© \

o DTIC

ELECTE
JAN 6 1994D

Parallel string matching algorithms*

Dany Breslauert Zvi Galil
Columbia University Columbia University and
Tel-Aviv University

CUCS-002-92

Abstract

The string matching problem is one of the most studied problems
in computer science. While it is very easily stated and many of the
simple algorithms perform very well in practice, numerous works have
been published on the subject and research is still very active. In this
paper we survey recent results on parallel algorithms for the string

matching problem.

n ¥ | 1 Introduction
if @

/ .‘*:!,‘ & 3 You are given a copy of Encyclopedia Britanica and a word and requested
; -I:t 44! to find all the occurrences of the word. This is an instance of the string
131 ; b matching problem. More formally, the input to the string matching problem
ford § consists of two strings TEXT(1..n] and PATT ERN{1..m]; the output should
! ’})} < g list all occurrences of the pattern string in the text string. The symbols in
x]"‘ é’ g the strings are chosen from some set which is called an alphabet. The choice
‘o g , of the alphabet sometimes allows us to solve the problem more efficiently as

/‘3 / < we will see later.
] A naive algorithm for solving the string matching problem can proceed as

follows: Consider the first n —m +1 positions of the text string. Occurrences

*Work partially supported by NSF Grant CCR-90-14605.
tPartially supported by an IBM Graduate Fellowship.

1

93-18469 () Y
AT 93 8 10 271

of the pattern can start only at these positions. The algorithm checks each
of these positions for an occurrence of the pattern. Since it can take up to
m comparisons to verify that there is actually an occurrence, the time com-
plexity of this algorithm is O(nm). Note that the only operations involving
the input strings in this algorithm are comparisons of two symbols.

The only assumption we made about the alphabet in the algorithm de-
scribed above is that alphabet symbols can be compared and the comparison
results in an equal or unequal answer. This assumption, often referred to as
the general alphabet assumption, is the weakest assumption we will have on
the alphabet, and, as we have seen, is sufficient to solve the string matching
problem. However, although the definition of the string matching problem
does not require the alphabet to be ordered, an arbitrary order is exploited in
several algorithms [3, 4, 21, 22] which make use of some combinatorial prop-
erties of strings over an ordered alphabet [40]. This assumption is reasonable
since the alphabet symbols are encoded numerically, which introduces a nat-
ural order. Other algorithms use a more restricted model where the alphabet -
symbols are small integers. Those algorithms usually take advantage of the
fact that symbols can be used as indices of an array [2, 6, 42, 48] or that
many symbols can be packed together in one register [26]. This case is usually
called fized alphabet.

Many sequential algorithms exist for the string matching problem and are
widely used in practice. The better known are those of Knuth, Morris and
Pratt [35] and Boyer and Moore [12]. These algorithms .chieve O(n + m)
time which is the best possible in the worse case and the latter algorithm
performs even better on average. Another well known algorithm which was
discovered by Aho and Corasik [2] searches for multiple patterns over a fixed
alphabet. Many variations on these algorithms exist and an excellent survey
paper by Aho [1] covers most of the techniques used.

All these algorithms use an O(m) auxiliary space. At a certain time it was
known that a logarithmic space solution was possible [28], and the problem
was conjectured to have a time-space trade off [10]. This conjecture was later
disproved when a linear-time constant-space algorithm was discovered [29]
(see also [21]). It was shown that even a 6-head two-way finite automaton can
perform string matching in linear time. It is still an open problem whether
a k-head one-way finite automaton can perform string matching. The only
known cases are for k = 1,2,3 [30, 38, 39] where the answer is negative.

Recently, few papers have been published on the exact complexity of

2

the string matching problem. Namely, the exact number of comparisons
necessary in the case of a general alphabet. Surprisingly, the upper bound
of about 2n comparisons, the best known before [5, 35], was improved to
3n comparisons by Colussi, Galil and Giancarlo [16]. In a recent work Cole
[17] proved that the number of comparisons performed by the original Boyer-
Moore algorithm is about 3n.

In this paper we will focus on parallel algorithms for the string matching
problem. Many other related problems have been investigated and are out
of the scope of this paper [1, 27}. For an introduction to parallel algorithms
see surveys by Karp and Ramachandran [33] and Eppstein and Galil [24].

In parallel computation, one has to be more careful about the definition
of the problem. We assume the the input strings are stored in memory and
the required output is a Boolean array M ATC H[1..n] which will have a ‘true’
value at each position where the pattern occurs and ‘false’ where there is no
occurrence.

All algorithms considered in this paper are for the parallel random access-

machine (PRAM) computation model. This model consists of some pro-
cessors with access to a shared memory. There are several versions of this
model which differ in their simultaneous access to a memory location. The
weakest is the exclusive-read exclusive-write (EREW-PRAM) model where
at each step simultaneous read operation and write operations at the same
memory location are not allowed. A more powerful model is the concurrent-
read exclusive-write (CREW-PRAM) model where only simultaneous read
operations are allowed. The most powerful model is the concurrent-read
concurrent-write (CRCW-PRAM) model where read and write operations
can be simultaneously executed.

In the case of the CRCW-PRAM model, there are several ways of how
write conflicts are resolved. The weakest model, called the common CRCW-
PRAM assumes that when several processors attempt to write to a certain
memory location simultaneously, they all write the same value. A stronger
model called the erbitrary CRCW-PRAM assumes an arbitrary value will
be written. An even stronger model, the priority CRCW-PRAM assumes
each processor has a priority and the highest priority processor succeeds to
write. Most of the CRCW-PRAM algorithms described in this paper can
be implemented in the common model. In fact these algorithms can be
implemented even if we assume that the same constant value is always used
in case of concurrent writes. However, to simplify the presentation we will

3

Accesion For ’

NTIS CRaA&l

DTIC TAB
Unannmm(;ed a
Justitication
By
Distribution |

e

Availability Codes

DTIC QUALITY INGPECTED'S

r}\:&)ll dfor

Dist Soecial

N

sometimes use the more powerful priority model.

For the algorithms discussed in this paper we assume that the length of
the text string is n = 2m, where m is the length of the pattern string. This
is possible since the text string can be broken into overlapping segments of
length 2m and each segment can be searched in parallel.

Lower bounds for some basic parallel computational problems can be
applied to string matching. A lower bound of Q(Bl?"&'s‘—n) for computing the
parity of n input bits on a CRCW-PRAM with any polynomial number of
processors [7] implies that one cannot count the number of occurrences faster
than O(B‘fﬁ%;). Another lower bound of Q(log n) for computing a Boolean
AND of n input bits on any CREW-PRAM ([20] implies an Q(logn) lower
bound for string matching in this parallel computation model.

