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Abstract

Ar Inertial Navigation System(INS), the Global Positioning System, and a ground
based transponder system(RRS) can all be used to provide the user with a navigation
solution. Yet by integrating these three navigation systems with an extended Kalman
filter(EKF), a navigation solution is attained tLat benefits from the information of all three
subsystems. This research develops a multiple model EKF failure detection, isolation, and
recovery(FDIR) algorithm using a Chi-Square failure test to provide robust navigation
solution to measurement failures. The algorithm specifically counters failures in the GPS
and RRS range measurements. Analysis is conducted using a Kalman filter development
package known as the Multimode Simulation for Optimal Filter Evaluation (MSOFE). Both
alargeorder truth model for the navigation system (in which a full 24 satellite consteilations
is modeled) and a reduced-order Kalman filter are developed. Results suggest that the

multiple model algorithm can correct for ali single measurement failures.
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FAILURE DETECTION, ISOLATION, AND RECOVERY IN AN
INTEGRATED NAVIGATION SYSTEM

I. Introduction

Currently within the Air Force arsenal, multiple navigational tools exist to help the
pilot navigate his plane. The three navigation tools that wili be the focus of this research
are the Inertial Navigation System(INS), the Global Positioning System(GPS), and the
ground based Range/Range-Rate System(RRS). Each of these tcols generates a specific
form of information about the position and velocity of the aircraft. The purpose of an
integrated navigation system is to collect information from the various navigation tools,
and then produce an accurate and robust navigation solution. The navigation solution
should consist of the most accurate position, velocity, and orieniation estimates for the
aircraft. Yet it is desirable for the system to be both accurate and robust. To be robust,
the integrated navigation solution must continue to operate as accurately as possible when
failures in the system occur. This thesis will focus on a failure detection, isolation, and
recovery technique tha$ will make an integrated navigation system robust to GPS and RRS

measurement failures.

1.1 Background

The topic pursued in this thesis emanates from ongoing AFIT research. The over-
all goal of this research initiative is to develop next generation navigation systems for
modern aircraft and missile systems. This research has been sponsored by the Central In-
ertial Guidance Test Facility (CIGTF), 6585th Test Group, Air Force Materiel Command
(AFMC), Holloman AFB, NM. CIGTF has sponsored this research in support of their

navigation test range.

The past research at AFIT began with the generation of computer models for the
INS, GPS, and RRS navigation systems, as well as the development of an integration

scheme to blend the information from these three sources into a single navigation solution.
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AFIT has chosen to blend the information using an extended Kalman filter (EKF). The
overall navigation system developed by his early research became know as the Navigation
Reference System (NRS) [14]. Later AFIT research pursued failure detection algorithms
to use in conjunction with the NRS, to detect and isolate GPS measurement signal failures
[19]. The success of this early failure detection work has lead AFIT to pursue a failure
detection, isolation, and recovery (I'DIR) algorithm that will allow for accurate and robust

system performance.

1.2 Problem Definition

The research to be conducted this year will expand on past AFIT research to imple-
ment a complete FDIR algorithm for the NRS model. Starting with the original NRS, a
new navigation system will be developed thaot not can only detect and isolate failures, but,
will also reconfigure to operate accurately during the failures. The failures are errors in
the measurement signals received through the GPS and KRS subsystems. ‘I'he ncw system
that is developed in this thesis will be referred to as the Multiple Navigation Reference

System(MNRS).

This thesis will augment past research in three specific areas. First the research
will look at failures in both GPS and RRS measurement signals as opposed to past AFIT
research which considered only GPS failures [19]. The second addition to this research
initiative is the concept of robust navigation. Past research has looked exclusively at
failure detection, and isolation(FDI) techniques. This research is adding recoverability,
to create a complete FDIR algorithm. This thesis develops one method of modifying the
NRS to make it robust to failures. The development of the MNRS moves AFIT one step
closer to developing a failure detection, isolation, and reconfiguration algorithm for all
possible navigation failures. Finally, this thesis explores various matching filter techniques
for identifying the exact type of failure that is affecting the system. Two identification

techniques will be evaluated for future applicability to a combined FDIR algorithm.
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1.8 Scope

The scope of this thesis is defined by the exact failures that are to be induced within
vhe system. The failures to be considered enter the system through outside measurement
sources. The two prevalent navigution measurement sources in the system are the GPS and
the RRS measurement signals (see Figure 1.1). Errors in these signals can be caused by
natural atmospheric affects, failures in the respective signai transmitters, cr hostile enemy
signal degradation. Yet the actual source of the failure is not truly important to the FDIR
algorithm. Orly the effect of the error source on the measurement signal is importaut for

the purpose of FDIR.

This thesis assumes that all the failures in these signals can be modelled as increased
roise, a step bias, or a ramp offset added to the original measurement signal. Figure 1.2

shows how each of these tailures would affect the uncorruptea GPS or RRS measurement

1-3




True Signal

| e
TYPES OF FAILURES TO /VWWVMW\

BE DETECTED Jammming of a Signal

Ramp
‘//\’_/\ :l:x:ue Sigr;;l. ) - Trut; .S-ignnl
Step Bias to a Signal Ramping Bias of a Signal

Figure 1.2 Types of Failures Induced on Measurement Signals

signal. The errors that affect the measurement signals are assumed to be acditive in nature
for this thesis. The use of step and ramp additive failure offsets are standard methods to

simulate "spoofing” of a system.

The MNRS is limited to reconfiguring itself for single failures. When two failure
occur, the MNRS can detect the existence of the second failure, but cannot recover an
unbiased navigation solution,
surements when more then one failure occurs. The single failure limitation is mainly due to
limited computational modelling capacity. To develop an MNRS system robust to multiple
failures would require more parallel computing than is available for this thesis. Therefore,

the goal for development of the MNRS system is robustness to single step, ramp, or noise

biases induced in either the GPS or RRS measurement signal.

The identification of failure type will focuses on distinguishing between step, ramp,
and noise offset failures. Two different matching filter techniques are compared to de-

termine which more accurately identifies the type of failure once it has been detected.

1-4




Integrated Navigation System Corrected

. Navigation
Continuous INS i
Navigation Solution X Solution
INS = >
— -
X - 86X
— et Extended
\l
GPS - Kalinan Py
5X Extended Kalman Filter
- Filter Eastimate of the Esror
— In the INS Navigstion
Solution
Ground-based
Transponders

Figure 1.3 NRS System Description

1.4 Brief System Description

The proposed MNRS is based on the work accomplished in past AFIT theses in
the development of the NRS. The system description will begin with a description of the
original NRS, after which the MNRS will be presented.

The original NRS consists of a single EKF that gathers together information from the
GFPS, RRS, and INS 1o produce a singie navigation solution. The system is modelled on a
Sun SPARC workstation that simulates an aircraf. flying a highly dynamic flight profile.
The NRS navigation solution is the combination of the continuous INS navigation solution
and the output from the EKF (see Figure 1.3). The output of the EKF is the estimate
of the errors in the INS navigation solution. Therefore, the plane is actually flying on the
INS output corrected by the EKF’s best estimate of the errors committed by the INS. The
EKF bases its estimate on information it receives from the INS, GPS, and RRS. Therefore,
the aircraft is navigated using the information provided by all three navigation systems.
A more complete description of the EKF and how it is used in t' e NRS is provided in

Chapters II and 111.

1-5




| NRS Filter 1 FDIAlg. '
Qutput from the Accurate
Onboard INS, and
and the GPS I — — - Robust
and RRS signal | NRS Filter 2 7| FDIAlg. Navigation !
receivers Solution
® °
5 ™ ®
- e ®
AN ) ° —
° *
 ~—— "7
~ KRS Filter N 7| FDLAlg.

