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Abstract

We report progress in the following areas. (Some of these results
reflect joint work with others.)

Set covering problems. We developed a new heuristic based on a
subgradient approach to solving the Lagrangean dual. As a
stand-alone heuristic it compares favorably with others. When
used to replaced the conventional subgradient procedure in an
exact algorithm based on branch-and-bound, it improves perfor-
mance drastically.

Problems soluble by integer programming We showed that log-
ical inference problems defined by a “balanced” matrix are solu-
ble both by linear programming and by a nonnumeric algorithm
similar to unit resolution. We showed how to recognize balanced
0,1 matrices in polynomial time, using graph decomposition, and
made progress toward the recognition of 0, %1 balanced matri-
ces. We contributed to the recognition of LP-soluble set cover-
ing problems by expanding the list of known minimal nonideal
submatrices. We proved that the resolution method of theorem-
proving allows one to check whether a satisfiability problem can
be solved as a linear programming problem by checking the same
for all of its set covering subproblems.

Inference in propositional logic. We systematically tested infer-
ence algorithms for propositional logic and identified which ones
seem to perform well on easy, medium-difficulty, and hard prob-
lems, and to some extent why they do. We developed and tested
a logic circuit verification algorithm based on Benders decompo-
sition that is better than the state of the art on certain classes of
circuits and worse on others. We showed how to solve the prob-
lem, “what are all the implications of a rule base with respect
to a given question,” as a projection problem-—completely in the
Horn case, and partially in the non-Horn case. We showed how
to generate good (“tight”) MILP formulations of logical rules (in
particular, cardinality rules). We moved closer to the goal of
an efficient solver for non-Horn logic programming by extending
partial instantiation methods to full first-order logic with func-
tion symbols. We applied logical inference methods to chemical
engineering design problems.

Inductive, uncertainty and belief logics. We unified several un-
certainty and belief logics by showing that they can be solved
by a single linear programming algorithm with a different col-
umn generation subroutine for each logic. We showed how to




combine statistical and boolean methods to obtain a regression-
based method for deriving rules for an expert system based on
past expert behavior.
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1 Introduction

This is the final technical report for research partially supported by the
AFOSR grant, “Covering, Packing and Logical Inference,” which took effect
on 1 July 1991. This report follows the same outline as the proposal.

The papers written in connection with this grant and its predecessor,
“Mathematical Programming and Logical Inference,” are marked with an
asterisk in the bibliography. Papers written under the present grant are
marked with a double asterisk.

2 Set Covering Problems

In a recent joint paper with Maria C. Carrera, “A Dynamic Subgradient-
Based Branch and Bound Procedure for Set Covering” [5], we report on the
development, implementation and computational testing of a class of algo-
rithms for the set covering problem that has shown excellent computational
performance on a large battery of test problems.

We address the set covering problem

(C) min{cz|Az > 1,z € {0,1}"},

where A is an m x n matrix of 0’s and 1’s, ¢ is an integer n-vector, and 1 is
the m-vector of 1’s.

Our approach belongs to a family of branch and bound procedures for
(SC) whose main characteristic is that at every node of the search tree,
instead of using the simplex method to solve the linear programming re-
laxation of the given subproblem, it uses some combination of primal and
dual heuristics with subgradient optimization applied to 2 Lagrangean dual,
possibly incorporating cutting planes, to generate upper and lower bounds
on the objective function value.

Various elements of this approach have been around for about 15 years.
Etcheberry [25] seems to have been first to use subgradient optimization
instead of the simplex method. Balas and Ho [6] tested various Lagrangean
relaxations, some of them including cutting planes, and introduced several
primal and dual heuristics combined with variable fixing techniques, as well
as some new branching rules. Their algorithm and its computational perfor-
mance served as a benchmark for subsequent developments in the 80’s. Hall
and Hochbaum [27] extended the approach to more general covering prob-
lems (right hand side greater than one). Vasko and Wilson [49)] introduced




an efficient randomized version of the greedy heuristic. Carrera [15] per-
formed a thorough computational study of primal heuristics, including the
randomized greedy and reduced cost heuristics. Beasley [10] implemented a
branch and bound algorithm using the Balas-Ho framework, but solving the
linear programming subproblems by the simplex method and using some
new variable fixing rules. In a later paper, Beasley [11] introduced a La-
grangean heuristic that generates a cover after every subgradient iteration.
Fisher and Kedia [26] use an efficient dual heuristic as the main ingredient
of their approach. For some recent work on set covering algorithms based
on other approaches, see Harche and Thompson [29] and Nobili and Sassano
(45]).

The centerpiece of the approach discussed in this paper is an integrated
lower bounding/upper bounding procedure that we call dynamic subgradi-
ent optimization (DYNSGRAD) and that we apply to a Lagrangean dual
problem at every node of the search tree. This procedure intertwines the
iterations of subgradient optimization, a lower bounding procedure, with ap-
plications of the reduced cost heuristic (RCH), a primal, i.e. upper bounding
prccedure (which however, as a byproduct, also improves the lower bound),
followed by variable fixing applied in a recursive fashion. Whenever RCH
improves the upper bound, the current dual vector (set of Lagrange multi-
pliers) is changed, along with the upper and lower bounds; and whenever
some variable is fixed at 1, the constraint set of the Lagrangean problem it-
self changes, and the parameters of the subgradient procedure are adjusted:
hence the qualifier “dynamic” in the name of the procedure.

