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RESPONSE SURFACE DESIGN COMPARISONS

Ronald B. Crosier

U.S. Army Edgewood Research, Development and Engineering Center
Attn: SCBRD-RTM, Bldg. E3160

Aberdeen Proving Ground, MD 21010-5423

1. INTRODUCTION

In many industrial experiments the goal is to investigate the relationship
between the process variables or factors xj, x2, ... , xk and a quality
characteristic y of the product. A widely used strategy for such problems is
to approximate the relationship between y and the process factors by a low-
order polynomial. The coefficients of the polynomial are estimated from data
collected during N experimental runs of the process; the settings of the x's for
the N experimental runs are given by a response surface design. A response
surface design for k factors is written as an N X k design matrix D. To
estimate the coefficients of the polynomial, the design matrix is expanded
into an N x p model matrix X that has one column for each coefficient of the
polynonmial model. The estimate b of the coefficient vector is then obtained
from the least-squares formula

b = (X'X)-'X'y. (1)

Several classes of designs are available for fitting first- or second-order
polynomials over spherical or cuboidal regions. This report will be limited to
comparison of designs for fitting second-order polynomials over spherical
regions.

2. BACKGROUND

The most popular designs for fitting a second-order polynomial are the
central composite designs of Box and Wilson (1951) and the designs of Box
and Behnken (1960). Crosier (1993a) examined the utility of the shell desigr.s
for fitting a second-order polynomial model. The shell designs are two series
of related designs: the uniform shell designs (Doehlert 1970) and the
simplicial shell designs, which are a generalization of the seven-factor Box-
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Behnken design (Crosier 1991).

The central composite designs, the uniform shell designs, and the
simplicial shell designs have geometric constructions that are uniform in all
dimensions; the Box-Behnken designs are a collection of three-level designs
that have various geometric constructions. The central composite designs
consist of (a) factorial points, which are a 2k design or 2k-f fractional factorial
design of at least resolution V, (b) star or axial points, which have each factor
in turn set to its high and low levels and the other factors at their central
level, and (c) center points, which have all factors set to their central level.
The uniform shell designs are obtained from a regular simplex that has one
vertex at the origin: subtracting each vertex from all other vertices produces
the complete list of design points. The simplicial shell designs are obtained
from a regular simplex centered on the origin: the midpoints of its edges,
their negatives, and the origin are the design points. The Box-Behnken
designs are obtained by combining balanced incomplete block (BIB) or
partially balanced incomplete block (PBIB) designs with two-level factorial or
fractional factorial designs. Crosier (1991) gave some additional designs
generated by this method.

Design matrices are given in coded units that center the design on the
origin and yield convenient numbers for the coded design levels. To apply a
response surface design, the coded factor levels must be scaled to the ranges
of the process variables (experimental factors). Two methods of converting
the coded factor levels to the levels of the experimental factors will be
considered in this report. In method A, the diameter of the coded design is
scaled to the range of each experimental factor. Method A was recommended
by Doehlert and Klee (1972) and is consistent with the theory of experimental
design, which compares designs for spherical regions by scaling the designs
to have the same diameter. In method B, the range of the coded factors is
scaled to the ranges of the experimental factors. Method B is widely used,
but allows spherical designs to have different diameters, thus invalidating the
traditional design comparisons. Crosier (1991) therefore suggested that the
diameter/range (D/R) ratio of a design is an important property of the design
because the ratio indicates the size of design region.

Lucas (1976) compared response surface designs, including the uniform
shell designs, by their D- and G-efficiencies. The D-efficiency of a design is
the pth root of the ratio of det(X'X)/NP to the maximum possible value of
det(X'X)/NP for any design covering the same region. The D-efficiencies in
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Lucas (1976) are obtained by scaling the designs to have radius 1 (that is, the
region is a sphere of radius 1). The G-efficiency of a design is defined as
p/V(x)max, where p is the number of parameters in the model and V(x)=X is
the maximum value of V(x) = N x'(X'X)-lx for any point x in the experimental
region. The variance of y at x is V(x)oa/N, so the G-efficiency of a design
compares the maximum value of V(x)=NVar[y(x)]/o1 within the
experimental region to its theoretical minimum, which is p. G-efficiency is a
more sensitive criterion than D-efficiency: a design can have a high
D-efficiency and a low G-efficiency, but not vice versa.

