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Introduction

1,3,5-trinitro-1,3,5-triazacyclohexane (1; RDX) and 1,3,5,7-tetranitro-1,3,5,7-tetraaza-
cyclooctane (2; HMX) are highly energetic cyclic nitramines.!? Both can be represented by the
formula (CH2NNO2),. The smallest member of this series, 1,3-dinitro-1,3-diazacyclobutane (3),
has, to our knowledge, not yet been synthesized. A possibly significant feature of 3 that is not
present in 1 or 2 is strain due to the four-membered ring. This should increase the molecule's
energy content, although the effect is likely to be reduced by o-conjugation of the aza nitrogens’

lone pairs.>
NO, NO, ON, ON,
N HC—N_ N—CH, N-==CH,
H,C CH, O,N—N CH, oo
1\': ,l*ll ne N—NO HET, TN
N ~ LN s 2 NO, NoO
NO,
1 2 3 4

A useful measure of energy content is the beat of formation, and one of our present
objectives was to compute this for 3. We also extend earlier preliminary studies of two possible
decomposition steps:4-3 (a) homolytic rupture of an N-NO, bond, and (b) dissociation of the ring
into two H,C=N-NO,, fragments, passing through the transition state 4.

Methods

HF/6-31G* optimized geometries and vibration frequencies were computed for 3 - 7 with
the GAUSSIAN 92 program;® the frequencies were scaled by 1/1.12.%7 (For § and 6, the
unrestricted Hartree-Fock approach was used.) Single point runs were then carried out for each
structure with the non-local density functional (DF) code deMon,? using the Gaussian DZVPP
basis set; the exchange-correlation energies were calculated by means of the generalized gradient
approximation (GGA).>!0 These DF results were used in computing the reaction energetics.

Standard gaseous heats of formation were obtained by computing AE (DF) for the
formation of each molecule from its elements, combining this with translational, rotational and

vibrational contributions and converting the result to AH® at 25°C using the ideal gas |
approximation.! 1112 Empirical bond and group correction terms were also included.!!:12 il For 2
CRA&I
Results TAB
The HF/6-31G* optimized geometries of 3 - 7 are given in Table L Although experimental ...
values are known only for NO; (6), data relevant to 3 and 5 are in crystallographic!3-!4 and —
electron diffraction!’ studies of RDX (1) and 1,3,3-trinitroazetidine, and an MCSCEF structure is 7—-~—;————-—<
Hution
available for 7.16 In general, there is good agreement, although the HF/6-31G* procedure tends to —
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underestimate N-O bond lengths by roughly 0.03 A. Our structures for 3and 5 - 7 do correspond
to local energy minima (no imaginary frequencies) and 4 is a transition state (one imaginary
frequency). The HF/6-31G* and the DF-GGA/DZVPP energies of 3 - 7 are in Table II.

The strain energy of 3 was estimated by the isodesmic reaction procedure,’ which involves
writing a hypothetical chemical process in which the number of bonds of each type remains the
same but their mutual relationships have changed. AE for such a reaction is interpreted as
revealing any deviations from bond energy additivity, due to strain, resonance stabilization, etc.

At the HF/6-31G* level, taking HoN-NO, and H3C-NH; to be the reference molecules and
using energies obtained in this work and from archives,!? we find the strain energy of 3 to be 8.6
kcal/mole. This is in good agreement with our earlier HF/3-21G value of 9.5 kcal/mole. As a test,
we also computed the HF/6-31G* strain energy for cyclopropane, using an analogous isodesmic |
reaction, and obtained 26.3 kcal/mole, which is close to the quoted value of 28.3 kcal/mole.!8 ‘

Our estimated standard gaseous heat of formation at 25° C for 3 is +52.0 kcal/mole. We ‘
believe this to be reliable, since the very similar RDX (1) was part of our data base in determining
the correction terms, and our procedure reproduces its measured AH; !9 to within 0.1
kcal/mole.'2 Our AH¢ for 3 exceeds that of RDX by 6.2 kcal/mole; this may reflect the strain in 3.

