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PREWHITENING OF COLORED NOISE FIELDS FOR

DETECTION OF THRESHOLD SOURCES

INTRODUCTION

High resolution direction finding methods such as Multiple Signal Classification

(MUSIC),l Enhanced Minimum Variance Distortionless Response (EMVDR),2 and
Minimum Norm (Min-Norm) 3 compute angular response as a function of cosine of bearing

angle. These methods associate peaks in the response function with source locations,

providing direction of arrival estimates. A response peak that does not correspond to an

existing source indicates a false alarm. Rooting techniques for direction finding such as

ROOT-MUSIC, 4 Estimation of Signal Parameters Via Rotational Invariance Techniques

(ESPRIT),5 and the Pisarenko Harmonic Decomposition (PHD)6 provide source locations

directly, without computation of a response function, by constructing a polynomial whose

roots correspond to arrival angles. Any angle that does not correspond to an existing source

indicates a false alarm. Typically, these algorithms provide a large set of candidate arrival

angles that includes true source locations and spurious ones. Although methods exist for

determining the true source locations from the candidate set,7 they require an accurate set of
candidate angles with as few false alarms as possible.

Both types of direction finders exhibit high false alarm rates in the presence of spatially

colored ambient noise. In their traditional model formulation, direction finders assume that

only spatially white noise exists. When an extended or continuous colored noise is present

in the acoustic field, low SNR or threshold sources may be obscured from detection. Also,

the estimate of a source location for a source that exists within the spatial bandwidth of the

colored noise may be biased. Thus, in the presence of known nonwhite noise, high false
alarm performance necessitates the use of prewhitening algorithms. 8 Direction finders also

require a reliable estimate of the number of sources present in the observed noise field.8

Because nonwhite noise skews or inflates this estimate, prewhitening is required.
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MOTIVATION FOR PREWHITENING

Define x as the N-dimensional sensor output data vector from an N-element uniform line

array. Denote the covariance matrix of x by

R = Efxx , (1)

where

X = [x X2... xN], (2)

E[] represents the expectation operator, and H denotes complex conjugate transpose. Model R
with the following structure9

R U=o'2.p + 6Q +2 ,(3)

where P corresponds to the discrete source (DS) component, Q to the extended source (ES)
component (in this case colored noise), and IN (an N by N identity matrix) to the component due

to uncorrelated noise. Normalize P and Q so that each trace equals N. The three variances,
a2m, a•, and a2., represent the power at a single sensor due to discrete sources, extended

sources, and uncorrelated noise, respectively.

Define the discrete source component P corresponding to q < N discrete angular sources

at Oi, i = 1, 2, ..., q, as9

P = DCDH, (4)

where the N by q steering matrix D = [d1 d2 ... dq] contains the i-th column

d = [I e"-cd e"'( 2d) ... e'1(N")d] (5)

and the wavenumber of the i-th source at 0i is

= LCos(Oj. (6)
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The factor d is the nominal spacing between sensors, given as a fraction of the wavelength X.

Write the above expression as a function of angular frequency equal to the cosine of the bearing

angle of interest 0, with 0 < 0 < 7t. Assume a diagonal source coherence matrix C so that no

correlation exists between sources. A thin spike or delta function illustrates the spatial density of a

discrete source at bearing angle 0.

EXAMPLE 1: EXTENDED SOURCE ENERGY SPECTRUM

The angular energy spectrum of an extended source at bearing angle 0 affects a spatial

bandwidth around the angle 0.

Compute the spatial density of an arbitrary extended source modeled as a first order
autoregressive (AR) process with coefficient a, -0 ).7 steered to 45 degrees. Figure 1 depicts the

spatial density.

0

'- -5 .......................: .................................................

-I0
-10 ............................................... .......................

-1 -0.5 0 0.5 1

Cos (Bearing)

Figure 1. Extended Source Spectrum

Model the P extended sources in component Q as the sum of L-th order AR spatial
processes Qj utilizing the Gohberg Formula 10 with complex coefficients aj.j, scaled by a factor

ap, i = 1, 2, ..., P, as follows:
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Q = "aiQi, (7)
I,,I

=-1 (A,. A"' -A AH (8)
Q i 2 i., i. 3 ,.3

UES

a, =I, (9)
i,-I

with Ai. , and Ai. 3, which are the N by N lower triangular Toeplitz matrices

1

ai., 0 0

a0, 2a 1" ""

AiI ' A 3 = ai.L a(10)
aj. L ..

• • . 2

L 0 ai. L .. ai, 2 ai, L ai, I ai. 2 "" ai, L

A useful description of a complex AR parameter is the polar form, consisting of magnitude
and steering angle. Given the magnitude of an AR coefficient, a,, and a steering angle, 0,

compute the equivalent complex coefficient ii as

= aej2 ko . (11)

Later in this report when the standardized test case (STC)9 is used to test the prewhitening

algorithm, the expression in equation (11) will be useful.

