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Abstract

Based on an autoregressive model, Complex Partial Correlation (CPARCOR) features are

known to provide exceptional Position, Scale, and Rotation Invariant (PSRI) properties for planar

2-Dimensional (2-D) object recognition. Although autoregressive models have been successfully

applied to numerous spatio-temporal recognition tasks, the effects of out-of-plane image rotations

were never considered. This study investigates application of the CPARCOR model to a five class

problem of nonplanar 2-D views of 3-D objects. Recognition based on CPARCOR features is

evaluated using a Template Matching algorithm, two K-Nearest-Neighbor (KNN) classifiers, and

a Hidden Markov Model (HMM). Direct comparisons to recognition based on Fourier features are

made. Results indicate that the CPARCOR model parameters provide useful shape-features for

recognition of out-of-plane rotations. Displaying exceptional PSRI properties, the features are

shown capable of classification by simple nonadaptive recognition schemes. Relatively successful

results are obtained for a variety of tests. The advantage of classification by a multiple-look tech-

nique over the traditional single-look method is clearly demonstrated. Feature space crowding is

noted as the cause of unusual recognition rates for occluded-view tests. Although general trends

are noted, optimal model order and selection of CPARCOR versus Fourier features are considered

application dependent.

x



THREE DIMENSIONAL OBJECT RECOGNITION

USING A COMPLEX AUTOREGRESSIVE MODEL

I. Introduction

Automatic target recognition capabilities are obviously very important to the Air Force mis-

sion. The majority of automatic target recognition systems currently undergoing Air Force research

are based on performing a given processing technique on a single frame of sensor (visual or infrared)

imagery. Determination of desired information (such as target classification) is made, and then a

new frame of imagery is analyzed and the process repeated [6]. Current methods do not account for

information contained in the spatio-temporal changes an object undergoes as it moves relative to

an obsrver (or vice versa). This information may be a useful aid in the interpretation of a target's

motion and recognition [14].

Based on a complex autoregressive model, Complex Partial Correlation (CPARCOR) fea-

tures are known to provide exceptional Position, Scale, and Rotation Invariant (PSRI) properties

for application to planar 2-Dimensional (2-D) object recognition[17]. Although previous research

has successfully applied autoregressive models to spatio-temporal recognition tasks[2] (3] [9](17], the

effects of out-of-plane image rotations were never considered.

1.1 Problem

The goal of this thesis is to demonstrate application of the CPARCOR algorithm to spatio-

temporal recognition of 3-D objects. Classification based on spatio-temporal information is ex-

pected to yield superior results compared to single-frame techniques [7]. For this research, the

CPARCOR method of feature extraction will be applied to nonplanar 2-D views of 3-D objects.

Recognition based on CPARCOR features will be evaluated using the following classification tech-

niques:
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e Template Matching Algorithm: Using a Euclidean distance metric, single-frame recognition

performance will be evaluated using test sets of unstored and occluded characteristic views. A

characteristic view is basically an object orientation particular to a given class, while unstored

views are simply characteristic views that are not included (or stored) in the respective

template.

e K-Nearest-Neighbor (KNN) Techniques: Recognition of both single and multiple frames of

imagery will be performed using the hold-one-out technique and Single/Multiple-Look 1-NN

classifiers. A direct comparison with recognition by Fourier features will be made.

* Hidden Markov Model (HMM): Temporal sequence recognition by CPARCOR features will

be attempted for a direct (apples to apples) comparison with recognition by Fourier features.

1.2 Background

Although a variety of shape descriptors have been developed, few have been able to match the

PSRI properties of the Complex PARCOR features. Based on an extension of the real PARCOR

coefficients (used for speech signal processing), the CPARCOR features are calculated from sampled

boundaries of complicated, non-convex 2-D objects. Basic recognition can then be accomplished

with a Euclidean metric to measure distance between the coefficients. Exceptional recognition of

planar 2-D objects corrupted by both noise and partial occlusion has been reported [17].

1.3 Assumptions

Difficulties encountered with object recognition systems are best summarized in the following

statement, "Segmenting a 3-D object cleanly from a complex scene is a very difficult problem in

general because of interference from noise, occluding objects, background, illumination, and spatial

sampling effects[16:1081." To avoid these problems, the following assumptions for image generation

will be made at the outset of this thesis:
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"* Complete segmentation of the object from a complex scene

"* Recognition of only a single object per frame/sequence

"* No undesired image corruption due to noise interference

1.4 Scope

The scope of this thesis will focus on an evaluation of CPARCOR features through application

of several known classification techniques. Using five classes, imagery will consists of aonplanar 2-D

representations of complicated 3-D images. Particular emphasis shall be devoted to the areas of

unstored/occluded (Template Matching), single/multiple-look (KNN), and temporal (HMM) image

recognition.

1.5 Approach

Object recognition based on CPARCOR features will be accomplished in the following five

steps:

1. The CPARCOR Algorithm will be created using the MATLAB programming environment.

Stability of the CPARCOR coefficients will be verified through application of a complex (gaus-

sian) white noise sequence to the model's transfer function. Previously reported classification

results (based on CPARCOR features) will then be verified by using simple shapes (squares,

circles, triangles, etc.) and a 1-Nearest Neighbor (1-NN) recognition routine.

2. For primary recognition testing, highly detailed test images will be generated from the BRL-

CAD software [1]. Test images include the Army's M60 Tank, M35 Truck, BTR60 Armored

Personnel Carrier(APC), T62 Tank, and M2 Infantry Fighting Vehicle (IFV). All test images

will be 128 x 128 ASCII arrays, consisting of views taken every five degrees from 00 to 3550 in

azimuth and 0' to 900 in elevation. Recognition performance based on CPARCOR features

will be evaluated using several classification techniques (Items 3,4,5).
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3. Classification by a Template Matching Algorithm (Euclidean distance metric) will examine

the impact of unstored and partially occluded views on single-frame recognition performance.

Using unnormalized CPARCOR features, various template sets will be made for object views

of 3600, 1800, and 900 in azimuth. Individual templates will also provide a viewing range

from 00 to 900 in elevation. Using both three and five class problems, the matrix size of each

template will vary in order to examine the effective recognition rates.

4. Two versions of a 1-NN classifier will be used to compare the effects of single-look versus

multiple-look recognition on unnormalized CPARCOR features. Using a five class problem,

recognition of both single-frame and multiple-frame sequences of uncorrupted (no noise/occlusion)

imagery will be attempted. A direct comparison with recognition by Fourier features will be

made.

5. A Hidden Markov Model (HMM) will be applied to determine if CPARCOR features can

accurately represent temporally encoded sequences of images. The HMM classifier is known

to display exceptional recognition rates (over 97%) for temporal sequences represented by a

low frequency, Fourier magnitude feature set [7]. Thus, a direct (apples to apples) five class

performance comparison will be attempted by simply replacing the Fourier features with a

set of CPARCOR features.

1.6 Overview of Thesis

This thesis consists of the following chapters:

Chapter II provides a literature review of the most recent studies using autoregressive features

for image recognition. In particular, the CPARCOR algorithm is noted for its exceptionally high

accuracy when applied to recognition of planar 2-D objects corrupted by both noise and partial

occlusion.
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Chapter III covers the development and testing of the CPARCOR algorithm. Along with the

fundamental principles of the algorithm, the methodology used to verify both the main program and

supporting subroutines is described. The chapter concludes with a description of several recognition

tests conducted using CPARCOR features and various classifiers.

Chapter IV provides a discussion of the results for tests described in Chapter III. Topics are

presented in the same order as they appear in Chapter III. For clarity, additional test results were

included in Appendix A.

Chapter V provides conclusions and several recommendations for future research based on

the results discussed in Chapter IV.
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I. Literature Review

2.1 Introduction

A subset of the most recent studies using autoregressive features for smage recognition is

presented. For this research, image recognition will consist of the classification of objects (such as

tanks, trucks, etc.) represented by Complex Partial Correlation (CPARCOR) features.

2.2 The Autoregressive Model

The ability to accurately classify objects in a scene is of great importance with both military

and civilian application[2]. Related to the salient features used by humans for scene analysis, clas-

sification by features based on the boundaries (or edges) of shapes has shown promising results[5].

Although a variety of shape descriptors exist, three general categories include: scalar transform,

space domain, and curve fitting techniques[2]. Considered a method of scalar transform, the Au-

toRegressive (AR) model is noted to perform exceptionally well when applied to the following planar

2-D object recognition tests:

"* Classification of scaled, rotated, and translated 2-D planar images[2].

"* Classification of complicated, partially occluded images[3].

"* Temporal sequence classification of simple, rotated, and occluded 2-D planar images by Hid-

den Markov Model (HMM)[9].

Receiving widespread application in speech recognition, an autoregressive model of order m

is defined as a parametric technique that expresses data samples (from an ordered set) as a linear

combination of the preceding m samples from the set plus an error term (white noise). For object

recognition, model parameters are estimated from a set of the object's boundary samples. Functions

of the model parameters can be made invariant to an object's position, scale, and rotation by

applying appropriate bor-idary sampling techniques[3][17]. Although a variety of methods (equal
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z~a
Z.o

Zi =X + IY

Figure 2.1 Example of complex coordinates expression.

angle, equal curve length, etc.) exists, Figure 2.1[17] shows the boundary representation used by

the CAR/CPARCOR model (see Section 2.3.2). In this case, each boundary point is represented

by a complex number of form zj = zj + iyj. A sequence of complex numbers, zj, is obtained.

From this sequence, an autoregressive model of order m is defined as shown below:

m
S= EakZj.. + E j E Z (2.1)

k=1

where Z is the set of integers, {akQ}' 1 are the CAR coefficients, and ej represents an error term.

2.3 K.i.er I Studies

The following three sections provide highlights of the most recent studies using autoregressive

features for image recognition. Focusing on the methodology applied to each test, this literature re-

view will provide a foundation for further research involving the autoregressive model, CPARCOR,

for 3-D object recognition.

2.3.1 Bivariete Autoregqy's.ive Model. Monohar Das and others present a bivariate autore-

gressive model for classification of closed planar shapes[2]. Basically an extension of 1-D Complex
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AutoRegressive (CAR) models, a scalar transform method is explored and shown to have certain

advantages over the 1-D methods. Shown to be invariant to rotation, translation, and scaling, the

bivariate model can be applied to both convex and nonconvex objects without los of phase infor-

mation. Depending on the data set, the model allows for flexibility in choice of sampling method,

which can be used to bias classification results. Finally, the use of an z, y coordinate system results

in lower residual errors than those achieved with 1-D models.

Three data sets (nonoverlapping simple planar shapes) were used to evaluate model sensitivity

to variations in boundary shape, larger number of classes, and partial boundary occlusions, respec-

tively. Several shapes were taken from a set of images previously applied to 1-D CAR testing[3].

Using 35 images per class, the shapes from set one were arbitrarily rotated, shifted, and scaled

within the image plane. For set two, 50 images per class were selected in a similar fashion. Set

three, a subset of set two images, consisted of 10 different partial occlusions for each of four shapes

(40 total images). Occlusions were made by removing up to 60% of the image. Thresholded to

produce binary images, shapes were traced by a boundary follower algorithm. A polygonal ap-

proximation was calculated for each shape in order to reduce feature vector variance. Using an

equal-curve-length technique, 64 boundary samples were taken for each shape. Classification was

based on the feature weighting (FW) and rotated coordinate system (RCS) methods. Model order

was limited to four due to 100% classificatio, accuracy achieved with a second order model (for

nonoccluded shapes).

Results indicated that the bivariate CAR modeling technique provided greater overall clas-

sification accuracy than the 1-D models. Although occlusions were noted to degrade classification

performance, the bivariate technique was shown to be less computationally intense than other

methods. The bivariate model was also considered ideal for application to automated inspection

where occlusions were not likely.
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2.3.2 Complez Autoregressive Model. Few shape descriptors have been able to match the

Position, Scale, and Rotation Invariant (PSRI) properties of the Complex PARCOR coefficients.

Based on an extension of the real PARCOR coefficients (used for speech signal processing), the

CPARCOR coefficients are calculated from sampled boundaries of complicated, non-convex 2-D

objects. Basic recognition can then be accomplished using a Euclidean metric to measure distance

between the coefficients. Exceptional recognition of planar, 2-D objects corrupted by both noise

and partial occlusion has been reported [17].

Sekita and others present a fast algorithm which generates both 2-D CAR and CPARCOR

coefficients of order m. Comparing recognition performance of the CAR/CPARCOR model to

various other methods (1-D AR, moment invariants, Fourier descriptors), CPARCOR coefficients

are shown to display superior performance. Of the two data sets used, set one consisted of a four

class set of typical machine parts, while set two contained a five class set of 80 different types of

plant leaves. Test images were subject to position, scale, and rotational modifications, as well as

distortions from partial occlusions and noise. Discriminant analysis was applied to absorb intraclass

variations, and the Bayesian decision was used.

PSRI testing used 96 images from set one (4 classes x 3 sizes x 8 rotations) and the Rotated

Coordinate System (RCS) method. A direct comparison of model orders 1 through 10 revealed

that CAR and CPARCOR features were good for recognition of nonconvex, complicated, planar

shapes. Additional testing, however, indicated that CAR coefficients were negatively influenced by

the number of representative boundary points, while the CPARCOR features remained consistent.

Testing of set two revealed similar results. Researchers concluded[17] that models of low order

contain enough information about the shapes, while higher order models were more sensitive to

boundary disturbances.

Occlusion testing, performed on both shape sets, involved images randomly occluded from 5

to 10%. Although CAR and CPARCOR coefficients performed equally well on set one (machine
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parts), both CPARCOR and Fourier descriptors outperformed the CAR coefficients on set two data

(plant leaves). Also, the negative impact of the number of representative boundary points on the

CAR coefficients was again noted. Thus, the CPARCOR coefficients were generally found to be

more stable in higher order models than the CAR features.

