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1 Introduction

In our AFOSR work, we have carried out an extensive research program for the study of robust
system control using methodologies from interpolation theory, dilation theory, and functional
analysis. We have also become interested in image processing and computer vision, and their
application to visual tracking problems.

First of all, we devoted a large portion of our research effort to nonlinear systems. This has
led us to derive an iterative commutant lifting theorem which gives an explicit design procedure
for nonlinear systems and captures the HOO-control problem in the nonlinear framework [51],
[52], [53]. We are of course interested in computer implementations of this work. In this area,
we have defined a notion of rationality for nonlinear systems, and we have proven that the
iterative commutant lifting procedure produces rational controllers (in this nonlinear sense)
if we start from rational data. The procedure has already been applied to certain systems
(connected with the National Aerospace Plane) with input saturations (in collaboration with
colleagues at the Systems Research Center of Honeywell in Minneapolis). Moreover, these
ideas are presently being applied to a disturbance attenuation problem in connection with
the control of the ATB-1000 Testbed which models the gun turret of the Apache helicopter
(in collaboration with control engineers at the Picatinny Arsenal in New Jersey) [24, 25].
This framework has also led to new directions in introducing notions of causality [54] in
commutant lifting theory, and moreover has led to the possible formulation of a global non-
linear commutant lifting theorem as a saddle-point result. We are particularly interested in
the treatment (and understanding the control limitations) of "hard" nonlinearities such as
dead-zone, backlash, and saturation. These ideas will be explained below in our Proposed
Work.

During the research period supported by AFOSP -J-0024, we also developed novel inter-
polation methods which are not norm-based. ThE .ve arisen out of our research into the
multivariable gain margin problem as well as the more general structured singular value. We
believe that this new type of interpolation theory should lead to several interesting directions
in operator theory as well.

More precisely, our work on the multivariable gain margin problem, has led to a novel
interpolation scheme which we call spectral Nevanlinna-Pick interpolation and the more
general structured interpolation theory; see [19], [18], [20], and [23]. This involves matrix
interpolation in which one bounds the spectral radius, and not the norm of the interpolants
as in ordinary Nevanlinna-Pick theory. (Ordinary Nevanlinna-Pick is precisely the type of
mathematical problem that arises in standard H*° synthesis.) We now have a theoretical pro-
cedure for solving this spectral interpolation problem both in its pure matricial and tangential
formulations.

Our solution involves a generalization of the commutant lifting theorem, and a new object
of interest in linear algebra and operator theory which we call the T-spectral radius. We
are presently studying both the theoretical and practical ramifications of our solution, and
we would like to develop software for the computation of the T-spectral radius. In our new
research, we have been concentrating on the generalization of these results to the structured
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singular value of Doyle and Safonov in order to try to develop an analytic p-synthesis proce-
dure (201. Closely related to this work is a novel lifting technique which allows us to study
the robust stability analysis of systems under various kinds of structured perturbations which
we will consider below. (See also [13], [14], [16], and [86].) This lifting technique allows one
to interpret the upper bound for the structured singular value p defined in terms of certain
scalings as a structured singular value on a larger space. Moreover, we will discuss below
a new approach for the approximation of Riemann mappings (conformal equivalences from
simply connected sub-domains of the complex plane to the unit disc) for the application of
solving the gain-phase margin problem [66].

We have continued our research on the utilization operator theoretic methods in HI-
optimization theory using skew Toeplitz operators (see [17] for the precise definition), which
seem ideally suited for studying HIO design problems, especially for distributed (i.e., infinite
dimensional) systems. These methods are quite natural in the control context since they allow
one to do design just using the input/output operators. This has led to an explicit solution
of the four block problem for large class of multivariable distributed systems. (This is
the most general H°-optimization problem.) The procedure seems to be numerically robust
as evidenced by its implementation at the Systems Research Center of Honeywell, and its
application to a number of distributed plant models including a flexible beam [70], and an
unstable delay system associated with the flight control of. the X-29 [35]. A nice feature of
this approach is that the complexity of the computations only depends on the the weighting
matrices (modelling the disturbances) and not on the plant (which may be distributed). Since
the weighting matrices are typically taken to be rational, this approach seems very efficient
even in the finite dimensional case for plants with large state spaces. We have also been
developing methods for the utilization of an operator due to Young [94] in order to simplify
some of our computations in the standard problem for multivariable systems.

Recently there has been a large amount of work devoted to state space approaches to HI
optimization; see [3], [33], [58] and the references therein. In our AFOSR research, we have
verified a formula which combines the state and frequency approaches to H -optimal design in
the one block (sensitivity minimization) case [71], [96]. We will also be interested in extending
this to the more general two and four block frameworks. This type of formula should combine
the advantages of both the elegant state space (Riccati equation) and frequency domain
(input/output) approaches to HO theory.

Next using the one-step dilation procedure, we have given a way of parametrizing the
suboptimal controllers for such generalized interpolation problems [43]. This has led to a
scheme for designing suboptimal finite dimensional controllers for distributed systems in the
one block setting [77]. We would like to continue this direction for the general standard
problem. as well as apply the techniques to a number of design problems. Some steps in this
direction have already been taken in [35], [70], and [72].

Closely related to the above work has been the use of HO techniques to study sampled-
data control. See [11] and the references therein. Here one can use a certain operator-theoretic
lifting method to describe a complete solution to the analysis problem of verifying that a given
controller constrains the L 2-induced norm of the sampled-data system to be less than some
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pre-specified level. (In fact, the lifting method is applicable to all norm based optimization
problems. In discrete-time such a technique was employed in [64] to study a number of issues
in robust control.)

We will also discuss our research in combined He-H 2 suboptimal controllers (136] and
[38]) as well as sketch an approach for combining other norms based on techniques from
interpolation on Banach spaces, and the connection of this methodology to a new approach
for model reduction which we intend to explore in our new AFOSR contract.

We should note that our work in HOO control has also motivated a number of interpolation
theoretic problems connected to a strong version of the Parrott theorem [50], and the resulting
theory of minimal entropy extensions [37]. Moreover, there are a number of interesting oper-
ator theoretic problems connected to the singular spectrum of the four block operator which
we will describe in this proposal, and which we intend to explore further. Finally, there are
some deep operator theoretic problems related to the characterization of the optimal solutions
in spectral interpolation theory [18].