EXAMPLE 2: COMPLEX AR COEFFICIENT

For an array with quarter-wavelength sensor spacing (d = 0.25), model the extended

source from example I by computing the equivalent complex AR coefficient as follows:

a, = -0.7, (12)
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0 =45 degrees, (13)

and

"i - (14)

= - 0.3108-0.6272i.

While figure I has illustrated the spatial energy density for this process, figure 2 shows a pole plot
of the coefficient 1,.

0.5 -

S0

"0 .... .. . . . . .. " . ....' .... ... ... .. .. .

-0.5-

-1 -0.5 0 0.5 1

Real

Figure 2. Pole Plot 'or Example 2

EXAMPLE 3: MUSIC IN A COLORED BACKGROUND NOISE

Now, consider an example that illustrates the degradation in performance when the MUSIC

direction finder is used in a nonwhite background spectrum environment

Given an eight sensor array with quarter-wavelength sensor spacing and a 0-dB extended

source from example 2, inject two discrete sources into the observed noise field:

6



Discrete source 1: 30 degrees, SNR = -3 dB

Discrete source 2: 70 degrees, SNR = -19 dB.

Compare the MUSIC spectra for the prewhitened and non-prewhitened cases. For the MUSIC
computation, assume the presence of q = 3 sources.

In figure 3, the dotted vertical lines represent the true direction of arrival (DOA) angles.
The dashed line corresponds to the prewhitened MUSIC spectra. The non-prewhitened case
exhibits a strong bias due to the extended source at 45 degrees. The stronger extended source

obscures the low SNR source at 70 degrees.

0

101

I
S-105,

S-20, /

-25 .. .. . .. .. .- - - --- -

-1 -0.5 0 0.5 1

Cos (Bearing)

Figure 3. MUSIC Spectra for Example 3
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METHOD OF PREWHITENING

Define i as an N-dimensional vector whose covariance matrix is given by

it = E[iiH]

=R -ON (15)

2OosP + Y2Q

where i = [i, i 2 ... 1N Note that R is the covariance matrix in the absence of

uncorrelated noise and can be estimated by using the smallest eigenvalue of R as an estimate of a0.

If LIES is the lower triangular matrix Cholesky factor given by

LsVES = a2Q, (16)

define a prewhitened snapshot vector as

x = LE' i (17)

The covariance matrix RW of the prewhitened vector then contains a purely white spatial noise

density,

= EL•sxJx

HH
2 I -H1l;l + 2 -;ISQ-;

oCslsPLy + ES SQI (18)
2 I -;.1 . +,C2 l--! L•L TH
DS ES 2 -'ES

OES
(2 -I -l;H

DSIaEsPL; + IN,

where

LES= (Es) (19)

9



The algorithm for prewhitening the measured matrix R minimizes a likelihood functional I I to
obtain an estimate of Q.

THE LIKELIHOOD FUNCTIONAL

Following the development in reference (11), assume we are given K array data snapshots
in a sequence,

{XI, X2, ..... XK 1 (20)

with covariance R. Form the estimate 12 of R as

K-1
R - XkX". (21)

The likelihood functional relates the estimate R to an assumed covariance structure R. To aid in

the derivation, first assume that the true covariance

R = P + XN (22)

corresponds to the white noise case, and omit the scale factors for brevity. The factor X equals a

positive scalar parameter. The matrix P equals an unknown covariance matrix of rank q.

Although methods 13-15 exist for the computation of q, the number of sources present assume that
q represents a known quantity. The function

1.... rac e. P))
f({x1 i X21 ... I X P) I e (23)

represents the conditional density for the complex Gaussian sequence xi, i = 1, 2, ... , K, with
covariance R conditioned on (ý, P) and I I being the determinant operator. The function trace (A)

sums the diagonal elements of matrix A. The problem now involves seeking the values for (X, P)

that maximize this likelihood. To express the log-likelihood as a functional in terms of the

eigenvalues of R, X > '2 > ... > XN, define

10



M nI^(q) =I (24)

and

sql/X•m(q) = N----5)q÷

as the geometric and arithmetic means, respectively, of the N-q lowest eigenvalues of R. As

shown in reference (11), we can then write

max ln(f({x,, X2, ... } I X" , P))

K -N In() - N - In ( 1l In (jiR -( - q)In.(!AM (q)) (26)
iaq+l

Maximizing the likelihood is equivalent to maximizing the functional:

Lq(Q) = (N-q)(In (XM(q)) - In (XA(q))). (27)

