9.12)

10. Numerical results

In order to illustrate some of the properties of the solutions derived in this paper, numerical cal-
culations were performed for a few sample problems involving a bomogeneous spherical inclusion. For
the first set of examples the material propenties of the surrounding medium were chosen (0 be represen-

tative of a typical continental crust:
VD =6.0kmis v =135 kmis | pr=2.7glom*,

Five different models were used for the inclusion, with the properties chosen to represent a variety of
different types of obstacles that might be encountered in the earth. The elastic parameters for these five

models are as follows:
model 1 - V=175 kmis VviV=44kmis, . p, =3.1g/m?,

model 2 - V"=dSkmss,  VV=26kmis, p=23g/m?,

model 3 - VY =34 kmis , V% =00 km/s , p1=27glem?,
model 4 - ViV =14 kmss , V.0 = 0.0 kmts | pr =10 glem?,

model S vV =00 kmts , v =00 kmss p1 =00 g/em?,

For each of these models the scattering problem was solved for an incident plane P wave and also for
an incident plane S wave. The results of the calculations are presented by plotting the normalized
scaltering cross-sections 64 and 6§ as a function of the parameter & = £; = @R/V,?,

Models 1 and 2 simulate high-velocity and low-velocity inclusions, respectively, with the
difference in material propertics being about 20% in each case. Figures 1 (model 1) and 2 (model 2)
present the normalized cross sections for these two types of inclusions. The general pattern of the total
scattered field in these cross sections is described by an increase as @* at low frequencies which merges
into long large oscillations about a constant value of 2.0 at higher frequencies. These long oscillations
are caused by the interference between the waves that propagate through the inclusion and those that
propagate around it (Van der Hulst, 1957), and the asymptotic value of 2.0, as discussed earlier, results
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from the fact that the scattered ficld coatains bath the waves scaitered by the inclusion and the distur-
bance of the primary ficld. Superinposed on this patterm, particularly evident in Figure 2, are some
short small amplitude oscillations cavsed by mulliple reflections within the inclusion. Because the
low-velocity inclusion tends o focus energy within the obstack much more than the high-velocity
inclusion, these short oscillations are much more pronounced for the low-velocity inclusion,

Of particular interest in Figures 1 and 2 is the comparison of the scatiering cross sections for
incident P waves and S waves ot low {requencies where the wavelengihs are larger than the size of the
scatterer. In this frequency range the # — S scattering is much stonger than the § — P scattering, in
agreement with the results derived in section 7. For an incident P wave the energy scatiered into the S
fiek! can exceed that scattered into the P field, whereas in the case of the incident S wave the amount

of energy scattered into the P ficld is negligible compared to that scattered into the S field.

Moaodels 3 and 4 are fluid inclusions, with model 3 sisnulating an inclusion of molten rock and
maodel 4 simulating an inclusion filled with witer. The scattering cross sections for these floid inclu-
sions are plotted in Figures 3 and 4 and show a patiem similar 0 that of the elastic inclusions except
that all of the features are shifted owand lower frequencies.  Because of this, the scattering reaches
significant levels at rather low frequencies where the size of the inclusion is still much smaller than the
wavelength of the incidemt wave. The observation made for the elastic inclusions that the P — §
scattering is much stronger than the § = P scitiering is even more pronounced for the fluid inclusions,
with the scattered S field dominating the scattered P ficld at low frequencies regardless of whether the
incident ficld is a P wave or § wave. In addition, for the case of the incident P wave the scattered S

field is now comparable to the scattered P ficld over the entire frequency range.

For the case of the water filled inclusion (Figure 4) the resonant feawwres of the scaltering cross
sections are particularly conspicuous. The positions of the resonance peaks correspond to the real parts
of the complex roots of the determinant (AY) contained in the denominator of the canonical scattering
coefficients.  Some of these roots (including the first one) may be obtained by letting [ = 1 in (A9),

which leads to the equation

) Wk

T = 0, gl = Vl(” (10.H

ja&) -

The first few roots of this equation are &, = 2.1,59,92 ...