In a different direction, we have been using curve evolution theory (and especially invariant
nonlinear diffusion equations), for the development of new algorithms in image processing and
computer vision. Curve evolution theory has recently become a major topic of research, and
indeed has appeared insuch diverse fields as differential geometry, parabolic equations theory,
numerical analysis, computer vision, the viscosity solutions of Hamilton-Jacobi equations, and
image processing. See (67, 68, 69, 81, 82, 83, 84, 85] and the references therein.

In particular, evolution equations which are geometric non-linear versions of the classical
heat equation have received much attention, since these equations have both theoretical and
practical importance. These ideas have been used also in shape-from-shading, image smooth-
ing and enhancement, motion planning, shape segmentation, optical flow, and a continuous
implementation of mathematical morphology.

A complete list of publications which acknowledges support of AFOSR.-90-0024 is included
in Section 7. We now sketch the work done by A. Tannenbaum and collaborators on this
contract.

2 Nonlinear Robust Control

We have been pursuing several directions in order to derive nonlinear generalizations of the
(linear) H' theory in the weighted sensitivity minimization (one block), mixed sensitivity
(two block), and even standard problem frameworks. One such direction is based on an
iterative commutant lifting theorem [51], [52], [53], [41] which gives an explicit design
procedure for nonlinear systems and captures the H°-control problem for a large class of
nonlinear plants. We have also defined a notion of rationality for nonlinear systems, and we
have proven that the iterative commutant lifting procedure produces rational controllers (in
this nonlinear sense) if we start from rational data [51]. We have thus been able to write
computer code for this procedure along the lines that was done for the four block problem
using the theory of skew Toeplitz operators.
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2.1 Causal Analytic Mappings

We consider analytic mappings on Hilbert space. For the precise definitions see [51], [52], [53],
[39]. For simplicity, we will only consider SISO operators in what follows. The multivariable
case works the same way [39]. We will find it convenient to employ the Fourier representation
of elements of H2(D").

So we consider an analytic map q$ with C = it = H 2 (the standard Hardy space on the
disc D). Note that HS2®0...® 0H2 =(S2)1" ý_' H 2(D n)

where wemap 1 ... 9z0... o1(z in the i-th place) tozi, i = 1,...,n. In the usual way,
we say that 0 shift-invariant (or time-invariant) if

OnS°" = SO. Vn > 1,

where S H 2 --. H2 denotes the canonical unilateral right shift. (Equivalently, this means
that S# = 4 o S on some open ball about the origin in which 0 is defined.)

Now set
Pn):= p(j),o...6 P(j) (n times), j ? 1, n > 1,

where P(j) :I - $•$.•.

Then we say that 0 is causal if

p(,)On = p(,)O.p.Pn) j >.1, n >1.

For 4 H2 -+ H 2 linear and time-invariant, it is easy to see that 0 is causal. In the
nonlinear setting however, time-invariance may not imply causality [53]. It is for this reason,
that a causality constraint must be explicitly included for nonlinear H° design.

2.2 Causal Optimization Problem

Because of the difficulties involving causality when one applies the classical commutant lifting
theorem in the nonlinear framework, we w"ll need to formulate a new linear causal opti-
mization problem. Then we will indicate how to reduce the nonlinear generalization of the
HI sensitivity minimization problem to a series of such problems.

We let S(,) denote the unilateral shift on H2 (D") given by multiplication by (z, ..- .

Since H 2(D") Will be fixed in the discussion we will let S := 5(,). In what follows, U will
denote the unilateral shift on H2 given by multiplication by z, and 0 E HI will be an inner
function. Finally W : H2(D") --, H2 will denote a causal, time-invariant bounded linear
operator.

We can now state the causal Hoc-optimization problem (COP): Find

or := inf{fIW - eQll : Q : H 2(D") --* H2 , Q causal, time-invariant}. (1)
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Moreover, we want to compute an optimal, causal, time-invariant Q.0 such that

a = llW - KQ00Il. (2)

If we drop the causality constraint, the solution to problem (1) is provided by the classical
commutant lifting theorem [89]. With the causality constraint, the solution to (COP) is
abstractly provided by a causal commutant lifting theorem [54], [42], [40].

Our constructions are based on a reduction theorem [39], which we will briefly sketch
below. In order to formulate this result, we will first discuss the Fourier representation.

Fourier Representation

We need to define all the relevant spaces. Denote by
12(H 2) * "2 ,

i=2

the Hilbert space of all column vectors

f(z) = [fA(z),f2(Z),. . .,f,A(z),....]', (3)

('stands for tranpose) such that
0o

I1,12 2 11142i', (4)

is finite. (II fl is our generic symbol for a Hilbert space norm (2-norm) as well as the induced
operator norm. So for example in (4), it stands for the usual norm on H2 as well as the
associated norm on 12(H 2).) Thus 12(H 2 ) is a vector-valued Hardy space. Indeed, if f(z) is
given by (3), then we may write

f(z) = a,.z"', (5)
mnO

where each am is an infinite column vector with components in C, and

a~m [c)0) 4')(0 .... .

Clearly,

11I112 = Ia mII2.
1n=O

Conversely, if f(z) E 12(H 2) is given in the form (5) for

am = [ -I,. .. , I ,,...Y,

then f(z) can be written in the form (3), i.e.,

A(z) = [f,(z),. f()...]',
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where

M=O

In what follows, we will either use representation (3) or (5). The context should always make
the meaning clear.

Next we let S# : e(H 2) -. 12(H2 ) denote the unilateral shift defined by multiplication by
z. Then the Fourier representation is given by the (linear, bounded) operator

4 := 0.: H 2(D") 12 (H 2),

which is defined by

f(z) : '(F(z1 ,z 2 ,...,z))

F mrn~l,,...,m

00

E zM (6)
,,=O

where

F~~zl,...,~~i ... ,i . ... >_O ..z'-

Note that we are taking f(z) in the form (5) in the above representation. Moreover, note that

(DC") = {(zl,...,z,)= e, ., ... •*. .i.¢ • I• .. •1 < 0o).
F•.. . ....>0... .... ' _>

We can also write

fAz) = [fo,.,o(z), fA,...,o(z), fo,... W, f,.._O(Z), .. .1', (7)

where

,,.... qn(z) := E Fj,I+,....,j+mzm. (8)
=00

,u=O

Notice, we have chosen the indexing of the fi ...... in such a way that the indices run over
the set

Z, : (i•..,•:i•..,/, O in~iI,-,. }= 0}. (9)

Next, it is easy to prove that 4' H2(Dn) -__ t2 (H 2) is unitary, and that

95 = S4. (10)
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By (10), we see that if W : H2(D") -+ H 2 is such that WS = UW, then the operator

W " : 12(H2 ) -+ H2 satisfies

(W4')S. = WS*" = U(w+'),

that is, WV intertwines the shifts S* and U. Consequently, it is standard that Wf* is
represented by a row vector

[Wo,...,o(z), Wi,...,o(z),..., Wo,...,1W(z), W2,...,o(Z),...]. (11)

We will write that

w f " -5 [W o,. ..,o(z ) , w I ,..' o(Z ) , ... ,I W o ,...,l (Z ), w 2, .o(Z ), ..] (12 )

One may show that in fact

w,, .....iAZ = WZ ... z"), 01 . i ,,E .- (13)

The above discussion used only the time-invariance for W. In the next proposition, we
will write down an explicit expression for the row vector of (13) associated with W§° in case

W is causal.