For the spatially nonwhite case, use the form

P + XQ (28)

for the assumed true covariance matrix. As in the preceding section, decompose Q into Cholesky

triangular factors,

Q = LLH, (29)

and form the prewhitened covariance matrix

RPW = LR•L,• (30)

11



It can then be shown (see reference (11)) that the likelihood functional conditional to the noise

covariance Q with q sources is

Lq(Q) = (N-q)(ln (Xwc3m (q)) - In (1w,(q))), (31)

where Xw0m(q) and Xw,(q) correspond to the geometric and arithmetic means, respectively, of

the eigenvalues of the prewhitened covariance matrix Rw. The geometric and arithmetic means

realize equality only for the case of equality between the N-q lowest eigenvalues. The equality of

the N-q smallest eigenvalues represents a flat, spatially white noise spectrum, and in this case,

Lq (Q) equals zero.

MAXIMIZATION OF THE LIKELIHOOD FUNCTIONAL - LE CADRE'S

TECHNIQUE

The prewhitening problem next becomes one of maximizing Lq(Q) relative to the

coefficients a,, a2 , ..., aL parameterizing the noise covariance matrix Q. Accomplish the

maximization by an iterative gradient algorithm11 at step k with parameter vector

AT = (2,aka2, .... a) (32)

and general form

Ak+I = Ak - poGk, (33)

where po defines a step size, in this case constant, and Gk defines the gradient vector.

Computation of the i-th element of Gk consists of calculating

Gk(i) k X k (34)

for i = 1, 2, ..., L. Figure 4 expresses a functional relationship between the eigenvalues of the

prewhitened covariance matrix, the likelihood function, and the AR coefficients. The algorithm

seks to find the maximum of the likelihood functional surface parameterized by the AR

coefficients.

12



a,, a2, aL - -Qk- -'- Qk------U - Qk = LkL.

/ Prewhitening
U "

G ki 0...., k

: aI Likelihood
Computation of Functional
Gradient Vector

Lq. k(Qk)

Figure 4. Relation of Likelihood Functional to ARMA parameters

EXAMPLE 4: LIKELIHOOD FUNCTIONAL SURFACE CONTOUR

Given the acoustic field from example 3, plot the maximization surface contour of Lq (Q)

in figure 5 as a function of the real and imaginary parts of the coefficient i,.

-0.55-

-0.6

1-0.65

-0.7

-0.4 -0.35 -0.3 -0.25

Real

Figure 5. Maximization Surface Contour Plot of Lq (Q)
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Clearly, the maximum value of Lq(Q) occurs at the exact value of the coefficient computed in

example 2.

Computation of the gradient vector reduces to

Gk(i) = M (35)

fori= 1, 2, ..., L andj = 1, 2, ..., N.

LEMMAS: EIGENVALUES OF PREWHITENED COVARIANCE MATRIX

The following lemmas represent intermediate steps in this computation.

Lemma 1: The eigenvalues of Rpw. k equal the eigenvalues of QktR.

roof: To compute the eigenvalues k X2, ... , •. of the N by N matrix A, solve

JA- XINI = 0. (36)

With this fact and defining

LkL' = Qk' (37)

then

L R -U ,NI(
=ILAk R N
=IRpw, k UN

Lemma 2: If R = TTH, the eigenvalu," R w. k equal the eigenvalues of TQ 'T.

14



= IQ 4k TVH _ ;aII (39)

- PrHQIT- INI

Therefore the computation of I, / aak reduces to the computation of Itk / &k , the partial
derivatives of the eigenvalues of the Hermitian matrix THQIST. Since the AR coefficients form an
explicit function for Q-', this reduction represents an important resulti I Additionally, use the
following classical result for an N by N Hermitian matrix A (A = AN) with simple eigenvalues
X, and associated eigenvectors v,:

a = V. a Av,. (40)

Equation (40) derives from the eigenstructure definition

NA- =H (41)
jul

ALGORITHM FOR MAXIMIZATION OF THE LIKELIHOOD FUNCTIONAL
BY COMPUTATION OF THE GRADIENT VECTOR Gk

Continuing to parallel the development in reference (11), we employ the above definitions

and lemmas to write the algorithm as follows.

1. Compute partial derivatives of Q- relative to the complex AR parameters a1:

aa, ffi 2 * (Z) - A3.k(Z"l)) (42)

for i = 0, 1, ..., L.

(See appendix A for derivation of this expression and the definition of Z'.)

