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Top-Down Influences on
Bottom-Up Processing

1.0 Introduction

Although much progress was made in the ’80’s in understanding how surface proper-
ties could be recovered from image data, minimal progress was made in recognising
objects and events in natural scenes. The exception, of course, was when the do-
main was well specified and the object classes were known in advance. But without
such knowledge, little progress was achieved in obtaining meaningful descriptions of
images in terms of objects and their behaviors. Indeed, even indexing to the “cor-
rect” object category remained a formidable, largely unsolved task. It became clear
that a priori knowledge, to be applied “top down® to the “bottom up” stream of
information processors would be necessary. Over the past three years, this research
has been aimed at understanding the structure of this “top-down” knowlege.

The work may be conveniently divided into four different areas, plus a fifth
part that is a collection of “spinoffs® from the primary effort. The first major area
is an understanding of what image features support robust perceptual categories or
model classes that have powerful inductive leverage. Critical to such key features
is the notion of properties that have special, yet generic structures in the world.
The second major advance was a formal definition of a percept — in other words
a definition of that state which offers a meaningful description of an image (as
opposed to simply a passive symbolic description). Related to both of these areas
is the work of Feldman on Perceptual Categories, which constitute the third major
area. Finally, we have developed a new psychophysical tect nique that allows us
to probe the categorical structure and special parameteriza . ‘ns of the perceptual
feature space.

2.0 What Makes a Good Feature?

Let the world consist of various properties P that are associated with various con-
texts, C. Then p(P|C) denotes the conditional probability of a property, P, such
as “has 4 corners” in the context C, which could be sitting “on a plane”, *in this
region”, etc. Similarly the collection of measurements of a property and their con-
ditional probabilities will be specified by F and p(F|C). Note that p(P|C) and
p(F|C) are simply objective facts about the world and are not statements about
the perceiver’s model of the world. Our first task is to place conditions on F, P and
C that ensure the measurements F constitute a reliable indicator that P occurs in
the world.
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Figure 1 A: Flat distribution function. B: *Modal® distribution.

2.1 Reliable Inferences

The posterior probability of inferring property P given the feature F in context C
is p(P|F&C). A reliable inference makes this probability nearly one, and keeps the
probability of an “error”, i.e. p(not PF&C) near sero. Hence a reliable feature F,
in context C, will keep the following ratio, namely Rpoet much larger than one:

Ryogt = (PIF&C) | p(notP|FEC). ()

Using Bayes Rule, Rpost can be broken down into the product of two components,
a likelihood ratio L that relates to the “imaging” of P onto F, and the prior prob-
ability B,..,,, that relates to the genericity of the world property P in context C.

spwiﬁ y, Rpo.‘ = L hd Rp"'o', Where
Rypior=p(P|C) / p(notPIC) and L= p(F|P&C) [ p(FlnotP&C). (2)

Note that the likelihood ratio captures the intuition that a feature should arise
reliably from a given world property, i.e. L >> 1. As will be seen in the next sec-
tion, however, this condition does not insure a reliable inference, because if Ry,

becomes too small, then Rpjy4¢ can become insignificant even in the presence of a
high likelihood ratio. (Also see Jepson & Richards, 1992.)

.2.2 An Example

Consider a world of line segments on a plane seen under orthographic view. Of
interest is the special property “two line segments are parallel”. Let the threshold
for discriminating the orientation difference between two (adjacent lines) be 0, and
let § << 0 be the limiting resolution of the process that governs straight and
parallel. Now let the collective distribution of the orientation ¢ of all line segments
be rather flat (Figure 1A). Given this context, we are now presented with two lines
that fall within the crosshatched sample for ¢ < 8. Hence the two lines appear
parallel; should we conclude that these lines indeed arise from a paralle! process?
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First note that the likelihood ratio, L, is very high, because (i) whenever parallel
lines occur in the world, they always will appear parallel in the image, and (ii) our
chance of error is vanishingly small — when two lines are not parallel, they will not
be seen as such except in the rare case when they lie within our limit of resolution
6. Hence p(F|P&C) = 1 and p(F|notP&C) is, say 0.01 if 8 is 1 part in 100. It
appears therefore that we should infer that the lines are indeed parallel in the world.
However, given our chosen random world context, such an inference is almost always
guaranteed to be wrong. ‘

Consider the prior probability ratio an‘or' Because the prior probability
& of the parallel process occurring is much less than the resolution limit 8, the
area occupied by § in Figure 1A is much less than the area set by §. Thus
Rprior = §/(1 - 8) << 0, and its product with the likelihood L = 1/8 will give an
a posteriori probability ratio Ryo, < 1. Hence the odds really favor the conclusion
“not paralle]”. (See Jepson & Richards, 1992, and Knill & Kersten, 1991.) for
further details and examples.) In order to raise R, 4 to a significant level, we need
significant priors, say a § in this case such that §/6 >> 1. In terms of Figure 1,
this is equivalent to requiring that the ¢ distribution function for pairs of lines be
biased, such as indicated in Figure 1B where the process “parallel” appears as a
mode in the probability distribution function.

2.3 Two Kinds of Regularities

The important message of the previous example is that “good” features arise from
some modal regularity in the distribution function of world properties. However,
not all regularities satisfying the likelihood and prior conditions will be useful. For
example, the property “two skewed lines” satisfies these two conditions, but clearly
this property is not very informative. Hence what we seek are properties that are
not just arbitrary configurations, but rather ones that are in some sense special.

To illustrate more clearly the fundamental difference between two skewed lines
and two paralle] lines, we divide structural regularities into two classes: transverse
and non-transverse (Poston & Stewart, 1981). Transverse relations arise when the
elements of the model are postioned arbitrarily such as the above two skewed lines;
non-transverse arrangements require careful positioning, as implied by the term
“non-accidental® of Binford (1981) and Lowe (1985). Unlike the notion of “non-
accidental”, however, the usage of transverse and non-transverse requires a context.
Thus, “two parallel lines” (or planes) in a random stick (or planar) world would
be non-transverse, but in the context of a building with windows and doors, etc.,
the concept “paralle]® would become transverse. Within the proper context, non-
transverse properties are thus very special. But as we showed earlier, in order to be
recoverable from image features, the non-transversality must be an isolated spike in
the distribution function as in Figure 1B, with sufficient mass to be “visible”. This
is what previous researchers meant by “modal® properties (Bobick, 1987; Marr,
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1970; Richards & Bobick, 1988). Features that satisfy (2) and which arise from
non-transverse regularities provide especially reliable and useful inferences about
world properties and are called Key Features (see Jepson & Richards, 1992) for
“natural® examples taken from motion and color). Loosely speaking, F will be a
Key Feature for property P if P is a generic non-transverse mode in the space of
world models, and F occurs in the presence of P but never in its absence. Hence
the set of properties that image onto the Key Features are an especially useful set
of properties, because they are reliably inferable.

