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Dear Sirs,

This letter report, for the period of 1 June 1993 through 1 December 1993, describes the
activities supported by the ASSERT grant. A student, John Lillis, is supported under this
grant. John has a strong background in theory and will perform some analytical work on
clustering and partitioning (for our test pipe formation) to minimize the addition of test
circuits and delay. This is especially useful in constructing our processing plane. We started

] with two areas.
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é.!’; The first area of research is Data-Flow Clustering. In synchronous circuits (described in
¢ .3 terms of registers and combinational nodes) it is known that the feedback loops are dominant
g:_'-gu in determining the achievable clock period for the circuit. More precisely, the maximum
o f, f:i | delay to register ratio over all loops in the circuit (called the iteration bound) is a lower
o rt bound on the clock period. Furthermore, if the combinational nodes are fine-grained in
= nature, the iteration bound very closely reflects the achievable clock period through retiming.
ada However, because of size constraints it is often necessary to partition such a circuit into
8%"3) multiple modules (for example FPGAs). In such a situation, inter-module delay can be
v 23 substantial compared to intra-module delay. Accordingly, we study the problem of clustering
5 5 3 the nodes of the graph into different modules such that the iteration bound of the resulting
= circuit (where inter-module delays are taken into account when determining the delay-
T register ratio of a loop) is minimized. We have shown that this problem is NP-Complete

even if replication of combinational nodes is allowed (ie, provided all its inputs are available,
a node may appear in two different modules so as to absorb some of the inter-module delay
costs of different loops; this is a popular method for minimizing delay in acyclic networks).
Accordingly, we have proposed a heuristic solution to the problem and are conducting

experiments to evaluate its effectiveness.
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The second area of research is network partitioning. We study the classical problem of
finding the Minimum-Cut in an undirected graph, given source and sink nodes, s and 1. We
reformulate the problem as a continuous placement problem. We show the correspondence
between the Min-Cut problem and the placement problem which is then solved iteratively
using gradient methods. In addition, this method has good potential for efficient parallel
implementation. We provide experimental data on the effectiveness of our approach. This
work will be submitted to Information Processing Letters. A draft of the paper is in
Appendix A.

This summarizes our research progress. Please do not hesitate to call me if this is not
sufficient.

Best regards,




Appendix A

A Gradient Approach To The Minimum Cut Problem

Chung-Kuan Cheng, John Lillis and Ting-Ting Lin
University of California. San Diego

La Jolla, CA 92093
Abstract

We present a gradient approach to the classical Min-Cut problem for capacitated undirected
graphs. This is done by showing the correspondence between a continuous minimum placement
problem and the min-cut problem. We demonstrate the use of the Successive Quver Relaration
(SOR ) iterative method for solving the continuous formulation. The feasibility of this approach
is demonstrated experimentally. We believe this method has potential for saccessful parallel

implementation

1 Introduction

We present a gradient approach to the problem of finding the minimum cut in a weighted,
undirected graph G' = (V, E') given source and sink nodes s and ¢, and edge capacitics ¢;; for
(i.j) € E (c;; is considered to be 0 if (7.7) € E). Our approach is inspired by the Gordian-L

placement tool {1]. The paper is organized as follows:

e We will show that we can find the min-cut in a graph by minimizing the function F(7) =
2 (iy)€eE €i,jlzi— ;] where each node i in the graph has a real-valued variable r; associated

with it except =, anu x, which are fixed.




e We give an approximation to the above formulation by modeling it as a nonlinear resistive

network.

e We show how to minimize the above approximation by way of the Successive Over-
Relaxation (SOR) method to take advantage of the possible sparseness of the graph and

the properties of the admitance matrix derived from the above approximation.

e Last we give experimental results of this approach.

2 Problem Formulation

Let G = (V. E) be a graph where 17 is the set of vertices and E is the set of undirected arcs.
Further, for each arc (i.j) € E let ¢;; be the capacity of that arc.
A minimum cut problem is, given N = (V, E) and two vertices s.t € 1", to partition 1" into

disjoint sets ¥ and 1} where s € 1§ and ¢ € ¥} such that

C(V 1) =" Y e, (1)

i€V, jely
is minimized. le, the total capacity of the edges between the partitions is minimum.

Let f(z;,x;) = ¢;;]a; — r;]. Now consider the continuous minimimum placement problem

which minimizes the objective function

[V
—

F(E)y= Y flxie;) (

(i)€EE

With z, and z, fixed, we claim the optimal solution to the above minimization problem captures

the minimum cuts of the graph. In the following. we assume that v, = -1 and 7, =

(52l

Lemma 2.1 If ¥ = xy....,x, yields the minimum for expression 2, any m (rg < < xy and
m not equal any z;) partitions V into two sets Vi, = {i|lr, < m} and V5, = {ilr, > m} and

this partition is a minimum cul.
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Figure 1: Illustration of reformulatic .. Each segment i defines a cut bhetween nodes on the left

of the segment and the nodes on the left. The value of this cut is t,

Proof: Let f,,;, be the minimum cut value for graph ;. Let p+ 1 be the number of distinet
values among the r;'s and let z7.---27 ., be these distinct values in ascending order (ie. there
are p “segments” between ry and ry). We define 1; = Zr..fr: s, Cun In other words. ¢,
is the total capacity of the edges crossing the i'th segment. We also define d, as the length
of the i'th segment (r},; — 2/). This formulation is illustrated in the figure 1. Notice that
SP_di = 1y — x5. Clearly none of the #;’s can be less than 1, as this would define a cheaper
cut. Therefore. we have