15



2. Compute derivative matrices:

"Ai- I(T"Q'T)

= TNAIT

recalling that

R=Trr. (44)

3. Calculate partial derivatives of the simple eigenvalues of Rpw" k:

(U,, )H 
'k

j U ( (45)

where uk represents an eigenvector associated to the eigenvalue M, of THQ'IT. Compute this

eigenstructure with conventional or reduced complexity algorithms16-25

4. Calculate the components of the gradient vector Gk:

Gk(i) 1 q-- +" (46)
q+1 Mj Am(q)

where

-.Am (q) (47)
R-q I 1 +1 J

5. Select step size to ensure adequate convergence rate.

Although methods 1 exist for updating p0 , assume a fixed step size arrived at by trial-and-error.

16



PERFORMANCE METRICS

Four performance metrics will be used to evaluate algorithm performance:

1. Compute a pole plot of the AR coefficients by generating one at each iteration of gradient
algorithm to view convergence trajectory.

2. Compute the cosine of the angle between the estimated covariance QO and the true covariance

cos(Q.. QTEAE): = (48)
trae(QESQEF )traceQTllLUEQlhUE)

A cosine close to I implies collinearity.

3. Compute the AR spatial density for estimated coefficients:

S(z) = 1 (49)
A(z)A*(z)

where" " " corresponds to the complex conjugate and

A(z) = a0 + alz + a2Z2 + + aLZL (50)

z = eJ2x=(8). (51)

4. Compute the MUSIC1, 26 bearing response for prewhitened case:

1
PM ) = N (52)

IJ
j=q+I

where

eT e J2xk=()) e J4jiee5(G) ... e J2(N-)'m (9)] (53)

17



and u, represents an eigenvector of the prewhitened covariance matrix Rn,.

THE STC SIMULATIONAL DATA

To evaluate the effectiveness of the proposed method, use the STC,9 a realistic model with

a challenging range of SNR and difficult source locations. The STC employs quarter-wavelength

sensor spacing. Figure 6 depicts the STC source locations graphically and table I enumerates the

relative source strengths.

4

2 3 Extended

-1 0 1

Cos (Beaing)
Figure 6. The STC

Table 1. The STC

BE.ARING 0 COS(0) AR SNR
_________ DGREE.S) _______ PARAMETE (dB)

DISCRETE
SOURCES __ _ _ _ _ __ _ _ _ _ __ _ _ _ _ __ _ _ _ _

1 105 -0.26 -_______-20

2 90 0 -_______-3

3 85 0.09 -________-3

4 70 0.34 -_______0

5 45 0.71 -________-14

EXTfE4IED
SOURCES______ ______ ___ ___

1 0 1 -0.71 0
2 135 -0.71 -0.4263+0.86021 -27

18



RESULTS OF SIMULATION

Assume an L = 4 AR model and initialize the algorithm with parameter vector

AT = (1, 0, 0, 0, 0). (54)

Run the algorithm for 25 iterations with step size p0 = -0.025. Set q equal to the number of signal
eigenvalues, 7, for the prewhitener and for MUSIC. Assume a known noise floor co'.

Figures 7 through 10 illustrate the results of the Le Cadre algorithm on the STC. The great

disparity in SNR for the two extended sources (ES) causes the algorithm to prewhiten only the
noise associated with ES 1 at 0 degrees. Although a fourth-order AR process attempts to model

the sum of two first order processes, in this case, a first-order model suffices. The MUSIC

spectrum shows that although the prewhitening of ES I allows detection of the discrete source at
45 degrees, it also causes the promotion of a weak second extended source, ES 2. The number of
assumed sources plays an important role in the detection of ES 2; indeed if q = 5, the peak at 135
degrees disappears. Attempts to prewhiten the small source at 135 degrees with a second pass of

the algorithm fail because of the nature of the remaining eigenvalues of the prewhitened R.

19



0.5

0-

-0.5-

-1 -0.5 0 0.5 1

Real

Figure 7. Pole Plot for STC

. 0.95 ...... ................................... ................................

.0 ... .............................................................................. . . .

0 .8 5 ................................. ................... .................. ...................

5 10 15 20 25

Iteration Number

Figure 8. Cosine Metric for STC
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-1 -0.5 0 0.5 1 -1 -0.5 0 0.5 1

cos(bearing) cos(bearing)

Figure 9. Noise Spatial Density for STC Figure 10. MUSIC Response for STC

Figure I 1 depicts the eigenvalues associated with the STC. The solid line corresponds to

the non-prewhitened case and the dotted line corresponds to the case following the 25th iteration of

the algorithm. The dashed line represents the eigenvalues omitting the two extended sources

entirely. To visualize the failure of the attempted second pass of the algorithm, recall that the

likelihood functional measures the proximity of the N-q (24 - 7 = 17) smallest eigenvalues. In

this case, a comparison of these eigenvalues illustrates the algorithm difficulty. The dashed line

lies so close to the dotted line that the gradients involved in the computation of the update become

small relative to the step size. A flat eigenvalue spectrum corresponds to a value of zero for the

likelihood functional.