2.4 An Example

To illustrate a set of properties that image onto key features in our simplified world
of line segments in a plane, assume there are two processes that generate two types
of relations between two lines. One is the process “parallel”; the other is a process
“coincident”, where the lines just touch one another. We take these regularities as
generic - i.e. we stipulate that both occur with significantly non-zero probabilities
in the given context. First we enumerate those regularities that image o key fea-
tures. Then in the following section, we will place an ordering on this special set of
properties.

The enumeration is equivalent to identifying all the non-transverse configura-
tions between line segments in a plane, given the chosen context. We assume the
measurement is the orientation of one line to the other, ¢, and the position z, y
of the end-point of one line with respect to the other. Hence the relative position-
ing has three degrees of freedom (DOF). Referring to Figure 2, the uninformative,
transverse regularity chooses z,y, and ¢ arbitrarily, producing two skewed lines.
(Intersection or not was not specified in our model class and an “X” will be treated
as equivalent to skew without crossing.) First, with care the end of one line can
be placed on the other (or its extension), eliminating one degree of freedom. These
configurations are assigned a codimension of one. Next, with still more care, we can
place the end of one line exactly on the end of the other, allowing only the angle ¢
to vary. This arrangement has a codimension of two.

Similarly, if the lines are parallel, then the orientation is fixed and the cost, or
codimension of the arrangement is again one. However parallel and coincident lines,
with one end allowed to slide along the other, increase the codimension further to
two. Finally, we have the last, most special case of positioning of codimension 3
where the two lines merge into one when placed end to end in a parallel arrangement.

3.0 From Features to Categories

Our main point will be that the “interesting” structural regularities in a model class
- namely those that satisfy the key feature conditions — can be used as a basis for
partitioning the model class into categories. In the previous example, the property
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Figare 2 Line-to-line non-transversalities.

space would be built from the end-point position measurements z, y, and the relative
poee ¢. Within this z,y, ¢ space, our proposal is that the partioning should make
explicit the line-to-line non-transversalities illustrated in Figure 2. If this scheme
is adopted, then the subepaces will preserve the character of the nontransversal
modes, thus distinguishing among the interesting properties. Note that the context
sensitivity is critical to our set-up, because it permits legitimate reconfigurations of
the property space depending upon the observer’s goals, etc.

3.1 *Two Stick® Categories: The *Structure Lattice®

Continuing our example, we identify the modal subspace as that associated with our
“two-stick”™ model class presented earlier in Figure 2. Each of these configurations
has a codimension, which allows us to place each of these non-transverse modes
in a lattice, where each node depicts a proper subspace in the particular context
(Figure 8A). The top node shows the arbitrary two-stick configuration. As we move
down the lattice, the nodes below differ at each successive level by the removal of
exactly one degree-of-freedom from the configuration. Upward transitions, then, are
the elemental ones that locally “break” or “unfold”® a non-transversal property but
which do not add any additional non-transverse properties. An important example
is the missing link between the “V” and “parallel line” nodes (or similarly, the “T*
and “collinear” nodes). There is no direct route from one node to the other. The
explanation is that the concepts “coincident” impose a constraint on the endpoint
poeition z,y of one line with respect to the other, whereas the concept “parallel” is
expressed by an angular relation, ¢ between the two lines. Because position (z,y) is
not defined by angle (¢) or vice versa in this context, there is no intersection other
than the excluded degenerate case of two coincident lines. A similar explanation
applies to the missing path from the two "collifnear’ lines and the “T" node.
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Figure 8 A: *Dot-on-line” categories. *T'wo-stick® categories given concepts
coincidental andf parallel. See text for explanation of dashed paths and nodes.
B: Beetle taxonomy, based on a version of & “two-stick® mode lattice.

At the bottom of the lattice, two nodes have the two sticks collapsed to one.
These two nodes have broken outlines to indicate that they are not part of the
lattice for the perceptual context because they suggest a “one-stick” configuration.
(If the two sticks were each identified in some manner, say by coloring, then the
dashed paths and nodes would become part of this “two-stick” category lattice.)
Thus, the result of this construction is a lattice that displays a partial ordering of
the categorical states available to the perceiver, given the concepts “parallel” and
“coincident”. We call such an ordering a "structure lattice”.

3.2 “Natural Example”: Beetle Lattice

In the biological realm, growth processes exhibit regularities (Thompson, 1952). To
illustrate how such regularities can be used for a taxonomic clessification, we will
use a simple modification of the “two-stick” mode or structure lattice of Figure SA.
Let the context be the backs of beetle-like bugs that are marked by two distinctive
lines oriented with respect to the symmetry axis of the beetle. As is typical for
biological shapes, we assume the markings are generated symmetrically about this
axis. Hence, with respect to our “two-stick” mode lattice, one stick — the “reference

7
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stick® — will simply be the symmetrical bisector of the beetle’s back. The other,
namely the “second stick”, will thus appear twice in mirror image positions about
this symmetric axis. (The situation is equivalent to symmetric markings appearing
on a left and right wing.) As before, we assume two possible marking processes,
one laying the mark down parallel to the bisecting axis, the other positioning the
end point (of either the reference stick axis or the additional marking stick) to be
coincident with one of the two lines. All of this sets the context.

Because the two-stick modes in a similar context have already been enumerated,
we simply need to recast the previous lattice of Figure 3A in a symmetric form
compatible with this revised “biological® context. This has been done in Figure 3B,
where now each node depicts the markings on the beetle’s back. At the top, the
two symmetric marking lines are set arbitrarily with respect to the bisecting axis
(dotted). This is the codimension O case for this species. At the next level either
the coincident or parallel process applies, giving us three codimension 1 subspecies.
Next, we have two codimension 2 cases: in one the marking lines form a V, coming
together at the “head” of the reference line, or the other where the two marking
lines collapse onto the reference line (but do not reach the head of the beetle).
Finally we have a single codimension 3 case in this context where the “V” collapses
onto the reference bisecting line. Given these generating processes and this context,
these are all the types of beetles expected. These types, with the exception of the
“generic” beetle at the top, represent the beetle modes or subspecies, each exhibiting
a slightly different, but related regularization of the ontology of beetles. Thus the
beetle lattice is a convenient hypothesis generator for an observer who is seeking
to assign any particular beetle to its “natural® category (Feldman, 1992; Leyton,
1984). Elsewhere, we consider how an observer can induce new categories from the
regularized partitioning (Feldman, 1992).