These lower bounds make the possibility of sublogarithmic parallel algo-
rithms for any problem very unlikely. However several problems are known
to have such algorithms [8, 9, 11, 36, 44, 45] including string matching. In
fact, a very simple algorithm can solve the string matching problem in con-
stant time using nm processors on a CRCW-PRAM: similarly to the naive
sequential algorithm, consider each possible start of an occurrence. Assign
m processors to each such position ‘o verify the occurrence. Verifying an
occurrence is simple; perform all m comparisons in parallel and any mis-
match changes a value of the MATCH array to indicate that an occurrence
is impossible.

The following theorem will be used throughout the paper.

Theorem 1.1 (Brent [13]): Any PRAM algorithm of time ¢ that consists
of z elementary operations can be implemented on p processors in [z/p] +¢
time.

Using this theorem for example, we can slow down the constant-time
algorithm describe above to run in O(s) time on 22 processors.

In the design of a parallel algorithm, one is also concerned about the total
number of operations performed, which is the time-processor product. The
best one can wish for is the number of operations performed by the fastest
sequential algorithm. A parallel algorithm is called optimal if that bound is
achieved. Therefore, in the case of the string matching problem, an algorithm

~ptimal if the time-processor product is linear in the length of the input

RN

A\n optimal parallel algorithm discovered by Galil {26] solves the problem

in O(log m) time using Tegm Processors. This algorithm works for fixed alpha-
bet and was later improved by Vishkin (46] for general alphabet. Optimal al-
gorithms by Karp and Rabin [32] and other algorithms based on Karp, Miller
and Rosenberg’s (31} method [23, 34] also work in O(log m) time for fixed
alphabet. Breslauer and Galil [14] obtained an optimal O(log log m) time al-
gorithm for general alphabet. Vishkin [47] developed an optimal O(log® m)!
time algorithm. Unlike the case of the other algorithms this time bound
does not account for the preprocessing of the pattern. The preprocessing in
Vishkin’s algorithm takes O(B-':%n-) Vishkin’s super fast algorithm raised
the question whether an optimal constant-time algorithm is possible. This
question was partially settled in a recent paper by Breslauer and Galil [15]
showing an }(log log m) lower bound for parallel string matching over a gen-
eral alphabet. The lower bound proves that a slower preprocessing is crucial
for Vishkin’s algorithm.

This paper is organized as follows. In Section 2 we describe the log-
arithmic time algorithms. Section 3 is devoted to Breslauer and Galil’s"
O(log logm) time algorithm. Section 4 covers the matching lower bound.
Section 5 outlines the ideas in Vishkin’s O(log* m) algorithm. In some cases
we will describe a parallel algorithm that achieves the claimed time bound
using n processors. The optimal version, using O(%) processors, can be de-
rived using standard techniques. Many questions are still open and some are
listed in the last section of this paper.

2 Logarithmic time algorithms

The simplest parallel string matching algorithm is probably the randomized
algorithm of Karp and Rabin [32]. The parallel version of their algorithm
assumes the alphabet is binary and translates the input symbols into a 2 x 2
non-singular matrices. The following representation is used, which assures a
unique representation for any string as a product of the matrices representing

it.
o=(11) w=(41)

1The function log” m is defined as the amallest k such that log(")m < 2, where
log™ m = logm and log(*+!) m = loglog®*) m.

5

f(s183---8:) = f(s1)f(s2) - - f(s:)

Most of the work in the algorithm is performed using a well known method
for parallel prefix computation summarized in the following theorem:

Theorem 2.1 (Folklore, see also [37]): Suppose a sequence of n elements
zy,Z%3, -+, Ty are drawn from a set with an associative operation *, com-
putable in constant time. Let p; = z; * z3 * - - - z;, usually called a prefix
sum. Then an EREW-PRAM can compute all p; ¢ = 1---n, in O(logn)
time using 2~ processors.

Karp and Rabin’s algorithm multiplies the matrices representing the pat-
tern to get a single matrix which is called the fingerprint of the pattern.
By Theorem 2.1 this can be done by a Iog - Processor EREW-PRAM in
O(log m) time. The text string is also converted to the same representation
and matches can be reported based only on comparison of two matrices; the
fingerprint of the pattern and the fingerprint of each text position. To com-
pute the fingerprint of a text position j, which is the product of the matrix.
representation of the substring starting at position j and consisting of the
next m symbols, first compute all prefix products for the matrix represen-
tation of the text and call them P;. Then compute the inverse of each F;;
the inverse exists since each P; is a product of invertible matrices. The fin-
gerprint for a position j,2 < j < n-—m+1is given by PJ-‘_IIP_,-.,.,,,_I; the
finger print of the first position is P,. By Theorem 2.1 the prefix products
also take optimal O(logm) time on an EREW-PRAM. Since the remaining
work can be done in constant optimal time, the algorithm works in optimal
O(log m) total time.

However, there is a problem with the algorithm described above. The
entries of those matrices may grow too large to be represented in a single
register; so the numbers are truncated modulo some random prime p. All
computations are done in the field Z, which assures that the matrices are
still invertible.

This truncated representation does not assure uniqueness, but Karp and
Rabin show that the probability of their algorithm erroneously reporting a
nonexisting occurrence is very small if p is chosen from a range which is
large enough. This algorithm is in fact the only parallel algorithm which
works in optimal logarithmic time on an EREW-PRAM,; all the algorithms
we describe later need a CRCW-PRAM.

The method used by Karp, Miller and Rosenberg [31] for sequential string

matching can be adopted also for parallel string matching. Although the
original algorithm worked in O(nlogn) time, Kedem, Landau and Palem
[34] were able to obtain an optimal O(log m) time parallel algorithm using
a similar method. Chrochemore and Rytter (23] independently suggested
a parallel implementation in O(logm) time using n processors. Another
parallel algorithm which uses a similar method is the suffix tree construction
algorithm of Apostolico et al. [6] which can also be used to solve the string
matching problem. All these parallel algorithms need an arbitrary CRCW-
PRAM and are for fixed alphabets; they also need a large memory space. It
seems that this method cannot be used to obtain faster than O(log n) string
matching algorithms, however it is applicable to other problems [23].

We describe a logarithmic time implementation of the Karp, Miller and
Rosenberg [31] method for an n-processor arbitrary CRCW-PRAM. Consider
the input as one string of length ! = n + m which is a text of length n
concatenated with a pattern of length m. Two indices of the input string
are called k-equivalent if the substring of length k starting at those indices-
are equal; this is in fact an equivalence relation on the set of indices of the
input string. The algorithm assigns unique names to each index in the same
equivalence class. The goal is to find all irdices which are in the same m-
equivalence class of the index where the pattern starts.