21



30

25

20

C 15

10

5-

0 5 10 15 20 25

Eigenvalue Index

Figure 11. Eigenvalues of the STC

Table 2 shows the values of the likelihood functional for the various covariance structures.

The magnitude of the likelihood functional directly relates to the size of the gradient and

consequently to the convergence rate. While the first pass converged in about 10 iterations,

attempts at modifying the step size for the second pass resulted in extremely slow convergence

and, ultimately, algorithm failure.

Table 2. Values of Likelihood Functional for STC

_________L,__ L(Q) = (N -q)(ln (X..M(q)) - In ())

R = P+ + 21N -0.5501

(solid)

R., = L'IRL"H -0.0009442
(dotted)__ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

R = DSP (OIN 0

(dashed)

To visualize the gradients involved, figure 12 depicts the likelihood functional of the STC

as a function of the real and imaginary components of the primary AR coefficient. In this case, the

22



primary pole equals -0.0044 - 0.6910i, the maximum of the surface. Figure 13 represents a

contour of the surface.

0.00.

-0.05-

L -0. 15-

-0.25- -0.10
S/ 0.05

-0.30 = 0.00

r-.-0.05 Real

C5 .0.10

Imaginary 0,

Figure 12. Likelihood Functional Surface for STC
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S0.7

-0.75

-0.1 -0.05 0 0.05
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Figure 13. Likelihood Functional Contour for STC

A second interpretation of the failure of the second pass of the algorithm relies on the
magnitude of the AR coefficient for the second extended source. The magnitude of the coefficient

equals 0.96, close to the unit circle. As the AR coefficient moves closer to the unit circle, the
Gohberg formula produces an extended source covariance with extreme ill-conditioning due to a
very strong principal eigenvalue. Essentially this type of covariance models a discrete source. The

source contributes only to the principal eigenvalues of the covariance R. In this manner, the pre-
whitening eigenvalues that appear after the principal eigenvalues remain unaffected, contributing to

a flat white eigenvalue spectrum..

24



CONCLUSIONS

The STC emphasizes certain deficiencies of the Le Cadrel I prewhitening technique.* The

presence of multiple extended sources that comprise the spatially colored noise results in the

greatest difficulty. The great disparity in SNR between the two extended sources causes the

algorithm to concentrate almost solely on the stronger source. After prewhitening the first strong
source, a promotion of the weaker source occurs using MUSIC, although the noise eigenvalues

represent nearly a white noise spectrum. A second pass of the prewhitener fails due to the nature

of the prewhitened eigenvalues. Although the results are not presented here, inaccurate knowledge
of the noise floor a' diminishes algorithm performance substantially.

The estimate of the number of sources present in the acoustic field also greatly affects

algorithm performance. Since many problems in sensor array processing rely on this estimate,

research into its computation actively continues.

All optimization problems based on gradient algorithms suffer from inaccurate initialization
and computation of suitable step size. Indeed, Le Cadre11 presents a method for step size
updating and provides the algorithm starting point. Other suitable techniques for optimization exist
for this type of problem, notably the Broyden-Fletcher-Goldfarb-Shanno routines.27

The parametric assumptions on the noise model restrict the utility of this approach to
nonuniform arrays. The AR formulation fails when inaccurate sensor spacing or a curvature exists
in the line array. Future work will attempt to address these inadequacies. Recent related research
includes the work of Kay and Nagesha. 2 8 , 2 9

* The MATLAB source code in this report will be provided to any interested party by electronic media.
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APPENDIX A: COMPUTATION OF 29'

(Omit all unnecessary indexing for simplicity.)

Define the N by N matrices Z' such that

{; ifj-k=i 1 <j <N

z0 else 1 <k N (A-k)

Write the Toeplitz matrices A, and A3 as

L L
A, = XaiZ' = aOIN + IaiZ',

iiI (A-2)
L

A 3 = XaiZN-i.
iaI

To simplify the computation, formulate A, and A 3 in vector form:

_Z1

Al= aOIN + [aI a 2 ... aL { (A-3)
zL

= aOIN + iTZ I

A3 = [a, a 2 ... (A-4)
a NL

= iT 22'

where "-" emphasizes a vector variable. Express the complex coefficients ai as the sum of real

and imaginary parts xi and y t so that

A-I



ao 0 + j (A-5)
i = I

where j -1--. With the Gohberg formula formulate the matrix Qas

=Q.i- (AIAI" - AXA)

S( {(X, + jy0)IN + (l+ -TjjjX iyO)IN + -Tj (A-6)

