AD-A274 390
AFITGCHENG3D.7 PO [

PARTITIONING STRUCTURAL VHDL CIRCUITS
FOR PARALLEL EXECUTION

ON HYPERCUBES - DT{C

ELECTE
DEC27 1993

s A

Presented to the Faculty of the Graduate School of Engineering
of the Air Force Institute of Technology
Air University
In Partial Fulfillment of the
Requirements for the Degree of

Master of Science in Computer Engineering

Kevin L. Kapp, BS.EE.
Capt, USAF

Dec, 1993

Approved for public release; distribution unlimited

{,93-31033
> NENINERI

9 12 22 146

AFTT/GCE/ENG/3D-07

DTIC QUALITY INSPECTED 8

PARTITIONING STRUCTURAL VHDL CIRCUITS

FOR PARALLEL EXECUTION
ON HYPERCUB<S

THESIS

Kevin L. Kapp, B.S.E.E.
Capt, USAF

AFIT/GCE/ENG/93D-07

NTIS Craz,
DTic 12,
U.:annc;:.t:€~d

Justificouon

By

Avaijabi s o
—-—.—.._‘_______; .
Avel o G r
Di R
ist Specal

A-i]

Accesion For '"\) o

P————— e "'_ —_——

Distribun’on'/m"m-
. '

et . b

t

|
:

Approved for public release; distribution unlimited

Acknowledgments

I would like to offer my sincere thanks and appreciation to my thesis committee for

their guidance and support during this research effort. Although I was given considerable

independence to pursue my own ideas, it was only with their guidance that this was

possible.

Dr. Hartrum expended considerable effort teaching the “ins and outs” of parallel
discrete event simulation and synchronization protocols. He has tremendous
patience, always willing to repeat a difficult concept until it sinks in. He
understands the importance of building a good foundation upon which more
advanced research can be built.

Maj Christensen’s enthusiastic support and assistance was invaluable during the
early stages of my research. He built the original graph partitioning tool to
perform random partitions. He expended considerable effort debugging the
associative memory array VHDL source code to ensure it was compatible with
VSIM. He made several improvements and corrections to VSIM and its associated
utility programs.

LtCol Wailes gave me the freedom to define my own partitioning approach and
research methodology. By keeping his eye on the “big picture,” he made sure I
stayed focused on my objectives and did not become mired in side issues. He kept

me on track and helped me to keep my successes and failures in perspective.

Perhaps the most important thank you goes to my wife, Diane. Without her

continuous support, patience, and understanding, this thesis would not have been

completed. She gave me the time I needed to meet the demands of graduate-level

academics, but made sure I also took time out for my family and myself. She was always
there when I needed her.

Finally, I would like to thank my son Joseph A. Kapp. Although only 1 1/2, he has
forced me to put my thesis, my career, and my life in proper perspective. Watching him
grow up this past eighteen months has changed my life in innumerable ways.

Kevin L. Kapp

iii

Table of Contents

Page

ACKNOWIEdgmeENtSiitiiiiiiiiiienirerenneranenaeaaeannanns ii
Tableof Contentsco . iiiiiiriiiiiiiiiiiiiiienieienenanss iv
Listof Figuresciiiiiiiiiiiii ittt iiiaiaananannanns X
Listof Tablesciiimiiiiiiiiiiiiiiiiiiiiiititriiinenannns xiv
oo P xvi
L Introductionccoiiiiiiiiiiiiiiiinieineernnencasnennannns 1
1.1 Backgroundcc.ciiiiiiiiiiiiiiiiiiieaaaaen 1

1.2 ProblemStatement iiiiiiiiiiiiiiia 3

1.3 ResearchObjectivescooiiiiiiiiiiniiinneenns. 3

14 Assumptionscciiiiiiiaiiiatiinctotaaanonn 4

s T 5

16 Limitationsccciiiuiiiiiirenennnrcececnnns 6

1.7 ThesisOVerviewc.oiiuiiininiiiiiiiineiencennns 6

1.8 Summary ittt iiiiirii e 6

IL Backgroundciiiiiiiiieiiniiereneenanenannans 8
21 OVeIVIEWiiiiiiiiit ittt aetaitraeetaaanena 8

2.2 The VHDL MappingProblem 8

22.1 The Parallel Programming Mapping Problem. 8

222 Partitioning VSIM.cciiiiiiiiiiiinnn. 9

2.3 Characteristics of an Ideal Partitioning Strategy 10

2.4 General Approaches to the Mapping Problem 12

2.4.1 RandomPartitioning.cciiiiiinan. 14

242 SimpleDataPartitioning.cciiinnnn. 14

243 General Graph Contraction & Layout Algorithm. 15

iv

Page

244 Stip Assignment Algorithm. 17
245 Two-Dimensional Mapping Algorithm. 19
2.4.6 Algorithm M, An Optimal Approach. 22
2.4.7 Algorithm H, A Heuristic Approximation of AlgorithmM. . 24
2.4.8 Depth-First Breadth-Next Algorithm. 24
2.49 Kemighan-Lin Algorithm. 26
24.10 Simulated Annealing. i, 27
24.11 MeanFiceldAnnealing. 27

25 SUMMAIYiiuniiinnnnnnnneaeronnaccassanasoaanns 30
III. ProblemAnalysisccciiiiiiiiiinnrinrneeancnstaacesannes 31
31 Overview ittt iiiia e 31
3.2 Implementationof VSIMcciiiiiiiiitn. 31
3.2.1 Sequential Simulation., 33
32.1.1 DataStructures.ccoiiiunneann. 33

3.2.12 Sequential SimulationCycle. 35

3.2.1.3 Handling BehaviorDelays. 36

322 SPECTRUMTestbed.cooiivvviiiinnnnn, 38
3.2.3 Parallel VSIM Implementation. 40
3.2.3.1 Parallel SimulationCycle. 40

3.2.3.2 Synchronization Protocol. 41

3233 NullMessages.coovivieinnannnnnn. 43

3.24 Code Transformation.c.cvviuiniennnn. 45

3.3 PartitioningRequirementso, 45
33.1 LoadBalancing.c.iiiiiiiiiiiiinnn, 45
3.3.2 Minimizing Communications Costs. 48

3.3.2.1 Modeling Inter-Process Communications. 49

3.3.2.2 Distribution of Communications. 51

3.3.2.3 Effectof Lookahead. 53

3324 NullMessages.ccvovvniienennnnn. 54

3.3.3 Balancing Load Imbalance and Communications Costs. ... 56
3.3.4 Measuring the CostofaPartition. 57
3.3.4.1 ObjectiveCost Function. 57

3.3.4.2 Relationship to Simulation Performance. 58

3.4 Parttioning Approachiiiiiiiiie., 59
341 StrongComponents.civveniiennnnnnns 59
342 InitialPartition.cco0iiiiiiiiiinnnnn. 60
343 Border-Amnealing.cciiiiiiiiia... 61
3.4.3.1 Selecting Moves for Consideration. 62

3.432 SolutionConvergence.ccenuuun. 65

3.44 Topological Variation.ccovvvvunnn. 66

35 Summary ... i ie it ii e 68
IV. Implementationc.ciuiiiiiireiieeuienranrennscnaneennns 69
41 OVEIVIEWiiiiiiiiiiitiiiiiiniineeneeconnnennnns 69
4.2 VSIM Graph-Partitioning Tool (GP-Tool) 69
42.1 Implementation Environment. 69
422 InputandOutputFiles. 70
423 DataStUCIUTES.ccovverununnneecerencananns 75
424 MenuStucCture.ciiiiiinnnnncennnncenns 79
425 StrongComponentSearch. 80
42.6 Simple Depth-First (SDF) Partition. 82

Page

4.2.7 Simple Breadth-First (SBF) Partition. 83
4.2.8 AB Border Anncaling Algorithm. 84

43 TestCasesc.ccoeemeetennntinieenaeensanaannonnnns 89
43.1 Wallace-Tree Multplier. 89
432 Associative MEmOTy Ammay.ccceeeenennenn 89

V. MethodologyandResultscooiiiiiiiiiiiiiiiiiiinann.. 92
5.1 Overview ...ttt ittt 92
52 SpeedupResultsot 93
5.2.1 Wallace-Tree Multiplier. 93
522 Associative Memory Ammay.ccchiiiennnnn 100

5.3 SpeedupPredictionl 106
5.3.1 Wallace-Tree Multiplier.cc..... 108
53.2 Associative Memory Armay.cciiiennnnnn 108

54 Message TrafficAnalysiscoeiiieivnnn... 109
54.1 Wallace-Tree Multiplier. 109
5.4.2 Associative MEMOry AImay.ccceeeennnn. 116
543 Increasinglookahead., 121
54.3.1 Calculating Lookahead. 122

54.3.2 Lookahead Anomalies. 124

5.5 AB Border Annealing Algorithm 125
5.6 Increasing the Numberof Processors 126
VI. Conclusions and Recommendationsccciiiiiiian... 131
6.1 ResearchSummaryciiiiiiienennnnnnnnn. 131
6.2 Conclusionsceiiiiiiiiiiiieiiiiiiiaianann. 132
6.3 Recommendations for FurtherResearch 134

vii

Page

6.3.1 Gircuit Partitioning Recommendations. 134

| 6.3.2 Parallel Simulation Recommendations. 135
Appendix A. Acronyms and Definitions 0.l 137
? A.l Glossaryof ACronymsc...ciiieinennncnncaanns 137
| A2 DefiltionSovveenennreeeeeraaaaiaeaaeeaeaannns 137
Appendix B. AFIT Parallel VHDL Simulation User’sGuide 139

| Bl Overviewcoiiiiiiiiiiniiinninaannnnnneeennns 139
B.1.1 RequiredFiles.l 139
' Bl2 Process.c.oiiiiiiianiiniiiiieietitnniininnn 140
| B.2 Generating the VHDL Source Filesc.covevunenn.n. 141
' B.2.1 Generating the VHDL Source Code. 141
B.2.2 Establishing an Intermetrics User Library. 141
B.2.3 Compiling, Model Generating, and Building. 141

B.24 Code Transformation.cccovvivennnennn. 142

B.2.5 Transforming Large CircuitFiles. 143

B.3 Running Sequential VSIM.o, 143

B4 RunningParallel VSIM.cciiiiiiiinnnn. 144

B.4.1 GeneratingthePartition. 144

B.4.2 Execute Parallel Simulation on the Hypercube. 146

B.5 Step-by-StepExample. iiiiiiiiiiiinn 147

B.5.1 Develop VHDL SourceCode.cc.ovvnenn. 147

B.5.2 Compile, Model Generate, and Build. 147

B.5.3 Run Postprocessor to TransformCode. 148

B.5.4 Run Sequential VSIM Simulation. 148

B.5.5 Extract Behavior Dependencies using VMAP. 149

B.5.6 Generate the Circuit Partition for Parallel Execution. 150

B.5.7 Compile and Execute the Parallel Simulation. 150

Appendix C. Graph Partitioning Tool (GP-Tool) 154
C.1 GP-ToolUser'sGuidecoiiiviiieninnnnnnn. 154

CLl Overview.ciiiiiiiiiiiiiiannenenennnnnn. 154

C.1.2 Building the Behavior Inter-Dependency Graph. 154

C.13 MainMenuOptions.c.cciiieneennnnnn. 155

C.1.3.1 Generate Delay and Adjacency Information File. . 155

C.13.2 Generate SGEDataFile. 156

C.1.3.3 Generate Topological SortFile. 157

C.1.3.4 Generate Strong Components File. 157

C.1.3.5 Generate Behavior to LP Mapping Files. 158

C.1.4 MappingMenuOptions.coocveinnnnn... 158

C.14.1 Generate Partitioning Files. 158

C.14.2 Toggle MAPand .ARCS Output. 161

C.1.43 Moadify Cost Function Parameters. 161

C.2 GP-ToolDeveloper’sGuidecc.covvunn.... 163

Appendix D. Simulation PerformanceData 166
Bibliographyl i i e 192
L 194

ix

List of Figures

Figure Page
1. Speedup Curve for Wallace Tree with Random Partitioning 3
2 Iterative PDES Algorithmo iiiiiiiiiiiiiiieannn. 13
3. Contraction within a graph family (3:449) 16
4. Alternative Contraction for Graphof Figure3.a 17
5. Example of the Strip Assignment Method for a Problem-Mesh (22:143) 19
6. Initial Partition of a Two-Dimensional Mapping for a Problem-Mesh 20
7. Two-Dimensional Mapping Partitions after Border-Refinement 21
8. Example Problem Graph for DFBN Partitioning (17:64) 25
9. Example Spin Matrix for N=8andP=4 (5:2296) 29
10. VSIM Parallel Simulation Session (4:21)c..ccvivee.n. 32
11. SPECTRUM Interface fora Single LP (4,12) 33
12. Interrelationship of VHDL Simulation Data Structures (8:3-14) 35
13. The Sequential VHDL Simulation Cycle (8:3-15) 37
14. AND Gate with Inertial Delay (4:29)c.ciiiiiiiiiinnnnnnannn. 38
15. LP Message Receipt (4:35)coiiiiiiiiiiiiiiieiieinnaannns 39
16. The Parallel VHDL Simulation Cycle fora Single LP(4:34) 41
17. The Parallel VHDL Simulation Cycle fora TwoLPs (4:34) 42
18. Hypothetical 2 LP Partition for Edge-Triggered DFlip-Flop 43
19. Load Imbalance Example i il 47
20. Communications Weight MatrixfornLPs 51
21. Communications Distribution Example 52
22. Strong Component Example - Simple Latch Feedback Loop 60
23. Example Behavior Annealing Priorities 63

Figure Page
24. SDF Initial Partition for Edge-Triggered DFlip-Flop 64
25. Topological Layout on Hypercube Connectivity Graph 67
26. GP-Tool Input File for Edge-Triggered DFlip-Flop 70
27. Wallace-Tree SDF Partition Statistics Filefor4 LPs 73
28. Original GP-Tool Graph Data Structuresccovveveeen... 76
29. Modified GP-Tool Graph Data Structuresccoiiiiiinianns 77
30. Process_Node_TypeDataStructureccoiiiiinniinainnnnn. 78
31. GP-ToolMain Menucuuiuiiiienninerennnieeennnnnennnnns 80
32. GP-Tool MappingSub-Menuciiiiiiiiniiiiiiiiiinnn.. 80
33. Example Feedback Loop - Simple Oscillator 81
34. AB Border Annealing AlgorithmCycle oLt 86
35. Associative MEMOTY AITRY ccitieniiiennninsecnneenannnnnns 90
36. Wallace Tree Speedup Results Comparison ccoceiennn. 93
37. Wallace Tree Partition Statistics COmMPArisone.en... 94
38. Wallace Tree Inter-LP Message Traffic Comparison 95
39. Associative Memory Speedup Results Comparison 101
40. Associative Memory Partition Statistics Comparison 102
41. Associative Memory Inter-LP Message Traffic Comparison 103
42. Wallace Tree Speedup Prediction Curves 107
43. Associative Memory Speedup Prediction Curves 109
44. Wallace Tree 4 LP Reals Sent vs. Nulls Sent Message Analysis 111
45. Wallace Tree 8 LP Reals Sent vs. Nulls Sent Message Analysis 112
46. Wallace Tree 8 LP Total Messages Sent vs. Qutput Arcs 113
47. Wallace Tree 8 LP Total Messages Sent vs. LP OutputLines 115
48. Associative Memory 8 LP Reals Sent vs. Nulls Sent Message Analysis 117

xi

Figure

49.
50.
51.
52.
53.
54.
55.
56.
57.
58.
59.
60.
61.
62.
63.
64.
65.
66.
67.
68.
69.
70.
71.
72.
73.

Associative Memory 6 LP Reals Sent vs. Nulls Sent Message Analysis
Associative Memory 6 LP Total Messages Sent vs. Qutput Arcs
Associative Memory 6 LP Total Messages Sent vs. LP OutputLines
Effect of Increased Lookahead on Wallace Tree SBF Partitions
Wallace Tree 8 LP Partition Statistics vs. AB Border Annealing Iterations ..

iPSC/860 Wallace Tree Speedup Results Comparison
iPSC/860 Wallace Tree Partition Statistics Comparison
iPSC/860 Wallace Tree Inter-LP Message Traffic Comparison
Location of Archived VSIM files on AFIT’s iPSC/2 Hypercube
User .cshrc Setup for Running Intermetrics
Setting up User Work Library for Intermetrics
Example VMAPOutputFile i,
Format Specification for lpx.arcsFiles (4:98)
Example Ipx.arcsFilewith3LPs iiiiii...
Example lIpx.map Filewith 3LPsc...cu...
GP-Tool Introductory Screeniiiiiiitinrinrnnenennnnnn.
GP-Tool Input File “et_dffvmap”o a...
GP-ToolMainMenu i ittt iiiannenaaannnn
Example Delay and Adjacency File for Edge-Triggered D Flip-Flop
Example SGE Data File for Edge-Triggered DFlip-Flop
Example Topological Sort File for Edge-Triggered D Flip-Flop
Example Strong Component File for Edge-Triggered D Flip-Flop
GP-Tool Behavior Mapping Sub-Menuo.0...
GP-Tool AB Annealing Parameters Sub-Menu

GP-Tool Cost Function Parameters Sub-Menu ccvuen...

xii

Figure Page

74.
5.
76.
7.
78.
79.
80.
81.
82.
83.
84.
85.
86.
87.
88.
89.
90.

GP-Tool Ada Package DependencyGraph 164
Wallace Tree 6 LP Reals Sent vs. Nulls Sent Message Analysis 176
Wallace Tree 7 LP Reals Sent vs. Nulls Sent Message Analysis 177
Associative Memory 4 LP Reals Sent vs. Nulls Sent Message Analysis 178
Associative Memory 7 LP Reals Sent vs. Nulls Sent Message Analysis 179
Wallace Tree 4 LP Total Messages Sent vs. Qutput Arcs 180
Wallace Tree 6 LP Total Messages Sent vs. Qutput Arcs 181
Wallace Tree 7 LP Total Messages Sent vs. Output Ares 182
Associative Memory 4 LP Total Messages Sent vs. Output Arcs 183
Associative Memory 7 LP Total Messages Sent vs. OQutput Arcs 184
Associative Memory 8 LP Total Messages Sent vs. Output Arcs 185
Wallace Tree 4 LP Total Messages Sent vs. LP OutputLines 186
Wallace Tree 6 LP Total Messages Sent vs. LPOutputLines 187
Wallace Tree 7 LP Total Messages Sent vs. LP OQutput Lines 188
Associative Memory 4 LP Total Messages Sent vs. LP OutputLines 189
Associative Memory 7 LP Total Messages Sent vs. LP OQutput Lines 190
Associative Memory 8 LP Total Messages Sent vs. LP OutputLines 191

List of Tables

Table Page
1. Behavior Priorities for the Partitionof Figure 24 64
2. Predicted vs. Actual Effect of Increased Lookahead 121
3. Wallace Tree 1 LP SimulationResultsc.oooiiiiet, 166
4. Wallace Tree 2 LP Random Partition SimulationResults 167
S. Wallace Tree 4 LP Random Partition SimulationResults 167
6. Wallace Tree 8 LP Random Partition Simulation Results 167
7. Wallace Tree 2 LP SDF Partition SimulationResults 168
8. Wallace Tree 4 LP SDF Partition SimulationResults 168
9. Wallace Tree 8 LP SDF Partition SimulationResults 168
10. Wallace Tree 2 LP SBF Partition SimulationResults 169
11. Wallace Tree 4 LP SBF Partition SimulationResults 169
12. Wallace Tree 8 LP SBF Partition SimulationResults 169
13. Wallace Tree 2 LP AB2 Partition SimulationResults 170
14. Wallace Tree 4 LP AB2 Partition SimulationResults 170
15. Wallace Tree 8 LP AB2 Partition SimulationResults 170
16. Associative Memory 1 LP SimulationResults 171
17. Associative Memory 2 LP Random Partition Simulation Results 172
18. Associative Memory 4 LP Random Partition SimulationResults 172
19. Associative Memory 8 LP Random Partition SimulationResults 172
20. Associative Memory 2 LP SDF Partition SimulationResults 173
21. Associative Memory 4 LP SDF Partition SimulationResults 173
22. Associative Memory 8 LP SDF Partition SimulationResults 173
23. Associative Memory 2 LP SBF Partition Simulation Results 174
24. Associative Memory 4 LP SBF Partition SimulationResults 174

xiv

Table Page

25. Associative Memory 8 LP SBF Partition Simulaton Results 174
26. Associative Memory 2 LP AB1 Partition Simulation Results 175
27. Associative Memory 4 LP AB1 Partition Simulation Results 175
28. Associative Memory 8 LP AB1 Partition Simulation Results............... 175

XV

AFIT/GCE/ENG/3D-07

Distributing simulations among multiple processors is one approach to reducing
VHDL simulation time for large VLSI circuit designs. However, parallel simulation
introduces the problem of how to partition the logic gates and system behaviors among
the available processors in order to obtain maximum speedup. This research investigates
deliberate partitioning algorithms that account for the complex inter-dependency structure
of the circuit behaviors. Once an initial partition has been obtained, a border annealing
algorithm is used to iteratively improve the partition. In addition, methods of measuring
the cost of a partition and relating it to the resulting simulation performance are
investigated. Structural circuits ranging from one thousand to over four thousand
behaviors are simulated. The deliberate partitions consistently provided superior speedup

to a random distribution of the circuit behaviors.

xvi

PARTITIONING STRUCTURAL VHDL CIRCUITS
FOR PARALLEL EXECUTION
ON HYPERCUBES

1. Introduction

1.1 Background

Modern integrated circuit designs are rapidly growing larger and more complex, with
chip transistor counts increasing by approximately 25% per year, doubling every three
years (13:17). In order to reduce chip costs and turnaround times, designers use
sophisticated simulation tools to validate their designs prior to chip fabrication (4:1). The
Department of Defense (DOD) established the Very High Speed Integrated Circuit
(VHSIC) program in 1979 with the primary objective of advancing the state of the art in
the areas of large scale circuit design and manufacturing technology (15:1). As part of
this program, the VHSIC Hardware Description Language (VHDL) program began in
1981 with the goal of developing a standard simulation language for the support of
hardware design (15, 4).

As the size and complexity of circuit designs continue their upward trend, there is a
growing need to increase the speed of the VHDL simulations. Slow sequential
simulations res.'it in a longer iterativ : design process and increase the cost of the final
product. In an effort to achieve the desired performance improvement, the Advanced
Research Projects Agency (Ai{PA) has sponsored the QUEST project with the objective
of obtaining a thousand-fold speedup in large VHDL simulations using the commercial
Intermetrics VHDL simulator running on a VAX 8650 as the baseline (6:2, 19:1-1).

Previous AFIT research has investigated the possibility of achieving speedup by
distributing the VHDL simulations over multiple processors for parallel execution. By
effectively sharing the simulation workload among multiple processors, simulations of
complex chip designs can be run faster, resulting in a more efficient and cost-effective
design cycle.

AFIT research in 1991-92 focused on the internal data structures used in the
Intermetrics commercial VHDL simulator which runs in a sequential mode. A method of
intercepting the intermediate C source code from the Intermetrics compiler, transforming
it into parallel models, and executing the transformed code in parallel with correct results
on Intel iPSC/2 and iPSC/860 hypercubes has been demonstrated (8, 4). The result of this
research is a parallel VHDL simulator, referred to as VSIM, that implements a selected
subset of the standard VHDL language (4).

Breeden'’s results demonstrated that speedup on multiple processors can be achieved
under limited circumstances using a random partitioning of the VHDL behaviors! among
the processors of the hypercube (4). In his random partitioning approach, the objective
was to randomly assign an equal number of behaviors to each processor without
considering their complex inter-dependency relationships. As a result, the speedup results
were significantly less than optimal, and fell off rapidly as the number of processors was
increased due to increases in communications overhead. This thesis research effort
focuses on the development of efficient and effective partitioning strategies to map the
logical VHDL behaviors to the physical processors of a hypercube in order to take

maximum advantage of the parallelism available in the simulation application.

1 A behavior is an executable VHDL process representing a logic gate, source signal, or other simple
VHDL process.

Wallace Tree Speedup with Random Partition

3.50
3.00
2.50
2.00
1.50
1.00

Speedup

Number of LPs

Figure 1. Speedup Curve for Wallace Tree with Random Partitioning

1.2 Problem Statement

AFIT’s parallel VHDL simulator, VSIM, has been validated on circuits as large as an
8 x 8 Wallace Tree Multiplier, containing over 1000 VHDL behaviors, on both an 8-node
iPSC/2 and an 8-node iPSC/860 hypercube (4). However, in order to maximize the
benefits of parallelization, a deliberate partitioning strategy is required that takes into
account the complex inter-dependency relationships of the VHDL behaviors when
mapping them onto the physical processors of the parallel system. Otherwise, the
communications overhead required to maintain synchronization among the processors
will negate the potential speedup benefits. For example, Figure 1 shows how the speedup
curve for the Wallace Tree Multiplier on the iPSC/2 with a random partitioning of the
behaviors takes a downward turn as the number of processors is increased past four.

1.3 Research Objectives
The primary objective of this thesis is to demonstrate improved speedup over random
partitioning in the simulation of medium to large sized VHDL circuits using the VSIM

parallel simulator. This will be accomplished through the use of a deliberate partitioning
strategy. Specific research goals include:

Developing an efficient and effective partitioning strategy that accounts for the
complex inter-dependency structure of the VHDL circuit being simulated.
Investigating methods of computing the cost of a partition.

Quantifying the relationship between the cost of a partition and the resulting
performance of the simulation.

Demonstrating improved speedup over a random partitioning using a variety of
VHDL circuits.

1.4 Assumptions

The resecarch by Comeau provided the foundation for the transformation of

Intermetrics VHDL models into models that can be executed in a parallel environment

(8). Breeden built upon this work, automating the transformation process, and validating
the results of the parallel simulator VSIM (4). Building upon their research, the following

assumptions are made in this thesis:

The subset of the standard VHDL implemented by VSIM, as described in (4), is
adequate to demonstrate the feasibility and effectiveness of various partitioning
strategies.

The commercial Intermetrics VHDL compiler, version 2.1, September 1990, will
be used to provide the sequential VHDL models (4).

The conservative Chandy-Misra algorithm for parallel discrete event simulation
(PDES) is used to maintain synchronization between the processors of the parallel
system. Using the SPECTRUM? testbed, the null-message protocol is used to

provide deadlock avoidance (4). To maintain consistency with the AFIT

2 Simulation Protocol Evaluation on a Concurrent Testbed using ReUsable Modules (20).

simulation environment, this synchronization protocol will not be significantly
altered for this thesis.

Secondary storage input/output (I/O) during parallel simulations on the Intel
hypercubes has been shown to overwhelm the benefits of parallelization (4:80).
This thesis will focus on achieving computational speedup only. It is assumed that
other research will effectively address the architectural issues associated with the
large 1/O requirements of PDES applications.

Under the SPECTRUM simulation environment, individual VHDL behaviors are
grouped into logical processes (LPs) to increase the granularity of the application
tasks. The research in this thesis makes the assumption of one LP per physical
processor. This assumption eliminates the context switching and message passing
overhead encountered when multiplexing several LPs on a single processor.

A graph-based behavior dependency representation will provide the information

necessary to make sound partitioning decisions in an efficient manner.

15 Scope

The following list outlines the limits on the scope of this research effort:

L

Finding an optimal solution to the problem of mapping N inter-dependent tasks
onto P processors is known to be NP-Complete (22:142). This research will seek
an efficient and effective heuristic approach that results in consistently good
solutions, though they may be sub-optimal.

The subset of the standard VHDL supported by VSIM will not be extended as part
of this research effort.

Circuit descriptions used to validate various partitioning strategies will be limited
to less than 5000 behaviors. To implement circuits much larger than this limit in a

realistic manner will require extensions to the VHDL subset supported by VSIM.

 This research will not alter the conservative null-message parallel discrete event
simulation (PDES) protocol currently implemented by VSIM except when such
alterations directly support the validation of a partitioning strategy.

1.6 Limitations

The limitations of the VSIM parallel VHDL simulator are described in (4:4-6). No
new limitations on VSIM are imposed as a result of this thesis effort. However, the
partitioning tool implemented as part of this thesis has been limited to a maximum of 128
LPs due to the memory required for the data structures used.

1.7 Thesis Overview

Chapter 2 reviews several general approaches to solving the problem of efficiently
mapping N tasks onto P processors as found in the current literature. Chapter 3 gives the
background on the implementation of VSIM and the SPECTRUM simulation
environment. This information leads into a discussion of the specific requirements for a
parallel VHDL partitioning strategy. Implementation of this strategy is discussed in
Chapter 4. Chapter S discusses the research methodology and results. Finally, Chapter 6
presents the conclusions formulated during this research and gives recommendations for

future research.

1.8 Summary

The need for this research stems from the rapid increase in the size and complexity of
modern large-scale integrated circuit designs. Current commercial VHDL simulators
execute in a sequential manner, leading to long design cycles for extremely large circuits.
One approach to achieving the desired speedup is through distribution of the simulation

load among multiple processors in a parallel system. Previous AFIT research has

validated the concept of parallel VHDL simulation through the development of VSIM.
This research investigates methods of partitioning the VHDL circuits among the parallel
processors in order the maximize the speedup obtained through parallelization.

II. Background

2.1 Overview

This chapter presents a discussion of previous research relating to the parallel
program Mapping Problem and how those results might be applied to the specific
problem of partitioning structural VHDL circuit descriptions for parallel simulation. To
facilitate this discussion, several characteristics of an ideal partitioning strategy are first
presented.

2.2 The VHDL Mapping Problem

22.1 The Parallel Programming Mapping Problem. In the context of parallel
programming applications, the mapping problem is defined as the binding of the logical
components of the parallel application program to the physical resources of the target
parallel system such that some desired performance criterion is optimized (22:141). For
example, it is usually desired to map the application in such a way that the total execution
time is minimized. Optimal solutions to the general mapping problem have been shown to
be NP-complete and no polynomial time algorithm for their solution is known to exist
(17:63, 22:142). As a result, sub-optimal solutions are often pursued using various
heuristic methods (22, 17). The logical-to-physical binding of a parallel application
controls the utilization of the parallel system and directly affects the amount of time and
memory required to complete program execution.

The mapping problem arises when the number of processes (i.e. tasks) required by the
parallel application is greater than the number of available processors (cardinality
variation), or when the task-dependency structure of the parallel application differs from

the physical interconnection structure of the parallel system (topological variation) (2).

222 Partitioning VSIM. To date, no effort has been made at developing an
optimal (or near-optimal) partitioning strategy for mapping VHDL behaviors to fully
exploit the parallelism available in large VHDL simulations using the VSIM simulator
(4). In the parallel VHDL simulation environment created by VSIM, cardinality variation
can be dealt with by grouping VHDL behaviors into logical processes (LPs) which
comprise the concurrent tasks managed by the SPECTRUM testbed. A large VHDL
circuit may contain hundreds of thousands of behaviors with a complex interdependency
structure. Assuming the assignment of 1 LP per physical processor, there is likely to be
hundreds, or even thousands, of behaviors per LP. As a result, the behavior grouping, or
partitioning, is likely to be a critical factor in the relative performance of the parallel
simulation.

The two key objectives of most strategies that have been proposed for the general
parallel program mapping problem are achieving a balanced computation load among all
of the processors, and minimizing the inter-processor communication. The former deals
with making efficient use of all of the processor resources, while the latter deals with
reducing non-productive overheads such as message setup and transfer times.

The general mapping problem can be divided into two sub-problems: job scheduling
and task allocation (21:1408). The goal of job scheduling is to obtain maximum system
utilization by scheduling independent jobs among the processors in a distributed system.
This involves a dynamic schedt ling ability as old jobs are completed and new ones are
submitted. In contrast, the task allocation problem involves the allocation of several inter-
dependent tasks of a single program among the processors in a distributed or parallel
system. The goal of task allocation is to minimize the completion time of the single
application program. The task allocation problem has been approached separately as both
a dynamic and static allocation problem, with the latter being desirable if the

interdependencies of the task structure can be statically defined a priori (21:1409). In the

VSIM environment, each individual VHDL behavior is equivalent to a task.3 In addition,
the inter-dependency structure of the behaviors is known prior to simulation and is static.
Therefore, throughout this thesis, discussion of the mapping problem implies the static

task allocation problem.

2.3 Characteristics of an Ideal Partitioning Strategy

Before evaluating various heuristic solutions to the general parallel program mapping
problem, it is useful to discuss some characteristics of an ideal partitioning strategy that
can be used for comparison purposes. In the context of this thesis, the phrase ideal
partitioning sirategy is used as it applies to the specific problem of parallel discrete event
simulation (PDES) for large VHDL circuits using VSIM. It is reasonable to expect that
such a partitioning strategy will be equally applicable to other parallel problems that have
similar static task dependency characteristics. The desirable properties of an ideal parallel

VHDL partitioning strategy include the following:

e Computational Efficiency - The partitioning algorithm should be
computationally efficient, requiring only polynomial time to converge to a good
solution. Finding the optimal solution? to the general mapping problem has been
shown to be NP-complete, thus rendering it computationally infeasible to seek
such a solution for large and complex problems (17:63, 22:142). Parallel
algorithms are one potential means of achieving the necessary computational

efficiency, although numerous sequential algorithms have been proposed as well.

3 Throughout this thesis, the terms behavior, process, and task are used interchangeably to represent the
vertices of the problem-graph.

4 In the context of this thesis, the optimal solution is defined as the mapping that results in the fastest
simulation for a given number of processors. A good solution is defined as any solution that results in
*“near-optimal” simulation run times.

10

Balanced Workload - The partitioning algorithm should result in a balanced
computation load among all available processors (5:294). This requires that the
percentage of time spent performing useful computations be approximately equal
for each processor.

Exploitation of Inherent Parallelism - The partitioning algorithm shoulc.l
produce solutions which take advantage of the parallelism inherent in the
simulation application.

Minimized Inter-Processor Communications - The partitioning algorithm
should produce solutions with minimal communications between processors
(5:294). The two primary factors to consider here are the number of
communication links between tasks on different processors, and the relative
frequency with which messages are sent over those links.

Scalability - The partitioning algorithm should be easily scalable, both in
terms of the number of tasks in the problem graph, and the number of processors
(5).

Deterministic Solutions - The partitioning algorithm should produce
deterministic solutions which are based upon the known static inter-dependency
structure of the problem graph.

Input Problem Variations - The partitioning algorithm should be applicable to
a wide variety of VHDL circuits, including those with feedback loops.

Accounts for PDES Synchronization Protocol - Ideally, the partitioning
algorithm should be equally applicable regardless of the particular parallel
discrete event simulation protocol used. However, this is not feasible since the
simulation protocols play a major role in defining the amount of inter-processor

communications. Instead, given a specific simulation synchronization protocol,

11

the partitioning algorithm should account for its overhead requirements when
making decisions regarding task partitioning.

2.4 General Approaches to the Mapping Problem

Numerous approaches to the static task mapping problem have been pursued
including algorithms based on graph theory, mathematical programming, queucing
theory, and various heuristic approaches such as simulated annealing (21:1409). Two
specific graph-based models which have been proposed for modeling the static task
allocation problem involve the use of a task precedence graph (TPG) and a task
interaction graph (TIG). The task precedence graph model consists of a directed graph in
which the vertices represent tasks and the edges represent inter-task execution
dependencies. Computational and communication costs are represented by adding
weights to the vertices and edges of the graph. A task interaction graph has the same basic
structure. However, a task precedence graph models execution precedence dependencies
whereas a task interaction graph models the need for inter-task communication without
explicitly representing such temporal depcndencies. All tasks are considered
independently and concurrently executable. In both models, the goal is to map the tasks to
processors so as to minimize the total program execution time (21:1409).

The class of parallel problems that can be modeled by a task interaction graph (TIG)
consists primarily of iterative algorithms in which all tasks can execute independently
during each iteration, and exchange data values only in between iterations (21:1409).
Many algorithms for matrix manipulations fit into this category.

On the other hand, problems which exhibit temporal dependencies (e.g., task B cannot
execute until task A has executed) between tasks can be modeled with the task

precedence graph (TPG). The temporal dependencies modeled by the directed arcs of the

12

TaskA [1 | 2 | 3] 4 | 5 |

Task B 1 2 3 4 5
Task C 1 2 3 4 5
I >
t=0 iteration 1 iteration 2 ume
complete complete

Figure 2. Iterative PDES Algorithm

TPG define a series of tasks that must be executed sequentially, making these problems
inherently difficult to parallelize.

The set of iterative problems encompassing parallel discrete event simulation (PDES)
can be represented by the TPG model by considering the temporal dependencies in terms
of a single iteration, and overlapping the iterations in a pipeline fashion. Figure 2 shows
an example for three simple tasks over five iterations, with the assumption that each task
is on a separate processor. Task A produces a series of five data values, each of which is
acted on separately by task B. In turn, task B produces a series of five data values, each of
which is acted on separately by task C. Because task A has no dependencies, it can run
independently to completion. However, task B cannot begin its operation on the first
iteration until the first input has been received from task A. A similar relationship holds
between tasks B and C. For illustrative purposes, each task requires a different amount of
time to perform its computation on the data values flowing through the system as
indicated in the figure. The numbers in the rectangles represent the iteration that each task
is on at a given point in time, with time not covered by a rectangle representing idle time

for that task. Note that because this is an event-driven simulation, the three tasks are not

13

necessarily executing in lockstep. For example, task A begins its third iteration before
task B completes its first iteration.