4.0 Percepts and Categories

Our basic idea, then, is that the structure and parameterizations of our models
describing the world should match the regularities of the image structure as closely
as possible. If we wish to extract world structure from image structure in a “vivid®
manner (Levesque, 1978), then the properties we especially note in the image should
directly point to very specific world properties. This criteria clearly places very
strong constraints upon the kinds of image structures we should note, because not
all properties of an object can be expected to appear reliably in an arbitrary view
of that object. .

To clarify this point further, consider the pillboxes shown in Figure 4. In the
upper left, most immediately see the handle as rectangular and erect, with the feet
lying on the top of the pillbox. However, an infinity of interpretations are possible
for this single snapshot. For example, the handle really could be skewed and lying
flat on the top — or any other state between flat and erect, including some slants




RICHARDS FINAL REPORT 1990-83

S
o &

Figure 4 Some pillboxes with handles. In the upper left depiction, most imme-
diately see the handle as rectangular and erect, whereas in the upper right the
handle now appears flat. In the two lower panels, both the shape and inclination
of the handle are less clear, the percepts exhibiting some multistabilities. Most
favor an inclined rectangular handle for the lower left; the lower right drawing,
however, yields mixed reports.

toward the viewer. Nevertheless, observers quickly accept just one interpretation
from the many. As will be shown below, such a vivid and compelling perceptual
conclusion follows if perceptual categories are built around modal key features.

Let us first examine the orthographic projections of two rectangular handles
onto the image plane as illustrated in Figure 5. The normal to a surface N and the
visual ray to a point on the surface define a plane perpendicular to the surface at

that point. This plane also defines a line in the image. Then the surface normal and
" any other vector in this plane must project into this image line. The bisector B of
a rectangular handle perpendicular to the surface is one such vector. We will define
such a handle as an erect, rectangular handle. However, if the same rectangular
handle is not erect, i.e. is inclined at some angle to this perpendicular plane, then
the angle of its projection is less constrained. In particular, the bisector of a flat
handle lying in the plane of the surface can project into sny angle in the image
(see Figure 6). In a random world, where both angles and orientations are cast out
with equal probability, the image distribution has a broad spectrum (Witkin, 1981).
Clearly, if we had to apply these data to infer the handle shape (i.e. its “skew”) and -
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Figure § Ragardless of the viewing angle o, an erect rectangular handle will
project onto the image plane with its bisector B oriented parallel to the projec-

tion of the surface normal, N (orthographic projection is assumed). However, if
the handle is inclined to the surface or lies flat, then the orientation between the
bisector and normal can vary over a wide range, depending on o (see Figure 6).

its attachment angle, at best we could only make a maximum likelihood judgement
that would typically be wrong.! In order for the perceiver to develop the inferential
leverage needed to strongly disambiguate among many possible configurations of
equal likelihood, the world must behave somewhat more regularly (Lowe, 1985;
Witkin & Tenenbaum, 1985). In particular, some structures should tend to occur
significantly more often than predicted by a uniform distribution over all possible
structures.

Consider then .. world in which the perceiver knows that handles will often
be rectangular and will lie either flat, as if freely hinged and resting stably under
gravity, or erect, as if firmly attached perpendicular to the surface. In this world,
the distribution of handle orientations a, rather than being uniform, will have two
“spikes” or “modes”, one at each of the two special world configurations as shown
in Figure 6A. Now, depending upon the slant of the surface, the expected image
distribution of the handle bisector will be as in Figure 6B: the “erect” bisector

1Surprisingly, given no other information, the maximum likelihood eetimate for the 3D
angle Is just the image angle itself!

10
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Figure 6 Left: Two states of a rectangular handle are taken as regularitics
In the world: an erect state where the plane of the handle is perpendicular to
the top surface of the pillbox and a flat state where the plane of the handle
coincides with this top surface. The angle o ls the angle between the bisector
of the handle B and the surface normal N. The dotted line labelled p, indicates
the density function for arbitrary angles, other than the erect (0) and flat (x/32)
regularities which have spikes in the probability density function. In the image
(right), the erect handle also has a spike in the density function for orientation,
because parallel vectors in the world are parallel in the image, hence the image
angle ¢ of B’ to N’ is 0. All other handle inclinations project onto image angles
that depend upon the viewpoint, or “siant” of the surface (o).

continues to stand out distinctively. As discussed in the previous section, such an
image feature is designated a “key” feature because (i) its likelihood of correctly
indicating the presence of a particular world property is high (i.e. there are few
false targets), and (ii) the associated world configuration has a significant prior
probability (see Knill & Kersten, 1991; Jepson & Richards, 1992). This latter
condition, though often overlooked, is critical to establishing that a given high-
likelihood world interpretation is actually likely to be correct. In other words,
the configuration ascribed to the world by an inference must actually be one that
commonly occurs in the context. Otherwise, the probability of the inference being
correct will actually be dominated by the probability of a false target. .

4.1 Structure Lattice

To set up our representation, we begin by introducing the vehicle called a “struc-
ture lattice” that takes our context-sensitive, primitive concepts about structural
regularities, and composes them to produce a set of possible configuration states.
(Just as we did earlier for the “beetles”.) This is the first of several such lattices
we will introduce, the one upon which the later lattices will be built. Each of these
lattices will display a partial ordering of the categorical states. (See Moray, 1990,
for a related proposal.) In the case of the structure lattice, the ordering is derived

11
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by noting that some states are special or limiting cases of others. Later we will im-
poee context-specific preferences upon this collection in order to seek a maximally
preferred state.

To illustrate again in detail the role of regularities in creating a representation in
which the perceptual categories become obvious, let us propose that alignment and
perpendicularity be special regularities between lines (or vectors) that we encounter
in our non-random world. For example, assume that object parts have coordinate
frames that are often aligned in some manner (Arnold & Binford, 1980). For the
pillbox and handle, we have two “parts® and hence two coordinate frames. Let us
specify the coordinate frame for the pillbox by its symmetry axis A, and by the
feet of the handle H. (See Figure 7.) We will assume that the pillbox has been cut
at right angles to A, and hence the surface normal N to the top of the pill box will
align with the axis A. (Note this assumed axiomatic regularity!) Together, A and
H (or henceforth N and H) set up a right-angled Cartesian coordinate frame at
the center of the top of the pillbox. Let K be a unit vector orthogonal to N and
H, defined by K = N x H. To construct K’, the projection of K into the image,
we use the maximum likelihood rule for slant derived by Kanade (1983), which was
observed psychophysically by Stevens (1983) for right-angled coordinate frames.
Specifically K’ will lie on the bisector of the angle between N and H, illustrated in
Figure 7. (Shortly we will explain the role of the numbered sectors marked on the
top of the pill box.)