E3S - {(T2

First compute the partial derivatives with respect to the zero-th coefficient:

S[I({X0 - jYO)IN + 'TI(' )} ]
a-L+(i + jjT)z1 IN]_0 ES +(IN +ijYO)IN +I (i
= 4-2ON+ ZT (i _ jy) + (i T + jT (A-7)
(YES

aBES

- I [jIN{(X0  jYO)IN + ~'T(FL MI~)

2 ~{x + jyO)IN + (iT + jyT)~}jI)

= . [(XO - jYO)IN 1 0( +it - x+Yo)IN1 (A-8)
ES (iT  iyT J

= +[AH - A'
CaBS

De-fine the complex gradient30 as

au-' +Q- .aQ'
0o ax 0 YO (A-9)

2
(YES
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Compute the partial derivatives with respect to the first through the Lth coefficients:

"it{(xo- jyO)IN + ZT(i-jy)}

=v" l+ {(Xo + iYo)IN + (i T + j(A)-,}b)
RS -=('i) 

(-0
. '2( 2(_ jý))._ (iT + j.•T)'2 (i2)(-0

= -1 [i-,AH + AX, - -2AH - A3Z],]

= jZAH -jAi, -jZ2 A + ,AIZ2 J.
(A-lI1)

-- W[Z,AH - AX, - 2AH + A3 2 ,
CTES

a y (A-12)

OES

The expressions in equations (A-10) - (A-13) also correctly compute the partial of the zero-th

coefficient since

Z° = IN (A-13)

and

ZN = 0 N (A-14)
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APPENDIX B: SOURCE CODE FOR PREWHITENING ALGORITHM

% This MATLAB program implements Le Cadre's algorithm for
% estimating the noise covariance matrix B for the STC.

% Author: Alain C. Barthelemy
% Date: 23 June 1993

* ** * *** * * *•//•••//•/ * ******* ****** ******* **** ****** ********•

clear;
c1gr,clg;
clc;
disp(' ');
hold off;
axis( 'nonil '');

% PARAMETERS FOR STANDARDIZED TEST CASE (STC)

j = sqrt (-1); % Ccuplex variable
th = [45 70 85 90 105]; % Discrete sourcebearings
vs = [0.02 0.515 0.23 0.23 0.005]; % Sourcevariances
varnoiz = 1; % Power of noise
varsig = 2; % PoNmr of signal
ambnoiz = 1; % Power in anbient noise
sp = 0.25; % Ruinal sensor spacing
N = 24; % Total Nmtber of sensors
thn = [0 135]; % DOA angles for extended sources
% Complex AR coefficients
a = [-0.7 -0.96] .*exp(j*2*pi*sp*cos(thn*pi/180));

alpha = [0.998 0.002]; % Weighting for 2 extended sources

% PAPRAETERS FOR PRE-WHITENING ALGORITHM
p = 4; 6 Estimated order of AR process
q = 7; % Estimate of the number of sources
rho = -0.025; % Step size for gradient algorithm
numak = 25; % Maximu number of Le Cadre iterations

% PARAMETERS FOR DISPLAY

% [# circle divs, # polar lines, # circles]
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gr p = [100 12 41;
theta = linspace(0, 2*pi, gr-p(1));
phi = linspace(0, 2*pi-((2*pi)/gr.p(2)), gr.p(2));
this = cries(grjp(l) ,l)*linsace(i/grp(3),1,grp(3));

% COMPUTE COVARIANCE STRUCTURE FOR STC

B01 = B_F(varnoiz, a(1), N); % First extended sou
B01 = (N/trace(B01))*B01; %6 18li4%
B02 = BF(varnoiz, a(2), N); 6 Secod exteded source
B02 = (N/trace(B02))*B02; %6NDlize
BO = alpha(1) *B01 + alpha(2) *B02; 6 Scaled am
%6 5 discrete sources
DP = exp(sqrt (-1) *2*pi*sp* [0:N-11 '*(cos (th*pi/180)));
P = DP*diag (vs) *DP'; 6 Sca1ed
P = (N/trace(P))*P; %6 N0lize
R = varsig*P + varnoiz*BO + anbnoiz*eye(N); 6 Covariance

%6 REMOVE DIAGONAL FROM R, ASSUME W.LEDGE OF NOISE FLOOR

R = R - ambnoiz*eye(N);

6 R NOW CONTAINS SMALL IMAGINARY COMPONENTS ON ITS
%6 DIAGONAL MAKE R POSITIVE DEFINITE FOR CHOLESKY
%6 COMPUTATION, THIS DOES NOT ALTER R IN ANY SIGNIFICANT
6 WAY

R = (R+R')/2;