We denote by n(z, 7) the unique name assigned to the substring of length
J starting at position ¢ of the input string; assume n(z, j) is defined only for
1+ j <1+1 and the names are integers in the range 1---[. Suppose n(i,r)
and n(z,s) are known for all positions ¢ of the input string. One can easily
combine these names to obtain n(z,r + s) for all positions ¢ in constant time
using ! processors as follows: Assume a two dimensional array of size I x [is
available; assign a processor to each position of the input string. Note that
the string of length r + s starting at position ¢ is actually the string of length
r starting at position i concatenated with the string of length s starting at
position ¢ + r. Each processor will try to write the position number it is
assigned to in the entry at row n(i,r) and column n(i + r,s) of the matrix.
If more then one processors attempts to write the same entry, assume an
arbitrary one succeeds. Now n(i,r + s) is assigned the value written in row
n(z,r) and column n(i + r,s) of the matrix. That is, n(¢,r + s) is an index
of the input string, not necessarily ¢, which is (r + s)-equivalent to i.

The algorithm start with n(:,1) which is the symbol at position i of
the string, assuming the alphabet is the set of integers between 1 and .

7

It proceeds with O(log m) steps computing n(i,2), n(i,4), ---n(i,2?) for
j < |log; m], by merging names of two 27-equivalence classes into a names
of 27+1.equivalence classes. In another O(log m) steps it computes n(z, m) by
merging a subset of the names of power-of-two equivalence classes computed
before, and reports all indices which are in the same m-equivalence class of
the starting index of the pattern.

This algorithm requires O(m?) space which can be reduced to O(m!+)
for a time tradeoff as described in the suffix tree construction algorithm of
Apostolico et al. [6].

In the rest of this section we will describe the algorithm of Vishkin [46],
on which the faster algorithms, described later, are based.

As we have seen before, if we have nm processor CRCW-PRAM, we
can solve the string matching problem in constant time using the following
method:

e First, mark all possible occurrences of the pattern as ‘true’.

e To each such possible beginning of the pattern, assign m processors.
Each processor compares one symbol of the pattern with the corre-
sponding symbol of the text. If a mismatch is encountered, it marks
the appropriate beginning as ‘false’.

Assuming that we can eliminate all but [of the possible occurrences we
can use the method described above to get a constant time parallel algorithm
with Im processors. Both Galil [26] and Vishkin [46] use this approach. The
only problem is that one can have many occurrences of the pattern in the
text, even much more than the 2 needed for optimality in the discussion
above.

To overcome this problem, we introduce the notion of the period used in
these two papers. A string u is called a period of a string w if w is a prefix of
uF for some positive integer k or equivalently if w is a prefix of uw. We call
the shortest period of a string w the period of w. For example, the period of
the string abacabacaba is abac. The string abacabac is also a period, so is the
string abacabacab.

Lemma 2.2 (Lyndon and Schutzenberger [41]): If w has two periods of
length p and g and |w| > p + ¢, then w has a period of length ged(p, q).

If a pattern w occurs in positions and j of some string and 0 < j—i < |w|
then the occurrences must overlap. This implies that w has a period of length

8

J — t. Therefore, we cannot have occurrences of w at positions j and ¢ if
0 < j —1 < |u| and u is the period of the pattern. Clearly there are no more
then 2 occurrences of the pattern in a string of length n.

If the pattern is longer than twice its period length then instead of match-
ing the whole pattern w we look only for occurrences of u2, its period repeated
twice. (Note that u? has the same period length as w by Lemma 2.2.) This
case where the pattern is longer than twice its period is called the periodic
case.

Assuming we could eliminate many of the occurrencesof u? and have
only n/|u| possible occurrences left, we can use the constant-time algorithm
described above to verify these occurrences using only 2n processors. Then,
by counting the number of consecutive matches of u?, we can match the
whole pattern.

Vishkin [46] shows how to count the consecutive matches in optimal
O(log m) time on an EREW-PRAM using ideas which are similar to prefix
computation. Breslauer and Galil [14] show how it can be done in constant:
optimal time on a CRCW-PRAM (and thus in optimal O(logm) time on
an EREW-PRAM). Assume without loss of generality that the text is of
length n < 2m and the pattern is u*v where u is its period length. Call an
occurrence of u? at position 7 an initial occurrence if there is no occurrence
of u? at position ¢ — |u| and a final occurrence if there is no occurrence at
position z + |u|. There is at most one initial occurrence which can start an
actual occurrence of the pattern: the rightmost initial occurrence in the first
2 positions. Any initial occurrence in a position greater than % cannot start
an occurrence of the pattern since the text is not long enough. Any initial
occurrence on the left cannot start an occurrence of the pattern since u, the
period length of the pattern, is not repeated enough times. The correspond-
ing final occurrence is the leftmost final occurrence to the right of the initial
occurrence. By substructing the positions of the initial occurrence from the
final occurrences and verifying an occurrence of v starting after the final oc-
currence, one can tell how many times the period is repeated and what are
the actual occurrences of the pattern.

For the rest of the description we assume without loss of generality that
the pattern is shorter than twice its period length, what is called the non
periodic case.

Suppose u is the period of the pattern w. If we compare two copies of w
shifted with respect to each other by ¢ positions for 0 < i < |ul, there must

9

be at least one mismatch. Vishkin [46] takes one of these mismatches and
calls it a witness to the fact that ¢ is not a period length. More formally, let
k be the index of one such mismatch, then

PATTERN[k] # PATTERNIk — i].

We call this k a witness, and define

WITNESS[i+1] = k.

Using this witness information Vishkin suggests a method which he calls a
duel to eliminate at least one of two close possible occurrences. Suppose ¢ and
J are possible occurrences and 0 < j—t < |u|. Then,r = WITNESS{j—i+1]
is defined. Since PATTERN|r] # PATTERN|r + i — j], at most one of
them is equal to TEXT[i + r — 1] (see figure 2.1), and at least one of the
possible occurrences can be ruled out (As in a real duel sometimes both can
be ruled out.).

L T
i j i+r-1
{ X]
j=i+1 r
L Y 1
r4i-j

Figure 2.1. X # Y and therefore we cannot have = X and T =Y.

Vishkin’s algorithm [46] consists of two phases. The first is the pattern
analysis phase in which the witness information is computed to help later
with a text analysis phase which finds the actual occurrences.

We start with a description of the text analysis phase. Let P = [u| be
the period length of the pattern. The pattern analysis phase described later
computes witnesses only for the first half of the pattern. If the pattern has
a period which is longer than half its length, we define P = [Z].