Figure 1.4 MNRS System Description

The MNRS is basically a multiple rnodel implementation of the original NRS. The
MNRS consists of a bank of NRS navigating filters which run in paralle]l (see Figure 1.4),
Each NRS filter produces its own navigation solution. Unlike traditional multiple model
schemes, each NRS filter produces an accurate solution when no measurement failures
occur. The NRS filters have been designed in such a way that a failure in one measurement
signal (GPS or RRS) will affect all but one of the NRS filters. Whether a failure has
occurred or not is decided in a failure detection test conducted on each of the NRS filcers
(see Figure 1.4). When a failure occurs, all the NRS filters but one will fail the detection
test, and navigation of the aircraft then continues on the single filter that passes its test.
This allows for robust navigation during the failure. A more complete description of this
FDIR algorithm is provided in the literature review, Section 1.6. The real benefit o using

the MNRS 1s that during single failures, one and only one of the NRS filters will remain

unaffected, which allows for highly accurate navigation during measurement signal failures.




1.5 Assumptions

All theses are limited by the assumptions made, and no research can be adeguately
evaluated unless these assumptions are clearly defined. Tlis section outlines the assump-

tions that have been made in this thesis.

1. All work has been couducted through computer simulation. The “real” world in
the simulation is modelled as a full-order-state truth model. The MNRS filter is
represented by a bank of reduced-order filter models. This modelling structure has
been chosen to validate the function of the EKFs in the MNRS [9]. Once this
computer simulation work has been completed and verified, a deciston can be made
as to whether it is beneficial to put this theory into application. Yet this decision
cannot be made until complete and thorough simulation work has been completed.

The full-order truth and filter models are presented in Chapter III.

2. The INS platform is assumed to be stabilized with a barometric altimeter. An INS
platform is unstable without an outside measurement source in the vertical channel
[1]. While a trarometric altimeter is not the only way to stabilize a platform, it is
a commonly used method. The use of the barometric altimeter is included in the

modelling of the system.

3. A sample perind of two seconds has been chosen for the EKF. The sample period
refers to how often GPS and RRS error measurements will be brought into the EKF.
Past AFI1 research has used a variety of sample periods, varying from two to ten
seconds for the NRS, The decision to use the two second sample period has been
based primarily on the computer facilities available and the accuracy of navigation
solution produced. Various runs at different sample periods confirm that this sample

period is valid for simulation purposes [19].

4. The MNRS model used consists of a bank of NRS models in parallel. FEach of
these madels has been developed using differential equations representing the error
characteristics of the navigational system operating in the real world. The models
are based on the theoretical work conducted at CIGTF and AFIT in developing error

state models for the GPS, RRS. and INS navigational systems. The GPS and RRS
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models are generic models [14], while the INS model is based on the Litton LN-93
strap-down inertial navigation system [t]. A more complete description of the system

models is presented in Chapter L1

. Failures are assumed to be additive in nature rather than multinlicative. This as-

sumption has been made because it both greatly simplifies the math and it describes
most sensor failures that occur in the real world. The algorithms presented are valid

only for failures of an additive nature.

. The computer simulations have been developed using a program called Multi-mode

Simulation for Optimal Filter Evaluation (MSOFE) [13]. MSOFE is established Air
Force software to develop and test Kalman filter algorithms. The computer-siniulated
flight profile has been generated by the program PROFGEN [i2]. PROFGEN is
designed to work with MSOFE to provide the necessary data files to simulate dynamic
flight profiles. The FDIR algorithms are implemented using the commercial nackage
software MATLABR [3].

. The state dynamics matrix F is considered piecewise constani, i.e. constant between

sample times twe seconds apart. This assumption is necessary to implement the
discrete time GLR matching filters algorithimn developed in Section 2.3.2.2. The

validity of this assumption has been documented in past AFIT research [19].

. The simulation software, MSOFE and MATLAB, has been coded ta run in double

precision to increase numerical stability of the simulation. This is necessary due to
large disparities in filter variables that need to be operated on during the simulation.
Due to the fact that rescaling of the disparate variables is not considered an effective
solution for this application, the MSOFE software implements a U-D factorization

algorithm to increase the numerical stability in the EXF eguations [13, 9].

The MSOFE runs are conducted using 15-run Monte Carlo analyses. While a larger
batch size for the Monte Carlo analysis would be preferable, this value has beer
chosen to keep the computational burden of the thesis within reasonable bounds,
Single-run Monte Carlo analysis is used for the FDIR runs, to reveal what on-line

operational filters would see and do. The single runs are compared to the 15-run
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Monte Carlo results to ensure that the single runs are reascnable examples of system

aperation.

10. The failure thresholds established for the FDIR algorithm have been established

empirically, using good engineering insight and verified through exhaustive testing.

11. Taylor series approximations truncated at first order are used for linearizing nonlinear
equations in the MNRS filter. Perturbations about a nominal trajectory will be

established in each case.

12. A Doppler system is used to provide velocity aiding to the INS. The measurements
from the Dsoppler are assumed to be ideal and tell the filter the axact error between
the filter state and ihe truth state. This aséumption is relatively poor, yet the
development of a complete Doppler error model is beyond the scope of this thesis.
Also the use of the ideal Doppler measurement allows for direct comparison to past

AFIT research, [14, 19].

1.6 Literature Review

The goal of this literature review is to provide background information leading up
to the choice of FDIR algorithm implemented in the integrated MNRS. The review begins
with an introduction to the basic cuncepts of failure detection, isolation, and recovery
(FDIR). Next, various techniques wiil be analyzed with the criterion of applicability to the
navigation model. Once a background in failure analysis techniques has been established,
a comuination of techniques will be presented in the form of the MNRS algorithm. The

literature review will conclude with an argument for the use of the MNRS FDIR technique

for accurate and robust navigation.

1.6.1 The Concept of Failure Analysis. Failure detection algorithms aralyze
multiple information sources to determine if erroneous information has entered a system.
The erroneous information could be anything from a bias on an incoming measurement to
a hard failure of an entire subsystem. Each algorithm differs in function and complexity.
Simple algorithms simply detect the existence of failures in the system. More complicated

algorithms actually isolate and recover frora failures. However, despite the differences in

1-9




various algerithms, the fandamental objective of failure analysis is to examine information
in such a way that failures can be seen as discrepancies between different information

sources [21:pp. 601].

Failure analysis hinges on the availability of multiple information sources providing
redundant information. With only one source of information, failed operation cannot be
distinguished from normal operation of a system. For example, imagine you are driving a
car in which the only source of infermation about your speed is the speedometer. In this
car, the driver has no choice but to rely on the speedometer for his speed information. This
imaginary car cannot empley failure analysis, because it contains no redundant information
sources. Yet iu a real car, failure analysis algorithms are constantly employed. In a real car,
the driver has access to multiple sources of information about his speed; the speedometer,
the sound of the engine, visual cues such as the blurring of the scenery, and the tone of
his passenger’s voice. If the information from the speedometer is contrary to all his other
information sources, the wise driver noies ihe inconsisiency, slows the vehicle, and declares
a failure in his speedometer. The driver has just performed the function of FDIR. While
the above example may seemn trivial, all FDIR algorithms perform the same function as

the driver did analyzing his multiple information sources.

It is important to note in the example that, while all the sources of infermation are
providing data about the speed of the car, all the informatior is formatted in different
reference frames (speedometer in miles/hr, the passenger in decibels). An FDIR algorithm
needs to transform all the information into one frame, so that they can be compared
equitably. If the information is not transformed to a common frame, there is no basis
for comparison [6:pp. 400]. This concept will reappear in the development of the FDI
algorithm for the integrated NRS in Chapter III.

Another important concept in failure analysis is the identification of failure types.
When a measurement or component of a system fails, knowledge of the type of failure that
has occurred can be crucial to correcting the problem. For instance, when a speedometer
goes bad, the driver can compensate for this if he knows the type of failure that has

happened (i.e., is the speedometer too slow or too fast?). If the driver knows the type
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of failure, he can adjust the value of the measurement he reads from the speedometer

accordingly. This process is called corrective feedback through failure mode analysis.

Now that a basic understanding of failure analysis has been established, a review of
various failure analysis techniques is presented. Each technique will be evaluated on its

ability to conduct effective FDIR.