Similarly, a coordinate frame for the handle can be defined by its vertical
symmetric bisector B and by a second vector H which is the direction of the feet of
the handle. Note that we do not assume that B and H are perpendicular. However
the origins of the two coordinate frames, B & H and N & H, are assumed to lie
centered on the plane of the top of the pillbox, and coincident with the major axis
of the pillbox. We thus are assuming the following:

Contextual Regularities:
Parts: Pillbox is convex (e.g. solid top).
Handle is planar.
Support: Both feet of handle lie in plane of top surface of

of pillbox (B lies on or above this plane).
Surface Normal Alignment: N=A

Gravity Alignment: A=G
Cartesian Frame: N-H=0
K-H=0
Viewpoint: Pillbox is seen from above.

12
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Figure T Unit vectors that define the handle and pillbox coordinate frames.
The diagonal line that bisects N, H sets up the third right angled axis K. The
dotted ellipses are circles that create the six sectors discussed in the text. The
imsets depict handles with bisectors projecting into the various sectors.

The additional vector G is taken to be the gravity axis, which is aligned with the
customary page orientation, typical for the depiction of a stably supported object.?
In sum, the above equalities set up two coordinate frames, one rectangular for the
pillbox defined by N and H and the other not necessarily rectangular for the handle
defined by B and H.

Given the vectors N, B, H and K we can now explore all possible alignments of
these vectors. Recall we are proposing that the perceiver is aware of certain “modes”
or configurations of structures that occur often in the world. In particular the special
regularities we chose were the collinearity of two lines or vectors, such as B = N, and
the perpendicularity of two lines, such as B 1| H, which corresponds to a rectangular
handle, or B L N which defines a flat handle. Hence to generate all these special
configurations that are the consequence of these particular relational concepts, we
simply enumerate all the alignments of B with N, K and H, using either the
collinear (=) or perpendicular (1) relation. The result of this enumeration will
then be those special categories that make sense to us, given our chosen relational
concepts. We begin first with the three collinear alignments:

3Elsewhere we have explored this preference for supported objects (Jepson & Richards,
1993).

13
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Collinear Relation Category Notation
B=N erect rectangular handle ER
B=K flat rectangular handle FR
B=H degenerate (infinitely skewed handle)

If the bisector B does not align with either N, K or H, then we define the handle
as being either “tilted”, which is noted as *T™, or “skewed”, which is noted as “S”,
or both, namely “T'S™. In particular, if the bisector is in the plane determined by
N and K, then the handle is tilted and rectangular, i.e. “TR". Similarly, if the
bisector is in the plane containing N and H, it will be erect and skewed, i.e. “ES™,
while for the flat and skewed state the bisector will be in the H-K plane. Thus,
excluding the above collinear specializations, we now have the following additional
three new cases (alternatively we could have filled out a 4 x 4 table):

Perpendicular Relation Description Notation
BLH tilted rectangular handle TR
BLK " erect “skewed” handle ES
BLN flat “skewed” handle FS

Finally, we have the category where none of the relations hold:

Arbitrary Relation Category Notation
(none of the above) tilted, skewed handle TS

Excluding the degenerate case B = H, we thus have six types of categories for
the positioning of the handle, given our conceptualization that part-based structures
in the world typically are related by an alignment of some aspect of their individual
coordinate frames. Because we can count the number of axes of each frame that
are aligned (i.e. either one axis or two), a partial ordering can be placed on these
six types of structures. This is illustrated in Figure 8 as a graph or lattice. At
the %op of this lattice, the positioning, T', and shape, S, of the handle is arbitrary.
At the bottom, however, we have two states where the position and shape of the
handle are both fixed to be rectangular and either flat or erect (i.e. FR and ER).
In other words, all degrees of freedom of alignments have been removed. In between
are the planar alignment states where one degree of freedom of movement is still
allowed. For example, the leftmost node E'S permits the skew of the handle to vary,
but it must remain erect. Hence, as we move from top to bottom in this lattice,
more and more specialization or restrictions are placed on the configuration. As
previously mentioned, we call this lattice a “structure lattice® because, given the
assumed alignment regularity this lattice shows the specialization relations between
the categories of structures that will appear in our representation.

14
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and skew)
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BLlM B 1N

(flat and
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(erect and
rectangular)

Figore 8 The structure lattice for the pillbox plus handle (i.e. the “state
space”).

4.2 Preference Relations

The structure lattice simply enumerates the structural categories that we know
about, or can easily infer, given our chosen regularities. Ideally, we would hope
that the image is consistent with some kind of maximization of these regularities.
In other words, given a particular context, we expect certain regularities to appear,
but in another context the structures expected might differ. For example, & “flat”
handle would not be likely if the pillbox were upside down. This suggests that given
a context, there is a preference ordering on the expected regularities. If you will, a
ranking is given to the prior probabilities of the structures that are expected in the
assumed context.
A preference ordering differs from the structure ordering introduced in the
- previous section. The structure lattice simply presents all the categories available
to us in the chosen context, ordered with respect to increasing specialization of
structure. A preference ordering specifies which kinds of specializations are pre-
ferred to others. So, for example, given a choice between handle shapes that are
rectangular or skewed, we’ll prefer the rectangular version. This preference is not
surprising, because, after all, we elected to parameterize the coordinate frame for
handle shape in terms of rectilinear coordinates. Denote this preference for rect-
angular over skewed shapes as R > S. Similarly, for the attachment angles, our
parameterization suggests that the erect “E” and flat “*F” angles will be preferred

16
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Figure 9 Elemental preference relations for handle shape (left) and handle
inclination (right).

over arbitrary inclinations, or “tilts®, “I*, hence £ > T and F > T. However,
we have no reason to believe that an arbitrarily shaped erect handle *E” will be
preferred over one that is flat, “F”. Denote this indifference by £ ~ F. We will
designate these three orderings, one for shape and the other two for attachment
' angle as the “elemental” preference orderings. They can also be cast in the form of
. a directed graph as in Figure 9.

Using the above elemental preference relations, we can now impose a partial
order on the states of the base plus handle configurations that we know about,
namely the states shown in Figure 8. This preference ordering is based on the
consensus of the elemental preference relations, and is illustrated in Figure 10. Note
that a state such as ER is to be preferred over T'S because both of the elemental
preference relations, £ > T and R > S, favor the same state. However, such a
consensus does not always occur. For example, the same two elemental relations
are in conflict for the states ES and TR, and as a result these two states remain
unordered in the preference ordering. The intuition behind such unordered states is
that the perceiver does not have sufficient information to be able to resolve whether
ES should be preferred to TR, or vice versa. Thus unordered states represent a
total lack of information on the appropriate preference. In addition, we also have a
distinct notion of an equal preference between two states, such as occurs between
ER and FR, as well as between ES and FS.