%6 COMPUTE A YULE-WALER APPROXIMATION OF THE POLE
6 LOCATIONSS, OF TIE SUM OF THE TMO EXTENDED SOURCES

poles = BO(1:p, 1:p) \ (-BO(2:(p+1), 1));
B poles = BFI (varnoiz, poles, N); 6 Use in cosine metric

%6 PRE-COMPUTE Z MATRICES

ZI = zeros((p+1)*N, N); 6 Initialize
Z2 = ZI;
for i = 0:p,

Z1((I:N)+i*N, :) = Z_...tN(i, N).';
Z2((I:N)+i*N, :) = ZFLMt(N-i, N).';

end;
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SLE CADE' S ALGORITHM FOR ESTIMATING THE COVARIANCE
% MATRIX B

A = [1;zeros(p, 1)]; % Initialize parameter vector
T = chol (R)'; % Ccupute leskyfactor of R
metric = zeros (nurrmk, 1); % Initialize cosi me tric
G = zeros (p+l, 1); % Initialize gradiemt
% Initialize matrix of estimated parameters
A-plot = zeros(ruiLk, (p+1));

for k = 1:numijk, % Iteratim

A = A - rho*G; % Update para-mter vector
A-plot (k, :) = A. ';% Fill in matrix of estimated parameters
% Form estimated covariance matrix B
invB = BFI(A(l), A(2: (p+l)), N);

% COMPUTE PERFORMANCE METRIC

metric(k) = ...
real (trace (invB*Bpoles) /sqrt (trace (Bpoles*Bpoles) *
trace (inv_ý.B*inv_ýB) ) ) ;

% CION OF GRADIENT VECTOR G REQUIRES MMMIZGR OF
% THE EIGESTRUCTURE OF T' *INV(B) *T

[U, LAM] = eig(T'*invB*T); % Ccuipte eigenszucture
% Vector of small elgenvalues
LAM = diag(LAM(q+1:N, q+l:N));
ar = mean(LAM); % Aritbmetic mean of small eigenvalues

% UPDATE OF GRADIENT VECTOR G

for i = O:p, % Index over AR coefficients

% PARTIAL DERIVATIVES OF INV (B) RELATIVE TO A SUB I

deli = (2/A(1))*(AIF(A(2:(p+1)), N)*Zl((1:N)+i*N, :)
- A3_F(A(2: (p+l)), N)*Z2((l:N) +i*N, :));

% DERIVATIVE MATRICES
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deliprirne = T'*deli*T;

% PARTIAL DERIVATIVES OF THE ZIGEN VALUES OF PRE-WHITED R

partial = diag(U(:, q+1:N)I*deliprirre*U(:, q+1:N));

%6 UPDATE OF GRADIENT VECTOR G

G(i+l) = umx(pa~rtial./IAM) - s~izn(partial) /ar;

% SET UP DISPLAY GRAPH AND POLE PL40T

axis (square'); % Set aspect ratio to square
axis(I-1 1 -1 1]); % Set coordinate a~ms

% PLOT POLE PLOT

plot (rea~l(poles) , hnag (poles), 'o', [zeros (gr..p (2), 1)..
cos(rii) 1]', [zeros(gr jp(2), 1) sin(ipti)']', 'c1:',
this.*(cnes(g1..p(3),1)*cos(theta))I, this.*..
(cnes(grjp(3),1)*sin(theta))', 'ci:',..

xlabel ('Real'); % Tabe x axis

ylabel (' Irrginary'); % Labe y axis

pause; % Pause in exacti

% PLOT COSINE METRIC

axis ('normal'); % Set aspect ratio to default
%~ Size coordinate axes
axis([1 nuinkrnin(rretric) nax (netric)])

% PLOT METIMC
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grid; % Put grid cnto graph
xlabel('lIteration number'); % Label x axis
ylabel('Cosine metric'); % Label y axs

pause; % Pause in exection

% CPdE AND PLOT NOISE SPATIAL DENSITIES

M = 301; % Number of bearing bins
% Angles from 0 to 180 degrees
degree_angles = linspace(0, pi, M);
bearing-angles = cos (degree angles); % Cosine of above
psdýplot = zeros (M, numnk); % Initialize for plotting

for k = 1:nurrLk, % Iteatiniex

%6 CCPUTE NOISE SPATIAL DENSITY

psdcplot (:, k) = AMA( [1 A plot (k, 2: (p+l)) ], 1,
degreeLangles, sp) .';