The TPG model is used throughout this thesis to model the VHDL mapping problem®
by modeling the individual VHDL behaviors as graph vertices and the inter-behavior
dependencies as directed edges. Further discussion of this model can be found in the
requirements section of chapter 3. The remainder of this chapter examines numerous

aspects of various partitioning schemes using graph-theoretic techniques that have been

proposed for a variety of parallel problems.

24.1 Random Partitioning. Random Partitioning involves the random
distribution of the tasks into the desired number of LPs, and was the partitioning scheme
used for prior AFIT research on circuits with more than 100 behaviors (4). It is one of the
simplest partitioning algorithms, but potentially the most ineffective. Under this
approach, only the load balancing among the LPs is considered. The behavior
dependencies, and associated communications costs, are ignored. Breeden shows that in
some limited circumstances, speedup can be obtained with this partitioning scheme
(4:70). However, because the behavior dependencies are not considered, the resulting
partition has a large number of inter-behavior dependencies that cross the partition
boundaries, and often has artificial feedback imposed upon it. The situation worsens as
the number of LPs grows. As a result, this partitioning strategy is not likely to scale very
well or provide very good performance. This conclusion is supported by the limited data

available from previous research (4:70).

242 Simpic Data Partitioning. A slightly better algorithm, but just as simple as

the random partitioning, is referred to as Simple Data Partitioning (SDP) (9:78). Under

5 The VHDL mapping problem in this thesis is considered relative to the VSIM/SPECTRUM simulation
environment.

14

the SDP approach, each vertex in the graph has a weight associated with it, with the
weight calculated as the degree of the vertex (number of arcs to and/or from the vertex).
Each partition is filled one at a time, with vertices selected for inclusion by decreasing
order of their weight until the combined weight of the current partition is approximately
equal to the calculated average weight (9:78). The result is that vertices with a high in/out
degree will tend to be grouped together in partitions with fewer vertices. The method of
selecting which of several vertices with the same weight is not specified, and is assumed
to be arbitrary. As a result, it is reasonable to expect that for graphs in which a large
portion of the vertices have equal weights, results similar to those for random partitioning
would be achieved.

Since each arc in the graph represents a potential for inter-task communications, a
vertex with a high in/out degree is likely to have more inter-task communications than a
vertex with a small in/out degree. Thus, on the surface it seems as though grouping
vertices with a potential for large amounts of communications in the same partition would
tend to minimize inter-partition communications. The fallacy of this approach is that a
group of vertices with high in/out degree may in fact result in a large amount of

communications, but not necessarily with other vertices in the same partition.

24.3 General Graph Contraction & Layout Algorithm. An alternative approach to
the mapping problem attempts to address both cardinality variation and topological
variation at the same time by modeling a given parallel algorithm with a family of graphs
(Gn}. Each graph Gy, represents the static dependency graph of a parallel algorithm for a
problem of size n. A similar graph Gp models the physical processors and interconnection
structure of the target architecture for P processors (2:307, 3:441). Given a problem of
size n represented by graph Gy, the proposed approach involves contracting the graph Gy
into a smaller graph Gy of size k from the same graph family. The contraction process is

15

(a)

M)

(©)

Figure 3. Contraction within a graph family. Vertices incident to dashed edges are

grouped into a single vertex (3:449)
continued until k = P, thereby eliminating the cardinality variation. The next step is to lay
out the contracted graph Gy onto the physical interconnection graph Gp, thereby
climinating the topological variation. The final step in the algorithm uses multiplexing to
implement the problem-graph Gy, on the image of Gy (2:307, 3:441). Three examples of
contracting an algorithm represented by Gy, into a graph from the same family Gy are
shown in Figure 3.

In the specific case of the VSIM/SPECTRUM simulation environment, this approach
could be improved by encapsulating each vertex on the contracted graph Gi inside of a
single logical process (LP), thereby avoiding the communications and context switching
overheads associated with multiplexing multiple tasks on a single processor. Even then,
this approach makes two implicit assumptions about the problem domain that severely
limits its feasibility as a solution to the mapping problem for parallel VHDL simulation.

16

OO0~ O—0.,

Figure 4. Alternative Contraction for Graph of Figure 3.a

First, it assumes that the dependency graph of the parallel algorithm (in this case the
simulation of a structural VHDL circuit), will exhibit a pattern that remains consistent as
the problem size grows larger. Second, it assumes that there exists a graph G € {Gp)
whose cardinality and topological layout are the same as that of the physical
interconnection graph Gp.

As a final observation concerning this approach, it should be noted that even if both
of these assumptions hold and this methodology can be used to map the problem-graph
onto the processor-graph, it may or may not result in the most efficient inter-processor
communications structure. If tasks on the same processor are encapsulated within a single
LP, external messages will not be required for two such tasks to communicate.
Therefore, each dashed edge in Figure 3 represents a potential inter-processor
communications link that has been eliminated in the contracted graph. Considering ihe 8-
node graph of Figure 3.c which is contracted into 4 LPs, there is clearly no possible way
that this contraction could be done such that more than four edges are eliminated without
sacrificing load balancing. However, consider the 11-node graph of Figure 3.a which is
contracted into S LPs with the elimination of only two edges. Figure 4 shows an
alternative contraction that would eliminate six edges, thus reducing the potential inter-

processor communications.

244 Strip Assignment Algorithm. Two other approaches, Strip Assignment and
Two-Dimensional Mapping, have been proposed for the specific problem of mapping

metalforming applications using finite element methods onto a hypercube architecture

17

(22, 21). Both of these heuristic approaches attempt to address the load-balancing and
inter-processor communications aspects of the mapping problem separately. Load-
balancing is addressed by attempting to allocate an equal number of tasks to each
processor. This is analogous to allocating an equal number of VHDL behaviors to each
Logical Process (LP), with one LP per processor. The inter-processor communications
overhead is addressed in two ways. First, the algorithms attempt to group tasks together
on the same processor such that the amount of inter-processor communications required
is minimal. Second, each algorithm attempts to allocate the task groups among the
processors such that only nearest-neighbor communications are ever required (22, 21).

The strip assignment method evenly distributes the tasks among the available
processors in such a way that each processor will only need to communicate with no more
than two immediately adjacent neighbor processors. Letting N be the total number of
tasks in the problem-graph and P be the total number of processors, the number of tasks
per processor to achieve a balanced load is [N/P1 for some processors, and LN/P] for the
remainder (22:144, 21:1414). An example for N = 48, P = 6 is shown in Figure 5. Letting
Nc be the maximum number of tasks in any column of the problem-mesh, and NR be the
maximum number of tasks in any row, the order in which tasks are added to a partition
depends on the relative magnitudes of Nc and Nr. Beginning at any corner of the
problem mesh, tasks are added to the current partition along the columns if N¢ < Ng, or
along the rows if NR < Nc. Subsequent partitions begin where the previous one left off
(22:145).

The strip assignment method assumes that the graphical representation of the problem
can be represented by a two-dimensional mesh layout in which each task has at most four
communication paths to its nearest neighbor tasks. In addition, in order for the strip

method to guarantee that nearest-neighbor communications are maintained among the

18

48 nodes /6 PEs =8 nodeo/PE
Figure 5. Example of the Strip Assignment Method for a Problem-Mesh (22:143)

P4 PO P2

physical processors, a certain constraint on the problem-mesh must be met (22:144,
21:1414). Specifically, the strip method requires that:
LN/P] > min(Nc,NR)
It is reasonable to expect that very few, if any, VHDL circuit dependency graphs will
ever meet the two-dimensional mesh layout requirement. Thus, this algorithm does not
seem suitable for the partitioning of structural VHDL circuit simulations.

245 Two-Dimensional Mapping Algorithm. The other method that has been
applied to metalforming applications using finite element methods is Two-Dimensional
Mapping (22:145). This approach differs from the Strip-Assignment method in that an
attempt is made to reduce the number of nearest-neighbor communication links between
processors. As can be seen from Figure 5, the Strip-Assignment method results in
partitions that span the entire problem-mesh (cither column-wise or row-wise). As a
result, a large number of communications links in the problem-mesh cross the partition
boundaries. The Two-Dimensional Mapping approach capitalizes on the fact that square

partitions will have a smaller perimeter-to-area ratio than the “rectangular” partitions of

19

P1 P3
43

P4 }—=1 PO 51 P2
1 1
Moves that can balance the load

PS5

Figure 6. Initial Partition of a Two-Dimensional Mapping for a Problem-Mesh

the Strip-Assignment method, and thus, should result in fewer communications links
crossing the partition boundaries. Schwan et al. suggest a three-step approach (22:145):

¢ Divide the problem-mesh into square partitions as if the problem-mesh were
perfectly regular. Depending on the dimensions of the problem mesh, some
partitions may only approximate squares.

» Use a border-refinement algorithm to account for an irregular problem-mesh and
achieve load-balancing.

» Use a secondary refinement algorithm to attempt further minimization of inter-
processor communications while maintaining a balanced load. This step is
optional.

Figures 6 and 7 demonstrate a two-dimensional mapping for the same problem-mesh
as in Figure 5. First, Figure 6 shows the initial two-dimensional partition consisting of
simple horizontal and vertical lines through the problem-mesh. Visualizing the problem-
mesh as being perfectly regular (all columns have N¢ processes and all rows have Nr
processes), the lines are placed so that the resulting partitions are as close to being
identically sized squares as possible. However, because the problem-mesh is not perfectly
regular, the resulting partitions are not evenly balanced. The second step in the algorithm

requires moving processes from one partition to a neighboring partition until all partitions

20

porcdedecpadecocnrrcnacrcsnnnann

48 nodes / 6 PEs = 8 nodes/PE
Figure 7. Two-Dimensional Mapping Partitions after Border-Refinement

are balanced. The resulting partitions are shown in Figure 7. Note that in the strip-
assignment partitions of Figure 5, there were 32 inter-partition communication links. In
the two-dimensional partition, the number of inter-partition communication links has
been reduced to 21 while maintaining a balanced load.

An additional benefit of two-dimensional mapping over strip-assignment is that the
former does not impose any constraints on the number of processors P as it relates to the
dimensions of the problem-mesh NR and N¢ .Thus, it can be applied to problem-meshes
where strip-assignment is not applicable. Like strip-assignment, however, this approach is
only applicable to problems that can be represented as a two-dimensional mesh. Thus, as
it is presented here, two-dimensional mapping does not seem suitable for the partitioning
of structural VHDL circuit simulations. However, the idea of performing load balancing
and reducing the inter-partition communication costs by refining the partition boundaries

can be extended to algorithms that can be applied to other forms of problem graphs.

21

24.6 Algorithm M, An Optimal Approach. Another approach to the mapping
problem, Algorithm M , has been proposed for static assignment of tasks in a distributed
system in which the processors communicate over an cthernet-based medium (16). In
such a system, all processors communicate over a shared pathway for which all
processors must compete. As a result, the processor interconnection graph Gy is fully
connected, and no special steps are required to layout the partitioned problem-graph Gy
onto the processor graph Gy (16:240).

Lo argues that the goals of a static partitioning algorithm for a distributed system are
different from those of a static partitioning algorithm for a parallel system given an
identical problem domain (16:240). However, in both systems, the inter-processor
communications (IPC) should be minimized while meeting some load balancing
constraint (e.g. equal number of processes per processor). The two systems differ
primarily in the relative cost of inter-processor communications in relationship to the cost
of some load imbalance. However, these relative cost differences also exist between
different classes of parallel systems, and even between different applications on the same
parallel system. Thus, the goals of partitioning problem-graphs for distributed systems
and partitioning them for parallel systems are actually the same. It is only the mapping of
the partitions onto the physical processors that differs, and then only if one is concerned
about maintaining nearest-neighbor communications in parzallel systems. As a result, an
effective partition for one type of system is likely to be just as effective on the other type
of system. Given this fact, Algorithm M can be studied as it might apply to partitioning
problem-graphs for parallel systems.

Algorithm M has been shown to provide an optimal partitioning of a problem-graph
Gy, onto P identical processors in polynomial time providing that the number of tasks n in
Gy, is no more than twice the number of processors (n < 2P), and providing that no more

than two tasks can be assigned to any single processor (16:241). Although this restriction

22

makes this approach unsuitable for parallel VHDL simulations which may have hundreds
to tens of thousands of tasks per processor, it is discussed here because it leads into the
sub-optimal heuristic approximation discussed in the next section which removes the
restriction on n. ‘

Algorithm M begins by finding a maximum weight matching of the problem graph
Gp. A matching is defined as a set of edges from a graph such that no two edges in the
set share a common vertex. The sum of all the weights of the edges in the matching forms
the weight of the matching. The maximal weight matching is the matching of the graph
with the largest weight. Algorithms exist to find the maximal weight matching of a graph
in polynomial time (16:241).

After the maximal weight matching has been found, the next step is assigning the two
tasks corresponding to each edge in the matching to a processor with no other tasks
assigned to it (16:241). It should be noted that a maximal weight matching may not
necessarily contain all of the tasks in the problem-graph. Tasks that are not connected by
an edge in the matching are arbitrarily paired and assigned to a processor with no other
tasks assigned to it. Finally, if there remains a single unpaired task, it is assigned b:" itself
to any remaining processor that has no other tasks assigned to it. Lo states that this
algorithm will provide an optimal partition for a given input problem-graph that meets the
constraint n < 2P (16:241). If the problem is such that communications costs between
some pairs of tasks will be greater than between other pairs of tasks (cue to frequency of
messages, size of messages, etc.), this algorithm has the interesting property that those
pairs of tasks with the highest communications costs will be assigned to the same
processor where communications costs are negligib}-

As mentioned previously, the restriction n < 2P nmits the class of problem-graphs that
may be partitioned using this algorithm. An additional shortfall of the algorithm is the

implicit assumption that each task will have an equal weight (in terms of computational

23

cost). Depending on the extent to which this may not be true, this further limits the class
of problems for which this algorithm will result in a partition that is truly optimal in terms
of both inter-processor communications and load balancing.

24.7 Algorithm H, A Heuristic Approximation of Algorithm M. Algorithm H
represents a sub-optimal approximation of Algorithm M for the polynomial-time
partitioning of an arbitrary number of tasks n among P processors with a bound B on the
maximum number of tasks per processor where [n/P1 < B < n (16:242). This is
accomplished by first reducing the original problem graph G, with n tasks to a smaller
graph Gi with k nodes using a “Sort Greedy Algorithm” so that k < 2P and with Gy
having no more than [B/2] tasks per node (16:243). An optimal partitioning for the
reduced graph G can then be obtained using Algorithm M. However, this partition may
not necessarily be optimal for the original problem-graph Gy (16:242).

Lo’s simulation results have shown that Algorithm H performs relatively well, find'ag
an optimal partition in over 80% of the test cases run (16:243). However, this data was
collected on only a small set of problem-graphs with no more than 35 tasks and 5
processors. In addition, because a greedy-type algorithm is used for the initial graph
reduction from Gy to Gy, poor assignments may result when the problem-graph contains
relatively uniform communication costs (16:243). This is likely to be the case in large
structural VHDL circuit simulations. Nevertheless, the concept of a phased approach to
partitioning a problem-graph presented by this algorithm holds potential for a polynomial

time general-purpose partitioning algorithm that will provide near-optimal solutions.

24.8 Depth-First Breadth-Next Algorithm. An algorithm called Depth-First
Breadth-Next (DFBN) has been proposed to partition problem dependency graphs (17).

The goals of this algorithm are to assign dependent tasks to the same processor, and

® &)

D=0

1
Figure 8. Example Problem Graph for DFBN Partitioning (17:64)

independent tasks to different processors (17:63). The name is derived from the manner
in which the problem graph is traversed when partitioning dependent tasks.

Two assumptions concerning the set of applicable problem-graphs are made for the
DFBN algorithm. First, it is assumed that the graphs are acyclic. Second, it is assumed
that the tasks execute non-preemptively, and must run to completion once they begin
execution (17:65). In the example problem graph of Figure 8, each edge is labeled with a
total communications time, and each task is labeled with a total execution time. These
values correspond the weights of the edges and tasks respectively, and are used in
prioritizing non-critical tasks on the same processor for scheduling purposes (17:69). A
critical task is one that must be executed before any others in order for any progress to be
made (e.g., task 0 is critical).

The actual DFBN partition ignores the task and edge weights, and considers only the
interdependency relationships between the tasks. Since the edges in the graph represent
temporal dependencies and the assumption has been made that the tasks run non-
preemptively to completion, simultaneous execution of tasks located on the same path is
not allowed. Thus, each path in the graph represents a set of dependent tasks, and tasks
that are not on the same path are independent (17:68). The goal of assigning dependent

tasks to the same processor may not be completely achievable since two independent

25

tasks may have common dependencies (17:67). For example, in the graph of Figure 8,
tasks 1, 2, and 3 are all independent, but all share the common dependency on task 0.
Nevertheless, it may be possible to achieve a good approximation of the stated goal.

The partitioning algorithm simply performs a depth-first search of the problem-graph,
beginning at the source nodes. When a task has been discovered by the search, it is
marked so that it will not be included as part of more than one path. According to the
DFBN algorithm, each distinct path in the problem-graph resulting from the DFBN
search is assigned to a different processor (17:68). However, this assumes that the number
of distinct paths will be less than or equal to the number of available processors, which
may not be true. Furthermore, the DFBN algorithm makes no effort to balance the
computation load among the processors. Some progress is made towards limiting inter-
processor communications since communications between dependent tasks of the same
path are on the same processor. However, this minimization is likely to be unevenly

applied and far from optimal.

2.4.9 Kernighan-Lin Algorithm. A graph-partitioning procedure proposed in
1970, known as the Kernighan-Lin algorithm after its authors (14), is often a standard
used by others for comparison with their own partitioning algorithms (9:78). The
Kernighan-Lin algorithm divides a weighted problem-graph into partitions of equal cost
and with a minimum cutset. This is accomplished by first making an arbitrary, but even,
partition of the problem-graph. Tasks are then swapped between partitions until a
minimum cutset is found, when the partition is locally minimum (14:295). Depending on
the nature and size of the problem-graph and the initial partition, the resulting cutset may

also be globally minimum, resulting in an “optimal” partition (14:295, 9:78).

26

24.10 Simulated Annealing. Simulated Annealing (SA) refers to an algorithm that
is used to model groups of atoms being cooled to a ground state, using the concept of a
decreasing temperature to aid in the convergence of a solution (9:79). When applied to
the mapping problem, Simulated Annealing begins with a random initial partition of the
problem-graph, and involves moving tasks to other partitions if the total cost of the
partition is lowered. The partition cost equation has factors for the inter-partition
communication costs and the relative cost of the resulting load-imbalance among the
partitions. A random number generator is used to select both the process to move and the
desti _tion partition. If the move does not result in a lower total cost for the partition, the
move may still be made based on a decreasing random probability function (9:78).

The results of Conrad and Agrawal have shown that Simulated Annealing solutions to
the mapping problem approach optimal solutions more often than the Kernighan-Lin
algorithm, but require approximately two orders-of-magnitude more time to reach a
solution (9:78). Another shortfall of this approach is its non-determinism which is due to
the use of a random-number generator to select the proposed moves and to control the
probability function, as well as the randomness of the initial partition. Depending on the
initial partition and the sequence of proposed moves selected by the random number

generator, it is possible to get different results for the same input.

24.11 Mean Field Annealing. A related algorithm to Simulated Annealing,
called Mean Field Annealing (MFA), also refers to an algorithm that models groups of
atoms being cooled to a ground state (9:79). As in Simulated Annealing, MFA begins
with a random initial partition and uses a random number generator at each iteration of
the algorithm to select a task for consideration. The state of the selected task is updated to
determine the proper partition assignment. To control the moves and force a convergence

to a solution, the algorithm uses a probability function that takes into account the total

27

cost of the partition and decreases according to some specified schedule (5). The main
advantage of this algorithm is that it converges to a solution much faster than Simulated
Annealing, requiring an execution time on the same order as the Kernighan-Lin
algorithm (9, 5).

Derivation of the MFA algorithm is accomplished by analogy to the Ising spin model
which estimates the state of a system of particles, or spins, in a state of thermal
equilibrium by computing an energy function (5:295). When applied to the mapping
problem, the energy function is interpreted as the cost of a given partition. This cost
function can be computed by an objective function H containing a factor for the inter-
partition communications H, and a factor for the partition load imbalance Hy, (9:78):

H=H,+ aH,
where the parameter o is a scaling factor used to maintain a balance between the
objectives of minimizing communication costs and maintaining a balanced computation
load (5:297, 9:78). The factor a can be taken as an input parameter to control the level of
load imbalance that is acceptable in a partition.

A function spin (i,p) is defined, with output sjp, which returns the probability of
mapping task i to processor p. By definition, sjp is a continuous variable in the range
0 < sjp < 1. However, as the algorithm reaches a solution, the spin values sjp converge to
either a 0 or a 1, with a 1 indicating that task i is mapped to processor p (5:296). Thus, the
solution can be represented by an N x P spin matrix with each row containing P-1 zero
entries. An example for N = 8 and P = 4 is shown in Figure 9.

The cost function H is defined by (5:296):

H=H, +aHb
=-ZZZZ s/qdm+ Zzzsbsww
izl jei p=1 gup i=1 joi p=1

where e;j represents the communications cost between tasks i and j, w; represents the

computation cost of task i, and dpq represents the relative communications cost per

28

P processors

N
processes

HOOMMOOOKW

@ e W

OO MHOOKOON
HMOOMMOOODOW
O OCCOOQOOO K K&

o

Figure 9. Example Spin Matrix for N = 8 and P = 4 (5:296)

message between processors p and q. In order to calculate the function spin (i, p), the
mean field function ¢jp is defined as (5:296):
N P N
¢p == 2650y - zsp‘”l“’l
Jui qup jui
Each individual spin average sjp is proportional to e¥T where T is the temperature of the
system, and s;p is normalized as (5:296):

This normalization forces each row of the spin matrix to sum to 1, and ensures that each
task i is mapped to only one processor when the system stabilizes for a given temperature
T (5:296). During each iteration of the MFA algorithm, a randomly selected row i in the
spin matrix is recalculated using the equations for ¢jp and s;p. After each iteration, the
cost function H is recalculated in order to detect a convergence to an equilibrium state for
a given temperature T. If the cost function H does not decrease after a specified number
of iterations, the system is said to be stabilized for the current temperature. The
temperature T is then decreased according to a specified schedule (5:297). As T is
decreased further, the probability that the randomly selected task i will be moved from its

currently assigned processor decreases, and a final solution is eventually reached.

29

The results of Bultan and Aykanat using the MFA algorithm to solve the mapping
problem have shown that its solutions approach the quality of those from the Simulated
Annealing algorithm in 1/20th the time (5:301). However, like Simulated Annealing, the
MFA algorithm has the undesirable property that it is non-deterministic due to the
random initial partition, and the random selection of processes to update from the spin
matrix. Nevertheless, it appears to be a viable alternative to solving the mapping problem
for general parallel problems.

2.5 Summary
The diversity of methods for solving the general mapping problem outlined in this

chapter represent only a small cross-section of those possible. None of the methods
presented claim to provide an optimal solution for all problems. However, most of the
methods provide good solutions for a specific subset of problems.

The next chapter presents a partitioning algorithm that draws upon properties from
several of the algorithms presented in this chapter in an attempt to find a scheme that
provides consistently good partitions for a wide variety of structural VHDL circuit

simulations.

lll. Problem Analysis

3.1 Overview

This chapter presents a discussion of the graph-partitioning algorithm proposed in this
thesis for mapping VHDL circuit simulations to multiple logical processes for execution
in parallel. In order to understand many of the decisions made in formulating the
partitioning algorithm, it is necessary to first understand the target application. Therefore,
the chapter begins with a review of the implementation of AFIT’s parallel VHDL
simulator, VSIM, as implemented by Comeau and Breeden.

3.2 Implementation of VSIM

Previous AFIT research has resulted in the successful implementation of a parallel
simulator for simulating structural VHDL circuits on an Intel hypercube (8, 4). This
simulator, known as VSIM, uses the intermediate C source code created by the sequential
Intermetrics commercial simulator as shown in Figure 10 (4:21). To simulate a structural
VHDL circuit using VSIM, the Intermetrics sequential simulator compiles the VHDL
source code and creates an IVAN (Intermediate VHDL Attributed Notation) file
containing intermediate-form code descriptions of the circuit components. Next, during
the model generate phase, the Intermetrics simulator transforms the IVAN file into C
source code files and creates the corresponding object files (8). Using a tool called
pbuild, these C source code files (and their associated header files) are intercepted and
transformed into VSIM compatible files that can be executed in parallel (4:20).

VSIM is implemented to run over the SPECTRUM parallel simulation testbed which
manages the inter-process synchronization (4, 20). VSIM itself is independent of the
parallel discrete event simulation (PDES) synchronization protocol being used. To

31

Intermetrics VSIM
vhdl
IVAN plex ' SPECTR
model E ‘
generate ’
.h files :
« files '
build :
- .
compile . .c files
script > pbuild =3 ' files 1 VSIM
simulate .
‘ - im E
file ’
port :
generate - :
;.fl?“ SPARC ; hypercube

Figure 10. VSIM Parallel Simulation Session (4:21)

maintain continuity with prior AFIT research, this research uses the conservative Chandy-
Misra synchronization algorithm with null messagesS to provide deadlock avoidance (7).
The structural descriptions and simple processes representing the VHDL subset
implemented by VSIM form “behavioral instances” which are partitioned into groups to
form Logical Processes (LPs) (4:21). The LPs are in turn partitioned among the available
processor nodes for parallel execution. Each LP contains a copy of the necessary
application code, the complete SPECTRUM code, and the machine dependent operating
system interface code (12). As shown in Figure 11, the SPECTRUM testbed provides an
interface between the application code and the machine dependent interface to the
operating system. As such, the SPECTRUM code provides the message sending and

receiving functionality by which two LPs communicate with each other. Variants of the

6 Null messages contain no signal change information. They exist for the sole purpose of advancing the
simulation clock, and do not correspond to actual events in the physical system (7).

32

(Process Manager) [¢—] Filters

Figure 11. SPECTRUM Interface for a Single LP (4, 12)

simulation protocol used to maintain synchronization are implemented via filters as
shown in Figure 11 (4, 12). In the case of VSIM, the Chandy-Misra null-message
protocol is implemented via a filter called vhdlclocks.

In addition to running in parallel on an Intel hypercube, VSIM also has a sequential
mode which can be executed on a Sun Sparcstation. In fact, VSIM’s paralle! simulation
cycle is a direct extension of its sequential simulation cycle. Furthermore, prior to
executing VSIM on the hypercube, the circuit must be executed in the sequential mode
for at least one entire simulation cycle in order to extract the behavior numbers and inter-
dependency relationships. Therefore, this section begins with a discussion of the
sequential mode of VSIM. This is followed by an introduction to the SPECTRUM
parallel simulation testbed, which leads into a discussion of how the sequential simulation
cycle is extended in VSIM’s parallel mode.

32.1 Sequential Simulation.
32.1.1 Data Structures. The four fundamental data structures used in VSIM’s
sequential mode are directly derived from the commercial Intermetrics simulator and are

as follows (4:21-23):

i3

]

* Bebavioral Instances - Used to describe the input/output behavior of each
executable VHDL process. A separate behavioral instance exists for each VHDL
behavior in the simulation, although a single execution routine may be shared by
several instances (4:21).

* 8ignal Record Table - Used to maintain the current state of each signal in
the simulation including pointers to behavioral instances in order to identify the
dependency connections for each signal (4:21-22).

* Behavior List - Used to maintain a list of all behavioral instances scheduled
for execution during the current simulation time. All behaviors are scheduled for
execution (i.c., placed in the behavior list) at simulation startup (t = 0) in order to
initialize the values of all signals. When a behavior is executed, it is removed
from the behavior list. A change in a signal value will cause all dependent
behaviors to be re-scheduled for execution (4:22).

* Active Record List - Used as a next-event list for the simulator. An
“event” is defined as the output of a behavioral instance execution routine that
may result in a signal change. Entries in the list are maintained in increasing order
of the simulation time associated with each scheduled event (4:23).

Figure 12 shows an example of the interrelationship of these fundamental data structures.
In this example, signal id 2 has an entry on the active record list because it is changing
values from a ‘0’ to a ‘1’ at simulation time 50. The active record list entry contains the
new value and a pointer to the specific signal record. The signal record contains pointers
to the signal’s current value in main memory and the affected behavior instances -
behaviors 2 (AND gate) and 3 (XOR gate) in this example. These affected behaviors are
in turn added to the behavior list for execution at time 50 (4:23, 8:3-12). Note that the
entries in the behavior list contain pointers to the associated behavioral instances which in

turn contain pointers to the appropriate behavioral execution routine.

34

Active Record List Signal Record Table
: signal signal cument connec-
tme 50 id size name value tions
sr_ptr 2
value T 0 1 Y 0 0,1
. 1 1 X 1 0,1
next_sig rec | Null 2 1 CN 24 2.3-
3 1 COO0UTI 3 : 4
4 1 SUM1 4 2,3
r’? 5 1 CouT2 5 : 4
6 1 SUM 6,
7 1 court 7 :
E .
Behavior List Behavioral Instances : : |
beh 2 id 2 | %
nextb % exec AND . K 1
] input0 2
‘ inputl 4
output(5
beh 3
nextb | NULL id 3
exec XOR
input0 2
inputl 4
output(6
id 4
exec OR
input0 3
inputl 5
output) 7

Figure 12. Interrelationship of VHDL Simulation Data Structures (8:3-14)

3.2.12 Sequential Simulation Cycle.

cycle used in VSIM’s sequential mode. The simulation main loop consists of calls to a
series of four specialized routines represented by the circles in the figure. Specifically, the

primary simulation routines are (4:25, 8:3-15):

35

Figure 13 shows the VHDL simulation

* Execute Behaviors - Executes behaviors on the behavior list and removes

them from the list. This is where the simulation loop begins.

» post - Foreach behavior that is executed, this routine posts the corresponding

event to the active record list.

* Get Low Time - Extracts the entries from the active record list with the

lowest next-event time and updates the simulation clock to this lowest time value.

* Compare Values - For each entry that is removed from the active record

list, this routine compares the new data value in the active record list entry with
the current data value stored in memory for that signal. If there is no change in
data values, the event is ignored. If there is a change in data values, the affected
dependent behaviors are added to the behavior list and scheduled for execution
during the next simulation cycle.

As stated previously, all behaviors are added to the behavior list at simulation startup
and scheduled for execution at simulation time t = 0. In addition, the current
implementation of VSIM requires that all input signal changes be explicitly defined in the
VHDL source code. For example, complex processes which randomly generate a new set
of input signals during the course of the simulation are not supported by VSIM. As a
result of this, all input signal changes (i.c., those specified in the testbench) are added to
the active record list at simulation startup (4:26).

The simulation loop shown in Figure 13 continues until both the active record list and
the behavior list remain empty for an entire simulation cycle, at which point the

simulation is complete (4:26).
3.2.1.3 Handling Behavior Delays. = Each behavior execution routine has a

nonnegative logical delay, 74./4y, associated with it. When a behavior has a change on

one of its input lines at time ¢, it is scheduled for execution at time ¢. When a behavior is

36

Active Record

List Simulation
Clock
Get
Low Time
Compare
Post Values
Behavior
List
Execute
Begin Behaviors
Simulation

Figure 13. The Sequential VHDL Simulation Cycle (8:3-15)

removed from the behavior list and executed at time ¢, the resulting output signal is
posted to the active record list with a time-stamp of ¢ + t41ay (4:27).

If a behavior has n input signals that change value at time 7, the behavior will
execute n times and the resulting output signal will be posted to the active record list n
times. In this situation, the correct event will always be the one corresponding to the most
recent behavior execution. As a result, whenever a new event has the same behavior id
and time-stamp as another event on the active record list, the new event replaces the old
event (4:27).

There are two types of delay in VHDL - transport delay and inertial delay. With
transport delay, the output is a function of the input signals regardless of how long the

input signals hold their values. With inertial delays, however, the output function requires

37

that the input signals maintain their values for a time equal to 74./5y before the output
signal may change. This may result in an entry being removed from the active record list
if an input signal is not held constant for the required time (4:27). For example, consider
the AND gate in Figure 14. A time t = 3 ns, both input signals are ‘1°, and an event for
signal Out to go from ‘0’ to ‘1’ at time t = 6ns is added to the active record list based
upon the output function of OQut = Inl AND In2 after t415y. However, at time t =5 ns,
input signal In2 returns to ‘0’ before signal Out has changed values. As a result, the event

for signal Out at time t = 6 ns is removed from the active record list (4:28).

322 SPECTRUM Testbed. As shown in Figure 11, VSIM runs over the
SPECTRUM parallel simulation testbed. SPECTRUM allows the application to be
parallelized by dividing it into logical processes (LPs). The core of SPECTRUM, its “LP
manager” (file 1p_man.c), manages communications between LPs. Function calls to
1p _man.c are intercepted by a “filter” which provides the specific PDES synchronization

protocol being used (4:30). In the case of VSIM, the filter vhdilclocks.c implements the

delay = 3 ns
Inl_
Out

In2—
Inl —
In2 o . e F——
Out — : : — " — :
0 1 2 3 4 5 6 7 8 9 10

Figure 14. AND Gate with Inertial Delay (4:29)

38

Logical Process (LP) Active Record
List
Receive
Filter
SPECTRUM
eue
Safe Time
Update
Safe Time
Incoming Messages
from other LPs

Figure 15. LP Message Receipt (4:35)

conservative Chandy-Misra null message PDES synchronization protocol. Below
SPECTRUM'’s LP manager, the package cube2 . c provides the interface to the hypercube
operating system (4:31). As indicated by Figure 11, each LP contains its own copy of
both the application code and the SPECTRUM code. This includes the LP manager, the
protocol filter, and the operating system interface.

As shown in Figure 15, SPECTRUM maintains its own queue for incoming messages
destined for a given LP. Messages are stored in the SPECTRUM queue until requested by
the VSIM application. When VSIM checks for incoming events, messages on the
SPECTRUM queue are removed by the “receive filter.” The receive filter eliminates

synchronization control messages (e.g., null-messages) and places only valid events in the

39

LP’s active record list (4:35). The “safe time” is used to control which events the LP may
safely process and will be discussed further in the next section.

The primary functions provided by SPECTRUM’s LP manager are (4:30):

* 1lp_init() - Initializes the LP and builds the appropriate filter tables.
Retrieves top event from SPECTRUM message queue.
Sends event to the owning LP of the affected behavior.

* 1lp _get_event()

* 1lp post_event ()

* 1lp_advance_time() Advances the value of the local simulation clock.

* 1lp_terminate() Terminates the simulation.

32.3 Parallel VSIM Implementation.

3.23.1 Parallel Simulation Cycle. 'When the VHDL behaviors are partitioned
among multiple LPs, each LP assumes “ownership” for those LPs in its partition. In
VSIM’s parallel mode, each LP executes the sequential simulation cycle of Figure 13 for
the behaviors it owns. However, because a signal change on one LP may affect behaviors
owned by another LP, the simulation cycle must be modified to allow an LP to forward
signal changes to other LPs.

Figure 16 shows the simulation cycle modified for parallel simulation. As before, all
behavior outputs are posted to the local active record list. When a signal record is
removed from the active record list and the value comparison determines that a signal

' change has occurred, only the affected behaviors owned by the local LP are posted to the
behavior list. If the signal change affects behaviors owned by another LP, an event is
created and sent to the owning LP where it is eventually placed in that LP’s active record
list. In this manner, only the results of behavior executions that result in actual signal
changes are forwarded to the affected LPs as event messages. Figure 17 shows the

parallel simulation cycle for two LPs.

—SPECTRUM Togical Process (LP)

Queue
Active Record
Get List Clock
Incoming Event 5
Messages Low
Time Send
Event
Post Compare
Values
Behavior
List

Execute
Behavior

Figure 16. The Parallel VHDL Simulation Cycle for a Single LP (4:34)

3.2.32 Synchronization Protocol. VSIM has been designei. 0 execute in a
multi-processor, message-passing system with no shared memory. Running over the
SPECTRUM testbed, each LP executes an identical copy of the simulation on a disjoint
subset of the data (i.e., behaviors). Such a situation is referred to as a single
program/multiple data (SPMD) configuration (4:33). In this environment, the parallel
simulation cycle of Figure 17 presents an inter-LP synchronization problem caused by
dependencies between behaviors owned by different LPs. As an example, consider the
hypothetical 2 LP partition for an edge-triggered D flip-flop shown in Figure 18. Each
LP maintains a separate simulation clock which maintains that LP’s local virtual time
(LVT), and indicates how far along in the simulation each LP has proceeded to. In the
case of Figure 18, LP1 only has four behaviors to execute as compared to six for LPO.

Thus, it is reasonable to expect that LP1 may proceed at a faster rate than LPO. Let 7p and

41

Figure 17. The Parallel VHDL Simulation Cycle for a Two LPs (4:34)

t1 be the LVT of LPO and LP1 respectively, such that fp <¢;. In this situation, it is
possible for LPO to send LP1 an event message with a time that is in LP1’s past.

As discussed by Breeden, there are two basic approaches to handling this
synchronization problem. In the optimistic approach, LP1 would be rolled back in virtual
time to a previously saved state at a time equal or prior to the time of the incoming
message from LP0. The protocol gets its name from the fact that LP1 would be allowed to
proceed as fast as possible with the optimistic assumption that it will not get any late
messages from LPO. In the conservative approach, LP1 is not allowed to advance its
simulation clock to time :; unless it is guaranteed that it will not receive any messages
with a time stamp less than ¢; (4).