1.6.2 The Voting Method. The simplest form of failure analysis is voting. To
implement simple voting, one needs at least three redundant information sources. Failure
detection and isolation is conducted by looking at the three sources and seeing if one is not
in agreement with the other two. If one source of information disagrees with the other two,
then the inconsistent source is declared a failed source [21:pp. 604-605]. If it is possible
to continue operation with oaly two information sources, the voting algorithm is able to

recover from the failure and continue operatiorn.

The benetit of this method is its utter simplicity. Unfortunately, simplicity is aleo
its major drawback. This FDIR algorithm assumes majority rule. While this is very
democratic, it does nothing for the user if the one source happens to be right while the
other two are wrong. This dilemma can be cured by increasing the number of voters. Yet
massive sensor redundancy is impractical in the limited space and computational domain
of avionics [21:pp. 604-605]. Therefore, the voting algorithm was not seriously considered

for the integrated navigation system.

1.6.3 The Chi-Square Test (x(k)). The Chi-Square testing algorithm[21] assumes
that a Kalman filter is being used to blend the multiple information sources. A complete
presentation of Kalman filter theory is presented by Maybeck [9]. The Chi-Square test
operates on the measurement residuals of the Kalman filter and decides whetker a failure
has occurred. The Chi-square test is a function of both the measurement residual vector
and the filter-computed covariance of the residual vector. The Chi-Square test therefore
is a function of both the size of the residuals and the Kalman filter’s confidence in the size
of the residnals. The Chi-Square test declares a failure when the x(k) function is greater

than a pre-determined threshold. The threshold is violated when the difference between the
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Kalman filter estimate of the incoming measurement and the actual measurement grows
large with regard to the filter-predicted covariance of the residual. Past work at AFIT
has stiown the Chi-Square test to be a highly effective and consistent failure detection

technique [2, 5.

While the Chi-Square test provides excellent failure detection, the algorithm is inca-
pable of performing failure isolation or recovery. As a result, the Chi-Square test cannot

be classified as a stand-alone FDIR algorithm [21:pp. 606-607].

1.6.4 Generalized Likelihood Ratio Testing (GLR). The GLR test[20], although
similar to the Chi-Square test, provides for both detection and isolation of failures. Like
the Chi-Square test, the GLR iest uses the residuals of a Kalman filter as its basis for
failure analysis. Yet the GLR. test uses the residuals in such a way that it is able both to

detect and to isolate failures [20].

The GLR test feeds the residuals of the Kalman filter into a bank of estimators,
each designed to look for a certain type of failure mode (see Figure 1.5 ). Examples of
{ailure modes are no failure, a step failure, and a ramp failure. Fach estimator tests a
hypothesis, H;, corresponding to a possible failure affecting the system. H, corresponds
to the no-failure hypothesis, while H, and H, are the bias and the ramp failure hypotheses
respectively. Each estimator conducts its own maximum likelihood estimate (MLE) for its
specific hypothesis. The results of each MLE are fed into a common test logic algorithm
(see Figure 1.5). This aigorithm decides which hypothesis is true, thereby determining

which, if any, failure has occurred.

One of the key benefits of the GLR test is that it needs only one estimator for each
type of failure. The GLR algorithm actually estimates unknown variables such as the
magnitude of the failure type in its FDI process; therefore only one estimator is needed
for each type of failure, This aspect greatly reduces the computational load of the GLR in
comparison to other multiple model techniques. Also, the estimate of the failure magnitude
can be used to help develop a feedback loop to allow for reconfigurability of the system.

While it is possible to use the GLR as a complete FDIR technique, past AFIT rescarch has
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been unable to produce accurate enough failure estimates to implement effective system

recovery [19].

1.6.5 Multiple Model Adaptive Estimation (MMAFE). MMAE, like the GLR and
the Chi-Square tests, exploits the information provided by the residuals of Kalman filters,
The strength of MMAE lies in its rapid reconfigurability. By running multiple filters in
parailel, residual information at each update is used to instantly reconfigure the system
to failures. Unlike the previous algorithms which implement only a single Kalman filter
(see Figure 1.5), the multiple model structure of MMAE is fundamentally designed for

robustness te known system failures,

To describe MMAE, first a failure space is defined as all the possible operating modes
of a system under all possible failures that are to be considered. The MMAE can be robust
to system failures because it implements a bank of Kalman filters that span the failure space
of the system (see Figure 1.6). Each Kalman filter in the bank models the operation of the
system under a different assumed failure mode. To get a single navigation solution out of

the bank of filters, the outputs of all the filters are blended together through a probability-
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weighted average based on the probability of that filter modeling what is actually occurring
(see Figure 1.6). Therefore, when no failure has occurred, the filter modelling no failure
gets a very high weight (almost one), while all the other models will get very low weights
(almost zero). When a failure occurs those filters with the best model of the failure will get
the highest weighting probabilities. In Figure 1.6, one can see that the residuals of each
Kalman filter are fed into the algorithm that computes the relative weights placed on each

filter estimate [10]. The real benefit of MMAE is that the bank of Kalman filters spans
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Figure 1.6 Multiple Model Adaptive Estimation

an entire failur» space. As long as the system being affected by a failure remains withia
the span o! this field, the filter is robust to the occurrence of that failure [11]. Therefore

within the scope of the failure space, MMAE is an extremely effective FDIR algorithm.

The major drawback of MMAFE is the high number of Kalman filters that can be

necessary to span a realistic failure space. If MMAE is implemented with too few filters,
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none of the Kalman filters will have good looking residuals, thus limiting the accuracy of
the blended state estimates. Yet the necessary number of models can rapidly grow into
the hundreds, when mapping a large failure space. For this reason, a modification of the

MMAE algorithm can often be more effective than MMAE in its pure form [21].

1.6.6 A Combination of Techniques.  The three FDI algorithms, MMAE, GLR
test, and Chi-Square test, each have their benefits and drawbacks. For the MNRS the goal
is to construct a single FDIR algorithm that exploits the best of all three methods.

The proposed MNRS algorithm is fundamentally a multiple model FDIR algerithm.
Multiple Kalman filters run in parallel, each identical in structure, yet receiving different
sets of measurements. Table 1.1 shows the differences in the incoming measurements
for th~ =1 filters used in the parallel algorithm. The first filter is the one that will be
used under a no-failure situation. It will receive measurements from those satellites and
transpor:‘ars geometrically located to give the best navigation information. While this
filier is rurning, nine other filters are running in parallel. In each of these nine filters, one
ol the onginal signals has been switched with an alternate signal (either a new GPS signal
ar trauspender signal). Therefore, none of the ten filters is being updated with the same
measurement information. In Table 1.1, satellites 1-4 and transponders 1-5 combine for
the optimal navigation solution using the MNRS. Satellite 5 and transponder $ are the

alternate signals which aliow for the reconfigurability under failure conditions.

Table 1.1 MNRS Filter Measurement Structure

I_ FilterlSateliites Used l Transponders Used_]

1 1,2,3,4 12,345

2 1,2,3,5 1,2,3,4,5

3 1,2,4,5 1,234,5

4 1,3,4,5 12345

5 2,345 12345

6 1,2,3.4 1,2,34,6

7 1,2.3,4 1,2,3,6,5

8 1.2,3,4 12645 |
9 1,2.34 1,6,34,5

10 1,2,34 76,2345




With the above modelling structure, failure detection is conducted with the Chi-
Square test. The Chi-Square evaluation is run on 2ll ten filters (see Figuire 1.7 ). If one of
satellites 1-4 or one of transponders 1-5 fail, vhe Chi-Square algorithms will signal a failure
in nine of the ten filters (including Kalman filter 1, the navigating filter). At this point the
navigation solution will be switched from Kalman filter 1 to whatever filter has not failed
(see Figure 1.7 ). In this way the MNRS is robust in the face of single failures in satellite

and transponder signals.