In model 5 the inclusion is a hollow cavity and the scattering cross sections are shown in Figure
S. Tt is useful to think of this model as a modification of the water-filled inclusion of model 4 in which

Vi and p; are reduced to zero. This helps explain why the scatiering cross sections of Figure § are
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essentially smoothed versions of those in Figure 4, with the main differences being related to the fact
that the cavity has no resonances associated with the scattered ficld within the inclusion. The fact that
the general patterns of the scatiering cross sections in Figures 4 and 5 are similar indicates that this pat-
tern is controlled primasily by the vanishing of the shear modulus within the inclusion.

It is worth pointing out thit the properties of the material surrounding the inclusion and
wavelengths of the incident waves are identical in the Figures 1-5. However, is is clear that the com-
mon features of the scattering cross sections are found at rather different frequencies for the different
types of inclusions. This result can be explained if one describes the frequency dependence of the
scattering cross sections in terms of the wavelength of the scattered field rather than the wavelength of
the incident wave. Note that in applying this reasoning, the wavelengths of the scattered fields both
inside and outside the inclusion must be considered. This general principle explains why the scattering
cross sections of the S ticld is always shifted toward lower frequencies with respect (o those of the P
field (compare the upper and lower panels in Figures 1, 2, and 3), why low-velocity inclusions have
scattering cross sections that are shifted toward low frequencies with respect to those of high-velocity
inclusions (compare Figures 1, 2, 3, 4, and 5), and why the position of the resonance peaks in the
scattering cross sections depend upon the velocity within the inclusion (compare Figures 3 and 4).

This sane type of reasoning about the wavelength of the scatiered field also helps explain the
general result that the P — § scattering is stronger than the § — P scattering at low frequencies.
From section 9 it is clear that the low-frequency scattering energy is proportional to (R /wavelength)*.
Such a result favors the scattering of S waves becawse of their shorter wavelength.  Another way of say-
ing this is that, using the scale of wavelengths, an inclusion appears larger to an S wave than to a P
wave and thus it is scattered more intensively. What is not so obvious is that the ratio in the scattering
intensities for the converted waves should be independent of frequency and proportional to the squared
ralio of the velocities. 1 wever, it is clear in Figures 1 - S that the shape of of® curve is always ident-
ical to the comresponding o curve, with the amplitudes of the curves scaled according to (7.1).

In Section 8 it was pointed out that the case of an inclusion with intrinsic attenuation can be
treated by assigning complex values o the clastic parameters within the inclusion. Examples of the
normalized scattering cross sections for this type of an inclusion are shown in Figures 6 and 7. The
attenuation was characterized in tenns of the quality factor Q0 where

Im{A,}]  Im{p)

= 10.1
Re(h] ~ Relw) aon

et

The calculations were perforined for the low frequency case where k,R = 0.05 and the figures show
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how the cross section changes as the atienuation of the inclusion is increased. Figure 6 shows the
results for the high-velocity inclusion listed earlier as model 1, and Figure 7 is for the low-velocity
inclusion of model 2. The results are guite similar for the two types of inclusions. For small attenua-
tion the scaulering cross sections are just the low frequency values shown in Figures 1 and 2. As the
attenuation is increased the scattering cross sections also increase and approach the limiting values asso-
ciated with the coetlicients given in (8.9) and (8.10). The avenuation affects the scattered S waves
much more than the scatiered P waves, as the scaticring cross sections for the incident S wave reaches
values which are about 3 times those for the incidemt P wave. Furthermore, for both cases of an
incident P wave and an incident S wave the scattered ficld consists almost entirely of S waves.