Breeden discusses the mechanics of the conservative Chandy-Misra null-message
synchronization protocol used in this thesis research (4:11-13, 31-33). Since the null
messages add directly to the communications overhead of the partition, the rules for their

transmission are reviewed in the next section.

42

&

LP1

De
De

—
B

slichiEalE

Figure 18. Hypothetical 2 LP Partition for Edge-Triggered D Flip-Flop

3233 Null Messages. In order to discuss the rules by which null messages

are transmitted, the following variables must be defined (4:32):

. lm" -
L] tu q -
L) tdelay -

. tSdC -

time stamp of the null message.

lowest time stamp of all events in an LP’s active record list.
logical output delay of an LP for a given output line.

local virtual time (LVT) that an LP may “safely” approach.

To maintain synchronization, each directed communication link, or line’, between

LPs has a clock associated with it which tracks the time-stamp of the most recent message

transmitted over that line. By definition, once a message is transmitted over a line with

time-stamp ¢, it is impossible for a message to be transmitted over that same line with a

7 The term line is used to refer to the directed arcs in the LP conectivity graph. This is not to be confused
with the arcs in the problem graph which represent inter-behavior dependencies. Given N LPs, each LP can
have at most (N-1) output lines, but each output line may consist of multiple inter-behavior arcs.

43

time-stamp less than ¢. The safe-time, f¢afe, is the minimum time of all input lines, and

represents the maximum time to which the LP may approach with the guarantee that no

messages will be received with earlier time-stamps. As shown in Figure 3.15, the safe-

time is updated each time an LP receives a message from another LP. This is

accomplished by comparing the updated time-stamps of each input line to find the

minimum. Null messages are used to advance the times associated with each line (thus

advancing tef,), and otherwise contain no useful information (4:32).

As implemented in the filter vhdlclocks.c, null messages are sent under the

following circumstances (4:32-33):

By definition, an LP is constrained to process events in non-decreasing order of
simulation timestamps. As such, when an LP processes an event at time ¢, it is
guaranteed that it will not process an event in the future with a timestamp of less
than ¢. Therefore, when LP;, sends an event message over one of its output lines
with a time-stamp of ¢, it sends a null message over all other output lines with a
time-stamp of ¢ to let all other LPs know that they will not receive an event
message from LP, with a timestamp less than ¢. This allows them to advance the
clock associated with the input line from LP;, to time .

When there are no event messages waiting in the SPECTRUM input queue at the
time of a request by VSIM, the receive filter (see Figure 15) checks to see if there
is an event on the local active record list that has a time-stamp less than or equal
to the safe time (i.e., fpeq < Isafe). If 50, a null pointer is returned to VSIM and
processing may continue. If not, the filter blocks, waiting for an incoming
message to advance the safe time. Prior to blocking, however, the LP sends a null
message over each of its output lines with a time-stamp equal to the smaller of the
safe time plus the LP delay for that output line, or the time at the top of the local

active record list (i.e., tnyy =min (((safe + tdelay) tneq))- These null messages

serve as guarantees to the receiving LPs that no events prior to f, will be
received from the sending LP. This allows the receiving LPs to update their safe
times, thus avoiding cyclical waiting and preventing deadlock.

In Breeden’s version of this protocol, null messages were also sent over cach LP
output line at simulation startup with a timestamp of that output line’s delay value. The
purpose of these null messages was to advance the safe time of each LP beyond zero so
that cach LP may begin processing events. These null messages have been eliminated
since all behaviors in the system are automatically scheduled for execution at simulation

startup.

324 Code Transformation. Circuit specific information is contained in the
intermediate C code created during the model generate phase of compilation as shown in
Figure 10. This circuit specific code includes routines to instantiate each behavior and
signal and to execute the behavioral output functions. Breeden defines a seven step
process by which this intermediate C code is transformed into code compatible with
VSIM (4:29-30).

3.3 Partitioning Requirements

3.3.1 Load Balancing. Load balancing is defined as the degree to which all
available processors are assigned an equal share of the computation load (26:59). In
parallel VHDL simulations, the computation load consists of processing signal changes,
scheduling the affected behaviors, and executing the affected behaviors (which in turn
may cause further signal changes). One method of measuring load imbalance is to
calculate the difference in the minimum and maximum finishing times of all processors as

a percentage of the maximum finishing time (26:59):

45

However, this measure of load imbalance is only valid if all processors are able to
perform their share of the workload completely independent of the others. In most
parallel simulations, there exist dependencies between the workloads that have been
assigned to different processors. For example, consider the example VHDL simulation of
Figure 19 in which an edge-triggered D flip-flop has been partitioned into three LPs. LP0
has ownership of eight behaviors, versus one each for LP1 and LP2. Intuitively, LPO will
process a majority of the signal changes and behavior execution routines. Thus, LPO has
been assigned a clear majority of the computation workload. However, because of inter-
behavior dependencies which cross partition boundaries, LP1 and LP2 cannot complete
their share of the computation load until they receive the last event message from LPO. As
a result, while LPQ is processing a large number of events, LP1 and LP2 spend time
blocking for inputs from LP0. All three LPs will finish at approximately the same time
(with LPO finishing slightly ahead of the other two), even though LPO had a much greater
share of the computation load.

For parallel VHDL simulation, an alternative method of measuring load imbalance is
required. The method proposed in this thesis uses the following definitions:

b; = behavior i.

wj = relative computation cost of behavior i.

Bq = set of all behaviors assigned to LP q.

Lq = the total computation load of LP q.

Lmax = the maximum computation load of all LPs.

Lavg = the average computation load of all LPs.

LP1
I [9
(D

VIV

LP2

FRcAiealk

Figure 19. Load Imbalance Example

With these variables, the computation load for each LP can be calculated as:

L= 2 bw

be Bq

And the load imbalance factor, Hyp, can be calculated as:

o

The relative computation cost of each behavior, wj, is actually composed of two
components: the relative computational complexity of behavior i, and the relative
frequency that behavior i is executed during the simulation. In VSIM, all behaviors are
simple VHDL processes.® Intuitively, the major difference in the computational intensity
of these simple VHDL processes is in the number of input signals to be evaluated. If the

number of behavior ir_ ..s is kept relatively small (e.g. < 4), these computatior:ai

8 Simple boolean operation (AND, OR, NOT, assignment, eic.) with a finite number of inputs.

47

differences will be negligible when compared to the computation requirements of more
complex VHDL processes (such as a bus resolution function with 32 inputs). As such, the
relative computational complexity of all behaviors representing simple VHDL processes
can be safely assumed to be equal.

The relative frequency with which a behavior is executed is heavily dependent upon
the activity? of its input signals during the simulation (23:85). Experience has shown that
the signal activity of a typical VHDL circuit is not evenly distributed. However, prior to
simulation, no data is available regarding signal activities (23:85). Since no information
is available to support a specific behavior weighting, all behaviors are assumed to be
equally affected by the circuit signal activity.

Since behaviors cannot be differentiated in terms of computational complexity or
execution frequency, all behaviors are evenly weighted (w; = 1), and all mapping
decisions must be made solely on the static inter-dependency structure of the VHDL
circuit (23:85). Therefore, the computation load Ly is simply calculated as the number of
behaviors assigned to LP q.

3.3.2 Minimizing Communications Costs. Inter-process communications can be
defined as the sending of information from a source process to a destination process with
the destination process requiring the sent information in order to progress. In VSIM, each
behavior is a simple VHDL process, and the sending of a signal change from the output
of one behavior to the input of another behavior is one form of inter-process
communications. In VSIM’s sequential mode, this form of inter-process communications
consists of inserting a record in the behavior list as shown in Figure 13. In VSIM’s
parallel mode, this form of communications is identical if the receiving behavior is

owned by the same LP as the sending behavior. However, if the sending and receiving

9 The activity of a signal is defined as the number of events generated for that signal during the simulation
(23:85).

48

behaviors are owned by different LPs, the signal must be sent as an inter-LP event
message using the SPECTRUM layer as shown in Figure 17. The insertion of the record
into the behavior list occurs at the receiving LP after the event message has been removed
from the receiving LP’s SPECTRUM incoming message queue. Thus, the sending and
receiving of inter-LP event messages by SPECTRUM represents a communications
overhead not present in the sequential simulation.

In parallel VSIM, communications between behaviors that are owned by the same LP
do not represent additional communications overhead over the sequential version, and are
said to have a cost of zero. Rather, the communications overhead that we are interested in
minimizing is the inter-LP event message traffic that occurs when communicating
behaviors are owned by different LPs. Throughout the remainder of this thesis, the term
inter-process communications will be used to describe this message level
communications between the logical processes. With the previous assumption of one LP
per physical processor, this inter-process communications is also equivalent to the inter-
processor communications, and the two terms can be used inter-changeably to refer to

the communications overhead of the parallel simulation.

3.3.2.1 Modeling Inter-Process Communications. = The model used to
represent inter-process communications used in this thesis makes use of a

Communications Weight Matrix, and the following definitions:
wjj = the relative cost of communications between processor i and processor j based

upon the topological layout of the processors.

ajj the number of directed inter-behavior dependencies (i.e. arcs) between LP;
and LP;j. |
With these definitions, the total cost of directed communications from LP; to LP;, Cj;, can

be calculated as:

49

Ci = 4w,

Ideally, each arc that makes up the factor ajj would be multiplied by a factor that accounts
for the frequency of the communications over that arc. However, the frequency of
communications is dependent upon the signal activity, and, as stated in section 3.3.1,
there is no information available regarding signal activity prior to simulation (23:85).
Therefore, the communications costs must be estimated based upon the known structural
dependencies that cross the LP boundaries. In addition, the assumption that LPO will be
mapped to processor 0, LP1 will be mapped to processor 1, etc., is implicit in the
equation for Cj;.

Letting n be the number of logical processes (LPs), the inter-process communications
can be represented by an n x n communications weight matrix as shown in Figure 20. The
main diagonal entries represent the cost of an LP’s communications with itself. As stated
previously, these communications do not involve the sending and receiving of event
messages, and thus do not contribute to the parallel simulation communications overhead.
Therefore all main diagonal entries are always 0.

Letting H, represent the overall total inter-process communications costs, it can be

calculated as the sum of the entries in the communications weight matrix:

With the exception of a constant factor of 1/2, this equation is identical to the equation
used by Bultan to calculate the communications cost sub-function H¢ in the mean field
annealing algorithm discussed in section 2.4.11 (5:296).

Upon further examination, however, a potential problem arises because H does not
give an acrurate picture of the total inter-process communicaﬁons relative to the total
signal change activity of the circuit (as estimated by thé number of inter-behavior arcs).

For example, if circuit A has a total of 1,000 inter-behavior arcs with 100 crossing LP

50

" 0 €y Co Cu - - - Conyl
Co 0 €, Csi ... Cuy
Co Cn O Cy . . . Cyoy
Co €y Cuo 0 . . . Cymy

_c(n-1)o c(n—i)l c(n—1)2 c(n—l)s L o J

Figure 20. Communications Weight Matrix for n LPs

boundaries and circuit B has a total of 10,000 inter-behavior arcs with 500 crossing LP
boundaries, circuit B will have a higher H¢ than circuit A even though it has a smaller
percentage of its arcs crossing the LP boundaries. To account [ur this, it is desirable to
calculate the total inter-process communications costs as a percentage of the total

communications costs in the system. Thus, the equation for H is modified as follows:

where num_arcs is the total number of inter-behavior arcs in the system. Minimizing the
value of Hc is one of the primary goals of the partitioning algorithms implemented for

this thesis.

3.32.2 Distribution of Communications. In addition to the amount of inter-
process communications, the distribution of those communications may also add to the
overhead of the parallel simulation. For example, consider the four LP examples of
Figure 21 in which it is assumed that all LPs are assigned an equal share of the
computation workload. In Figure 21.a, LP2 and LP3 run independently of all other LPs,
while there is a relative communications cost factor of 100 from LP0O to LP1. As a result,

LP2 and LP3 will finish in minimal time while LP1 cannot finish ahead of LPO because

51

[0 100 0 0] [0 60 0 0]
lo 0 o0 O] lo 0 0 Ol
lo o o ol lo o o 6ol
lo o o o] lo 0o 0 o

O=O®
(@) ()

Figure 21. Communications Distribution Example

3

of the inter-LP dependencies. In this case, the communication costs between LPO and LP1
form a bottleneck which holds up overall simulation completion!?, In Figure 21.b, the
problem has been repartitioned in order to split up the communications bottleneck
between LPO and LP1 at the expense of a higher total communications cost. Although the
overall communications costs are higher, the simulation should reach completion faster
because of the reduced bottleneck in the communications costs.

The results presented in Chapter 5 show that in some circumstances, it is possible to
partition a circuit such that the total amount of inter-process communications is reduced
by more than 33%, but the resulting simulation performance is worsened with strong
evidence that this is due to a bottleneck in the distribution of the remaining inter-process
communications. As a result, the calculations for the iotal communications cost overhead
in this thesis include an additional factor in order to account for the distribution of the

inter-LP dependencies in the circuit partition.

10 Simulation completion is defined as the completion time of the slowest logical process.

52

The calculation of the communications distribution factor Hyq uses the following

assumptions and definitions:

¢ Message setup and transmission time is much more significant than the time it
takes to receive an incoming message. This assumption is based upon an analysis
comparing the overhead involved in sending vs. receiving an inter-processor
message. A message receive action involves inserting the message in a queue
where it is held until actually needed by the simulation. On the other hand, a
message send action involves the message setup and transfer times, as well as
blocking time while the sending processor waits for a free communications link.
Intuitively, the sending processor has a greater level of overhead. Instrumentation
of the simulation is required in order to fully validate this assumption.

e An LP’s contribution to the total communications cost overhead is directly
proportional to the total weighted communications costs associated with all arcs
leaving that LP. This is represented by the sum of the row in the communications
weight matrix corresponding to that LP.

Davg = the average weighted communications costs associated with each LP.

Dmax = the maximum weighted communications costs associated with an LP.

The communications distribution factor is then calculated as the maximum positive
deviation from the average as a percentage of the average:

H, = Do

D,

-D

avp

v

3.32.3 Effect of Lookahead. Simulation lookahead is defined as the ability
to predict what will happen or not happen in the future with complete certainty. A process
at simulation time t with lookahead t;, will be able to accurately predict all events it will

generate up to simulation time (t + tp.) (11:9). In the case of VSIM, an LP’s lookahead

53

refers to the ability to predict a simulation time in the future up to which that LP can
guarantee that it will generate no signal changes destined for other LPs. The LP’s
lookahead is defined by min ((tsae + tdeiay)» Ineq)-

As discussed in section 3.2.3.3, the value 14,4y is defined as the minimum output
delay associated with each of the LP’s output lines. These delay values are specified in a
“.arcs” file that is read in by VSIM at runtime. In previous research, a uniform LP delay
time was used that was equal to the smallest non-zero delay in the circuit associated with
a single behavior (4). In order to guarantee optimal LP delay values, however, this thesis
uses the minimum path from all possible LP input lines and all source behaviors in the LP
to each LP output line in calculating the corresponding output line’s delay value. For a
random partition, this method generally results in no net improvement in the lookahead of
the circuit. However, for more sophisticated partitioning algorithms, .arcs files with
larger LP delay values can be obtained. When (fsgfe + tdelay) < Ineq, & larger delay value
will result in a null message with a higher time stamp being sent. In turn, this will result
in fewer null messages being sent over that output line, and may allow the safe time of
the receiving LP to advance at a faster rate. More discussion of the effect of increasing

the lookahead of the circuit is presented in Chapter 5.

3324 Null Messages. In VSIM, the conservative Chandy-Misra
synchronization protocol adds additional communications overhead in the form of null
messages which transmit no useful information!l. As discussed in section 3.2.3.3, null
messages are sent according to the given set of rules in order to avoid deadlock by
updating the safetimes of the receiving LP.

Analysis of the rules for sending null messages shows that the number of null

messages transmitted is primarily dependent upon the number of arcs in the LP inter-

11 As opposed to real messages which transmit actual signal value information,

54

connectivity graph (i.e. the number of output lines as specified in the associated .arcs
file). This is also equivalent to the number of non-zero entries in the communications
weight matrix. Other factors which also have an effect on the number of null messages
sent are the minimum LP delay values specified in the .arcs file, and the number of inter-
behavior arcs which cross LP boundaries.

The simulation results presented in Chapter 5 show that the ratio of null messages to
real messages in a simulation grows with the number of processors, with null messages
dominating the communications costs for partitions with more than 2-4 LPs for the
circviss used in this thesis. For example, for the wallace tree simulation with a random
partition, the null message to real message ratio goes from approximately 1:4 with 2 LPs
to approximately 5:1 with 8 LPs. The equations in sections 3.3.2.1 and 3.3.2.2 for H; and
Hq do not directly account for the transmission of the null messages required to maintain
simulation synchronization. Therefore, an additional cost factor is needed to take into
account this sizable overhead.

Letting Lgaycs be the amount of lookahead in the .axcs file, and Ogpes be the number
of LP output lines specified in the .arcs file, the null message communications factor can
be defined as:

H, = Lyeg Opres
The dependence of the number of null messages on the number of inter-behavior
dependencies that cross LP boundaries is included in H, and is not included again in Hj,

Given N LPs, each LP can be connected to at most N-1 LPs. Thus, the limit on the
value of Opgrcs is given by:

O,.s SN(N-1)
The value of Larcs is normalized to 1.0 for the case when all LP delays in the .axcs

file are equal to the smallest non-zero behavior delay in the system. Letting the smallest

55

non-zero behavior delay in the system be called the normal lookahead, the value of Lages
can be calculated as:

normal lookahead
actual average lookahead

If the actual average lookahead is made to be smaller than the normal value, Larcs Will be

L, =

greater than 1.0, thus compounding the impact of Ogpcs On the total communications
costs. On the other hand, if the actual average lookahead is larger than the normal value,
Larcs will be smaller than 1.0 and the effect of Ogrcs Will be abated.

It should be noted that because the LP delay is not always used in computing the
timestamp of a null message (i.c. When lneq < Isqfe + delay), the value of Larcs will only
provide an estimate of the effect of increased lookahead on the null message overhead.
For this reason, a better estimate of the impact of increased lookahead can be calculated
by making a reasonable assumption regarding the percentage of time that the delay value
determines the timestamp of a null message. The assumption used in this thesis is 50%,
resulting in the lookahead increase being cut in half. It should be noted that the uneven
distribution of signal activity in the circuit will affect the accuracy of this assumption.
However, chapter 5 includes data on the effect of increased lookahead which shows this
assumption to provide good estimates under most circumstances The equation of Larcs is
adjusted as follows:

norm_ lookahead

Ly = (norm_ lookahead - avg_lookaheag) + avg_lookahead
2 -

3.33 Balancing Load Imbalance and Communications Costs. Intuitively, there is
a natural conflict between the partitioning goals of minimizing the inter-process
communications costs and assigning each LP an equal share of the computation load. For

example, by assigning all 10 behaviors in Figure 18 to LPO, the inter-process

56

communications costs can be eliminated completely. However, the problem is reduced to
a sequential simulation with LPO carrying the entire computation load while LP1 sits idle.
On the other hand, making the partition as shown in Figure 18, the simulation is closer to
being balanced in terms of computation load at the price of adding inter-process
communications costs.

The primary goal of any partitioning algorithm is to strike a balance between these
two conflicting goals that results in a good simulation performance. The exact nature of
this balance, however, is dependent upon the relative performance of the CPU and

communications subsystem of the hardware platform being used.

334 Measuring the Cost of a Partition. Measurement of the simulation
performance resulting from a given partition is the ultimate method of determining the
quality of a partition. However, many partitioning algorithms, including the one
implemented in this research, require an interim assessment of the quality of the partition
at various points in the algorithm. To achieve this interim assessment, an objective cost
function is used similar to the one used for the mean field annealing algorithm described

in section 2.4.11.

3.34.1 Objective Cost Function. The objective cost function is composed of
the factors for load imbalance and communications costs discussed in sections 3.3.1 and

3.3.2. Specifically, the objective cost function H is defined as:
H=BH,H.(1+H,) + aH,
where o and B are constant coefficients which control the relative influence of the

communications and load balancing portions of the equation.

57

3342 Relationship to Simulation Performance. One of the objectives of this
research was to quantify the relationship between the quality of a partition and the
resulting performance of the simulation. The performance of the simulation is measured
in terms of speedup, which is defined as the ratio of the execution time on a single
processor to the execution time on P processors (26:65):

Speedup = S, = !;.’.".!‘".ﬁ"’;
P processors
Ideally, the time to execute on P processors will be 1/Pth the time to execute on a
single processor, giving a speedup of P:

tmpmcuoor =£-=P

=)

SP=

In general, however, the simulation overhead will prevent the achievement of a speedup
of P on P processors. As discussed previously, the simulation overhead is directly related
to the quality of the simulation partition as measured by the objective cost function H. It
is possible to estimate the expected simulation speedup by relating the cost function H to
the speedup Sp as follows:

S = P = P
U1+ yH 1+ y[BH,H (1+ H,) + aH,]

where v is a constant coefficient. Note that in a perfect partition (i.e. no inter-processor

communications and equally balanced loads), the cost function will equal O and the

speedup will be equal to the number of processors. In addition, note that if (1 + ¥ H)
increases at a faster rate than P, then the estimated speedup will decrease as the number of

processors is increased.

58

3.4 Pariitioning Approach

The primary partitioning algorithm implemented in this thesis, referred to as AB-
Annealing, draws upon several properties of the partitioning strategies presented in
section 2.4. AB-Annealing is a multi-phased partitioning strategy with the following
steps:

* The graph is partitioned into strong-components.

» Treating the strong components as indivisible blocks, the graph is divided into the
required number of LPs using a deterministic graph-traversal algorithm.

* Given the initial partition from the previous step, those behaviors that lie on the
boundary between two LPs are considered for reassignment to a different LP on a
priority basis based upon the potential reduction in the objective cost function.

The phased approach to the mapping problem used here is similar to the phased

approaches used in the Two-Dimensional Algorithm of section 2.4.5 (22) and Algorithm
H of section 2.4.7 (16). The initial partition step uses a simple graph-traversal algorithm
which has many similarities with the Depth-First Breadth-Next algorithm of section 2.4.8
(17). The final step implements a “border-annealing” algorithm in an attempt to
iteratively improve the partition by making behavior reassignments that result in a
decrease in the objective cost function. The objective cost function and iterative nature of
this phase make it similar to a deterministic version of the Mean Field Annealing
algorithm of section 2.4.11 (5). However, the fact that only those behaviors that lie on the
border between two LPs are considered for reassignment also makes this phase similar to

the Two-Dimensional Algorithm of section 2.4.5 (22).
34.1 Strong Components. The first step of the AB-Annealing process involves

finding the strongly connected components of the problem graph. Each strong component

in the problem graph corresponds to a complete feedback loop in the VHDL circuit. This

59

Figure 22. Strong Component Example - Simple Latch Feedback Loop

step is included in order to isolate the feedback loops in a single LP during the initial
partition. An example strong component common in digital circuits is shown in Figure
22. The problem graph in the example represents a simple latch with a two-behavior
feedback loop.

34.2 Initial Partition. In the Mean Field Annealing algorithm, the initial partition
is determined with a random function. In the AB-Annealing algorithm, it was desired to
use the available knowledge about the structure of the circuit in an effort to make a good
first-cut partition. It was anticipated that this approach, in addition to being deterministic,
would reduce the amount of work necessary during the annealing phase as well as lead to
a better final partition. Two variations on the DFBN algorithm of section 2.4.8 have been
implemented to serve as the initial partitioning routines for the AB-Annealing algorithm.

In the first algorithm, referred to as Simple Depth-First (SDF) partitioning, the
problem graph is traversed in a depth-first manner. When a behavior is visited for the first
time, it is added to the current partition and marked so that it will not be added to any
other partitions. Before beginning a partition, its size is pre-determined using the number
of unmarked behaviors divided by the number of unfilled partitions. If a newly visited
behavior is part of a strong component, the entire strong component is added to the

current partition. When the current partition is full, a new partition is started.

The second algorithm, referred to as Simple Breadth-First (SBF) partitioning, the
problem graph is traversed in a breadth-first manner, but the partitions are built in the
same way as with the SDF partitioning.

For comparison purposes, the random partitioning algorithm can also be used to
generate the initial partition for the AB-Annealing algorithm. In the random case,

however, the first step of finding the strong components has no meaning and is omitted.

343 Border-Annealing. The third and final phase of the AB-Annealing
algorithm consists of an iterative improvemcm of the initial partition through selective
reassignment of certain behaviors that lie on the border of the partition. This phase is
referred to as “border-annealing,” and involves the following steps:

* Calculate the priority of each behavior based upon the following formula:

Priority = Max_External_Arcs - Local_Arcs
where Local_Arcs represents the number of input and output arcs of the given
behavior that are to or from behaviors in the same partition, and Max_External_
Arcs is the maximum number of input and output arcs of the given behavior that
are to or from behaviors in any single partition other than the given partition.

* Place each behavior with a priority 2 0 in an annealing queue in decreasing order

of priority. By definition, this eliminates from consideration all behaviors that are
not on the border of a partition (such behaviors will have a priority < 0).

* Remove each behavior from the queue in priority order and evaluate the effect of

all possible moves on the objective cost function.

» « Based upon the data produced in the previous step, select the best move that

will not cause the load delta factor to become larger than the maximum load
imbalance tolerance (user defined input parameter). It is possible that no move

may be selected.

61

e « [famove is selected, carry out the move and update the data structures used in
the calculation of the objective cost function.
* Repeat the above steps until the maximum number of iterations (user defined

input parameter) has been reached, or until no more improvement can be made.

34.3.1 Selecting Moves for Consideration. In the AB-Annealing algorithm,
behaviors are selected for potential LP reassignment based upon their priority. Using the
behavior prioritization scheme discussed above, behaviors that have no input or output
arcs which cross an LP boundary will not be considered for moving. In addition,
behaviors which have more input and output arcs that stay within its own LP than go to
any single external LP will also be eliminated from consideration.

Figure 23 shows several examples of behavior priorities. In Figure 23.a, behavior 3 in
LPO has two arcs connected to behaviors in LP1, but only one arc connected to a behavior
in its own LP. Thus, behavior 3 has a priority of +1, and will be queued up for move
consideration. In Figure 23.b, the two external arcs of behavior 3 are connected to two
different LPs. The maximum number of external arcs to a single LP is 1, and the priority
of behavior 3 is 0. In this situation, a move can be made to improve load balancing, or
some other factor, without any net change in the number of inter-LP arcs. In Figure 23.c,
behavior 3 has more arcs connected to behaviors in its own LP than any other LP. Thus,
its priority is negative, and it will not be placed in the annealing queue for move
consideration.

Figure 24 shows the actual SDF initial partition for the edge-triggered D flip-flop
circuit. The behaviors that lie on the boundaries of the partitions are highlighted. The
priorities for each behavior are listed in Table 1. Note that in this example, only behavior
8 has a nonnegative priority. Thus, only behavior 8 will be considered for LP

reassignment.

62

©)
Figure 23. Example Behavior Annealing Priorities

63

LPO

LP1

o
__®

Ds

Figure 24. SDF Initial Partition for Edge-Triggered D Flip-Flop

Table 1. Behavior Priorities for the Partition of Figure 24

Behavior | Max External Arcs Local Arcs Priority
0 0 3 3
1 | 4 3
— 2 | 4 3
3 | 3)
) 1 3 [
3 | 3 2
6 0 | 1
7 0 1 1
8 1 0 +1
9 0 p) 2

Because a selected move may effect the priority of other behaviors in the annealing
queue, it is not possible to select more than one move at a time. A behavior can only be
fully evaluated regarding all prospective moves when it reaches the top of the annealing

queue. The idea behind using the annealing queue is to narrow down the set of behaviors

that must be evaluated to only those that have a good chance of qualifying for a move.
Under this approach, it is possible that a selected move will cause the priority of a non-
queued behavior to become nonnegative. In this situation, the affected behavior would be
queued during the next iteration. The alternative to this approach would be to iterate
through all of the behaviors after each move, selecting the single best candidate behavior.
This approach has two disadvantages. First, it is computationally more expensive,
requiring O(NP2) worst case per potential move, vs. O(P2) (note that N is the number of
behaviors and P is the number of logical processes). Second, a complex scheme of
tracking which behaviors have been considered for reassignment must be implemented

along with a prioritization mechanism to prevent the starvation of low priority behaviors.

3432 Solution Convergence. The iterative border-annealing process
described above continues until one of two things occurs:
* The algorithm converges to a solution in which no more progress can be made.
This is indicated by an entire iteration in which no moves are selected.
* The maximum number of iterations is reached.
» A specified number of consecutive iterations are processed with no net
improvement in the objective cost function.
To allow for the evaluation of slight variations in the annealing process, three values
are taken as modifiable input parameters to the annealing algorithm:
* Num Iterations - defines the maximum number of annealing iterations to
perform before terminating the process.
* Max Worthless_Iterations - defines the number of consecutive iterations
with no net improvement in the objective cost function which can be processed

before the anneaiing process is terminated.

65

* Load_Imbal _Tol - defines the maximum value of the load delta factor that is
acceptable. Moves which cause the load delta factor to be larger than the
Load_Imbal Tol will not be made, even if they lower the overall inter-process

communications costs.

34.4 Topological Variation. As discussed in section 2.2.1, topological variation
arises when the inter-dependency structure of the parallel application differs from the
inter-connectivity structure of the parallel system (2). In the case of VSIM, grouping the
circuit behaviors into logical processes (LPs) does not eliminate the problem of
topological variation, as the inter-connections between the LPs may still differ from the
inter-connectivity structure of the hypercube.

Figure 25 shows the interconnection structure of an 8 node hypercube. In a hypercube
architecture, each of the P processors has logs P nearest neighbor processors with which
it shares a direct communications link. In order for a processor to communicate with a
processor that it is not directly connected to, the communications must be routed via one
or more intermediate processors. In theory, the longer the communications path and the
greater the number of intermediate routing processors, the higher the communications
costs. As a result, it is desirable to assign the LPs to physical processors in such a way
that the number of inter-LP connections which correspond with single-hop (i.e., direct)
physical connections is maximized.

To address these topological concerns, two additional features have been added to the
partitioning algorithm as menu selectable options. The first deals with the order in which
the LPs are built during the SDF and SBF initial partitions. This option is based upon the
assumption that LPy will be assigned to processor 0, LP; will be assigned to processor 1, .

.., and LPp.1 will be assigned to processor P-1. When performing the initial SDF or SBF

(a) (b)

Figure 25. Topological Layout on Hypercube Connectivity Graph
partitionings, the default ordering for assigning behaviors to LPs is to begin with LPg and
proceed in a straight numerical ordering to LPp_; (e.g. 0-1-2-3-4-5-6-7).

The potential problem with this approach lies in the fact that with the SDF and SBF
partitionings, there is a tendency for LP;, to have a large number of connections!? to
LPy.1. However, in a hypercube architecture, direct connections are determined by the
binary representation of the processor numbers, and processors n and n+1 may not be
directly connected. Specifically, only those processors whose binary representations
differ in a single bit position are directly connected. If processor n and processor n+1 are
not directly connected, then this situation will result in an increase in the amount of multi-
hop communications. For example, if LP1 has a connection to LP2 (assigned to
processors 1 and 2 respectively), each message from LP1 to LP2 will traverse two
physical communication links because processors 1 and 2 are not directly connected in a
hypercube architecture. This is show graphically in Figure 25.a.

In an attempt to minimize the amount of multi-hop communications, an alternative LP
assignment ordering is used based upon a path through the hypercube in which each

subsequent processor has a binary representation that differs from the previous one by a

12 Here, the term connection corresponds to an inter-behavior arc that crosses LP boundaries.

67

single bit position (e.g., 0-1-3-2-6-7-5-4). This is shown graphically in Figure 25.b.
However, such a path only exists if the number of processors is a power of 2. In those
circumstances where the number of processors is not a power of 2, the “extra” processors
will be assigned in a straighf numerical order. For example, the assignment ordering for
12 processors will be 0-1-3-2-6-7-5-4-8-9-10-11. Note that in a random partition, this
option has no meaning and is ignored.

The second feature which has been added as a option to address topological concerns
is the ability to weight inter-LP arcs based upon the number of hops in the corresponding
physical communications link. When activated, this option will have no effect upon the
initial SDF or SBF partitions, but will influence behavior reassignment decisions in the
border-annealing process. The net effect will be a tendency to reduce the number of
multi-hop communications at the potential cost of an increase in the amount of single-hop

communications.

3.5 Summary

This chapter discussed the partitioning objectives of achieving a balanced
computation load while minimizing the inter-process communications overhead.
Equations for modeling the quality of a partition as it relates to these objectives was
proposed. The model proposed for measuring the inter-process communications overhead
takes into account the additional message traffic caused by the conservative null-message
protocol. The communications overhead cost is combined with a factor that accounts for
load imbalance to create an objective cost function for the partition. A multi-phased
partitioning algorithm is then proposed with the objective of minimizing the objective
cost function.

The next chapter presents the detailed implementation of the proposed partitioning

algorithm, and discusses the primary test cases used in this thesis.

68

IV. Implementation

4.1 Overview

This chapter presents a high-level discussion of the implementation of the VHDL
Graph-Partitioning Tool (GP-Tool). It also discusses the primary VHDL circuits used as
test cases in order to validate the partitioning strategies implemented as part of this thesis.
A complete GP-Tool user’s guide and a more detailed discussion of the GP-Tool

implementation can be found in Appendix C.

4.2 VSiM Graph-Partitioning Tool (GP-Tool)

The VHDL Graph-Partitioning Tool (GP-Tool) implemented in this thesis is an
extension of the partitioning utility VHDL Graph Searching Program implemented
during previous AFIT research. It was written!3 in order to provide a random distribution
of the circuit behaviors among a desired number of LPs. The following sections present
an overview of the additional functionality added to GP-Tool as part of this thesis. More
information can be found in Appendix C.

421 Implementation Environment. GP-Tool is implemented in the Ada
programming language using the Sun Ada Compiler, version 1.1. The algorithms
implemented in GP-Tool are all sequential, with Sun workstations as the target platform.
The original source code was written in a procedural fashion (i.e. not object-oriented),
and made heavy use of Ada generics to provide the underlying data structures and data
structure manipulation routines. The current version of GP-Tool is also written in a

procedural fashion. In addition to allowing maximum reusability of the original source

13 By AFIT instructor Maj Eric R. Christensen, USA.

69

ET_DFF_TEST_ BENCH(STRUCTURAL) 0 1 2
ET_DFF_TEST_BENCH (STRUCTURAL) 0 3

ET_DFF (STRUCTURAL) 0

ET_DFF (STRUCTURAL) 0

NAND_GATE (SIMPLE) 3000000 4 7

NAND_GATE (SIMPLE) 3000000 5 6

NAND_GATE (SIMPLE) 3000000 0 2
THREE_INPUT NAND GATE (SIMPLE) 3000000 3 5
NAND_GATE (SIMPLE) 3000000 0 2 4

NAND_GATE (SIMPLE) 3000000 1

O NWBULOH J®Y

Figure 26. GP-Tool Input File for Edge-Triggered D Flip-Flop

code, procedural programming is the preferred methodology for routines that are
computationally intensive, such as the AB border-annealing algorithm (24:24). Appendix
C details the relationship between the original (unmodified) Ada packages, the modified
Ada packages, and the new Ada packages which comprise the current version of GP-
Tool.

4.2.2 Input and Output Files. At application startup, GP-Tool will prompt the
user for the name of the desired input file. The input file can be created manually for
trivially small circuits. For larger circuits, the VSIM utility vmap can be used to create the
correct file (see Appendix B more information on vmap). This file lists the behaviors in
the circuit and describes the behavior inter-dependency relationships. Each line in the
input file must be of the following format:

behav_id behav_name behav_delay [optional list of dependencies)
where all values are nonnegative integers except behav_name which is a string of no
more than 80 characters. Figure 26 shows an example input file for the edge-triggered D
flip-flop of Figure 18. Note that behaviors 6 through 9 have zero delays.

There are numerous output files that can be produced by GP-Tool. Of these files, the

two most important are the behavior-to-LP mapping file (1px.map) and the logical

70

process (LP) dependency file (1px.arcs) which are required for the parallel execution of
VSIM. The first file maps each behavior to an “owning” LP, while the latter file defines
the inter-dependency relationships of the LPs in the system.

In the original version of GP-Tool, the 1px.map describing the random partition was
produced directly by GP-Tool, but the 1px.arcs file was not. Instead, an intermediate
file was produced which, along with the 1px.map file, was used as the input to a separate
utility application (build_arc) which produced the appropriate 1px.arcs file. However,
the build_arc utility was unable to handle the large circuit description files which
comprised the primary test cases used in this thesis. To circumvent this problem, the
current version of GP-Tool directly produces the 1px.arcs file corresponding to each
ipx.map file. The specific format specifications for the 1px.map and 1px.arcs files are
discussed in section B.4.1 of Appendix B.

The other output file which is of primary interest is the partition statistics file which
provides a large amount of information about the quality of the resulting partition.
Among the information reported is the number of inter-component arcs, the
communications cost factor (H¢), the communications distribution factor (Hg), the
number of LP output lines (Ogrcs), the load delta factor (Hp), the communications weight
matrix, and a list of the behaviors assigned to each LP. This information is provided to
facilitate the comparison of the quality of different partitions. This file is produced
automatically for each partition generated, but is not required by VSIM.