The text analysis phase works in stages. There are |log P| stages. At
stage i the text string is partitioned into consecutive blocks of length 2°. Each
such block has only one possible start of an occurrence. We start at stage 0
where the blocks are of size one, and each position of the string is a possible
occurrence.

10

At stage i, consider a block of size 2+! which consists of two blocks of
size 2. It has at most two possible occurrences of the pattern, one in each
block of size 2°. A duel is performed between these two possible occurrences,
leaving at most one in the 2¢+! block.

At the end of |[logP] stages, we are left with at most ﬁ'—‘[possible oc-
currences of u which can be verified in constant-time using n processors.
Note that the total number of operations performed is O(n) and the time is
O(log m). By Theorem 1.1 an optimal implementation is possible. Moreover,
it is even possible to implement this phase on a CREW-PRAM within the
same time bound. It is the pattern analysis phase which requires a CRCW-
PRAM.

The pattern analysis phase is similar to the text analysis phase. It takes
{log m] stages. The description below outlines a logarithmic time implemen-
tation using m processors.

The WITNESS array which we used in the text processing stage is

computed incrementally. Knowing that some witnesses are already computed -

in previous stages, one can easily compute more witnesses. Let ¢ and j be
two indices in the pattern such that i < j < [m/2]. If s= WITNESS[; -
i+ 1] is already computed then we can find at least one of WITNESS]i] or
WITN ESS[j] using a duel on the pattern as follows:

o If s+:—1< mthen s+ i —1is also a witness either for ¢ or for j.

o If s+:— 1> m then either s is a witness for j or s ~ j + 1 is a witness
for i (see figure 2.2).

L _]

P
€

.) [——
——i——L Z l

Figure 2.2. X #Y and therefore we cannot have Z = X and Z =Y.

The pattern analysis proceeds as follows: At stage ¢ the pattern is parti-
tioned into consecutive blocks of size 2°. Each block has at most one yet-to-
be-computed witness. The first block never has WITNESS[1] computed.

11

Consider the first block of size 2'+!. It has at most one other yet-to-be-
computed witness, say WITNESS[k]. We first try to compute this witness
by comparing two copies of the pattern shifted with respect to each other by
k — 1 positions. This can be easily done in constant time on an arbitrary
CRCW-PRAM with m processors. If a witness is not found, then k is the
period length of the pattern and the pattern analysis terminates. If a witness
was found, a duel is performed in each block of size 2'*! between the two
yet-to-be-computed witnesses in each such block. It results in each block of
size 2°+! having at most one yet-to-be-computed witness. After O(|logm|)
stages the witness information is computed for the first half of the pattern
and the algorithm can proceed with the text analysis.

The optimal implementation of the pattern analysis is very similar to
Galil’s [26] original algorithm. FEach iteration of the pattern analysis de-
scribed above has actually two steps: the first step trys to verify a period
length using a naive algorithm which compares long strings; if fails, a witness
is found and it is used in a step which is identical to the actual string analysis
phase.

Suppose the naive algorithm would be applied at stage i just to verify a
period length of a prefix of the pattern of length 2+! instead of the whole
pattern. I a mismatch is found it can be used as a witness as described
before. If no mismatch has been found, continue to a periodic stage : + 1
which will try to verify the same period length of a prefix of double length. At
some point either a mismatch is found or the period length is verified for the
whole string and the pattern analysis is terminated. If a mismatch was found,
it follows from Lemma 2.1 that the first mismatch can be used as a witness
value for all uncomputed witnesses in the first block; and the algorithm can
catch up to stage ¢ + 1 (with the current value of ¢) by performing duels.

Galil’s [26] original algorithm had only one stage which consisted of sim-
ilar two steps; application of a naive algorithm to verify a period length of
a prefix of the pattern of increasing length and elimination of close possible
occurrences which would imply a short period length. The main difference is
that Galil’s algorithm had to compare long strings also in the steps Vishkin’s
algorithm uses the witness information. So n operations are performed at
each round making the algorithm non-optimal. Galil {26] suggests an im-
provement for a finite alphabet which packs O(logm) symbols in a single
integer and thus uses less processors to perform the comparisons, making an
optimal implementation possible in O(logm) time.

12

3 An O(loglogm) time algorithm

The O(loglogm) time algorithm of Breslauer and Galil [14] is similar to
Vishkin’s algorithm from the previous section. The method is based also on
an algorithm for finding the maximum suggested by Valiant [45] for a com-
parison model and implemented by Shiloach and Vishkin [44] on a CRCW-
PRAM.

As before, we have two stages. The first stage, the pattern analysis,
computes the witness information which is used in the text analysis to find
the actual occurrences. Let P = |u| be the period length of the pattern. As
before if the pattern has a period length longer than half its length, we define
P=[2].

Pa.l?tition the text into blocks of size P and consider each one separately.
In each block consider each position as a possible occurrence. Assuming we
had P? processors for each such block a duel can be made between all pairs
of possible occurrences resulting with at most one occurrence in each block."
Since we have only n processors, partition the blocks into groups of size
VP and repeat recursively. The recursion bottoms out with one processor
per block of size 1. When done we are left with one possible occurrence at
most in each group of size v/P, thus v/P possible occurrences all together.
Then in constant time make all duels as described above. We are left with a
single possible occurrence (or none) in each block of size P and proceed with
counting the consecutive occurrences of the period described in section 2.

To make the text analysis run in optimal O(loglog m) time we start with
an O(loglogP) time sequential algonthm which runs in paralle]l in all sub-
blocks of length loglogP leaving only _W possible occurrences in each
block by performing duels. Then prooeed Wwith the procedure above starting
with the reduced number of possible occurrences.

The pattern analysis can be done also in optimal O(loglogm) time. We
describe here only an m processor algorithm. It works in stages and it takes
at most loglogm stages. Let k; = m1~2™", kg = 1. At the end of stage i, we
have at most one yet-to-be-computed witness in each block of size k;. The
only yet-to-be-computed index in the first block is 1.

1. At the beginning of stage ¢ we have at most k;/k;_; yet-to-be-computed
witnesses in the first k;-block. Try to compute them using the naive al-
gorithm on PATTERN(1---2k;) only. This takes constant time using

13

2k,--,f:'; = 2m processors.

2. If we succeed in producing witnesses for all the indices in the first block
(all but the first for which there is no witness), compute witnesses in
each following block of the same size using the optimal duel algorithm
described above for the text processing. This takes O(loglogm) time
only for the first stage. In the following stages, we will have at most
v/m indices for which we have no witness, and duels can be done in
0O(1) time.