The basic solutions presemted in this paper are completely general in that they can be applied
over the entire frequency range and to an inclusion of any size. For instance, the scatiering cross sec-
tions of Figure 3 can be used 10 provide a rough estimate of scattering by the earth’s fluid core. More
appropriate results can be obtained by choosing the following material properties to represent the earth’s

manile and outer core;
V= 13 kmis | VO =624kmls , pa = 5.0 gmicm?
vil=99km/s | v =00 kmis , P, = 6.0 gmicm®

These velocities were chosen 0 match the average travel times through the mantle and core, and the
densities were chosen to maich the contrast in acoustic impedance at the mantle-core boundary. The
radivs of the core was taken as 3482 kin. For this example it is instructive to consider the complete
solutions to the scattering problem in the time domain.  The expansion coefficients for the incident field
of (4.14) were chosen (0 represent a point pressure source at a radius of 6300 km, and then the scat-
tered field of (4.21) was evaluited and ransformed from the frequency domain to the time domain.
(Komeev and Johnson (1993a) show how the solution for a point source is easily obtained from the
plane wave solutions.) The spectrum of the pressure at the source was flat below a comer frequency
comresponding to a period of 30 sec. The toud solutions, including both the incident and scattered
fields, are shown in Figure 8 at 6-degree angular intervals for a radius of 6371 km. Note that this is an
example of high-frequency scattering, as k, R has a value of 730.

There are a varicty of interesting features on the seismograms of Figure 8, but the discussion here
will concentrate primarily upon some of the diffraction cffects. A good example of this is the arrivals
that fill in the gap between the PeS and PKS phases. The geometrical ray arrivals for the PcS wave
end at a distance of 72 degrees and those of the PKS wave begin at 122 degrees, but in Figure 8 this

gap is completely filled by diffricted wives,  Another exaunple is the P2KS phase which ends with a
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caustic at a distance of 175 degrees, but strong diffricted waves extend out to 180 degrees and back to
less than 150 degrees where they merge with the PKS phase. The situation is actually more compli-
cated than this, as the PIKS geometricad arrival extends out (o0 115 degrees and then is continved by
diffracted waves that merge with the P2KS wave near 180 degrees, while the P4KS geometrical arrival
extends to 55 degrees and is continued by diffracted waves near 100 degrees. Thus the waves P4KS,
P3KS, P2KS, PKS and PcS along with their diffructions all come together to form a complex and con-
tinuous group of waves that appear on these seismograms between a distance of 60 degrees and time of
2300 seconds, extend out o 180 degrees and 1600 seconds, and then continue back to a distance of 0
degrees and 700 scconds. Increasing the amplitude of the seismograms would allow this same type of
pattern to be extended (o include the PSKS wave and other higher order core waves of this family. The
same type of phenomenon also occurs for the PKP family of waves, although these waves are of
slightly lower amplitude than the PKS waves and thus not as easily observed in Figure 8.

The distances mentioned above for the regions of geometrical arrivals and diffracted waves will
be slightly different in the read earth because of the radial variation in velocity in the mantle and core.
The seismograms will also be considerably more complicated because of the additional waves caused
by the inner core, the surface of the carth, and S waves generated at the source in the case of earth-
guakes. However, the relative wnplitudes of the the different waves, the distortions in the waveforms,
and the interaction between the geometrical and diffracted amrivals shown in Figure 8 should be gen-
erally applicable to long period waves in the carth.

There is one other feature present in Figure 8 which is worth mentioning. On the radial com-
ponent at a distance of 180 degrees and at a time of about 2500 sec there is just discernible a long
period wave (period of about 600 sec). This is an interface wave of the Stonely or Scholte type which

travels on the mantle-core boundary with a velocity of about 4.4 km/sec.

11. Discussion and conclusions

The primary purpose of this paper is to present in a convenient form the exact solutions for the
scattering of P waves and § waves by a spherical inclusion and to point omt some of the important pro-
perties of this solution. However, it is also worth considering whether these results can be used to
make some general inferences about the scattering of clastic waves in the earth. In doing this the first
point which must be discussed is the applicability of results for a spherical inclusion to the situation in
the earth where the shape of the inclusion is often unknown, but most likely difterent from that of an

exact sphere.  Here one can appeal to the fact that scattering by a sphere represents a canonical problem
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for a more extended cliss of objects with relively simple and smooth boundaries, and thus reason that
these results should apply in an approximate manner 10 a wide class of objects having these properties.
In the low-frequency range (Rayleigh scattering) an even stonger argument is possible, as it was shown
in section 9 that for this case the solutions depend only upon the volume of the inclusion and not upon
its shape. Thus the low frequency results presented in this paper should be applicable to small 3D
inclusions of any shape in the carth.