2.3.3 Autoregressiuve Model Classification by Hidden Markov Model. He and Kundu[9]

present a method that combines the Hidden Markov Model (HMM) with autoregressive parameters

for recognition of 2-D planar shapes. Closed (unbroken boundary) shapes are segmented in order

to examine the characteristic relations between consecutive segments for purposes of classification

at a finer level. Tolerant of moderate amounts of contour perturbation and occlusion, the proposed

classifier is also insensitive to orientation of the planar shapes.

The authors'[9] cite the autoregressive model's primary disadvantage as being the use of only

one set of predictive parameters to model an entire shape. The HMM, on the other hand, is noted

to explore the relationship between consecutive segments of a shape's boundary. With the HMM,

overall better results were achieved compared to methods that represent the shape with only one

set of features. The entire process begins by segmenting the 1-D representation of a closed shape

into several pieces. AR modeling is used to characterize each piece, resulting in a vector sequence

for each shape. The HMM is then applied to classify the final vector sequence.

Two sets of data were used to test the algorithm. Set one consisted of an eight class problem

with 30 images per class. Of the images, 24 were individually drawn with moderate boundary

perturbations, while 6 were partially occluded. Testing on this set revealed that most initial cluster

centers gave very similar results. Recognition rates of 100% were achieved, though, and the authors'

note that the correct recognition rate has a tendency to increase as the number of HMM states was

increased. Recognition also increased with higher AR model order, where models of orders 4 and

5 gave the best results.
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Set two consisted of four country maps (Britain, China, Italy, USA). 30 images were created

for each class, six of which were partially occluded. Subject to test procedures identical to those

of set one, the same overall conclusions were obtained for set two. In general, the HMM was found

capable of handling 2-D shapes of higher complexity by increasing the number of model states.

2.4 Chapter Summary

This literature review focused on a subset of the most recent studies using autoregressive

features for image recognition. Expanding previous test methodologies to include nonplanar views,

this research will be based on results of the articles presented. Displaying exceptional performance

and PSRI properties, the CPARCOR model was chosen for application to the task of 3-D object

recognition using nonplanar 2-D object-views.

2-6



III. Methodology

3.1 Introduction

Citing the work of several research efforts, Chapter II covered a subset of the most recent

studies using autoregressive features for image recognition. In particular, the Complex Partial

Correlation (CPARCOR) method was noted for exceptionally high accuracy when its features were

applied to recognition of planar 2-D objects corrupted by both noise and partial occlusion.

This chapter covers the development (Section 3.2), validation (Section 3.3), and application

(Section 3.4) of the CPARCOR algorithm used by this thesis. Along with the fundamental principles

of the algorithm, the methodology used to verify both the main program and supporting subroutines

is described. The chapter concludes with a description of several recognition tests conducted using

the CPARCOR algorithm and various classifiers.

3.8 CPARCOR Algorithm Development

This section highlights development of the CPARCOR algorithm as used by this thesis.

Derivation of the CPARCOR algorithm is also explained in the article by Sekita and others[17];

however, only the most important equations required for implementation are vresented here.

Although a variety of autoregressive shape descriptors exist[2][3][9][17], few are able to match

the Position, Scale, and Rotation Invariant (PSRI) properties of the Complex PARCOR features.

Basically an extension of the real PARCOR coefficients (for speech signal processing), the CPAR-

COR features are calculated from sampled boundaries of complicated, non-convex 2-D objects.

Recognition can then be accomplished using a Euclidean metric to measure distance between the

coefficients.
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Generation of the CPARCOR coefficients begins by representing each point of an object's

boundary as a complex number of form zi = zj + iyi. In this manner, a vector sequence of

complex numbers, zj, is obtained. From this sequence, a Complex AutoRegressive (CAR) model

of order m is defined by a linear combination of the m preceding boundary points [17], or as shown

below:
m

zi = Zakzj.k + c, j E Z (3.1)
k=i

where Z is the set of integers, {a&1~. 1 are the CAR coefficients, and ei represents an error term.

Based on this model, both CAR and CPARCOR coefficients for a model of order m are generated

by recursively applying the following three equations:

a(1) = rj/ro (3.2)

a(m) = [ - &(m- (3.3)
PM

Pm (rm - r(m - 1)'a(m - 1))Pn=(r0 - r(m - 1)Tik(m -- 1)) .4

The individual terms for Equations 3.2 to 3.4 are defined as follows:

"* a(m) = [a,, a 2 , a3, ... , am]T is a vector of CAR coefficients.

"* pm represents the mth order CPARCOR coefficient.

• rk = (1/N) 'N__- ZZ iji-k is the complex autocorrelation of zj.

"* r(m) = [r1 , r2, r3 , ... , rm]T is a vector of complex autocorrelation coefficients.

" fa represents the complex conjugate of a, while aT is the vector transpose of a.

"* a(m - 1)l represents the vector [am.-., aIn-., ... , al]T with reverse order elements.

"* r(m - 1)1 is the transpose of r(m - 1)1
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Figure 3.1 Initial test images: (a) Geometric shapes (b) Typical machine parts.

Based on results of algorithm-validation tests (Section 3.3), it should be noted that Equa-

tion 3.3 was published incorrectly in the original article by Sekita and others [17]. The correct

version is as shown. Although the CPARCOR algorithm generates both, the CAR coefficients tend

to display considerably lower recognition rates when compared to the CPARCOR coefficients (for

identical tests) [17]. Thus, only the CPARCOR coefficients will be considered further.

3.3 CPARCOR Algorithm Software Validation

The following subsections provide an extensive examination of the CPARCOR algorithm used

by this thesis. Along with a detailed explanation of each subroutine in Sections 3.3.1 to 3.3.4, the

methods used to validate the algorithm are also described in Sections 3.3.5 to 3.3.6.

In addition to the primary CPARCOR routine defined by Equations 3.2 to 3.4, the following

preliminary tasks/subroutines were required in order to generate software compatible test images:

1. Generation of Test Images: Creates initial and primary test images.

2. Load and Enhance Subroutine: Creates a smooth, unbroken image boundary.

3. Trace Subroutine: Traces image and calculates the boundary's centroid.

4. Sampling Subroutine: Provides a sampled version of the image's traced boundary.
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(a) M60 Tank (b) M35 Truck (c) BIR APC

*00
(d) T62 Tank (e)I IFV

Figure 3.2 Primary test images.

3.3.1 Generation of Test Images. Test image generation involved a two step process.

First, eight different classes of preliminary test data were generated in order to validate both the

CPARCOR algorithm and previous research results [17]. Examples of the initial test images are

shown in Figure 3.1. Images in Set(b) are representative of the actual data set used by others

[3][17]. Scaled (50%) and rotated (300) versions of the eight classes shown were also created to

verify the PSRI properties of the CPARCOR coefficients. Initial testing was conducted using four

images from each class (32 total images).

Second, in order to attempt three dimensional (3-D) image recognition, 2-D representations

of 3-D images had to be created. This was accomplished with the aid of several software routines

created at AFIT [6] and the Army's constructive solid geometry based computer aided design

package, BRL-CAD[1]. Images (128 x 128 arrays) were generated for five different classes which

included the Army's M60 Tank, M35 Truck, BTR60 Armored Personnel Carrier(APC), T62 Tank,

and M2 Infantry Fighting Vehicle(IFV). A representative view from each of the five classes is shown

in Figure 3.2.
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Figure 3.3 Typical MATLAB image (M60 Tank).

Image views were generated every five degrees in both azimuth (from 00 to 3550) and elevation

(from 00 to 900), while various subsets of the total image set were used for actual test applications.

For future discussion, all views will be referenced by the following format:

CLASSAzimuth-Elevation

For example, the front view of an M60 Tank would be labeled as M60-0-0. Similarly, the right side

of an M35 Truck would be labeled as M35-90.0.

3.3.2 Load and Enhance Image Subroutine. A typical image, as stored in a MATLAB

array, is shown in Figure 3.3. For compatibility with the Trace Subroutine (Section 3.3.3), the

image pixels were thresholded for two grey scale levels to represent either a background pixel (zero)

or a target pixel (one).

As previously mentioned, the image's boundary must be traced and sampled before the CPAR-

COR algorithm can be applied. Obviously, it would be trivial for a human to trace the perimeter of

the image shown in Figure 3.3. However, notice that certain gaps exist along the image's boundary

due to the use of a 128 x 128 format. For the Trace Subroutine to accurately follow the image's
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Figure 3.4 Effect of Mask Subroutine on typical image.

boundary without getting stuck, these gaps need to be filled in. Thus, to create the smooth,

unbroken boundary required, an edge detection mask is first applied to enhance the image prior

to boundary tracing. Enhancing both horizontal and vertical lines [13], the effects of the edge

detection mask are shown in Figure 3.4.

3.3.3 Trace Subroutine. Calculation of CPARCOR coefficients is based on a sampled

version of the original image's boundary. For the CPARCOR algorithm, sampling is performed

on on the object's boundary using a simple boundary detect/trace routine. Based loosely on the

Turtle algorithm [3][4], the Trace Subroutine first detects and then follows the image's boundary in

a clockwise direction. The basic algorithm is outlined as follows:

1. Scan the image until a target pixel (one) is found.

"* If the turtle is in a target pixel, turn left and move one pixel forward.

"• If the turtle is in a background pixel, turn right and move one pixel forward.

2. Continue tracing the boundary until the turtle has found the starting point
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Figure 3.5 Effect of Trace Subroutine on typical image.

As discussed in the previous section, two conditions must be satisfied in order for the Trace

Subroutine to function properly. First, the -mage (to be traced) must be clearly defined in terms

of grey scale values. This is accomplished by simply thresholding the image for two grey scale

levels, either background pixel (zero) or target pixel (one). Second, the boundary must not have

any spurious gaps that will cause the turtle to get stuck inside the image. Again, to create the

unbroken boundary required, an edge detection mask is applied prior to boundary tracing.

The Trace Subroutine returns the locations of all boundary pixels. A thinning routine is then

applied to eliminate any repeated points which sometimes occur when the turtle goes around a

corner. The image's centroid is finally calculated from the thinned sequence of boundary pixels. To

insure coefficient invariance to boundary translations, the centroid is used to represent the origin

of the model's complex-coordinate system. Basically, by making the coefficients invariant to both

translation and rotation about the origin, they are automatically invariant to any rotation [2][3][17].

Figure 3.5 shows the resulting image after application of the Trace Subroutine.
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Figure 3.6 Effect of Sampling Subroutine on typical image.

3.3.4 Sampling Subroutine. After the centroid has been calculated, a slightly modified

version of the Trace Subroutine is applied. This time, the image's coordinate system is referenced

from the centroid (for invariance). The modified Trace Subroutine returns a sequence containing

the boundary's coordinates (complex numbers), which are then used by the Sampling Subroutine.

Although the sampling rate can be user specified, it is recommended that the number of samples

be fixed to a constant (for each class of images) in order to provide better PSIU properties [17].

In fact, no significant change in the recognition rate according to the number of representative

boundary points was noted for previously reported results [17]. For this thesis, sample rates were

chosen to provide an accurate, though not exact, representation of the actual image. For example,

30 samples were used for tests on objects shown in Figure 3.1, while 160 samples were used for all

objects shown in Figure 3.2. An example of an M60's right-side view (M60.90-0) recreated from

160 samples is shown in Figure 3.6.

3.3.5 Coefficient Stability Test. As outlined at the start of this chapter, the CPARCOR

coefficients of higher order modelb can be obtained by recursive application of Equations 3.2 to

3-8



3.4. To verify stability of the coefficients produced by these equations, a complex white noise test

was conducted on the algorithm's transfer function. The next two sections will discuss the transfer

function's derivation and the procedures followed for the white noise test, respectively.

3.3.5.1 Transfer Function Derivation. CPARCOR coefficients, an extension of the

real PARCOR coefficients, are a direct result of the Complex AutoRegressive (CAR) algorithm.

Based on the conventional real autoregressive model, a CAR model of order m is defined by

M
=j E k j -k~j. + JEZ (3.5)

k=1

where Z is the set of integers, ak'=, are the CAR coefficients, and e represents an error term. In

general, zj is defined as a linear combination of the preceding m boundary points.

Assuming inputs to the sequence are unknown, an estimate of zj can be defined by

j= akZj-k (3.6)
k=1

The error between the estimate and the actual is given as

e(n) = i(n) - z(n) = c (3.7)

Rearranging terms and taking the Z-transform[12][15] of Equation 3.5 yields:

m

Y(z)[1 - Zakz-k] = X(z) (3.8)
k=1

The resulting transfer function is defined as

U(z) = Y(z) 1
z- 1 - = akz (3.9)
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3.3.5.2 White Noise Test Procedures. To verify stability of the CPARCOR coeffi-

cients, a complex white noise test was conducted on the algorithm's transfer function (Equation 3.9)

in the following manner:

1. Generate a random sequence of complex white gaussian noise (10,000 samples).

2. Generate stable (within the unit circle) test coefficients for a model of order six (arbitrary).

3. Filter the complex white noise sequence using the filter described by the test coefficients and

autoregressive transfer function.

4. Apply the filter's output vector (impulse response) to the CPARCOR algorithm.

5. Create a pole-zero plot of the calculated CPARCOR coefficients. A stable sequence will result

in points that lie within the unit circle.

Table 3.1 White noise test coefficient comparison.