% ADD ARBITRARY FACTOR FOR DISPLAY PURPOSES

psdCplot(:, k) = psdLplot(:, k) + (k*3);

end;

axis(I[1 2 3 4]); axis; % Set axes scaling to autcmatic

% PLOT NOISE SPATIAL DENSITY

plot (bearing angles, psdplot, 'cl-');

xlabel('cos(bearing)'); % Label x axis
ylabel ('Iteration ->1); % Label y axis

pause; % Pause in execution

% COMPUTE AND PLOT MUSIC RESPONSES

e = le+16; % Enhancement factor for signal
IDS exp(-sqrt(-l)*2*pi*sp*(0:N-1).'...
*cos(0: (pi/(M-1)) :pi)); % Steering matrix
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num_src = q; % Assumed. number of sources for MUSIC

br-plot = zeros (M, num k); % Initialize bearing response plot

for k = 1:numnk, % Iteration index

% FORM ESTIMATED NOISE COVARIANCE MATRIX B

BEST - B_F(A plot(k, 1), A plot(k, 2 : (p+l)). ', N);
BEST = (N/trace(BEST)) *BEST; % Naamlize
% Make positive definite for Cholesky
BEST = (BEST+BEST,)/2;

L = chol (BEST)'; % Cacpute Cbolesky factor

% FORM PRE-WHITENED ESTIMATE OF R

S= inv(L)*R*inv(L');

% ADD NOISE FLOOR BACK IN

FW = IN + ambnoiz*eye(N);

[U, LAM, AA] = svd (RW); % Ccqpute eigenstructure of RK
LAM = diag (LAM); % Vector of eigenvalues

% COMPUTE MUSIC BEARING RESPONSE

br plot(:, k) = ...
real ( ([sum(DS. *M((eye (N) -U(:, (I :numjsrc) )*...
diag (e* (LAM(1: :nun src) -1) ./ (l+e* (LAM (1: :numsrc) -1) ) )..
*U(: :, (1! -nusrc) ) ' ) ) *ccnj (DS) ) ) ] I ) . \ (N'N'cries (M, 1) ) );

% NORMALIZE RESPONSE, CONVERT TO DB

br_ plot (:, k) = 10. *logl0 (brplot (:, k)./n ax(br-plot (:, k)));

96 ADD FACTOR TO EACH RESPONSE FOR DISPLAY PURPOSES

brDplot(:, k) = br plot(:, k) + (k*20);

aid;

% PLOT MUSIC BEARING RESPONSES

B-6



plot (bearirg angles, brsplot, 'cl-');

xlabel('cos(bearing)'); % Label x axis
ylabel('Iteration ->'); % Label y axis

% FUNCTIONS - MUST BE UTILIZED AS SEPARATE M-FILES

functio y = Al_F(a, N);

% COMPUTES THE MATRIX Al

y = toeplitz([i;a;zeros((N-length(a)-1), 1)],
[1 zeros(i, N-i)]);

return;

* ****** ** *** ******* ******** ** ***** **** ******** ** *** ***** *

functicn y = A3_F(a, N);

% COMPUTES THE MATRIX A3

y = toeplitz ([zeros (N-length(a), i);flipud(a)], zeros(i, N));

return;

function y = ARMA(a, b, theta, sp);

% C U SPATIAL DENSITY OF AN ARMA(P, Q) PROCESS ACROSS
% BEARINGS SPECIFIED BY THETA, AND AT SENSOR SPACING SP

p = length(a) ; 9 AR aider
q = length(b) ; % MA ordr
M = length (theta); % Number of bearing bins
z = exp(-sqrt (-i)*2*pi*sp*cos (theta));

A = a*[[ones(p, l)*z].A[[[0:l:(p-1)].']*ones(l, M)]]; %A(z)
B = b*[[cnes(q, l)*z].A[[[0:l:(q-l)].']*Ones(, M)]]; % B(z)
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y = (B. *conj (B)). /(A. *conj (A)); % Spatial density

return;

function y = B F(varnoiz, a, N);

% COMPUTES COVARIANCE MATRIX BASED ON THE GOHBERG
% FORMULATION

Al = Al_F (a, N); % Qumiute matrix Al
A3 = A3_F (a, N) ; % Cfzpute matrix A3

% True noise covariance matrix
y = inv((l/varnoiz)*(Al*A1' - A3*A3'));

return;

finction y = BFI(varnoiz, a, N);

% COMPUTES INVERSE COVARIANCE MATRIX BASED ON THE
% GOHBERG FORMULATION

Al = Al_F (a, N); % Ccupite Al matrix
A3 = A3_F (a, N); % Qiipute A3 matrix

% Inverse of true noise covariance matrix
y = (Al*AlI A3*A3')/varoiz;

return;

function y = ZFUU (i, N);
% COMPUTES THE Z(I) MATRIX

y = zeros (N) ;
jjmatrix = (1: N). I *ones (, N);
this = find((jmatrix-jmatrix.') ==
y(this) = ones(l, length(this));

return;
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