In the low-frequency range there is a strong asymmetry in the relative scatiering of P waves and
S waves. The P — § scattering is generally much more intensive than the S — P scattering.  This is
explained in a qualitative sense by the fact that the inclusion appeans to be larger to the S wave because
of its shorter wavelength, and the fact that the scatiering is controlled by the wavelength of the scat-
tered wave rather than the wavelength ol the incident wave. It is common for an incident P wave to
have more energy in the scatiered S field than the scautered P field, whereas for an incident S wave
almost all of the scattered cnergy is in the S ficld. This suggests that the coda of P waves should con-
tain a significant proportion of § waves, while the codit of S waves should be predominantly S waves.

This asymmetry in the scattering conversion of P and S waves can be quantified for the case of
the spherically symmetric scatterers considered in this paper. It was shown in section 7 that the mean
intensity of the £ > § converted waves is 2V,%V,* times the mean intensity of the S — P converted
waves, and this ratio is independent of freguency.  For more generad scat‘srers it is possible 10 wrile
reciprocal relations such as those given in Appendix D, but it is not obvious how these can be con-
verted 10 intensity ratios such as that just given for a spherical scatterer.  However, at low frequencies
in the domain of Rayleigh scattering where only the volume of the inclusion is important, it is conjec-
tured that the rtio of the mean intensities of the converted waves will approach the value obtained for
spherical scatterers. Thus this strong asymmetry in the scaticring conversion of P and S waves is likely

to be a general result when the wavelengths ase large compared o the size of the inclusion.

The scattering from a tluid inclusion is more intensive than the scautering from an elastic inclu-
sion, with the general frequency dependence of the scattering being controlled by the contrast in the
shear modulus. Superimposed upon this frequency dependence is a series of resonance peaks which are
controlled by compressionad velocity of the fluid. There exists the potential here 1o use the spectrum of
the scattered waves o estisnate the dimensions of the scatterers, although the case where there is a dis-
tribution in the size of the scaterers would tend to smooth out the resonance peaks. Regardless, the
amount of energy scattered into the S ticld by an incident P wave is an effective diagnostic which can

be used over the entire freguency range 1o identily fluid inclusions.
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In the case of a low contrast between the matenial properties of the inclusion and the surrounding
medium only a few of the scattering coeflicients need be included in the low-frequency range and they
have a simple dependence upon the material properties (equations (8.1)-(8.5)). The form of these
cocfficients is suitable for use in inverse problems, with some of the coefficicnts depending primarily
upon the contrast in density, others depending primarily upon the contrast in shear modulus, and others
depending upon the contrast in compressibility.

One feature of the low-contrast approximation, as is true of most Bomn-type approximations, is
that it does not satisly conservation of energy.  However, this is easily remedied. The equations (5.8)-
(5.10) are derived from (5.2) and are essentially statements of conservation of energy. The right-hand
sides of these equations, which involve only the read parts of the canomical scattering coefficients,
represent the encrgy terms that are coherent with the primary field and thus account for the change in
energy of the primary ficld that must occur when additional scattered fields are generated.  Applying
this to the low-contrust case, we note that the coefficients (8.1)-(8.6) are completely imaginary and
represent only the scattered ficlds, the real parts which represent the change in the primary field having
been dropped in the approximation. However, these real parts can be recovered from the expressions
(5.8)-(5.10), and including the real parts will restore the conservation of energy. Note that because the
cocfficients (8.1)-(8.6) all have an (w)* frequency dependence, the real parts of these coefficients will
have an (w)® frequency dependence, which in most cases will make them small enough (o be neglected.
However, in some situations, such as studies of atlenuation of primary waves due o scattering, these
real parts of the scauering coetlicients should be included in order to achieve a formulation more com-