An example partition statistics file is shown in Figure 27. This figure shows a Simple
Depth-First (SDF) partition for the Wallace-Tree muitiplier with 4 LPs. The top portion
of the file gives the general information about the input problem-graph. Specifically, it
lists the name of the input file and the number of vertices and arcs in the problem graph.
The middle section lists detailed information about the partition, beginning with the name

of the partitioning algorithm used. The other values presented are as follows:

71

Number of components - Gives the number of LPs in the partition.
Inter-component arcs - Gives the total number of inter-behavior arcs which
cross LP boundaries.

wWght_Inter LP Arcs - Represents the inter-component arcs with each arc
multiplied by the hop-weight of the corresponding physical communications link.
This is equivalent to the sum of the entries in the communications weight matrix.
If all arcs are evenly weighted with a value of 1.0, this figure will be the same as
the previous item.

Avg Wght_Arcs - Represents the average output arc weight for each LP
(Wght_Inter_LP_Arcs divided by the number of LPs). This is equivalent to the
average of the row sums in the communications weight matrix.
Stddev_Wght_Out_Arcs - Represents the standard deviation of the output arc
weights for each LP. This is equivalent to the standard deviation of the row sums
of the communications weight matrix.

Maxdev_Wght Out_Arcs - Represents the maximum positive deviation of the
output arc weights for each LP. This is equivalent to the maximum positive
deviation of the row sums of the commumcations weight matrix.
Stddev_Wght_In Arcs - Represents the standard deviation of the input arc
weights for each LP. This is equivalent to the standard deviation of the column
sums of the communications weight matrix.

Maxdev_Wght_In Arcs - Represents the maximum positive deviation of the
input arc weights for each LP. This is equivalent to the maximum positive

deviation of the column sums of the communications weight matrix.

72

GRAPH INFORMATION - wallace.vmap

The number of vertices in this graph is : 1050
The number of arcs in this graph is : 1770
PARTITION INFORMATION - Simple Depth-First (SDF) Partitioning

Number of components : 4
Inter~component arcs : 312

Wght_Inter_ LP_Arcs : 312.0
Avg_Wght_Arcs : 78.0
Stddev_Wght_Out_Arcs : 66.5

Maxdev_Wght_Out_Arcs : 89.0
Stddev_Wght_In_ Arcs : 46.6
Maxdev_Wght_In_Arcs : 49.0

Comm_Cost_Factor : 17.63 %
Comm Dist_Factor : 114.10 %
LP_Output_Lines : 11
Lookahead Factor : 0.667
Avg_Comp Load : 262.5
Stddev_Comp_ Load : 0.6
Maxdev_Comp_Load : 0.5
Load Delta Factor : 0.19 %

The LP loads are :
263 263 262 262

The communications weight matrix is :

0.0 2.0 0.0 5.0 7.0
56.0 0.0 3.0 2.0 61.0
21.0 48.0 0.0 8.0 77.0
50.0 40.0 77.0 0.0 167.0

127.0 90.0 80.0 15.0 => 312.0
The total partition cost is : 3.65

The predicted speedup is : 3.01
Speedup prediction parameters :

alpha : 100.0000000000

beta : 1.0000000000

gamma : 0.0900000000

Figure 27. Wallace-Tree SDF Partition Statistics File for 4 LPs

73

Comm_Cost_Factor - This factor is the H¢ discussed in section 3.3.2.1. It
represents Wght _Inter_LP_Arcs divided by the total number of inter-behavior
arcs in the input problem-graph.

Comm Dist_Factor - This factor is the Hy discussed in section 3.3.2.2. It
represents the difference between Maxdev_Wght_oOut_Arcs and Avg_Wght_Arcs
divided by Avg_wght_arcs.

LP_Output_Lines - This factor is the Ogycg discussed in section 3.3.2.4, and
represents the number of arcs in the LP connectivity graph. It is equivalent to the
number of non-zero entries in the communications weight matrix and the number
of output lines specified in the 1px.arcs file.

Lookahead Factor - This factor is the Lascg discussed in section 3.3.2.4, and
provides a measure of the amount of lookahead in the 1px.arcs file (the smaller
the value, the larger the average lookahead).

Avg_Comp_Load - This factor is the Layg discussed in section 3.3.1, and
represents the average computation load of all the LPs. Since all behaviors are
equally weighted, this is equivalent to the number of vertices in the problem-graph
divided by the number of LPs.

Stddev_Comp Load - Represents the standard deviation of the LP
computation loads.
Maxdev_Comp Load - Represents the maximum positive deviation of the LP

computation loads.

Load Delta_Factor - This factor is the Hp discussed in section 3.3.1. It
represents Maxdev_Comp_Load divided by Avg_Comp_Load.

LP Loads - Lists the computation load (i.e. number of behaviors) assigned to

each LP beginning with LPO and proceeding in numeric order from left to right.

74

B

* Communications Weight Matrix - This is the n x n communications weight
matrix shown in Figure 20 with an additional column to hold the row sums, and
an additional row to hold the column sums. The bottom right entry holds the sum
of all n x n entries and corresponds to the value wght_Inter LP_Arcs.

e Total Partition Cost - This is the value of the objective cost function of
section 3.3.4.1.

* Predicted Speedup - This is the value of the estimated speedup equation
of section 3.3.4.2.

* Speedup Prediction Parameters - Alpha and beta represent the coefficients
used to balance the communications and load imbalance factors of the objective
cost function. Gamma is used as the coefficient to the total partition cost in the
speedup estimate function.

The bottom portion of the partition statistics file lists the behaviors assigned to each LP

and the number of a-cs that are local!4 to that LP, and is omitted from Figure 27.

423 Data Structures. The implementation of the partitioning algorithms is
heavily dependent upon the data structures used to represent the problem-graph for the
circuit being simulated. Several modifications to the underlying data structures used in
the original version of GP-Tool have been implemented in order to improve algorithm
efficiency and to facilitate the implementation of more sophisticated partitioning
algorithms.

In the original GP-Tool, a graph was represented by a set of vertex records and a set
of arc records. In addition, each vertex record contained its own set of arc records for arcs

that originated from that vertex. Each behavior in the circuit being simulated corresponds

14 A Jocal arc is defined as one that is between two behaviors assigned to the same LP.

75

-- Declaration of the Vertex Nodes & Instantiation of Generic Set pkg

type Vertex Node is

record
The_Item : Item;
The_Arcs : Arc_Set.Set; -- set of output arcs
Reference_Count : Natural := 0; -- number of input arcs
Next : Vertex; -- for garbage collection

end record;
type Vertex is access Vertex Node;
package Vertex Set is new Set_Iterator(Item => Vertex);

-~ Declaration of the Arc Nodes & Instantiation of Generic Set pkg

type Arc_Node is

record
The_Attribute : Attribute;
The_Source : Vertex; -- pointer to source vertex
The_Destination : Vertex; -- pointer to destination vertex
Next : Arc;

end record;
type Arc is access Arc_Node;
package Arc_Set is new Set_Iterator(Item => Arc);

-- Declaration of the Graph Type

type Graph is

recorxd
The_Vertices : Vertex Set.Set;
The_Arcs : Arc_Set.Set:

end record;

Figure 28. Original GP-Tool Graph Data Structures

to a unique vertex record, and each dependency between behaviors corresponds to a
unique arc record.

The original data structure declarations are shown in Figure 28. With these data
structures, procedures were provided to take a graph as input and iterate through the set of
vertices or the set of arcs which comprised the graph. A procedure was also provided to
take a single vertex as input and iterate through its set of output arcs. As shown in Figure

28, each arc maintained pointers to its source vertex and its destination vertex. Thus, it

76

-- Declaration of the Vertex Nodes & Instantiation of Generic Set pkg

type Vertex Node is

record
The_Item : Item;
The_Arcs : Arc_Set.Set; ~-- set of output arcs

Incoming_ Arcs : Arc_Set.Set; -~ set of input arcs
Reference_Count : Natural := 0; -- number of input arcs

Parent : Vertex; -- ptr to prev member of group
Child : Vertex; -- ptr to next member of group
Next : Vertex; ~-- for garbage collection

end record:
type Vertex is access Vertex Node;
package Vertex_Set is new Set_Iterator(Item => Vertex);

-~ Declaration of the Arc Nodes & Instantiation of Generic Set pkg

type Arc_Node is

record
The_Attribute : Attribute;
The_Source : Vertex; -=- pointer to source vertex
The Destination : Vertex; -- pointer to destination vertex
Next : Arc;

end record;
type Arc is access Arc_Node;
package Arc_Set is new Set_Iterator(Item => Arc):;

~=- Declaration of the Graph Type

type Graph is

record
The_Vertices : Vertex_Set.Set;
The_Arcs : Arc_Set.Set;

end record;

Figure 29. Modified GP-Tool Graph Data Structures

was possible to traverse the graph in the forward direction (i.e. following arcs from tail to
head), but not in the reverse direction. This is because the set of input arcs was not
maintained by each vertex record.

To alleviate this problem, the original version of GP-Tool built two separate graphs:
an “adjacency graph” which had the arcs in their forward directions, and a “dependency

graph” which was identical except that the direction of the arcs was reversed. This dual

77

type Process_Node_Type is

record
Process_1Id : Natural;
Label Name : String80.String_Type;
The_Delay : Natural := 0;
The_LP : Natural := 0;
Group_Size : Natural := 1;

Group_Num Arcs : Natural := 0;
end record;

Figure 30. Process_Node_Type Data Structure

graph approach was adequate for many applications (such as finding the strong
components), but it had several disadvantages. First, it doubled the amount of memory
required to maintain the graph information. Second, it required twice as long to build the
graph from the input file. Third, and most significantly, there was no way to
simultaneously iterate both the input and output arcs of a given vertex without iterating
through the entire vertex set of the dual graph to locate the matching vertex record. The
ability to perform this last function is critical to being able to efficiently prioritize
behaviors for potential LP reassignment during the border annealing process.

To provide the needed functionality, the vertex record was modified to include a set
of incoming arcs in addition to the set of outgoing arcs. The appropriate procedure to
iterate this new set of incoming arcs was also added. Together, these changes obviated the
need to maintain two separate graphs in memory. The modified data structure
declarations are shown in Figure 29.

In addition to adding a set of incoming arcs to the vertex record, two additional fields
(Parent and child) were added to allow groups of vertices to be linked together in a
doubly-linked list fashion. These fields are used to link together the behaviors that have
been assigned to the same LP. In doing so, it is possible to quickly iterate through all of
the behaviors that have been assigned to a given LP to gather pertinent information, such

as the number of arcs that are local to that LP, without the need to maintain complex

78

external data structures. To facilitate the recording of partition information in the graph
data structure, each vertex keeps track of which LP it is currently assigned to. In addition,
one vertex in each LP is arbitrarily chosen to be the “list head” for that LP, so called
because its Parent field points to a null vertex placing it at the head of the doubly-linked
list which links together the members of the LP. For easy access, the size of the LP and
the number of local arcs for that LP are recorded in the list head (referred to as the “head
vertex” for that LP). To track all of this information, the record data structure shown in
Figure 30, referred to as the Process_Node_Type, is used as the “Item” type in the
Vertex_Node record of Figure 29.

In addition to providing a place to record LP information, the Process_Node_Type
data structure is where the behavior specific information is recorded. Specifically, the
process id number, the behavior’s label name, and the behavior delay are recorded. It
should be noted that to minimize data duplication, only the head vertex for each LP
maintains the information regarding the LP’s size and number of local arcs. These fields

are simply ignored if the vertex is not the head vertex.

424 Menu Structure. The current version of GP-Tool uses a two-level menu
structure. The GP-Tool main menu is shown in Figure 31. Items 1 through 4 allow the
user to produce various output files not directly related to the partitioning files, and are
discussed further in Appendix C.

Item 5 on the main menu takes the user to the behavior mapping sub-menu shown in
Figure 32, from which the user can select the desired partitioning algorithm as well as
modify various user defined partitioning parameters. Items 4-5 allow the user to select an
AB Annealing partition using the depth-first, breadth-first, or random partitioning
algorithms respectively to provide the initial partition. Reference Appendix C for more

detailed information on the available menu options.

79

RERXRRRRRRRRRRRARRRRRAXR GP-TOOL MAIN MENU RRARRARARAAXRAARRRRANRR

Select one of the following operations:

Generate Delay and Adjacency Information File

Generate SGE Data File

Generate Topological Sort File

Generate Strong Components File

Generate Behavior to Logical Process (LP) Mapping File(s)
Quit GP-Tool

o b WN
e es en 89 se as

Enter your menu choice now:

Figure 31. GP-Tool Main Menu

425 Strong Component Search. In directed graph terminology, a strongly
connected component is defined as a maximal set of vertices with the property that there
is a path between any two vertices in the set (10:488). In terms of a problem graph for a
VHDL circuit simulation, a strongly connected component represents a complete
feedback loop, such as the one in Figure 33. Such a feedback loop creates a circular
dependency during simulation. It is common for such feedback loops in digital circuits to

krkkkXRAkARR%X GP-TOOL BEHAVIOR MAPPING MENU **AxtaxkRknsdk

Select one of the following operations:

1 : Generate Random Partitioning File

: Generate Simple Depth~First Partitioning File
: Generate Simple Breadth-First Partitioning File
: Generate ABl-Annealing Partitioning File
Generate AB2-Annealing Partitioning File

: Generate AB3-Annealing Partitioning File

: Turn the .MAP and .ARCS output OFF

: Modify the Cost Function Parameters

: Return to Main Menu

: Quit GP-Tool

OCWVWOJoaUL s WN

Enter your menu choice now:

Figure 32. GP-Tool Mapping Sub-Menu

80

IN1:0-> 1 D‘j
dela

y =3 ns ' OUTPUT
IN2: 1 0
delay=2ns

Figure 33. Example Feedback Loop - Simple Oscillator

involve a large number of signal state changes. By isolating the feedback loop on a single
LP, it may be possible to reduce the amount of inter-LP message traffic.

For example, consider the simple oscillator circuit in Figure 33. Signal IN2 is tied
high, while signal IN1 is initially low and is taken high to begin the output oscillation.
When IN1 is taken high, the output signal will change states every 5 ns (the sum of the
delays of the AND and XOR gates). If the AND and XOR gates are assigned to different
LPs, two inter-LP messages (AND to XOR, and XOR to AND) will result for each
change of the output state. If the AND gate is placed on the same LP as the XOR gate,
however, these messages will no longer be necessary (all communications will take place
via the local behavior and active signal lists).

The strong components of the problem graph are found using the following algorithm
(10:489):

e Perform a depth-first search on the input graph with the arcs in the reverse
direction, keeping track of the order in which the vertices are finished. A vertex is
finished when all paths leaving the vertex have been fully explored.

» Perform a second depth-first search on the input graph with the arcs in the forward
direction. However, begin new depth-first trees by considering the vertices in the
reverse order of their finishing times in the initial search of the previous step.
Keep track of the depth-first trees of this second search.

* Output the depth-first trees from the second search. Each one of these trees

corresponds to a strongly connected component of the input graph.

81

4.2.6 Simple Depth-First (SDF) Partition. The implementation of the Simple

Depth-First (SDF) partitioning algorithm is based upon the depth-first search routine used

in finding the strong components. The algorithm consists of the following steps:

Calculate the expected size of the current LP by dividing the number of
unassigned vertices by the number of LPs remaining to be filled, rounding up to
the nearest integer. Reset the vertex counter to zero.

While the vertex counter is less than the expected size of the current LP, traverse
the graph in a depth-first manner with the arcs in the forward direction using a
source vertex!5 as the starting point. As previously undiscovered vertices are
visited, assign them to the current LP, mark them as discovered, and increment the
vertex counter. If a newly discovered vertex is part of a strong component, assign
the entire strong component to the current LP and increment the vertex counter by
the size of the strong component. Note that this may put the vertex counter over
the limit set by the size of the LP calculated in the previous step. Finding the
strong components of the graph prior to performing the SDF partition is optional.
In the current version of GP-Tool, the SDF partition by itself does not consider
strong components. However, when the SDF partition is used as the initial
partition for the AB-Annealing algorithm, a strong component search is performed
as the first step in the partitioning process.

If the current depth-first search tree is completed before the current LP has
reached its target size, begin a new search by choosing another undiscovered
source vertex as the next starting point. If no more source vertices remain, choose

an arbitrary undiscovered vertex as the next starting point.

15 A source vertex is one with no inputs.

82

If the current LP reaches its target size before the current depth-first search tree is
completed, the search is terminated and the process repeats starting again at step
one for the next LP. A new depth-first search tree is started for each successive LP
in an attempt to increase the probability of assigning a complete depth-first search
tree to the LP. This is desirable because each depth-first tree represents a set of
dependent tasks, and assigning dependent tasks to the same LP will reduce the

inter-LP communications overhead.

This algorithm is similar to the Depth-First Breadth-Next (DFBN) algorithm discussed in

section 2.4.8, except that load balancing is considered in the SDF algorithm whereas it is

not addressed in the DFBN algorithm. Some characteristic traits of the partitions

generated by the SDF algorithm are as follows:

The first LP will contain long paths of dependent behaviors with a large number
of local arcs.

Each successive LP will tend to have shorter paths of dependent behaviors than
the preceding LP as it gets more difficult to find long paths of dependent
behaviors which are not yet assigned to an LP.

The final LP will consist of the fragments of the problem graph that were not
assigned to a previous LP, and will tend to have a relatively small number of local

arcs.

4.2.7 Simple Breadth-First (SBF) Partition. The implementation of the Simple-

Breadth First (SBF) partitioning algorithm is identical to that of the SDF algorithm with

the following exceptions:

The problem graph is traversed in a breadth-first manner.

83

e When an LP is full, the graph traversal for the subsequent LP assignment picks up
where the previous one had left off. The breadth-first search tree is not terminated

prematurely.

4.2.8 AB Border Annealing Algorithm. The implementation of the AB Border
Annealing algorithm corresponds to the steps discussed in section 3.4.3. However, before
beginning the first iteration, the graph is evaluated to initialize several data structures
with statistical information concerning the state of the initial partition. The most
significant of these data structures is the initial value of the communications cost sub-
function:

H,H.(1+ H,)

where

H, =L,,0,,=(10)0,, =0,
because the value of Lagcg is not known until the final state of the partition has been
reached. It is calculated as part of the routine that prints the corresponding 1px.arcs file.
The current algorithm for computing Larcs is time consuming and including it in each step
of the annealing process would render the algorithm computationalily infeasible. The
algorithm for computing Larcs is discussed further in section 5.4.

In addition to ignoring the effect of the lookahead, an additional option has been
added to the annealing input parameters:

* Ignore_Comm Dist_Factor - boolean value that allows the factor Hy to be

ignored when computing the value of the communications sub-function during the
annealing process.

When Ignore_Comm _Dist_Factor is true, the communications cost is calculated as:

Hﬂ Hc

84

During data analysis, it was discovered that in some circumstances, the annealing
algorithm has a tendency to accept a small increase in Ogecg in order to gain a decrease in
Hg. However, the resulting partition resulted in a decrease in simulation performance over
the initial partition, indicating that the increase in Ogycs dominated the decrease in Hg.
The option 1gnore_Comm_Dist_Factor was included to force the algorithm to accept an
increase in Hq in order to decrease the remaining portion of the cost function (i.e., HaH).

Once the initial communications costs have been calculated, the annealing process
begins as shown in Figure 34. The annealing queue is filled by the procedure
Prioritize_And_Queue using the criteria discussed in section 3.4.3.1. Once the queue
has been filled, vertices are removed in priority order and considered for LP reassignment
by the procedure Consider_vertex.

The procedure consider_Vertex initializes several array data structures with
information concerning the impact on the objective cost function of reassigning the given
vertex to each viable destination LP. Only those LPs which contain behaviors that are
directly connected to the given vertex are considered viable. The specific data structures
maintained are:

* Input Arcs Array - Records the number of input arcs to the subject

behavior that originate from behaviors in each of the other LPs.

* Output_Arcs_Array - Records the number of output arcs from the subject
behavior that go to behaviors in each of the other LPs.

* Wght_Arcs Array - Records the net change in the value of
Wght_Inter_LP_Arcs (sum of the inter-component arcs with each arc multiplied
by the corresponding hop weight). Used to calculate the change to Hc.

* Maxdev_Comm Array - Records the net change in the value of

Maxdev_Wght_Out_Arcs. Used to calculate the change to Hy.

85

No

Consider
Vertex

Figure 34. AB Border Annealing Algorithm Cycle

Stddev_Comm Array - Records the net change in the value of
Stddev_wght_out_Arcs. Used as a tie breaker, if necessary.
Maxdev_Load_Array - Records the net change in the value of

Maxdev_Comp_Load. Used to calculate the change to Hp.

86

* Output_Line Array - Records the new value of Lp_output_Lines (number
of arcs in the LP connectivity graph). Used to calculate the change to Hy.
Each of these data structures is a one-dimensional array indexed by the destination LP
number. If the destination LP is not a viable destination, the corresponding vaiues in the
Wght_Arcs_Array, Maxdev_Comm_Array, and Sstddev_Comm_Array are set to an
arbitrarily large value (e.g. 2 times the number of arcs) to effectively eliminate these LPs
from move consideration.

The first two data structures, Input_Arcs_Array and output_Arcs_Array, are
initialized once at the beginning of the procedure consider_vertex. In a worst case
scenario, a given behavior has input arcs from all other LPs and output arcs to all other
LPs. In this situation, it would take O(N) operations to initialize these data structures
(where N is the number of behaviors in the graph). However, on average, each behavior
will have only E/N input arcs and E/N output arcs (where E is the number of arcs in the
graph). For a given circuit, E and N are fixed and have a relatively small ratio. Thus, on
average, it takes only O(2E/N) = O(1) operations to initialize these data structures.

For viable destination LPs, however, the net change to the communications cost
factors must be calculated. Although the communications costs between LPs are recorded
in an P2 data structure (the Comm_Weight_Matrix), where P is the number of LPs, only
those rows and columns associated with the source and destination LP will be affected by
the move. Thus, the net change to the communications cost factors for a particular
destination LP are calculated in O(P) time. Since there are (P-1) potential viable
destination LPs, the upper limit of the running time order of the Consider_vertex
procedure is O(P(P-1)) = O(P2) (assuming O(1) average time to calculate the input/output
dependencies of a viable destination LP as discussed in the previous paragraph).

However, as P is increased, it is reasonable to expect that only a small fraction of the LPs

87

will be viable destinations for the average vertex, making the average running time for
Consider_Vertex approximately O(P).

The data structures initialized by the procedure Consider_vertex are passed to the
procedure select_Best_Move which evaluates the viable moves to find the one which
will result in the smallest value of the communications cost sub-function:

H,H,(1+ H,)
or
H, H,

if Ignore_Comm_Dist_Factor is set to true. If the destination LP with the smallest
communications cost sub-function value will result in a change to Hy, that will put it over
the maximum value (Load_Imbal_Tol), the selected move is discarded and the next best
move is sought. In no case will an increase in the communications cost sub-function be
allowed. Thus, it is possible that no move will be selected. The procedure’s running time
is O(P) since each LP must be considered.

If a move is selected, it is carried out by the procedure Move_vertex. The move
involves an update to the partition statistics values to record the new cost factors, as well
as a series of simple list inserts and deletes to assign the vertex to the new LP. The
procedure Move_Vertex has a running time of O(P) since the communications weight
matrix must be updated to contain the new values for the rows and columns associated
with the source and destination vertex.

If the annealing queue is not empty, the next vertex is removed and the consideration
process is repeated. If the annealing queue is empty, the current iteration is completed. If
the maximum number of iterations has not been reached, the value of the communications
cost sub-function is compared to the value computed at the end of the previous iteration
(or at the beginning of the algorithm for the first iteration). If there was no net

improvement, the iteration is considered “worthless.” If there have been

88

Max_Worthless_Iter consecutive iterations that were worthless, the annealing process is
terminated.

With the streamlined implementations of the procedures consider_vertex and
Move_Vertex, the most time consuming portion of the annealing cycle appears to be the
procedure Prioritize_And_Queue. This appears to be due to the linear data structures
used to provide priority queue management. A splay tree queue implementation may

provide a higher level of efficiency.

4.3 TestCases

4.3.1 Wallace-Tree Multiplier. Prior to this thesis effort, the wallace tree
multiplier was the largest VHDL circuit simulated in parallel at AFIT with the VSIM
simulator. The multiplier takes two eight bit vectors as input and produces a single twelve
bit product vector as output (4:131). The resulting problem graph consists of 1,050

behaviors and 1,770 inter-behavior arcs. The simulation runs from 0 to 2000 ns.

4.3.2 Associative Memory Array. The associative memory array circuit consists
of a 16 x 16 memory array, associated control registers, and 68 vector testbench. The
associative memory is currently the largest circuit simulated with VSIM. The resulting
problem graph consists of 4,243 behaviors and 9,312 inter-behavior arcs. The testbench
consists of the following actions:

1. Write to all memory words in order from word 0 to word 15 (16 writes).

2. Read all memory words in order from word 0 to word 15 (16 reads).

3. Search for certain pre-specified pattems (16 searches).

4. Read from all memory words in an arbitrary order (16 reads).

5. Perform read operations with multiple words selected (4 reads).

89

Enable

i 1
Data Input Register Bit Select Register
Word Select Register
D(0-15) B(0-15)
W(0-15) M(0-15)
16 x 16 Memory Array
R(0-15) P(0-15)
Tag Output Register

R Output Register P Output Register

Figure 35. Associative Memory Array

The circuit is built in a hierarchical manner to allow for easy transformation and
compilation with VSIM. When written to run with the Synopsis commercial VHDL
simulator, the simulation ran from O to 8000 ns. However, VSIM has a limit of
approximately 2000 ns because of the data type used to represent the simulation clock. To
get around this problem, all time units in the associative memory VHDL source code
were changed to picoseconds. Thus, the simulation runs from 0 to 8000 ps (8 ns).

A block diagram for the associative memory circuit is shown in Figure 35. It should
be noted that all three input registers and all three output registers are clocked by the

same enable signal as a matter of design convenience. A result of this is that during

memory writes, the value of the tag output register oscillates rapidly. This has the effect
of adding a large number of events to the simulation, slowing down the simulation.
Observation of the simulation shows that the simulation progresses slowly until the writes
are completed (at time 2000 ps), at which time it begins to progress ata much faster pace.
The correctness of the output remains unaffected since the content of the tag register is

not relevant during a memory write.

91

V. Methodology and Results

5.1 Overview

This chapter presents a discussion of the performance of the VSIM test cases
discussed in the previous chapter. Four different partitionings created with the GP-Tool
utility are used. Specifically, each circuit was simulated with a random partition, a simple
depth-first (SDF) partition, and a simple breadth-first (SBF) partition. The best of these
three partitions was then used as the initial partition for the AB border-annealing
algorithm to create a fourth partition.

The primary performance measurements were taken on the 8-node iPSC/2. All
speedup calculations use a single-LP partition as the performance baseline. Each circuit
was simulated with 2, 3, 4, 5, 6, 7, and 8 LPs for each of the four partition types. For the
wallace tree, the performance measurements and message counts for each configuration
are calculated from the average of 20 simulation trials. For the associative memory array,
only 10 simulation trials were run for each configuration due to the large amount of time
required for each trial.

The results of each circuit are discussed in terms of the resulting speedup, the inter-LP
message traffic, and the corresponding partition statistics. The inter-LP message traffic is
analyzed in terms of message traffic originating from each LP. Tables containing the
simulation trial results and partition statistics for each combination involving 1, 2, 4, or 8
LPs are included in Appendix D along with supplemental inter-LP message traffic charts.

In addition to the iPSC/2 results, the wallace tree multiplier was run on an iPSC/860

hypercube using up to 32 nodes. These results are presented briefly in section 5.6.

92

Simulation Time (ms)

Simulation Wallclock Time

<4

N
w
F -
LA
o+
00 o

Number of LPs

=8&—— Random

—0——Simple Depth-
First (SDF)

=& Simple Breadth-
First (SBF)

—Q—— AB2 Annealing
(AB2_ 2)

Speedup

Number of LPs

——&— Random

=0 Simple Depth-
First (SDF)

=@ Simple Breadth-
First (SBF)

——O0— AB2 Amnealing
(AB2_2)

Wallace-Tree Multiplier.

5.2 Speedup Results

93

Figure 36. Wallace Tree Speedup Results Comparison

The wallace tree speedup results are shown in
Figure 36. All speedup calculations are in reference to the single LP case which required
an average of 67,947 ms to complete. Figure 37 compares the number of LP output lines,
the number of inter-LP arcs, and the communications distribution factor for each of the
partitioning algorithms, while Figure 38 shows the corresponding message counts. The
message counts are shown in terms of real, null, and total messages sent from all LPs.

As shown in Figure 36, the random partitioning speedup peaks at 2.72 with 3 LPs and
declines to 1.23 with 8 LPs. Observation of Figures 37 and 38 shows that the reason for

LP_Qutput_Lines

~———8— Random
g =0 Simpic Depth-
g First (SDF)
61 ——&@— Simple Breadth-
o First (SBF)
==~ AB2 Annecaling
Number of LPs (AB2_2)
Number of Inter-LP Arcs
1,600 el Random
1,400
8 1200 N, W— .
£ 10 Simple Depth
5 800 First (SDF)
g 600
g 400 e @— Simple Breadth-
200 First (SBF)
0
———O—— AB2 Annecaling
Number of LPs (AB2_2)
Communications Distribution Factor
200.00% === Random
§
g “8; 150.00% - e e ™ Slll'lplC quh_
£ £ 10000%4 First (SDF)
E =
g § 50.00% A ——@— Simple Breadth-
A First (SBF)

g

1 2 3 4 5 6 7 8 =——O— AB2 Anncaling
Number of LPs (AB2.2)

Figure 37. Wallace Tree Partition Statistics Comparison

Number of Messages Transmitted (Real)

20.000 ——8—— Random
3 17,500
15,000 —— g -
| i st
= 10,000 First (SDF)
7,500
5,000 ~—@—— Simple Breadth-
g 2,500 First (SBF)
0 2
1 2 3 4 s 6 17 8§ ——O—— AB2 Anncaling
Number of LPs (AB2.2)
Number of Messages Transmitted (Null)
3 Random
é =0 Simple Depth-
& First (SDF)
H]
& ———&@— Simple Breadth-
g First (SBF)
——©O— AB2 Anncaling
(AB2_2)

Number of LPs

Messages Transmitted

Number of Messages Transmitted (Total)

100,000
80,000
60,000
40,000
20,000

0 $ $ ¢ et {
1 2 3 4 5 6 7 8
Number of LPs

———&— Random

=0 Simple Depth-
First (SDF)

——&@— Simple Breadth-
First (SBF)

——O—— AB2 Annealing
(AB2_2)

Figure 38. Wallace Tree Inter-LP Message Traffic Comparison

95

this sharp drop-off in speedup is due to a dramatic increase in the inter-process
communications overhead as the number of LPs is increased. Specifically, Figure 37
shows that for 8 LPs, the random partition has the maximum of 56 LP output lines and a
total of 1,558 of 1,770 arcs (88%) that cross the LP boundaries. Comparing these curves
to Figure 38 shows the direct relationships between the number of LP output lines and the
number of null messages transmitted, and between the number of inter-LP arcs and the
number of real messages transmitted.

Note that the random partitioning real message curve (Figure 38) decreases in slope as
the number of LPs is increased. This occurs as the number of random partition inter-LP
arcs quickly approaches its theoretical maximum (e.g. 49% with 2 LPs and 75% with 4
LPs). This correlates directly to the number of real messages approaching its maximum
limit at approximately the same rate. The maximum number of real messages is
determined by the number of actual signal changes in the simulation. If 100% of the arcs
cross LP boundaries, then every signal change in the simulation will result in the
transmission of a real message.

On the other hand, the slope of the null message curve for random partitioning shows
a trend of increasing as the number of LPs is increased. This follows from the direct
relationship between the number of null messages and the number of LP output lines
along with the fact that the random partitioning algorithm has a tendency to produce the
maximum of P(P-1) LP output lines. The theoretical limit on the number of LP output
lines is the same as the number of inter-LP arcs. However, the limiting factor of P(P-1)
means that a larger number of LPs will be required for the actual number of LP output
lines to approach its maximum. Furthermore, while the number of inter-LP arcs and LP
output lines share a common theoretical maximum, the maximum number of null
messages may be much higher than the maximum number of real messages. This is due to

several factors. First, each real message transmitted may result in the transmission of

9%

multiple null messages. Second, null messages are transmitted over all output lines each
time an LP must block for input. Finally, the number of null messages is partially
dependent upon the amount of lookahead in the corresponding 1px . arcs file.

An important result of this is that as the number of LPs is increased, the null message
communications overhead required to avoid deadlock begins to dominate the overhead
from the real message traffic. For example, the approximate null to real message ratios
for random partitioning with 2, 4, and 8 LPs are 1:4, 1:1, and 4:1 respectively.

The SDF partitioning speedup curve is slightly better, peaking at 3.04 with 5 LPs and
decreasing to 1.50 with 8 LPs. Looking at Figure 37, the most notable improvement
between the random and SDF partitions is in the number of inter-LP arcs. With the
deliberate depth-first partitioning algorithm, the number of inter-LP arcs approaches its
maximum at a much slower rate, reaching only 30% with 8 LPs (vs. 88% for the random
partition). Figure 38 shows how this improvement translates directly into a similar
improvement in the number of real messages transmitted. For example, with 8 LPs, there
is a 73% reduction in the number of real messages. In addition, the SDF partitioning
algorithm reduced the number of LP output lines to only 45 with 8 LPs (vs. 56 for the
random partition). Again, Figure 38 shows how this improvement translates directly into
a similar improvement in the number of null messages transmitted (e.g., 27% reduction in
the number of null messages with 8 LPs). It should be noted that an increase in the
amount of lookahead in the 1»x.arcs files and the decrease in the number of real
messages also contributed to the decrease in the number of null messages. The increased
lookahead is due to th. 1bility of the SDF algorithm to assign relatively long chains of
dependent behaviors to the same LP. In many cases, this will increase the minimum path
time through the LP.

Even with this reduction in the number of null messages, however, the shape of the

null message curve is still prcportionai to P(P-1). As a result, the null message overhead

still dominates the real message overhead as the number of LPs increases. In fact, due to
the reduction in the number of real messages, fewer LPs are required until null messages
begin to dominate real messages. For example, the null to real message ratio for the SDF
partition begins at 2:1 with 2 LPs, and increases to 11:1 for 8 LPs. This domination of the
null messages offsets the apparent benefits gained by the decrease in the real message
traffic. For example, with 8 LPs, there was a 73% reduction in real messages, but only a
36% reduction in total messages. The continued high communications cost is the primary
reason that the speedup curve for the SDF partition drops off rapidly with more than 5
LPs.

An additional factor which appears to limit the speedup gains of the SDF partition is
the relatively high value of Hy as shown at the bottom of Figure 37. The inter-LP arcs of
the random partition are relatively evenly distributed among each of the LPs. However,
the SDF algorithm tends to result in partitions in which a relatively large portion of the
inter-LP arcs will originate from a single LP. The relationship between Hy, the inter-LP
message traffic, and the resulting speedup is discussed further in section 5.4.

The SBF partition speedup curve is even better than the SDF curve, peaking at 3.43
and declining at a much slower rate to 2.86 with 8 LPs. While Figure 37 shows that both
algorithms result in partitions with approximately the same number of inter-LP arcs, the
SBF algorithm is able to take advantage of the feed-forward nature of the wallace-tree
circuit and produce a circuit with a significantly smaller number of LP output lines (e.g.,
29 with 8 LPs vs. 45 for the SDF partition). As shown in Figure 38, this corresponds to a
slower growth rate in the null message curve. Still, with the corresponding reduction in
real message traffic, the communications overhead is dominated by the null message

traffic with a null to real message ratio of 2:1 with 2 LPs and growing to 6:1 with 8 LPs.

98

Since the SBF partition provided the best speedup results, it was used as the initial
partition to the AB annealing algorithm to get the fourth speedup curve shown in Figure
36. The following input parameters were used to the annealing algorithm:

Num_Iterations - 500 Ignore_Comm Dist_Factor - true
Max Worthless_Iter - 25 Topological ~ false
Load_Imbal_Tol - 1.5% Hop_Weights -~ all1l.0

With Ignore Comm Dist_Factor set to false, the algorithm reduced Hq and H at the
expense of a slight increase in Hy,. The result was a reduced and more evenly distributed
real message communications load that was overwhelmed by an increased null message
communications load resulting in no net improvement in the speedup curve. By setting
Ignore_ Comm Dist_Factor tO true, the algorithm has a tendency to reduce Hy and He
at the expense of a potential increase in Hy. This effect can be seen by comparing the SBF
and AB Annealing curves in Figure 37.

Figures 37 and 38 show that the AB Annealing partition caused a reduction in the
number of inter-LP arcs with a corresponding reduction in the amount of real message
traffic for all LP values. For example, with 8 LPs, the number of real messages
transmitted has been reduced by 85% over the random partition. However, the
corresponding speedup results were mixed, with no noticeable improvement over the SBF
partition for 2, 3, 4, 5, and 7 LPs. The speedup curve shows a modest improvement with 6
LPs, and a more significant improvement with 8 LPs where it peaks at 3.89. The large
improvement with 8 LPs is due to a decrease in null message traffic caused by a reduction
in LP output lines from 29 to 26, along with an increase in the average lookahead.