P
F(&) =Y tidi > Cin(ae = 0) (3)
=1

Thus. in order to minimize F(F), we need ¢; = (',,.;,, Vi which correspond to a cut.
1 mmmn

3 Approximation By A Nonlinear Resistive Network

We transform our placement problem into a nonlinear resistive network. Let & be the voltage
of node i. Given a constant ¢, for cach edge (i.j). we construct a nonlinear resistor connecting

nodes i and j with a conductance, a; ;. defined as follows:




Cgflee— oy il e, —z,] >«
aiy = (1)
¢/« ifjr,—ur,| <e

Figure 2 graphically depicts the conductance o.
The current flowing from node i to node j is equal to the product of the voltage difference

|r; — r,} and the conductance o, . i.e.

&0, if o, — 0, > ¢
(r,~r))o,, = (3)

CI.J('rx - ‘I‘J)/‘ if ‘.l‘, - 'l._ll S ¢

where &, = 1if &, > o0 &, = =1if v, < r,. Equation (5} is an approximation of the
partial derivative of our objective function I with respect to . Congequently. Kirchhoff's
current law {3] in the nonlinear resistive network corresponds to the necessary condition of a

zero gradient. We claim the analogy between our problem and the above resistive network.

Theorem 3.1 Given a constant Y. ther erxists an e = T for the conductanec cquation

INAT

(4} such that the voltage solution of the trnsformed noulinear resistive nctwork is an approrinate

solution of ¥ with an crror bound T on the value of |

Proof: To prove the theorem. we introduce the function,

Al - i o] > e
hir) =

/e if o] <«

and a potential function approximating the objective function F.

V() =Y wlr.r,) (6)
(1.0}
where
1 -
v{r, :J)*E(‘,Jh(.r, -y (7)
1




Figure 2: HDlustration of v(x,.x,) and a(e,.r,). Here. ¢ = % and ¢, = 1.

Figure 2 graphically depicts .
We prove the theorem by proving the three following lemmas (proofs appear in the ap-

pendix):

Lemma 3.1 The solution of the nonlincar resistive nctwork (5) derives the mininiam W),

Lemma 3.2 Given a positive number <. JF(ar) - ¥(2)] <4 holds if ¢ = ITTﬁ‘_’ where |F|
. RENAN IS

is the nummber of edges in the graph.

Lemma 3.3 The incquality |F(ar) — V(r)| <5 holds if ¢ < ETmar e

Therefore from the above three lemmas. we have proved Theorem 3.1.
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0. Set € = c-init
1. Set initial x vector
2. Calculate a;; according to current x vector

3. Solve Gy1ry = ~Gaxy as a linear resistive network.

~

. If Change in Objective Function is less than A

€ = ¢€-¢e-factor

L

. Repeat steps 2, 3 and | until convergence
_

Figure 3: Iterative algorithm for solving the continuous placement problem. Step 3 is performed
by the SOR iterative method. In our experiments. \ is a function of € and the current objective

U. See Experimental Results section for details.

4 Piecewise Linear Algorithm

We propose to solve our resistive network by starting at an intitial vector . Next. we treat the
circuit as a linear resistive network. and find the solution with the Successive Over Relaxation
(SOR) method [2] We then update the current solution & and repeat the process until the
solution converges (see figure 3). In the figure. ry represents the variable node positions and
ry denotes the fixed node positions (r; and ;). Gy and (7} denote the submatrices of
admittance matrix derived from o corresponding to vectors r; and r;. Hence, the problem

reduces to solving G0y = ~Gh220.

In addition to o (). we introduce the following function:

]zl if]x] > ¢

,—
P2
—

9(z) =
1/c  iflr]<ec

In the following, let & and & be the vector at the Ath and & + 1st iterations respectively. In

6




addition, for notational convenience, let

X = &~ & (9)
T o= T~ X (10)
We introduce
P(i.2) =} cizglai;)as,” (11)
(.3)
P(z.5) = cizg(a;)5; (12)
{i.j)

Theorem 4.1 For each iteration of steps 2.3 and 4, the potential function W(x) is strictly

decreasing.

We prove ¥(z) > ¥(7) by proving the two following lemmas (proofs appear in the appendix).
Lemma 4.1 Before the solution converges. P(z,%) > P(1.I)
Lemma 4.2 Before the solution converges,

2U(z) — P(.%) > 2U(F) - P(&.7) (13)

We conclude the proof of the Theorem 4.1 from the preceding lemmas.

5 Experimental Results

In this section, we present experimental results of our approach. Test graphs were gotten from
the washington.c (developed by Richard Anderson and students at the University of Wash-
ington) program at DIMACS. It generates a variety of graphs for the directed version of the
min-cut problem. We use a post process to convert these graphs into undirected graphs.