patible with energy conservation,

A caveat involving intrinsic attenuation should be mentioned here.  As mentioned in section 8,
the canonical scattering coelficients can be modified to include intrinsic attenuation by introducing com-
plex elastic parameters. However, in this case some of the relations, including (5.8)-(5.11), are no
longer valid beciuse strinin energy is no longer conserved. The analysis of the low-contrast approxima-
tion is still possible, as inroducing complex clastic parameters into (8.1)-(8.6) produces real parts of
these coefficients which are proportional 10 (w)* and which cause an attenuation of the primary field

due o the intrinsic attcnuation which dominates that due to the scattering.
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Appendix A

Consider the case of a homogencous elastic sphere of radius R with elastic parameters A, 4, and
density p, surrounded by a medium having  elastic parameters A,, i, and densily p, with the continu-
ous boundary conditions (4.17). The canonical scattering coefficients have the following analytical

representations.
A o Apg . Agp o Ag
off = - W= e ST W (AD
M . . . B, .
;nm-.(m)n(nz)—nm(mm-.(nzH ad+2))1 - ™ Jimji(ma)
¢ = - = (A2)
%ﬂl]l-l(nl)"l(nz) - NyMmph,(ma) + (1*2)[1 - El]fl(ﬂn)hl(ﬂz)
where
2
m:£,)° h@E) () Ji€) Jiay) ]
= — Q2 +DA + — —— A+ DA |—
(A+1 ) { & m Tk * e

- Q2+ — — Ay

+
P2 & m 12 & n; -

P [M&z) i) i) b ]

- q 4 [Az +( + Dl EDhamy) + (1 - l)hl-l(gz)hl-l(nﬂ]

+ lllp)lAz[An "‘(l+2)jl+|(§|)jl¢lml)+(l—|)jl~l(§l)jl-lml)] + G-I DMS, } (A3)

h] . .
W 4 [ ] _ G M) el P
Apy = i 7+ 1 {2/+lq (I=1)X1+2)g-1 ——gl . 1 pz-(l+2)(21+l)q
P .. Jimy) . Jr &)
+ 4] 2@ T2+ i) T2 Ad)
qu[ ji+1E ™ Jramy E, ]} (
Agp = YU + DApg (AS)

An expression for App can b derived from  (A3) by substituting for the functions
he(Ey) (k =1-10,1+1) the corresponding functions —j; (1), Analogously, Ags can be derived from the
same expression by substituting for the functions iy (na) (& = {-11,1+1) the comresponding functions
-je(M3). The following detinitions have been used in equations (A2)-(AS).

Ay = (1 + D jia@ii-i) + 1 iy G)jirar(i)

4; = (1 + 1) Iy Gl + 1 Iy Gy, (M2)

Ay = (0 + 1) jra@Dhma) + 1 ji (Ehy, (M)
Ay = (1 + D) ayGjiamy) + 1 Iy (E)jr(my)

(A6)
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& = -“;:(—';',. el W \/A';':"' v‘”=\/-::lT (A7
TR L= TR [
v v P P2
(), the above expressions reduce 10
(A8)

For the case of a lluid within the sphere (W, =

hy(m)) [Jm(ﬁl) - ‘E‘ Il(gl)]

(1+2)jy(M2) ~ Naji-y(M2)

(l+2)h( (ﬂg) - 'ﬂzh(-[(“‘v)

¢’
niEs I (€2)
A T {(ZI D E,
(&)
-Q2+hH % Jlél hma) [hm(io) - E’ hl(g.)]
- ;‘2: []l+l(§l) - Jl(§|)] [Az + (I + Db Edhy(mg) + (1 - l)hl-n(ﬁz)hl—l(ﬂz)]
+ —z—fi—Az[zjm@.) - ZEhi)) + - [j,..ca.) - g (f.,)]} A9)
n |f Ji&n) 2 JiE) Py
Apy = 20— E) - I——1| 1-(-INI+= | + —— — (A.10