Both D- and G-efficiency are measures of information per point, which
is supposed to allow a comparison of designs with different numbers of
design points. From the experimenter's point of view, the efficiency of a
design is primarily (perhaps exclusively) a function of the number of design
points. Thus the mathematical efficiencies are not practical measures of how
good a design is, but theoretical measures that indicate how well the points
are arranged over the experimental region.

Box and Draper (1987, p.498) have criticized the use of single number
design criteria, such as the D- and G-efficiencies, and have suggested
examining the predictive ability of the design over the entire experimental
region. For this purpose, Giovannitti-Jensen and Myers (1989) recommend
using variance dispersion graphs, which show the minimum, average, and
maximum values of V (x) as a function of the distance of x from the center of
the design. The variance dispersion graphs are similar to the variance
profiles of Box and Behnken (1960), which give the minimum and maximum
values of V(x) as a function of the distance of x from the center of the design.
Myers, Vining, Giovannitti-Jensen, and Myers (1992) discuss the scaling by N
in the variance dispersion graphs.

3. DESIGN COMPARISONS

I wish to make a few points about design comparisons and will do so
through two examples. The second example involves the scaling of the
designs and the relevance of the two methods (A and B) of applying a design
to design comparisons. But first I compare two designs that have the same
number of design points, the same range for the coded factors, and the same
diameter, so that the scaling issues are not involved in the comparison.
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The first example compares the four-factor Box-Behnken design with
two center points to the uniform shell design (as given by Crosier 1993a) with
six center points. Both designs have N = 26 design points, a range of -1 to 1
for every factor, and a diameter of 2x2 1/ 2 in coded units. The Box-Behnken
design has a G-efficiency of 98.9% and the uniform shell design, with six
center points, has a G-efficiency of 59.7%. Thus on the basis of G-efficiency,
the Box-Behnken design is to be preferred. Figure 1 gives the variance
profiles of the designs. The Box-Behnken design is rotatable (another
desirable property) so that its minimum and maximum V(x) are the same at
any given distance from the center of the design. Hence the Box-Behnken
design has one line in Figure 1, whereas the uniform shell design has
separate lines for the minimum and maximum values of V(x). From Figure 1,
the uniform shell design gives better prediction near the center of the region
and the Box-Behnken design gives better prediction at the perimeter of the
region.

Although these comparisons (efficiency, rotatability, and predictive
ability over the experimental region) may favor the Box-Behnken design, the
uniform shell design should be preferred because it provides adequate
degrees of freedom (five for pure error, six for residual error) for testing lack
of fit. With only one degree of freedom for pure error, the Box-Behnken
design does not provide an adequate test for lack of fit. The significance of
the model terms must be tested using the residual error, which might be
inflated by (undetectable) lack of fit. Even worse is that the predictions of
the model may be far from the true response, and that this bias in the
predictions due to lack of fit cannot be detected. In contrast, the uniform
shell design allows both a lack of fit test and, if necessary, testing the model
terms versus the five degrees of freedom (df) for pure error; five df for error
is adequate - see Wheeler (1974, 1975). An overemphasis on optimal design
theory may lead to ignoring important design goals.