Kalman Fiter 1(No Failure)

Filtess 2-5, each using four suboptimal Filters 6-10, each usirg the four best
satellites. and the five beat tranponders. sateilites, and five suboptimal tranponders
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1

—

Future Corrective Feedback
Matching Filtersto | 10 Recover a Failed Measurement

Corrected Navigation Solution
for all times

Figure 1.7 Combined FDI Algorithm

A major difference between this algorithm and normal MMAE lies in the fact that,
during the no failure case, all the separate filters are producing an accurate soiution, In
a normal MMAE, only one accurate solution is ever produced. Since only one navigation
solution is needed in the no-failyre case, the MNES chooses the best filter output based on

the location of the RRS transponder sites and the GPS satellites. Therefore the MNRS is
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fundamentally a combination of the original MMAE technique modified tv exploit existence

of redundant sensors (voting technique) and the high quality of the Chi-Square tests.

The MNRS does not use any type of feedback to correct the failed measurement,
The failed measurement is abandoted. While this removal of the fajled measurement from
the system allows for highly accurate results, information is lost when the measurement is
abandoned. Therefore, an effort is made to examine matching filter tecaniques to identify
the type of failure and estimate its magnitude. Two matching filter algerithms are consid-
ered. The first matching filter algorithm is derived from the GLR test. This filter attempts
to distinguish between step and ramp failures. A failure magnitude estinator can also be
derived from the GLR algorithm. The second matching filter algorithm 15 an ad-hoc de-
sign based on recognizing failure types in the output of the Chi-Square test. % the MNRS
diagram, Figure 1.7, these two different matching filter algorithms are represented by the
matching filter block. It is hoped that this failure identification work will allow recovery

of falled measurements in the future.

The structure for this model has been inspired by two separate sources; multiple
model adaptive estimation presented by Maybeck [11] and a robust navigation system
proposed by Schwartz [16]. By using different aspects of both studies, the above algorithm
has been formulated. It should be noted that the MNRS algorithm can detect up to two

failures of the system, yet it can only isolate and reconfigure for cne failure at a time.

1.6.7 Literature Review Conclusion. The Chi-Square test, MMAE algorithms,
and matching filters are combined to produce the MNRS FDIK algorithm. Each of the
individual failure analysis techniques have characteristics that are exploited for the benefit
of the overall navigation system. MMAE provides the concepts of instant reconfigurability
and multiple modelling to the combined FDI algorithm. The Chi-Square test is exploited
for its rapid failure detection. Using the Chi-Square in each of the distributed filters ailows
for the validity of a filter to be declared as fast as possible. Finally, the matching filters
are used to identify the type of failure. In this way, future corrective feedback can be used

to bring the failed models back on line with the failure compensated.
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1.7 Plan of Attack

The work for this thesis divides itself into three distinct tasks 1o be completed. These
three steps in the research are presented in Sections 1.7.1, 1.7.2, and 1.7.3. The first two
steps encompass the work needed to get the basic MNRS operational, while the third step

looks at ways of expanding the MNRS for future research.

1.7.1 Preliminary Research. The introductory research began with the work
leading up to the choice of the MNRS for robust navigation. The literature review, pre-

sented in Section 1.6, is the culmination of this research.

A preliminary study was made to see if a multiple model system could adequately
detect single {ailures. This preliminary test was conducted as a class project for the AFIT
EE735 class. The project used a simpiified INS/GPS model and employed a multiple
mode] structure similar to the MNRS approach. The multiple filter system designed by
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he
project was considered only a preliminary study because simplified filter and truth models
were used and because transponder failures were not considered. The completed report

for this project demonstrated the effectiveness of the multiple model approach for robust
navigation [2].

The preliminary studies concluded when a choice was made to go with MNRS system
using the multiple model approach with the Chi-square test as the failure detection and

isolation algorithm. Once the groundwork of the thesis had been established, the actual

system development and testing could begin.

1.7.2 System Development and Testing. The second phase of research is pre-
sented as a three-step process beginning with model development and ending with FDIR

verification.

1. Rework the original INS Litton LN-93 truth and filtey models based on the most

recent research completed by the Avionics Directorate, System Avionics Division,

Wright Laboratory (WL/AAAS), AFMC.




2. Integrate the new INS model with the original GP'S and RRS models, and recode all
the models on the Unix-based SPARC computer system. Verify the operation of the

filter model against the truth model.

3. Develop the computer code to create the MNRS system. Test this multiple model

structure for correct operation in a single-failure environment.

1.7.3 Advanced Rescarch into Adaptive Techniques. The final goal for this re-
search was to compare two matching filter algorithms to determine the performance ca-
pabilities of each. While the effectiveness of the matching filiers is not crucial to the
operation of the MNRS, this work can lead to future implementation of corrective feed-
back algorithms for the MNRS. The implementation of corrective feedback utilizing the

matching filters is beyond the scope of this thesis.

1.8 Overview of Thesis

Chapter II presents the detailed theory used in the research. Kalman filter theory is
introduced with emphasis on the development of the extended Kalman filter. The theory
behind the various failure analysis algorithms is also explained, including the equations
implemented for the Chi-square and the matching filter algorithms. Finally, the analysis

used for selecting thresholds is discussed.

Chapter I1I fully describes the navigation system’s parameters and operational details
through an overall systein description. Models for the INS, GPS and RRS portions of the
NRS model are defined in detail. A description of how the NRS filters are used in the
MNRS is also preseated. This Chapter also presents various failure models implemented

in the thests.

Results of the work accomplished are shown in Chapter IV, The reduced order ex-
tended Kalman filter used in the MNRS filters is analyzed, and a discussion of the FDIR

performance is presented. Chapter V summarizes the research with conclusions and rec-

omiendations.




Il. Kalman Fiitering and Failure Detection
2.1 Querview

This section presents the fundamental theory for the application of Kalman filter
theory to the navigation probiem, First, the necessary update and propagation equations
are developed for a sampled-data extended Kalman filter (EKY'). The EKF theory supports
the basic operation of the NRS rodel. Nexi, the failure detection and isolation theory
implemented in the MNRS is presented. This theory focuses on the development of the Chi-
Square test and two matching filter algorithms. The chapter concludes with a discussion

of the threshold selection criteria for failure declaration algorithms.

2.2 The Eztended Kalman Filter

The MNRS model is generated using error state, extended Kalman filter (XKF) equa-
tions. The EKF provides excellent state estimation of the non-linear time-varying stochas-
tic navigation equations. These stochastic equations are linearized through approximation
techniques about a nominal trajectory to form a linearized Kalman filter (LKF). The LKF
is the basis for the EKF. The EKF expands upon the LKF by allowing the nominal tra-
jectory to vary over time. The EKF relinearizes its dynamics and measurement equations
about the best state estimate about each update from the GPS and the RRS measure-
ments, The EKF that is implemented in this work is considered a sampled data Kalman

fiiter since the measurement updates enter the system at discrete times.