In general we cannot expect a consensus ordering to provide a total ordering of
the state space, because some conflicts amoungst the elemental preference relations
are likely to hold. This is related to Arrow’s general impoesibility theorem which
states that rational choice - i.e. rational voting behaviour - does not guarantee a

_unique winner (Doyle & Welman, 1989; Saari, 1992). Somewhat counter-intuitively,
the introducticn of more elemental preference relations does not lead to a more

16
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Figare 10 A reordering of the entire “state-space” based on the assumed ele-
mental preferencs relations.

complete ordering, but rather tends to introduce more conflicts and hence tends
to eliminate ordering relations. To counter-act this tendency to fracture the state-
space, it is often useful to consider priorities amoungst the elemental preference
relations (Jepson & Richards, 1993). Such priorities can break particular conflicts
and thereby enlarge the ordering. Nevertheless, we should expect typical preference
orderings to be partial as a consequence of the incomplete knowledge a perceiver
ks of its current domain. Of particular interest are instances in which the ordering
tusults in several mazimally preferred explanations of the image structure, where
it remains undecided just which maximal state is to be preferred. As we discuss
| elsewhere, tL’: is an intuitive explanation behind the difference in the stability of
| the percepts ir. the upper and lower panels of Figure 4.

4.3 The Pillbox plus Handle

To clarify our framework further, we now return to Figure 4, and use these images
together with the preference relations o impose an ordering on the state space in
each case. For all d:pictions, we assume that the view is from above. We also
initially assuinc that a Cartesian coordinate frame for the pillbox is set up using
the Kanade-Stevens rule, namely that the axis K is seen as lying along the bisector

17
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of the image angle between N and H (i.c. as shown in Figure 7). We take this
coordinate frame as being the unigue coordinate system containing the line H and
the line perpendicular to N. Later we will consider cases when this frame itself
appears as a preference that may be altered.

We begin by choosing a representation that allows us to effortiessly read off
the states of the handle of interest, given a particular image. Figure 7 shows the
form of this vivid representation, based on the N, K and H coordinates. The added
feature is that now we identify the six sectors of unit circle (seen slanted) that are
seen to lie between the projections of these axes of the coordinate frame. The idea
then is to regard the bisector B as the arm of a clock, and simply note either the
sector it falls in, or whether it is precisely aligned with one of the axes. A simple
example is when B is aligned with either N or K. If B = N, then obviously the
erect rectangluar handle ER is a poesibility, because the handle is ER if and only
if B = N, whereas if the handle is flat and rectangular, then B = K. Similarly,
if B falls into one of the six sectors, again we can easily check to see if a state is
consistent or not. For example, when the handle is rectangular and tilted forward,
B must be in the upper quadrant of the NK plane and hence its projection must
fall into sectors 2 or 3 (see insets to Figure 7). Similarly if the handle is erect but
skewed, B must lie in sectors 1 and 6 (if skewed to the left) or sector 2 (if skewed
to the right). The following table captures all the cases (excluding the alignments):

Sector Possible Categories

TR (backward), ES, FS, TS
TR (forward), ES, FS, TS
TR (forward), FS, TS
FS,TS

FS,TS

ES,FS,TS

DOt 0N

Table 1 The possible attachment categories for handle pose, given the sector
that the bisector B falls into. (See Figure 7.)

Note that our condition that the handle lies on or above the top of the pillbox
constrains TR and ES to require that B not fall in sectors 4 and 5.

The state space for the two upper drawings in the top panel of Figure 1 is
given in Table 2. Again, we use the notation E, F, R respectively to indicate an
erect, flat or rectangular handle, or S and T repectively to indicate either a skewed
or “tilted” handle. First consider the poesibilities for the “erect” handle depiction
in the upper left drawing. The bisector B aligns with N. Hence ER is an obvious
choice. However, B can also lie off N, but in_ the plane defined by the visual ray.

18
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Upper Left Drawing Handle State Upper Right Drawing
TS arbitrary tilt & skew TS
. erect, skewed handle .

FS ~ flat, skewed handle (FS)

* tilted, rectangular _ (TR)

. flat, rectangular FR

ER erect, rectangular .

Table 3 State spaces for the two drawings in the upper panel of Figure 4.

All of these states correspond to either tilted and skewed (7'S) handles, or perhaps
s flat and skewed (FS) handle. Note that erect and skewed (ES) is not consistent
with the Kanade-Stevens coordinate frame since, from Figure 7, we see the only
way the handle can be in the NH plane (i.e. erect) yet have B align with N in
the image is for B to equal N (i.e. the ER state). Similar arguments showing that
TR and FR states are inconsistent can also be read off of Figure 7. These three
inconsistent states are indicated by an asterisk in Table 2. The remaining three
valid states, T'S, FS, and ER can now be ordered using consensus amoungst the
elemental preference relations introduced above. The result is shown in Figure 11
left, and is seen to be a total ordering with the erect rectangular handle (ER) as
the unique maximal state.

Similarly, for the upper right drawing we first note that the leg of the handle,
hence the bisector B appears to align with the axis K in the Kanade-Stevens coordi-
nate frame for the pillbox. Therefore, FR is obviously in the state space. However,
the true 3D orientation of B need not be coincident with K, but can point any-
where in the plane created by the lines of sight through K, and hence T'S is also a
possibility. Obviously the erect states ES and ER are excluded because B lies in
sectors 3 and 4 below H. States TR and FS are marginal, depending on whether B
is taken to be precisely aligned with K or not. If B is seen to fall below K in the
representation depicted in Figure 7 (i.e. in sector 4), then TR is not in the state
space. But if B lies above K (in sector 3), then TR is a possibility. In either case,
F'S is possible. Because of this ambiguity TR and FS are shown parenthetically in
Table 1, and as dotted nodes in the preference ordering of Figure 8 (right). Again,
the ordering here follows from the relations F > T and R > S, yielding the state
FR seen most “vividly” as the maximal node.

For the two more ambiguous drawings in the lower panel of Figure 4 we may
go through a similar exercise. This is treated elsewhere (Richards & Jepson, 1994).

>
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Figure 11 A preference ordering for the two drawings In the upper panel of
Figure 4. The two dotted nodes at the right become possibilities f B Is mot

precisely aligned with K.