Proposition 1 Let W : H 2(D") -4 H 2 be time-invariant. Then W is causal if and only if

Wt• .. (Z) = zm" { ..... K" (z), V( 1, ii) E I,.

where W H(z)EH .

By the above discussion (in particular, Proposition 1), we see that for W, 0 as in the

(COP) problem (1), we have

a = inf{I1W - OQI1 : QS = UQ, Q causal, time-invariant}

- inf{11W4* - 0Q4J1 : (Q4')S = U(Q§*),Q causal, time-invariant}

= inf{fjW1 -_OQll : WI,Q, :t 2(H 2) -* H 2 , W, = WV,

Q, 25 [qo,...,o( z), zql,...,o( z),. .. , zqo,..., ( z), z2 02,...,oCz), .... .]I-

From now on (unless explicitly stated otherwise), we will just work with the operators
W1 , Q : 12 (H 2 ) -- H 2 . Essentially, via the unitary equivalence §, we are identifying the
spaces H 2 (D") and 12 (H 2 ). In particular, we identify W with W1 = WV, and Q with

Q, = Q**. For simplicity of notation, we will denote

W=W1 , Q=Qi.

The context should always make the meaning clear.
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We now translate the notions of causality and time-invariance for an operator W
£2(H 2 ) --. H2 . We will say that W is time-invariant if WS, = UW, that is,

W ý! [Wo,...,o(Z), w1'..... (Z), ... ,I Wo,..',(Z), w2,...,o(z),... ]-

Moreover, we say that W is causal if the operator Wf : H 2(D•) -* H2 is causal, which means
(see Proposition 1) that

w "" [wo,...,'o(Z),,,wLr..o(Z),...Zwo,...., I(z), z2wLc..,0(Z),...],

for some
f Wjc ..... , •(z) E H': (ij,...,) E In}.

Motivated by the above discussion, for W 1t2 (H 2) -, H 2 time-invariant and causal, we
introduce the operator

WC ý- [woc,...,o(z),wLc,..,o~z),...,woc,...,ICZ),w'2,.,o(Z),...]
= [Wo,...,o(z), w,...,o(Z)/Z,..., Wo,...,I(z)/z, W2,..,o(z)/z 2,... (14)

Recapping, in order to solve the (COP) problem (1), we can equivalently solve the following
problem: Given W : 12(H 2) --* H2 time-invariant and causal as above, find

S= inf{IIW - OQII :QS* = UQ, Q causal}. (15)

Thus we have to solve the optimization problem (COP) on the Fourier transformed op-
erators. But this can be easily accomplished via the following key result that we proved in
(39].

Theorem 1 (Reduction Theorem) Notation as above. Then

o = inf{IIW - OQII: QS = UQ, Q causa} (16)

= inf{f1[Wo,...,o(z) - fqo,...,o(z), z(Wi,o,..,o(z) - 0q1 ,o,...,o(Z)),.. .]11: (17)

[qo,...,o( z), . . . , q2,...,o( z), . ]E C(1 I(H 2) , H 2) )

= inf{flW, - eQII: QS = UQ}. (18)

(Note in (17) the norm u the operator norm in g( 2 (H 2), H2 ). In genera*, for Hilbert spaces
?i and X, C(7i, K) denotes the space of bounded linear operators from W to K.)

Algorithm for Computation of a

We would like to summarize the above discussion with a high-level algorithm for the com-
putation of the optimal causal performance a, and corresponding causal optimal interpolant
Q,• in (1) and (2).

" " • • • m • • m -8



First of all using the notation of the Reduction Theorem, let us denote

o.:= inf{lW. - eQll: Qs = uQ}. (19)

(See equation (18).) Then the Reduction Theorem guarantees that

a = O'o.

This means that a causal optimization problem can be reduced to a classical generalized
interpolation problem in HO*.

We can summarize the procedure as follows:

(i) Let W, E be as in (1). (Thus W : H2(Dn) -* H 2 here.) We compute W(z1 ... Z.")
where (,ii...,in) E I,. We get that

wV ýý [Wo,...,o(Z), WI,.....o(z),. , Wo...(Z), w 2 ,.,o(z), ...

and then as above, we can obtain the row matrix

[Wo,...,o(z), w.o(z),... wO,...,W W(z), Wo(z),...].

(ii) The latter row matrix represents an operator W, : 12(H 2) -- H 2. Let n" : H 2

H 2 E OH 2 denote orthogonal projection. Using skew Toeplitz theory, we can compute
the norm of the operator

A(W, ) := rIW,. (20)

The norm of this operator is a, the optimal causal performance.

(iii) Using the classical commutant lifting theorem and skew Toeplitz theory, we can compute
the optimal dilation Be :1 2(H 2 ) --. H2 of A(W, 0). Recall this means that

B.S# = UB,, IIB, = A(W, O), IIBJII = IIA(W, E)ll = a.
We can then write

Bc = w. - KQ•.

Then from (14), we can find the optimal causal dilation

B = WV - Opt*.

Note that B and Bc are related as in (14), and similarly for Q00,c and Qot§. Q0,,g
H2(D") --* H' is the optimal causal interpolant, i.e.,

a = 11W- eQ,,•ll.

9



j~d

Figure 1: Sensitivity Minimization Configuration

Now in analogy to our previous work, we can base an causal iterative design procedure
on this chain of ikoms.

Here is how such a procedure would look. Let us call an analytic input/output operator
H H' -- H2 admissible if is is causal, time-invariant, and 0(O) = 0. Denote the set of

admissible operators by C.. In what follows below, we assume P, W E C., and that W admits
an admissible inverse.