Ps 2l +1 [Jm & & J[ n? ] & P )

Asp = YU + DApg (A.1D)
Expressions for A,, and for A, can be derived from A in the saune way as in the elastic case

For the case of a cavity the above expressions can be further simplified to

: (142)j;(M3) - Najy_ (M)
S _ _ : A.12
G = T ~ M) A1
(&) 4(1-1)(1+2)4,
12 @ + m;
2 2 (A.13)

(A.14)

A = nfef {
- — [A-) + (I + Z)lllﬂ(g-))hlﬂ(“z)'f (- l)’l)-](g»)h,q(ﬂﬁ)]}

n2
n 2
Apg = 2i—— 2, [l—(l nu+2)—]
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Agp = YU + DApy (A.15)

Expressions for App and for gy can be derived from A in the same manner as in the previous cases.

Appendix B

The diffracted ficld inside a homogencous elastic sphere may be calculated using the expression
(4.21), where all of the spherical Hankel functions A, are replaced by spherical Bessel functions j; and
where the wavenumbers &, and &, are taken for the inner medium v = 1 . The canonical scattering

coefficients for the inner medium have the forms

’=i "-"—:‘_'“_ -\'P_éi ‘“:i
al A'b'-A'aI—A'b'A (B.1)

-1
¢ = i[%nmzh-.(m)lu(nz) = NIjiMhyam) + (’+2)‘lz[l - %]jl(“l)hl(nl)] (B.2)

with
Aep - .'J‘fl {ﬁ:‘“—) [/ [1--::—'-«‘»2)(21 l)q] ":l") +(U+Dg-1) ji- .(n.)]
+ hyya) “% 1 2)4] -"—,:'—) -«m-,(m)” (B.3)
Aps = i 2,"51 {ﬂ%’l [[l--g—'-(uzxzm)q] "?') + (142 ;,_,(g.)]
+ haMd g [(I 2) !'% ‘ll-l(gl)]} (B4)
By =i (2’"“",&,{ 2((1420hr i@l + (- nh,-.(&z)n-.mn][l - %]
- |m,”’:::" "'g”[ n-%i-]} (B.S)
bss = (Tf—‘l—);{(mxzr lm,’"g") "’:2 [ I- p—] - <21+n2—f[m(§)j,-,(§.)— %%m-.@zm(&.)]
-2[(1+1m+2m,,.(g,);,..(§.)-/u 11 bt .(5.)][1 - %} (B:6)

where the expression for A is given by (A.3) and the notation (A.6) has been used.
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For the case of a lluid within the sphere, the above expressions can be reduced 0

=0 ®B.7
_n 2 |0 )
App = t-il—;-]- {Iu(n;) + ;E [(I -1) ™ - In,..(nz)]} (B.8)
Aps = 0 (B.9)
Y [ ) o &)
As’ - '§2 (2[ + l) [’"0"&3) (I l) &2 (B-lo)
Ay = 0 (B.11)

where the expressions for A is given by (A9).

Appendix C
For the case of the incident pline P wave (4.22) the scattered fiekl in the outer medium hax the
form
U, =Up + Up = Z{[a,"‘h,,.(k,,r) + lb,”h,,,(k,r)]v,*.,
120

X
-l
-iz(ﬁl)

+ [—-a,”h,-l(k,,r) + (1+|)h,’~“n,_.(k,r)] Yio }e

Ean Wk, hik,r) 3Pi(cos®
YT @ l){a,"" [[(M) hhyr) —h,-,(k,,r)] Picosey ¢ - 2ker) Pilcord) 6]

e k,r k,r 00
, ik, r) hk,r)} 9P (cos®)
+ bl [mm 'k,r Picos®) F + [h,_.(k,r)— s ] ! = 0 ” (.1