There are a number of interesting observations that can be made about the AB
annealing speedup curve. First, the only factor that appears to be limiting the performance
improvement for a majority of the data points is an increase in the value of Hg. This lends
credibility to the assertion that the distribution of the inter-process communications is a

significant contributing factor to simulation performance. On the other hand, the largest

increase in Hy occurs with 8 LPs which corresponds to the data point with the greatest
improvement in simulation speedup. In this instance, the increase in Hy appears to be
dominated by the reduction in Hp and H,. This phenomenon is likely due to a failure of
the cost factor Hy to accurately capture the relationship between the distribution of the

inter-process communications and the resulting simulation performance.

5.22 Associative Memory Array. The associative memory speedup results are
shown in Figure 39. All speedup calculations are in reference to the single LP case which
required an average of 4,380,074 ms to complete. Figures 40 and 41 compare the
partitions statistics and resulting message traffic respectively.

As shown in Figure 39, the random partitioning speedup peaks at 3.95 with 5§ LPs,
and declines to 3.03 with 8 LPs. Due to the large number of total simulation events in the
associative memory circuit, the communications overhead for random partitioning is
dominated by real message traffic for the number of LPs used in this thesis. For example,
the null to real message ratio begins at 1:25 with 2 LPs, and increases to 1:2 with 8 LPs.
Further increases in the number of LPs will swing the ratio the other way, and the
communications overhead will be dominated by the null message overhead. This can be
seen by observing the slopes of the real and null message curves in Figure 41.

The SDF partitioning speedup curve shows consistently better results than the random
partition, peaking at 4.49 with 5 LPs, and decreasing to 3.53 with 8 LPs. Looking at
Figure 40, it can be seen that SDF partitioning provides a noticeable improvement over
random partitioning in terms of both the number of inter-LP arcs and the number of LP
output lines. For example, with 8 LPs, the number of inter-LP arcs has been reduced by
61% (from 8129 to 3145), while the number of LP output lines has been reduced by 21%
(from 56 to 44). However, over 50% of the remaining inter-LP arcs originate from a

single LP, resulting in a value of Hg of 333.2%.

100

Simulation Wallclock Time

—&— Random

—0— Simple Depth-
First (SDF)

———@—— Simpie Breadth-
First (SBF)

Simulation Time (ms)

=0~ ABI1 Anncaling

Number of LPs (AB1_7)

——8&—— Random

=08~ Simplc Depth-
First (SDF)

——@— Simpic Breadth-
First (SBF)

1 2 3 4 5 6 7 8§ ——O—— ABI Anncaling
Number of LPs (AB1.7)

Figure 39. Associative Memory Speedup Resuits Comparison

Looking at Figure 41, the effect on the real message curve was even more dramatic
than the speedup curve, with the number of real messages and null messages being
reduced by 90% and 41% respectively in the 8 LP case. However, due to the decrease in
real message traffic caused by the improved partition, the null messages begin to
dominate the communications overhead at a much earlier point. The null to real message
ratio with 8 LPs is 3:1 (vs. 1:2 for the random 'partition). Nevertheless, the total
communications overhead was reduced by over 72% with 8 LPs. Although this

improvement was significant, the corresponding speedup was improved by less than 17%.

101

LP_Output_Lines

56 ——8—— Random
48
§, 40 ——O—— Simpie Depth-
i g First (SDF)
81 16 ———&@— Simple Breadth-
o 'Y First (SBF)
0 —
1 2 3 4 5 6 7 8§ ———O0— ABIl Anncaling
Number of LPs (ABL_7)
Number of Inter-LP Arcs
e—ill— Random
g ——O—— Simple Depth-
) First (SDF)
_§ ~——@—— Simpic Breadth-
First (SBP)
——O—— AB1 Anncaling
Number of LPs (ABL_7)
Communications Distribution Factor
400.00% —8— Randout
2 5 35000%
2 & ——O——Simpic Depth-
8 = 250.00% :
g & 20000% First (SDF)
E 2 15000% .
g 5 100.00% ~———— Simple Breadth-
©A sg.oo% First (SBF)
.00%
1 2 3 4 5 6 7 8 -——O—— ABI Anncaling
(AB1_7)

Number of LPs

Figure 40. Associative Memory Partition Statistics Comparison

102

Messages Transmitted

Number of Messages Transmitted (Real)

700,000
600,000
500,000
400,000
300,000
200,000
100,000

0 L] L]

1 2 3 4 5 6 7 8
Number of LPs

—&—— Random

=0~ Simple Depth-
First (SDF)

——&—— Simple Breadth-
First (SBF)

=—=O— AB1 Annealing
(AB1_7)

Messages Transmitted

Number of Messages Transmitted (Null)

Number of LPs

===~ Random

~0~—Simple Depth-
First (SDF)

~—@— Simple Breadth-
First (SBF)

~——0—— ABI Anncaling
(AB1_7)

Messages Transmitted

Number of Messages Transmitted (Total)

1,200,000

1 2 3 4 5 6 7 8
Number of LPs

——&—— Random

=0~ Simple Depth-
First (SDF)

—&— Simple Breadth-
First (SBF)

——O— AB1 Annealing
(ABL7)

Figure 41. Associative Memory Inter-LP Message Traffic Comparison

103

The SBF partitioning algorithm performed very poorly on the associative memory
circuit, giving speedup that was worse than random partitioning. The exact reason for the
poor performance of the SBF partitions is not clear, as there were improvements in both
the number of inter-LP arcs and LP output lines. However, the value of Hy was
consistently higher, although it was less than that of the SDF partitions. It appears that the
decrease in message overhead was not large enough to overcome the increase in Hy.

It is interesting to note in Figure 40 that the SBF and SDF partitions result in
approximately the same number of LP output lines. However, Figure 41 clearly shows
that the SBF partitions resulted in a noticeably higher amount of null message traffic.
There are two reasons for this effect. First, the SDF partitions resulted in larger average
lookahead values. This was expected since the SDF algorithm has a better chance of
grouping long sequences of dependent behaviors due to the order in which the graph is
traversed during partitioning. Second, when an LP sends a real message over one output
line, it sends null messages over all other output lines with the same timestamp.
Therefore, the large number of real messages in the SBF partitions causes an increase in
the null message overhead.

For the associative memory circuit, the SDF partition was used as the initial partition
to the AB annealing algorithm to get the fourth speedup curve shown in Figure 39. The

following input parameters were used to the annealing algorithm:

Num Iterations - 500 Ignore Comm Dist_Factor - false
Max Worthless_Iter - 50 Topological - false
Load_Imbal_Tol - 0.5% Hop Weights - all l.0

Looking at Figure 40, it is clear that the border annealing algorithm improved the
quality of the partition in terms of each of the three communications cost factors: LP
output lines, inter-LP arcs, and communications distribution factor. However, the
corresponding speedup results were decidedly mixed, with the new partitions performing
the same as the SDF partitions with 5 and 7 LPs. However, the the highest speedup

104

obtained for the associative memory, 4.89, was achieved with the 6 LP AB annealing
partition. Although the exact reason for the lack of improvement in the 5 and 7 LP cases
is not clear, there appears to be several contributing factors.

As an example, comparison of Figures 40 and 41 shows that although the number of
inter-LP arcs is reduced with the AB annealing algorithm, the number of real messages
transmitted is slightly higher. This is possible because, as discussed in section 3.3.2.1, the
actual real message communications load over each arc is dependent upon the signal
activity of the circuit. Since this information is not available prior to simulation, each arc
is assumed to have an equal cost in terms of message load.

Although real message traffic was increased slightly, the null message traffic was
lowered. As expected, this was due to a consistent reduction in the number of LP output
lines caused by the AB border annealing algorithm. However, the reduction in null
messages is not as large as might be expected from the reduction in LP output lines. As
with the SBF partitions, this is due to the slight increase in real message traffic. The net
result is a modest decrease in total message traffic over the SDF partitions, with a
maximum decrease of 8.67% on 7 LPs.

As stated previously, the AB annealing speedup results were mixed. The biggest
increase over the SDF partitions, 15%, occurred with 6 LPs. It is interesting to note that
this corresponds with the biggest drop in the communications distribution factor Hq (see
Figure 40). While this is consistent with the expected results from the objective cost
function, it is also interesting to note that the smallest speedup gains correspond to the
test cases with the largest decrease in total message traffic (5 & 7 LPs). These
inconsistent results provide a strong indication that other factors are influencing the
simulation performance.

As mentioned previously, one potential source of these inconsistencies is a failure by

the partition cost function to capture the true relationship between the distribution of the

105

communications and the simulation performance. Another possible source of the
inconsistency is the artificial feedback imposed upon the simulation when the benavior
graph is mapped onto the processor graph. Although this feedback is not addressed
directly in this thesis, partitioning the circuit to reduce the number of LP output lines and
inter-LP arcs also reduces the amount of imposed feedback. Intuitively, however, the true
effect of these imposed feedback loops depends upon the behaviors involved and the
signal activity of the circuit. Further research is needed in order to account for this

overhead in the partition cost model.

5.3 Speedup Prediction

As discussed in section 3.3.4.2, one of the objectives of this thesis was to quantify the
relationship between the quality of a partition and the resulting speedup. Although the
ability to predict the speedup from the partition information may be useful, the primary
purpose of this objective is to validate the partition cost function developed in this thesis.
The coefficient value 8 was arbitrarily set to 1.0, and the coefficient value a was selected
to provide the desired relative weightings to the load imbalance and communications
portions of the objective cost function. The first step in selecting a was to examine the
expected magnitudes of the communications cost sub-function (Hp H¢ (1 + Hqg)) and the
load imbalance sub-function (Hp) for a typical example (e.g., the wallace tree multiplier).
Because of the chosen methodology selected for representing the communications cost
factors, the communications cost sub-function is likely to produce a much larger value
than the load imbalance sub-function. Therefore, it was desired to make « larger than B in
order to account for this difference in representation. An a value of 100.0 was chosen.
This selection was validated by comparing the resulting expected speedup values against
the actual speedup curves using an arbitrary value for y. It should be noted that the

relatively small load imbalances used in this thesis (1.5% max) would tend to obscure any

106

Predicted Speedup

Number of LPs

Figure 42. Wallace Tree Speedup Prediction Curves

errors with this relative weighting by causing the cost function to always be dominated by
the communications cost sub-function. Further research is required in order to find the
correct relative weightings. This research should include a re-examination of the “best”
way to represent the communications cost factors16,

The last remaining coefficient, ¥, was determined to be circuit dependent.
Specifically, it appears to be inversely proportional to the total number of events in the
simulation. The value for y was selected separately for each circuit by using trial-and-
error to find the value which gave the best match between the predicted vs. actual
speedup curves for random partitioning. Once selected, the same value was used for each
of the other partitioning algorithms. All three coefficient values are given to GP-Tool,
which calculates the predicted speedup as part of the partition statistics output file.

In general, the speedup prediction results were correct (but not exact) for a clear
majority of the partition - LP combinations. Intuitively, this seems to indicate that the

objective cost function proposed in this thesis is able to successfully model the

16 For example, under the current implementation, H¢ and Hg are calculated as percentages, but Hp is not.

107

dominating partition cost factors in most circumstances. Further rescarch would allow

this cost model to be refined to provide even better results.

53.1 Wallace-Tree Multiplier. The predicted speedup curves for the wallace tree
multiplier are shown in Figure 42. For this circuit, a iy value of 0.09 was used. Although
the predicted speedup values were not exact, comparison with Figure 36 shows that the
partition cost model successfully predicted the correct ordering of the four partition types.
For example, it correctly predicted that the SBF partitions would perform better than the
SDF partitions which would, in turn, perform better than the random partitions. Except
for the 7 LP case, it also correctly predicted that the AB anncaling partitions would
outperform the SBF partitions.

532 Associative Memory Array. The predicted speedup curves for the
associative memory array are shown in Fisure 43. For this circuit, a y value of 0.025 was
used. Again, the predicted speedup values were not exact, but comparison with Figure 39
shows that the partition cost model successfully predicted the correct ordering of the four
partition types. For example, it successfully predicted that the SBF partition would
consistently perform worse than the random partition, and that the SDF partition would
consistently perform better than the random partition. However, it failed to predict the
anomalous 5 and 7 LP cases where the AB annealing partitions performed no better than
the SDF partitions. This further supports the assertion that under some circumstances,
there are factors which contribute to the simulation performance other than those that are

captured by the objective cost function model.

108

N

Predicted Speedup

Number of LPs

Figure 43. Associative Memory Speedup Prediction Curves

54 Message Traffic Analysis

This section looks more closely at the inter-LP message traffic overhead for a few
representative test cases. Three types of graphs are presented: real messages transmitted
from each LP vs. null messages transmitted from each LP; total messages transmitted
from each LP vs. total inter-LP arcs originating from each LP; and total messages
transmitted from each LP vs. total LP output lines originating from each LP. In each
graph, all four partition types are compared. Similar graphs for additional test cases are
included in Appendix D.

54.1 Wallace-Tree Multiplier. Figure 44 shows the real vs. null message graph for
the 4 LP case, while Figure 45 shows the same graph for the 8 LP case. Clearly, for the 4
LP random partition, the communications overhead is nearly evenly divided between real
messages and null messages. In addition, the communications are evenly distributed, with
each LP generating a relatively equal number of messages. Although the total number of

null messages is reduced for each successive partition (SDF, SBF, and AB annealing

109

respectively), the total number of real messages is also reduced. The resulting effect is
that the inter-LP communications for each LP are dominated by the null message
overhead. Figure 45 shows an identical set of relationships for the 8 LP case, except that
the null messages dominate the communications overhead for the random partition as
well. Intuitively, further reductions in real messages without significant reductions in null
messages will have limited impact on the total communications overhead.

An additional observation from Figures 44 and 45 is that for the deliberate
partitioning strategies of SDF, SBF, and AB annealing, the remaining message traffic is
no longer evenly distributed among all of the LPs. Observation of this phenomenon lead
to the addition of the communications distribution factor (Hg) to the objective cost
function as discussed in section 3.3.2.2. Figure 46 attempts to validate the
communications distribution factor by showing the relationship between the total number
of messages transmitted from each LP and the total number of inter-LP arcs originating
from each LP.

In general, the results are decidedly mixed. There appears to be a detectable
relationship between output arcs and messages transmitted for the random and SBF
partitions, but not the SDF or AB annealing partitions. Additional examples with
similarly mixed results are included in Appendix D. Collectively, this data supports the
assertion that the distribution of the communications load may be a factor in the
simulation performance, but the cost function proposed in this thesis fails to accurately

model the communications bottleneck in some instances.

110

sisAeuy aessopy 1U9g SN 'SA JUOS STEIY d7 p 39U VEM “pp amSLy

3qumnN d1
£ T 1 0
SN 0 SI°N |
g =
L | 000t sTeN]
000'C
000'€
(T 74V) uonnied Suyesuuy zgv uopplIRg Isi14-qipeaag dung
»quinN J1
€ ¢ 1 0

s [

uopnaed saLg-yidaq apdung

ST [

0
000°1

0007
000'€
000’y
000°S

uoppJIBg WopuBY

$08esO|y

111

sisA[euy 23eSSIP JUIS STIRN 'SA DS S[EIY d71 § UL NV[[BM 'Sp amS1y

RquaN d71 Jqumn d71
L9 S ETI1O L9 Sy eTILO
SION I8 0
000'
e [s] o'y
000'9
(T 7dV) uopnred 3uyesuuy ZgV uonyIed sILI-yIpeasg ddus
BN g1 »qunN 471

L9S veT1

\NA\SNSR\\ ©

uonneg jsaid-gdaq AHduis

L9 SveT10

g LI LU

uonpIRg wopuTy

112

saIy Inding ‘s 1uag $3JusSOW WO, JT 8 UL 98[RM ‘Op amSB1y

RqumN 47
L 9 § ¥ ¢ T 1 0

(T 79V) uopnueq Suyesuuy zgv

SAY IMING e sadusson I

RQUNN 47
L 9 ¢ ¥ ¢ T 1 O

0
0 000'
m 000’y
8~ g.c
051 000'8

uonnuRy I1831]-qipeaag dung

RV N0 g SBWSON [

RQUINN 417
L 9 § v € Tz 1 o0

uonuey Isii4-qidaq Idung

RqunN 47
L 9 § v ¢ T 1 0

113

One attempt at improving the method of modeling the distribution of the inter-LP
communications involved the relationship between the total messages transmitted from
each LP and the corresponding number of output lines for that LP. This relationship was
investigated because of the fact that for relatively large LP values, the null messages
dominate the total message counts, and the number of LP output lines are the major
contributor to the number of null messages. Figure 47 shows this relationship for the
wallace tree 8 LP case. Clearly, there is a detectable relationship for the majority of the
partition types. A single exception is LP7 for the AB annealing partition. This apparent
anomaly is explainable, however, by the fact that LP7 has no input arcs. With no input
arcs, it never has to block for input. Because it never blocks, it never sends blocking
nulls. Additional examples with similar results are included in Appendix D.

However, despite these positive results, revising the communications distribution
factor Hq to be based upon the number of LP output lines rather than the number of
output arcs resulted in a degradation of the speedup prediction curve results.

Nevertheless, these results indicate that this relationship deserves further investigation.

114

saur] IndinQ gy s 1udg s3BesSO [BI0], 4T § UL 0B[BM “Lp AmBL]

ST N0 ™A T s sofesso

nqunN 41

(T 7dV) uopnueg ujieduuy 7gv

g\ﬂlu-éln—-.— L nOg I

nquny J47
. L 9 § v € T 1 0
0

°R: o0z &
‘ 000"y
] 0009
8 000'8

uonnaey isiLy-yipeaug duns

L B o (R — v NN

RQUNN 41

uonied 1sa14-qidaq adung

ST IR0 T e 5380559 N

JqunN d1
L 9 ¢ ¢ ¢ T 1 0

115

542 Associative Memory Array. A similar set of graphs is presented for the
associative memory array in Figures 48 through 51. Specifically, Figure 48 shows the real
vs. null message graph for the 8 LP case. Notice that for the 8 LP random partition, real
messages continue to dominate the total inter-LP message overhead. However, as
mentioned in section 5.2.2, this situation will reverse itself as the number of LPs is
increased further. Another interesting item from this figure is the results of the SBF
partition. Notice that for a few LPs, the communications overhead continues to be
dominated by real messages. Furthermore, the number of real messages transmitted by
LP5 and LP7 each exceed the average number of real messages transmitted by all LPs in
the random partition by as much as 109%. This communications bottleneck is the most
likely culprit in the poor performance of the SBF partitions for the associative memory
array.

As stated previously, the o LP AB annealing partition provided the maximum speedup
for the associative memory circuit. Figures 49 through 51 show the 6 LP case of the real
vs. null messages graph, the total messages vs. output arcs graph, and the total messages
vs. LP output lines graph respectively. The results are similar to those for the wallace
tree. An exception is the total messages transmitted vs. the LP output lines for the SBF
partition in Figure 51. In this particular instance, there is no discernible relationship
between the total number of messages transmitted by each LP and the number of output
lines originating from each LP. Additional examples with similar results are included in

Appendix D.

116

SIsAfeuy 98eSSOp\ IS STINN "SA UG STeIY '] § AJOWIP dANLI0SSY g AnBrg

soqumy g7 RquInN d11
LOSPETTO L9SYEZTLO
h SN 0
o, . | ™
sy [hw s] m
_ —¢ 0ot
— Z 000'05T
(L 19V) uonnaeg duiesuuy gV uonIRy ISaLJ-qIpedaq ajdulig
squIN 4T BquON 1
L9SYET1O L9SVYETTO
sy]

____._______._. .\

/
7
’
v
A
7
“
\

uonnJeq isaig-yidaq sdung

uonn.eg wopuey

117

SisA[euy 98sSO\ 1UIG S[INN °SA JUSS STBIY '] 9 KIOWIA ANBIO0SSY 6 AmS1g

SN

U

RquUmN 41
S v €71 0
i 0 SION

000'9 z u
000'Z1
000’81 m =0
000'Z
000'0¢

(L 19V) uonnaed 3uyeduuy gV

nqUIN 41

S v €1 0

0
8o3

=
0000zt m

§8_

uone g 83 i-yipeasg ddunis

s[eoy]

RqunN 471
S ¥ ¢ T 1D

s 1]

STIN [i§

\
\
7
\
\
A
\
Z
Z

uonnJey Jsaif-yidaq dunig

uonnted wopusy

118

sary indinQ ‘sA 3G sIVeSSI [RI0L 4] 9 AIOWSJN 2ANBIOSSY (¢ ST

SUY NANO commeem 338559 IR

QUM 47

]

(L 1gV) uonnieq 3wpauuy 1gV

sousmw

SUY IMAND e 59BESSOY s

JaqumN 471

uonnJey Jsaif-yidaq ajduns

uonieg Wopuey

119

souryInding 41 ‘sa 1uag £a8essap [BI0L 41 9 AIOWIJA 2ANRIOSSY ‘[C amSL]

SO T e SOBoSSN

nquInN 47
S v € T 1 0

598esSO|y

(L 18V) uolinaeq Suyesuuy Jgv uofiipaed 1511 -yipeasg duig

SUTHO (T e SIS

nqunyN 41 JqQunN 41
S 14 3 < I 0 S v 13 [4 1 0

saury 41

sofessay

sa8essoN

uonipe Isa1§-yidaq Adung uonIej WopUBY

120

Table 2. Predicted vs. Actual Effect of Increased Lookahead

Number of LPs | Expected Nulls | Actual Nulls | % Difference |

— 2 1,964 1,983 1.06%

3 4,796 ~ 5,133 -16.33%

3 9,800 10,180 3.60%

5 14,459 15,102 3.99%

6 16,980 19,949 -14.38%

7 26,200 27,118 —3.39%

3 28,550 30,854 T 37%

54.3 Increasing Lookahead. Sections 3.3.2.3 and 3.3.2.4 discuss the
relationship between the average lookahead in the 1px.arcs file, the null message
overhead, and overall simulation performance. This section uses the wallace tree SBF
partitions to present a quantitative example to illustrate these relationships. To make the
comparison, the SBF 1px.arcs files were modified to contain the wallace tree normal
lookahead value of 2 ns for all LP output lines. The simulations were then re-run for
comparison with the original SBF results with the increased lookahead.

In section 3.3.2.4, an assumption is made that the logical delay value for an LP output
line will only be used to determine the timestamp of a null message approximately 50%
of the time. This assumption is then used as the basis for a modified calculation of Ly,
which estimates the impact of the average lookahead value on the null message overhead.
Table 2 presents data for the wallace tree SBF partitions to demonstrate the validity of
this assumption. Specifically, it uses the modified equation for Lar to calculate the
expected number of null messages and compares it against the actual number of null
messages. The value for expected null messages is calculated by multiplying the value of
Larcs by the number of null messages transmitted when all logical delays in the 1px.arcs
file were set to their normal value (2 ns). As seen from the table, the actual number of

null messages was within 10% of the expected value in a majority of the cases, and was

within 20% in all cases.

121

Figure 52 shows the comparison between the SBF partitions with the naturally
increased lookahead and the SBF partitions in which all lookahead values have been set
to the normal value of 2 ns. Specifically, it shows the comparison in speedup, average
lookahead, and null message traffic. As can be seen from the figure, the increase in
lookahead had a consistent effect of decreasing the null message overhead and increasing
the speedup. However, the net effect on speedup was essentially negligible, and the
number of null messages is still proportional to the number of LP output lines. Therefore,
while increasing the average lookahead values will help to optimize the simulation

performance, it does not appear to be a potential source of significant speedup gains.

543.1 Calculating Lookahead. While increasing the average lookahead
reduces the null message overhead, calculating the correct lookahead values is a potential
computational bottleneck. The maximum lookahead value for an LP output line is defined
as the minimum path from all inter-behavior arcs entering the LP (and all source
behaviors in the LP) to all inter-behavior arcs exiting the LP that correspond to the given
LP output line. The minimum path is defined as the sum of the logical delays of the
behaviors on the path.

The current algorithm used by GP-Tool is a recursive algorithm that begins at each
input arc to the current LP (LP,) and traverses all possible paths through the LP until it
reaches an external LP, tracking the length of the current path (in terms of logical
behavior delays) along the way. When the current path reaches an external LP (LPy), the
minimum path on record from LP; to LPy is compared to the length of the current path
and updated if necessary. The process is repeated for each input arc and each source
behavior for each LP. This algorithm has proven to be the most efficient method of
calculating the lookahead values in most situations. Two exceptions are discussed in the

next section.

122

Speedup

Number of LPs
Average Lookahead
& 400
3.50
3.00 ==& Increased
250 Lookahead
2.00
g 1.50 ==~ Normal
< 1004 ot} et + $ - Lookahead
1 2 3 4 5 6 7 8
Number of LPs

Number of Messages Transmitted (Null)

Messages Transmitted

Number of LPs

Figure 52. Effect of Increased Lookahead on Wallace Tree SBF Partitions

123

5432 Lookahead Anomalies. This first anomaly related to the calculation of
the average lookahead values for the 1px.arcs files deals with the running time of the
recursive .arcs routine discussed in the previous section. Under certain circumstances, this
algorithm can be extremely inefficient. Specifically, calculating the lookahead values for
the wallace tree circuit with 2-4 LPs can take 30 minutes or more. This occurs because
the SDF partitioning algorithm results in partitions in which the first LP contains
relatively long paths of dependent behaviors. This, in turn, increases the number of paths
through the LP as well as increasing the level of recursion required by the algorithm.

Comparison with other algorithms, however, indicates that the increased computation
time is out of proportion to the longer paths caused by the SDF partition. For example,
Dijkstra’s shortest path algorithm, which finds the shortest path from a given behavior to
all other behaviors, runs much faster than the anomolous recursive case. The problem was
not experienced on the associative memory circuit, which is more than 4 times larger than
the wallace tree multiplier. Furthermore, as the number of LPs was increased, the
computation bottleneck for the wallace tree SDF partitions decreased.

An alternative method for calculating the correct lookahead values based upon
Dijkstra’s shortest path algorithm was implemented as well (although it is not in the
current version of GP-Tool). For each input arc and source behavior in LP,, this approach
uses Dijkstra’s algorithm to calculate the shortest path to all other behaviors in the
system. Not all of these paths are relevant to the lookahead value. For example, the path
from behavior i in LP, to behavior j in LP is of no interest if there is no direct connection
from LP, to LP.. Therefore, this algorithm involves significant extraneous computations.
Although this algorithm is independent of the number of LPs or the quality of the
partition, an additional disadvantage is that the algorithm is proportional to N(N-1),

where N is the number of behaviors in the system. In general, this algorithm was less

124

efficient than the recursive algorithm, except for those few cases in which the recursive
algorithm experienced the anomalous computational bottlenecks.

The second anomaly related to the calculation of the lookahead values for the
1px.arcs files involved the associative memory 8 LP SBF partition. Specifically, the
recursive algorithm produced lookahead values which caused message out-of-order errors
during simulation. This occured when the lookahead values in the 1px.arcs file were too
large, causing the transmission of null messages with timestamps that were too large.
Theoretically, calculating the lookahead values as described in the previous section
should prevent this from occurring. Analysis has failed to find any errors in the algorithm,
and the problem was not observed on any other circuit/partition/LP-value combination. It
was manually resolved by reducing the lookahead values in the 1px.arcs file in small

increments until the out-of-order errors disappeared.

5.5 AB Border Annealing Algorithm

One of the primary objectives of this thesis research was to make the partitioning
strategy implemented efficient in terms of required computation time. As discussed in
chapter 4, the annealing algorithm continues until a maximum number of iterations have
been executed, or until a specified number of consecutive iterations have been executed
with no net improvement in the cost function. Under the current implementation of GP-
Tool, there is no option for setting the tolerance for measuring changes in the cost
function. Rather, changes are measured to the precision provided by the standard floating
point data type used in the Ada compiler. As a result, the annealing process will continue
as long as minor improvements are being made.

For example, Figure 53 shows the partition statistics for the 8 LP wallace tree AB2
annealing partition as they vary over the iterations of the AB border annealing algorithm.

Recall that in this partition, the option Ignore_Comm_Dist_Factor was set to true. Thus,

125

Hy is allowed to increase in an effort to maximize the reductions in H¢ and Hy,. Although
the algorithm executes 168 iterations before terminating, it is clear that minimal
improvement was made after the first 35 iterations. This type of behavior, in which the
majority of the improvement was made in the first few iterations, is typical for the test
cases performed to date.

The AB border annealing algorithm has not been instrumented to allow for detailed
timing measurements. However, the entire AB annealing process for this test case took
approximately 59 sec to complete, for an average of (.35 sec per iteration. It should be
noted that not all iterations will require the same amount of computational time. For
example, as the state of the partition is improved through successive iterations, fewer
behaviors will be queued for reassignment consideration. Thus, as the algorithm
progresses, the time per iteration will show a decreasing trend.

As a point of comparison, rough measurements were taken on the time required to
produce a random partition!? and an SDF partition for both the wallace tree and the
associative memory with 8 LPs. For the wallace tree, the random partition took
approximately 7 secs, while the SDF partition took less than 1 sec. For the associative
memory, the random partition took approximately 71 secs, while the SDF partition took

less than 3 secs.

5.6 Increasing the Number of Processors

The results presented above were limited to an 8-node iPSC/2 hypercube. In order to
validate the resuits on a larger number of processors, the wallace tree circuit was run on
an iPSC/860 using up to 32 nodes. The simulation speedup results, partition statistics, and
inter-LP message counts are presented in Figures 54 to 56 respectively.

17 Note that the random partitioning algorithm was not written for maximum efficiency.

126

Inter-LP Arcs

550
500
450

400

gsso

300

250

C2RIAIATRIIESEEFIASR E
Iteration

LP Arcs

LP Output Lines

LP Lines
5

%dh
25
CE2RKAITTREEKRBEIRIAERE
Iteration
Comm Dist Factor
200.00%
& 180.00%
]
%160.00%
E140.00%
§1zo.ooq,
100.00%
C2RIIAIRIIIEE=ISISRE
Iteration

Figure 53. Wallace Tree 8 LP Partition Statistics vs. AB Border Annealing Iterations

127

Simulation Wallclock Time
=« 60,000
E 50,000 il Random
é 40,000
30,000 ——&— Simpie Breadth-
"g 20,000 First (SBF)
g 10,000
@ $ $ 4 < AB2 Anncaling
0 8 16 y/} 32 (AB2_2)
Number of LPs
Speedup
g,
150 ~——{&— Random
1.25
g (1) .(7)0 ——&— Simple Breadth-
@ 0:5(5) First (SBF)
0.25
0.00 < AB2 Annealing
(AB2_2)
Number of LPs

Figure 54. iPSC/860 Wallace Tree Speedup Results Comparison

As can be seen from Figure 54, the increased processing power of the i860 processors
provides an order of magnitude speedup over the iPSC/2 for the single LP case. Because
single LP case runs so much faster on the 1860, it is much more difficult to obtain
speedup with multiple processors. For example, the speedup for the random partition was
less than 1.0 for all LP numbers greater than 1, and the maximum speedup obtained was
1.9 on 4 LPs for the AB annealing partition. Despite these differences, the patterns
relating the partition statistics to the inter-LP message traffic and speedup are identical to

those for the iPSC/2 results.

128

LP_Output_Lines

900
g 750 el Random
T 600
450 ——&— Simple Breadth-
300 First (SBF)
8 150
0 2 - - ——O0—— AB2 Annealing
0 8 16 24 32 (AB2_2)
Number of LPs
Number of Inter-LP Arcs
1,800
g 1,500 ~——i— Random
1,200
& 900 ~——&— Simple Breadth-
g 600 First (SBF)
S 300
0 $ —e 4= < AB2 Annealing
0 8 16 p] 32 (AB2_2)

Number of LPs

Communications Distribution Factor

300.00% £0- a
q % 200.00%
g g 150.00% ——&— Simple Breadth-
g 2 100.00% First (SBF)
S 2 50.00%
0.00% + — 4 © AB2 Annealing
0 8 16 % 32 (AB2_2)

Number of LPs

Figure 55. iPSC/860 Wallace Tree Partition Statistics Comparison

129

Number of Messages Transmitted (Real)

3 2 . e
g }7 500 Random
- }%_%ﬁ o ——Simple Breadth
g ;l.ggg ° First (SBF)
$ ¢ $ | © AB2 Annealing
0 8 16 y) 32 (AB2_2)

Number of LPs

Number of Messages Transmitted (Null)

—&— Random
~——&@—— Simple Breadth-
First (SBF)
< AB2 Annealing
(AB2_2)
Number of LPs
Number of Messages Transmitted (Total)
B 1,400,000
§ 1200000 ~——&— Random
g 1,000,000
& %% ~—&— Simple Breadth-
1] ’ .
g 400,000 First (SBF)
2 200,000
= 0 + | © AB2 Annealing
0 8 16 24 32 (AB2_2)

Number of LPs

Figure 56. iPSC/860 Wallace Tree Inter-LP Message Traffic Comparison

130

V1. Conclusions and Recommendations

6.1 Research Summary

As modern integrated circuit designs grow larger and more complex, the time
required to perform sequential VHDL simulations becomes more burdensome. In order to
execute complex simulations in a reasonable amount of time, a parallel VHDL simulator
should be used to simulate hierarchical structural VHDL circuits. Parallelism is
introduced by partitioning the circuit behaviors among the available processors to form
logical processes (LPs). Signal changes are shared among the LPs by event messages.

Parallelism by itseif, however, fails to provide satisfactory speedup results due to the
overhead required to communicate signal changes and maintain synchronization between
LPs. The amount of overhead is directly dependent on how the circuit behaviors are
partitioned among the logical processes.

In this research effort, a circuit behavior inter-dependency structure is extracted from
the first iteration of VSIM’s sequential simulation cycle. This information is used to build
a graph representing the structure of the circuit being simulated with the circuit behaviors
as vertices and their inter-dependencies as directed arcs. Using various graph traversal
techniques to account for the circuit inter-dependency structure, the circuit is divided into
the desired number of LPs. A border annealing algorithm is then employed to refine the
quality of the partition by selectively reassigning behaviors to different LPs.

Two relatively large circuits (an 8x8 wallace tree multiplier, and a 16x16 associative
memory array) have been used as subjects on which to test partitioning techniques.
Speedup results are compared to those produced by a random partitioning of the circuit
behaviors.

As an aid in making reassignment decisions during the border annealing process, an

objective cost function is formulated in order to measure the quality of a given partition.

131

This cost function is designed to account for the additional communications overhead

resulting from the conservative null message PDES synchronization protocol. In addition,

an attempt is made to account for unevenness in the distribution of the communications

overhead. Finally, an attempt is made at quantifying the relationship between the quality

of a partition as measured by the objective cost function and the resulting simulation

performance.

6.2 Conclusions

The following general conclusions can be made about partitioning hierarchically built

structural VHDL circuit simulations:

Deliberate partitioning schemes improve simulation speedup. The primary
research objective of demonstrating improved speedup over random partitioning
was accomplished. This research has found that, in general, a deliberate
partitioning algorithm which accounts for the complex inter-dependency
relationships of the circuit behaviors will tend to reduce the communications
overhead and improve the simulation performance.

The partition cost function must account for more than load imbalance and the
number of inter-LP arcs. As stated in the research objectives, an effort was made
to determine a meaningful method of measuring the cost of a partition. Data
analysis shows that as the number of LPs is increased, the null message traffic due
to the conservative PDES synchronization protocol begins to dominate the inter-
processor communications overhead. Reducing the real message traffic by
reducing the inter-behavior arcs which cross LP boundaries serves to enhance the
dominance of the null message overhead. Not accounting for the null message
overhead will give an inaccurate picture of the quality of a given partition.

Therefore, null message synchronization overhead must be accounted for in the

132

partition cost. In addition, this research indicates that the distribution of the
remaining communications among the LPs also impacts the performance of the
simulation. Additional research is needed in order to determine the exact nature of
this latter relationship.

Null message overhead is directly proportional to the number of arcs in the LP
connectivity graph. Results have clearly shown that the number of null messages
required to maintain synchronization is directly proportional to the number of arcs
in the LP connectivity graph (referred to as “LP output lines™). By decreasing the
connectivity between LPs using a deliberate partitioning scheme, it is possible to
reduce the null message overhead and improve simulation performance. However,
it appears as though the best method for reducing null message overhead is to
avoid imposed feedback among the LPs (i.c. make the LP connectivity graph
acyclic).

Further reductions in real message overhead will have negligible impact on
simulation performance. The partitioning algorithms used in this thesis research
have made significant reductions in the amount of real message communications
overhead compared to a random partitioning of the circuit behaviors. The null
message overhead is also reduced, but by a much smaller margin. As a result, the
inter-processor communications overhead is dominated by the null message traffic
for a relatively small number of L.Ps. The problem is exacerbated as the number of
LPs is increased. Further reductions in real message traffic without significant
reductions in null message traffic will have a negligible impact on the total inter-
processor message traffic.

The proposed partition cost function provides an accurate means for comparing
the relative quality of different partitions. With few exceptions, it was shown that

by relating the partition cost to the expected simulation speedup, the proposed

133

partition cost function could correctly predict the relative performance ordering of
the various partitioning schemes used.

The proposed AB border annealing partitioning algorithm provides an effective
means of iteratively improving a partition. Data analysis shows a consistent
reduction in the number of inter-LP arcs and LP output lines by using the AB
border annealing algorithm. However, due to the continued dominance of the null
message overhead, the corresponding simulation performance improvement is

often insignificant.

6.3 Recommendations for Further Research

6.3.1 Circuit Partitioning Recommendations. Significant progress has been made

in this thesis research towards achieving improved simulation speedup through a

deliberate circuit partitioning strategy. Some suggested areas of research for expanding

upon this progress are:

Eliminate imposed feedback among LPs. By producing an acyclic LP
connectivity graph, circular waiting among LPs will be eliminated. This will
reduce the amount of LP blocking as well as the the null message overhead. The
suggested methodology is to produce an acyclic initial partition (treating strong
components as indivisible blocks), and modify the objective cost function so that
LP feedback is not introduced during the border annealing process.