Order \ Vector Original CPARCOR Algorithm
1 -0.1807 -0.1845 + 0.0017i
2 -0.1023 -0.0993 - 0.0007i
3 -1.2578 -1.2522 + 0.0048i
4 0.0226 0.0231 - 0.0018i
5 0.0939 0.0922 - 0.0025i
6 0.7165 0.7138 + 0.0006i

Table 3.1 provides a direct comparison of the original test coefficients to those generated by

the CPARCOR algorithm. The coefficients are shown to be a reasonable representation of the

original set. As shown in Figure 3.7, all poles (coefficients) also lie within the unit circle. Thus,

the algorithm does in fact produce stable CPARCOR coefficients. MATLAB software routines and

relevant data sets used for this test are provided in Appendix B, while the source code for the

CPARCOR Algorithm is provided in Appendix C.
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Figure 3.7 Result of complex white noise test for CPARCOR algorithm.

3.3.6 Algorithm Verification Test. This section details the initial test used to verify oper-

ation of the entire CPARCOR algorithm. Also included is a look at the nature of the CPARCOR

coefficients when subject to changes in scale and rotation.

As highlighted in Chapter 1I, the CPARCOR algorithm presents an exceptional invariant-

feature extraction model for recognition of arbitrary planar objects. Previous experimental results

indicated that complicated and partially occluded shapes could be recognized with high accuracy,

even with low-order models [17]. Based on these results, several simple test images were generated

in order to verify the proper operation of the CPARCOR algorithm, the stated PSRI properties,

and the outcomes of previous research efforts [17]. Examples of the initial eight class test set were

shown in Figure 3.1 on Page 3-3. Four images (including scaled and rotated versions) were created

per class, for a total of 32 images. A tenth order CPARCOR model was created for each image (30

boundary-samples each).

Classification of the initial test set was done using the hold-one-out method and a 1-Nearest-

Neighbor (INN) classifier[10]. A twenty dimensional feature vector was created (from a tenth order
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model) for each class by separating the real and imaginary parts of the complex coefficients [17].

Consistent with previous research, one hundred percent classification results were achieved.

The next logical step was to more fully explore the nature of the CPARCOR coefficients when

subject to changes in scale and rotation. To this end, a plot of the scaled and rotated CPARCOR

feature vectors was generated for the first image in each set of Figure 3.1. Figure 3.8 (a) is a

plot of the original, the scaled(50%), and the unscaled/rotated(300 ) feature vectors for each image.

Although some intra-class variation exists, the two classes are clearly separable. To further illustrate

class separability, the mean of the three feature vectors for each class was plotted in Figure 3.8 (b).

This figure indicates that separability continued to exists, even at higher order models, when the

image was subject to scale and rotational changes.

3.3.7 Section Summary. Section 3.3 provided a detailed explanation of the CPARCOR

algorithm as well as the methodology used for its validation. The algorithm was shown capable

of producing stable CPARCOR coefficients, and the previously reported PSRI properties and high

recognition rates of CPARCOR features (17] were verified. Next, Section 3.4 will describe the

three different classifiers used to examine recognition performance of the CPARCOR features on

nonplanar 2-D images (of 3-D objects). A discussion of the modifications made to the methodology

traditionally applied (when classifying by autoregressive models) is also included.

3.4 Classifier Application

Although the AutoRegressive (AR) model was previously noted to perform exceptionally

well when applied to various planar 2-D object recognition tests, the goal of this thesis was to

demonstrate application of the CPARCOR algorithm to spatio-temporal recognition of 3-D objects.

As such, the CPARCOR method of feature extraction was applied to nonplanar 2-D views of 3-

D objects. Recognition based on the CPARCOR features was then evaluated using the several

different classification techniques.
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Providing an explanation of each classifier applied for recognition testing, thin section is

broken down as follows:

"* Section 3.4.1 contains a discussion of several modifications made to the methodology tradition-

ally applied when classifying by autoregressive models. Also highlighted is a brief summary

of the classifiers applied for recognition testing.

"* Section 3.4.2 provides an extensive explanation of the Template Matching algorithm that was

developed specifically for this thesis. Included in Section 3.4.2.1 are the baseline hypotheses

used to evaluate the template algorithm's experimental results. Additionally, Sections 3.4.2.2

and 3.4.2.3 provide details of specific tests conducted.

"* Section 3.4.3 provides a discussion of the Single-Look and Miltiple-Look 1-NN classifiers used

to test their respective recognition techniques on unnormalized CPARCOR feature vectors.

"* Section 3.4.4 details the procedures of the Hidden Markov Model recognition test. For clarity,

examples based on Fourier features are included in the discussion, while results for CPARCOR

features are not presented until Chapter IV.

A discussion of the results for all tests is included Chapter IV. For clarity, additional results

for some of the Template Matching algorithm tests are included in Appendix A.

3.4.1 Modifications. To more fully examine the robust nature of CPARCOR coefficients,

several modifications were made to the methodology traditionally applied when classifying by au-

toregressive models [2][3][9][17].

First, the complexity and number of stored images (per class) was significantly increased

to determine the impact of crowding the feature space. The images of Figure 3.1 on Page 3-4

are representative of those used for previous research efforts [2][3][9][17). Clearly, they pale in

comparison to the complexity of the test images shown in Figure 3.2 on Page 3-4. Also, previous
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efforts typically used well under 100 images per class. This thesis, on the other hand, used anywhere

from four to several hundred images per class (depending on the application).

Second, the relationship between the number of characteristic views and the corresponding

recognition rate was explored through application of a Template Classifier. A characteristic view is

an object orientation, particular to a given class, in which surrounding views yield a similar set of

observed features. For this thesis, the minimal number of characteristic views were defined as the

front, back, top, left, and right side views of each class. Basically, various dimensional templates

were used to classify views not stored in the templates. This effort was essentially an extension of

previous work by Seibert and Waxman [16].

Third, the impact of partial occlusion on the corresponding recognition rate was examined by

using known levels of occlusion. For example, image occlusions were separated into three distinct

categories: 5%, 10%, and 20% levels of partial occlusion. Although previous researchers included

levels of up to 60% partial occlusion (9], no distinction was ever made (in terms of recognition)

between the effect a 5% versus a 60% level of occlusion.

Finally, all classification attempts were based on nonplanar views. Previous research efforts

simply rotated the same image in-plane for classification testing [2][3][9][17]. For this research,

however, views for each of the five classes (reference Figure 3.2) were generated in five degree

increments from 00 to 3550 in azimuth and 00 to 900 in elevation. Images were generated in this

manner to determine if a spatio-temporal relationship existed among the characteristic views for

each class.

To evaluate the CPARCOR coefficients ability to provide robust PSRI features for recognition

of nonplanar 2-D images (of 3-D objects), the following methods of classification were applied:

* Template Matching Algorithm: Using a Euclidean distance metric, the impact of unstored

and partially occluded views on single-frame recognition performance was examined. Recall
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that unstored views were defined as characteristic views that are not included (or stored) in

the respective template.

"* K-Nearest-Neighbor (KNN) Techniques: Recognition of both single and multiple frames of

imagery was performed using the hold-one-out method and Single/Multiple-Look 1-NN clas-

sifiers. A direct comparison with recognition by Fourier features was made.

"* Hidden Markov Model (HMM): Temporal sequence recognition by CPARCOR features was

attempted for comparison with recognition by Fourier features.

3.4.2 Template Matching Algorithm. The relationship between the number of character-

istic views and the corresponding recognition rate was explored through application of a template

classifier. Providing a list of baseline hypotheses for performance evaluation, this section will ex-

amine the basic function of the classifier algorithm. Also included is an explanation of the tests

conducted on data sets of unstored and occluded characteristic views.

Template matching is a simple, but effective method of pattern recognition. Basically, an

input of unknown-class is compared to a set of known-class prototypes[18]. Recognition (class

identification) is determined by establishing the template's class containing the closest match to

the unknown input. Of the various means available to establish the matching criteria, this thesis

will use a Euclidean distance metric defined as follows:

D(z) = min 11 x - zi (3.10)

where .• defines the Euclidean norm for the expression, and D(z) is the smallest of all distances

between the unknown input-view (x) and the ith stored template-view (z,)[18]. In other words,

classification is based upon the minimum Euclidean distance between a known template-view and

the unknown input-view. Using this metric, several template sets were developed in order to exam-

ine the relationships between unstored/occluded views and the number of stored (in the template)
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characteristic views. Templates were based on m x n matrices containing unnormalized CPARCOR

feature vectors that represent the characteristic views for various allowable object orientations. The

following templates were used for testing:

* 3600 View Template (3 x 3 Matrix): Contains the minimum number of characteristic views

(CPARCOR feature vectors) required for total-range 3600 azimuth and 900 elevation image

recognition.

* 1800 View Template (2 x 3,5 x 9, 10 x 19 Matrix): Representing the same 1800 view,

the three matrices coixtain different numbers of characteristic views. For example, the 2 x 3

matrix contains six characteristic views, while the 10 x 19 contains 190.

* 900 View Template (2 x 2,5 x 5, 10 x 10, 19 x 19 Matrix): Although representative of the

same 900 view, the 2 x 2 matrix uses only four characteristic views, while the 19 x 19 uses

361. Note that the 19 x 19 contains the maximum number of characteristic views possible for

the given range. Thus, the 19 x 19 matrix was not used for unsiored view recognition tests.

An illustrative example of the 3600 View Template (3 x 3 Matrix) is shown in Figure 3.9

on Page 3-18. Note that the CPARCOR feature vectors, not the images, are actually stored in

the template. Although other possibilities exist, the transitional views (in each corner) for this

template were represented by the following:

"* Upper left corner: Class.315A5

"* Upper right corner: Class4A5A5

"* Lower right corner: Class_135_45

"* Lower left corner: Class-225_45

The Template Matching algorithm returns the matrix location and corresponding class label

of the best match for a given unknown-input view. The source code for this algorithm and the

various templates is included in Appendix D.
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Figure 3.9 Characteristic Views in 3600 Template (a) Basic template format (b) Representative
test images for M60 Tank.
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3.4.2.1 Baseline Hypotheses. The Template Matching algorithm was used to perform

a variety of experiments on test sets of both unstored and partially occluded characteristic views

of the five classes shown in Figure 3.2 (Page 3-4). Experimental results were evaluated against the

following baseline hypotheses:

* Recognition performance should increase with model order until a point of optimal perfor-

mance is achieved. After this point, no addition benefit will be realized by using higher order

models.

* For a given model order, recosLAItion performance should decrease as the number of available

classes is increased.

* Object symmetry should allow for a reduction in overall template and matrix size. For

example, the 3600 View Template should provide almost identical recognition rates as the

1800 View Template.

* As the matrix size of a given template is increased (to include more characteristic views),

recognition performance for unstored views should also increase. The exception to this rule

would be recognition of partially occluded views (see next item).

* Recognition of partially occluded views should decrease as the matrix size of a given template

is increased. Generally, as more characteristic views are added, the occluded view has a higher

probability of being misclassified due to the existence of many similar choices.

* Recognition performance should decrease as the percentage of partial occlusion is increased

from 5% to 20%.

3.4.2.2 Matrix Reductions and Unstored View Testing. This section presents the

motivation behind an attempt to reduce the overall template size required for reliable recognition.

Initially presented is an examination of symmetrical characteristic views. This is followed by an

explanation of how unstored views were used to test the template/matrix reduction hypothesis.

3-19



chuamsW• VIm tfr Moo

10.2, Fot•dRgt81eVe 
:0.1

90.2 Front anid RIWt Sids VW&*:__

1, 2
Model Order

Figure 3.10 Characteristic Views for M60 Tank.

Based on the assumptions of Section 3.4.2.1, preliminary template testing was focused on

ways to reduce the overall template size. A straight forward approach to this problem would seem

to involve using an object's symmetry to reduce the number of stored characteristic views. Thus,

a plot of the M60 Tank's characteristic views, as stored in the 3600 view template, was made in

order to examine the CPARCOR coefficients. As shown in Figure 3.10, similar feature vectors are

indeed generated for views separated by 180' in azimuth.

Table 3.2 Unstored view test set (Class-AzimuthbElevation).

Class_0_5 Class_5_5 Class_5_35 Class_15_15 Class_15.55
Class_25_5 Class_25A5 Class-35_25 Class_35_55 ClassA5_15
Class_45A5 Class45_75 Class.55_25 Class_55_55 Class.60.65
Class_65_25 Class_65_45 Class.65_55 Class_75_15 Class_75.55
Class_85_5 Class.85_35 Class.85A5 Class_90_15 Class_90.85

Taking advantage of this information, an attempt to reduce the overall template size was

conducted by directly comparing the recognition accuracy of templates for 360', 1800, and 900

views. Sets of various sized matrices were used to test the recognition rate of each template on

a given test set of unstored views. A baseline for comparison was established by restricting the
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unstored views to the set shown in Table 3.2. Representative results of the matrix reduction and the

unstored view tests are fully discussed in Chapter IV. For clarity, additional results were included

in Appendix A.

3.4.•2.3 Occlusion Testing. One of the more difficult problems associated with image

recognition is the classification of partially occluded object views[3]. This section will explain the

logic behind partial occlusion tests conducted with the template algorithm. Initially presented

are results of a test performed to verify previously reported experimental results [3][17]. Next, an

examination of actual CPARCOR feature vectors subject to various levels (0, 5, 10, and 20%) of

occlusion is shown. Finally, the methodology used specifically for this thesis is explained.

Table 3.3 Views occluded 5, 10, and 20%.

M60-0-0 I M60_0_0(new) I M60-0-90 I M60-0-90(new)I M60-90-0

Before examining the effects of known levels of partial occlusion, test results reported by

others [3][17] were verified using the five M60 Tank views shown in Table 3.3. Note that only the

M60 class was used for this test. M60 views were occluded 5, 10, and 20% for a total test set

of 15 occluded views. Two occluded versions of the M60's front and right side views (indicated

by 'new') were included in order to test the effect moving an occlusion to a new location on the

same view. Using a template set of 2 x 2 matrices (one per class), the test set of occluded M60

views (Table 3.3) was applied to both a three (M60, BTR, M35) and a five class problem. Shown

in Figure 3.11 (a), results of the three class comparison readily verify the high recognition rates

reported by previous efforts. Note that the recognition rate of zero for order one was valid due to

the use of only one class for testing. The significant drop in recognition for the five class case was

thought to be due to confusion caused by the addition of two more tracked vehicles (M2, T62). To

verify this, Figure 3.11 (b) compares the results of the five class problem to results of a more similar

three class case (M60, M2, T62). Given that the same line is defined for both cases, the drop in
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recognition for Figure 3.11 (a) was clearly caused by confusion related to the two additional classes

of similar tracked vehicles. Again, the zero recognition rate (order one) was valid due to the use of

a one-class test set. Previous efforts [3](17] reported higher classification rates by performing tests

on several less similar classes.

