Title and Subtitle:
Antifouling Agents From Eelgrass: Identification, Characterization and Mode of Action

Authors:
Richard C. Zimmerman and Hewson Swift

Performing Organization:
Dept. Molecular Genetics & Cell Biology
The University of Chicago
Chicago IL 60637

Funding Numbers:
N00014-91-J-1569

Supplementary Notes:
Distribution Unlimited

Abstract:
This research has focused on the isolation and structural characterization of natural, non-toxic antifoulants produced by the eelgrass *Zostera marina* L. Chemical purification of a single active agent from fractions produced by aqueous-organic phase partitioning, size filtration chromatography and HPLC was directed by microbial attachment assays. Structural characterization of the isolated agent was accomplished by high resolution nuclear magnetic resonance and mass spectrometry. The isolated compound and several analogs were synthesized. Laboratory bioassays and short term (<10 day) field experiments indicate that the natural agent and at least of the one synthetic analogs show significant antifouling activity against marine bacteria, algal spores, benthic diatoms, tube worms and barnacles. Evaluation of their antifouling potential continues. A patent application describing the use of these compounds as non-toxic antifouling agents is in preparation.
Zimmerman & Swift, Antifouling Agents from Eelgrass

GOALS:

The overall goals of this research have been to identify naturally-occurring, non-toxic antifoulant produced by the marine angiosperm, *Zostera marina* L. (eelgrass) and to characterize the mode of action of these agents in preventing attachment of fouling organisms.

NEAR TERM OBJECTIVES:

Our objectives have focused on the isolation and structural characterization of the active agent(s), chemical synthesis of the isolated compound and several structural analogs, and evaluation of the antifouling effectiveness of the compounds. We have also screened extracts from other macrophyte taxa for the presence of antifouling activity and collected preliminary data on the antifouling effectiveness of the agent against hard foulers in the field.

APPROACH:

Purification of a single active agent, using a sequence of aqueous-organic phase partitioning, size filtration chromatography and high pressure liquid chromatography (HPLC), was directed by a bacterial attachment bioassay. Structural characterization of the agent was accomplished by high resolution nuclear magnetic resonance and mass spectrometry.
TASKS COMPLETED:

The active agent isolated from eelgrass has been purified and characterized structurally. This compound, along with several analogs, have been synthesized. Evaluation of the antifouling potential of these compounds continues. A patent application is in preparation for the use of the natural compound and synthetic analogs as non-polluting antifouling agents.

RESULTS:

The synthetic compounds showed similar activity to the agent purified from eelgrass. Bacterial attachment to slides treated with one of the synthetic agents decreased exponentially with concentration (Fig. 1). The IC$_{50}$ (concentration causing a 50% inhibition in bacterial density) was about 1 μg ml$^{-1}$ (12 μg cm$^{-2}$ of treated surface). Despite the strong antifouling effect, there was no evidence of toxicity to bacterial growth in liquid culture or on agar at concentrations up to 10x higher than the IC$_{50}$ dose. Thus, the therapeutic index (IC$_{50}$/LD$_{50}$) remains undefined but extremely high (\geq100).

Soluble extracts were prepared from other local macrophytes and screened for antifouling activity. Of the 8 spp examined, including representative taxa from all major macrophyte groups, only extracts of *Zostera marina* showed significant activity (Fig. 2). Thus, the activity exhibited by the eelgrass extract was not a widespread phenomenon.
Preliminary field data indicate that the crude eelgrass extract effectively inhibited attachment of spirorbid worms (polychaetes) and colonial ascidians to unglazed ceramic tiles, while it was not effective against solitary tunicates (Fig. 3). No barnacles settled on any tiles during the course of this experiment.

The crude extract and a synthetic analog were also effective against barnacle larvae in laboratory attachment assays. The IC\textsubscript{50} against barnacle attachment was about 1 \(\mu\text{g/ml} (12 \mu\text{g/cm}^2 \text{ of treated sfc.})\), similar to that demonstrated for bacteria (Fig. 4). As with bacteria, these agents were not toxic to barnacle larvae at concentrations that inhibited attachment.

ACCOMPLISHMENTS:

The chemical agent isolated from eelgrass leaves has been purified and characterized structurally. It is effective at preventing attachment of a wide range of fouling organisms, from bacteria to barnacles, at concentrations that are orders of magnitude below the lethal dose. The agent is structurally simple, and has proven easy to synthesize from readily available and inexpensive substrates. Several manuscripts and a patent application are in preparation from this work.
Zimmerman & Swift, Antifouling Agents from Eelgrass

PUBLICATIONS SUPPORTED BY THIS RESEARCH:

PATENTS RESULTING FROM THIS RESEARCH:

Figure 1. Effect of concentration of a synthetic antifouling agent on attachment density of bacteria in laboratory assay. The IC\textsubscript{50} concentration is about 1 µg ml\(^{-1}\) (12 µg cm\(^{-2}\) of treated surface).
Figure 2. Results from bacterial attachment assays with extracts prepared for different marine macrophytes. Slides treated with solvent controls are indicated by open circles (O), slides treated with extract are indicated by filled circles (●).
Figure 3. Effect of the crude eelgrass extract on settlement density of 3 invertebrate taxa in the field. Solvent control tiles are indicated by the open circles (0), extract-treated tiles are indicated by filled circles (●).
Figure 4. Effect of concentration of a synthetic antifouling agent on barnacle settlement in the laboratory. The IC\(_{50}\) for barnacles was about 1 \(\mu g \text{ ml}^{-1}\) (12 \(\mu g \text{ cm}^{-2}\) of treated surface), similar to that for marine bacteria.
Distribution List for Final Reports

Attach a copy of the REPORT DOCUMENTATION PAGE (DD FORM 1473) to your final report as the first page and mail two copies (including the postcard labelled DTIC FORM 50) to:

Defense Technical Information Center
Building 5, Cameron Station
Alexandria, VA 22314

This allows other investigators to obtain copies of your report directly from DTIC. DTIC will fill out the postcard DTIC ACCESSION NOTICE (DTIC FORM 50) and return it to you with their number for your report. When you refer people to DTIC to get a copy of your report, give this number to expedite the request.

Mail one copy to each of the following and attach this very page to the back of your report—otherwise the folks below will think they have mistakenly received a copy meant for the Molecular Biology Program:

(a) Dr. Michael Marron
ONR Code 1141
Molecular Biology Program
800 N. Quincy Street
Arlington, VA 22217-5000

(b) Administrative Grants Officer
ONR Resident Representative
(address varies—see copy of your grant/contract)

(c) Director,
Applied Research Directorate
ONR Code 12
800 N. Quincy Street
Arlington, VA 22217-5000

(d) Director
Office of Naval Technology
Code 22
800 N. Quincy Street
Arlington, VA 22217-5000

(e) Director
Chemical and Biological Sci Div
Army Research Office
P. O. Box 12211
Research Triangle Park, NC 27709

(f) Life Sciences Directorate
Air Force Office of Scientific Res
Bolling Air Force Base
Washington, DC 20332

(g) Director
Naval Research Laboratory
Technical Information Div
Code 2627
Washington, DC 20375

Encl (1) 3/12/91