Continue exploring relationship between the distribution of the inter-processor
communications and the simulation performance. Data from this research has
shown that an uneven distribution of the inter-processor communications may
have a negative impact on simulation performance. The exact nature of this
relationship is still undefined. It is possible that the elimination of feedback

among LPs may negate the effects of uneven communications distribution.

134

63.2 Parallel Simulation Recommendations. There remains significant work to be

done in the future in terms of the parallel VHDL simulation application, VSIM, and

synchronization protocol. Some specific suggestions for further work are:

Implement a more optimistic PDES synchronization protocol. While it may be
possible to gain additional speedup by modifying the rules for sending null
messages, it is unlikely that such gains will be significant. One recommended
approach involves the use of “local rollbacks™ (11:22). Under this approach, each
LP maintains a safe-time as in the current null message approach, but is allowed
to process events as fast as possible, potentially advancing its local simulation
clock past its safe-time. However, real messages with timestamps larger than the
safe-time are not sent, but are buffered until it is safe to transmit them. Although
state saving is required in this scheme, it has the advantage that rollbacks to prior
states are local to the LP receiving an out-of-order message. There is no need for
anti-messages to counteract prematurely transmitted real messages. Under this
scheme, the only messages in the simulation will be real messages which transmit
actual signal change information. If desired, a limit can be placed on how far past
the safe-time an LP is allowed to advance. This time window will limit the
amount of state saving overhead, but must be chosen large enough to prevent
circular waiting in feedback loops among the LPs. Numerous alternative
synchronization protocols are possible as well (e.g., conservative time windows,
time warp, lazy cancellation, optimistic time windows, etc. (11)).

Expand the VHDL subset supported by VSIM. Currently, VSIM supports a very
limited subset of the standard VHDL language. This has the effect of limiting the
number of circuits that can be built and simulated in parallel with a reasonable

expenditure of programming resources. Breeden suggests methods for

135

implementing two key enhancements: resolution functions and wait statements
(4:83-84). Other suggested enhancements include complex procedures, bit
vectors, and multi-valued logic (MVL) data types.

Improve the basic VSIM simulation cycle. The basic simulation cycle
implemented in VSIM suffers from large overhecads and poor performance.
Current state-of-the-art sequential VHDL simulators available commercially can
simulate a circuit many times faster than the sequential version of VSIM. One
potential source of improvement is with improved list management. Detailed
instrumentation of the simulation cycle may lead to the discovery of other sources
of potential improvement.

Improve VSIM's postprocessor. Breeden recommends several options for
improving the postprocessor which transforms the sequential Intermetrics code
into models compatible with VSIM (4:83).

Implement selective output report generation. Currently, the only option for
generating simulation output in VSIM is to report all signal changes in the
simulation one at a time. For large circuits, verifying the correctness of such
output files is infeasible. As a minimum, an ability should be provided to allow
selection of which signals to include in the output report. Preferably, formatted

output files such as those produced by Intermetrics should be added.

136

Appendix A. Acronyms and Definitions

A.l Glossary of Acronyms

AFIT - Air Force Institute of Technology

ARPA - Advanced Research Projects Agency

IVAN - Intermediate VHDL Attributed Notation

LP - Logical Process

MFA - Mean Field Annealing

PDES - Parallel Discrete Event Simulation

SA - Simulated Annealing

SBF - Simple Breadth-Fust partitioning

SDF - Simplc Depth-First partitioning

SDP - Simple Data Partitioning

SGE - Synopsis Graphic Editor

SPECTRUM - Simulation Protocol Evaluation on a Concurrent Testbed using
ReUsable Modules

TIG - Task Interaction Graph

TPG - Task Precedence Graph

VHDL - VHSIC Hardware Description Language

VHSIC - Very High Speed Integrated Circuit

VLSI - Very Large Scale Integrated

A2 Definitions

Activity - The state of an entity over an interval of time (18:135). For example, the
activity of a signal is defined as the sequence of state changes for that signal over a given
time period.

Behavior - In VHDL, a behavior is an executable process representing a logic gate,
input signal, output signal, or other simple VHDL process.

Design Hierarchy - In VHDL, the design hierarchy represents the successive
decomposition of a design entity into components, binding those components to other
design entities that may be decomposed in a similar manner. Collectively, they represent
a complete design and are referred to as a design hierarchy (8:2-11).

Event - An activity that causes a change in the state of the simulation model (11). In
the context of this thesis, a simulation event is defined as the changing of a signal value
from one state to another.

Message - A message is the mechanism used by processes to communicate the
modified state information caused by a simulation event. In this thesis, the term message
implies communications between logical processes, and thus, corresponds to inter-
processor communications.

Model - An abstract representation of a physical system (1). A model consists of
entities and their inter-relationships (18:135).

137

Process - A succession of entity states over a contiguous time period (18:136). A
logical process (LP) is the model's representation of a physical process (PP) in the system
(7:198-199).

signal - In VHDL, a signal represents an object that holds a value and corresponds
directly to a metal interconnection within a circuit (8:2-12). Signals define the pathways
among VHDL processes (i.e. behaviors) (15:9).

state - The sum of all variables describing an entity at a given instant in time
(18:135).

System - A real-world process being modeled and simulated (1).

138

Appendix B. AFIT Parallel VHDL Simulation User’'s Guide

B.1 Overview.

To execute a parallel VHDL simulation, the VHDL circuit is first compiled with the
Intermetrics VHDL simulator. The intermediate C code is then intercepted and
transformed into models compatible with AFIT’s parallel VHDL simulator - VSIM.
VSIM has a sequential mode that can be executed on a single processor system, and a
parallel mode that runs on the Intel iPSC/2 and iPSC/i860 Hypercubes (4). This appendix
discusses the general process for successfully executing a parallel VHDL simulation
using VSIM and then illustrates this process through a step-by-step example.

B.1.1 Required Files. Figure 57 shows the location of the baselined versions of all
VSIM related files other than the VHDL circuit specific files. The files identified in bold
are required to compile and execute the parallel version of VSIM. The files attached by
dashed lines are executable utility routines used in the code transformation process. These
routines are actually run on the SPARC, but are archived on the iPSC/2 along with the
rest of the VSIM related files.

With the exception of the file application.h, all of the source files listed in Figure
57 can be compiled out of the archive directories. The file application.h must be
modified to identify the desired number of LPs in the simulation, and should be copied to
and compiled from the user’s local directory.

A brief description of each source file is listed below (4:91-92).

e wvsim.h - Header file for vinit.c, vsim.c, vtools.c, and vspec.c;
modeled after Intermetrics’ simutl.h.
¢ wvsim.c - VSIM main simulation loop and associated functions.
CUBE386:
T
/simlulate
/spelxrmum /del
I i | cTreemmT 1
/afit /ﬂllters /vs-lun /spetlztnnn /pblmld /ma;:pmg
vhdiclocks.c Vinit.c application.h p}{uild vmap
vsim.c globals.h ex + source
lp_man.c /include vsim.h ¥+ source)
cube.c | vspec.c files)
host2.c cube2.h vtools.c

Figure 57. Location of Archived VSIM files on AFIT’s iPSC/2 Hypercube

139

vinit.c - VSIM initialization routines.

vtools.c - Functions for printing VSIM state variables and queues to assist in
code maintenance (compilation is optional).

vspec.c - Functions that provide the interface between VSIM and
SPECTRUM.

globals.h - Standard SPECTRUM header file. Modified to redefine the
event structure.

application.nh - Contains application-specific global information for

SPECTRUM and vspec.c, and is included by globals.h.
Specifies the number of LPs for a particular simulation run.

1p_man.c - Contains SPECTRUM’s LP-level functions.

cube2.c - Provides interface between lp_man.c and the operating system.
cube2.h - Header file for cube2.c and host2.c.

host2.c - Host program which loads the nodes and starts the simulation.

B.12 Process. There are seven basic steps involved in the running of a parallel
VHDL simulation with VSIM (4:90):

L.

7.

Develop the original VHDL source code describing the circuit to be simulated and
the testbench to be used to verify the circuit design. The VHDL source code must
comply with the subset of VHDL supported by VSIM as described by Breeden

4).

Perform the Compile, Model Generate, and Build phases of the Intermetrics
sequential simulation.

Using VSIM’s postprocessor, pbuild, transform the Intermetrics generated source
files into VSIM compatible source code.

Compile and run the sequential version of VSIM in order to define the behavior
dependency relationships.

Using the VSIM utility vmap, extract the behavior dependency relationships from
the output of the sequential VSIM simulation and generate a .vmap output file.

Using the VSIM Graph-Partitioning Tool (gp-tool), read in the .vmap file
generated in the previous step and generate a logical process dependency file
(1px.arcs) and a behavior-to-LP mapping file (1px.map).

Compile and run the parallel version of VSIM on the Hypercube.

The remainder of this appendix discusses these seven steps in more detail and
concludes with a step-by-step example.

140

B2 Generating the VHDL Source Files.

B2.1 Generating the VHDL Source Code. Step one in the VSIM simulation
process is to create the VHDL source code describing the circuit to be simulated. VSIM
can only support structural circuit descriptions and simple VHDL processes. Specific
limitations are (4:93):

e Signals can only be of type bit or bit-vector.

* Bit-vector signal inputs must be described one bit at a time (e.g., A(1) <= ‘0’
after 3 ns).

» In general, processes must be one line descriptions (e.g., OUT <= IN1 XOR IN2
after delay). However, a multi-line process (delimited by begin and end
process) may be used if it: 1) waits on all signals, or 2) terminates after the first
use.

» Support for VHDL functions and procedures has not been implemented in VSIM.
This means that multi-valued logic (MVL) signals and bus resolution functions
are not supported. Reference (4:93) for more information.

B22 Establishing an Intermetrics User Library. Step two in the VSIM simulation
process involves use of the Intermetrics commercial simulator to compile the VHDL
source code and create the sequential simulation models. The Intermetrics compiler is
located on vulcan in the parallel simulation laboratory. Before establishing a personal
library,ﬁt{le environment variables shown in Figure 58 must be included in the user’s
.cshrc 11i€.

The next step is to create the user’s individual work library using the sequence of
commands shown in Figure 59. These commands must be executed on vulcan,
substituting the user’s own id for “kkapp” (user entries in bold).

The user’s work library will only need to be created one time. Once created for the
first circuit, this step may be skipped for future circuit simulations.

B23 Compiling, Model Generating, and Building. After a user library has been
created, the next steps are to compile the VHDL source code creating an IVAN file as
output. The intermediate C source code required by VSIM is ontained by running the
Intermetrics model generate routine on the IVAN file. Finally, running the Intermetrics
build routine on the intermediate source files creates the required compilation script. The

#the following lines are for intermetrics vhdl

setenv VHDL TREE /usré6/vhdl_restore/inter_vhdl/v2.1

setenv VHDL_| , COMMON /usr6/vhdl restore/inter_vhdl/v2.1/common

setenv VHDL HELP_FILE /usr6/vhdl restore/lnter vhdl/v2.1/common/help.txt
setenv VHDL LIBROOT /usr6/vhdl_ restore/xnter vhdl/v2.1/shiplib

setenv VHDL LIBSIM /usr6/vhdl_ restorellnter vhdl/v2.1/src/simcore/libsim.a
setenv VHDL BIN /usré/vhdl_ restore/lnter vhdl/v2.1/bin

set path = (S$path /uer/vhdl_restore/inter_vhdl/vz.1/bin)

Figure 58. User .cshrc Setup for Running Intermetrics

141

vulcan:~> vls

Standard VHDL 1076 Support Environment Version 2.1 - 1 September 1990
Copyright (C) 1990 Intermetrics, Inc. All rights reserved.
VLS>makelidb -dir=/usr6/vhdl restore/inter_vhdl/v2.1/shiplib/kkapp <<kkapp>>
VHDVLS-I-CREATED_LIB - Library <<KKAPP>> successfully created.
VLS>define work <<kkapp>>

VLS>setlib <<kkapp>>

VHDVLS-I-DEFAULT_ LIBRARY - Default Library is <<KKAPP>>.

VLS>dir

VHDVLS-I-NO_UNITS - No units found in <<KKAPP>>.

VLS>exit

vulcan:~>

Figure 59. Setting up User Work Library for Intermetrics

specific steps are listed below.

» Each VHDL source code file must be individually compiled with the Intermetrics
vhdl command (e.g., vhdl or_gate.vhd).

» Each entity/architecture pair must be “model generated” using the Intermetrics mg
command with the -debug=cknd debug switch (e.g., mg -debug=cknd
or_gate (simple)).

e The top-level configuration is built using the Intermetrics build command (e.g.,
build ‘-debug=cknd -replace -ker=assoc_mem assoc_mem config’).

B24 Code Transformation. The third step in the VSIM simulation process
involves the transformation of the intermediate C source code created by Intermetrics
into models that are compatible with VSIM. The inputs for this phase are the intermediate
.c and .h files created during the model generate phase, and the compilation script created
during the build phase. The compilation script enables the VSIM postprocessor to
determine the required files and their correct order of compilation.

VSIM’s postprocessor, pbuild, is invoked as follows:

pbuild script circuit.c

where script is the name of the compilation script created during the build phase (also
referred to as the “kernel com” file), and circuit is the name of the circuit being
simulated.

The postprocessor, pbuild, works by concatenating each of the intermediate .c files
into a single file named “big_circuit.c” and calling VSIM’s lexical analyzer, plex, to
perform the transformation process, creating the output file circuit.c.

The final step in the code transformation is to copy all of the required header files to
the same directory as the circuit.c file. These header files will also have to be
transferred to the target parallel machine with the circuit.c file before executing the
parallel simulation. The header files can be found in the user’s work directory!8.

18 Unless the user has compiled them into another directory using commands in the VHDL source code.

142

B.25 Transforming Large Circuit Files. A known problem with VSIM’s
postprocessor is that the circuit . c file resulting from the transformation of large circuit
simulations may be too large to compile on the Intel Hypercubes. There are two general
methods for getting around this problem (4:95):

¢ Run plex on each individual Intermediate C source code file created during the
model generate phase. Compile the resulting output into separate object files and
link them together to execute VSIM on the hypercubes.

» Construct the original VHDL circuit description using hierarchical configurations.
This results in a significant reduction in the size of the corresponding circuit.c
file. However, the postprocessor is currently unable to properly process the
#include directives necessary for the compilation of the circuit.c file. These
must be manually inserted into the circuit.c file, and can be found by an
examination of the “big_circuit.c” file created by the postprocessor. Both the
wallace-tree and the associative-memory were created in this manner.

Refer to (4:95-97) for more detailed information.

B.3 Running Sequential VSIM.

Both the Intermetrics simulator and the VSIM simulator assign each behavior a
number at run time. Therefore, before mapping the behaviors onto the parallel
architecture, VSIM must be run in sequential mode in order to determine the numbering
of the behaviors and the behavior inter-dependency relationships. This is accomplished
by using the following compile options in the makefile:

-DSPARC -DMAPPING -DOUTPUT

The sparc option specifies that the simulation is to be sequential. Note that in the
sequential version of VSIM, the SPECTRUM files (1p_man.c, cube2.c, cube2.h,
host2.c, and vhdlclocks.c) are not required.

The MaPPING option specifies that the behavior dependency relationships are to be
reported to an output file. When defined, the MAPP ING Option is automatically turned off
after the simulation time advances past 0.

The ouTPUT option specifies that signal changes are also to be reported to the output
file. Output is not required. However, when running a circuit for the first time, it is useful
to have output reported for comparison with the Intermetrics output. Note that VSIM does
not have a method for selectively deciding which signals to include in the output file - it
is an all or nothing option.

Theoretically, if ouTpuT is not defined, the sequential simulation can be terminated
after simulation time Q0 when all of the required dependency information has been
reported to the output file. However, there is currently no means implemented for
accomplishing this.

143

B4 Running Parallel VSIM.

B.4.1 Generating the Partition. Before running the simulation in parallel, the
crcuit behaviors must be divided into logical processes (LPs), each of which will be
assigned to a different processor. Using the output of the sequential simulation which was
created with MAPPING defined, the VSIM utility program vmap is used to build a file
defining the interdependency relationships of the behaviors in the circuit. For example,
given the sequential output file circuit.out, vmap is invoked as follows:

vmap circuit.out circuit.vmap
where circuit . vmap is the vmap output file with the following format:
behav_id behav_name behav_delay [optional list of dependencies]

An example vmap output file is shown in Figure 60. If the ouTpuT Option was defined,
the script sgrep can be used to sort the output by time and signal name as follows:

sgrep circuit.out output

The sorted output data will be in file output, and can be compared to the Intermetrics
simulation output in order to verify correctness.

The vmap output file is used as input to the VHDL Graph-Partitioning Tool (GP-Tool)
which builds a directed graph from the behavior dependency information in the file. GP-
Tool is a menu-driven utility program which allows the user to select from a variety of
partitioning algorithms. Reference the GP-Tool User’s Guide for detailed instructions on
using this utility.

Of the numerous output files created by GP-Tool, the most important are the two files
that are required for the parallel execution of VSIM. These are the logical process
dependency file (1px.arcs) and a behavior-to-LP mapping file (1px.map). The user will
be prompted to enter these file names, and should enter them exactly as shown here, with
the “x” replaced by a numeric value specifying the number of LPs in the partition (e.g.,
1p8.arcs and 1p8.map).

The specification for the 1px.arcs file is shown in Figure 61. The 1px.map file is a
text file containing two columns of numbers. The first column lists each behavior id
number, while the second column lists the corresponding LP number to which the
behavior is assigned. Examples of an 1px.arcs file and an 1px.map file are shown in
Figures 62 and 63 respectively. Both of these files are read in at run time, and must be in
the same directory as the VSIM application.

ET_DFF_TEST_BENCH (STRUCTURAL) 0 1 2
ET_DFF_TEST_BENCH (STRUCTURAL) 0 3

ET_DFF (STRUCTURAL) 0

ET_DFF (STRUCTURAL) 0

NAND_GATE (SIMPLE) 3000000 4 7

NAND_GATE (SIMPLE) 3000000 5 6

NAND_GATE (SIMPLF) 3000000 0 2
THREE_INPUT_NAND_ GATE (SIMPLE) 3000000 3 5
NAND_GATE (SIMPLE) 3000000 0 2 4

NAND_GATE (SIMPLE) 3000000 1

Figure 60. Example VMAP Output File

ORLNWbHEUOO OO

144

oonN

3

3
000000 5000000

#
#
¢
#
#
#
#
#
L]
#
#
#

LP index

Number of input LPs

LP indices of input LPs

Polling frequencies of input LPs
Offset of polling frequency
Number of input lines

LP number for each input line
Number of output LPs

LP indices of output LPs

Number of output lines

LP index for each output line
Minimum delays for each output line

Figure 61. Format Specification for 1px.arcs Files (4:98)

NONHEFHFOOH KN

01

OCON

000000

000000

3000000 3000000

Figure 62. Example 1px.arcs File with 3 LPs

145

NOHOIWDLEUON
NN OO0

Figure 63. Example 1px.map File with 3 LPs

B42 Execute Parallel Simulation on the Hypercube. The final step in the VSIM
parallel simulation process is to copy the necessary files to the target platform, compile
the simulation, and execute it on the desired number of nodes. The following files are
needed on the hypercube:

» The circuit specific C source code (i.e. the “circuit.c” file).

« The header files associated with the “circuit.c” file; these header files have file
names of the form FN###4, where #### is a numeric value determined by the
Intermetrics toolset.

* The appropriate 1px.arcs and 1px.map files for the desired circuit partition.

* A makefile to compile the appropriate VSIM, SPECTRUM, and circuit specific
files.

In addition, the header file application.h will have to be modified to define the desired
number of LPs. Thus, application.h will have to be copied to, and compiled out of, the
user’s local directory. It is a good idea to also copy the file globals.h to the same local
directory. If application.h is placed in a directory ~/spect rum in the user’s main
directory, the VSIM utility set1ps can be used to set the number of LPs without
requiring the user to manually edit application.h. It is invoked as follows:

setlps #

Where # is the number of LPs desired. However, as currently implemented, set1ps will
only work if the number of LPs is <9.

The simulation is now ready for compilation on the hypercube. Note that the VSIM
code will have to be recompiled each time the number of LPs is changed in
application.h, but the circuit specific code will have to only be compiled once. The
makefile should handle this automatically. Once compiled for a given number of LPs,
however, the simulation may be run with different partitions by replacing the 1px.arcs
and 1px.map files with no need to recompile.

The simulation should be compiled with the following options:

~UMAPPING -UQUTPUT -DCOUNTS -UMONITORCUBE

The MaPP ING option is undefined because the behavior inter-dependency relationships
are already known. The ouTpuUT Option is also undefined because the simulation output

146

creates a performance bottleneck. The AFIT research surrounding VSIM has concentrated
.2 computational speedup and has assumed that other research will adequately address
the problems caused by large amounts of output data in parallel simulation applications.
However, the ouTPUT option can be defined if the user desires to verify the results of the
parallel simulation.

When defined, the counTs option causes VSIM to report real, null, and total message
counts to the LP’s “log” in addition to the normal timing information. If the MONITORCUBE
option is defined, each LP will periodically report its simulation time to the terminal
screen so that the user can verify that the simulation is progressing. Other options
available are the DEBUG and REPORT options which will report very large amounts of data
to each LP’s “log” file.

After the compilation is complete, the simulation can be started by invoking the host
program. The user will then be prompted for the name of the circuit program to load, the
command line parameters (simulation end time in ns), the number of nodes to use, and the
number of LPs in the application (one LP per node). If the number of LPs entered does
not match the number in application.h, the program exits with an error message.

After the simulation is completed, the simulation timing data will be in a series of
“log” files - one for each LP (e.g. 10g0, logl, log2, ...). These can be concatenated
together to provide a summary report for the simulation run. If outpuT was defined, each
LP’s output data will be in an 1px. out file (where x is the LP number). These files can be
concatenated and then sorted with the sgrep utility to provide a file that can be compared
with the sequential simulation output.

BS Step-by-Step Example.

This section illustrates the VSIM parallel simulation process with a step-by-step
example using the edge-triggered D flip-flop (et_d£f£) as the example circuit.

B.5.1 Develop VHDL Source Code. The s~-cific rules and limitations for
developing the original VHDL source code are discussed in section B.2.1. Refer to (4) for
more detailed information. The VHDL source code files for the et_dff circuit are
archived on the iPSC/2 (cube386) in the directory ~/usr/simulate/vhdl/et_dff, and
all end in a .vhd extension.

BS5.2 Compile, Model Generate, and Build. In this example, it is assumed that the
user has already set up an Intermetrics work library as described in section B.2.2. In order
to compile, model generate, build, and simulate the circuit with Intermetrics VHDL, a
“.com” file similar to the following is required:

#!/bin/csh ~v

filename => et_dff.com

vhdl ~/vhdl/aox_gates/nand_nor.vhd

vhdl et_dff.vhd

vhdl et_dff test_bench.vhd

vhdl et_dff config.vhd

mg '-debug=cknd nand gate (simple)'

mg '-debug=cknd three_input_nand gate(simple)’
mg '-debug=cknd et_dff (structural)’

mg '-debug=cknd et_dff test_bench(structural)’
mg '-debug=cknd ~top et_dff config'

build '-debug=cknd -replace -ker=et_dff et_dff config’
sim et _dff

rg et_dff et_dff.rcl

147

In this example, the file is named et_df £ .com and is executed as follows:
~/vhdl/et_dff> et_dff.com > et_dff.out

The activities of the signals specified in the “report control language” file
et_dff.rcl will be reported in the output file et_aff. rpt, and can be used to validate
the output of VSIM later.

The file et_dff.out will contain a record of the Intermetrics compilation, model
generate, and build sessions. This file will contain a list of all the header files (of the form
FN###H#) necessary to compile with VSIM, as well as the “Kemel com” file (the
Intermetrics compilation script). To extract this information, the following commands
may be used:

~/vhdl/et_dff> more et_dff.out | grep ‘H file’
~/vhdl/et_dff> more et_dff._out | grep Kernel

The user should make note of the name of the “Kernel com” file for use with the
postprocessor pbuild. The header files should be copied to the current directory from the
user’s work library. For example, if the work directory is /usr/vhdl/shiplib/kkapp,
the following command can be executed for each header file listed in et _dff.out:

~/vhdl/et_dff> cp /usr/vhdl/shiplib/kkapp/FNi#i## .

B.5.3 Run Postprocessor to Transform Code. The “Kernel com” file is the
compilation script that the postprocessor uses to build the VSIM compa ble code from
the Intermetrics code. The output report of the postprocessor is always written to a file
called plex.log in the same directory. The postprocessor pbuild is invoked as follows:

~/vhdl/et_dff> pbuild FNE### et_dff.c

Note that pbuild concatenates all of the relevant intermediate source code files into one
large source file (for this example, it is called “big_et_dff.c”), and then performs a
series of transformations on it using the lexical utility plex to produce the VSIM source
file (e.g. et_dff.c) . In the process of the transformation, not all of the necessary
#include directives are always included in the transformed source file. They can be
extracted from the “big” source file by using the grep command, and then manually
inserted into the transformed source file. This usually only happens on large circuits (e.g.
the wallace tree multiplier). Reference (4) for more detailed information.

B.54 Run Sequential VSIM Simulation. The following files are needed on the
sparcstation in order to rua the sequential VSIM:

~/kkapp/vhdl/vsim/vinit.c ~/kkapp/vhdl/spectrum/globals.h
vsim.c application.h
vsim.h
vspec.c
vtools.c

To compile VSIM, a makefile is required. The example makefile below compiles
VSIM on the SPARC using the command “make vsim.”

148

4 SPARC macros for sequential execution - type "make vsim"

SPARC_SIMPATH=/usr2/eng/kkapp/vhdl/veim
SPARC_CKTPATH=/usr2/eng/kkapp/vhdl/et_dff
SPARC_SPECPATH=/usr2/eng/kkapp/vhdl/spectrum

SPARC_OBJS=$ { SPARC_SIMPATH) /vsim.o \
${SPARC_SIMPATH} /vinit.o \
$ {SPARC_SIMPATH}/vtools.o \
$ {SPARC_CKTPATH}/et_dff.o

SPARC_CFLAGS=-c -w ~g -DSPARC -DMAPPING -DOUTPUT

L]
Compiles VSIM for sequential operation on the Sun SparcStations.
L]
vaim: ${SPARC_OBJS}
$(CC) -o et_dff -g ${SPARC_OBJS)

$ {SPARC_SIMPATH}/vsim.o: ${SPARC_SIMPATH}/vsim.c \
$¢ SPARC_SIMPATH}/vsim.h
cd §{ SPARC_SIMPATH}; \
$(cc) $ {SPARC_CFLAGS} -I8¢ SPARC_SPECPATH} vsim.c

${SPARC_SIMPATH) /vinit.o: $(SPARC_SIMPATH}/vinit.c \
$ {SPARC_SIMPATH) /vsim.h
cd ${SPARC_SIMPATH); \
$(CC) ${SPARC_CFLAGS} vinit.c

${SPARC_SIMPATH}/vtools.o: ${SPARC_SIMPATH]}/vtools.c \
${SPARC_SIMPATH} /vsim.h
cd ${SPARC_SIMPATH}; \
$(CC) ${SPARC_CFLAGS) vtools.c

${SPARC_CKTPATH}/et_dff.o: et_dff.c $({SPARC_SIMPATH}/vsim.h
$(CC) $(SPARC_CFLAGS} -IS{SPARC_SIMPATH} et_dff.c

Once the makefile has been completed, the following commands compile and run
the sequential version of VSIM:

~/vhdl/et_dff> make vsim
~/vhdl/et_dff> et_dff > temp

The output in temp will be in time order. However, the following command will do a
secondary sort by signal name and place the output in the file et _dff.out:

~/vhdl/et_dff> sgrep temp et_dff.out

The data in et_dff.out can now be compared to the Intermetrics output for
accuracy verification. However, the only way to do this is manually, since the two output
reports will be in different formats.

B55 Extract Behavior Dependencies using VMAP. Since MAPPING was defined
during compilation, the output in temp also has behavioral information (behavior names,
id numbers, and dependencies). Using vmap, this information can be filtered out of temp

149

and saved. The vmap program attempts to “guess” the delays of each behavior, based on
when dependent behaviors are scheduled. The user is given a chance to override these
guesses. In most cases, the behaviors which represent gates show correct delays; the
other “system” behaviors should be set to a delay of zero. To run vmap, type the
following and respond to the prompts as appropriate (output will be written to
et_dff.vmap):

~/vhdl/et_dff> vmap temp et dff.vmap

The mapping of behavior numbers to actual behaviors is done automatically by
VSIM. Currently, the only way to verify this mapping is to compare the output of either
VSIM or vmap to the schematic.

B5.6 Generate the Circuit Partition for Parallel Execution. Using the output file
from the previous step (€.g., et_dff . vmap), use the VHDL Graph-Partitioning Tool (GP-
Tool) to generate the partition for the desired number of LPs. Reference the GP-Tool
User’s Guide for specific instructions on generating the partition. The needed files from
this step are the 1px.arcs and the 1px.map files, where x is the number of LPs.

B.5.7 Compile and Execute the Parallel Simulation. Copy the necessary files
specified in section B.4.2 over to the hypercube. Before compiling, a makefile to
compile the appropriate files is required. The example makefile below compiles VSIM
on the iPSC/2 hypercube using the command “make ipsc.”

iPSC macros for parallel execution on iPSC/2 - type "make ipsc"

local paths
MY_SIMPATH=/usr2/eng/kkapp/vsim

MY CKTPATH=/usr2/eng/kkapp/et_dff

MY SPECPATH=/usr2/eng/kkapp/spectrum

afit paths

AFIT SIMPATH=/usr/simulate/vhdl/vsim
UVA_SPECPATH=/usr/simulate/spectrum/afit

AFIT SPECPATH=/usr/simulate/spectrum/afit
AFIT_SPECPATH_INC=/usr/simulate/spectrum/afit/include
AFIT_FILTERPATH=/usr/simulate/spectrum/filters

SPECHEADERS=$ {MY_SPECPATH}/globals.h ${MY_SPECPATH}/application.h

MY OBJECTS=${MY_SIMPATH}/vsim.o \
${MY_SIMPATH)/vinit.o \
${MY_SIMPATH}/vtools.o \
${MY_SIMPATH}/vspec.o \
${MY_SPECPATH}/lp_man.o \
${MY_SPECPATH}/cube2.o \
${MY_SPECPATH} /vhdlclocks.o \
${MY_CKTPATH) /et_dff.o

MY _CFLAGS=-c -w -UMAPPING -UOUTPUT -DCOUNTS -DMONITORCUBE

ipsc: host node

150

host: $(MY_SPECPATH)/host2.0
$(CC) -o host $(MY_SPECPATH)/host2.o ~-host

node: ${MY_OBJECTS)
$(CC) -o et_dff ${MY_OBJECTS} -node

4 compiles host2.c out of the archive directories
${MY_SPECPATH}/host2.0: ${AFIT_SPECPATH)}/host2.c \
${AFIT_SPECPATH_INC}/cube2.h
cd ${MY_SPECPATH}; \
$(CC) ${MY_CFLAGS} -I${AFIT_SPECPATH_INC} ${AFIT_SPECPATH}/host2.c

4 compiles vsim.c out of the archive directories
${MY_SIMPATH}/vsim.o: ${AFIT_SIMPATH}/vsim.c \
${AFIT_SIMPATH}/vsim.h \
${MY_SPECPATH}/globals.h \
${MY_SPECPATH}/application.h
cd ${MY_SIMPATH}; \
$(CC) ${MY_CFLAGS) -I${MY_SPECPATH} $(AFIT_SIMPATH}/vsim.c

compiles vinit.c out of the archive directories
${MY_SIMPATH}/vinit.o: ${AFIT_SIMPATH}/vinit.c \
${AFIT SIMPATH}/vsim.h \
${MY_SPECPATH}/globals.h \
${MY SPECPATH)/application.h
cd ${MY_SIMPATH}; \
$(CC) ${MY_CFLAGS)} -I${MY_SPECPATH} ${AFIT_SIMPATH}/vinit.c

compiles vtools.c out of the archive directories
${MY_SIMPATH)/vtools.o: ${AFIT_SIMPATH}/vtools.c \
${AFIT_SIMPATH}/vsim.h
cd ${MY_SIMPATH}; \
$(CC) S{MY_CFLAGS} ${AFIT_SIMPATH)/vtools.c

compiles vspec.c out of the archive directories
${(MY_SIMPATH} /vspec.o: S${AFIT_SIMPATH}/vspec.c \
${AFIT_SIMPATH}/vsim.h \
${MY_SPECPATH}/globals.h \
${MY_SPECPATH)}/application.h
cd ${MY_SIMPATH}; \
$(CC) ${MY_CFLAGS) -I${MY_ SPECPATH} ${AFIT_SIMPATH)/vspec.c

compiles lp man.c out of the archive directories
$(MY_SPECPATH}/lp_man.o: ${UVA_SPECPATH}/lp man.c \
${ SPECHEADERS)
cd ${MY_SPECPATH}; \
$(CC) ${MY_CFLAGS} ~-I${MY_SPECPATH} ${UVA_SPECPATH}/lp_man.c

compiles cube2.c out of the archive directories
${MY_SPECPATH}/cube2.0: ${AFIT_SPECPATH}/cube2.c \
$ {SPECHEADERS} \
${AFIT_SPECPATH_INC}/cube2.h
cd ${MY_SPECPATH}; \
$(CC) ${MY_CFLAGS} -I$(AFIT_SPECPATH_INC} -I${MY_SPECPATH}
${AFIT_SPECPATH}/cube2.c

compiles vhdlclocks.c out of the archive directories
${MY_SPECPATH}/vhdlclocks.o: ${AFIT FILTERPATH}/vhdlclocks.c \
$ { SPECHEADERS}
cd ${MY_SPECPATH}; \
$(CC) ${MY_CFLAGS} -I${MY_SPECPATH} ${AFIT_FILTERPATH}/vhdlclocks.c

151

compiles et_dff.c out of local directory
${MY_CKTPATH)/et_dff.o: et_dff.c ${AFIT_SIMPATH)/vsim.h
$(CC) ${MY_CFLAGS) -IS{AFIT_SIMPATH} et_dff.c

Once the makefile has been completed, the following command compiles the
parallel version of VSIM:

c386 #: setlps # (where # is the number of LPs desired).
c386 #: make ipsc

It should be noted that the exact command depends upon the makefile. In the VSIM
archives, a makefile is provided with each circuit that will compile on the SPARC with
the command “make vsim,” on the iPSC/2 with the command “make ipsc,” or on the
i860 with the command “make i860.” These makefiles can be used as templates for
future circuits.

The simulation is started by invoking the host program and typing the appropriate
information at the prompts, including entering the simulation end time in ns as a
command line argument. Below is an example simulation session for two LPs (user
entries in bold):

CUBE386: /usr2/eng/kkapp/et_dff > host

Which application do you want to use?:et_dff

Enter the command line arguments for the program (RETURN if none):

>2000

Is assignment of logical processes to nodes to be from a file? (y/n) -> n

The cube is being used as follows:

CUBENAME USER SRM ROST TYPE TTYS
iocube root cube386 cube386 0
How many cube nodes do you want to use? (0 to ABORT):2

How many LP's are in this application?:2

Do you want to use the ‘natural’ node assignment? (y/n): ¥y
Getting cube of size 2 - stand by.

load -H -p 0 0 et_dff 2000

load -H -p 0 1 et_dff 2000

startcube

Cube Loaded

LAST _TIME message from LP 0 on node 0, pid 0.

LAST TIME message from LP 1 on node 1, pid 0.

End stats messages:

LP 0 (node 0, pid 0): 661 received, 672 sent.

Max message count set at 10, Max messages removed was 2.
LP 1 (node 1, pid 0): 672 received, 661 sent.

Max message count set at 10, Max messages removed was 1.
HOST: Total CPU time waiting: 0.000000 (msecs)

HOST: Wall clock time loading cube: 5 (secs)

HOST: Wall clock time waiting: 2 (secs)

152

Each LP will record its timing data in a “log” file (e.g. 10og0 for LP0). With counTs
defined during compilation, these files will also contain message traffic information. The
files can be concatenated and viewed as follows:

CUBE386: /usr2/eng/kkapp/et_dff > cat log0 logl > time2.out
CUBE386: /usr2/eng/kkapp/et_dff > more time2.out

VSIM LPO reports total time of 863

LPO NULLs Sent = 652

LPO NULLs Posted = 0

LPO NULLs Processed/Deleted From Myself = 0
LPO NULLs Processed/Deleted From Another IP = 653
LPO NULLs Annihilated = 0

LP0O Reals Sent = 20

LPO Reals Posted = 0

LP0 Reals Processed From Myself = 0

LPO Reals Processed From Another LP = 8

LP 0 wall time taken is 2.107 (secs)

LP 0 messages received 661

LP 0 messages sent 672

VSIM LP1 reports total time of 851

LP1 NULLs Sent = 653

LP1 NULLs Posted = 0

LP1 NULLs Processed/Deleted From Myself = 0
LP1 NULLs Processed/Deleted From Another LP = 652
LP1 NULLs Annihilated = 0

LP]1 Reals Sent = 8

LP1 Reals Posted = 0

LP1 Reals Processed From Myself = 0

LP1 Reals Processed From Another LP = 20

LP 1 wall time taken is 2.098 (secs)

LP 1 messages received 672

LP 1 messages sent 661

If ourpuT was defined during compilation, the signal change information for each LP
will be in a file called 1px.out (where x is the LP number). These files can be
concatenated and sorted with sgrep for comparison with the sequential output
(et_dff.out).