The second example compares the three-factor central composite design
(CCD) with n0 =3 center points to the three-factor Box-Behnken design
(BBD), also with n0 = 3 center points. Myers et al (1992) compared these
designs and concluded that "The BBD performs better near the design center
while the CCD clearly performs better near the perimeter." Their conclusion
is based on graphs of the minimum, average, and maximum of V(x) versus
the radius of x. Then they remove the scaling by N-plotting
V(x)/N = Var [yj(x)]/o 2 versus the radius of x-and state the result: ".... the
advantage of the BBD near the design center disappears while the advantage
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Figure 1. Variance Profiles for the Four-Factor Box-Behnken and
Uniform Shell Designs.
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of the CCD at the perimeter is even greater." These comparisons are based
on scaling the designs to have the same diameter. Scaling the designs to
have the same diameter for comparison is appropriate if the designs are
applied by Method A.

To show what the same-diameter-scaling convention implies for
statistical practice, I give the CCD and the BBD as applied to the three factors
blender speed (100-300 rpm), mixing time (10-20 minutes), and cooking
temperature (180-200") by Method A in Tables I (the CCD) and 2 (the BBD).

Table 1. Three-Factor CCD Applied by Method A or Method B.

Blender Mixing Cooking
Point Speed Time Temperature

1 142.3 12.1 184.2
2 257.7 12.1 184.2
3 142.3 17.9 184.2
4 257.7 17.9 184.2
5 142.3 12.1 195.8
6 257.7 12.1 195.8
7 142.3 17.9 195.8
8 257.7 17.9 195.8

9 100 15 190
10 300 15 190
11 200 10 190
12 200 20 190
13 200 15 180
14 200 15 200

15 200 15 190

To save space, Tables 1 and 2 show only one center point. Because the
diameter of the CCD is equal to the range of its coded factors, Methods A
and B are equivalent for the CCD. For the BBD, Method A yields reduced
ranges for the experimental factors because the range of the coded factors is
less than the design diameter. I do not believe that the scaling in Table 2
reflects statistical practice-that is, I do not believe that the BBD would be
applied by Method A. Table 3 gives the BBD applied by Method B. I believe
that the scaling by Method B in Table 3 reflects statistical practice and is
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Table 2. Three-Factor BBD by Method A.

Blender Mixing Cooking
Point Speed Time Temperature

1 129.3 11.5 190
2 270.7 11.5 190
3 129.3 18.5 190
4 270.7 18.5 190

5 129.3 15 182.9
6 270.7 15 182.9
7 129.3 15 197.1
8 270.7 15 197.1

9 200 11.5 182.9
10 200 18.5 182.9
11 200 11.5 197.1
12 200 18.5 197.1

13 200 15 190

therefore the correct scaling to use for making design comparisons.
However, the literature on optimal designs uses scaling by Method A to
compare designs. Box and Draper (1987) note the sensitivity of optimal
design criteria to the scaling of the designs and state (in a footnote on page
499) "It is important to be aware that the apparent superiority of one design
over another will often disappear if the method of scaling the design is
changed." Their comment needs more emphasis in the applied statistical
literature.

To make a realistic comparison between the CCD and the BBD, code the

designs listed in Tables 1 and 3 by the equations:

x 1 = (blender speed-200)/ 100 (2)

x 2 = (mixing time- 15)/5 (3)
and

X3 = (cooking temperature- 190)/10 (4)

Equations 2-4 are typical of the scaling equations given in many textbooks on
the design of experiments, but, apparently, the use of the same set of
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Table 3. Three-Factor BBD by Method B.

Blender Mixing Cooking
Point Speed Time Temperature

1 100 10 190
2 300 10 190
3 100 20 190
4 300 20 190

5 100 15 180
6 300 15 180
7 100 15 200
8 300 15 200

9 200 10 180
10 200 20 180
11 200 10 200
12 200 20 200

13 200 15 190

equations to scale two designs that are to be compared is not common
practice. When the designs in Tables I and 3 are coded by equations 2-4,
both designs have the range -1 to 1 for the coded factors, but the diameters
of the designs are different. Figure 2 shows the maximum and minimum
values of V(x)/N versus the radius of x for the CCD and the BBD when the
designs are scaled to have the range -1 to 1. The superiority of the CCD at
its design perimeter has now disappeared, and there are two design
perimeters-at a radius of 1 for the CCD and at a radius of 21/2 for the BBD.