A plot of two feature vectors for occluded M60 characteristic views was made in order to

examine CPARCOR coefficients subject to various levels (0, 5, 10, and 20%) of occlusion. As

shown in Figure 3.12 (a) on Page 3-24, similar feature vectors are indeed generated for occlusions

of the same view. To further illustrate this point, a plot of the overall mean for each set of vectors

was made. As shown in Figure 3.12 (b), the two characteristic views are clearly separable.

Table 3.4 M60 and M2 views occluded 5, 10, and 20%.

M60_0_0 M60-15-15 M60-30-30 M600_A5 M60A5_0
M60A5A5 M60-65-65 M60-75-25 M60-0-90 M60.90-0
M2_0_0 M2-15-15 M2-30-30 M2_045 M2A5..0
M2A5A5 M2-65-65 M2_75.25 M2_0_90 M2_90-0

Based on this information, the impact of partial occlusion on the corresponding recognition

rate was examined by using known levels of occlusion and various template sizes. Separated into

three distinct categories (5%, 10%, and 20% ), 60 occluded images (total) were made for the M60

Tank and the M2 IFV from the set listed in Table 3.4. The two classes of tracked vehicles were

chosen in order to test the robustness of recognition on occluded, but similar objects. Also, to

make recognition more difficult, all three-class testing was performed using the M60, M2, and T62

(tracked vehicles). Occlusions were 'hand-made' by removing a number of image pixels (from the

128 x 128 array) corresponding to the desired level of occlusion. A subset of occluded M60 views

is shown in Figure 3.13 on Page 3-26. Chapter IV contains representative results and a discussion

of these tests. For clarity, additional results were included in Appendix A.

The following sections present the methodology applied to two additional classifiers used by

this thesis. Section 3.4.3 provides a discussion of the Single-Look and Multiple-Look I-NN classifiers
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used to test their respective recognition techniques on unnormalized CPARCOR feature vectors.

Similarly, Section 3.4.4 details the procedures of the Hidden Markov Model recognition test.

3.4.3 K-Nearest-Neighbor (KNN) Techniques. The nearest-neighbor rule is a sub-optimal

technique that will typically lead to an error greater than the Bayes rate, the minimum possible

[4]. For this thesis, two versions of a I-NN classifier were used for recognition of both single-frame

and multiple-frame sequences of uncorrupted (no noise/occlusion) imagery. Tests were conducted

to compare the effects of Single-Look versus Multiple-Look recognition on unnormalized CPARCOR

feature vectors. A five class problem was attempted, using images from the set of Army ground

vehicles shown in Figure 3.2 on Page 3-4. For each class, 50 randomly generated image sequences

of lengths 14, 16, 18, and 20 frames each (200 total sequences) were created. For a view area of

00 to 1800 azimuth and 0' to 750 elevation, sequential frames were allowed to differ (or remain the

same) by 5o in azimuth or elevation. In this manner, 3400 individual image frames were created for

each class (17,000 total frames). A tenth order CPARCOR model, chosen for compatibility with

Fourier results, was then created for each image.

For the Single-Look I-NN test, the hold-one-out method was used to sequentially hold out

a single frame of imagery for comparison with the remaining 16,999. The hold-one-out method

provides an upper bound to the Bayes error rate, yielding a worst-case estimate of the error when

generalizing on unseen data[8]. Classification was then based on the class containing the single best

matched frame to the one withheld. Although following the same initial procedures, classification

for the Multiple-Look 1-NN was based on the class containing the majority of best matched frames

per sequence, not per frame. The results of these tests, along with a direct comparison with

recognition by Fourier features, are discussed in Chapter IV.

3.4.4 Hidden Markov Model (HMM) Testing. To determine if CPARCOR features could

accurately represent temporally encoded sequences of images, a Hidden Markov Model (HMM)

classifier was applied. The HMM classifier had previously displayed exceptional recognition rates
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Figure 3.13 Example of M60 occluded views for (a) 5% (b) 10% (c) 20%.
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Figure 3.14 Example of Mean Distortion Curves (MDC) for cluster centers (Fourier features
shown).

(over 97%) for temporal sequences represented by a low frequency, Fourier magnitude feature set

[7]. Thus, a direct 5 class performance comparison was attempted by simply replacing the Fourier

coefficients with a set of CPARCOR coefficients. The data set consisted of the five Army ground

vehicles previously shown in Figure 3.2.

Based on a viewer centered approach, the HMM used the Linde, Buzo, and Grey (LBG)[11]

clustering algorithm to create a vector quantizer whose clusters corresponded to areas (on a viewing

sphere) of similar characteristic view[7]. For test purposes, the region of interest was restricted to

a 00 to 1800 azimuth, 00 to 750 elevation portion of the viewing sphere. 592 images per class

were generated for this view region. Both the CPARCOR and Fourier coefficients were statistically

normalized across all feature vectors to produce zero mean, unit variance features.

A codeword vector quantizer was produced by processing the feature vectors with the LBG

algorithm. The result was a cluster distortion versus codebook size plot as shown (for Fourier feature

set) in Figure 3.14. Based on this data, a 64 codeword vector quantizer was chosen for use with

the Fourier data. The same size quantizer was applied to the CPARCOR data for consistency in

technique comparisons.
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Figure 3.15 Example of sphere mapping (Fourier features shown).

Sphere plots were used to associate the mapping of each viewing position to a particular

codebook entry. Basically, each viewing position was associated with a characteristic view. An

example of the viewing spheres for the Fourier data (CPARCOR results are shown in Chapter IV)

is shown in Figure 3.15. Areas of common shading represent a shared characteristic view or aspect.

Recognition ambiguity is seen to exist when more than one object class occupies the same cluster.

Respective class HMMs were trained on the same 200, randomly generated sequences used

for the Single and Multiple-Look K-Nearest-Neighbor (KNN) tests (Section 3.4.3). Although not

expected to have any great impact on the HMM test, it should be noted that 128 x 128 pixel arrays

were used for the CPARCOR images, while 256 x 256 arrays were used for the Fourier images. A

sphere plot example of five of the randomly generated training sequences is shown in Figure 3.16

on Page 3-29. Results from this direct comparison of CPARCOR and Fourier features are fully

discussed in Chapter IV.
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Figure 3.16 Example of sphere trajectories.

3.5 Chapter Summary

The development (Section 3.2), validation (Section 3.3), and application (Section 3.4) of the

CPARCOR algorithm has been presented. Along with fundamental principles of the algorithm, the

methodology used to verify both the main program and supporting subroutines was described. The

chapter concluded with a description of several recognition tests conducted using the CPARCOR

algorithm and various classifiers. Chapter IV discusses the results of these tests.
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IV. Results and Discussion

Chapter III covered the development, validation, and application of the Complex Partial

Correlation (CPARCOR) algorithm. Along with fundamental principles of the algorithm, the

methodology used to verify both the main program and supporting subroutines was described. The

chapter concluded with a description of several recognition tests conducted using the CPARCOR

algorithm and various classifiers.

This chapter provides a discussion of the results for tests described in Chapter III. Presented

in the same manner as in Chapter II1, the following topics are considered:

" Template Test Results. This section provides a discussion of the results for tests conducted

with the Template Matching algorithm. Although numerous tests were conducted, only rep-

resentative results are shown (for clarity) in this chapter. Appendix A contains all remaining

test results.

"* KNN Test Results. Single and Multiple-Look 1-NN classifier results are discussed in this

section. A direct comparison to recognition by Fourier features is also made.

"* HMM Test Results. Following a brief review of the methodology attempted for HMM testing,

a look at why the CPARCOR model failed to train is presented.

4-.1 Template Test Results

After a brief review of the baseline hypotheses used for performance evaluation, this section

will discuss the results of tests conducted with the Template Matching algorithm. For the sake of

clarity, this chapter will only show representative results for the matrix-reduction/unstored-view

tests (Section 4.1.1), as well as the occluded view tests (Section 4.1.2). Appendix A contains all

remaining results for these tests.
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Using a Euclidean distance metric, the relationship between the number of characteristic views

and the corresponding recognition rate was explored through application of a template clamifier.

Template sets were based on m x n matrices containing unnormalized CPARCOR coefficient vec-

tors. The following baseline hypotheses, originally presented in Chapter III, were used to evaluate

template recognition performance:

"* Recognition performance should increase with model order until a point of optimal perfor-

mance is achieved. After this point, no addition benefit will be realized by using higher order

models.

"* For a given model order, recognition performance should decrease as the number of available

classes is increased.

"* Object symmetry should allow for a reduction in overall template and matrix size.

"* As the matrix size of a given template is increased (to include more characteristic views),

recognition performance for unstored views should also increase. The exception to this rule

would be recognition of partially occluded views (see next item).

"* Recognition of partially occluded views should decrease as the matrix size of a given template

is increased.

"* Recognition performance should decrease as the percentage of partial occlusion is increased

from 5% to 20%.

4.1.1 Matrix Reduction and Unstored View Testing. This section examines the results

of the matrix reduction and unstored view tests. Motivated by the results of Figure 3.10 (Sec-

tion 3.4.2.2), various tests were conducted to demonstrate that object symmetry should allow for a

reduction in overall template and matrix size. For example, the 3600 View Template was expected

to provide almost identical recognition rates as the 900 View Template for views in the 900 az-
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imuth/elevation region. Applying the unstored view test set (Table 3.2) to the 3600, 1800, and 900

View Templates, this hypothesis was verified by directly comparing recognition rates.

To illustrate the feasibility of symmetry-related template reductions, unstored view recogni-

tion rates for the 3600 and the 900 view templates were directly compared for a three clas problem

as shown in Figure 4.1 on Page 4-4. Except for some obvious variation in (c), overall recognition

rates were practically identical. Extending this idea to a five class case, Figure 4.2 on Page 4-5

indicates that similar results were again obtained. Notice, though, that rates are significantly lower

for the five class case due to the addition of two classes of tracked vehicles. Although not shown

here (see Appendix A), recognition rates were typically higher when larger matrix sizes were used.

Similar results were also found for comparisons between the 3600 and 1800 templates as well as

between the 1800 and 900 templates. Plots for these results can be found in Appendix A. Thus,

assuming object symmetries do exists, this method of comparison clearly validated template re-

duction as a viable option. Obvious advantages of template reduction include a decrease in the

number of characteristic views and the processing time required for recognition.

A comparison of 900 template recognition rates (using various matrix sizes) for three and five

classes is shown in Figures 4.3 and 4.4 (Pages 4-7 and 4-8). Although recognition performance

was generally found (for all tests) to decrease as the number of available classes was increased,

recognition performance was not seen to increase with model order in a consistent manner. Instead,

rates tended to fluctuate randomly with model order. Also, unstored view recognition rates did

not necessarily increase with an increase in matrix size for a given template. In Figure 4.4 (a),

for example, consistent recognition (relative to matrix size) at lower orders is seen to suddenly

contradict itself after model order 12. At this point, the 2 x 2 matrix displays higher recognition

rates than the 5 x 5 or the 10 x 10. These two discrepancies were evident in other tests as well.

Thus, the two relevant hypotheses were considered false.

4-3



Tomid Oanguiftm~ d MSO: 3 Gmm

Tup aiftem Bf 3m

80
70 ~f

(b5BR P

mom Ordw

(a) M35 Truck

20-4



adiumcd W O MGM*.

70 74.0 Ms:_ h i Mrk:__

1- I-
lm i

40 U 4 4

(a) M60 Tank (b) M35 Truck

Tsy~aMi imd~mon o4 BThR saCm,. T~mlis OmawIoim TiM: B Cuse

1010

I( I'

10 1a 30 40 sU

(c) BTR APn (d) T62 TankDo-o

040.

UO"Uud Ola mo or

(c) M2 (FV
hiMuO& --

71
403 0

(e) M2 IFV

Figure 4.2 Comparison of 900 and 3600 template for unstored view recognition results with 5
classes.

4-5



Recall that the data set applied to these tests consisted of unstored views, which were defined

as characteristic views not stored in the respective template. This means that, depending on the

template used, test views could have easily varied by as much as 300 (or more/less) in both azimuth

and elevation relative to the stored views in the template. Significant in a statistical sense, assuming

equally likely occurrences, was that the overall recognition trends using these views were typically

much higher than that of pure chance. For example, using the 10 x 10 matrix, peak recognition

values of 70% and 80% are seen to occur (5 class case), while no rate lower than 24% is noted.

As expected, rates were shown even higher for the three class cases where less similarity between

classes occurred. Along these lines, higher recognition rates would have also been expected had the

original test set been modified to include several stored-views. In general, though, the recognition

rates from these tests verified that reasonably accurate classification based on a limited number of

stored characteristic views was possible.

4.1.2 Occlusion Testing. Following a brief review of the test procedures and baseline

hypotheses, this section presents recognition results from tests conducted using partially occluded

object-views. For clarity, only representative test results for the M60 Tank shall be presented

here. Additional results, including tests conducted on occluded M2 IFV views, are included in

Appendix A.