In our experiments, we fixed r; = —100.0, r, = 100.0, initial ¢ = 200.0. ¢-factor= 0.80 and

A = F(x)-¢-1072. In addition. we set w, the relaxation parameter of SOR to be 1.9.




V1] |E] | SOR Executions | Total Iterations | CPU time

102 | 590 314 8177 5.6
227 1 1340 423 11538 187
401 § 2380 656 12136 40.6

Table 1: Experimental results

6 Concluding Remarks

We have demonstrated the theoretical foundations and experimental feasibility of a gradient
approach to the Min-Cut problem. Future work may include detailed analysis of the convergence

rate. more exhaustive evaluation of algorithmic parameters and parallel implementation.
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7 Appendix

We present proofs of lemmas stated in the body of the paper.
Lemma 3.1 The solution of the nonlincar resistive network (3) derives the miinn V().
Proof: The lemma follows the reference [3]. pp. 776. Since equation (6) is continnous in its

first derivative. its gradient is equal to zero at a minimum solution. We can derive that the




KCL equation for the nonlinear resistive network is equivalent to the necessary condition that

the gradient of (6) is zero, which proves the lemma.

Lemma 3.2 Given a positive number 5. [F(x) — ¥(x)| <7 holds if ¢ = W

is the number of cdges in the graph.
Proof: Consider the following two cases:
(i) |ei — ;] > €

From equations (2) and (6). we know that

(i) |, —r,| < ¢
|f(aioa;) = vlea, i = ile, =, -

h " . ‘T. . — - “r . . ey
Therefore. given ¢ Emax, s We have

PGy — ()] < Z [fla, =) — eleoe)) <y
(1)

Lemma 3.3 The incquality [F(o) = V(o) < 5 holds if ¢ < m;———
it 1)ty

Proof: In the following. let & and & be the respective global minima of () and ¥(r). Le.

Fie)y< F(r) Vrx

V(i) < ¥(er) Vr

\We can derive

Fla)— V(i) = F(&)— F(i) + F(F) - ¥(5)

Since F(r) — F(F) <0 by definition. from the previous lemma, we have

Flo)y=W(&) < F(r) - F(r)+17 <9

where |E]

(1)

{16)

{19)

(20)




Similarly, we can derive

F(r) - W(i) = F(r) = ¥(a) + ¥(es) - (1) 2 —. (.

‘

[N

Thus from inequalities (20) and (21). we conclude that

PR () —¥(3)] < (22)

Lemma 4.1 Bcfore the solution converges, P(e.ax) > Ple. i)

Proof: \We use the property of the linear resistive network [310 pp. 770, thio the niininanm
power disipation of the network occurs at the only solntion of the network equations. Therefore,
before the solution converges. the solution of (/e = ~ (5 shwiavs derives the voltaee 1o
reduces the power dissipation of the linear resistive network. e, Piaeca = o

Lemma 4.2 Defore the solution converges.

W (i) — Dl r) 2> 2U(i) — Ple. i) o
Proof: We can derive that
2W(r) - Plr.e) = Z i) = e ge et = \; e bl =gt e P2
(1.7) (1.1}
(7)) — Plr.F) = Z e ) = e glan )t = Z e ey gt w7 200
(s} (¢.)
We now show that in the following four cases.
;) = g/(.z",",).z~';1-2 > h(xy;) - {/(.r,’,)_r']jz Vi (26
case (1) || < e |ay;) < ¢
_ - 2 11'12 ] 2 -
hr;) = glag)e), = —— = —r;° =0 U
. 20T p PR
- 2 ";J" 1 -2 .
hix,) = glueg)e;, = - —r; =0 (2N
: ¢ ¢
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case (ii) |27,)] € «. |17, >«

: FUTE I B
h(xi;) = gla,)el, = —(1— - ;.r,f =0 (29)
5 ] 1, Iyl = ,
h(a3,) = (@), = 2|0 — o= ;"'u' = —(—l——J-l(—)— <8 (30)

case (ii1) |23;] > e, ]27; <€

o . o, ; .
h(.l‘—,'j) - g(.l‘,‘j)‘l'fj = 'ZII,'J" - — F—l'rtj- — l‘rul — ¢ (31)
5,
) N o |t | PO S I ,
haiy) — gaij)at = =5 - — 0t = e < - e (32)
J J J ¢ I'TU' J (l.l.ul
case (iv) |a7;] > e. |25 > ¢
hxi;) = g(.l",J).r?j = |5, -« (33}
o )
h(255) — glay))as,” = 2|40, — = (—.r‘_,’ 131)
Since
@iyt 2 20l - 05y (33)
we have
| .
Qlli,l-f—l—_—|;z-“,~ﬁ < g, =« (36)
Tij '
Thus. we can derive
h(zi;) = g(.r‘,j):r',-]2 < gyl -« (37)
We conclude from cases (i) - (iv) that
h(755) = g(a55)75;% > h(xy;) — glohe,? (3%)