Referring to Figure 1, we consider the problem of finding

1&6 :=inf sup j[[(I + Po C)-1 o W]vII, (21)
C IIII_6

where we take the infimum over all stabilizing controllers. (In what follows, we let denote
the 2-norm. 11112 on H2 as well as the associated operator norm. The context will make the
meaning dear.) Thus we are looking at a worst case disturbance attenuation problem where
the energy of the signals v is required to be bounded by some pre-specified level 6. (In the
linear case of course since everything scales, we can always without loss of generality take
6 = 1. For nonlinear systems, we must specify the energy bound a priori.) Then one sees
that (21) is equivalent to the problem of finding the problem of finding

W = inf sup fI(W - P o q)VI. (22)
eco. 11-11<6

The iterated causal commutant lifting procedure gives an approach for approximating a
solution to such a problem. Briefly, the idea is that we write

w =
P = P2+P2+..,

q = ql+q2+',

10



where W,, P1, qj are homogeneous polynomials of degree j. Notice that

= 6 irj jW1 - P1qijj + 0(62), (23)
= qi EH (3

where the latter norm is the operator norm (i.e., H° norm). From the classical commutant
lifting theorem we can find an optimal (linear, causal, time-invariant) qi,.,t E H' such that

;4 = 611W, - Piqi,.p•,j + 0(62). (24)

Now the iterative procedure gives a way of finding higher order corrections to this lin-
earization. Let us illustrate this now with the second order correction. Indeed, having fixed
the linear part ql,,t of q in (22), we note that

W(v) - P(q(,v)) - (W1 - Piqjwt)(v) =

W2(v) - P 2(ql,.ot(v)) - Plq2(v) + higher order terms.

Regarding W2 , P2, q2 as linear operators on H 2 ® H2 5- H2 (D2 , C) as above, we see that

sup II(W - P o q)(V) - (W- _pq,. 1 62"11W 2 - P1 q211 + o(63),
IIuII•_,

where the "weight" WV2 is given by

*•€2 -- W2 - P2(ql.,w 0 qjoW).

The point of the iterative causal commutant lifting procedure is to allow us to construct an
optimal admissible q2,oW, and so on.

In short, instead of simply designing a linear compensator for a linearization of the given
nonlinear system, this methodology allows one to explicitly take into account the higher order
terms of the nonlinear plant, and therefore increase the ball of operation for the nonlinear
controller. Moreover, if the linear part of the plant is rational, our iterative procedure may
be reduced to a series of finite dimensional matrix computations. (See [39, 51] for discussions
of rationality in the nonlinear framework.)

Finally, in a number of interesting cases, the above methodology can be extended to a
nonlinear extension of the mixed sensitivity problem; see [34]. In fact, one can show that
for linear weighting filters and admissible plant, the nonlinear mixed sensitivity problem may
be reduced to a standard linear two block problem, followed by a one block nonlinear design,
which may be solved using the above iterative methods.

Recently the above procedure was extended to the general standard problem for nonlinear
systems, see [41]. We should note that we have concentrated on time-invariant systems
in our above description. In fact, there is a much more general causal commutant lifting
methodology [54, 42, 40] that can be extended in principle to time-varying systems. This
is a very important problem area. Moreover, there are interesting problems concerning the
equality of certain invariants which arise the the general causal commutant lifting framework
[54] which we intend to consider in our upcoming AFOSR contract.

11



2.3 Saddle-Point Approach to Nonlinear Optimization

We have discussed above an iterative commutant lifting approach to nonlinear system design.
The iterative communtant lifting technique is basically a local analytic method for nonlinear
system synthesis. We have also been exploring a very different approach applicable to certain
systems with saturations based on an interpretation of the classical commutant lifting theorem
as a saddle-point result [55]. This motivates us to formulate a nonlinear commutant lifting
result in such a saddle-point, game-theoretic framework.

A related approach to nonlinear design has already been independently employed in the
novel and important papers of Ball-Helton [8], [9]. See also the recent nice work in [59, 60].

In our research, instead of considering general nonlinear systems we limit ourselves to
the concrete (but certainly interesting case) of linear systems with input saturations. Such
systems occur, of course, all the time in "nature." We should add that a similar approach
should be valid for many of the hard, memoryless, noninvertible nonlinearities which appear
in control.

Mathematically, the case of the saturation is very interesting since in a certain sense it is
a nonlinear analogue of an inner (non-minimum phase) element, whose "spectrum" seems to
be spread throughout the unit circle. Thus the problem of sensitivity minimization for such
elements (that is, a form of weighted inversion) is particularly challenging, and will be a key
topic to be studied in our upcoming research program. Again, preliminary results along these
lines have been worked out in [55]. What needs to be developed still is a commutant lifting
type result valid on convex spaces. This we plan to do in our new AFOSR contract.

3 Structured Singular Values and si-Synthesis

We would like now to discuss our work on the structured singular value and p-synthesis using
a novel approach which we developed called structured interpolation theory. The structured
singular value was introduced into robust control by John Doyle and Michael Safonov ([30],
[31], [79]) to handle problems involving structured perturbations which includes both H*
and the multivariable gain margin as special cases.

Our starting point is the fact that the problem of internal stabilization of a given LTI
multivariable plant can be reduced to one of interpolation. Thus the natural measure of
robust performance in this framework is given by the minimization of the structured singular
values over all possible interpolants. Hence, one needs a structured Nevanlinna-Pick type
result which will generalize both the classical Nevanlinna-Pick theorem (relative to the H*O-
norm), as well as the spectral Nevanlinna-Pick theorem (relative to the spectral radius). Such
a structured Nevanlinna-Pick theorem can be deduced as a consequence of a general structured
commutant lifting theorem as we will indicate below. This approach has been developed in
our AFOSR sponsored work [18, 19, 15, 16, 23, 12].

We will discuss some of these issues now, and explain how these results could serve as
a basis of performing the p-synthesis procedure in robust feedback control in a rigorous,
analytical manner.
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3.1 Structured Singular Values and Dilations

We would like to formally introduce the structured singular value now, and give some of
its basic properties. We base this discussion on [20]. Instead of working over diagonal sets
of matrices as in [301, we can more generally work over an arbitrary finite dimensional C'-
algebra.

Let C be a complex finite-dimensional HUbert space, and A C £(C) (the space of bounded
linear operators on C), a C*-algebra. For A E C(C), A 0 0, we define the structured singular
value

p,&(A) := [inf{llXll : X E A, -1 E cr(AX)}]-.