Because response surface designs are usually applied by Method B, the
optimal design criteria based on Method A scaling apply to design regions of
varying sizes. Specifically, the D- and G-efficiencies of the CCD apply to a
sphere of radius 1 and the D- and G-efficiencies of the three-factor BBD
apply to a sphere of radius 2 1/2. Crosier (1991a) introduced the
diameter/range (D/R) ratio as a measure of the size of a spherical design;
when a design is scaled so that the factors cover the interval [-1,1], the D/R
ratio is equal to the radius of the noncentral design points.
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Experimentation over a large region gives more precise estimates of the
polynomial coefficients than experimentation over a small region, but a
polynomial model will approximate an unknown function better over a small
region than over a large region. I believe that spherical designs with a D/R
ratio greater than one are a reasonable compromise between the small
spherical region of the central composite designs (D/R= 1) and the large
cuboidal region of the face centered cube designs. Also, it seems intuitive
that a polynomial will approximate an unknown function better over a
spherical region than over a cuboidal region of the same volume.

Rotating a first- or second-order response surface design does not
change its D- and G-efficiencies, so design rotations have been ignored. But
rotating a response surface design can change the number of levels of the
factors and the ranges of the coded factors (and hence the diameter of the
design region if the design is applied by method B). Comparisons of
response surface designs therefore need to specify the orientations of the
designs because characteristics of practical importance (such as the number of
levels) depend on the orientation of a design. Table 4 gives the number of
noncentral design points, the number of levels, the number of orthogonal
blocks, the diameter/range ratio (D/R), and the G-efficiencies of the central
composite (CC) designs, the Box-Behnken (BB) designs, the uniform shell
(US) designs, the simplicial shell (SS) designs, and some additional three-
level designs [denoted by (P)BIB+2m to indicate their construction] given by
Crosier (1991). For k > 8, only three-level designs are given in Table 4. The
central composite designs for even k are given in two orientations in Table 4;
first is the standard orientation and second are the new orientations given by
Crosier (1991, 1993b). The factorial point versus axial point blocking of the
central composite designs can be made orthogonal by proper choice of the
axial point distance and the number of center points in the two blocks. The
G-Efficiencies in Table 4 are for unblocked designs with two center points.
The G-efficiencies of some of the uniform shell designs in Table 4 are slightly
lower than the values reported by Lucas (1976) because a more thorough
search was done for the point x at which the maximum value of V(x) occurs.
The uniform shell and simplicial shell designs in Table 4 are in the symmetric
orientations discussed by Crosier (1991, 1993a). In the orientation given by
Doehlert (1970), the uniform shell designs have coded factors with different
ranges. Such asymmetric designs are difficult to apply (Crosier 1993a, 1993b)
and so are not included in Table 4. Some comments on the designs in
Table 4 appear after Table 4.
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Table 4. Some Properties of Symmetric Designs.

Design k N-n 0  Levels Blocks D/R G-Eff.(%)

CC 2 8 5 2e 1. 96.0
CC 2 8 5 2e 1.082 96.0

US=SS 2 6 7 2e 1.035 90.0

CC 3 14 5 2 1. 94.6
BB=US 3 12 3e - 1.414 71.4

SS 3 12 3e 2e 1. 0.0
SS 3 12 5e 2e 1.5 0.0

CC 4 24 5e 3e 1. 98.9
BB=CC 4 24 3e 3e 1.414 98.9

US 4 20 7 2e 1.414 70.5
SS 4 20 9 2e 1.514 23.1

CC 5 26 5 2 1. 87.6
BB 5 40 3e 2e 1.414 90.9
US 5 30 7 - 1.414 65.6
SS 5 30 9 2e 1.513 51.8