2.2,1 The Sampled Data Kalman Filter.  Let the system model be expressed as

a state equation of the form
#(t) = fla(0). 1 + Gtw() (2.1)

where the state dynamics vector f[z(t),t] is a nonlinear function of the state vector z(2)
and time 7. Let the process noise input matrix G(t) = I and w(i) be a white Gaussian
noise with mearn:

my, = E{w(t)} =0 (2.2)
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and noise strength Q(¢) defined by:
Elw@w?(t+ 1)} = Q()é(r) (2.3)

Incorporate meusurements z(t;) into the filter at discrete times and define them as a non-

linear function of the state vector and time:
Z(t,') = h[:c(f,),i.] + 'U(tl') (2-4)
where v(t;) is 4 zero-mean white Gaussian noise of covariance R(t;) defined by:

E {u(t,)0" (1)} = RS‘) ; o ::’ (2.5)
J or 1; j

aud h[z(t;),t;] is the nonlinear observation vector. The LKF is based on perturbation states

about o nominal state trajectory x, (1) satisfying (%) = x,, and

%, (1) = f[xa(1), 1) (2.6)

where f[-, -] is shown in Equation (2.1). The measurements are also based on the nominal

states and defined as:

za(t:) = h[xa(Li), 1) (2.7)

The perturbation states are found by subtracting the nominal states in Equation (2.6)

from the original states in Equation (2.1):

[x(2) = %u ()] = fx(t), 8] = flxa(2), t] + G(t)w () (2.8)

Equation (2.8) is approximated to first order through a truncated Taylor series expansion:

§z(t) = F[t; x,(2)] 62(t) + G{t)w(t) (2.9)

[y




where dx(1) are the perturbation states. The definitions for G(t) and w(t) are unchanged
and the new linearized dynamics matrix F[¢; x,(¢)] is found by taking partial derivatives of

1]3(1), 1] with respect to x(t) and evaluated at the nominal values for the trajectory x,,(1) :

oflx(1). )

Ft; x,(1)] =
[#:%n (1) i lxex

(2.10)

The discrete~time measurements are similarly approximated to first order and are iu the
perturbed formi:

(‘):(Z,) = H[f,,X(t‘)]é\l‘(t,)-{‘V(t,) (211)

and the same linearization process is used for the measurenient matrix H [t;: x,,(t;)], result-

ing in:
Bh[X(ti ). t,']

Hiti; xn(t)] = X X=Xa(t)

(2.12)

The LKF in this thesis generates error state estimates ﬁ(t), which can be added to the

nominal states {o provide whole stales estimates X({) in the fornu:
x(1) = xp(t) + éz(t) (2.13)

The EKF will now be formed by lincarizing about the state estimate 3 rather than
the nominal trajectory z,,. The following equations use the notation t/t; to represent the
vaiue cf « variable at time t, conditioned un the measuremenus taken through the time.
t;, for t bemng any time in the time interval [¢;,¢;.1). Also, {7 represents the value after
propagation but prior to the meesurement update and ] corresponds to the value after the
measurement update. The staie estimates and covariance values ?(t/t;) are propagated

from t; to ¢;4; by solving the following differential equations:
21/t = flE/4),1) (2.14)

P(t/t:) = Flt; 3(t/t))P(t/4) + P(t/t:)FT[t; 2(2/1:)] + C(OQ(DGT(2) (2.15)
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where

Fls e/t = 220 ", (2.16)

and initial conditions are given by:
(ti/t) = &(t}) (2.17)

P(t;/t:) = P(t}) (2.18)

The discrete-time measurements are processed in the EKF through update equations:

K () = POy H (1 20670 { Bl 50 IPUDHT [t 300)] + R} (2.19)
B(17) = (17) + K (1) {z ~ ha (), 1) (2.20)
PUF) = P(ET) = K(t) Bt 4060 P7) (2.21)
where
dhfo(t,), 1]

H(t) = Hless #(t7)] =

s (2.22)

Oz e=%(t])
and K (t;) is the discrete-time Kalman filter gain. Note that, for the EKF, the measurement
and dynamics matrices are relinearized about the last state estimate &(#; ) rather than the

nominal trajectory used by a simple linearized Kalman filter.

2.2.2 The Discrete-Time Kalman Filter.  In order to utilize the fiiter outputs in
the GLR matching filter algorithm, it is necessary to discretize the state dynamics matrix
into a state transition matiix {STM), ®{%,4,,%;). Al other quantities of interest such as

K and H are already in discrete form. The STM must satisfy the following differential

equation and initial condition [3}):

d[B(t, )]/ ét = F(£)®(t, 1) (2.23)

(ti, 1) = 1 (2.24)




Defining At = t;4, — ¢; and solving with F' assumed constant over At (see Assumption 7))

leads to:

Q(ti-l-lvti) = EFA‘ (2.25)

The state equation, Equation (2.9) can now be written in the discrete form
él‘(t,‘.H) = ‘I>(t,-+1, t,-)61:(t.-) + Gd(t;)wd(t,’) (2.26)

where G is assumed to be the identity matrix and wy is defined as a discrete-time zero-

mean white Gaussian noise sequence with covariance kernel:

E{wa(ti)wd" (4;)} = Qlls) Jor ti=14 (2.27)

0 for ;i #1;

2.3 Failure Detection Algorithms

This section presents the theory for three failure analysis algorithms: the Chi-Square
test, the GLR matching filter, and the Chi-Square residual matching filter. The Chi-
Square test is the failure detection algorithm for 2ach NRS filter in the MNRS model. The
two matching filter algorithms are candidates for the failure type identification algorithm
(identifying between failures). For an explanation as to how these algorithms are combined

in the MNRS model, see Sections 1.6,

2.3.1 Chi-Square Equations.  The Chi-Square test is designed to detect anomalies
in the residuals of a Kalman filter. When the magnitude of the residuals remains larger
than anticipated through the filter-computed residual covariance matrix over a window of
time, the Chi-Square test declares a failure. The Chi-Square test is a highly simplistic yet

powerful tocl that is capable of detecting failures rapidly and accurately.

The Chi-Square test declares a failure based on the size of the the extended Kalman
filter residuals, (¢;). The EKF residuals, first seen in Equation (2.20), are defined in

Equation (2.28). These residuals are zero mean and appear white to first order with

known covariance, A(t;).




Y(t:) = 2(8:) = h[2(¢7), ] (2.28)

A(t) = H{t) P HT (1) + R(t) - (2.29)

The Chi-Square test is a function of the Chi-Square random variable, x(¢x), and is

given by
k

x(te) = Z AT (ATt () (2.30)
i=k—N+1

with N being the size of a sliding window in time. In Equation (2.30), the residuals, (%),
are squared to remove sign cancellation in the suramation. The square of the residuals is
scaled by the inverse residual covariance, to take into account the confidence the filter has
in its residuals at that moment. The use of the sliding window in time, rather than a full
history from ¢, reduces the computational loac and increases the accuracy of the detection
algorithm. The delay time from failure occurrence to fajlure detection is a function of the
size of the window, N. A small window size decreases the detection time, however the small
window also increases the likelihood of false alarms. Therefore the size of the window, N,

is chosen to balance the trade-off between detection delay and false alarm rate. The Chi-

oquare test will declare a failure based on a simple threshold test,

x(t:) € €= NO FAILURE (2.31)

The end of Chapter II will present more detail on the methodology of threshold choos-
ing, and Chapter 1II will go into greater detail as to how the Chi-Square algorithm is
implemented in the MNRS model.

2.3.2 GLR Matching Filter. 'The GLR matching filter algorithm is designed both
to distinguish between different types of failures and to estimate the magnitudes of the
failure types. The GLR matching filter algorithm pursued in this thesis is derived from the

generalized likelihood ratio equations [20]. Therefore, before the GLR matching filters are
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presented, the generalized likelihood ratio will be fully presented. Afterwards, the GLR

matching filters used in the algorithm will be derived from the fundamental GLR theory.

2.3.2.1 Derivation of the GLR Fquations. The derivation of tie GLR
test will be divided into five steps. The derivation centers around the development of a
likelihood equation based on two different hypotheses. One hypothesis, Hy, represents
a no-failure system. The second hypothesis, H,, represents a specific failure type added
to the system. As stated earlier in Section 1.3, the failures induced for this thesis will
be additive terms in the measurement updates. The ratio of the log-likelihood of the
two hypotheses will be used to generate a threshold function, /(t;,8), which satisfies the

following criteria,

I(t;,6) > T= FAILURE

[(t;,6) < T= NO FAILURE (2.32)
If I(t;,8) is less than some threshold, T', then Hy is true. Similarly H, is true if I(¢;,8) is

greater then the 7', The following steps describe the derivation of the GLR algorithm for

a single failure type, a step failure.