Moreover, we set
&(A) := inf{IfXAX-'1 I : X E A'},

where A' is the commutator of A. Note that for A = L(C), A4A(A) = IhAII, while for A C=l,
PA#(A) = hlAhIp (the spectral radius of A).

We now summarize some of the elementary properties of u,& based on Doyle [301. The
relevant properties are:

(i) M,(A) = sup IIAXlI., : X E A, IlXll < 1).

(ii) I&& is continuous.

(iii) •ACA)5 _< &(A).

For certain diagonal algebras of matrices, it is argued in [30], [79], and [80] that the
structured singular value u,& is the natural object of study in robust control. Unfortunately
the structured singular value is difficult to compute, so in practice it is A& which is actually
used for control problems. It is therefore of interest to know when these two objects are equal.

In [30], Doyle has shown that in fact uA = P when the relevant diagonal algebra has three
or fewer blocks. In [20], we give a very different proof of this fact based on the following result
which we believe has independent interest. Define the operator MA E C(C) by MA := AX.
Notice that C(C) may be given a Hilbert space structure with respect to

(T1,T2 ) := Tr(T;T1 ),

where Tr denotes the trace. Define

A&(A) := p,(MA)

where
A {Mx : X E A'1'}.

We now have (see [20] for the proof):
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Theorem 2

Note that Theorem 8 implies that A& can be regarded as a structured singular value
on a bigger space. From the theorem and property (ii) above, we can immediately infer the
key fact that ja is continuous. This result is also strongly connected to some recent work on
robust stability with respect to time-varying perturbations [86]. In fact, we are investigating
the extension of this lifting technique to operators on infinite dimensional Hilbert spaces
with applications to the robust stability analysis of systems under various kinds of structured
perturbations [13]. In particular, we have considered the following two cases [13, 14, 211-

(i) The algebra of constant diagonal scales A', with the operator A taken to be analytic
Toeplitz. (This is the case analyzed in [86].) Note that by "analytic Toeplitz operator"
A, we mean that A is given by an n x n matrix with entries HI functions, which we
regard as acting as a multiplication operator on H2(C"). Thus A defines a stable LTI
system. We also want to consider general time-varying linear input-output operators
with this constant diagonal algebra of scalings as well.

(ii) Again we take A to be analytic Toeplitz, but now we want to consider A' to be the
algebra of diagonal analytic Toeplitz operators. This is the type of problem considered
in 1-synthesis.

We should note that this work has also led to a new relative Toeplitz-Hausdorff theorem.
We will now outline a structured analogue of the commutant lifting theorem (20]. This

will be applied to the structured version of classical matricial Nevanlinna-Pick interpolation
below.

Set
T := S(m) 0 Ie

where m is a finite Blaschke product, S(m) is the compressed shift, and C is a finite dimen-
sional complex Hilbert space. Fix A C £(C), a C*-algebra. Define

IH2 ®9A := {IH2 ®X X E A},

I, @ A' := {fI2 ®X : X E A'}.
Notice that 1t:= H 2(e) E mH 2(e) reduces both IH2 ® A and IH2 9 A'. Now define for

A E {T}' (the commutant of T),

pT(A):- inf{IIXAX-1 l : X invertible, X E {Ty', X E (IH2 ® AIC)'}.

Let U be the isometric dilation of T on H 2(C) (so that U is defined by multiplication by
z). For B E {U}', define

pA(B) := inf{fjYBY- 1ff : Y invertible, Y E {U}', Y E (IH2 ® A)'}.

We can now state the following result from [20]:
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Theorem 3 (Structured Commutant Lifting Theorem) Notation as above. Then for
A e {T•','

pf(A) = inf {p"(B): B is a commuting dilation of A).

Actually, in the finite dimensional case of interest to us, we can show that

p#(A) = in sup A&,(B(z))
B seD

where B E {U}' is a commuting rational dilation of A.

3.2 Structured Nevanlinna-Pick Interpolation

We now apply the above theory to a structured version of the Nevanlinna-Pick interpolation
problem for matrix-valued interpolants.

Let C be a finite dimensional Hilbert space, let zi,... ,z, E D be distinct, and let
F1, ... , F, E C(C). We begin with the classical matricial Nevanlinna-Pick problem in which we
want necessary and sufficient conditions for the existence of an analytic function F: D -C()

with IIFII. < 1 such that

F(zj) = Pj (25)

for j ,...,n. Define

m(z) := J - zj
• (f 1 - z ) z

Ij=

and
i:= H 2(e) e mH 2(C).

We set T := S(m) 9 It, and note that

h'- f @ + f2 0 ...+ +f,@(.

This sum is direct but not orthogonal.
For the given interpolation data above, we define A : W W 71 by linearity and by

A(fi (9 f):= fl ®9 Fif

for all f E C, j = 1,2,.. .,n. Note that

for all E C,j= 1,2,...,n. Thus
A E {T}'.
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It is easy to show that F satisfies the interpolation conditions

F(zl) = FI, Vj =1,...n (26)

if and only if
PwMF = A~w,

where MF : H 2(t) --+ H 2(C) denotes the multiplication operator associated to F. Then
the classical commutant lifting theorem implies that there exists an F satisfying (26) and
IIFII.o < 1 if and only if IfAj( < 1. We will now show that the structured Nevanlinna-Pick
problem can be given a similar solution, based on the structured commutant lifting theorem.

More precisely, define

I := {F : D -4 C(C) F is rational, bounded in D, F(zi) = F,}.

We are interested in finding

&(27) -inf{sup MA(F(z)) : F E 7)
seD

A(I) := inf{sup A&(F(z)): F E 1}.
zED

We denote the operator A associated with the matrices F.,..., F. by A(Fi,..., F.). Set

pf(A) =
inf{IIA(MiFiMj 1 ,...,M.F&M,)Ij : M E A', 1<j : •n}

(where the Mi are invertible) and

pT,tCA) =
supfpT(A(FIXI, ...F~ )) : IIA(XI,..Xj)I :5 1, X1,... , x. E A},

where as above, for an operator Q E {T}' we let

pT(Q) = inf{IIXQX-1 l X is invertible and X E {Ty 1.

It is easy to show that PTNA) 2! p,,&(A).