153

Appendix C. Graph Partitioning Tool (GP-Tool)

C.1 GP-Tool User’'s Guide

C.1.1 Overview. Prior to executing a parallel VHDL simulation using VSIM, it is
necessary to divide the simulation workload among the available processors. This
process, referred to as circuit partitioning, is accomplished by the VHDL Graph-
Partitioning Tool (GP-Tool). GP-Tool builds a behavior inter-dependency graph from a
circuit description file and provides several g:titioning options for assigning the vertices
of the inter-dependency graph to the specified number of logical processes (LPs). This
section describes how to use GP-Tool to read in a circuit description file and generate the
partition output files required by VSIM’s parallel mode.

The current version of GP-Tool (version 2.0) is an extension to the VHDL Graph
Searching Program, henceforth referred to as the original version of GP-Tool. It was
written in 1992 by Maj Eric R. Christensen, USA, instructor at the Air Force Institute of
Technology, in order to provide a random mapping of the VHDL behaviors onto the
logical processes of the parallel simulation. The ability to perform a topological sort on
the nodes in the problem-graph was also provided (25). GP-Tool is implemented in the
Ada programming language using the Sun Ada Compiler, version 1.1 (available on
aurora in the AFIT parallel simulation laboratory).

C.12 Building the Behavior Inter-Dependency Graph. ‘The introductory screen to
GP-Tool is shown in Figure 64. It describes the required format of the circuit description
input file and prompts for the input filename (e.g. “et_dff.vimap” in Figure 64). The
circuit description file contains a list of circuit behaviors along with their names, logical

KRR RARAR AN AR RN RRRARNRRETIARARKRRAKAARRRARKAANRRRARNRARRRRNRAR AR AR AN

Welcome to the VHDL Graph Partitioning Tool (GP-Tool) - Version 2.0

ARERRRR KRR RN R AR AR AR R R RRA R R R R RRRRRRR R AR AR AR RRR KRR I AR RRRRARARAARRR

This program reads a file with the following format:
- Integer, space, String(l..80 characters), Integer, newline
or 1..N integers followed immediately by a newline
- The 1..N integeis are considered adjacencies to the first integer

The program then builds a graph of the adjacencies and dependencies

Enter the Name of the input data file:
et_dff.vmap

-- Reading Input File and Inserting Vertices in the Graph
-- Reading Input File and Inserting Arcs in the Graph

Figure 64. GP-Tool Introductory Screen

154

ET_DFF_TEST_BENCH (STRUCTURAL) 0 1 2
ET_DFF_TEST_BENCH (STRUCTURAL) 0 3

ET_DFF (STRUCTURAL) 0

ET_DFF (STRUCTURAL) 0

NAND_GATE (SIMPLE) 3000000 4 7

NAND_GATE (SIMPLE) 3000000 5 6

NAND_GATE (SIMPLE) 3000000 0 2

THREE_INPUT NAND_GATE (SIMPLE) 3000000 3 5
NAND_GATE (SIMPLE) 3000000 0 2 4

NAND_GATE (SIMPLE) 3000000 1

O NDNWbhbUAHAN®D®O

Figure 65. GP-Tool Input File “et_dff.vmap”

delays, and list of dependencies. With this information, GP-Tool builds a directed guph
data structure, with each vertex corresponding to a circuit behavior, and each arc
representing a unique behavior-to-behavior dependency.

GP-Tool assumes that the input file contains a line for each behavior, and that each
behavior description conforms to the required format specification. The current version of
GP-Tool does not contain the error detection and recovery mechanisms necessary to
compensate for discrepancies in the input file. An incorrect input file may result in
erroncous partition output files, or may cause the program execution to be abandoned.

Correctly formatted input files can be produced by following the instructions in
sections B.3 and B.4 of the AFIT Parallel VHDL Simulation User’s Guide (Appendix B)
for using the vmap utility program. The output files created by vmap conform the GP-Tool
input file specifications. An example vmap output file for the edge-triggered D flip-flop of
Figure 18 is shown in Figure 65.

C.13 Main Menu Options.

C.1.3.1 Generate Delay and Adjacency Information File. In the original
version of GP-Tool, the 1px. arcs files were not created directly. Rather, an intermediate

khkkkkhkhkhkkkkkkkkkkrdkx GP-TOOL MAIN MENU RRRRRRRRAARRA AR R AN RRR

Select one of the following operations:

: Generate Delay and Adjacency Information File

: Generate SGE Data File

: Generate Topological Sort File

: Generate Strong Components File

: Generate Behavior to Logical Process (LP) Mapping File(s)
: Quit GP-Tool

O d W=

Enter your menu choice now:

Figure 66. GP-Tool Main Menu

155

|

*SIZE
10
L]
*SOURCE
80
90
*®
*SERVER
0 3000000
1 3000000
2 3000000
3 3000000
3000000
3000000
SINK
0
0

% ~J OV % % U >

&
2
-~ 8

o wo R
SO N

* WO OJHhULWN O

Figure 67. Example Delay and Adjacency File for Edge-Triggered D Flip-Flop

file was created which, along with the 1px.map file, was used as input to a scparate utility
application called build_arc which produced the required 1px. arcs file. The delay and
adjacency information file created by this menu option represents that intermediate
description file. An example for the edge-triggered D flip-flop is shown in Figure 67.

However, the application build_arc is no longer supported and is unable to handle
large input files. As a result, the functionality to produce the 1px. arcs files was built into
the current version of GP-Tool, obviating the need for this output file. Nevertheless, the
option has been retained in the event that it is needed in the future.

C.132 Generate SGE Data File. The second main menu option allows the
user to create a graph description data file that can be read by the commercial Synopsys
design analyzer to produce a graphical representation of the input graph that can be
displayed using the Synopsys Graphic Editor (SGE). Again, this is a feature of the
original version of GP-Tool that was retained for possible future applications. The
process for setting up the Synopsys design analyzer and processing the SGE data file
produced by GP-Tool to attain the graphic representation is rather complex and is not

156

The Number of Arcs is 15
The Following Nodes have no Inputs
I8 19

The Following Nodes have no OQutputs
06 07

ADJ NO A0

DEP NO Al A3

ADJ N1 Al Al Al

DEP N1 A0 A9

ADJ N2 A2 A2

DEP N2 Al A3 A9

ADJ N3 A3 A3

DEP N3 A2 A8

ADJ N4 A4 A4

DEP N4 Al AS

ADJ N5 A5 AS

DEP NS A2 A4

ADJ N6 06

DEP N6 A4

ADJ N7 07

DEP N7 AS

ADJ N8 A8

DEP N8 I8

ADJ N9 A9 A9

DEP N9 I9

Figure 68. Example SGE Data File for Edge-Triggered D Flip-Flop

discussed here. An example SGE data file produced by GP-Tool for the edge-triggered D
flip-flop is shown in Figure 68.

C.133 Generate Topological Sort File. The third main menu option allows
the user to create a topological ordering of the nodes in the behavior inter-dependency
graph. This ordering specifies the order in which the circuit behaviors would have to be
executed if simulated sequentially. This is another feature of the original version of GP-
Tool that was retained for possible future applications. An example topological sort
output file for the edge-triggered D flip-flop is shown in Figure 69.

C.1.34 Generate Strong Components File. The fourth option on the main
menu is for performing a strong component search on the behavior inter-dependency
graph. An example output file for the edge-triggered D flip-flop is shown in Figure 70.

N9 N8 N2 N1 N3 N7 N6 NS
N4 NO

Figure 69. Example Topological Sort File for Edge-Triggered D Flip-Flop

157

GRAPH INFORMATION - et_dff.vmap

- - o — - D o - - - " " —— D T T S T -

The number of vertices in this graph is : 10
The number of arcs in this graph is : 15
PARTITION INFORMATION ~ Strong Component Search

. - —— - T - - — - - -t - - Y - -

Number of components : 6
Inter-component arcs : 7

The Strong Component sizes are :

4 2 1 1 1 1

Component Number 0 - Size: 4 - Local Arcs: 6
2 s o 1T
Component Number 1 - Size: 2 - Local Arcs: 2
-__; _____ ;____ e e
Component Number 2 - Size: 1 - Local Arcs: 0
--_; ___________ - ——— -
Component Number 3 - Size: 1 - Local Arcs: 0

- Smommmmemee —— ———
Component Number 4 - Size: 1 - Local Arcs: 0
---; e
Component Number 5 - Size: 1 - Local Arcs: 0
___; ___________ e ———— e

C.135 Generate Behavior to LP Mapping Files.
Tool main menu takes the user to a sub-menu with options for generating partition files
using one of several partitioning strategies implemented in GP-Tool. The GP-Tool
behavior mapping sub-menu is shown in Figure 71, and is discussed in further detail in

Figure 70. Example Strong Component File for. Edge-Triggered D Flip-Flop

the next section.

C.14 Mapping Menu Options.

C.14.1 Generate Partitioning Files. Options 1-6 on the GP-Tool behavior
mapping sub-menu allow the user to create the circuit partition files 1px.map and
lpx.arcs required to execute the simulation in parallel using VSIM. In addition, a

158

The fifth option on the GP-

122222222223 GP-TOOL BEHAVIOR mPING MENU L 22 2 22222 22 8 24

Select one of the following operations:

: Generate Random Partitioning File

: Generate Simple Depth-First Partitioning File
: Generate Simple Breadth-First Partitioning File
: Generate ABl-Annealing Partitioning File

: Generate AB2-Annealing Partitioning File

: Generate AB3-Annealing Partitioning File

: Turn the .MAP and .ARCS output OFF

: Modify the Cost Function Parameters

: Return to Main Menu

: Quit GP-Tool

O VO JIAAUd W=

Enter your menu choice now:

Figure 71. GP-Tool Behavior Mapping Sub-Menu

partition statistics file is created such as the one shown in Figure 27. The following
partitioning options are available:

Random Partition - Use a random number function to randomly distribute
the behaviors among the specified number of LPs, ignoring the behavior inter-
dependency relationships. The user will be prompted to input a random stream
number between 1 and 100 that is used as an input to the random number
generator. This is the only partitioning option that was available in the original
version of GP-Tool.

Simple Depth-First (SDF) Partition - Use a depth-first search algorithm
to traverse the behavior inter-dependency graph and determine the LP
assignments.

Simple Breadth-First (SBF) Partition - Use a breadth-first search
algorithm to traverse the behavior inter-dependency graph and determine the LP
assignments.

ABl-Annealing Partition - Use the AB border-annealing algorithm to
refine an initial SDF partition.
AB2-Annealing Partition - Use the AB border-annealing algorithm to

refine an initial SBF partition.

AB3-Annealing Partition - Use the AB border-annealing algorithm to
refine an initial random partition.

Each of the AB Annealing partition options require a set of input parameters to
control the border annealing process. The parameters that are specific to the AB
Annealing algorithm are presented to the user in a sub-menu after the user has specified
the number of LPs and entered the appropriate file names.

159

REkRNRRKRRRARARAX AR-ANNEALING PARAMETERS ** Xk &hxadkkkkhkk

The current parameter values are:

1 : Number of Iterations - 500

2 : Max Number of Worthless Iterations - 50

3 : Load Imbalance Tolerance - 5.0 &

4 : Ignore Comm Dist_Factor - false

5 : Include Hop Weights in Priorities - false

6 : Log Annealing Data - true

7 : Include Deubg Info in Log - false

8 : Annealing Log Filename - annealing data

Enter the line number of the
parameter to update, or zero (0) to continue:

Figure 72. GP-Tool AB Annealing Parameters Sub-Menu

The AB Annealing parameters sub-menu is shown in Figure 72. If the default
parameter values are satisfactory, the user can enter ‘0’ to begin the partitioning process.
Otherwise, the parameter values can be changed by entering the appropriate line number
and entering the new value (if appropriate). The specific parameters are as follows:

Number of Iterations - Defines the maximum number of annealing
iterations to perform before terminating the process, with a maximum of 1000.
Realistically, the default value of 500 provides more than enough iterations to
converge to a solution with the circuits used as test cases in this thesis.

Max Number of Worthless Iterations - Defines the maximum number of
consecutive iterations with no net improvement in the communications cost
portion of the objective cost function which can be processed before the annealing
process is terminated. The counter which tracks worthless iterations is reset to
zero each time there is an complete iteration with a net improvement in the subject
cost function. This value should be large enough to ensure that the series of
worthless iterations indicates an actual solution convergence and not jusi a
temporary anomaly in the annealing process.

Load Imbalance Tolerance - Defines the maximum value of the load delta
factcr Hy that is acceptable. Moves which cause Hy, to be larger than the value of
this parameter will not be made, even if they would result in a reduction in the
communications cost sub-function. A value of 0.0% for this parameter will
automatically be defaulted to the value of Hy, in the initial partition. A load
imbalance of one behavior can result in the initial partition algorithm if the
number of behaviors is not evenly divisible by the number of LPs. However, if the
number of behaviors is divisible by the number of LPs, the initial partition will
have an Hy of 0.0% and the a 0.0% value for this parameter will prevent any
moves from occurring, rendering the annealing process useless.

160

* Ignore_Comm Dist_Factor - Boolean value that allows the factor Hq to be
ignored when computing the value of the communications sub-function during the
annealing process. When false, it is possible to experience a slight increase in the
number of LP_output_Lines as the value of Hy is reduced. However, when true,
the annealing algorithm will have a tendency to prevent such an increase to the
number of LP_output_Lines (which has a direct impact on the number of null
messages sent), as well as lead to a larger reduction in the number of inter-LP
arcs. Furthermore, if the number of LP_output_Lines was reduced when this
parameter was false, setting it to true may lead to a larger reduction.

e 1Include Hop Weights in Priorities - When calculating the
communications costs of a partition, each inter-LP arc is multiplied by a hop-
weight corresponding to the number of hops in the corresponding physical
communications link. When set to true, this parameter will take this weighting
into account when prioritizing and queueing behaviors during the annealing
process. It should be noted that the default hop weights are all 1.0 (evenly
weighted), thus rendering this option meaningless. The hop weights can be
modified using option eight on the behavior mapping sub-menu. If uneven hop
weights are used, setting this parameter to true has a tendency to deteriorate the
performance of the annealing algorithm, with no noticeable improvement in the
solution quality.

* Log Anne:-ling Data - Boolean value that controls the printing of the
partition statistics values to an output file for the initial partition and after each
annealing iteration. This allows the progress of the annealing algorithm to be
examined.

¢ 1Include Debug Info in Log - Boolean value that will cause information to
be added to the annealing log file for each behavior that is removed from the
annealing queue. This is for development/debugging purposes only. When true,
the number of iterations should be reduced to the 1-5 range, or the annealing log
will become too large to be of practical value. This parameter will have no effect
if the previous parameter is set to false.

* Annealing Log Filename - Defines the name of the annealing log output
file.

C.142 Toggle MAP and .ARCS Output. Option seven on the GP-Tool
behavior mapping sub-menu allows the user to toggle the creation of the 1px.map and
1px.arcs files on and off. This allows the user to create only the partition statistics files
for comparison purposes without incurring the overhead of entering filenames and
creating the 1px.map and 1px.arcs files. It is included primarily as an aid to the
development and testing process. It should be noted that when the 1px. arcs file is not
produced, the value of Larcs is set to 1.0 in the caiculation of the predicted simulation
speedup in the partition statistics file because the actual lookahead values are not
available.

C.14.3 Modify Cost Function Parameters. Option eight on the GP-Tool
behavior mapping sub-menu allows the user to set several miscellaneous parameters that

161

kkkkkkkkkkk MODIFY PARAMETERS MENU ****xxkkkkdxkk

The current parameter values are:

: Consider Topological Variation - false
: Ignore 2ero Delays in .arcs file - true
: Alpha - 100.00

: Beta -1.00

: Gamma - 0.0750000000

: One_Hop_Weight - 1.0
: Two_Hop_Weight -
: Three_Hop Weight
: Four_Hop_Weight
10 : Five_Hop_Weight
11 : Six_Hop Weight

12 : Seven_Hop_Weight -

OCOIALD WN
1

I)

cococooo

Enter the line number of the
parameter to update, or zero (0) to exit:

Figure 73. GP-Tool Cost Function Parameters Sub-Menu

are not specific to the AB-Annealing algorithm. The modify parameters sub-menu is
shown in Figure 73. The specific parameters include the following:

Consider Topological Variation - Boolean value which controls whether
or not the topological layout of the hypercube is considered when building an SDF
or SBF partition. Reference section 3.4.4 for more information.

Ignore Zero Delays in .arcs File - Boolean value which controls how
zero-delay behaviors are handled during the calculation of the LP delay values for
the 1px.arcs file. If true, a source behavior with a logical delay of zero in LP A
with an external arc to LP B will not cause the lookahead value for the LP output
line from A to B to be set to zero. Rather, the smallest non-zero value calculated
for that output line will be used. This works due to the fact that in VSIM, all
source behaviors must have their signal changes explicitly defined in the
testbench, thus causing them to be placed in the active list at simulation startup.

Alpha, Beta, and Gamma - Coefficients to the partition cost function that are
used in the calculation of the predicted speedup. These values have no effect upon
the partitioning algorithms.

Hop Weights - Weights associated with each inter-LP arc based upon the
number of hops in the correspunding physical communications link. These hop
weights will not affect the random, SDF, or SBF partitions other than increasing
the value of the communications cost function. However, since the
communications cost function is actively used in the AB border annealing
process, the hop weights will directly affect the resulting AB annealing partition.

162

C.2 GP-Tool Developer's Guide

This section provides a brief description of the Ada source files required to compile
and run the current version of the GP-Tool utility. The source code is highly modularized,
with different functions performed by separate Ada packages. The following is a list of
the primary Ada source files in the GP-Tool hierarchy:

ab_annealing_pkg b.a printing_pkg b.a sdf_partition pkg b.a
ab_annealing_pkg_s.a printing_pkg s.a sdf_partition pkg_s.a
annealing_tools_pkg b.a rand gen_b.a sort_vhdl_p.a
annealing_tools_pkg s.a rand gen_s.a statistics_pkg_b.a
build graph b.a random partition_b.a statistics_pkg_s.a
build graph_s.a random partition_s.a tools_pkg b.a
graph_tool.a sbf_partition pkg b.a tools_pkg s.a
misc_vhdl_pkgs_s.a sbf partition pkg_s.a vhdl_top_sort_p.a
print_graph_b.a sc_search_pkg b.a

print_graph_s.a sc_search pkg_s.a

The remaining files required to compile GP-Tool fall into the category of generic Ada
packages, and are as follows:

digraph_utilities_b.a list_search_b.a
digraph utilities_s.a list_search_s.a
directed graph b.a list_utilities b.a
directed_graph_s.a list_utilities_s.a

gen_doubly linked list_b.a map unbounded cache_b.a
gen_doubly_ linked list_s.a map_unbounded cache_s.a

gen_static_strings_b.a priority_queue_b.a
gen_static_strings s.a priority_queue_s.a
generic_queue b.a seq_storage_mngr_b.a
generic_queue_s.a seq_storage mngr_s.a
generic_top_sort_b.a set_iterator b.a
generic_top_sort_s.a set_iterator_s.a
lim private_map pkg b.a stack_pkg_b.a

lim private_map_pkg_s.a stack_pkg_s.a

Figure 74 shows how the various Ada packages interact to form the complete GP-
Tool application. Note that misc_vhdl_pkgs_s. a contains several package instantiations
in a single file. Note also that the figure does not specify the specific generic package
dependencies, but treats all of the generic packages as a single group in order to simplify
the diagram.

The functionality of the most critical packages are listed below. Each of these
packages also contains extensive source file comments with more detailed information.

* graph_tool - provides the overall program flow control, displaying the
menus and making the appropriate sub-routine calls based upon the menu option
selected by the user.

* build graph - reads the input file and builds the behavior inter-dependency
graph structure in memory.

* random partition_pkg - performs a random mapping of the behaviors to the
given number of LPs.

163

r — - —l
List_
Mic_ | I] swea [
prgrery —l b |
Pkg | Bobavior_Lim_ i Lim_
] Statistics_ Search_Pkg I 1 eitikies |
— i | I | |
T—n Printing Pig bl | | r“"'"‘-. -
Teamy [y puseds | |
IAB_Annealing -
T—»_mﬁ' - | | [Proby-Lumkes. '
LP_Behavior_
— Tools_Pig H Tobiepeg | | I I
| Bebavior |
SBF_ Lis Py | [soars | !
Partition_Pkg - | I I
Random_

Qragh_Tool | | | |
Random_ Process_1d_ Genoric_
Partition_Pkg - | sa g | | LT |

L v | [oreaes. | |
Build_Graph -] - | I Graph i
Stack_Pkg
' ' | Map_ l
Unbounded_
+—D Prirt_Graph -] | >/ Cache |
Sort_VHDL VHDL_Top_ g | P
#—-» - —] s ! |
l 'VHDL_Graph I Generic_
I > Ll‘mtjh i | Sutic_Strings |
' L |
’l | | Swrage_ |
String% Manager
' b |
| IS — Digraph_
|| vsiticies |
| |
Generic_
| [priocity_Quee| |
e - om =)

Figure 74. GP-Tool Ada Package Dependency Graph

* sdf_partition_pkg - performs a simple depth-first (SDF) mapping of the
behaviors to the given number of LPs.

* sbf_partition_pkg - performs a simple breadth-first (SBF) mapping of the
behaviors to the given number of LPs.

164

ab_annealing partition pkg - takes a partitioned graph as input and
g‘eﬁorms_ the AB border annealing algorithm in an effort to improve the quality of
e partition.

annealing tools_pkg - provides several utility functions used by the AB
border annealing algorithm, such as displaying the annealing parameters sub-
menu, initializing the vertex priorities, and printing relevant data and debugging
information to the annealing log.

tools_pkg - consolidates several utility functions used by all of the
partitioning algorithms into a single file in order to minimize code duplication and
improve code maintainability; functions include initializing data structures and
linking a new vertices to the Parent-Child chains representing a given LP
assignment.

statistics_pkg - provides routines needed to evaluate a partitioned graph
and calculate the statistics values associated with the partition (inter-component
arcs, load imbalance, predicted speedup, etc.); includes a routine to build and
initialize the communications weight matrix.

printing pkg - provides routines to print the key output files including the
partition statistics file, the 1px.map file, and the 1px. arcs file.

sc_search_pkg - provides routines to perform a strong component search on
an unpartitioned input file, linking the strong components together similar to the
LP assignment lists.

print_graph - provides routine to print the “queue.dat” file used as input to
the build_arc utility which can produce the corresponding 1px.arcs file; note
that build arc is no longer supported and cannot handle large input graphs.

sort VEDL - provides routines to perform a topological sort on an input
graph.

165

Appendix D. Simulation Performance Data

This appendix contains additional simulation performance data to supplement the data
appearing in Chapter 5. The first section contains tables which summarize the actual
performance data for a selected subset of test cases. The second section contains
additional message traffic analysis graphs for a selected subset of test cases.

Table 3 summarizes the performance of the single LP wallace tree multiplier case.
Tables 4 to 16 summarize the performance of the wallace tree multiplier for all four
partitioning types: random, SDF, SBF, and AB border annealing. Tables are included for
2,4, and 8 LPs for each partition type. Each table contains the simulation time, the total
time (which includes the time to load the cube nodes), real message transmitted, null
messages transmitted, and total messages transmitted. All performance measurements are
with respect to the simulation time. All times are in ns. Each table also summarizes the
corresponding partition statistics values as calculated by GP-Tool. Tables 17 to 28
provide an identical set of data for the associative memory array.

Figures 75 to 78 provide additional real messages vs. null messages transmitted
graphs to supplement the test cases discussed in Chapter 5. Graphs are provided for both
the wallace tree multiplier and the associative memory array. Figures 79 to 84 provide the
corresponding total messages transmitted vs. output arcs graphs, while Figures 85 to 90
provide the total messages transmitted vs. LP output lines graphs.

Table 3. Wallace Tree 1 LP Simulation Results

Circuit Wallace Trial | Sim Time (ms) | Total Time (ms)] Reals Sent Nulls Sent Total Sent
1 67,940 77,004 0 0 (4
Partition -__Random 2 67,940 77032 [] 0 o
Num_Vertices 1,050 3 61,940 77,022 0 0 (]
Num_Arcs 1,770 4 67,940 77,036 0 0 [
Num_LPs 1 5 67,941 71,034 [0 0
imer-LP Arcs 0 6 67,950 77,042 [0 0
Wi _Inter LP_Arcs 00 7 67,949 77,036 0 0 0
Avg_Wght_Arcs 00 8 67,949 77,041 0 0 0
Stddev_Wght_Out_Arcs 00 9 67,950 77,037 0 [)
67,949 7,032 0 0 0
61,950 nos 0 0 (1]
67,950 77,053 0 0 0
67,950 77,089 0 o 0
67,950 77,263 0 0 0
61950 77,208 0 0 [
67,950 71,081 0 0 (]
67,949 77,185 [[[
61950 78,629 0] Q
67,950 s 0 0 0
67,948 17,073 [] 0 (]
§1.541 17,173] [] (]
4 354 [] 0

166

Table 4. Wallace Tree 2 LP Random Pantition Simulation Results

- Wallacs Trial | Sim Time Total Tieos Reais St | Nalls Semt Total Samt

1 29,609 nm 8,502 2m 1,09

2 DM 7,658 8,502 T 126

3 85, nm 8,502 2763 11,265

4 B 33,343 8,502 273 11,288
s .19 38,142 8,502 2m 1,203

6 2862 n2m 8,502 241 1LM3

7 30,096 n® 8,502 am 11,280

] 30,607 39,645 8,502 249 11,251
] 289 40482 8,502 2,760 11,262
10 253 38,606 3,502 2813 11,315
1 29,609 38,008 8,502 2,801 11,53
12 30,035 38,449 8,502 2790 11,292
13 2,702 35,091 8,502 2764 11,266
14 2325 2 8,502 282 11,314
15 29361 M8 8,502 2767 11,269
16 2935 129 8502 am 1,1
17 29941 38337 8,502 276 11,278
18 2,60 38,015 8,502 272 11,284
19 30,130 8.5 3,502 2m 11,239
| 20 r-Xr-} 14 8,302 27%6 11 268
A ¥8n 38,993 2714 1,276

Stddev| 25 613 0 20 20

Table §. Wallace Tree 4 LP Random Partition Simulation Results

— Wallace Trial | Sitn Time (ns) | Total Tims (ww)|_ Reals Sox | Nulls Semt | Totsl Sens
1 19D 34.176 14902 17.831 32733
2 26347 35510 14502 17,907 32709
3 26,585 5821 14902 m 32679
" 92 34,167 14502 17,978 32880
s 25,690 34,863 14502 17,880 nm
6 2949 35134 14902 17,739 32,601
1 28127 34383 14502 17.8% 3273
s 2523 342 14902 17,904 32,006
9 90 34,145 14502 17813 2ns
10 nIM 34,030 14902 17,900 32002
1 2276 35417 14902 17,937 289
12 25,00 34255 14502 18,020 2
13 %37 36,065 14902 17,903 32,705
14 26,26 35,505 14902 17,841 32743
18 916 0,095 14502 17,794 32,696
16 25,645 34.89% 14902 17,992 32,80
17 26,026 35276 14502 17,645 2.8
18 .89 M1 14902 17,395 32797
19 26,605 5T 14902 17,842 32704
2 321 34,072 14902 17,938 32,840
Avg | 255 34310 14992 17,856 32758 |
Stddev! 684 682 0 35 85

Table 6. Wallace Tree 8 LP Random Partition Simulation Results

Circuit - Wallace Trial | Sim Time Total Time (ms) | _ Reals Sent Naulls Seat Total Semt
1 55899 67,535 19,066 81,967 101,033
Partition Random 2 55618 61,2718 19,066 81,712 100,778
Num_Vertices - 1,05 3 56,053 67,753 19,066 81,763 100,829
[Num_Arcs - 1770 4 55,728 67,393 19,066 82,079 101,145
[Num_LPs - 8 s 55,19 67,480 19,066 81,736 100,802
Inser-LP Arcs - 1558 6 54,848 66,499 19,066 82,010 101,076
gix_tnwer LP_Arcs - 15580 7 56418 68,087 19,066 81,496 100,562
Avg Wght Arcs - 1948 8 56,055 67,750 19,066 81,585 100,651
Stddev_Wght Out_Arcs - 11.1 s 55,276 66,950 19,066 82129 101,193
dev_Wght Out_Arcs - 123 10 54,710 66,35% 19,066 81,845 100,911
Stddev_Wght_In_Arcs - 100 11 55,025 66,714 19,066 81,707 100,773
Maxdev_Wght In_Arcs - 133 12 54,550 66,234 19,066 82219 101,28%
Conun_Cost_Factor - 88.02% 13 53682 65,293 19,066 82,543 101,609
54338 65,950 19,066 82,155 101,221
54,340 65,957 19,066 81,521 100,587
54,788 66,451 19,066 82,530 101,596
55,174 66,784 19,066 81,883 100,949
449 66,058 19,066 81,846 100912
36,168 61,836 19,066 83,45 102311
3589 67,455 19,066 81 846 100912
$2% | e s | me | rees]
736 754 [+] 403 400

167

Table 7. Wallace Tree 2 LP SDF Partition Simulation Results

| — —

| - Wallaoe Trial | Sim Tiw Tow! T Rools Szt Nulls Semt Total Sent

| 1 DB 38,29 107 1928 2955

- SDP 2 839 37,968 100 1,502 EL

1,050 3 853 %150 1027 17 2954

- 1o 4 858 38170 1027 1921 2548

-2 s 295 38,208 1.7 1,91 2918

- 150 6 87 320 1077 1,930 m

- 1500 ? 2597 no 107 1,097 294

- 750] su 38297 1027 1.09¢ 2921

- N6 9 D660 33288 107 1,969 1996

- 680 10 3513 38,143 1007 1,936 29683

| - 96 1 3388 33,034 1027 1,923 2930

_Weht In_Arcs - 690 1 2564 8172 1 1,942 2969

Comm_Cost_Pactor - 3AM% 13 Dam 33102 1,027 1916 21943

|Conn_Dist_Factx - 92.00% 14 5,537 n1s2 ¥ 1) 1917 2944

LP_Output_Linos -2 15 23540 n15 1027 1913 2340

Lookahead Factos - 1.000 16 2,660 38,306 1007 19727 2954

Avg_Comp_Loed - 5250 17 2,604 unm 1027 1,914 21

Swddev_Comp_Load - 00 18 9,652 8.2%9 1007 1,900 277

_Comp_Load - 00 19 B 328 1027 197 2944

Factor -__0.00% 2 443 38058 1 1,947 2,974

- 194 A 29,565 38,183 1027 1917 2,944

Stddev 92 » 0 20 2

Table 8. Wallace Tree 4 LP SDF Partition Simulation Results

Trial | Sim Tume (uw) | Totl Timo (zw)| ReaisSes | NullSent | Tow Sem
1 3313 34,688 2788 14,867 17,655
2 2,748 012 2788 14921 17,209
3 B8 33,096 2788 15123 1751
4 819 33,070 27 15,003 17,91
s B 33163 2788 15111 1799
6 1531 2799 2788 14115 16903
7 2,195 33,403 2788 14289 nom
s 295 228 2788 14075 16,963
) 4662 N9 2788 14,150 16938
10 2.9 31,860 27 14118 16,906
u 262 32926 2788 14241 17,009
12 306 nmw 2788 13510 16698
13 % 32,008 2788 411 16999
14 BAM 32788 2788 14,216 17,004
15 2,6% 31,90 2788 14125 16313
16 297 27 2788 14,038 16826
Y .53 33,746 2788 14,109 16897
18 25073 34,369 2788 14,004 16792
1 Bo13 2207 2788 14,050 16538

[2 .05 32,320 2788 14,009 16797
Ag| D 32,90 88 1439 17,117

Sddev 783 1) 0 402 402

Table 9. Wallace Tree 8 LP SDF Partition Simulation Results

Carcun - Wallace Trial | Sim Time (ms) | Tow) Tume (mw)| RealsSem | NulisSent | Tow Sem
1 “2m S5.57 5241 60315 5,556
2 Y] 55,140 5241 60,075 65316
3 45,067 56310 5241 60,047 65,288
4 3% 57.940 s241 60370 65,611
s “ums ssun8 5,241 60,344 65,585
6 “ 56316 5241 60,019 65,260
7 “es 56,304 5241 58631 63872
3 Y] 56,602 5241 58,900 64,141
9 46378 8,034 5241 59,906 65,147
10 45725 57.298 5241 9.544 64,783
1 46341 8,495 s241 38854 64,098
12 “ 3% $5.741 5241 59.616 64,357
13 46,816 58428 5241 59,185 64,426
0 “5u s6us 5241 9,027 64.260
15 599 7,588 s241 59,265 64,506
16 44,008 55 5241 59,257 64,098
7 43,400 55,065 s 59.553 64.794
18 “993 56,582 5241 99,666 64,907
19 «.25 5388 5241 58797 64,038

| a2 38614 541 39,688 64,929
A 36340 5341 53,583 $47%4
Sudev] 1136 1,180 0 333 533

168

Table 10. Wallace Tree 2 LP SBF Pastition Simulation Results

Trial | Sion Tume (ms) [Total Time (u) | RealsSe | NulbSeat | Towl Sem
1 059 38,007 1,008 1.955 3.003
2 3 3849 1088 L9% 3,086
3 N,1% 38,582 1,088 2,008 310
4 3,138 1.2 1.088 1990 3078
s 3017 8,648 1,088 1.988 306
6 M 3x» 1,088 206 3104
7 30229 nm 1,088 1964 2082
] 012 38,670 1,088 2011 309
’ 0403 3974 1,088 1954 3002
10 30,003 38,617 1,088 1992 3000
n 3017 3588 1,088 1,963 108
12 3,357 87 1,088 2,00 01
13 223 39110 1088 1983 o
" 29955 38u9 1,088 1.967 3075
1s 2002 un 1,088 2016 310¢
16 30100 nw 1088 2012 3,100
17 30,141 38,820 1,088 1,940 o8
1 30,199 970 1,088 1983 aon
19 994 38,506 1,008 199 3,086
) 30,120 38886 1,088 1942 a0
A Nia B 1,08 1,988 30
Suddev 134 281 0 %4)
Table 11. Wallace Tree 4 LP SBF Partition Simulstion Results
Circut - Wallsco Trial | Sin Time Total Time (ms)| RoalsSert | Nulle Seat | Totai Seat
1 212 2879 27 10,088 12373
Partition -_SBF 2 1967 23,960 s 10217 13,062
jum_Vertices - 1,00 3 19,751 29,064 27 10,186 129m
Num_Arcs - 170 4 19,560 28,860 2785 10,070 12888
Nam_LPs T4 s 194622 299 2788 10,168 12,953
ImerLP Arcs - 346 6 0498 29,605 2788 10,368 13153
Wett e LP_Arcs - 3460 7 19,562 2w 2788 10,201 12986
Avg Weis_Arcs - 863 3 19,885 29,089 2785 10,224 13,009
Stddev_Wght_Out_Arcs - 369 9 19815 29,133 2788 10129 12914
Maxdev_Weht Out_Arcs - 755 10 20302 20457 2785 10,126 12911
Stddev_Wght_In_Arcs - 533 1 19,980 29,294 278 10129 12914
Maxdev_Weht_fn_Arcs - 415 12 19613 8720 2785 10,142 12927
(Comm_Cost_Facuor - 1955% 13 19,891 2117 2785 10221 13,006
(Comen_Dist_Factor - f1.28% 14 19317 28,676 2788 10,305 13,080
LP_Output_Lines -9 15 19,442 2813 2785 10177 12962
Facior - 0783 16 19,701 29,080 2785 10,231 13,016
Avg_Comp_Load - 2628 1 19,556 28,703 2785 10122 12907
Stddev_Camp_Loed - 06 18 19.526 28,885 2785 10,139 12924
Muxdev_Comp Load - 05 19 20032 29,208 2788 10,189 12974
Delta _Pactoe - 019% | 2 2,153 29443 2785 10,111 12,896
Prodicied . 312 Avg 19,532 o7 2,788 14180 12965 |
Stddev 7 ETH] [73 73
Table 12. Wallace Tree 8 LP SBF Partition Simulation Results
- Wallsce Trial | Sim Tume Total Time (ms)] Reals Semt | Nolls Sent | Total Semt
1 25% 34.210 4762 31,09 35861
-_SBF 2 B1% 34433 4762 3094 35756
3 BA09 34884 4762 .22 35974
4 2417 34,826 4762 30,948 35,710
s 514 35917 4762 31,007 35768
6 2,146 35407 4762 30,801 35363
7 B 35318 4762 30,754 35,516
] 24,280 35,639 4762 30,618 35,380
9 2,605 4918 4762 30,796 35,558
10 409 35,518 4762 30818 35,580
1 24,595 36192 4762 30,952 74
12 un 35652 4762 30,904 35,666
13 B6MR2 4972 4762 30938 35,700
0 B0 35,257 4762 30,992 35,754
15 22956 467 4762 30,937 35,699
16 2488 34,074 4762 30,945 35,701
" 24.1% 35,651 4762 30463 35,225
18 24438 35,652 4762 30,933 35,698
19 82m2 34,660 4762 30,360 35,122
2 2198 34,756 4762 30,604 35,366
An| nm 35,123 4762 3,884 i
Stadev 39 569 0 04 04