4.4 Summary

Our notion then is that each image is evaluated with respect to the current set of ob-
served regularities. These regularities suggest a context that dictates the form of the
model representation. Given this representation and the image, a set of categorical
structures can be deduced easily as “vivid® states (i.e. the state space). The context
also points to preferences for certain 3D regularities in the representation, which are
used to place an ordering on the feasible states or “interpretations”. Hopefully there
will be a unique global maximum in this ordering that “explains® all the observed
regularities, given the image and the preferences (such as in Figure 11). If not, or if
further regularities are observed in the resultant 3D interpretation, or if additional
relevant premises are retrieved from the knowledge base, the context may be re-
vised and the process continued with the aim of insuring that all regularities, both
in the image and in the interpretation, are explained by the preferences at hand.
Sometimes, as in the lower panel of Figure 4, closure is not possible, and several
maximal interpretations continue to be evaluated. In all cases, the explanation of
the image attempts to maximize our preferences for certain world regularities over
other states. This leads to the following proposal for defining a “percept”:

Proposal 1: given a context, a percept is an interpretation in
the state space that is locally maximal within the associated
preference ordering.
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Elsewhere (Jepson & Richards, 1993), we have elaborated the consequences of this
proposal, and its implications for the machinery that underlies the perceptual pro-
cess itself. However, of special interest may be the relation between the above
Boolean proposal for percepts and one based on versions of utility or probability
theory (such as Dempster-Shafer or Pearl’s Bayesian graphs). A partial bridge to
these alternative approaches using a Bayesian formalization is in the press (Richards
& Jepson, 1994). '

5.0 Trajectory Mapping (TM)

According to our view, special features, called “key features”, are critical to set-
ting up perceptual categories and to driving our percepts. Once these features are
chosen, then the parameterizations in the perceptual space — the feature space if
you will - are forced. Over twenty years ago, multidimensional scaling was intro-
duced to recover the parameterizations used by the human perceiver in a variety
of domains. Recently, we have invented a new scaling procedure, called *Trajec-
tory Mapping” that specifically follows the feature paths in the perceptual space
(Richards & Koenderink, 1993A).

Briefly, TM is based on the estimation of smooth trajectories in a multidi-
mensional feature space. Given a set of samples, pairs are used as fixed points
on a trajectory that is indicated by choosing the most appropriate extrapolants
(interpolant) from the remaining samples. A distance measure for these choices is
estimated using the current two fixed points as the unit. Unlike MDS, estimates are
not made if the fixed point samples are deemed incompatable. Also, samples that lie
on a bound in the space — either interior or exterior ~ are also noted. Hence, trajec-
tories are not estimated across mutually exclusive features, such as the “red-green”
exclusion in color. The result is a web of samooth trajectories between samples in
the feature space — something akin to a subway map ~ with some of the trajectories
terminated either at the boundaries of the space, or at the exclusion boundaries.
These trajectories of feature similarities are then scaled in a higher dimensional
space that produces a hyper surface on which the trajectories correspond to “least
energy” paths. For example, three point samples on a spherical surface with no
exclusions could produce four trajectories. Three are great circles and the fourth is
_ the intersection of the sphere with the plane containing the three points. A hyper-
bolic surface will create different paths in the feature space. To compare MDS and
TM, we present scaling results for 20 OSA uniform color samples (Jrl. Opt. Soc.
Am. 64, 1691, 1974). A ridge along the yellow-blue axis appears, which both de-
flects and attracts the trajectories, which do not croes this ridge. The neutral gray
point also appears as a post through which no trajectory passes. Similar behaviors
are noted when the TM method is used to scale thirty natural textures taken from
the Brodats album (Dover, 1966). A complete report on this method and these
preliminary results will appear shortly (Richards & Koenderink, 1993B).
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6.0 Dynamical Systems Analysis: Is Perception Chaotic?

The multistability of impoverished visual displays, such as the Necker Cube or
the crater illusion presented in Figure 12, is well known. Less appreciated is the
fact that even complex scenes, although rich in visual information, also may have
many interpretations ~ indeed perhaps even an infinity depending upon the level of
detail desired to “explain® the scene. Different patterns of eye movements are often
associated with these alternate interpretations, as shown by Yarbus (1967). Hence,
despite our impressions to the contrary, the chosen percept typically entails the
selection of one out of many poesible interpretations of the input, even if the context
remains unchanged (Jepson and Richards 1993). Here we present evidence that
processes searching for the appropriate percept have some characteristics associated
with low dimensional, chaotic dynamical systems. Our results confirm a proposal
by Poston and Stewart (1978) and conclusions reached by Ta’eed et al. (1988) that
multistable percepts can be modelled as non-linear dynamical systems.

Method

A dynamical system can be characterized by the geometry of the space of its output.
These outputs are typically a sequence of state changes, either temporal or spatial.
Hence possible measures that we can use to evaluate a perceptual dynamical system
are (1) the sequence of time intervals between perceptual states, such as the duration
of successive flips of a Necker Cube, or (2) the sequence of spatial vectors, such as
when the eye moves from one (z,y) position to another. In either case the data will
be a sequence of values, {v;} for ¢ typically greater than 200. To determine whether
an observed pattern exhibited chaotic behavior characteristic of a dynamical system,
we chose a correlation technique outlined elsewhere (Bergé et al. 1984; Grassberger
and Procaccia 1983). This technique has been especially successful in using time
series data to analyze non-linear physical systems, such as turbulant flow (Essex,
Lookman & Nerenberg, 1987; Malraison et al. 1983) or semi-r~nductor resonators
(Van Buskirk & Jeffries 1985; Theiler 1990). Briefly, the method first computes the
number of vectors of length (x; — x;) falling within a p-dimensional hypersphere of
radius r, where {x} is the set of m sample points (e.g. time intervals) collected:

Colr) = =5 Ti5=1 to m HIT = bei =]

Cp(r) is the average number of vectors or the “correlation coefficient” for the chosen
radius, p is the “embedding” dimension, m is the total number of values in the
sequence and H is the Heaviside function, which is evaluated to one if the distance
between the pair 1, j is less than r, otherwise gero. In other words, the correlation
function counts the number of pairs with distance |x; — x| smaller than r, where r is
the radius of a p-dimensional hypersphere. The method thus provides an assessment
of the geometry of the space from which the samples are taken. For example, if the
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Figure 13 Although the photograph is actually of two cones in the desolate
Ka’u Desert lava field in Hawali, occasionally the alternate interpretation of two
craters is preferred. (This preference can be reinforced by turning the picture
upside down.) [Courtesy of Wide World of Photos, Nov. 1972.]