We can now state [20]:

Theorem 4 (Structured Nevanlinna-Pick) Notation as above. Then

•(I) = pTA ).
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Theorem 5 Notation as above. Then

Next in many control problems one is interested in a variant of Nevanlinna-Pick inter-
polation, called tangential Nevanlinna-Pick interpolation. In the tangential problem, we are
given z1,. . .,z. E D (which we take to be distinct for simplicity), uls,.. .,u,n E CN non-zero
vectors, and i,-,... , va E CN arbitrary vectors. We are then interested in those bounded
analytic functions F : D -C C(CN) which satisfy the interpolation conditions

F(z)ui = vi, j 1,...,n. (27)

In the classical Nevanlinna-Pick problem, we ask for conditions guaranteeing the existence of
an interpolating function F with

IIFII. sup{llF(z)ll : z E D} < 1.

In [15], we study the spectral version in which we require

IIFII., := sup{llF(z)ll,: z E D} < 1.

Define the tangential Nevanlinna-Pick matrit as follows (for p > 0):

XV(z +, • An z ; UI , i ; .. • ; u ,,,n; p):= [ P j 1v )- (u++ "1.

The following result may be deduced as a corollary of a tangential spectral commutant lifting
theorem [15]:

Theorem 6 (Tangential Nevanlinna-Pick Theorem) There eists F E H¶C(cN) with
IIFlI,, < p satiying the interpolation conditions (27) if and only if there exist Xi E B(CN)
(1 <j < n) invertible such that

A((z , ... ,iZ n;X ln isX iv; ... ; X nun, X n• ; P) > 0.

Work is already in progress on the two-sided and bitangential spectral and structured
analogues of the classical results [12]. These results are precisely what are needed for a
completely rigorous j-synthesis procedure in robust control.
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3.3 Conformal Mappings

We would like to briely discuss some work that we also did on the gain-phase margin problem
that involves some novel approximation methods of Riemann mappings (conformal equiva-
kmces from a simply connected proper subset of C to the unit disc) due to Marshall-Morrow
(see [27] and the references therein).

The successful solution of the gain and phase margin problems (see [90], [66], [32]) was
based on the fact that one could explicitly construct a conformal equivalence from a simply
connected subdomain of C (which was associated to the uncertainty model) to the disc.
Nevanlinna-Pick interpolation then took care of the rest. In [66], we considered a combination
of both the classical gain and phase margins in order to arrive at a better measure of robust
stability which we called the gain-phase margin. Unfortunately, in this case, there is no
explicitly computable conformal equivalence between the associated domain of uncertainty
and the disc. The algorithm of Marshall-Morrow however gives a fast way of approximating
the given equivalence, and has led to a reliable approximate solution of gain-phase margin in
[27]. We are now applying this algorithm to the type of general robust synthesis question as
considered by Sideris and Safonov in [87].

3.4 Problems in Classical Interpolation Theory

We would like to mention a direction in our research which involves some interesting problems
in classical interpolation theory, in particular, the minimal entropy solutions for a number of
interpolation problems [50], [37]. We have found that in studying the spectral properties of
the four block operator and its relation to interpolation theory, we have been led to a strong
version of the classical Parrott's theorem. Parrott's theorem is one of the key matrix
extension results and has found numerous uses in control theory as well as signal processing.
Our strengthened version in a certain sense picks out an extension which is "opposite" to
the famous maximal entropy or central solution to such extension problems. This solution
has a natural physical interpretation in the waves through multi-layered media context.
From the more theoretical side, this result can be used in generalizing some beautiful results
of Adamjan-Arov-Krein on the connection of the singular values of the Hankel operator to
optimal interpolation by functions with a presribed number of poles on the unit disc to the
four block operator of H- control [46].

Further, based on the strong Parrott theorem we have proven a strong version of the
commutant lifting theorem [37] which leads to an explicit parametrization of minimal en-
tropy solutions in dilation theory. We would like to apply this to the Nevanlinna-Pick and
Cpratheodory interpolation problems (and even to the general standard HOO problem), in
order to explore the system theoretic consequences of this class of dilations.

4 HI Optimization of Distributed Systems

In [73], (74] we have considered the mixed sensitivity HCO-optimization problem for distributed
plants with a finite number of unstable poles.
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Figure 2: Standard Feedback Configuration

As in the standard operator approach to such problems, the computation of the optimal
performance and corresponding optimal controller is reduced to a finite dimensional matrix
problem. In the stable case, the size of the matrix only depends on the McMillan degree
of the weighting filters. In the case of unstable plants, the size of the corresponding matrix
depends on the number of right half plane poles of the plant as well. The dimension of this
matrix can *be computed a prioK The key mathematical fact that we use is that the skew
Toeplitz operators which we obtain in the unstable case are finite rank perturbations of the
classical skew Toeplitz operators obtained from compressions of rational functions.

In our AFOSE. research, we have used these techniques to synthesize controllers for several
types of flexible structures [70], and an unstable delay system derived from the flight control
of the X-29 [35).

4.1 Two Block Problems With Unstable Plant

In this section, we will show that several two block H -minimization problems reduce to the
computation of the norm of a certain skew Toeplitz operator, and indicate how this norm
may be computed. We begin with some notation. The Hardy spaces H2 and H' are defined
on the unit disc is above. We denote

RH' := {rational functions in H¶O).

We consider the feedback configuration of Figure 2 with

P=o

and G, E HOO, Gd E RHOO.

We assume that (i) G,, = n,.Gno where mn E HOO is inner (arbitrary) and G, E HO*
is outer, and (ii) G., Gd have no common zeros in the closed unit disc. We also write
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Gd = mdG& where md E RHO° is inner and G&, E RH* is outer. Under these assumptions

there exist X E RH' and Y E HI such that

XG, + YGd = 1. (28)

(To construct solutions of (28), X must be chosen to satisfy a set of interpolation constraints
at the seros of Gd in the closed unit disc so that Y = (1 - XG.)/Gd belongs to H'. Since
the constraints are finite in number, X can always be chosen to be rational.) The set of all
controllers which stabilize the plant can now be written in the form

X + QGd
Y Y- QG

for some Q E H1. Now let S := (1 + PC)-' and note that

S = 1 - XG. - QG.Gd. (29)

In (73], (74], we show that the computation of

/I = inf W1S 1
.staUsing C W2 (S - 1)]

where W1, W2 E RHI are given weighting functions with W;"1, Wj 1 E RHO may be reduced
to computing the norm of the operator