For the case of the incident plane § wave (4.24) the scaitered field in the outer medium has the

form

Ue=Up + Ug = ), { MV + [BRaThath,r) + S Hk D]V

Im

+ [-b,:,’,a,-:fn,_.(k,,r) + (l+l)h;§.'.b,‘,‘;fh,-.(k,r)]¥;. } (C2)

in terms of the spherical vectors (3.1), and

U“- = Ups + U&\'
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in a spherical coordinate system, where

bo 1 L8, -i%(lol)
= 2m+1)[‘ - "‘]‘
8 = 2 (gans, . + 5 e
Cim = 21(I+l)[ 01+ Omje

Q:0 = P2(cos®) + I( + DPL, (cosd) . 0:08) = Il + DP (cox8) - P(cosB)

Appendix D

The purpose of this appendix is to extend the analysis of Aki (1982) to the case of P and S waves
having arbitrary polarizations. Consider a localized scatterer with a spherical coordinate system cen-
tered upon it. At the point (r,0,,¢,) is located the unit ridiad force

fp(f.0|.¢|) = # (Dl)

The scattercd S wave generated by this force and observed at a second location (r,0,,9;) is

Ups (10282 = Ups (r,81,02) O + upya(r 0:9) & D.2)

upy (r 82.0) {(cos (@) & + sin (@) §))

where @, is the polarization angle of the § wave at the second location. It has been assumed here that
the distance r is sufficiently karge so that only far ticld parts of the solution need be included. At this

second location two separate forces are considered.  The first is the unit transverse force

fsi(r.820) = 8 D3)
At the first location (r,0,.¢,) this gives rise 10 a scattered P wave with displacement

8 1p(r.0.0)) = ugp(r.8,,0)F (D4)
The reciprocal theorem states that

0(r,0,.0)) - ug p(r 8,0, = f5(r 82.97) - upy(r.8:9)) (D.5)
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and in the present case, using (D.1-D.4), this means that
us\p(r.0,.4)) = ups(r.0,.4,) (D.6)

The second force o be considered is the unit transvense force

-

f52(r.6:.42) = ¢ (D.7)
which produces a P wave at the finst location with displacement

ug2p(r .ém.) = Usyp(r.0,,0) F (D.8)
Applying the reciprocal theorem in this case yiclds

usap(r.01,91) = upss(r.8:4) (D9)

The two expeessions (D.6) and (D.9) are the reciprocal relations for two orthogonal polarizations of the
S wave. In general both polarizations will be present in a scattered P wave and thus both reciprocal
relations are reguired.

In the vicinity of the scatterer the amplitude of the P wave incident from the first location will be

uf! = =
’ 4npVer

and that of both S waves incident from the second location will be

H I
(i) -
u =
S impVr

Thus (D.6) can be writicn in tenns of amplitude rtios as

us)p(r.0:.91) Vi ups (r 82.42)
u - v up” (D.10)
and (D.9) becomes
us2p(r.0,.4,) V.s‘z ups(r.92,97)
ud? - e s (©.11)

These are exact relationships for the two polarizations of the S wave and they show that in each case
the P — § scattering is stronger than the S — P scattering by a factor of (Vs/Vs)%. The result (D.10)
with ¢; = ¢ = 0 is essentially thie derived by Aki (1992). While these resulls are very general, they
are not entirely suited to the scattering problem.  First, they deal only with the separate components of
the motion and cannot be converted (o equivalent expressions involving the ttal amplitude of the

motion unless the polarization angle of wpg is determined. Gubernatis et al. (1977, 1979) have given
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general formulas for the fur ficld scatiered P and § waves and specific formulas for a few special cases
of homogeneous inclusions which can be used to detenmine this polarization angle, but the results are
not particularly simple. The second problem with these reciprocal relations is that they involve P
waves and § waves incident from difterent directions, and the geometry of mast interest in scatiering
problems involves P and S waves incident froin the siune direction.