samples are uniformly distributed on a plane, then increasing r will increase the
correlation count as the square of the radius. For each embedding dimension p, an
exponent e,(r) = log[C(r)]/log]r] is calculated over r. The maximum value of this
exponent e, is then determined and plotted against p. If a random time series is
evaluated by this method this exponent rises with the embedding dimension (i.e.
¢p = p, or more correctly, e, = p for stochastic series). If a deterministic chaotic
series is evaluated, such as that generated by a Henon attractor, then the maximal
values of e, asymptote at some pp,ax for all p > puax. For a typical predator-prey
dynamical system, such as May’s logistic function, pmayx = 1.2. Figure 13 illustrates
this method. For each p, log C,(r) was plotted versus logr and the steepest slope
e, was computed using 6 points for r separated by factors of 1.2 (i.e. 2%). Note
that as p increases, so does ¢,. These slopes were then plotted versus p, as shown
in Figure 14. The error bars show the range of slopes, based on adjacent points,
within the six-point average plotted as a filled circle. The weakness of the method
is also illustrated here: for large embedding dimensions, p > 5, the uncertainty in
¢p increases substantially, especially when the number of data points is small (i.e.
N = 200). Hence in our study estimates of ¢, are restricted to < 8.
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Figare 13 Fire® stage in the analysis of the time sequence of state changes
for the crater illusion of Figure 1. Absclasa is the radius r of the hypersphere
of dimension p. Each point shows the value for that Cp(r). The slopes on this
log-log plot yield the values for ep.

Experiments

We obtained data for four sets of perceptual tasks: binocular rivalry; fixation pat-
terns during search; simple multistable percepts; and perceptual segments or “eras”
in several movies. The panels in Figure 15, plus Figure 12, show examples of the
multistable stimuli used. Table 1 gives the number of reversals recorded, and the
mean reversal time.
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Binocular Rivalry

When two patterns having significantly different spatial structure are presented,
each to separate eyes, typically one sees an alternation of one pattern with the
other. For example, if one eye is presented with vertical red and black bars, whereas
the other sees horisontal green and black bars, the percept is dynamic alternation
between each. The site of this competition or “rivalry” is known to be early in
the visual pathway, namely near the initial cortical area of processing (Julesz 1971;
Richards 1970). We measured the time series for 200 alternations for two subjects
and computed the correlation coefficients and expcnents e, for embedding dimen-
gions p = 1 to 8. As shown in Figure 14, a plot of ¢, vs p is roughly a line of unit
slope, specifically 0.85 for this subject. This result, regardless of the underlying
cause, is in agreement with Levelt (1965) and is typical of a stochastic process such
as the pattern of rainfall. Hence we conclude that binocular rivalry is not a de-
terministic chaotic process typical of a predator-prey competition (Kadanov 1986;
May 1976).

Cognitive Rivalry

Unlike “passive” binocular rivalry, the flip-flops of the crater picture in Figure 12
reflect processes that are evaluating the image as a depiction of a world state or
“scene”. The competition, if you will, is between alternate models that “explain”
the image. It is easy to imagine a process, such as the fluctuations in predator-prey
populations, where one explanation dominates for a while, and then another takes
over. We studied several simple displays such as the illusion of Figure 12, a picture
of a triangle with a stick lying across one edge, as well as some cognitive rivalry
tasks invented by Manfred Fahle (Fahle and Palm 1990). All of these examples
revealed hints of chaos. One of the clearer results was obtained from the time series
of flip-flops for the crater illusion. This display is particularly well-suited for study
because the perceptual biases can be manipulated by rotating the pattern, placing
the illuminant above/below or left /right — the latter being chosen because it yields
a more equal competition between percepts.

The data for observer AJ are presented in Figure 14, upper right. (The results
for WR were similar — see Table 3.) Note that, in contrast to binocular rivalry,
we do not see e, increasing linearly with p, but rather rising and leveling off near
ep = 3 for p = 4, then rising again. This “notch” in the curve is significantly
different from the linear extrapolation of the points for p > 5. We propose that
this “notch” results from a process exhibiting deterministic chaos of dimensional-
ity roughly 3.5, corrupted by a noisy stochastic process that “takes over” as the
embedding dimension increased.

Note that data for the reversals of a Necker Cube do not appear in Table 3.
As was found for binocular rivalry, only the hint of a “notch” was observed in the
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Figure 14 Plots of ¢p versus the exabedding dimension p obtained from data

Like that lllustrated in Figure 3. Upper left: binocular rivalry; upper right: the
crater illusion of Figure 1; lower left: monkey saccadic eye movements; lower
right: perceptual “eras” in *Out of Africa®.

plot of e, vs p. This result suggests that the dominant process causing the reversals
of the Necker Cube may be formally similar to the the process that leads to the
competition observed during binocular rivalry.

Eye Movements

Again using the “notch” as our indicator, evidence for chaos was also observed in the
spatial pattern of 200 eye movements obtained from a monkey, who was searching
a 17° x 17° field for a target (see Sommer 1993, for details). Note that in this
case the analysis was not performed on the temporal intervals, but rather on the
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MEAN
STIMULUS N DURATION DIMENSION, pmax

Binocular Rivalry 258 2.7 -
Crater Dlusion (aj) 200 3.2 34
Crater Hllusion (wr) | 200 30 36
Triangle and Stick 400 3.2 35
Duck-fish 400 43 42
Heggrl | 200 2.2 48
Eye Movements 200 | ¢ 0.2 3.5
“Out of Africa” 320 25.2 33
‘ET" 350 16.8 3.7
“Chariots of Fire” 350 19.3 3.5
“Star Wars" 400 15.2 36

AVG. 8.7

Table 3 Number of samples N and estimates of dimension underlying dynamical
system, pmax. The mean durations between samples are in seconds. The eye
movement analysis was performed on the spatial, not the temporal patterns of
fixations; the eye movement duration reported above is the mean intersaccadic
interval.

magnitude of the saccade.® The location of the notch in the curve of e, V8 p again
suggests an underlying dynamical system of dimension 3.5 which becomes masked
by a stochastic process at the higher embedding dimensions. We have attempted to
model these data using a combination of deterministic and stochastic processes, but
to date have not succeeded. [Although the unit slope observed for p > 5 is suggestive
of additive “random” noise, as yet we do not have a model that adequately explains
all our C(r) vs (r) observations. The data are not typical of the expected effects of
_ additive of noise observed in physical systems (B’en-Mizrachi et al. 1984; Theiler
1990).)

3The data we report were taken from the vertical component of the saccade.
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Figure 18 Some of the stimuli used that have multiple-stable states. Upper left:
a rivalrous pattern (dashed lines indicate the set presented to one eye, the solid
lines indicate the set presented to the other). Upper right: triangle plus stick
(stick is commonly seen as sitting on the edge of the triangle, or alternatively as
angled in space above the triangle with its right end touching the interior plane);
Jower right: a single duck ve two fish reversal; lower left: Boring’s ambiguous-
mother-in-law: an old woman vs a young girl.