A := PH(,.) (Wo(S) -G o(S)m(S)) (30)
A 1 s ' Go(S) ,( 0

where S : H2 -, H2 denotes the unilateral shift, H(mv,) := H' e mH 2 and PH(,) the
orthogonal projection onto H(m,,), for m, m, inner functions associated to the plant and
weighting filters, and where W0 , WO, Go are rational H' functions computed from the plant
and weighting filters. This reduction is true for plants with arbitrary outer parts. (We can
do a similar type of reduction for another two block minimization problem in case the outer
part of the numerator of the plant is rational. Namely, in this problem we are required to
find

,tabifisin C W2C $

where W1 , W2 E RHOO are given weighting functions with Wj 1 , W 1 E RH-.)
In [73], [74], we develop an approach to computing the singular values and vectors of

operators of the form (30). We remark here that it is easy to compute the essential norm
(see [73], [74]) of the operator A, which will be denoted by IJAII.. Then in [74], the following
result is proven:

Theorem 7 Let n denote the mazimum of the McMillan degrees of the weighting filters W,
and W2, and let I denote the number of unstable poles of the plant P. Then the singular
vectors and values of A which are > I1AIl. may be derived from an ezplicitly computable
system of 3n + 21 linear equations (the "singular system").
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In (74], the singular system of equations is explicitly written down. Again the number
of equations only depends on the McMillan degrees of the weighting filters, and the number
of right half plane poles of the plant. The computation of the maximal singular value and
the associated singular vectors of A, then allows us to find the optimal performance tt of our
original control problem and the corresponding optimal compensator.

As an example of the above, consider the plant (in continuous time) with a delay and one
unstable pole:

P(s) = e-J, as +

The optimal unweighted mixed sensitivity performance can be computed to be

It is interesting to note that as h -+ oo, and/or a -, 0, the best achievable performance
increases exponentially, as expected. In [351, a more complicated (and realistic) delay problem
is worked out using the above methods.

Of course, we would now like to extend the above techniques to unstable distributed
multivariable plants in the full four block setting. Research is now proceeding along these
directions in our new AFOSR contract. Moreover, we are very interested in working out
more benchmark examples in addition to the flight control problem (351 and flexible beam
problem [70] to which we alluded above. A key part of the implementation will be to have
an efficient way of generating sub-optimal finite dimensional compensators for such problems.
This important area is also being investigated.

4.2 Young's Operator

A key difficulty involved in reducing the standard problem to the four block problem is the
various kinds of factorizations that must be performed. In fact, one of the major advantages
involved in the recent state space methods [33] is that these factorizations may be avoided.
Of course as mentioned above, one of the disadvantages of these state sp ý.ce methods is that
their practical applicability to distributed systems seems to be very difficult. (On an infinite
dimensional state space one gets infinite dimensional, i.e., operator valued Riccati equations.
See [28, 29].)

We have recently begun developing a technique which would avoid a number of the prob-
lems with such factorizations (especially in the multivariable distributed case [75]), as well
as allow the utilization of our frequency domain "skew Toeplitz" methods to distributed sys-
tems. First of all, recall that via the Youla parametrization, the standard problem may be
formulated as finding

inf IIT2 - TWQT 3110ý,QEHW

where TI, T2, T3, Q are matrix-valued H' functions of compatible sizes. More precisely, let
&,,.7 denote finite dimensional complex Hilbert spaces for i = 1,2. Then we take TI E
HR (t1 ,, 2 ), 2T2 E H¶0(.F2,t 2), T3 E Ha¶(t4,' 1), and the parameter Q E H00(¶ 1 Y,.2). (In
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general, for two complex separable HUbert spaces 6,.F we define H*(C, .F) to be the space
of all uniformly bounded analytic functions in the open unit disc, whose values are operators
from t to •F.) We assume that T2 is inner, and that T3 is co-inner.

Define
W "=L 2(4l) e TK 2 (.F),

%2= L'(C2) e T2H2(.F2),

where K 2(Fl) is the orthogonal complement of H 2 (F1 ) in L2(.Fl). Define the operator (see
[941, [36]) A: 7l -- 74 by

Af := Pu, Tif

where PW2 denotes orthogonal projection on W 2 . Then using the commutant lifting theorem,
one may show that

Qies ITI - T2QT 3II.. = HAJl.

We would like to be able to compute the optimal performance and parametrize the optimal
compensators directly from the Young operator along the lines of the methods that we followed
for the four block problem [44], [45], [75]. To do this would be a great advantage since we
would no longer have to go through the messy transformation of the standard problem to
the four block form. We are now developing a straightforward way of computing the H°-
optimal performance and compensators with the Young operator based on a certain triangular
representation of the operator.

4.3 Mixed Norm Suboptimal Controllers

One of the main themes in modem control theory is the utilization of norm based criteria to
measure the optimal performance of a given control system. (See [32] for detailed discussions
on this topic.) Two of the most important norms employed in modern control analysis and
design are the H2 -norm and the HI-norm. Indeed, the HI-norm is the basis of classical
quadratic optimal control, while the HO-norm appears in modern robust synthesis (and
implicitly in the more classical loop shaping methods [32]).

We have been investigating combining the advantages of both H2 and HI control in [38].
(See also [36], [65]) for extensive lists of references on various approaches to mixed norm
control.) Our starting point is a nice result of Kaftal.Larson-Weiss [62] which guarantees
the existence of an interpolant wvhich simultaneously satisfies an HO and H2 suboptimality
criterion. Using the theory described in [43] on suboptimal H' interpolants, we can then
give an explicit .way of computing the combined H"-H 2 suboptimal interpolant in a given
HGO problem.

More precisely, for c E V0, set d..(c) := distance(c, HO), and d2(c) := distance(c, H 2).
(Note that all of our Hardy spaces are defined on the unit disc here.) Then for any 6 > 1, it
is proven in [62] that there exists 0 E H' such that

1C - 011. :5 bd.(C), 11C - 0112 5 b6d2(c) (31)
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In case, m, wo E H00 with m inner, and u; = p/9 rational, using skew Toeplitz theory [38]
one may explicitly construct q$, i.e., if c := Mw, then we can find 4' E H00 satisfying

111w - #110o 5 id 0 (c), U1Ml - 01125 <dz(c) (32)

Indeed, let p := 6d00(c), and let

A4, := p2 q(T)*q(T) - p(T) p(T)

be a skew Toeplitz operator. Let g6 denote the function in H00 defined by

6 : 2d. (c)2 A-'q(T)*(i - m-n(O)). (33)

Then the function

w - mo = B6 p(T)g6 (34)
omm(O) + q(T)g6

satisfies (32). Explicitly, 4' = -Yn(B6 - W) E HOO and

6d2

IIw - m4511. .l 6d.., 11w - M -112 U

The skew Toeplitz approach is the only procedure of which we are aware to compute a
satisfying (32) when m is irrational. Further, let n := max{degree p, degree q}. Then, if m
is Blaschke product of order k where n is small and k is large, the methodology just outlined
provides a numerically efficient method for computing the function 4' satisfying the Kaftal-
Larson-Weiss constraints (32). However, if this is not the case and m is rational, then the
state space methods in [36] to compute a 4 satisfying (32) may be more efficient.