1. Step One, Define the Hypotheses Hy and H,

The derivation of the GLR test begins with the establishment of the two hypotheses,
each based on a different set of discretized extended Kalman filter equations, The first
hypothesis, H; (no failure), cumes from discretized EKF equations ( Equations (2.33)

and (2.34)) that assume that no failure has occurred.
6I(t5+1) = Q(ti+ly tg)6$(t;) + Gd(t.-)wd(t.-) (233)

§2°(t:) = H(t;)bz(t) + v(ti) (2.34)

The second hypothesis assumes that an additive failure has occurred on thke mea-
surement signal. Throughout this section the superscript notation, 0 and 1 refer to

variables associated with Hypotheses H, and H, respectively. These equations have
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an extra term that reflects the nature of the failure (Equations (2.35) and (2.36)).

61‘(ti+1) = @(ti+1,t,‘)6$(t¢) + Gd(t,-)wd(t,-) (235)
621 () = H(t)8z(t:) + v(t:) + d(ts)n(t;, O)v (2.36)
where
d(t;) =  failure vector
n(t;,8) =  failure function
v = unknown size of the failure
6 = unknown time of the failure

Comparison of Equations (2.34) and (2.38) reveals that the H, hypothesis is char-
acterized by the failure offset term, d(t;)n(t;,0)v. The components of thi term de-
termine the type of failure that the GLR algorithm is trying to detect. The n(t;, 8)
dictates the time of failure cnset, @, ard the type of {ailure that has sccurred, i.e.
ramp offset, step offset, etc. The v is the magnitude of the failure. The column vec-
tor, d(1;), specifies which of the measurement signals has the failure. Chapter IIT will
fully describe the failure models for both d(t;) and n(?;,8). One of the real benefits
of the GLR algorithm, as stated in Section 1.6, is that the unknown variable, v, is
estimated in the GLR algorithm. Therefore © does not need to be predetermined for

the hypothesis, H,.
. Step Two Development of the Residual Equations

Similar to the Chi-Square algorithm, the GLR test focuses on the residuals for its fail-
ure information. Therefore the GLR. derivation hinges on the development of residual
equations for the two different hypotheses Hy and H,. These residual equations are
derived from Kalman filter equations developed for each of the two hypotheses. Equa-

tions (2.37) and (2.38) represent the residual equations for Hy and H; respectively:
7O(t:) = H(t:)62"(t:) + v(t:) — H(t:)65°~(t:) (2.37)

')'l(t.') = H(t,)bzl(t.) + V(t.‘) - H(t,)&il‘(t.) + d(t,-)n(t,-, 0)1/ (2.38)
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Equations (2.37) and (2.3R) are rewritten using the following definitions,

" (t;) = 63" (t;) — 62" (%) (2.39)
el(t;) = 6zt (t;) — 62" (&) (2.40)
to yield,
YO(t:) = H(t)e(t:) + v(t:) (2.41)
Yt = H(t)el () + vit:) + d(t;)n{t;, 0)v (2.42)

With these definitions in hand, the next step in the derivation is to find an expression

tor e(t;) iu terms of known model parameters.
. Step Three, Define expressions for €°(¢;) and e’(t;)

The method for developing the expressions for either e(t;) will be demonstrated by
developing e'(t;). Using the expression developed for e'(¢;) in Equation (2.40), a new
expression can be developed by using Equations (2.35), (2.28) and (2.20). This new

expression, Equation (2.43) puts e!(#;) into a recursive form:
€' (ti) = Q(tipr, ti)e! (L) + Galt)Wa(ts) = S(tipr, ) K (8 Y (1) (2.43)

In the above equation, A(¢;) represents the Kalman filter gain at time t; as de-
fined in Equation (2.19). Equation (2.43) can be further expanded by substituting
Equation (2.42) for 4'(¢;). After several aigebraic simplifications, Equation (2.43) is

rewritten as,

el (tip) = St i)l - K(6)H()]e'(8) + Ga(ti)wa(ti) —
D (i1, t) K (2)[V(%) + d(t:)n(t;, 6)v] (2.44)

This is the desired form for e'(t;). A similar derivation yields the following expression

for €°(¢;),

e (tip1) = @ty t)l] — K{G)HE)C () + Galtoywa(t) -

29




¢(tg+1,t,‘)1\'(tg)V(ti) (245)

The two equations derived in Step 3, Equations (2.44) and (2.45), will be used later

in the derivation to attain the final form. of I(t;,8).
. Step Four Derive a new expression for v'(¢;)

This is the ccucial step in the derivation. The goal is to develop a new expression for
¥(t;) in terms of 4°(¢;) and other terms that are readily available from a Kalman

filter. To accor;piish this we start by rewriting Equation (2.38) in the following form,
7H(t:) = (k) + g{ti, O)v (2.46)

where y{t;, 91 is o function of only parameters available from the EKF. Let g(t;,80)
te of she form,

9t 8) = F(t:) f(t,0) + d(t)n(t:, 8) (2.47)

It is therefore necessary to find an expression for f(¢;,8) that will satisfy the above
equations. This expression is found by substituting in all the other known quantities
into Equation (2.46). Expressions for v4!(¢;) and 4°(¢;) are fourd in Equations (2.41)
and (2.42):

H(t.' )el(t,-) + V(t;)ﬁ-
d{tm(t, & = HE)EE) +v{t) +

[H(t:), (4, 9) + d(t)n(t:, 0))v (2.48)
After cancellation Equaticn (2.48) can be rewritten in the form,

(1,0 = ~[e} () ~ €¥(2,) (2.49)
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It is now beneficial to put Equation (2.49) into a recursive form for f(¢;,0). Restating

Equation (2.49) for ¢t = t,4, yields the following expression,
Lo, 0
J(tig,0) = ;[6 (tig1) = € ()] (2.50)
Now the terms on the right side of Equation (2.50) are expanded so that f(t;4;,8) be-

comes a function of f(t;,8) and other known quantities. Equations (2.44) and (2.45)

from Step Four provide expressions for e!(t, ) and €°(ti41).

f(tiy1,0) = %[(‘I’(t-‘-mté)[l — K(t;)H{t:))e' (t) + Ga(t)wa(ts) -
D(tir, 8 )R (1)(v(L) + d(t:)n(t;, 0)v]) -
((tipr, t) [ = K (t)H(L)]e (%) + Ga(t)walts) —
D(ligr, L) K (L)v(8))] (2.51)

This expression can be simplified to yield,

f(tin,0) = %;{@(tu-:at-')[l = K(t)H(t)](e'(6:) — €°(t:)) —
‘I>(t.-+1,t,-)Ix"(t,-)d(t,-)n(t.-,ﬂ)v]} (252)

Now Equation (2.49) is used to complete the recursive formula for f(t,,,9).
F(tig1,0) = ®(tigy, )T — K(6)H()] (2, 0) — S(tiyr, ) K (L)d(t:)n(t,,8)  (2.53)

Therefore at this point, recursive equations have been developed for residuals of the

two hypotheses, no failure and failure:

Hy @ () =~"(t) (2.54)

Hy o () =) + g(ti, 8)v (2.55)

The expressions for g(t;,@) can be developed from Equations (2.47) and (2.53).

5. Step Five The Likelihood Ratio




Now that expressions have been developed for the residuals of the two hypothesis,
the likelihood ratio needs to be established to determine which of the hypotheses the
residuals actually match. We derive the likelihood ratio from the knowledge that
both hypotheses residuals are Gaussian random variables that are independent in

time [15]. We now define the following probability ratio:

P(y(to), Y(tos1)s Y(tog2)s connre ()| Hy,8,v)

L tiagv = 2 7
( V) P(v(t0), Y(fo+1)s Y(togz)s eeenes Y(Ei) Ho)

(2.56)
_ ' T -1

0,) = II:“=0[ 2niA:tn)|‘/96 (Y n)+g(tn 8)v) T Altn) (‘)’(tn)+g(tn.0)V)]

! - t, 1

Iltn=9[:7Zx|A(tnﬂl/9

The proavrt functions in Equation (2.56) represent the product of the probabilities

l’(tis

e~ %7("\)TA(tn)-l7(tn)]

at each measurement update from time, 6, up to and including the current time,
t;. To simplify Equation (2.56), we use the log-likelihood function in place of the
likelihood function. This is accomplished by taking the natural log of both sides of

Equation (2.56). After several algebraic simplifications, this equatior becomes,

n(L(1,0,9) = 3 [r(ta)T Altn) ™ 9t 8)] = 50 3 [yt AGta) ™ 1(0)]

tn=8 t,=8

Similar to the product notation of Equation (2.56), the summation in the equa-
tion above repres~nts the sum of the terms at each measurement update from time,
0, up to and including the curreat time, ¢;. This notation continues in Equa-

tions (2.58), (2.99), and (2.67) This equation is rewritten in the form,
1,
In(L(%;,0,v)) = v¥(t;,0) - EV‘S(Z‘.;,O) (2.57)

where ¥(;,0) and S(t,,8) are defined below.