3. If we fail to produce a witness for some 2 < j < k;, it follows that
PATTERN(1---2k;) is periodic with period length p, where p = 5 —
1 and j is the smallest index of an yet-to-be-computed witness. By
Lemma 2.} all yet-to-be-computed indices within the first block are of
the form kp 4+ 1. Check periodicity with period length p to the end of
the pattern. If p turns out to be the length of the period of the pattern,
the pattern analysis is done and we can proceed with the text analysis.
Otherwise, the smallest witness found is good also for all the indices
of the form kp + 1 which are in the first k;~block, and we can proceed
with the duels as in 2.

If p processors are available and m < p < m?, this algorithm can be
modified to work in O(logloga m) time. If the number of processors is
smaller than Toglosm the a.lgorit"ﬁm can be slowed down to work in 2 time.
When the number of processors is larger than n? the naive algorithm solves
the problem in constant time. All these bounds can be summerized in one
expression: O([2] + loglog,;/m) 2P).

4 A lower bound

In this section we describe the lower bound of Breslauer and Galil [15] for a
model which is similar to Valiant’s parallel comparison tree model {45]. We
assume the only access the algorithm has to the input strings is by compar-
isons which check whether two symbols are equal or not. The algorithm is
allowed m comparisons in each round, after which it can proceed to the ne:xt
round or terminate with the answer. We give a lower bound on the minimum
number of rounds necessary in the worst case. '

14

Consider a CRCW-PRAM that solves the string matching problem over a
general alphabet. In this case the PRAM can perform comparisons, but not
computation, with its input symbols. Thus, its execution can be partitioned
into comparison rounds followed by computation rounds. Therefore, a lower
bound for the number of rounds in the parallel comparison model immedi-
ately translates into a lower bound for the time of the CRCW-PRAM. If the
pattern is given in advance and any preprocessing is free, then this lower
bound does not hold, as Vishkin’s O(log® m) algorithm shows. The lower
bound also does not hold for CRCW-PRAM over a fixed alphabet strings.
Similarly, finding the maximum in the parallel decision tree model has ex-
actly the same lower bound [45], but for small integers the maximum can be
found in constant time on a CRCW-PRAM [25].

We start by proving a lower bound for a related problem of finding the
period length of a string. Given a string S[1..m] we prove that Q(log log m)
rounds are necessary for determining whether it has a period length smaller
than 2. Later we show how this lower bound translates into a lower bound-
for string matching.

We show a strategy for an adversary to answer 1 log log m rounds of com-
parisons after which it still has the choice of fixing the input string S in two
ways: in one the resulting string has a period of length smaller than 2 and in
the other it does not have any such period. This implies that any algorithm
which terminates in less rounds can be fooled.

We say that an integer k is a possible period length if we can fix S
consistently with answers to previous comparisons in such a way that k is a
period length of S. For such k to be a period length we need each residue
class modulo & to be fixed to the same symbol, thus if I = j modk then
S{) = Sp).

At the beginning of round ¢ the adversary will maintain an integer k;
which is a possible period length. The adversary answers the comparisons
of round ¢ in such a way that some k;;; is a possible period length and few
symbols of S are fixed. Let K; = m!~4"“"". The adversary will maintain
the following invariants which hold at the beginning of round number i:

1. k; satisfies %K,‘ <k <K,

2. If S{l] was fixed then for every j =1 mod k; S[j] was fixed to the same
symbol.

15

3. If a comparison was answered as equal then both symbols compared
were fixed to the same value.

4. If a comparison was answered as unequal, then

a. it was between different residues modulo ;;
b. if the symbols were fixed then they were fixed to different values.

5. The number of fixed symbols f; satisfies f; < K;.

Note that invariants 3 and 4 imply consistency of the answers given so far.
Invariants 2, 3 and 4 imply that k; is a possible period length: if we fix all
symbols in each unfixed residue class modulo k; to a new symbol, a different
symbol for different residue classes, we obtain a string consistent with the
answers given so far that has a period length ;.

We start at round number 1 with k; = K; = 1. It is easy to see that the
invariants hold initially. We show how to answer the comparisons of round i
and how to choose k;;; so that the invariants still hold. All multiples of k;
in the range -;- i+1 - -- Kiy1 are candidates for the new k;;;. A comparison
S[1] = S[j] must be answered as equal if | = j mod k;y;. We say that k4,
forces this comparison.

Theorem 4.1 (see [43]): For large enough n, the number of primes between
1 and n denoted by w(n) satisfies, & < w(n) < 32,
Corollary: The number of primes between in and n is greater than %To"i";

Lemma 4.2: If p,q > \/kE‘ and are relatively prime, then a comparison
S[l] = S|k] is forced by at most one of pk; and gk;.

Proof: Assumel = k modpk;, | = k mod gk; for 1 < [,k < m. Then also
l =k modpgk;. But pgk; > m and 1 < I,k < m which implies [= &, a
contradiction. O

Lemma 4.3: The number of candidates for k;4; which are prime multiples
of k; and satisfy ;Kiy1 < kiy1 < Kiyy is greater than —Kiti_ Fach such
candidate satisfies the condition of Lemma 4.2.

Proof: These candidates are of the form pk; for prime p. The number of
such prime values of p can be estimated using the corollary to Lemma 4.1.
It is at least

4K;logm

1 Kin > Kis
4ki1°8—;*—ii‘.l ~ 4K;logm’

Each one of these candidates also satisfies the condition of Lemma 4.2
since k; < K;, pk; > =itL K‘ and

S1Kh, 1 m™ ml o
L = - - —_— > —., O
P2 % 4K, k4mi D L&©T &

Lemma 4.4: There exists a candidate for k;4; in the range % i+1 .- Kin1
that forces at most ﬂlx(lm comparisons.

Proof: By Lemma 4.3 there are at least il — such candidates which are
prime multiples of k; and satisfy the condition of Lemma 4.2. By Lemma 4.2,
each of the m comparisons is forced by at most one of them. So the total
number of comparisons forced by all these candidates is at most m. Thus,
there is a candidate that forces at most 1”%&?’—"- comparisons. O

Lemma 4.5: For m large enough and i < lloglogm, 1 + m*4™"16logm <
m34~,

Proof: For m large enough,

loglog (1 + 16log m) < %log logm=(1- -i-) loglogm

log (1 + 16log m) < 4~ tlesloemige

-* loglogm < 4=

1+ 16logm < m <m'7,

from which the lemma follows. O

T.emma 4.6: Assume the invariants hold at the beginning of round ¢ and
the adversary chooses k;;; to be a candidate which forces at most %:ﬁ‘ﬂ
comparisons. Then the adversary can answer the comparisons in round : so
that the invariants also hold at the beginning of round : + 1.