Since as it turns out that the combined H0-H 2 interpolant is a central solution, these
interpolants are well-known to be numerically robust, and leads to an interesting class of
combined HOO-H 2 controllers for feedback systems. We are now actively investigating the
properties of these controllers, as well as extending these results to find a computational
procedure for the full standard problem setting for distributed MIMO systems.

Further, we have found a new method for constructing the central solutions as related
to the general H*0 standard problem in the multivariable case. We are now in the process
of exploiting this technique for the explicit parametrization of the suboptimal controllers for
multivariable distributed systems. This would give a powerful alternative method to the
one-step extension techniques we have been previously using.

Finally, we are interested in combining other types of norms in control, for example, L1 and
H1. A possible method for doing this can be based on some new results on interpolation in
Banach spaces due to Pisier (78] and Janson (61]. In fact, this methodology can also have
some nice applications to model reduction (relative to "best" Hankel norm approximations),
which is certainly a direction which we intend to explore.
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5 Image Processing and Computer Vision

We have been doing extensive research into image processing and computer vision, and the
use of these methodologies in visual tracking. We are very interested in understanding how to
use visual information in a feedback loop. In order to give the reader a flavor of this work, we
will concentrate on a theory of scale-space that we developed for planar shapes [81, 82]. In this
work, we combine the three important theories of scale-spaces, affine invariant descriptors,
and curve evolution, in order to define a new alffne invariant scale-space for plane curves. This
scale-space is obtained from the solution of a novel curve flow, which admits affine invariant
solutions. Our other work in vision covers a new theory of shape [67, 68, 69], as well as new
methods for afline invariant image processing and analysis [83, 84, 85].

Multi-scale descriptions of signals have been studied for several years already. A possible
formalism for this topic comes from the idea of multi-scale filtering which was introduced
by Witkin [93], and developed in several different frameworks by a number of researchers in
the past decade. The idea of scale-space filtering is very simple and can be formulated as
follows: Given an initial signal %I0(X.) : Rn -- R", the scale-space is obtained by filtering it
with a kernel K(X, t) : Rn --# R'", where t E R+ represents the scale. In other words, the
scale-space is given by *I (9, t) defined as

*(V,t) := flC(xt)[1*0(X)], (35)

where . represents the action of the filter X(., t). Larger values of t correspond to
images at coarser resolutions.

It is important to note that not every kernel can be used in defining a scale-space. Indeed,
several conditions need to be imposed on the signal 'i(X;,t) (and therefore on the filter-
ing operation (35)). One of the most important is that of causality, which states that no
"information" is created when moving from fine to coarse scales.

A famous example of a kernel which satisfies the required conditions is the Gaussian kernel.
In this case, the scale-space is linear, and the filter in (35) is just defined by convolution. The
Gaussian kernel is one of the most studied in the theory of scale-spaces. It has some very
interesting properties, one of them being that the signal T obtained from it, is the solution
of the heat equation (with T0 as initial condition) given by

(For more details about the Gaussian scale-space, see the aforementioned references.)
One of the key facts that can be gleaned from the Gaussian example, is that the scale-

space can be obtained as the solution of a partial differential equation called an evolution
equation. This idea was developed in different works for evolution equations different from
the classical heat equation. In what follows, we will describe scale-spaces for planar curves
which are obtained as solutions of nonlinear evolution equations.

The second fundamental concept which we would like to emphasize is that of invariant
descriptor. An invariant descriptor is a property of an object, which does not change when the
object undergoes certain transformations. More precisely, a quantity Q is called an invariant
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of a Lie group C if whenever Q transforms into Q by any transformation y E 9, we obtain
Q = OQ, where e is a function of g alone. If 0 = 1 for all g E g, Q is called an absolute
invariant.

For example, the area is a global absolute invariant descriptor of the Euclidean group
(rotations and translations) for planar domains. This means that two planar domains related
by an Euclidean motion have the same area. The well-known Euclidean curvature given as
a function of arc-length is a local absolute invariant of the Euclidean group, and a relative
invariant of the similarity group. We should add that the development of invariants of viewing
transformations (Euclidean, similarity, affine, and projective maps) has received extended
attention from the computer vision community in the last years. The topic is very important
in areas such as object recognition.

A special class of invariants is given by the differential invariants which are based only
on local information, and are useful for the representation and recognition of objects under
partial occlusions. An example of this kind of invariants is the Euclidean curvature mentioned
above. The theory of differential invariants is classical and goes back at least to the work of
Gauss on Euclidean geometry. Much of the recent related work in computer vision is based
on those old theories. In our work, we have been especially interested in affine differential
invariants.

The third component of our work comes from the theory of plane curve evolution. Here
the curve regarded as the boundary of a planar domain, deforms in time. This defoiMation is
governed by a partial, usually nonlinear, evolution equation. Different evolution equations can
model different physical phenomena, such as crystal growth, the Huygens principle, and curve
shortening processes. The theory has been well studied in areas such as computational physics,
differential geometry, numerical analysis, and parabolic equations. We have introduced these
ideas into computer vision in [67, 68, 69].

Motivated by the importance of affine transformations in computer vision, a new theory
of affine curve evolution was recently developed [81, 82, 83, 84]. This theory, based on affine
differential geometry and the theory of parabolic evolution equations, constitutes the basis
of the work on multi-scale representations of signals and image processing in general. This is
based in turn on a new nonlinear evolution diffusion equation which admits affine invariant
solutions. The solution of this evolution equation determines an affine invariant scale-space
for planar curves. Efficient computer implementation of this theory is possible due to a
recently developed numerical algorithm for curve and surface evolution. In our continuing
AFOSR research, we will be employing these algorithms to a number of problems in active
vision, and visual control.
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