Motivated by the successful results of Figure 3.11 (Section 3.4.2.3), various tests were con-

ducted using known levels of occlusion to examine the impact of partial occlusion on the corre-

sponding recognition rate. Separated into three distinct categories (5%, 10%, and 20% ), occluded

images were made for both the M60 Tank and the M2 IFV. The two classes of tracked vehicles were

chosen in order to test the robustness of recognition on occluded, but similar objects. A subset

of 'hand-made' occluded M60 views was previously shown in Figure 3.13 (Page 3-26). For more

realistic recognition testing, all three class problems consisted of the following tracked vehicles: M60

Tank, the M2 IFV, and the T62 Tank. Based on preliminary test results using this three class set
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(see Appendix A), little variation was expected to exist between three and five class comparisons.

For test purposes, 60 occluded images (total) were made for the M60 Tank and M2 IFV from the

data set previously shown in Table 3.4 (Page 3-22). Recognition rates for the occluded views were

evaluated against the following baseline hypotheses:

"* Recognition of partially occluded views should decrease as the matrix size of a given template

is increased.

"* Recognition performance should decrease as the percentage of partial occlusion is increased

from 5% to 20%.

Results for both three and five class tests using the occluded M60 view data set are shown in

Figure 4.5 (Page 4-10) and Figure 4.6 (Page 4-11), respectively. The similarity between recognition

rates for the two figures was due to use of the stated tracked vehicles (three class problem). Although

similar results are also shown in Appendix A (Figure A.10), neither hypotheses was shown to be

valid. For example, instead of displaying a linear relationship, recognition rates were rather constant

no matter what level of occlusion was applied. Also, even though recognition of partially occluded

views should have decreased as the matrix size was increased, peak recognition levels were noted

to occur (in all cases) for the 19 x 19 matrix. Thus, both of the original hypotheses were shown

to be false. In spite of this, however, the consistently high recognition rates noted for all tests

demonstrated that CPARCOR features were capable of reasonably accurate classification.

Although not shown until Section 4.3 (Figure 4.9), such unexpected results were found to

be caused by an unusual mapping of the coefficients in the feature space. An overcrowding had

occurred in which feature vectors were basically right on top of one another. Keep in mind that

classification was being performed using a Euclidean distance metric. As such, recognition was

based on the closest overall match within the template, not necessarily the closest matching view

of similar azimuth and elevation. Thus, it was quite possible that an M60 view occluded 20% could

be a better match for the M60 class than the same view occluded only 5%.

4-9



00ad yb=OUW- 2N Taw~k 0 N1 ON&. IAM4NW &*Tom CI n

TOM Paemp:_I PERINiT:
TWOMPERCUNT-- TWNT PERCENT

(a) (b)

JJ
PRE~~~i PECN-_FVPEcIDET: --

TWENY PERCNT TWENY PERCENT:

UMa.dd ad

(c) (d)

Figure 4.5 Three class recognition rates for occluded M60 views. Various matrix sizes used are
(a) 2 x 2 Matrix (b) 5 x 5 Matrix (c) 10 x 10 Matrix (d) 19 x 19 Matrix.

4-10



0%o~d mINNOM. 69 T600 PaNNO oub" Vb"1Mi SaTeffif O

TW PIRCRIT6 -- y TM NRCSIT:--1WuI'r PUKncsf - '-.5pNICmfi-

(a) (b)
Oogadsd Um of MU Iiw Two a am" Owhd Vmal MWIft ib TWOW CS

71. Af'

iis %~sf
to. A.~U I

IsPcUT

(c) (d)
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4.1.3 Discussion of Template Test Results. This section provides asummary of the results

for tests conducted with the Template Matching algorithm. Following a discussion of the template

reduction and unstored view tests, results from the occlusion tests are considered.

Results from the template reduction and unstored view tests clearly verified that object

symmetry allowed for a reduction in overall template and matrix size. This is significant in that

a decreased in the number of characteristic views and the processing time required for recognition

can be realized. Also validated was the hypothesis that, for a given model order, recognition

performance should decrease as the number of available classes was increased. This generally

accepted result is based on the idea that classifiers have a greater chance of confusing objects as

the number of classes is increased. Unexpected were the recognition rates for increased model order

and matrix size. As a result, the CPARCOR coefficients were shown to contradict two of the initial

hypotheses. Although relatively high recognition rates were noted (given unstored view test set) an

optimal CPARCOR model order and corresponding template size could not be determined strictly

based on these test results. In a statistical sense, though, overall recognition trends were shown to

be much higher than that of pure chance. Peak recognition values of 70% and 80% were noted even

for the five class case. Considering that the test set consisted of unstored views, the recognition

rates clearly verified that reasonably accurate classification based on a limited number of stored

characteristic views was possible.

Occluded view testing revealed some rather unexpected results. In fact, both of the original

hypotheses used to evaluate the tests were shown to be false. For example, recognition rates were

rather constant no matter what level of occlusion was applied, and recognition of partially occluded

views did not decrease in a consistent manner as the matrix size was increased. In addition to this,

an unusual feature-space mapping was noted in which feature vectors were basically right on top of

one another. In spite of the seemingly negative results for this series of tests, overall recognition rates

were relatively high. Although an optimal CPARCOR model order and corresponding template
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size could not be determined, recognition rates well over 50% were displayed for all tests considered.

Noting that the test sets consisted of three rather similar tracked vehicles, the CPARCOR features

were considered to exhibit reasonably accurate classification capabilities. Finally, it is interesting

to note that previous research always combined all levels of occlusion together for test purposes.

This test was one of the first to display the effect of individual known levels of occlusion.

The following sections discuss results from the two additional classifier tests. Section 4.2

presents the results of the K-Nearest-Neighbor tests, while Section 4.3 provides the results for

Hidden Markov Model testing.

4.2 K-Nearest-Neighbor (KNN) Test Results

Following a brief review of the methodology used for K-Nearest-Neighbor testing, results for

both the Single-Look and Multiple-Look 1-NN classifiers are discussed. A direct comparison to

recognition by Fourier features is also made.

Two versions of a 1-NN technique were used for recognition of both single and sequential

frames of uncorrupted (no noise/occlusion) imagery. Tests were conducted to compare the effects

of Single-Look versus Multiple-Look recognition on unnormalized CPARCOR features. A five class

problem was attempted, using images from the set of Army ground vehicles previously shown in

Figure 3.2 (Page 3-4). For each class, 50 randomly generated image sequences of lengths 14, 16,

18, and 20 frames each (200 total sequences) were created. For the view area of 00 to 1800 azimuth

and 00 to 750 elevation, sequential frames were allowed to differ (or remain the same) by only 50

in azimuth or elevation. In this manner, a total of 3400 individual image frames were created for

each class (17,C _ •al frames). For compatibility, an unnormalized, tenth order CPI*t(iýR model

was transformed (real and imaginary parts separated) into a twenty dimensional feature vector to

represent each image.
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Table 4.1 Single-Look test results for CPARCOR features.

Input \ Classify M60 M35 BTR T62 M2 Percent Correct
M60 Tank 2149 165 44 921 121 63
M35 Truck 54 2332 626 65 323 69
BTR APC 25 669 2440 33 233 72
T62 Tank 790 107 58 2305 140 68
M2 Tank 60 467 260 84 2529 74

Table 4.2 Single-Look test results for Fourier features.

Input \ Classify M60 M35 BTR T62 M2 Percent Correct
M60 Tank 3398 0 0 1 1 99.9
M35 Truck 0 3391 9 0 0 99.7
BTR APC 0 9 3391 0 0 99.7
T62 Tank 2 0 1 3396 1 99.9
M2 Tank 0 0 0 5 3395 99.8

4.2.1 Single-Look 1-NN Testing. Single-Look 1-NN testing used the hold-one-out method

to sequentially hold out a single frame of imagery for comparison with the remaining 16,999.

Classification was then based on the class containing the single best matched frame to the one

withheld. Results of this test are shown in Table 4.1. Although achieving an overall accuracy

of 69%, recognition was generally considered poor since no image corruption was performed. For

comparison, results based on the use of Fourier features are provided in Table 4.2. Results are

notably higher, with an average recognition rate of 99.8%.

Table 4.3 Multiple-Look test results for CPARCOR features.

Input \ Classify M60 M35 BTR T62 M2 Percent Correct
M60 Tank 181 0 0 12 7 90
M35 Truck 0 198 0 0 2 99
BTR APC 0 9 191 0 0 95
T62 Tank 7 0 0 188 5 94
M2 Tank 0 0 0 0 200 100
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Table 4.4 Multiple-Look test results for Fourier features.

Input\ Classify M60 M35 BTR T62 M2 Percent Correct
M60 Tank 200 0 0 0 0 100
M35 Truck 0 200 0 0 0 100
BTR APC 0 0 200 0 0 100
T62 Tank 0 0 0 200 0 100
M2 Tank 0 0 0 0 200 100

4.2.2 Multiple-Look I-NN Testing. Following the same initial procedures, classification

for the Multiple-Look 1-NN was based on the class containing the majority of best matched frames

per sequence, not per frame. Results of this test using CPARCOR coefficients, shown in Table 4.3,

are significantly higher than for the respective 1-NN test. Although not as clearly demonstrated

by the Fourier features (Table 4.4), the dramatic improvement is easily noted for the CPARCOR

features. An overall accuracy of 96% was achieved, indicating a decisive advantage of sequential

classification over the previous single-frame techniques of Template Matching and Single-Look 1-

NN. Statistically speaking, however, the results are not all that surprising. Assuming independence

of class views, recognition rates are generally expected to increase as more frames are considered

for classification. Also note that for this particular classifier, sequence order was irrelevant. In

other words, classification results would have been the same no matter how the individual frames

were arranged in the sequences.

4.2.3 Discussion of KNN Test Results. The advantage of classification by a multiple-

look technique over the traditional single-look method was clearly demonstrated by the KNN tests.

Based on a direct comparison between CPARCOR and Fourier features, the multiple-look technique

was noted to provide higher classification rates for each case. Although recognition rates by Fourier

features were notably higher than those of the CPARCOR features, the actual application should

be considered before deciding on which method to use. For example, the PSRI properties of the

CPARCOR features are inherent, while additional signal processing is required in order to achieve

similar results with Fourier features. Also, the CPARCOR features may be more readily capable
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of dealing with partial occlusions than Fourier features. For either case, though, it has been shown

that classification should be performed based on multiple-look techniques.

The next section provides a discussion of the Hidden Markov Model test. A direct comparison

of recognition by CPARCOR and Fourier features was attempted.

4.3 Hidden Markov Model (HMM) Test Results

Although successful results were obtained for the previous classifier tests, the CPARCOR fea-

tures failed to provide geographically oriented sphere clustering properties. As such, a direct apples

to apples comparison of recognition by CPARCOR and Fourier features could not be performed.

Thus, following a brief review of the methodology attempted for HMM testing, a look at why the

CPARCOR model failed to train is presented.

A Hidden Markov Model (HMM) classifier was applied to determine if CPARCOR features

could accurately represent temporally encoded sequences of images. The HMM classifier had pre-

viously displayed exceptional recognition rates (over 97%) for temporally encoded sequences repre-

sented by a low frequency, Fourier magnitude feature set [7]. Thus, a direct five class performance

comparison was attempted by simply replacing the Fourier coefficients with a set of CPARCOR

features. The data set consisted of the five Army ground vehicles previously shown in Figure 3.2

on Page 3-4.

Based on a viewer centered approach, the HMM used the Linde, Buzo, and Grey (LBG)[I1]

clustering algorithm to create a vector quantizer whose clusters corresponded to areas (on a viewing

sphere) of similar characteristic view[7]. For test purposes, the region of interest was restricted to

a 00 to 1800 azimuth, 00 to 750 elevation portion of the viewing sphere. A total of 592 images

per class were generated for this view region. Both the CPARCOR and Fourier coefficients were

statistically normalized across all feature vectors to produce zero mean, unit variance features.
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Figure 4.7 Comparison of Mean Distortion Curves (MDC) for cluster centers (a) CPARCOR
features (b) Fourier features.

A codeword vector quantizer was produced by processing the feature vectors with the LBG

algorithm. The result was a cluster distortion versus codebook size plot as shown in Figure 4.7 for

both the CPARCOR and the Fourier feature sets. Based on this data and a desired apples to apples

performance comparison, a 64 codeword vector quantizer was chosen.

Sphere plots were used to associate the mapping of each viewing position to a particular

codebook entry. Basically, each viewing position becomes associated with a characteristic view.

Viewing spheres for both the CPARCOR and the Fourier data are shown in Figure 4.8 on Page 4-

19. Areas of common shading represent a shared characteristic view or aspect. Clearly the spheres

in (b) display more highly defined clusters than those in (a). Based on this data and the idea
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that recognition ambiguity occurs when more than one object class occupies the same cluster,

classification results were forecast to be much lower for the CPARCOR features.

Training of respective class HMMs was attempted on the same 200, randomly generated

sequences of 128 x 128 images previously used for the Single and Multiple-Look K-Nearest-Neighbor

(KNN) tests (Section 4.2). However, due to the inconsistent sphere clustering (noted earlier), three

of the five classes refused to train, and the two that did were of questionable worth. To see if

the problem could be corrected, training attempts were made with the use of both more and less

codebook vectors, as well as unnormalized data. Although the HMMs eventually trained on a set

of unnormalized, 16 codebook vector data, the test was dismissed as being too ambiguous.

In an attempt to determine why the CPARCOR features failed to provide geographically

oriented sphere clustering properties, the mean and standard deviation of the feature vectors for

each class (unnormalized data) was examined. As shown in Figure 4.9 (a) oL Page 4-20, little

spatial separation was seen to exist between each of the five classes. Also, Figure 4.9 (b) illustrates

that only a slight amount of variance existed between each class (note axis scale). Extremely close

to unity for all five classes, first order coefficients displayed very little variation. Recall that the

feature vector of complex coefficients was separated into both real and imaginary parts for this plot.