Proof: By Lemma 4.4 such k;,, exists. For each comparison that is forced by
k:4+1 and is of the form S[I] = S[j] where | = j mod k;4, the adversary fixes
the residue class modulo k;4; to the same new symbol (a different symbol

17

for different residue classes). The adversary answers comparisons between
fixed symbols based on the value they are fixed to. All other comparisons
involve two positions in different residue classes modulo k4, (and at least
one unfixed symbol) and are always answered as unequal.

Since k;4; is a multiple of k;, the residue classes modulo k; split; each
class splits into —;*— residue classes modulo k;,;. Note that if two indices are
in different residue classes modulo k;, then they are also in different residue
classes modulo k;4;; if two indices are in the same residue class modulo k4,
then they are also in the same residue class modulo k;.

We show that the invariants still hold.

1.
2.

The candidate we chose for k;;1 was in the required range.

Residue classes which were fixed before split into several residue classes,
all are fixed. Any symbol fixed at this round causes its entire residue
class modulo k;;; to be fixed to the same symbol.

Equal answers of previous rounds are not affected since the symbols
involved were fixed to the same value by the invariants held before.
Equal answers of this round are either between sy.nbols which were
fixed before to the same value or are within the same residue class
modulo k;4; and the entire residue class is fixed to the same value.

a. Unequal answers of previous rounds are between different residue
classes modulo k;4, since residue classes modulo k; split. Unequal
answers of this round are between different residue classes because
comparisons within the same residue class modulo k;4; are always
answered as equal.

b. Unequal answers which involve symbols which were fixed before this
round are consistent because fixed values dictate the answers to
the comparisons. Unequal answers which involve symbols that are
fixed at the .nic of this round and -t least one was fixed at this
round are consistent since a new symbol is used for each residue
class fixed.

. We prove inductively that f;11 < K;,;. Wefix at most -‘ﬂ?'ﬁ‘— residue

classes modulo k;4;. There are k;,; such classes and each class has at

18

most [g2-] < 22 elements. By Lemma 4.5 and simple algebra the

number of fixed :i:ements satisfies:

2m 4mK;logm

i < fit
fin f b K
2
< K [1 + (l) lGlogm]
Kina
< m*(1 4+ m** 16 logm)
< m™7 =K. O

Theorem 4.7: Any comparison-based parallel algorithm for finding the pe-
riod length of a string S[1..m] using m comparisons in each round requires
% loglog m rounds. .
Proof: Fix an algorithm which finds the period of S and let the adver-
sary described above answer the comparisons. After i = 1loglogm rounds

firt, ki1 < mi-adistsm __ m < 2. The adversary can still fix S to

logm
have a period length k;,, by fixing each remaining residue class modulo k4,
to the same symbol, different symbol for each class. Alternatively, the adver-
sary can fix all unfixed symbols to different symbols. Note that this choice is
consistent with all the the comparisons answered so far by invariants 3 and
4, and the string does not have any period length smaller than 2. Conse-
quently, any algorithm which terminates in less than 1loglogm rounds can

be fooled. O

Theorem 4.8: The lower bound holds also for any comparison-based string
matching algorithm when n = O(m).

Proof: Fix a string matching algorithm. We present t~ the algorithm a
pattern P[l..m] which is S[1..m] and a text T'[1..2m — 1] which is S[2..2m],
where S is a string of length 2m generated by the adversary in the way
described above (We use the same adversary that we used in the previous
proof; the adversary sees all comparisons as comparisons between symbols
in S.). After 1loglog2m rounds the adversary still has the choice of fixing
S to have a period length smaller than m, in which case we will have an
occurrence of P in T, or to fix all unfixed symbols to completely different

19

characters, what implies that there would be no such occurrence. Thus, the
lower bound holds also for any such string matching algorithm. O

This lower bound actually holds even if the algorithm is allowed to per-
form order comparison which can result in a less than, equal or greater than
answers as shown in Breslauer and Galil’s paper [15]. When the number
of comparisons in each round is p and n = O(m), the bound becomes
Q2] + loglogy4,/m} 2P), matching the upper bound.

5 A faster algorithm

The fast string matching algorithm of Vishkin [47) has two stages. The
pattern analysis stage is slow and takes optimal O(E%f:?"‘;) time while the
text analysis is very fast and works in optimal O(log® m) time. An alternative
randomized implementation of the pattern analysis that works in optimal
O(log m) time with very high probability will not be covered in this paper. -

As we have seen before, we can assume without loss of generality that
the pattern is shorter than twice its period length. Thus witnesses can be
computed for all indices which are smaller than Z.
Definition: A deterministic sample DS = [ds(1),ds(2),- - -,ds(l)] is a set of
positions of the pattern string such that if the pattern is aligned at position
t of the text and the symbols at positions ds(1)---ds(!) of the pattern are
verified, that is PATTERN|[ds(j)] = TEXT[i + ds(j) — 1] for1 < j <,
then i is the only possible occurrence of the pattern in an interval of length
2 around :.

Deterministic samples are useful since one can always find a small one.

Lemma 5.1: For any pattern of length m, a deterministic sample of size
logm — 1 exists.

Proof: We show how to find a deterministic sample of length logm — 1. If
this sample is verified for position i of the text then i is the only possible
occurrence in an interval of length 2 around :.

Consider 2 copies of the pattern placed under each other, each shifted
ahead by one position with respect to the previous one. Thus copy number
k is aligned at position k of copy number one. Call the symbols of all copies
aligned over position number i of the first copy column i (see figure 5.1).
Since we assume that the pattern is shorter than twice its period length and

20

there are 2 copies, for any two copies there is a witness to their mismatch.

1 2 3 4 8§ 6 i

Figure 5.1. Aligned copies of the pattern and a column i.

Take the first and last copies and a witness to their mismatch. The
column of the mismatch has at least two different symbols and thus one of
the symbols in that column, in either the first or the last copy, appears in
the column in at most half of the copies. Keep only the copies which have
the same symbol in that column to get a set of at most half the number of
original copies, which all have the same symbol at the witness column. This
procedure can be repeated at most logm — 1 times until there is a single
copy left, say copy number k. Note that all columns chosen hit copy number
k. The deterministic sample is the indices in copy number k of the columns
considered. There are at most logm — 1 such columns. If this sample is
verified for position ¢ of a text string no other occurrence at positions i —k+1
to 1 — k4 % is possible. O

One can find such a deterministic sample in parallel by the constructive
proof of Lemma 5.1. Assume the witness information is produced by either
Vishkin’s [46] or Breslaur and Galil’s algorithm [14] (It does not matter
which algorithm since the time bound is dominated by the following steps.).
There are O(logm) steps in the construction, each step counts how many
symbols are equal to the witness symbol in the first and last copies, and can
be implemented using Theorem 2.1 in optimal O(log m) time, or even faster
by an algorithm of Cole and Vishkin [19] for prefix sums of small integers
which works in optimal O(Z%E2-) time.

og logm
Since the sums are taken at each round only for copies which are left, the
total amount of operations performed at each round is half the number of
operations of the previous round and sums up over all rounds to be linear. By

Brent’s Theorem the total time required for the pattern analysis is O(:‘ o"'"n

21

with optimal number of processors.