The reciprocal rettionships (D.10) and (D.11) can be further simplified in the case of symmetri-
cal scatterers. In the case where the scattering object possesses cylindrical symmetry about the (0,.4;)
direction, the polarization angle of upy is given by

sin (9))sin (¢—9))
sin (8)

sin(a,) =

where
cos(8) = cos(82)c08(8)) + 5in(8-)sin(8))cos (9-9,)

For an object wilh spherical symmetry this result holds for all directions and, furthermore, the two posi-
tions (8,,9,) and (8,,9,) can be freely interchanged. To duplicate the problem considered in this paper,

let the P wave be incident from (8, = .9, = ()) and then
Ups(r.0.0) = ps (r0.0) 0 = — up(r.0.0) 8

Also let the § wave be incident from this same direction (8; = 1,4, = 0) and without loss of generality

take fy; = 0. Then use (D.6) and the spherical symunetry (o write

usp(r.0.9) Ups (r %0

o5 (9) upg (r.m,0))

CoN(®) uy,p(r.0.0)

Substituting these results into (12.10) yiclds

-

usp(r.n.9) Vo ups(r,8.9)
T— = —V—Pz CON (¢) T (D.lZ)

This result is more applicable to the scattering problem as it involves the total amplitude of the Pand §

waves and both the incident P wave and the incidemt S wave arrive along the same direction. It is
identical to (7.8) which was obtained trom the exact far field solution for a homogeneous spherical
scatterer.  Note that the angle ¢ in this result is just the angle between the polarization vector of the P

wave and the plane contiining the polarization vector of the S wave and the scatterer.
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Figure 1 Nomnalized scattering cross sections for an elastic homogeneous sphere as a function of the

parameter k,R = wR/V,. These results are for the high-velacity inclusion which is listed as model 1 in

the text. The top two panels are for the case of an incident P wave, while the bottom two panels are
for an incident S wave. The panels on the right are expanded versions of those on the left for small
values of the asgument. The dashed line represcnts the energy scatiered as P waves, the dotted line
represents the energy scattered as S waves, and the solid line represents the total scatiered eneryy.
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Figure 2 Similar to Figure 1 for the low-velocity inclusion which is listed as model 2 in the text.

38




P wave incident

08 |

06}

02+

1.0

S wave incident
08 |-

04 |

02}

-——
—————

s
o 1 ) Said | Satnieits = ¥ 1 "t 1 } 0.0 1

2 4 6 ¢ LY 0.0 0.2 04 0.6

Figure 3 Similar to Figure 1 for the fluid inclusion which is listed as model 3 in the text

39




- e
./. .
\
Y\ 4 =
\\\\\\ ! (]
. ~. -4
™~
o
] 1 L 1 1 L 1 n s o L I
hd = e - ~ a® o o
- o o o o o - Py
-
l‘”."
cm/ -
———t
h.wmz -
T
- — e | -
g 5 g
3 e 3
2 £
=% _
4 s 4
4 4 ~
3 il [ 2
= St <
Wl -
o
e
e
L i L 1 = [ 1
L - - o~ Lod P " Py

Figure 4 Similar to Figure 1 for the fluid inclusion which is listed as model 4 in the text.
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Figure 6 Normalized scattering cross sections for an anelastic homogeneous sphere as a function of the
attenuation quality factor Q! of the sphere. These results are for the high-velocity inclusion which is
listed as model 1 in the text with the elastic constants within the sphere modified 10 have complex
values. The frequency is constant with k,R = @R/V, = 0.05. The top two panels are for the case of
an incident P wave, while the bottom two pancls are for an incident S wave., The panels on the right
are expanded versions of those on the left for small values of the argument. The dashed line
represents the energy scatiered as P waves, the dotied line represents the energy scatiered as S waves,

and (he solid line represents the total scattered energy.
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Figure 8 Synthetic seismograms calculated for a homogeneous fluid inclusion that simulates the carth’s
core. The seismograms are calculated every 6 degrees al a radivs of 6371 km. The source is a point
pressure pulse a1 0 distance and a radius of 6300 km. The pancls on the keft are the radial components
of motion and those on the right are the angular components of motion. The upper two panels are
late-time versions of those below with the amplitudes increased by a factor of 10. The dotted lines are
the arrival times predicted by geometrical ray theory.
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