Hence, the variance was shown close to zero at indices of one (real part) and eleven (imaginary

part). Due to this crowding of the CPARCOR features, clearly defined clustering was not possible.

Thus, for the model order considered, classification by HMM was not possible.
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Figure 4.8 Comparison of 5 class sphere mapping (a) CPARCOR features (b) Fourier features.
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4.4 Chapter Summary

The CPARCOR features were evaluated using several methods of classification. Template

Classifiers were used to examine the relative recognition rates for unstored and partially occluded

views. Results indicated that template reductions based on object symmetry were possible. Specif-

ically, the 3600 view template was reduced to a 900 view template without any significant impact

on recognition rate. Feature space crowding was noted as the cause of unusual recognition rates for

occluded views. Although general trends were noted, an optimal matrix size and coefficient order

could not be determined.

CPARCOR features were also classified by both Single and Multiple-Look KNN classifiers.

Using a 1-NN prototype and a twenty dimensional model, recognition rates of 69% and 96% were

achieved for respective classifiers. Based on a direct comparison to Fourier feature results, the

advantage of classification by the multiple-look technique over the traditional single-look method

was clearly shown. Use of the either the CPARCOR or Fourier features was noted to be application

dependent.

The inability of the CPARCOR features to exhibit consistent clustering properties resulted

in a failed attempt to classify by Hidden Markov Model. A plot of the overall mean and standard

deviation for the CPARCOR features reveled that little spatial separation existed between the

five classes considered. Having failed at attempts to establish a temporal relationship among the

CPARCOR features, the Fourier features were proven more optimal for HMM classification.
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V. Conclusions and Recommendations

Expanding previous test methodologies to include nonplanar views, this thesis effort sought

to encode and evaluate the Complex Partial Correlation (CPARCOR) algorithm on three types

of classifiers. Initially highlighting conclusions from the classifier tests, this chapter also provides

several recommendations for future research.

5.1 Conclusions

The CPARCOR method of feature extraction was applied to nonplanar 2-D views of 3-

D objects. Recognition performance was evaluated based on the following object classification

techniques:

e Template Matching Algorithm: Using a Euclidean distance metric, the impact of unstored

and partially occluded views on single-frame recognition performance was examined.

* K-Nearest-Neighbor (KNN) Technique: Recognition of both single and multiple frames of

imagery was performed using the hold-one-out method and Single/Multiple-Look 1-NN clas-

sifiers. A direct comparison with recognition by Fourier features was made.

a Hidden Markov Model (HMM): Temporal sequence recognition by CPARCOR features was

attempted for comparison with recognition by Fourier features.

Results indicate that the CPARCOR model parameters provide useful shape-features for

recognition of out-of-plane rotations. Displaying exceptional PSRI properties, the features were

shown capable of classification by simple nonadaptive recognition schemes. Relatively successful

results were obtained for a variety of tests. The advantage of classification by a multiple-look

technique over the traditional single-look method was clearly demonstrated. Although general

trends were noted, optimal model order and selection of CPARCOR versus Fourier features were

considered application dependent.

5-1



5.1.1 Template Matching Algorithm Results. Results from the template reduction and

unstored view tests clearly verified that object symmetry allowed for a reduction in overall template

and matrix size. Obvious benefits of this result are a decrease in required storage capacity and an

increase in recognition processing time. Also validated was the hypothesis that, for a given model

order, recognition performance should decrease as the number of available classes was increased.

Although previously reported high test results for planar views were verified, an optimal CPARCOR

model order and corresponding template size could not be determined based on results for the

nonplanar views. Unstored and occluded view test results revealed a crowding of the feature space

that resulted in several classification inconsistencies. In general, though, recognition rates clearly

verified that reasonably accurate classification based on a limited number of stored characteristic

views was possible. Results also indicated that reasonably high recognition rates could be achieved

by using less similar classes, as well as fewer classes.

5.1.2 K-Nearest-Neighbor (KNN) Technique Results. The advantage of classification by

a multiple-look technique over the traditional single-look method was clearly demonstrated by the

KNN tests. As discussed in Section 4.2, a dramatic increase in the recognition rate (69% single

versus 96% multiple-look) was noted for the CPARCOR coefficients. Based on a direct comparison

between CPARCOR and Fourier features, the multiple-look technique was noted to provide higher

classification rates for each case. Although recognition rates by Fourier features were notably higher

than those of the CPARCOR features, the actual application should be considered before deciding

on which method to use. For example, the PSRI properties of the CPARCOR features are inherent,

while additional signal processing is required in order to achieve similar results with Fourier features.

Also, the CPARCOR features may be more readily capable of dealing with partial occlusions than

Fourier features. For either case, though, it has been shown that classification should be performed

based on multiple-look techniques.
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5.1.3 Hidden Markov Model (HMM) Test Results. Although the CPARCOR features

display significantly better PSRI properties than Fourier features, the CPARCOR coefficients failed

to train on the HMM classifier. Although only a tenth order CPARCOR model was applied (for

Fourier comparison), similar poor results were expected for other model orders as well due to

feature space crowding. Based on failed attempts to establish a temporal relationship among the

CPARCOR features, the Fourier features were proven more optimal for HMM classification.

5.2 Recommendations

The rather promising results of multiple-look 1-NN tests indicate that a simple, pseudo-

temporal, template matching classifier could easily be developed. Based on the moderately high

recognition rates from the Template Matching tests, an experimentally determined optimal model

order and matrix size could be combined with a multiple-look classifier. The classifier would be

pseudo-temporal in the sense that sequence order would not be important. Obvious advantages to

this approach are high recognition rates and inherent design simplicity.

5.3 Future Research

Although extensive autoregressive model research could be conducted in a variety of areas,

of particular interest are the following:

"* Image reconstruction from the CPARCOR coefficients.

"* Inpact on recognition rates from the application of a boundary smoothing technique.

"• Characteristic View selection by clustering algorithm.
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Appendix A. Supplemental Test Results

To supplement results contained in Chapters III and IV, this appendix contains additional

results obtained from the Template Matching algorithm tests. Intended only as additional refer-

ence material, detailed explanations are not provided. The additional figures are presented in the

following order:

1. Individual Order Test. Conducted to determine if certain CPARCOR coefficients provide
more recognition information than others. Using only ningle-orders of CPARCOR coefficients,
instead of the usual combined effect, recognition was attempted using the data set of unstored
views from Table 3.2. Figure A. 1(a) (Page A-2) clearly illustrates that no single order provides
consistently higher recognition rates than any other. For clarity, the mean recognition rate
at each order is shown in (b). Although some fluctuation is evident, no one order is noted to
have a more optimal recognition performance than the others. Thus, the combined effect of
the CPARCOR coefficients was applied to all higher-order tests.

2. The 3600 View Template consisted of a 3 x 3 matrix (9 characteristic views) for each clans.
Results of both a three and a five class test are shown in Figure A.2 (a) and (b) (Page A-3),
respectively.

3. A comparison of recognition results for both 3 and 5 Classes using the 360'(3 x 3) template
is shown in Figure A.3 (Page A-4).

4. Results for a 3 class comparison of the 1800 and 3600 view templates are shown in Figure A.4
(Page A-5). In general, no significant difference in recognition rates were noted.

5. Results of tests performed on the 1800 view template to compare recognition rates for various
matrix sizes are shown in Figure A.5 (Page A-6).

6. Direct comparisons of the 900 and 1800 templates for recognition of a three class problem
(M60, BTR, M35) are shown in Figures A.6 to A.8 (Pages A-7 to A-9).

7. Figure A.9 (Page A-10) shows the results of a three dissimilar class (M60, BTR, M35) and
five class occlusion test using various matrix sizes.

8. Figure A.10 (Page A-11) shows the results of a three similar class (M60, T62, M2) and five

class occlusion test using various matrix sizes.

9. A comparison of both 3 and 5 Class recognition of occluded M60 characteristic views using
900 and 3600 templates is shown in Figure A.11 on Page A-12. In general, no significant
difference in recognition rates were noted.

10. Figure A.12 (Page A-13) and Figure A.13 (Page A-14) show results for occluded M2 view
tests.

11. A comparison of the mean recognition rates (based on matrix size) for both the M60 and the
M2 is shown in Figure A.14 (Page A-15).
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Appendix B. White Noise Test Source Code

B. I Introduction

This appendix contains MATLAB software routines and relevant data sets used for the CPAR-

COR coefficient white noise test (see Chapter III). Material is presented in the same order as it

was used for testing.

B.2 MATLAB Test Routines and Data Sets

This routine will generate a set of stable test coefficients for use
with the white noise sequence routine. For stability, all points
must lie within the unit circle.

% To insure stability, the following parameters were used to
% define the actual test data:

r=[0.99 0.95 0.90];
freq=[255 2330 3000);
fs=8000;
fp=125;
np= 100;

%, Compute polar representation
rads=(freq/(fs/2))*pi;

%. Compute cartesian coordinates
x=r.*cos(rads); y=r.*sin(rads);
pO=x+y*j;
pl=x-y*j;

%. Compute the polynomial representation
ppfpO p1l;
ppoly=real (poly(pp));
a=ppoly

% Application of the above code results in the following test vector:
V.

%. a=[1.0000 -0.1807 -0.1023 -1.2578 0.0226 0.0939 0.7165);

V..V%%%%.%V..V.VV %%Y. %%%VV%%%%.%%V'%%%VV..VV%%%•7'%%%%%%. VV%%.VVVV%%%V.V

This routine will generate the complex white noise sequence based on
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a set of parameters defined by both the user and the model's
transfer function.

% The following parameter assignments were used:

N=10000; % Desired white noise sequence length
s=I; .Variance
b=1; % Defined based on the model's transfer function (Y(z) = 1).

x=sqrt(s/2)*(randn(l,N)+jerandn(1,N)); % Generates the CWGI sequence

%%%V.%%%%%%%.V.%.%%% X. .%%%%%%%.V.%V%%%%Y.%%%%%%%%%% V.%%% V.V%%%%%%%%%%%%%%%%%% V

This routine will filter the data in vector 'x' with the filter
described by vectors 'a' and 'b' to produce the filtered data 'y'
In this case, 'y' is the filter's infinite impulse response.

y=filter(b,a,x);

z=y; V. Arbitrary label used to define the
% vector input for the CPARCOR algorithm

Following are the actual parameters applied to the CPARCOR algorithm
for generation of the complex coefficients. Note that only the

results of the CPARCOR algorithm are included here, not the code.

k = 0; V. Must be initialized to zero for proper indexing
sum = 0; % Must be initialized to zero for proper indexing

N = 10000; % Defined based on the number of sample points
order = 6; % User specified model order, from 1 to N

% Application of the CPARCOR algorithm results in the following coefficients:

% coeff = [-0.1845+0.0017i -0.0993-0.0007i -1.2522+0.0048i 0.0231-0.0018i

0.0922-0.0025i 0.7138+0.0006i)

This routine will generate a pole-zero plot of the data defined by
the coefficients shown above. The resulting plot was included in
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Chapter III.

thO~poly2thC El coetfjlEi);
Ezepo~k) th2zp(thO);
zpplot (zepo)

This routine will transform the pole-zero plot back into a vector form.
A comparison of the original, CPARCOR algorithm, and pole-zero plot
coefficients can then be made.

th = ar(z,6,'llu,'ppw');
ppoly = th2poly(th);

%. The result is the following vector:

%. ppoly = [1.0000 -0.1844-0.0016i -0.0993+0.0008i -1.2623-0.0048i
0.0230+0 .0017i 0.0922+0.0023i O.7139-0.0006i)
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Appendix C. CPARCOR Algorithm Source Code

C. 1 Introduction

This appendix contains a listing of the CPARCOR algorithm as written in the MATLAB

programming language. The following preliminary subroutines were required to generate software

compatible test images:

1. Load and Enhance Subroutine: Creates a smooth, unbroken image boundary.

2. Trace Subroutine: Traces the image's boundary and calculates its centroid.

3. Sampling Subroutine: Provides a sampled version of the image's traced boundary.

C.2 CPARCOR Algorithm

CPARCOR ALGORITHM: Using a series of subroutines, the CPARCOR
coefficients of a 2-D image are calculated for a model of order 'im

written by: David E. Chelen
date: JULY 93

Load and Enhance Subroutine: This subroutine will first read a file
into MATLAB and then run an edge detecting mask over the
surface to enhance the image' s boundary.

*IOIIOIOIS%*/./hI./**/i@/`YiY.iSIUý/*Ii0iIeIVOII*IOI%%%V%.%.%V%V%y%V%%Y%Y1%%V%%%%V.%%%%%%%%y%%.%v

load FILENAME.ext 7' Load in image file
function coeff = code(flip) %, Declare the algorithm a function

%. that will return the variable 'view'

x = view(1:128,1:128); %. Assign image to 128x128 array

a = [30 50 30; 0 0 0; -30 -50 -30J; %. Edge enhancing mask
exh = conv2(x,a); % Enhance horizontal edges
exv = conv2(x,a'); %. Enhance vertical edges

C-1



ox = sqrt(exh.-2 + exv.-2); % Combine the two enhanced edge&

x=(ex>O); % Threshold for image=l, background=O

Y.Y. %.%% Y.Y.M.70 % %.%. %7%%7.Y.% . %%%U %. %%%%%7.Y777•% .% %%%%% %Y%%%%%%%%% •XX•X% U %%

Trace Subroutine: This subroutine is used to trace the image's
boundary. Based on the boundary points returned, the image's
centroid is also determined.