169

Table 13. Wallace Tree 2 LP AB2 Partition Simulation Results

Trial | Sim Tome Tom) Tume Roals Sers | Nalls Semt | Tosal Seot
1 n4n 35,890 1045 2216 1261
2 nn 35,935 1,045 224 329
3 7483 35,927 1,045 28 3283
. 731 35,882 1,048 220 3.258
] 21451 35933 1048 227 1262
6 21456 35,926 1,085 226 3,261
1 457 3598t 1,065 26 3,261
L 461 35927 1,045 227 362
9 2,638 36,907 1,045 222 3287
10 27486 36969 1,045 2216 2261
n Nan 38,045 1045 a7 3,262
12 71460 733 1,045 226 3,261
13 2456 33935 1,045 2220 2,263
" 448 15,938 1,048 226 3,261
27451 35.9% 1,048 227 3,262
21487 35934 1,045 227 3,282
71450 35,93 1,045 221 3,266
45 38929 1,045 s 3,260
2144 35,920 1,045 27 3,262
248 35,961 1,045 2217 3262 |
21460 s 108 . 361
a3 44 [2 2
Table 14. Wallace Tree 4 LP AB2 Pantition Simulation Results
~ Wallsce Trial | Sim Time (ms) | Tota) Time (me)]| ReabsSos | NulwSex | Towal Sem
1 19337 B3 1760 5710 10.470
_ AR 2 2 19,630 22,500 1.760 L7130 10480
wn_Vertioss - 1,050 3 18,695 799 1,760 a4 10,574
- 170 4 19451 2,601 1,760 2,800 10,560
un LPs T4 s 200m 29,037 1,760 sus 10,605
trger-LP Arcs . 192 s 19,609 2912 1,760 8795 10,555
git_lnter_LP_Arcs T 1920 7 18968 28,068 1760 71 10491
s 18,190 28,000 1,760 733 10493
9 19,695 28931 1760 7% 10,559
10 20,038 2,018 1,760 79 10499
u 2012 2310 1,760 8.5 10,343
12 200n 29,151 1,760 8,628 10,388
13 19.736 2795 1,760 2750 10,510
14 19817 294 1760 s 10,548
15 189% 701 1,260 (%7 10,352
16 19818 289 1,760 L 10491
17 207 2,1 1,760 Lm 16,491
18 18,763 2785 1,760 2960 10,620
19 19,064 na7 1,760 L 10483
0 2019 29219 1,760 8,691 10,451
[Aw] 19 1,760) 16,509
Suddev 498 463 [[&
Table 15. Wallace Tree 8 LP AB2 Partition Simulation Results
[Cruit ~ Wallace Trial | Stm Time (ms) | Total Tume (ms)| Reals Sem | NulisSemt | Towl Sem
17368 294 2762 18,649 21411
~_AB2.2 2 1798 274 2762 18,808 21,567
um_Vertices - 1,050 3 16,555 2159 2762 18,981 21,743
Num_Arcs - 1770 . 16,516 7351 2762 18935 21,697
Num_LPs T8] 17,058 27,857 2762 18,901 21,663
Imer-LP Arcs - 295 6 17251 2176 2762 18,983 21,745
(Went_toter_LP_Arcs - 2950 7 18,194 29,058 2762 18,582 21,664
Avg Weht_Arcs - 369 s 18514 28317 2762 18,944 21,706
Stadev_Weht Out_Arcs - 316 9 17,060 21974 2762 18916 21,678
Maxdev_Wght_Out_Arcs - 71.1 10 17,019 27931 2762 18,914 21,676
Stddev_Weht_bn_Arcs - 234 1 19,632 30,446 2762 18,908 21,570
Maxdev_Wght In_Arcs - 39.1 12 1782 28,780 2762 19.081 21,813
Coen_Cost_Pactor - 1661% 13 16303 26992 2762 18,363 21,627
_Dist_Factor - 19288% 1 16503 0,320 2762 1762 21,524
_ Output_Lines -2 18 19,04 2928 2762 18,836 21,648
. 0.547 16 16,408 nm 2762 18972 21,74
- 1313 17 1758 7828 2762 10778 21,540
Y 18 17,987 %829 2162 18,855 2,617
Y 19 16710 n6m 2162 18816 21,578
- 133% 2 17181 21,985 2762 19,089 21,81
T 399 Agl 1 28,205 276 18088 21,650
Siddev, 575 922 0 98 98

170

Table 16. Associative Memory 1 LP Simulation Results

Trial | Sim Time(ws) | Totel Timo(ns) | Ranis Semt Nalls Semt Tatl Semt
1 4300454 430258 [[] []
Random 2 4358019 4,530,100 0 [] []
43 3 4358013 4530114 0] 0
9312 4 4532362 4,704 383 0] 2
1 s 4,381,789 4,553 302 0 0]
0 6 4354,020 4,530,030 0 [} 0
00 7 4358017 4,530,052 9] [}
0.0 4338017 4,530,028 [} 0 1]
0.0 9 4357986 4530135 0 [} 0
00 10 435802 4,530,113 0 [0
00
0.0
|Coman_Cost_Pactor 0.00%
(Comm_Dist_Facwr - 0.00%
LP_Outpat_Lines -0
4 [] [(]
s1sm 51,563 [0 [

171

Table 17. Associative Memory 2 LP Random Partition Simulation Results

Trial | Sim Timo(ms) | Total Timo(me) | ReslsSect | NullsSem | Towmi Sem
1 1782224 1340350 17525 13,96 351.221
2 1,820,868 1.979.000 337825 134 35,228
3 1,521,686 1979816 17825 13387 351,182
¢ 1836876 1,995,004 137828 13,490 38115
s 1833512 1,991,699 87825 13432 351,257
6 1815789 1I7m916 37825 13473 351,298
7 1776878 1,935,006 B82S 13,534 351,349
] 1,774,200 192232 337825 13,390 asLs
9 1910708 2,068,833 BIsS 13,530 351,355
10 | 1882788 2040916 01825 13452 s.m

Avg | 1825453 1,900,698 27,825 13,045 351

sudev] 42112 42110 0 56 36

Table 18. Associative Memory 4 LP Random Partition Simulation Results

Circuit — Asoc_Mem | | Trial | Sim Viros(mw) | Total Time(ma) | Reals Sot | Nulls Set | Tom! Semt
1 1339947 1496103 608,106 93,793 701,859
-_Random 2 1331954 1488,188 608,106 91,842 701,948
-~ 443 3 1352230 1,508,436 608,106 93,677 701,783
- 932 4 1283714 1439881 608,104 94,001 702,108
T4 s 1,395,191 1,551,495 608,104 92,901 701,008
. 6361 6 1366912 152,087 608,108 93,300 701,408
- 69610 7 1331,230 1487421 608,104 92,758 701,862
- 1,7403] 1,307,684 1483873 608,104 91,751 701855
- 3179 9 1,348,794 1504371 608,104 93457 701,561
- 4128 10 | 1367438 153,614 608,106 93312 701418
- 910
- 508
- 1475%
- 1%
- 12
1.000
- 1,0608
- 0s
03
- 002%
- 311 A | 13058 L0876] 93,579 70
Stddev] 30,068 30,089 1 314 34

Table 19. Associative Memory 8 LP Random Partition Simulation Results

Circuit - _Assoc_Mem Trial | Sim Time(ms) | Total Time(ms) | Reals Sert Nulls Sent Total Sent
1 1399473 1553999 753,718 444,058 1,197,776

Pantition -__Random 2 1431316 1591823 3312 444,251 1,197,963
Num_Vertices - 4243 3 1,453,001 1,607,432 753712 443 595 1,197,307
Num_Arcs - 9312 4 1,460823 1,615,389 753,720 443 856 1,197,576
Num_LPs - 8 s 1.507919 1,662,466 753,116 443,898 1,197,614
- 812 6 1428524 1,582,931 733,720 443991 1,197,111

- 81290 7 1468822 1,6203.349 753,718 43887 1,197,605

8 1,447,797 1,602,330 753,716 443781 1,197,497

9 1,455,769 1,610,297 3.8 443822 1,197,540

10 1415692 1,570,238 753714 443,750 1,197,464

1,447,514 1,602,025 783716 Ty 1,197,688
B2 28,383 3 171 172

172

Table 20. Associative Memory 2 LP SDF Partition Simulation Results

Trial | Sim Thoos(ms) | Towal Tine(ms) | Resl Semt | NulsSeot | Toul Semt
1 1,]46422 1.910,040 25476 7082 33,358
2 1709357 1473118 25476 178 33,264
3 1,689,775 1383317 25476 279 1,74
4 1,714,009 187156 25476 176 33,:48
s 1,747,851 1,911,450 25476 1978 33,354
6 179992 1503528 2476 7.880 31,356
7 1,704852 1,868,399 25476 7875 33,351
s 1729874 1893.441 2476 1878 3135
9 1,674,304 1337388 2476 18718 33384
10 | 1692469 1,856,017 2476 7858 33,38
A | inem LI ATT PG 180
Suddev] 243185 24,199 o 4 43
Table 21. Associative Memory 4 LP SDF Partition Simulation Results
[Crcuit - Assoc_Mem | | Trial | Sin Timo(ms) | Total Roals Sert | Nulls Sont | Total Sent
1 1018731 11753 43,73 61,671 107,407
[Partition -~ SDF 2 1244913 1,401 463 43736 62,766 106,502
[Num_Vertices - 4243 3 969,530 1,126,128 4736 58352 102,288
N - 9312 4 960,683 1,117,149 4.7 53,544 102,280
Num_LPs -4 s 1,082,135 1.23873 476 60433 108,219
Ineer-LP Arcs - 278 6 11,299 1,267,666 .73 60,495 106,231
(Wght_tnser_LP_Ares - 2760 7 1074745 131,118 43.7% 60,608 104344
Avg Wght_Arcs - 623 s 10718213 124,549 476 60,379 104,115
Siddev_Wght_Out_Ares - 11750 9 1,098,268 1254808 473 60,544 104,280
Maxdev_Wght Out_Arcs - 17598 10 1,068414 124365 47136 6an3 104,449
Swidov_Wght In_Arcs - 3311
Maxdev_Wght In_Arcs - 2428
Cozen_Cost_Pactor 29.74%
A 17 1,227,190 ©7% 76 104412
Sudev] 76161 76,153 0 — 1,503 1,503
Table 22. Associative Memory 8 LP SDF Partition Simulation Resuits
Circuit -_Amoc Mem | [Triai | Sim Time(ms) | Tow) Time(ms) | RealsSem | NullsSemt | Toml Sem
1 1,252477 1407312 71,048 260,049 337197
[Partition -_SDF 2 1335871 1,490,746 77,148 257,658 334,306
Num_Vertices - 4243 3 1,239,758 1,394,570 748 2573% 335,028
Num_Arcs - 9312 4 1246327 1,401,288 7,148 251904 335,052
Num_LPs - 8 s 1,282282 1437,108 7,148 25125 334,399
Inter-LP Arcs 3148 6 1,275.396 1,430,781 7,148 256,566 333,714
Wghs_tnter LP_Arcs - 31450 7 1,140,868 12957179 148 257213 334,361
Avg Wght_Arcs - 3931 3 1174754 1329534 748 256,785 33399
Siddev_Wght_Out_Arcs - 5954 9 1,216,161 1,371,007 7,148 257451 334,599
Maxdev_Wght Out_Ares - 13099 10 1,237,724 1392678 77,148 257,39 334,542
Stddev_Wght_in_Arcs 1089
Avg | 1200212 | 1,395,600 77,148 251,615 34,76
Siddev] 52077 52,080 [908 908

173

Table 23. Associative Memory 2 LP SBF Partition Simulation Results

Circuit -__Amoc _Mem Triai | Sim Time(ms) | Total Raals Sers Nulls Seeut Total Sent
1 2539612 2,701,319 264,131 .08 211169
Pastition -_Sap 2 2,611,170 amsa 264,131 2,010 271201
INum_Vertices - 4243 3 2558448 2,820,698 24,131 2,087 271,168
INum_Ascs - 9312 4 2,554 856 2,721,239 264,131 7.086 2287
Num_LPs -2 s 2556957 2745318 264,131 7,045 21,176
ingsr-LP Ascs - 3307 6 2,623,437 2,811,368 264,131 7,054 m.188
s _lomer LP_Arcs - 300 7 2,633,263 2,782,408 264,131 7,068 27,199
Avg_Wgis_Arcs - 18835 8 2,612,455 2512482 264,131 7,056 271,187
Siddev_Weht_ Out_Arcs - 6723 9 2,599,195 2742364 264,131 7,081 maz
Maxdev_Wght_Out_Asrcs - 4755 10 2578644 2,793,265 264,131 7,069 271,200
Suddev_Wght_In_Arce - 6725
Maxdsv_Wght _In_Arcs - 4755
|Comm_Cost_Pacter - BN%
|Comm_Dist_Factor - 25.65%
LP_Output_Lines -2
- 0.667
Avg_Coop_Losd - 218
Stddev_Comp_Load - 07
Maxdsv_Comp_Losd - 05
Delta_Factoe - 0.02%
Prodicied Speodup -1 Avg] 2595864 | 27643% 264131 1,857 I ass
Sudov] 36439 39,680 [14 14

Table 24. Associative Memory 4 LP SBF Partition Simulation Results

Circuit —_Amoc Trial | Sim Timo(ow) | Towl Time(ms)] RealaSemst | NullsSent | Total Sent
1 1676393 1,830,694 446,656 %6113 $32.769
-_SBF 2 1.802239 1,959,591 446,656 85,997 $32,653
X -~ 4243 3 1,761,017 1915.298 6656 85,98 532454
- 9312 . 1,900,192 2,054,454 446,65 26,480 533,136
T4 5 1923823 2,078,081 46656 86,484 533,140
- 5967 6 1763242 1917.510 446,656 36,370 533,026
Wehe_inter LP_Arcs - 59610 ? 1761027 1915316 446,656 85,951 532,607
- 14918) 1900213 2054511 446,65 86418 533,074
Stddev_Weht_Out_Arcs - 9271 9 1,923,801 2,078,057 446,656 86,496 533,152
Maxdev_Wght Out_Arcs - 13123 10 1763237 1917487 U6656 86397 533,053
Stddev_Wght_In_Arcs - 6619
Maxdev_Wght _In_Arcs 8043
- GA0B%
9%
- 12
0.600
- 1,0608
_Comp _| 05
Maxdev_Comp_Load - 03
E 'sctor 0.02%
-_3.10 Avg | 1817518 172,108 s | serse 532,906
sidev] 82883 32,824 [47 247

Table 25. Associative Memory 8 LP SBF Partition Simulation Results

Circuit - Assoc Mem Trial | Sim Time(ms) | Total ms) | Reals Sext Nulls Sent Total Sent
1 2,464,665 2,619,507 501,074 294,433 795509

Partition -_SBF 2 2,095,664 2,250,030 501,072 295,665 796,737

Num_Ventices - 4243 3 2398870 2,552,531 501,070 295,631 796,701

Num_Arcs - 9312 4 2,384,139 2,538,588 501,070 296,313 797.383

Num_LPs - 8 s 2428855 2,583,033 501,070 295720 796,791

inter-LP Arcs - 1,287 [} 2392312 2,546,995 501,072 295,645 796,717

Wt _koter LP_Arcs - 72570 ? 2,233,466 2,387,701 501,070 296,257 mM3n

Avg Wght_Arcs - 907] 2,284 345 2,546,995 501,070 296347 97417

Stddev_Wght Out_Arcs - 8789 9 2,384,786 2,551,485 501,070 295,783 796,853

[Maxdev_Wght Out_Arcs - 2,108.9 10 2,236,645 2,430,125 501,072 296,24 797,296

Stddev_Wght_In_Arcs - 4003

Maxdev_Wght In_Arcs - 4759

Comm_Cost_Factor - T193%

Comm_Dist_Factor - 23248%

LP_Output_Lines -39

Lookshesd_Pactor - 0542

Avg Comp_Load - 5304

Stddev_Comp_L.osd - 05

Maxdev_Comp._Losd - 06

Load_Delta_Factor - 012%

Predicted Speedup - 27 Avg 2,330,378 2,500,699 se1,0mM 295302 796,873

Stddev) 108,395 106,050 1 538 537

174

Table 26. Associative Memory 2 LP AB! Partition Simulation Results

Asmoc Mem | | Trial | Sim Time(ms) | Total Time(ms) | Reas Set | Nulls Se | Total Semt
1 1,723328 1,886,124 23058 1993 33051
2 1736776 1,899,575 25,058 7,991 33,049
3 1,701,738 1,864,537 25.058 7928 32,983
4 1,706377 1,869,186 25,058 8,076 33,134
s 1713874 1576696 25,058 808! 33,139
6 1764724 1927 553 25,058 8017 33,138
7 1,709,578 1872402 25,058 8,054 33,112
8 1,709,056 181,873 25,058 8044 33,102
9 1,734,024 1,896,854 25,058 2,057 33125
10 1,671,783 1,834,610 25,058 8152 3320
1,717,126 1371994 25,058 8,046 33104
BAS _ 23488 0 59 59
Table 27. Associative Memory 4 LP AB1 Partition Simulation Results
Circuit -_Amoc Mem | | Trial | Simn Time(ms) | Total Time(ms) | Reals Sest | Nulls Semt | Totl Semt
1 1,103,822 1,260,109 52,043 47,559 99,602
. AB1 7 2 1,006,145 1,162,850 52,043 4137 101,780
- 4243 3 969,624 1,126,411 52,043 46,895 98,938
- 9312 4 991,067 1,1479% 52,043 47,094 99,137
-4 s 899,179 1085956 52,043 41,783 99,826
- 192 6 896,519 1,083,360 52,043 47,090 99,133
- 19200 7 1,086,595 1,242,699 52,043 47881 99,924
- 4800 8 1,016290 1,173,635 52,043 46,779 98,822
- 6709 9 943,176 1,100,099 $2,043 47,700 99,743
- 10050 10 1,041,043 1197878 52,043 47,048 99,091
- 769
Wght - 910
Cocom_Cost_Factor - 2062%
Comen_Dist_Pactor - 20938%
LP_Output_Lines -9
Lookahesd Factor -_0.692
Avg_Comp_Loed - 10608
Stddev_Comp_Load - 105
Maxdsv_Comp_Load - 53
Losd_Dehta_Factor - 0A9%
[Predicted Speedup - 3.60 Avg | 995346 1,152,084 52,040 47,557 99,600
Stddev 67,19 67,031 0 816 816
Table 28. Associative Memory 8 LP AB1 Partition Simulation Results
Circuit -_Asoc_Mem Trial | Sim Time(ms) | Total Time(ms) | RealsSet | NullsSent | Total Semt
1 1,186,793 1342304 82,548 232155 314,703
Partition YT 2 1,169.894 1,326,063 82,548 232437 314,985
Num_Vertices - am 3 1,111,823 1,268,388 82,548 232,051 314,599
Num_Arcs - 9312 4 1,185,544 1382227 82,548 232,693 315,241
Num_LPy -8 s 1,216,265 1375978 82,548 8233 314,880
{inser-LP Azcs - 2594 6 1,136,925 1,293,550 82,548 232734 315,282
Wght_Inter LP Arcs - 25940 7 1,120,123 1,276,639 82,548 232716 315,264
Avg Wght_Arcs - 3243 8 1,124,596 1,281,187 82.548 32627 315,175
Stddev_Wght_Out_Arcs - 364.1 9 1,184,460 1,341,099 82,548 232,007 314,555
Maxdev_Wght_Out_Arcs - 5858 10 1,149,380 1305815 82,548 232,309 314857
Stddev_Wght_In_Arcs - 385
Maxdev_Wght In_Arcs - 708
Comen_Cost_Factor - 2786%
Comm_Dint_Factor - 180.65%
LP_Output_Lines - 40
Lookahead_Factor - 0.602
Avg Comp_Load - 5304
Stddev_Comp_Losd - 74
Maxdev_Comp_Load - 26
Load_Delta_Factor - 049%
Predicted Speedup . 540 Avg | 1158580 1,315,328 52,548 232,406 314,954
Stddev 33,199 33,674 0 264 264

175

SISA[euy 93uSSIN UG STINN “SA JUSS STedY d'T 9 UL 08l °CL amSi

) 2l Nl |
et olal:
D D 1 1] i

[| | |
o
i
SIION i
seY] s[eY]

uopnJed jsaLy-yidaq ddung

uoljnied wopusy

176

S1sATeuy 98uSSO IUIG SINN *SA JUSS S[BIY d'] L UL B[Mep 9/ amSty

PQUINN d7] BQUIN J'T
9 S ¥ €T 10 9 S ¥ €710
SN | 0 SN [0
2 .
T] 000' m e 0007
000'v § 000'y
0009 0009
(7 7dV) uonnueg Sugpesuuy gV uonnIey 1811 J-yipeaag duig
»qunN 41
9 S v €27 10
STON i} 0 ‘
0007 = H
sTe%d [} 000'Y sea] F
0009 & ;
000's L)
uonn.ed 18a14-pdaq dung uoyp.Ied wopusy

177

sis[euy 93esSIP WIS S[INN 'SA JUIS STRIY J'] ¢ AIOWI SARRBIOSSY °L/ amBry

RqunN 471
€ T 1 0
e o
ot oot m o g
00081
000'7Z
(L7 19V) uounJeq 3wijesuuy 1gV uonyMIRyj 18I J-yIpeaag qdung
RqunN 41
¢ ¢ 1 0
SN STed [
S] STION [

uonnJey siL4-yidaq djdunig

uonnled wopusy

178

SBRBER
sofessop

200,000
160,000
120,000

: . = = °
% « 3 2 -\
& ME 5 "’E
E ~a | % ey
. - £] ~
£ o s R
5 1
E
2
i
Om
. £ .
v,g E VS
1= SBHIT-&
g M - N
s - |4 :
g §§§§§§ & g8~
é_ 8L

179

Figure 78. Associative Memory 7 LP Reals Sent vs. Nulls Sent Message Analysis

sary IndinQ “sA Juog $38esSIPN [RIOL d'T § AL 9B[BM ‘6L amBry

SUV IMIN0 e SOZSSRN

JquinN 41
t (4 I 0

0
000'01

000'0C
000'0€
000°0Y

(L 19V) uonneq dujfeduuy [V uopIIE ISIL1-qIpsaig AHduns

sy

SUY IMN0 i 59305501 D SUY IMIN0 el 5950550

JqumnN 41 qunN 41
£ [4 1 0 £ [4 1 0

| . Sooro
SN g 1

uonnJed 1saLy-yidaq sjdunig uofieg wopusy

180

sary ndinQ 'sa g s9BeSSIW [WI0] 47 9 UL 3Ie[eA 08 3mBrg

SUV NAIN0 e 53305

RQUnN 41

S 14 t [/ 1 0

(T 7dV) uopnaeg 3uypssuuy Zgv

nquUMN 41

1

0y
xxx‘

uonpted 1SILI-qIpeaag adung

UV N0 g S50

RQuINN 41
S v € T 1 0

g
gl

vopIeg Isau-fdaq dunig

|

Y N0 g BN P

quinN d11

AN |

uonnJed wopusy

181

sory indinQ ‘s Juag sa3essIpN [BIOL, 47T L U], de[eM 18§ amSrg

(7 79V) vonieg Suesuuy zgv

nquny J11

9 ¢ ¢ ¢ T 1

0

0

000'C
000'v
0009

uonIey ISJLg-qipeaag adulis

m

RQUNN 11

PP

uopned 1saly-yidaq apduis

STy W00 g OSSN I

RQunN 471
9 § ¢ ¢ T 1 0

uotijreg ulopusy

0
000't

000’8

1

182

sary ndinQ "sa g saBusSO [0, 4 ¥ KIOWI 2AnEId0SSY 78 amBL]

SOUT IO T s 5930550 [

RQuUnN 471

0
00001

000'0Z
000'0t
000°0¥

(L 14V) uopnaeq Suresuuy 1gv

m

uopaRg ISILI-qipeasg dduns

ST I e 530559

RqumN 41
€ 4 I 0

uogied 1811 4-yidaq adung

nquINN 41

uopyred wopusy

Soorog

000’

&5

%1
gt

|

183

sary nding 'sA 1§ s3aFessop 101, 477 L AJOWI 9ANEIOSSY ‘g8 ASL

uonJe] ISILI-yipeaig dunis

uonnJed isauy-ydaq Jdung

JoquinN 41
9 ¢ ¢ ¢ T 1 0

uonIE] Wopusy

184

sary ndinQ 'sA 1udg sa3eSSIP [BI0L d7T § AIOWIN ANBINOSSY “pg AnBry

S 0 e 53505590 S

RqumN 471
L 9 ¢ ¢ ¢ T 1 0

X

(L 19V) uonnaeq 3upesuuy [gv

SUY 1IN0 e 523559 NN

JoqumN 471
L 9 ¢ v £ ¢ 1 0

sy

sofessopN

x ¢,
MO,
X
X

OC SCOC

&2

SCOC N

3
8.m

uoniMe] Is11]-yipeaag duis

SV 000 g BN

RquN 41
L 9 § ¢ ¢ T 1 0

omm wSHS Z
W 00L 000 (m
& o X B

osL1 m&.mm

uonnJed Jsalj-ypdaq dduis

SOV IMINO el 5932555 N

RqumN d1
L 9§ v ¢ ¢ 1 0

uoynIeg wopuvy

185

sour] IndinQ 47 "SA 1USS SIBBSSIN [BIOL 47T ¢ F9IL I0e[[ep 'S8 amBrg

(7 7gVv) uoniueq Suyssuuy gV

mo——_\—|u=°lm\~ wmunulesmm—

saBesso I

RqunN 471

soBessON

safesso [

JQuUN 47
£ [4 1 0

g\—luﬂolnm)— o —

soSessopy

soury

uonnpJed 1s38f-yidaq sduig

uonnJey IsILy-yipearg duis
L LS R ¢ P — sofesson [N
qumn 41
£ [4 1 0

uonnIej Wopuey

186

sour] IndinQ g7 "SA WG SIBBSSI [BIOL J7 9 I %[[eM 98 S

glnlu—él& emeiii— 3§02 l

RqumN 471
(4

(7 7aV) uounaeq 3uieauuy zgv

ST MO | e sadesso (N

»qunN 471
[4 I 0

B e e o
\OVyder ot

uonnJey ISILI-yIpealg dung

soBessop

RqumN 471
S 14 £ [4 1 0

sury d1

uoneg Jsag-ydaq apduug

1RqUIN J71
S v € T 1 0

uoniMeg Wopusy

187

soury indingQ 41 'sA 1udg saSesso [RI0L 47T £ AL S08[ep L8 amBLy

(7 7dV) uonueq duiesuuy gV

Eﬂluﬂoi&\— lesna—

RqumN 471
9 ¢ ¢ ¢ T 1

0
T 000°
000*
000"

uonnaey IsaLy-yipsaag sduls

=

]

soBessoN N

O ¢

M

sodessoy I

RQuUaN d'1

g\ﬂlﬂafs L =

uonpaed isaiy-pdaq spduns

SHIT 100" d T el sofesso N

JaqumN 471

uoHIMBg WOpURY

$o8essON

188

saury inding 47 ‘s g s33esso [BIOL 47T ¢ AIOWIDPY IATRIDOSSY ‘g8 amTLg

ST 100" d T cnmmenffmmns se8ussoW NN

RQumN 471
¢ [4 1 0

0

000’0l =
000'0T
0000t
0000

(L 19V) uopnaeg uyesuuy Jgv

saur] 471

0
I
T
£

SUT IO Il e 5959559

RqunN 471
I

uopieg a14-yidaq ddunig

uoynJIed Wwopuey

189

saur] IndinQ g7 'SA 3G SIBeSSIW [RIOL, 47 L AIOWI SANRBIOOSSY “68 Am31g

(L 19V) uoynueg 3uyssuuy 1gv

ST 100 d'T s so2essoW

BQUINN d'T

uoniae I8a1J-qipealg Hdung

ssBesso

RqunN d1

é\ulu—.él&l— L]

uonnted saig-yidaq adung

sofessopy

g\mj——é'ﬁ el —

ssBvsso

RQuUNN 41

uonnted wopusy

soSessop

190

saur] IndinQ 47 ‘s 1udg soFeSSI [WI0L d'T § AIOWSN IANBIO0SSY (6 N1

LS RO o PR sofesso N

RqunN 47

(L 19V) uonnueg Sunesuuy [gV

uopiey ISILI-gipedag dung

SHUT N0 T commnffme soessoW NN

RqunN 41

L 9

1Y
0
(4

5
i

uonuIed saiy-yidaq sdunig

ST 00 AT el 593055

uonnJed wopuey

191

10.

11.

12.

13.

Bibliography

Banks, Jerry and John S. Carison, IL. Discrete-Event System Simulation. Englewood
Cliffs, NJ: Prentice-Hall, Inc., 1984.

Berman, Francine and Lawrence Snyder. “On Mapping Parallel Algorithms into
Paraliel Architectures,” Proceedings of the 1984 International Conference on
Parallel Processing. 307-309. 1984. -

Berman, Francine and Lawrence Snyder. “On Mapping Parallel Algorithms into
Parallel Architectures,” Jowrnal of Parallel and Distributed Computing, 4(5): 439
458 (October 1987).

Breeden, Thomas A. Parallel Simulation of Structural VHDL circuits on Intel
Hypercubes. MS thesis, AFIT/GCE/ENG/92D-01, School of Engineering, Air
Force Institute of Technology (AU), Wright-Patterson AFB OH, December 1992.

Bultan, Tevfik and Cevdet Aykanat. “A New Mapping Heuristic Based on Mean
Field Annealing,” Journal of Parallel and Distributed Computing, 16: 292-305
(December 1992).

%a;t;r, Harold, et al. “Semiannual Status Report on the QUEST Project,” 15 April

Chandy, K.M. and J. Misra. “Asynchronous Distributed Simulation via a Sequence
og {la)rallel Computations,” Communications of the ACM, 24(11): 198-206 (April
1 .

Comeau, Ronald C. Parallel Implementation of VHDL Simulations on the Intel
iPSC/2 Hypercube. MS thesis, AFIT/GCS/ENG/91D-03, School of Engineering,
11\91; lForce Institute of Technology (AU), Wright-Patterson AFB OH, December

Conrad, James M. and Dharma P. Agrawal. “A Graph Partitioning Based Load
Balancing Strategy for a Distributed Memory Machine,” Proceedings of the 1992
International Conference on Parallel Processing. 74-81. 1992.

Cormen, Thomas H., Charles E. Leiserson, and Ronald L. Rivest. Introduction to
Algorithms. Cambridge, MA: McGraw-Hill Book Company, 1992.

Fujimoto, Richard M. “Parallel Discrete Event Simulation,” Proceedings of the
1989 Winter Simulation Conference. 1-34. 1989.

gartrum, Thomas C. “AFIT Guide to SPECTRUM,” 22 October 1992. User’s
uide.

Hennessy, John L. and David A. Patterson. Computer Architecture: a Quantitative
Approach. San Mateo CA: Morgan Kaufmann Publishers, Inc., 1990.

192

14.

15.

16.

17.

18.

19.

21.

22.

23

25.

26.

Kemighan, B.W,, and S. Lin “An Efficient Heuristic Procedure for Partitioning
Graphs,” The Bell System Technical Journal, 49(1): 291-307 (1970).

Roger Lipsett, et al. VHDL: Hardware Description and Design. Norwell MA:
Kluwer Academic Publishers, 1989.

Lo, Virginia M. “Algorithms for Static Task Assignment And Symmetric
Contraction in Distributed Computing Systems,” Proceedings of the 1988
International Conference on Parallel Processing. 239-244. 1988.

Manoharan, Sathiamoorthy and Peter Thanisch. “Assigning Dependency Graphs
Onto Processor Networks,” Parallel Computing, 17: 63-173 (1991).

Neelamkavil, Francis. Computer Simulation and Modelling. Dublin, Ireland: John
Wiley & Sons, 1987.

Proicou, Michael Chris. A Distributed Kernel for Simulation of the VHSIC

Hardware Description Language. MS thesis, AFIT/GCS/ENG/89D-14, School of

ED:cp'en;necﬁng, Air Force Institute of Technology (AU), Wright-Patterson AFB OH,
ber 1989.

Reynolds, Jr., Paul F. and P.M. Dickens. “SPECTRUM: A Parallel Simulation
Testbed,” Proceedings of the 4th Annual Hypercube Conference. 1989.

Sadayappan, Ponnuswamy and Fikret Ercal. “Nearest-Neighbor ping of Finite
Element Graphs onto Processor Meshes,” IEEE Transactions on Computers, C-
36(12): 1408-1424 (December 1987).

Schwan, Karsten, et. al. “Mapping Parallel Applications to a Hypercube,”
ll’;g;eedings of the Second Conference on Hypercube Multiprocessors. 141-151.

Sporrer, Christian, and Herbert Bauer. “Corolla Partitioning for Distributed Logic
Simulation of VLSI-Circuits,” 7th Workshop on Parallel and Distributed
Simulation (PADS93). 85-92. 1993.

Symantec Corporation.Think C Object-Oriented Programming Manual. 10201
Torre Avenue Cupertino CA 95014, 1991.

VHDL Grarh Searching Program. Original Version, Sun Ada. Computer Software
Source Code. iric R. Christensen, . .ir Force Institute of Technology (AU), Wright-
Patterson AFB OH, September 1992.

Wilson, Gregory V. “A Tlossary of Parallel Computing Terminology,” IEEE
Parallel & Distributed Tec\inology, 5267 (February 1993).

193

Vita

Captain Kevin L. Kapp was bom June 8, 1966, in Louisville, Kentucky. He grew up
in Evansville, Indiana, and graduated from William Henry Harrison High School in 1984.
He joined the Air Force Reserve Officer Training Corps (AFROTC) program on
scholarship at the University of South Florida (USF) in Tampa in the fall of 1984. In
April 1989, he received a Bachelor of Science degree in Electrical Engineering, with
honors, from USF and was commissioned a Second Licutenant in the US Air Force. He
entered active duty on 15 July 1989 and was assigned to the Electronic Systems Division
(now ESC), Hanscom AFB, MA. From July 89 to his entry into AFIT in May 92, he
served as a systems engineer and a software test engineer on the Command and Control
Information Processing System (C2 IPS) program to upgrade the command and control
capabilities of Air Mobility Command.

Permanent Address: 410 S. Hebron Avenue
Evansville, IN 47715

194

Form Approved

REPORT DOCUMENTATION PAGE OMB No. 0704-0188

TS . 2 . MNg existing dats sources.
P “@00rung curzen *3e thiy cotlection ot :nformation s estimated to average ' NOur per resDONSE, INCIVGING the LM tOr reviewIng INStructions, searc
g:rb::nrg na 34.»6‘.\.ng the data needed, and compieting ang reviewing the coliecuon of information. Send comments regarding this durden estimate of 3ny Other aspect of this
callect:cn St ntOrmation Tncluding suggestions for reducing this Durden. 10 Washinglon Headquarters Services. Directorate for information Operations and Reports, 1215 jetterson
Davis Migrwvay, Suite 1234 artington, VA 22202-1302. and to the Otfice of Management and Budget, Paperworx Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY (Leave blank)]2. REPORT DATE 3. REPORT TYPE AND DATES COVERED
Recember 1993 Master’s Thesis
s, TITLE AND SUBTITLE S. FUNDING NUMBERS
Partitioning Structural VHDL Circuits for
Parallel Execution on Hypercubes
6. AUTHOR(S)
Kevin L. Kapp, Capt, USAF
7. PERFORMING ORGANIZATION NAME(S) AND ADORESS(ES) 8. .’.525?.'%"1.‘33 .OEI’l‘GANIZATION
Air Force Institute of Technology, WPAFB OH 45433-6583
AFIT/GCE/ENG/93D-07
19. s]tto&s’;:;::l/‘ @l%r:;:muc AGENCY NAME(S) AND ADDRESS(ES) 10. :ﬁ:&“&'}f é m’omgge
{ DARPA/CSTO
i 3701 N. Fairfax Dr.
i Arlington, VA 22203
;: 11. SUPPLEMENTARY NOTES
{172, DISTRIBUTION ' AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

: Approved for public release; distribution unlimited.

!

13. ABSTRALT (Maximum 200 words)

Distributing simulations among multiple processors is one approach to reducing VHDL
simulation time for large VLSI circuit designs. However, parallel simulation introduces the
problem of how to partition the logic gates and system behaviors among the available processors in
order to obtain maximum speedup. This research investigates deliberate partitioning algorithms that
account for the complex inter-dependency structure of the circuit behaviors. Once an initial partition
has been obtained, a border annealing algorithm is used to iteratively improve the partition. In
addition, methods of measuring the cost of a partition and relating it to the resulting simulation
performance are investigated. Structural circuits ranging from one thousand to over four thousand
behaviors are simulated. The deliberate partitions consistently provided superior speedup to a
random distribution of the circuit behaviors.

14. SUBJECT TERMS 15. NUMBER OF PAGES
Parallel Simulation, Discrete Event Simulation, Distributed Simulation, 211 ‘
Mapping Problem, Static Task Partitioning 16. PRICE CODE i

17. SECURITY CLASSIFICATION | 18. SECURITY CLASSIFICATION] 19. SECURITY CLASSIFICATION | 20. LIMITATION OF ABSTRACT

OF REPORT OF THIS PAGE OF ABSTRACT
Unclassified Unclassified Unclassified UL,
NSN 7540-01-280-5500 Standard Form 298 (Rev 2-89)

Prescribed by ANSI Std 239.18
298-102