CC 6 44 5 2 1. 97.0
CC 6 44 5 2 1.414 97.0
BB 6 48 3e 2e 1.732 67.2
US 6 42 7 2e 1.414 64.4
SS 6 42 9 2e 1.508 76.9

CC 7 78 5 2 1. 84.7
BB=SS 7 56 3e 2e 1.732 99.3

SS 7 56 9 2e 1.502 99.3
SS 7 56 7e 2e 1.155 99.3
US 7 56 3e - 2. 62.1
US 7 56 7 - 1.414 62.1
US 7 56 7e - 1.333 62.1

CC 8 80 5 2 1. 99.8
CC 8 80 5 2 1.414 99.8
US 8 72 5e 2e 1.414 61.2
SS 8 72 9 2e 1.497 93.1

BB 9 120 3e 10e 1.732 83.2
BIB+2 3  9 96 3e 8e 1.732 92.9
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BB 10 160 3e 2e 2. 68.6

PBIB+2-'- 1  10 160 3e - 2.236 41.8

BB 11 176 3e - 2.236 80.9
US 11 132 3e - 2.449 56.9
SS 11 132 3e 2e 2.236 80.6

BB 12 192 3e 2e 2. 89.2

BIB+24 13 208 3e 2e 2. 94.5

US 15 240 3e - 2.828 56.2
SS 15 240 3e 2e 2.646 71.9

BB 16 384 3e 12e 2. 85.0

NOTE: The e indicates equally spaced levels or equal-size blocks.

For k = 2, 4, and 6, the uniform shell designs require fewer runs than
the central composite or Box-Behnken designs, but require seven levels of the
factors. The three-factor simplicial shell design is singular and the four-
factor simplicial shell design is too inefficient for use. The nine-factor design
designated by BIB+2 3 has eight orthogonal blocks: the four blocks given by
Crosier (1991) can be divided into eight blocks by using the three-way
interaction of the 23 design to separate the design points. V(x)ma for the 10-
factor design denoted PBIB+25- 1 is worse than V(x)ax for the 10-factor Box-
Behnken design at every radius up to 2.236. Hence the Box-Behnken design
is to be preferred. However, the 11-factor shell designs require fewer runs
than the 10-factor Box-Behnken design. Thus one would usually use one of
the 11-factor shell designs for 10 factors by ignoring one of the design
columns. In comparing the three-level rotations of the shell designs (for
k =7, 11, and 15), there is only a trivial difference in V(x)mx between the
uniform shell designs and the simplicial shell designs, with the uniform shell
designs being slightly better at the design perimeters and the simplicial shell
designs being slightly better closer to the center of the design region. The
benefit of the larger region of the uniform shell designs (more precise
estimates of the coefficients) only compensates for the lower efficiencies of
the uniform shell designs and does not provide any real advantage over the
simplicial shell designs. I would therefore prefer the simplicial shell designs
to the uniform shell designs (for k = 7, 11, and 15) because of the orthogonal
blocking of the simplicial shell designs and because the smaller region of the
simplicial shell designs reduces the bias due to lack of fit.
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4. SUMMARY

Response surface designs are often compared by optimal design theory
criteria, such as the D- and G-efficiencies. For designs over spherical
regions, such criteria are calculated by scaling the designs to have the same
diameter. But, in practice, designs are applied by scaling the coded factor
ranges (not the diameter) to the ranges of the factors in the experiment. The
result of this discrepancy between theory and practice is that the
mathematical efficiencies may apply to regions of different sizes. Further,
there are practical objectives, such as minimizing the number of runs or
testing for lack of fit, that are ignored by optimal design theory. Two
examples were given to show the limitations of comparisons of designs by
optimal design theory criteria. For many symmetric second-order designs, a
table listing the following items was provided: number of noncentral design
points, number of levels, number of orthogonal blocks, D/R ratio, and
G-efficiency.
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