Y.Y.%%%Y.Y.%%,.%%.707.7070.X7.%Y.X7..%Y.Y.Y.%`"`**.Y.%Y%%%%%%•%•%XX.%%.%/Y.%%%%%%•%%%•%%%•%X%%

m = 1; % Index variable assignment
foundit = 0; %, FLAG to indicate start of image pixels
maxm = 128; % Maximum 'm' for the mxn matrix
maxn = 128; % Maximum 'n' for the mxn matrix
while a -= foundit % Scan matrix until an image pixel is found

m = 1+m; V. Increment matrix row (m)
for n = i:maxn %. Continue until last column (n) is reached

if x(m,n) == 0
olds = m;
sm = m;

oldn = n;

sn = n;
else foundit = m; %. Set FLLG 'hi' when

image pixel found
start = [sm sn];

lastzero = Eam sn]; %. Keep location of last

background pixel
stop = Em n1;

firstone = [m n1; %. Keep location of first
image pixel

break
end

end
end

t=1; %. Index variable assignment
flag = 1; %. FLAG set for WHILE loop
while flag

if stop == start %. Keep going until return to start point
break
flag = 0
else if oldn < n % Decide which way to turn based on

% the current pixel value
oldn = n;

if x(m.n) 1
tmpCt) = Em+(n*i)];

t=t+1;
m = m-l;

G2



else a = m+1;
end

elseif oldn > n
oldn = n;

if x(mun) == 1
tap(t) = En+(n*i)];
t=t+i;
a = =+I;

else M = w-i;
end

elseif oldn < m
oldm = a;

if x(m,n) == 1
tup(t) =C+Cn*i)];

t=t+1;
n = n+1;

else n = n-i;
end

elseif oldm > m
oldm = m;

if x(C,n) == 1
tup(t) =c+(n*i)];
t=t+l;

n = n-i;
else n = n+1;
end

end
stop = [a Un;

end
end

tmpsize = length(tmp); % Find the length of the traced boundary
ztmp(1) = tmp(1); %, Store first point as reference

b=1; % Index variable assignment

for old=l:(tmpsize-1) % If previous and current pixel

if ztmp(b)-=tmp(old+l); % locations are the same, get
ztmp(b+l) = tmp(old+l); % rid of the repeated point
b=b+l;

else
b=b;

end
end

clear total %, Re-initialize variables
clear sum
total = sum(ztmp); % Calculate the CEITROID based on the

size = length(ztttp); % boundary points returned by the trace
center = total/size;

tmp 0; % Re-initialize variables
ztep = 0;
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Sampling Subroutine: This subroutine uses a modified version of the
original Trace Subroutine to return boundary points that are now
complex numbers referenced from the centroid. The final sampling rate
and model order are user specified.

start = lastzero; % Assign the starting point to the same relative
stop firstone; % point on the object as was originally used
mref real(center); % Create the modified x+iy axis
nref imag(center);
t=1;
flag = 1; % Set FLAG for while loop
while flag

if stop == start
break
flag = 0;
else if oldn < n % Decide which way to turn based on

oldn = n; % current pixel type
if x(m,n) 1

tmp(t) = E(m-mref)+(n-nref)*i];
t=t+l;
m = M-1;

else m = m+i;
end

elseif oldn > n
oldn= n;

if x(m,n) == I
tmp(t) = E(m-mref)+Cn-nref)*i];
t=t+l;
m = m+i;

else m = m-i;

end
elseif oldm < m

oldm= m;
if x(m,n) == I

tmp(t) = E(m-mref)+(n-nref)*i];
t~t+l;

n = n+1;
else n = n-1;
end

elseif oldm > m
oldm= m;

if x(m,n) =I 1
tmp(t) = [(m-mref)+(n-nref)*i];
t~t+l;

n = n-1;
else n = n+i;
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end
end

stop [ma ;
end
end

tapsize = length(tmp); % Go through and eliminate repeated points
ztnp(1) = tmp(l);
b=1;
for old=l: (tmpsize-1)

if ztmp(b)'=tmp(old+1);
ztmp(b+1) = tmp(old+1);
b=b+ 1;

else
b=b;

end
end

I = 160; % Define the desired number of samples
order=50; % Set the order of model to be generated
num = length(ztmp); % Size of temp z vector
interval = (nun/I); % Set sample interval

if interval == 0
interval = 1;

end
z = Eztmp(l: interval:nun)]; % Put sampled values into test -ector

if length(z)C<
I=length(z);

end

XX XXXXXXX%%XXXXXXXXXXXX%%%XXXXXXXXXX

CPARCOR Routine: This routine creates the CPARCOR coefficients, for the
user specified model order, based on the sampled image vector, Z.
Although only three lines long in original form, the NATLAB version of
this algorithm is significantly longer.

k = 0; % Initialize to zero for proper indexing
sun = 0; % Initialize to zero for proper indexing

%*****e**ee**This will find Ro***eeee*eee***e

for j=O:(I-1)
L = z(j+l)*conj(z((j+1)-k));
sum = sum + L;

end
Ro = (1/1)esum;
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%***e*********Tis gets all the other f'******

R = 0;
for k = :order

sun 0;
for j0O:(I-1)

it ((j+i)-k) <=0
L =z(j+l)*coaj(z(N+((j+1)-k)));

else
L = z(j+l)*conj~z((j+l)-k));

end
sun sum + L;

end
R~k) =(1/I)*sum;

end

%*****This gets the CAR and CPARCOR Coefficients*****e*e***

a = 0;
a(1) = R /o
Cpar(1)=a(1); % First Pa is a(l)

for m = 2:order
Rflp =fliplrl(Ri:a-1));
Atr lm-.;
Pm =(R(ui) - (Rflp*Atr))/(Ro-(R(1:a-i)*conj(Atr))); XCPIRCOR coeff
Cpar(m) =Pm;
a(1:m) = (a(1:m-1) - conj((tliplr(a(1:.-l))))*Pa) Pal; %CAR coeff
car(i:m)=a(1:m);

end

coe~fl=Cpar; %. CPARCOR coefficients returned by the function call
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Appendix D. Template Matching Algorithm

D.1 Introduction

This appendix contains a listing of the Template Matching algorithm as written in the MAT-

LAB programming language. Classification is based on a Euclidean distance metric defined as

follows:

D(z) = min 1n x - , zi (D.1)

where j[ • defines the Euclidean norm for the expression, and D(z) is the smallest of all distances

between the unknown input-view (x) and the ith stored template-view (zi)[18]. In other words,

classification is based upon the minimum Euclidean distance between a known template-view and

the unknown input-view. Templates were based on m x n matrices that contained unnormalized

CPARCOR coefficient vectors representing the characteristic views for various allowable object

orientations. Individual views are labeled with the following format:

class(azimuth).(elevation)(1 :model.order)

where individual classes are assigned to class designators a thru e. For example, the M60

Tank was assigned to the designator a, while the BTR APC was labeled c. A brief description of

each template follows:

* 3600 View Template (3 x 3 Matrix): Contains the minimum number of characteristic
views (CPARCOR coefficients) required for total-range 3600 azimuth and 900 elevation image
recognition.

* 1800 View Template (2 x 3,5 x 9,10 x 19 Matrix): Representing the same 1800 view,
the three matrices contain different numbers of characteristic views. For example, the 2 x 3
matrix contains six characteristic views, while the 10 x 19 contains 190.

* 900 View Template (2 x 2,5 x 5,10 x 10,19 x 19 Matrix): Although representative of
the same 900 view, the 2 x 2 matrix does it with only four characteristic views, while the
19 x 19 uses 361. Note that the 19 x 19 contains the maximum number of characteristic
views possible for the given range. Thus, the 19 x 19 matrix was not used for unstored view
recognition tests.
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D. I Matrix Source Code

The following source code creates the template for application to the Template Matching

algorithm. Examples of the actual test matricies (described above) are also included.

%%%%XX%X%%%% %XXX%%XXXXXXXXX%%%% %X%XX%%%%

MATRIX GENERATION: Different hatricies for Different Templates
written by: David E. Chelen
date: AUG 93

XXX%%X%%%%%%%%%%%%%%%%%%%X%%%%%XXXXXXX%%%%%%XXXX%%%%XXX%XXXXX%%X%%

% Enter all initial test parameters in this section

order = IX % ENTER order of test CPARCOR model
usize = XX; % ENTER 'n' of the mum matrix
msize = 11; % ENTER the 'in' of the mum matrix
nuinclasses = XX; % ENTER the number of classes bein~g tested

frac = order % Variables assigned to represent model order
f~frac

matop = (as ize*numclas see) +1; % Identify the final matrix row
elements=order*nsize; % Size of matrix rows
fl=(-9)*ones(1,order); % Set matrix boarder elements to a known value
botb=[(-9)*ones(1,elements)); % Boarder to 'Pad' end of matrix

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

EXAMPLE of 360 degree template, 3x3 matrix per class (5 classes)

ri = [a3lS-.O(1:f) aO-0.(1:f) a46-.O(1:f)J; % M60 views
r2 = [a27O...(1:f) a0-90(1:f) a90...(1:f)J;
r3 = [a226_.0(1:f) &180-.0(1:t) a135...(1:f)J;

r4 = [b3l5-.O(l:f) bO..O(1:f) b45..O(1:f)J; %X f35 views
r5 = [b270-.0(1:f) bO..90(1:f) b90..O(i:f)J;
r6 = Eb226-O(1:f) b180..0(1:1) b136-.,(1:f)J;

r7 = [c316-..(i:f) cO-0.(1:f) c45...(1:f)J; % BTR views
r8 = [c270_0.(1:f) cO_.90(1:f) c90.Oo(1:f)J;
r9 = Ec226-0.(1:f) c180..O(1:f) c135..O(l:f)J;

r1O = [d315..0(l:f) dO-..(1:f) d4S-.O(1:f)J; % T62 views
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ril a Wtd20.0(:f) do-.90(1:t) d90...(l:t)J;
r12 = Ed226-.0(1:t) dl80..0(1:f) dl35-..(l:f)J;

r13 = (e315..0(1:t) *0-.0(1:f) e45,.0(1:f)J; % ff2 views
r14 = [e270...(1:f) *0-.90(1:f) e90..0(1:t)J;
r15 = E.225-.0(1:f) .180..0(1:f) e13s-o.(1:f)J;

template = (rl;r2;r3;r4;rS;rO;r7;r8;r9;rlO;rll;r12;rl3;rl4;r15;botbJ;

EXAMPLE of 180 degree template, 2x3 matrix per class (3 classes)

ri = aO-.0(1:f) a45...(1:f)J;
r2 = [aO-.90(1:1) a90...(1:f)J;
r3 = a180..0(1:1) a13S-O.(I:t)3;

r4= bO-.0(1:1) b46-..(l:f)J;
rS= bO-.90(1:f) b90-O.(l:f)3;

r6 = tb180..0(1:f) b135...(l:f));

r7 = cO-.0(1:1) c46-..(1:f)J;
r8 = [cO-.90(1:f) c90-.0(l:f)];
rg = Ec180..0(1:f) c136-O.(1:t)3;

template = [rl;r2;r3;r4;rS;rO;r7;r8;r9;botb);

EXAMPLE of 90 degree template, 5x5 matrix per class (3 classes)

X%%%%%%%%%%%%%%%%%%%%%%%XX%%%%XXXZXX%%%XXX)XX% %%%X%%%X X%%%%%%X%

ri = aO-.0(1:f) alS-.0(1:f) a25-..(l:f) a35-..(1:f) a46-.0(1:f)J;
r2 = [aO-.26(1:1) a15...25(1:f) a30..26(1:t) a46-26(1:f) aSS_.0(1:1)J;
r3 = [aO-6.0(1:f) a25..50(1:f) a45...5(1:t) a60..26(1:f) &66_.0(1:f)];

r4= [aO-76(1:f) a4S-70(l:f) a65...5(I:f) a76-.26(l:f) a75...(l:f)J;
rS = [aO-.90(1:f) a90..75(l:f) ag0.50(1:f) a9O..26(i:f) a90..0(1:f)J;

rG = [bO-.0(1:f) b15..0(1:f) b25...(1:f) b36-..(1:f) b46-..(1:f)J;
r7 a [bO-.26(1:t) b16..25(1:f) b30-2S(l:t) b45..26(1:f) bS5..0(1:f)J;
r8 = bO-60(1:f) b26-.60(1:f) b45...5(1:f) bOO..26(1:t) b65..0(1:f)J;
r9 = [bO-.76(1:t) b45-.70(1:t) bes-50(1:f) b75..25(1:f) b76-..(l:f)J;
rIO = (bO-.90(1:f) b90..75(1:f) b90-6O5(l:f) b90..25(1:f) b90...(1:f)J;

nil a [cO..O(1:t) cli...(1:f) c25...(1:f) c36..0(1:f) c46-..(1:f)J;
r12 a [cO-.25(1:t) c15..26(1:f) c30-.26(1:f) c45..25(l:f) cSS-..(1:f)J;
r13 a [cO-6.0(1:f) c26-..5(1:t) c45...0(1:f) c60..26(l:f) c65...(1:f)J;
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r14 = [cO-75C1:f) c46-j0(l:f) cS5..50(1:f) c75..26(1:f) c7&0O(1:t)J;
r16 = [c0.90(1:f) c90-.75(i:f) c90-6O5(l:f) c90-.26(l:f) c90.O(l:f));

template = (rl;r2;r3;r4;rS;rS;r7;r8;rg;rlO;rll;rl2;rl3;rl4;rlS;botbJ;