Using the data in Table II, with zero-point energies taken into account, the DF N-NO;
dissociation energy is 36.6 kcal/mole. The overall AE for the ring fragmentation is 17.0 kcal/mole,
but the activation barrier for this process is 44.2 kcal/mole. N-NO, dissociation and ring
fragmentation are therefore roughly similar in terms of their energetic requirements.

Di .

The heat of formation, expressed on a mass basis, is a key determinant of the detonation
and propellant properties of an energetic material.?% Thus it is noteworthy that our value for 3,

351 cal/g, is 70% larger than that of RDX (1), 206 cal/g.

The N-NO; dissociation energy, 36.6 kcal/mole, is somewhat less than the 40-50 kcal/mole
range typical of N-NO, bonds,2!-2# possibly reflecting some release of strain upon breaking the
bond. In view of evidence that rupture of the N~-NO; bond is an important factor in nitramine
decomposition,?13-27 the weakness of these bonds in 3 suggests that it might possess a rather high
sensitivity to shock and/or impact. A similar conclusion is reached on the basis of a correlation
relating nitramine shock sensitivity to the N-NO, bond lengths and the molecular weight; 28 3 is
predicted to have a shock sensitivity very close to those of RDX (1) and HMX (2). Nevertheless,
its relatively high energy content, as reflected in its heat of formation, should stimulate continued
synthetic efforts.
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Table 1. HF/6-31G* optimized geometries.

Molecule Distances (A) Angles (deg)
O,N C-N: 1.466 N-C-N: 87.3
N—cH N-N: 1.355 C-N-C: 927
2 N-O: 1.191 C-N-N: 1199
HC—N 3 N-N-O: 116.4
2 \ O-N-O: 1272
NO, N-C-N-N: 127.1
C-N-N-O:  34.6, 147.7
ON, C-N: 1.343 N-C-N: 920
N-—=CH, Cc-N: 1.991 C-N-C: 88.0
) 4 N-N: 1.369 C-N-N:® 114.1
H,C _N\ N-O,; L 191 N-N-O,b 115.0
NO, N-Oy: 1.197 N-N-Op:b  119.4
O-N-O: 1256
N-C-N-C: 0.0
C-N-N-O,:b 156.7
C-N-N-Op:b 242
C-N(NO;): 1.466 N-C-N:  90.3
o C-N: 1.459 C-N(NO,-C: 88.8
N—CH, 5 N-N: 1.349 C-N-C: 893
| | N-O: 1.193 C-N-N: 121.2
H,C—N N-N-O: 116.6
NO, O-N-O: 126.8
C-N-C-N: 8.5
N-N-C-N: 1349
C-N-N-O: 359, 145.8
*NO, 6 N-O: 1.165 O-N-O: 136.1
(1.197)2 (133.8)2
C-N: 1.254 C-N-N:  113.7
N-N: 1.417 O-N-0O: 126.6
H,C=N-NO, 7 N-O,: 1.180 N-N-O;: 113.9
N-O,: 1.193 N-N-Op: 119.5
C-N-N-O;: 157.1
C-N-N-Op: 24.1

aExperimental values for NO», in parentheses, from Harmony, M. D.; Laurie, V. W.;
Kuczkowski, R. L.; Schwendeman, R. H.; Ramsay, D. A.; Lovas, F. J.; Lafferty, W. J.; Maki,
A. G. J. Phys. Chem. Ref. Data, 1979, 8, 619.

YThese angles are within each HyC=N-NO, portion.




Table II. Calculated energies.

Total Energy? Zero-point energy
Molecule HF/6-31G*  DF-GGA/DZVPP//HF/6-31G* (HF/6-31G*),

(hartrees) (kcal/mole)

3 -594.97670 -599.02944 58.13

4 -594.86945 -598.95329 54.53

5 -390.91306 -393.62772 47.53

6 -204.03149 -205.33525 5.52

7 -297.47560 -299.49753 26.76

aThis corresponds to energy minimum at 0°K.
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