L(t5,0) = 3 [9(tm, 8)7 Ata) ¥(tn)] (2.58)
th=6

S(4,0) = }: [9(tn, 6)" A(tn) " g(tn, 0)) (2.59)
tn=@




Now it is necessary to remove the dependence on v from Equation (2.57). This is
‘done by finding the Maximum Likelihood Estimate(MLE) of v for Equation (2.57).
This is accomplished by taking the derivative of Equation (2.57) with respect to the

variable v and setting it equal zero:

diin(L(t;,0,v))] _ L o
- W{t;,0) — vS(t;,0) = 0
Y — \I’(the) ‘
"7 S(,9) (2.60)

Now that the MLE of v has been found over the interval 8, substitute this value back

into Equation (2.57). This yields the following maximum likelihood equation:

¥(t;,0)
I . = . - —_— .
In(L(t;,0,v)) =1(t;,0) 2504.9) (2.61)
Now the expression for I{t;,8) is maximized over 6 to obtain the mazimum likelihood esti-
mate. This is the final form of the Generalized Likelihood Ratio test. If I(t;,80) exceeds a
predetermined threshold T then a failure of type n(t;,8) will be declared on the measure-

ment specified in d(¢;). The GLR magnitude estimate of this failure will be 7 as defined
in Equation (2.60).

2.3.2.2 Development of the GLR Matching Filter. While the GLR al-
gorithm defined in the previous section is designed to function as a stand-alone failure
detection and isolation algorithm, the GLR matching filter algorithm performs a more
limited role within the MNRS model. The GLR matching filters will be provided with
failure detection and isolation information from the bank of Chi-Square tests that are run
on each NRS filter. Given the failure information from the Chi-Square tests, the GLR
matching filter must then identify the type of failure. Specifically, the GLR matching filter
algorithm will attempt to diftferentiate between step and ramp failure offsets. There is no
GLR failure model available for the noise offset, therefore a Generalized Likelihood Ratio
is not developed for the noise offset. Fundamentally this is done by comparing the results
of different GLR matching filters, and choosing which best fits the residuals. Fach GLR

matching filter can also estimate the magnitude of the failure. This section derives the
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GLR matching filters from the previously defined GLR equations, and explains how the
matching filters accomplish failure identification and estimation. Before this can be done

however, the information provided by the Chi-Square test must be defined.

The first piece of information is the identity of the failed measurement signal. The
knowledge of which measurement update is failed, allows the GLR vector d(#;) to become
the fixed vector d, (¢;)(subscript x signifies dependence on Chi-Square failure information).
The second piece of information provided by the Chi-Square test is its best estimate of
wlen the failure occurred. This estimave is based on experimental analysis of Chi-Square
detection delay. The knowledge of the Chi-Square estimate allows the variable  to become

the known estimate 6, .

These two simplifications greatly reduce the computational burden of the GLR al-
gorithm. In fact the extra information reduces the GLR equaiions into simple matching
filter equations. Rather than having a maximum likelihood estimate over the variable 8,

the GLR equation reduces te the following;

Ww2(t;, 0
lnoa(ti) = _X(__ll

= = (2.62)
28, (t:,0,)

with d, (t;) and 9, predetermined by the MNRS Chi-Square tests. The GLR equation has

now been reduced to a function of only time, Z;.

To implement the failure vype identification, two GLR matching filters are con-
structed; one for a step bias and one for a ramp offset, These filters are unique because
they are each driven by two different failure models, 7,p(ti,0y) and nyamp(ti,fy). The
definitions for the different failure models are provided in Section 3.4.3. It is important to
note that the Chi-Square estimate of the failure time, 6, does not take into account the
detection delay inherent in the step and especially the ramp offsets. Compensating for this
failure detection delay in the failure models is addressed in Section 3.4.5. Continuing on,

for each of the two failure models, n,., ard n.am,, @ GLR matching filter is now defined

as,

]"cp(tl.) = M) (2.63)
Zsﬂep(tix ox)

Do




q Zamp( _)

Iram f'i; -
o) = 25ramp(lir8,)

(2.64)

where the first equation is a function of nge,(ti, 0, ) and the second equation is a function

of n,.,,mp(t,-,éx). A ratio of these two equations is defined as T(¢;),

lramp(tiy é\()

T(t,) - =
ls!ep(tia ex)

(2.65)

This equation simplifies through cancellation and use of Equations (2.53),(2.59),and (2.61)

to reach the following result,

zamp(ti*é )qa!ep(" Ax)
atep(tla x)sramp(t x)

T(t) = (2.66)

(Z::‘ﬂ; [gramp (nv )A(t ) 'Y(tn)J)l __g [gstep(tme )TA(tn/ gstep(tmo )]

(Z"_g lg:tep(tnvox)TA(t ) ‘7(tn)])2 tn=0 [gramp(tmo ) A(tn gramp(tnvox)]
(2.67)

T(t) =

where the subscripts, ramp and step, correspond to a function that has the respective failure
model as an input. Similar to the original GLR algorithm, the ratio of matching filters,
T(t;), will be compared to thresholds to determine which type of failure has occurred. If
the failure is 2 ramp bias, the ratio of matching filters shoula be much greater than the
one, therefore Y(t;) should be much larger than one. Likewise Y(t;) should be much less

than one if a step bias has occurred. Yet if the failure is additive random noise, neither of

Ramp Bias if Y(t;) > T}
Failure Type = { Step Bias if Y(&) < T} (2.68)

Noise Bias otherwise

The T} >> 1, ramp bias , and T> << 1, step bias thresholds are experimentally established
thresholds. With the proper choice of thresholds the Y (¢;) will accurately determine failure
type.
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The magnitude of the failure type is determined {rom Equation (2.60). This equation,
calculated for both step and ramp failure models, will estimate the size of the failure at
each point in time, t; > 8,. The determination of which estimate is valid depends oa the
outcome of the ratio between matching filters, Y(¢;). By using Equations (2.60) and (2.66),
accurate estimates can be made of both the size of a step bias, and the slope of a ramp
offset. Unfortunately, since there is no failure model for the noise bias, an estimate of the

magnitude of a noise bias cannot be determined.

This section has defined the role of the GLR algorithm for the MNRS FDIR system.
The GLR has been modified to use predetermined information from the MNRS Chi-Square
test to ease computational burden and increase the likelihood of accurate estimation. While
theoretically the GLR matching filters should effectively accomplish failure identification
and estimation, past AFIT research has only had limited success with the GLR algorithm.
Therefore, a secoud matching filier algorithm is also developed to compare with the GLR

matching filters,

2.3.5 The Chi-Square Pattern Recognition(CSPR) Matching Filter.  The CSPR
filter identifies consistent trends in Chi-Square magnitude plots that can distinguish failure
type. The filter is based on the premise that step and ramp offsets affect the residuals in
distinct manners that are obvious in the Chi-Square results. By examining the Chi-Square
magnitude data over the time of failure, the type of failure is determined. Like the GLR
algorithm, it is assumed that the Chi-Square estimate of the failure and the identity of the
failed measurement are known. To understand the implementation of the CSPR matching

filter algorithm, the scope of the filter’s theoretical development needs to be clarified.