Movies

The most complex perceptual activity we explored was the time sequence of seg-
ments that appear in films. Typically the camera will be directed to a person or
event for a duration, then the scene flips to another person or event, as the story
unfolds. Think then of the camera as the eye of the film editor, who unfolds the
story, attempting to communicate the salient points. Certainly this process entails
a very high level of perceptual understanding. However, the lengths of the camera
segments are rather easy to measure without excessive subjective bias. For “Out
of Africa”, “Chariots of Fire*, “Star Wars* and “ET", 200 to 400 segments were
recorded. These films were chosen to represent a spectrum of fast-to-slow paced
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films. The “Out of Africa® analysis is presented in the fourth panel of Figure 14.
As summarized in Table 3, it can be seen that the other three films were similar,
again suggesting an underlying dynamical system of dimension about 8 to 4, cor-
rupted by stochastic noise as the embedding dimension exceeded 5. [Of interest is
that “Out of Africa® also yielded an embedding dimension of less than three for the
upper component of the C(r) vs (r) plot.]*

Discussion

If one views the brain as a society of competing neurons or neural processes, then
their characterisation as a dynamical system is not surprising. Indeed, Poston and
Stewart (1978) proposed such a model for multistable percepts and such behavior
has previously been reported for adaptive systems and neural activity with dimen-
sionality estimates ranging from 3 to 7 (Altman 1991; Priesol et al. 1991; Skarda
and Freeman 1987; Xu and Li 1986). It is reassuring that the observed dimension-
ality of their conscious counterpart — our percepts — falls in this range. What is
surprising is that our estimate lies at the lower end with little variance. A dimension
of less than four for any dynamical system offers a reasonable possibility for model
development and study.

A second surprise is that regardless of the complexity of the perceptual task,
when chaotic behavior is plausible, the inferred dimensionality remains roughly the
same. It is difficult to believe that the processes underlying the reversals in the
crater and the temporal sequence of segments in the movies share the same neural
machinery to any great degree. Yet they both exhibit the same dimensionality! One
type of process that would elicit such a result is one that is organized in a hierarchical
manner having a fractal composition with roughly the same number of components
collected together in each level of the hierarchy. In other words, in such a scheme,
neural subsystems would compete for the attention of their “parental” systems, etc.
The fractal dimension common to all tasks would then indicate that each parent
has roughly the same number of “offspring”. Here, we’ve simply adopted a proposal
made elsewhere for social choice, where each state decision is not a single rational
choice, but rather an aggregation of many hierarchical choice problems (D. Richards
1991). In this domain the fractal dimension also is surprisingly low.

Thirdly, with respect to the eye movement data and results, which are spatial
and not temporal patterns, of interest is that again the dimensionality appears to be
about 3.5. This suggests that perceptual mechanisms may be directing the spatial
pattern of eye movements during the search for a target’s appearance. Note that this
“chaotic® search occurs even though the intersaccadic duration intervals are short,
around 200 ms (Sommer 1993). The scanning strategy, then, appears controlled by
a non-random, dynamical spatial representation, but not a temporal one. Again, a

“The other film data also suggested a lower dimensional component for values of C(r) >
{03, but this observation remains tentative.
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hierarchical search pattern, where small and large step sizses are nested as in a tree
or branching structure, would be one strategy that could exhibit such deterministic
chaotic behavior.

Finally, although our percepts appear to exhibit some properties consistent
with deterministic chaos, this should not be construed to imply that the percepts
themselves are chaotic! Indeed, the percepts can be quite rational and stable.
However the state changes underlying the development of these percepts seem char-
acteristic of a special kind of dynamical system that is well suited for searching
rapidly through a large data base of variable resolution, where many states are to
be evaluated quickly, probably in parallel.

7.0 Spinoffs

7.1 Texture Curvature (with Hugh Wilson)

This study examined curvature discrimination for edges created by texture con-
tours, and includes a model incorporating end-stopped complex cells. It appears
as “Curvature and separation discrimination at texture boundaries”, Jrl. Opt. Soc.
Am. A, 9: 1653-1661 (1992).

7.2 Shading and Stereo (Dawson & Shashua)

Pseudo stereopsis is when the binocular disparities of a surface, such as a face, are
reversed but the shading is not. The impression is that the face is “normal® - the
nose, for example, still points outward to the viewer.

We have manipulated noses using graphics techniques in order to push them
inward, “into the head” so to speak, without altering the shading. No one is able to
see these noses “shoved in”. Our analysis suggests that this failure of stereopsis is
simply due to the shape-from-shading solution “overriding” (in the Percepts Lattice
sense) the weak stereo signal created by shaded rather than sharp contours. The
effect is not special to faces, and occurs also for “playdo” shapes.

7.3 Configuration Stereopsis (Richards)

We are just winding up a study on 3D shape that relates to- how “top-down” in-
formation about fixation distance (or shape) modulates angular disparity. Because
binocular disparity appears to be computed in V2, this modulation must occur early
in the visual pathway and hence is potentially accessible to psychophysical probing.

As the distance to an object increases, the angular disparity needed to measure
the actual 3D configuration must decrease (reaching zero at the horizon). However,
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if we take an object, say a cup, and evaluate its 3D shape nearby versus far away,
the cup does not appear to flatten, although the disparity signal becomes much
smaller as the distance increases. This suggests a rescaling of disparity with object
(or fixation) distance.

We have conducted parametric studies of 3D shape from stereo over a wide
range of fixation distances.. The data show that indeed, the depth measure asso-
ciated with a fixed angular disparity changes with fixation distance. The effect
is in the direction needed to preserve the shape of 3D configurations as their dis-
tance changes, and is roughly two-thirds of what is needed for a full correction.
This is evidence for neural signals being modified at or before the extraction of
binocular disparity. Hence we have a preliminary “handle” on how a simple case of
“bottom-up” information — namely binocular disparity — may incorporate a form of
“top-down” knowledge.

7.4 A Neural Proposal (Ullman)

Ullman (1992) has proposed a network heirarchy scheme for how *“bottom-up”® in-
formation comes into register with “top-down” models. The basic process, termed
“sequence-seeking”, is a search for a sequence of mappings or transformations link-
ing a source and target representation. The search is bidirectional throughout the
heirarchy — “bottom-up” as well as “top-down”. The novel part of the proposal is
that the two searches are performed along two separate, complementary pathways,
one ascending, the other descending. When a matching pattern is found, regardless
of the level, then a chain of activity linking the source and target is generated, facil-
itating one particular path in the network. The proposal is largely consistent with
what is known about cortical machinery, specifically the interplay between the var-
ious visual areas, and hence is a hypothesis about the basic scheme of information
processing in the neocortex (and thalamus). Experiments related to this proposal
are currently underway.
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