Other new features of our algorithm include some primal and dual heuris-
tics, a recursive variable fixing procedure, and new branching rules.

Our procedures have been extensively tested, both on randomly gener-
ated and on real world problems. As a stand-alone heuristic, the dynamic
subgradient procedure compares favorably with all other heuristics known
to us in termns of the quality of solutions obtainable with a certain compu-
tational effort. As a new ingredient of our branch and bound procedure, it
has drastically improved the performance of the latter as compared to its
older version which uses at every node the standard subgradient optimiza-
tion procedure. It also compares favorably with other branch and bound
procedures.




3 Recognizing Packing, Covering and Logical In-
ference Problems with an Integral Underlying
Polyhedron

3.1 A Class of Logic Problems Solvable by Linear Program-
ming

In propositional logi-, several problems such as satisfiability, MAXSAT and
logical inference, can be formulated as integer programs. For example, given
a set S of clauses and a weight vector w whose components are indexed by
the clauses in S, the weighted mazimum satisfiability problem (MAXSAT)
consists in finding a truth assignment that maximizes the total weight of
the satisfied clauses. MAXSAT can be formulated as the integer program

Min Y, wis;
Az +352>1-n(A)
z € {0,1}",s € {0,1}™

where A is a 0, £1 matrix.

The above three problems are NP-hard in general but SAT and logical
inference can be solved efficiently for Horn clauses, clauses with at most two
literals and several related classes [17],[48]. MAXSAT remains NP-hard for
Horn clauses with at most two literals.

In {19}, we show that the above three problems can be solved in polyno-
mial time, as linear programs, whenever the matrix A associated with S is
a balanced 0, £1 matrix as defined by Truemper [47], see also [46]. A 0,1
matrix A is balanced if, in every submatrix of A with exactly two nonzero
entries per row and per column, the sum of the entries is a multiple of 4.

The key to obtaining this result is the following theorem. If A is a
balanced 0,%1, then R(4) = {(z,8) € R™*™ : Az +s21-1n(A4),0<
z,s < g1} is an integer polytope.

3.2 Recognizing balanced 0,1 matrices

Our approach to recognizing balanced matrices uses graph decomposition.
To a 0,1 matrix A we associate a bipartite graph G(A) as follows: the node
set of G(A) is partitioned into V" and V° which represent the row set and
the column set of A, and G(A) has an edge connecting node i and node j
if and only if a;; = 1. A 0,1 matrix is balanced if and only if the length of
every chordless cycle in the associated bipartite graph is a multiple of 4.




A decomposition theorem is established in [20] Parts II-VI and used in
Part VII to recognize in polynomial time whether a 0,1 matrix is balanced.
A 2-jotnin a bipartite graph G is a set of edges E;UE; such that,fori = 1,2,
E; induces a complete bipartite subgraph G; of G, the graphs G, and G,
have disjoint node sets and G \ (E; U E3) is disconnected. A double star
cutset in a bipartite graph G is a node set S such that G\ § is disconnected
and there exist two adjacent nodes u, v with the property that every node of
S is adjacent to u or v. Restricted balanced matrices are those where every
cycle of G(A) has length congruent to 0 modulo 4. Yannakakis [50] showed
how to recognize them in linear time.

Our decomposition theorem states that, if a balanced bipartite graph is
not restricted balanced, then it contains a 2-join or a double star cutset.

Double star cutsets and 2-joins can be used recursively to decompose a
given bipartite graph G into elementary blocks that contain neither. In [20],
it is shown how to perform this decomposition so that only a polynomial
number of elementary blocks are created and G is balanced if and only if all
the elementary blocks are restricted balanced. A polynomial algorithm for
recognizing balanced 0, 1 matrices follows.

The decomposition theorem for balanced 0,1 matrices has been recently
extended to balanced 0,+1 matrices in {21} but a new decomposition is
required as well as a new elementary block which is not restricted balanced.
The algorithmic issues are currently under investigation.

3.3 Ideal Matrices

A 0,1 matrix M is ideal if all vertices of the set covering polyhedron
{z : Mz 2 1, z > 0} have only 0,1 components. The 0,1 matrix A is
said to be minimally nonideal if the linear system Az > 1 has no redun-
dant constraints, the polyhedron P(A) has a fractional extreme point but
all the polyhedra obtained by intersecting P(A) with one of the hyperplanes
zj=0orz; =1for j=1,...,n are integral. Minimally nonideal matrices
are important since they represent the fundamental violators of idealness,
i.e. every nonideal matrix must contain a minimally nonideal matrix . The
study of minimally nonideal matrices is the counterpart for the set cover-
ing problem of the study of minimally imperfect matrices for the set packing
problem. In [23], we expand the list of known minor minimal nonideal matri-
ces by several hundred. Many of these examples are obtained polyhedrally,
by constructing new minimally nonideal matrices from old ones. We present
a conjecture that might be viewed as the counterpart for ideal matrices




of Berge’s Strong Perfect Graph Conjecture. We provide evidence for the
conjecture by completely characterizing all minimally nonideal circulants.