One can use the deterministic sample to find all occurrences of the pattern
in a text string in constant time and O(n log m) processors: for each position
verify the deterministic sample for that position resulting in a few possible
occurrences which can be verified in constant time using a linear number of
processors.

We now show how to use the data structure constructed in the pattern
analysis phase to search for all occurrences of the pattern starting in any
position of a block of size m/2 of the text. We describe only an O(log® m)
version using m processors. An optimal implementation can be obtained
using standard techniques.

Assume that the output of the pattern analysis phase is a sequence of
compact arrays Ag, Ay, - -, A; where Ao = {—k+1,---,% — k} is the set of
all copies of the pattern considered at the start of the construction of the
deterministic sample (relative to k, the copy that survived) and A; C Ay is
the set of all copies remaining at the end of step t. These compact arrays"
can be generated in the same bounds of the pattern analysis described above
and are used to efficiently assign processors to their tasks.

Initially all positions in the block are candidates for a potential occurrence
and after each stage only part of the candidates will survive.

The algorithm starts with verifying ds(1) for each candidate. This takes
constant time using m processors. Call the candidates for which there is a
match a matching candidate. Let ! and r be the index of the leftmost and
rightmost matching candidate respecively. Consider A, as a template around
[and around r of all possible occurrences which have the same symbol in the
column under ds(1) relative to ! or r. Note that since all other positions,
even matching candidates (for which ds(1) was just verified) cannot be real
occurrences since they will disagree with the verified ds(1) for position ! or r.
(The two templates cover the 2 text positions under consideration, because
there are no occurrences before ! or after r and I+ 2 —k > r— k+1.) Thus,
the candidates that survive for the next stage are those among the matching
candidates aligned with a position in A, relative to [or r.

We can continue in this manner. In stage ¢ there will be a set of can-
didates. The leftmost is [and the rightmost r and the set of candidates is
aligned with the subset of A; relative to ! or r for which Ds(1),...,Ds(z)
have been verified. (We described stage 0.) However this will take logm

22

stages. Note that in the second stage we have at most £+ candidates. So
we can achieve double progress with the same processors: In stage 1 we can
verify ds(2) and ds(3).

At the start of a general stage, assume the leftmost and rightmost candi-
dates are ! and r and the candidates are positions aligned with elements of
A, (relative to ! or r) for which Ds(1),...,Ds(s) have been verified. Since
|As| < 3%, the m processors now verify Ds(s +1),...,ds(s +2°) for all the
candidates. For the purpose of efficient processor assignment they will be
assigned to verify 2? positions for all the elements in A,. Those assigned to a
non candidate simply do nothing. As above, we define matching candidates
as the candidates for which all positions were verified as matches, ! and r
as the leftmost and rightmost matching candidates and the candidates sur-
viving for the next stage are the matching candidates that are aligned with
A, ;2. (relative to [or r). Since the new value of s is larger than 2, we have
at most O(log™ m) stages, each of which takes constant time. The number of
Processor is m. :

This exponential acceleration phenomenon was called the accelerating cas-
cade design principle by Cole and Vishkin [18] where by carefully choosing
the parameters they were able to get an optimal O(log™ m) time parallel al-
gorithms for another problem. For the complete description of the algorithm
see Vishkin’s paper [47].

6 Open questions

e String matching over a fixed alphabet. The lower bound of Section 4
assumes the input strings are drawn from a general alphabet and the
only access to them is by comparisons. The lower and upper bounds
for the string matching problem over a general alphabet are identical
to those for comparison based maximum finding algorithm obtained
by Valiant [45]. A constant time algorithm can find the maximum of
integers in a restricted range [25] which suggests the possibility of a
faster string matching algorithm.

¢ Faster randomized algorithm. The similarity to the maximum finding
algorithm and the existence of a constant expected time randomized al-
gorithm for that problem suggests the possibility of a faster randomized

23

7

string matching algorithm.

String matching with long text strings. If the text string is much longer
than the pattern, the lower bound of Section 4 does not apply. Indeed,
on a comparison model where all computation is free one can do the
preprocessing for Vishkin’s fast algorithm in constant time using m?
processors. If n = m? the n processors are available to preprocess the
short pattern. However, it is not known if the preprocessing can be
performed on a CRCW-PRAM, or how is can be done faster with less
then m? processors on a comparison model.

String matching with preprocessing. What are the exact bounds if
preprocessing is free like in Vishkin’s fast algorithms. A constant time
optimal algorithm is still possible.

String matching on CREW and EREW-PRAM. The fastest optimal
CREW-PRAM deterministic algorithm is obtained by slowing down-
the CRCW-PRAM algorithm to O(log mloglog m) time. What is the

exact bound on these models.

A cknowledgements

We would like to thank Terry Boult and Thanasis Tsantilas for valuable
comments and suggestions for this paper.

References

[1] Aho, A. (1990), Algorithms for finding patterns in strings, Handbook
of theoretical computer science, 257-300.

[2] Aho, A. and Corasik, M. J. (1975), Efficient string matching: an
aid to bibliographic search, Comm. ACM 18:6, 333-340.

[3] Apostolico, A. (1989), Optimal parallel detection of squares in
strings; Part I: Testing square freedom, CSD-TR-982, purdue.

[4] Apostolico, A. (1990), Optimal parallel detection of squares in
strings; Part II: Detecting all squares, CSD-TR-1012, purdue.

24

[5]

[6]

[7]

(8]

[9]

[10]

[11]

[12]

[13]

Apostolico, A. and Giancarlo, R. (1986), The Boyer-Moore-Galil
string searching strategies revisited, SIAM J. Comput. 15:1, 98-
105.

Apostolico, A., Iliopoulos, C., Landau, G. M., Schieber, B. and
Vishkin, U. (1988), Parallel construction of a suffix tree with appli-
cations, Algorithmica 3, 347-365.

Beame, P., and Hastad, J. (1987), Optimal Bound for Decision
Problems on the CRCW PRAM, Proc. 19th ACM Symp. on Theory
of Computing, 83-93.