EXAMPLE of 90 degree template, lOxlO matrix per class (I class)

ri = [aO..O(i:f) aS-0.(1:f) aiO-..O1:f) a15-0(1:f) a20...(1:f)
a25-.O~l:f) a30-O.(l:f) a3S-.O(1:f) a40...(l:f) a45...0(1:f)];

r2 = [aO-1O(i:f) aS-1O(1:f) aiO-1.0(1:f) alS....i(1:f) a20-l.O(l:f)
a30-liO(l:f) a35...IO(I:f) a40-lOi(l:f) a45-l.i(1:t) aSO..O(1:f)J;

r3 = EaO-.20C1:f) a5..20(1:f) aiO-.20(1:f) a20..20(l:t) a30..20(l:f)
a35...20(i:f) a40..20C1:t) a46-..20(l:f) aSO-.10(1:f) aSS-.0(1:f)J;

r4 = CaO-.30(i:1) al0..30(1:f) a20..30(i:f) a30..30(i:f) s.36-.300i:1)

rS = (aO-.40C1:f) alO-.40(i:f) a20-.4O(l:f) a3O-4O~i:f) a40..40(l:f)
a4S-.40(l:f) aSO-.30(1:f) a66-20(l:f) a60....i(i:f) aS5..0(i:f)J;

r6 = [aO-6.0(1:f) a15...0(i:f) a26-S.5(l:f) a3S-6.5(l:f) a46-6,5(1:f)
aSO-4O(1:f) aS5..30(i:f) a60..20(1:f) a70-lO1(l:f) a70..0(1:f));

r7 = [aO-.60(1:f) a15..60C1:f) a30-.60(l:f) a46-6O~l:f) a55.5-0(1:f)

r8 = EaO-.70C1:f) a25..70(1:f) a45-.70(l:f) a60..60(i:f) a65..S06(i:f)
a70_.40(1:f) a70..30(1:f) aS0..20(1:f) a80.AOC1:f) a80..0(1:IXJ;

r9 = [aO-80(1:f) a45..80(i:f) a65-.70(l:f) a75A60(1:f) a75..50(1:i)
a80...40(i:f) a80..30(i:f) a85..20(1:f) a85...oC1:f) a85..O(1:f)J;

rIO = aO-.90(1:f) a90...80(i:f) a9030O(l:f) a90..6o(i:f) a90...5(l:f)
a90..40(i:f) a90-.30C1:i) a90..20(l:f) a90...1(1:i) a90...(l:f)J;

template = rl;r2;r3;r4;r5;r6;r7;r8;r9;riO;botbJ;

EXAMPLE of 90 degree template, 19x19 matrix per class (I class)

al = [aO..0(1:f) a&O0(1:f) alO-.0(1:f) a15..0(1:f) a20....(l:f) a2S-..(l:f)
a30-..O(i:f) a35-.O~l:f) a40..O(i:f) a45..O(l:f) a5O0O(i:f) ass..O(1:f)
a60....(i:f) a65...(l:f) a70...(l:f) a75-..(1:f) aS0..0(1:f) a85..0(1:f)
a90..0(1:f)J;

a2 = [aO-6.51:f) aS-5(i:t) alO-6.(i:t) aIS-6(i:f) a20...(i:t) &26-6.(1:f)
a3OSO.(i:f) a35...5(i:t) a40..6(1:f) a45..5(l:f) aS0...(i:f) aS5.S-(i:f)
a6OO-6(i:f) a66-.6(1:f) a70...(1:f) a75..5(1:f) a80...(1:f) a85...(1:f)
a90...5C:f)J;

a3 a [aO-0...1O:f) aS-.1O(1:f) alO-1.0(1:f) a15..10(1:f) s.20-1.0(1:1) a.25-.AO(:f)
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a30..lO(l:f) a35..lO(l:t) a70..lO(l:f) aIS..lO(l:f) aSO-1O(l:t) aSS-lO(l:f)

a90.jO(l:f)J;
a4 = [aO-.15Cl:f) aS-16l(l:i) alO-..S(l:i) alS..A5C1:i) a20-lS1(l:f) ..25_.16(1:f)

a30.j5(1:1) a35..15(l:i) a40j56(l:i) a45...15(l:i) aS0..16(l:i) a~Sl1

a90..15(l:i)J;
aS = aO..20(l:i) a5..20C1:i) alO-.20(l:f) alS-20(l:i) a20..20(l:t) a2S-.20(l:f)

a30..20(l:f) a3S-.20(l:i) a'O.-20(l:i) a45...20(l:t) a50..20(l:t) aSS-.20(l:i)
a60..20(l:f) a65_.20C1:i) a70_..20(1:f) a75..20(l:i) a80-.20(l:f) a85..20(l.f)
a90..20(l:t)J;

a6 = (aO-.25(l:t) aS-.25(l:i) alO-.25(1:f) a15..25(1:i) a20-.25(l:f) a26-.25(l:i)
a30-.2S(l:f) a35..26(l:i) a40..26(l:f) a46-26(1:i) aS5026(l:i) aSS-26(l:f)
aO-.26(1:f) a6S-.25Cl:i) a70-.2S(l:f) a75-.2S(l:f) aB0..25(l:f) a85...26C1:f)
a9O.-25Cl :f)J;

V7 = [aO..3O(l:t) aS..30(l:f) alO_.30(l:i) al&.-3O(1:t) a2O.-3O(l:f) a25..30(l:i)

a60..30(l:i) a6S_.30(l:f) a70..30(l:f) a76-30(l:f) a80..30(l:i) a8S-.30(1:f)
a90..30(l:f)J;

aS = [aO-.35(l:i) aS-36C1:t) alO-.36(l:f) alS..36(l:f) a20-.36(l:f) &26-.36(l:f)
a30-.3S(l:f) a35-.35(l:i) a40..35(l:i) a4S-.36(l:t) a50..35(l:i) a55..36(l:i)
a60..35(l:i) a65..3S(l:f) a70-.3S(l:f) a75..36(l:f) a8O-.35(1:i) a85...35(l:f)
a90..36(1:f)J;

a9 = [aO-AO(1:f) &6-.40(1:f) alO-.40(l:f) al5..40(1:f) a2O-4O(l:f) a25-4O(l:f)
a3O_40(1:f) a36_4O(l:f) a40..40(l:f) a9O-4O(l:i) a4S_4O(l:f) a5O_.4O(l:1f)
aSSAO0(l:f) a.60A0(l:f) &66.AO(itf) &70-40(1:1) 075-400:1) a8O-4O(l:f)
a8S-.40(l:f)];

alO =[aO..46(l:i) aS-.46(l:i) alO-.46(l:1) a15..46(l:i) a20-.4S(l:f) a2S-.46(l:f)
a3O-4SCl:f) a35-.4S(l:i) a40..4S(l:f) a46-45(l:i) aSO-.45(1:f) aSS-.45(l:i)
a60..45(l:f) a665A5(l:f) a7O-4S(l:f) a76_.45(l:f) a80..45(l:f) a85..46(l:f)
a9O-45Cl:f)J;

all =[aO-.5O(1:f) aS-605(l:f) alO_.50(l:t) a15....0(l:f) a20...O(l:f) a2S-6.5(l:f)
a30-SO50l:f) a3S-..5(l:f) a40..50(l:f) a45..5O(l:f) aSO_6.0(l:i) aSS-605(l:f)
a60..50(l:f) a66&SO(l:f) a70..50(l:f) a75....0(l:f) a80..50C1:1) a8S-..O(l:t)
a90...50(l:i)J;

a12 =[aO-SS5(i:t) aS-56(l:f) a10556(l:f) a15.S-6(l:i) a20-6S5(l:f) a25-..6(l~i)
a30...5(l:f) a35-S.5(l:f) a40...5(l:i) a46-6S5(l:f) aS0...5(l:i) aS5...5(l:f)
a60...5(l:f) a65-.55(l:f) a70-.55(l:f) a75...5(l:f) aS0...5(l:t) a86-..5(l:i)
a90...5(l:i)J;

a13 = [aO-.60(l:f) aS-.60(l:i) alO-.60(l:f) alS-.60C1:f) a20..60(l:f) a25..60(l:i)
a30...8(l:f) a35...60(l:f) a40...60(l:f) a45...60(l:f) aSO-.60(l:f) a55..60(l:i)
a60..60(l:i) a6S-60(l:f) a70-.6O(l:f) a75,.60(l:f) a80..60(l:f) a85..AO(i:i)
a90.60(l:f)J;

a14 = [aO-.66(l:f) a5...65(l:1) alO....8(l:f) a15..65(l:f) a20-.66(l:f) a26-666(l:i)
a30...65(l:i) a3S-.6S(l:i) a40..65(l:i) a45...65(l:f) aS0..65(l:f) a55..6S(l:i)
a60.65(l:i) a65...5(l:t) a70..6S(l:i) a7S-65(l:t) a80..65(l:f) a85..65(l:i)
a90..6S(l:i)J;

a15 = aO-7O(l:f) aS-.70(l:1) alO-7O(l:1) alS-.70(l:i) a20-.70(l:f) a2S-.70(l:f)
&30-.70(1:f) a35-70(l:i) a40..70(l:f) a45-.70(l:f) aSO-7O(l:1) &66-.70(1:f)
a6O-7O(l:i) a66-7O(l:f) a70-.70(l:f) a7S-.70C1:i) a80..70(l:1) a85jO0(l:f)
a90..70(l:t)J;

D-5



a16 = EaO-75(1:f) aS-TS(I:f) alO-76(1:i) a15.j5C1:f) a20356(1:f) a26-.76(l:f)
a30..75(l:f) a36-75(l:f) a40..75(l:i) a46-5j5C:f) a50..75(1:f) aS5.j5(1:f)
a6035S(l:f) a65..75(l:f) aTO-.76(1:f) a775-T(1:f) aSO-.75C1:f) a85.j5S(1:f)
a90..75(1:f)J;

a17 = [aO..80(1:f) aS-.80C1:f) a1l-8OC1:f) al5..80(1:f) a20..80C1:f) a25..80(l:f)
a30-.80(l:f) a36-.80(1:f) a40..80(1:f) a45..80(l:f) aSO..80C1:f) aSS-80(1:f)
a6O-O.8(1:f) a66&80C1:t) a70...80(l:f) a75...80(1:f) aS0..80(1:f) a8S-.80(1:f)
a90.80(1:fXI;

a18 = [a0-86(1:f) a5.85(1:f) alO-.85(1:f) a15..85(i:f) a20-.86(l:f) a26_.86(1:f)
a30-85(l:f) a35..85C1:f) a40..86C1:f) a4fi86(1:f) a50...85C1:f) aS5..85(1:f)
a60-.8S(l:f) a65...85C1:f) a70-.8S(l:f) a75...85(1:f) aSO8..8(1:f) a85..8S(1:f)
a90..85(i:f)J;

a19 = [aO...90(1:f) aS-9OC1:f) alO-.90(1:f) alS-90(1:f) a20-..90(l:f) a2s_90(1:f)
a30-.90C1:f) a3S-90(1:f) a40..90(1:t) a45..90(1:f) a50...90(1:f) aSS&90(i:f)
a60...9(1:f) a6S-.90(l:f) a70..90C1:i) a76-.90(l:f) a80..90(1:f) a8s_90C1:f)
a90..90(1:f)J;

plateA= Eal; a2; a3; a4; a5;a6; a7;a8; ag;alO; all; a12; a13; a14; al5;a16; a17; a18; a9;botb];
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D.3 Template Matching Algorithm Souce Code

The Template Matching algorithm returns the matrix location and corresponding class label

of the best match for a given unknown input view. The source code for this algorithm follows:

TEMPLATE MATCHING ALGORITHM: Clasification based on Euclidean distance
written by: David E. Chelen
date: AUG 93

i=O; % Initialize index
f=O; % Initialize index
store=O; . Initialize variable
temp=O;
count=O;
flag=O; % FLAGs for event indication
firstflag=O;

perfect='I found a perfect match!!' % Message for perfect match

knownvec = inputview(l:frac); % This is where the unknown input view
% is brought in (CPARCOR vector) and set
% to the desired model order

% Extract stored CPARCOR vectors from template for comparison to input view

for mstart=i:mstop % Index for matrix rows
if flag==l % FLAG to indicate a 'prefect' match was found

mstartmstart-1; % Matrix 'm' address of matching view
break

else
nstart=1; % Matrix 'n' address
nstop=order; % Stop based on vector length

for ngo=l:nsize % Repeat based on matrix size
if flag==l

break
else

tempvec = 0;
w=1;

for n = nstart:nstop
tempvec(w) = template(mstart,n); % Read in template vectors to compare
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X with known input view
w-w+l;

end

if firstflag==0 % If a 'perfect match was not found

store-tempvec; % set up an initial distance reference
oldgap=sun(abs(knownvec-tempvec(l:frac))); % Euclidean distance is

% defined here as the sun of the magnitude of
% the difference between the input view and
% the stored view

firstflag=1;
end

testvec=tempvec(l:frac); % Assign variable name to stored template view
% for comparison with input view

if knownvec==testvec % If 'perfect' match is found, BREAK out of routine

flag=i;
store=testvec;
count=O;
mold=mstart;
perfect
break

else % If views do not match, find the next best thing

newgap=sum(abs(knownvec-testvec)); % Euclidean distance between input

V and stored template views

if newgap < oldgap % Initial tollerance comparrison of views

oldgap = newgap; % Establish new Euclidean distance reference
store = 0; % Reset variables to zero for next run

i=O;
f=O;
count=O;
addm=O;
addn=O;

end

end

if newgap <= oldgap %. STORE the best matched view

f=f+l; % Increment index

addm(f)--mstart; % Matrix 'i', 'n' address markers

addn(f)--nstart;

D-8



for m=1:order

i=i+l ;

storeCi)=tempvec ());

end

count=count+1; %lumber of stored matches that were within tollerance
end

nstart = nstop+1; % Adjust starting point for next run
nstop = nstop+order; % Adjust stopping point for next run

end
end
temp=store; % Assign STOREd match(es) to a TEMP vector
end
end
end

%After this routine, astart and nstart values are in adda(f)
% and addn(f). Here, 'f' should equal 'count'

% CLASS Assignments, based on matrix location, are made here.
% 'XX' is the first row of the next class (or the last row of each
%. class plus one. Think about it-- you'll get it. I'm outta here.

if addm< XX
class=l;

elseif addm< XX
class=2;

elseif addm< XX
class=3;

elseif addm< XX
class=4;

elseif addm< XX
class=5;

end
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