3.4 Resolution and Integrality

J. Hooker identified another class of inference problems that can be solved by
linear programming [39]. If resolution is applied to a satisfiability problem,
then it describes an integral polytope (and is therefore soluble by LP) if and
only if its set covering subproblems do. A corollary of this work is that the
facets of the ssatisfiability polytope consists of facets of various set covering
polytopes plus prime implications obtained by resolution.

4 Inference in Propositional Logic

4.1 Computational Testing of Satisfiability Algorithms

F. Harche, J. Hooker and G. Thompson did a computational study of sev-
eral satisfiability algorithms based on tree search, including versions of the
Davis-Putnam-Loveland, Jeroslow-Wang, Horn relaxation, branch-and-cut,
and column subtraction algorithms [28]. All testing was done on the same
machine using as many common subroutines as possible. The problems were
tested on a large set of benchmark problems collected by F. J. Radermacher.
It was found that methods that employ weak relaxations at the search tree
nodes, such as the Horn relaxation method, are much more effective for the
easier problems and much less effective for the harder problems. The column
subtraction method was the most robust, as it was the only method capable
of solving all the problems in the set. The Jeroslow-Wang, branch-and-cut
and one version of the Davis-Putnam-Loveland are fastest on problems of
intermediate difficulty.

Based partly on this experience, J. Hooker developed a fast algorithm for
the incremental satisfiability problem [36]. This is the problem of checking
whether a satisfiable set of propositions remains satisfiable when another
proposition is added. It is a key subproblem for logic circuit verification [42]
and partial instantiation methods for first order predicate logic [35]. Com-
putational study showed that in most cases, using the incremental algorithm
is an order of magnitude faster than re-solving the problem from scratch.




4.2 Logic Circuit Testing

J. Hooker and H. Yan developed and tested a new algorithm for logic circuit
verification, which is based on Benders decomposition. This is a problem on
which Japanese and American industry has worked intensively for several
years. They compared the performance of their prototype algorithm with
the most recent state-of-the-art code (KBDD).

The Benders code ran more slowly than KBDD on most of the stan-
dard benchmark problems in the literature. Hooker and Yan attributed this
to the large large number of exclusive-OR gates in these problems. They
generated random problems without exclusive-OR gates and found that the
Benders approach is an order of magnitude faster than KBDD on almost
all of them. They conclude that the Benders approach is very effective on
certain classes of problems and ineffective on others, and its strengths are
somewhat complementary to those of BDD algorithms.

4.3 Inference as Projection

The problem of deriving all inferences in propositional logic that answer a
given question (i.e., that contain a given set of atomic propositions) is a
type of projection problem. J. Hooker wrote a paper [37] that shows that
solving a related polyhedral projection problem is equivalent to applying a
form of unit resolution to the logical problem. This provides a practical
algorithm for solving Horn projection problems and partially solving non-
Horn problems.

4.4 Formulation of Logic Constraints.

J. Hooker and H. Yan wrote a paper on tight formulations of cardinality
rules [43]. These results show how to get good representations of complex
logical constraints, such as a rule base, in a mixed integer programming
model.

4.5 Logic Programming

Current logic programming systems (PROLOG, PROLOG III etc.) pro-
vide inference methods that at best are complete only for datalog languages
(universally quantified first-order Horn logic). J. Hooker and G. Rago [41]
extended the partial instantiation approach of R. Jeroslow to accommodate
function symbols, so that it becomes applicable to full non-Horn first-order
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logic. To avoid the problem of undeciability, they introduced a device that
checks whether a logic program has a mode] that involves a given maxi-
mum level of function nesting, which is decidable. Work to date lays the
theoretical foundations.

4.6 Logic-Based Methods for Design

J. Hooker, H. Yan, I. Grossmann, and R. Raman wrote a paper [44] that
shows how logic cuts can be used to speed the solution of MILP models for
chemical process design problems.

5 Inference Methods for Belief Systems

5.1 A Linear Programming Framework for Combining Evi-
dence.

Andersen and Hooker reviewed the Al literature on evidential reasoning and
discovered that many uncertainty logics fit the same LP model. They show
in a new paper [3] how to implement several logics in a single LP framework
by “plugging in” different column generation subroutines for the different
logics. In particular they formulated two practical logics that account for
second order probabilities (i.e., the reliabilities of the sources of probability
information).

J. Hooker also published a survey paper on mathematical programming
methods for reasoning under uncertainty [38].

5.2 Obtaining Rules for Expert Systems

E. Boros, P. Hammer and J. Hooker showed how an approach analogous
to statistical regression can be used to generate rules for an expert system,
based on the past decisions of experts. It has the advantage that statistical
tests can be used to decide whether the derived rules are statistically valid.

They also moved partway toward extending this work to the nonboolean
case. In a second paper [13], they show how a network flow model can be
used to derive the best-fitting (nonboolean) rules when they are required to
be “monotone.”
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