Berkman, O., Breslauer, D., Galil, Z. Schieber, B., and Vishkin, U.
(1989), Highly parallelizeable problems, Proc. 21st ACM Symp. on
Theory of Computing, 309-319.

Berkman, O., Schieber, B., and Vishkin, U. (1988), Some doubly
logarithmic optimal parallel algorithms based on finding nearest
smallers, manuscript.

Borodin, A. B., Fischer, M. J., Kirkpatrick, D. G., Lynch, N.
A. and Tompa, M. (1979), A time-space tradeoff for sorting on
non-oblivious machines, Proc. 20th IEEE Symp. on Foundations of
Computer Science, 294-301.

Borodin, A., and Hopcroft, J. E. (1985), Routing, merging, and
sorting on parallel models of comparison, J. of Comp. and System
Sci. 30, 130-145.

Boyer, R. S., and Moore, J. S. (1977), A fast string searching algo-
rithm, Comm. ACM 20, 762-772.

Brent, R. P. (1974), The parallel evaluation of general arithmetic
expressions, J. ACM 21, 201-206.

(14] Breslauer, D. and Galil, Z. (1990), An optimal O(log log n) parallel

string matching algorithm, SIAM J. Comput. 19:6, 1051-1058.

[15] Breslauer, D. and Galil, Z. (1991), A lower bound for parallel string

matching, Proc. 29nd ACM Symp. on Theory of Computation, to
appear.

25

[16] Colussi, L., Galil, Z. and Giancarlo, R. (1990), On the exact com-
plexity of string matching, Proc. 81st IEEE Symp. on Foundations
of Computer Science, 135-143.

[17] Cole, R. (1991), Tight bounds on the complexity of the Boyer-Moore
string matching algorithm, Proc. 2nd annual ACM-SIAM symp. on
discrete algorithms, 224-233.

[18] Cole, R. and Vishkin, U. (1986), Deterministic coin tossing and
accelerating cascades: micro and macro techniques for designing
parallel algorithms, Proc. 18th ACM Symp. on Theory of Comput-
ing, 206-219.

[19] Cole, R. and Vishkin, U. (1989), Faster optimal prefix sums and
list ranking, Inform. and Comput. 81, 334-352.

[20] Cook, S. A., Dwork, C. and Reischuk, R. (1986), Upper and lower.
time bounds for parallel random access machines without simulta-
neous writes, SIAM J. Comput. 15:1, 87-97.

[21}] Crochemore, M. (1989), String-Matching and Periods, In Bulletin
of EATCS.

[22] Crochemore, M. and Perrin, D. (1989), Two way pattern matching,
JACM, to appear.

[23] Crochemore, M. and Rytter, W. (1990), Usefulness of the Karp-
Miller-Rosenberg algorithm in parallel computations on strings and
arrays, manuscript.

(24] Eppstein, D. and Galil, Z. (1988), Parallel algorithmic techniques
for combinatorial computation, In Ann. Rev. Comput. Sci. 3, 233-
283.

[25] Fich, F. E., Ragde, R. L., and Wigderson, A. (1984), Relations
between concurrent-write models of parallel computation, Proc. 8rd
ACM Symp. on Principles of Distributed Computing, 179-189.

[26] Galil, Z. (1985), Optimal parallel algorithms for string matching,
Information and Control 67, 144-157.

26

(27] Galil, Z. and Giancarlo, R. (1988), Data structures and algorithms
for approximate string matching, Journal of Complezity 4, 33-72.

[28] Galil, Z. and Seiferas, J. (1980), Saving space in fast string-
matching, SIAM J. Comput. 2, 417-438.

[29] Galil, Z. and Seiferas, J. (1983), Time-space-optimal string match-
ing, J. Comput. Syst. Sci. 26, 280-294.

[30] Geréb-Graus, M. and Li, M. (1990), Three one-way heads cannot
do string matching, manuscript.

[31] Karp, R. M., Miller, R. E. and Rosenberg, A. L. (1972), Rapid
identification of repeated patterns in strings, trees and arrays, Pro-
ceedings of the 4th ACM Symposium on Theory of Computation,
125-136.

[32] Karp, R. M. and Rabin, M. O. (1987), Efficient randomized pattern.
matching algorithms, IBM J. Res. Develop. 81:2, 249-260.

[33) Karp, R. M. and Ramachandran, V. (1990), A survey of parallel
algorithms for shared-memory machines, Handbook of theoretical
computer science.

[34) Kedem, Z., Landau, G. and Palem, K. (1988), Optimal parallel
suffix-prefix matching algorithm and applications. manuscript.

[35] Knuth, D. E., Morris, J. H. and Pratt, V. R. (1977), Fast pattern
matching in strings, SIAM J. Comput. 6, 322-350.

[36] Kruskal, C. P. (1983), Searching, merging, and sorting in parallel
computation, IEEE trans. on computers 32, 942-946.

[37] Lander, R. E. and Fischer, M. J. (1980), Parallel Prefix Computa-
tion, J. ACM 274, 831-838.

[38] Li, M. (1984), Lower bounds on string-matching, TR 84-636 De-
partment of Computer Science, Cornell University.

27

[39] Li, M. and Yesha, Y. (1986), String-matching cannot be done by a
two-head one-way deterministic finite automaton, Information Pro-
cessing Letters 22, 231-235.

[40] Lothaire, M. (1983), Combinatorics on Words, Encyclopedia of
mathematics and its applications, Vol. 17, Addison Wesley.

(41] Lyndon, R. C. and Schutzenberger, M. P. (1962), The equation
aM = bVcP in a free group, Michigan Math. J. 9, 289-298.

[42] McCreight, E. M. (1976), A space-economical suffix tree construc-
tion algorithm, Journal of ACM, 383:8, 262-272.

[43] Rosser, J. B. and Schoenfeld, L. (1962), Approximate formulas for
some functions of prime numbers, lllinois Journal of Mathematics,
6:64-94.

(44] Shiloach, Y. and Vishkin, U. (1981), Finding the maximum, merg- '

ing and sorting in a parallel computation model, J. Algorithms 2,
88-102.

[45] Valiant, L. G. (1975), Parallelism in comparison models, SIAM J.
Comput. 4, 348-355.

[46] Vishkin, U. (1985), Optimal parallel pattern matching in strings,
Information and Control 67, 91-113.

[47] Vishkin, U. (1990), Deterministic sampling - A new technique for
fast pattern matching, SIAM J. Comput. 20:1, 22-40.

[48] Weiner, P. (1973), Linear pattern matching algorithms, Proc. 1{th
IEEFE symp. on swilching and automata theory, 1-11.

28