The CSPR algorithm has been developed through post-process examination of the
impact of failures on the residnal and Chi-Square plots. These Chi-Square results and the
results of past FDIR EKF work imply that the failure type can be determined by the shape
of the Chi-Square test over the time of failure [2, 5]. This thesis in nc way implies that the
CSPR algorithm can be used to identify failures for all EKF models. The CSPR filter has
be=n designed for the specific NRS model developed at AFIT. Fundamentally, the CSPR

filter is an ad-hoc identification algorithi that exploits the engineering insight developed
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through rigorous failure testing of a filter model. The criteria for distinguishing the failure

type in the residuals is presented in Section 3.4.4.

2.3.4 Threshold Selection and Filt:r Tuning. Threshold choosing is a trade-
off between several performance parameters to gain the best Dl for the system. The
pe-formance parameters that must be balanced are false alarm rate, detection delay, and
missed failures, If the threshold value is high, the false alarm rate will be low, while
the detection delay and the missed failure rate will be high. If the threshold value is
lower, the false alarm rate will increase, while the detection delay and missed failure rate
wil. decrease. The system dynamics must also be taken into account when choosing a
threshold. A highly dynamic system will require a higher threshold than a henign system
to maintain an acceptable false alarm rate. In the end, a balance is achieved between the
performance parameters that yields the best possible FDI for the problem at hand. The

vhreshold choices made for the MNRS are discussed in Chapters III and IV,

The tuning of the Kalman filter can also be varied to increase FDI ability. By altering
the tuning of the Kalman filter, the residuals can become more sensitive to failures. The
effect, of changing the tuning can be seen in Equation (2.29). If the value of R were to
decrease, the magnitude of the Chi-Square test would actually be increased since the inverse
of the covariance is used in the Chi-Square computation, Equation (2.30). Therefore, it is
possible to make a system more sensitive to failures by adjusting the tuning. Yet by altering
the tuning, the filter will no longer be constructed to yield the optimal navigation selution,
i.e., best state estimates. Therefore varying the tuning parameters is not implemented to
improve the ability of the FDI algorithms. This research maintains the most accurate

navigation solution from the MNRS model.

2.4 Chapter Summary

Chapter II presented the Kalman filter, the Chi-Square test, and the GLR test in
support of the MNRS failure detection and isolation algorithm. The first theory presented,
tne Kalman filter theory, will be more deeply explored in the beginning of Chapter 111 with

the presentation of the navigation models. The use of the two failure algorithms will also
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be explored in Chapter IlI with a description of the implementaticn of the MNRS FDI

algorithm.




III. Nawvigation and Failure Models

This chapter describes the models used for the computer simulation of the MNRS
IFDIR algorithm. The chapter begins with & high-level description of the MNRS and its
major sub-components. Following this introduction, the NRS filter is described. The
descriptioa of the NRS filter focuses on the implementation of the navigation models in
the MSOFE sofiware [13]. After the NRS filter description, the implementation of the
fatlure models is presented. The chapter concludes with a discussion of the MNRS filter

selection algoritim.

3.1 The MNRE Model Description

Figure 3.1 reviews the major sub-components within the MNRS, To the far left in
Figure 3.1, the GPS and RRS measurement souzces can be found. These two navigation
aids distribute unique sets of measurement information to each of the ten NRS extended
Kalman filters. Table 1.1 provides an exact list of the measurement signals each NRS filter
receives, The navigation solution comes from the INS. Usirg the inforiration yrom the
GPS, RRS, and INS, each NRS filter calculates its best estimate of the navigation errors
made by the INS. The ten chi-square tests monitor the residuals of ali the NRS filters and
pass on the best navigation solution from the bank of NRS filters. When the. chi-square
tect declares that a measurement signal has been corrupted, the navigation correction
switches to the unaffected filter. The Chi-Square test also passes on the identity and the
estimate of failure time to the matching filter. The matching filter then estimates the type
of failure. This brief overview shows how the INS, the GPS receiver, the RRS receiver,
the NRS EKF's, the chi-square tests, and the matching filter all work togeiher to produce
a navigation solution that is robust against failures in the GPS and RRS measurement

signals.

While the me jor focus of this thesis is the FDIR capability of the MNRS, the quality

of the navigation system fundamentally rests on the ability of each NRS filter to provide an

accurate estimate of the errors committed by the INS in calculating its navigation solution.
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The next section will fully develop the NRS extended Kalman filter eguations and their

Figure 2.1 Overall MNRS Description

implementation in the MSOFE software.

3.2 The NRS Computer Model

The information and data presented in this thesis has been accomplished entirely
through computer simulation. The computer modelling of the NRS system is divided into
two portions, the truth mode! and the filter model. The truth model is a computer-generated
real world for the NRS filter. The truth model generates such things as the measurement
updates for the NRS filter, the true flight profile of the aircraft, and a state variable baseline
for evaluating filter performance. The truth model consists of 95 error states about their

nominal values. The filter model represents the NRS model in its functional form. The

J-2




filter model is a 15-state extended Kalman filter that has been developed through order

reduction of the 95—state truth model.

The block diagram, Figure 3.2, explains how the filter and truth models interact
in the MSOFE computer simulation. PROFGEN provides a simulated flight profile and
ORBIT generates GPS satellite constellation positions. With thic information, the truth
model is able to simulate the real world INS navigation solution = + 6z;ys and generate
the real world GPS and RRS measurements, Rgps and Rgps respectively. The NRS filter
in Figure 3.2 is represented by the extended Kalman filter block. The corrections from the
NRS filter are subtracted from the INS navigation solution to generate the best possible
navigation solution available, & = z + éz — 6&. Now that the MSOFE implementation of
the NRS filter has been explained, the truth and filter models for the GPS, RRS, and INS

subsystems will be described.

X
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Figure 3.2 'Truth and Filter Model Block Diagram
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3.3 NRS Model Description

This section presents the truth and the filter model EKF propagation and measure-
ment equations ( Equations (2.9) and (2.11), respectively). The presentation will be divided
up by navigation subsystems. First the INS portion of the equations will be presented, then
the RRS, followed by the GPS. Furthermore, before the different navigation subsystems
are individually described, the high-level state and measurement equations are provided

for the NRS filter followed by the truth model.

Equations (3.1) and (3.2) show how the different navigation subsystem models com-

bine to form a single NRS filter model:

Fins, 0 0 WiN s,
6z, = 0 Frrs, 0 6z; + | wggs, (3.1)
0 0  Fgps, wGps,
Hyns, 7 VINS,
62y = | Hgpgs, | 027+ | vags, (3.2)
Y Hegps, Vgps,

As stated earlier, the overall filter model consists of 15 states; 11 INS, 2 RRS, and 2
GPS states. Table A.5 in Appendix A provides a description of the 13-state vector, dx;,
implemented in the filter model. References to further descriptions of the sub-matrices
in the filier equations can be found in Table 3.1. It should be noied that the baromeiric
aliimeter and velocity aiding measurements are considered to be INS measurements, while

the GPS and RRS range measurements are the respective updates for the GPS and RRS.

The propagation and measurement equations for the NRS ¢ruth model is presented

in similar fashion below:

Fpiter  Fins, 0 o WFilter ]
0 F]N“ ¢ ¢ . Wi
0%, = o PR B (3.3)
0 0 Fgeps, 0 WRAS,
Y 0 0 Fgps, | | Wars, ]
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Table 3.1 _ References for the Sub-Matrices of the NRS Truth and Filter Models
| Filter Model | incation of Description | Truth Model Location of Description
Fins, I __Section 3.3.1.3 FINS 1er Section 3.3.1.3,3.3.2.1,3.3.3.1
- J - FINS“ Section 3.2.1.2
- ' - Fins, Section 3.3.1.2
Frrs, Section 3.3.2.2 Frps, Section 3.3.2.1
Feps, Section 3.3.3.2 Feps, Section 3.3.3.1
WINs, Section 3.3.1.3 WiNs, Section 3.3.1.2
WRRs, Section 3.3.2.2 WRRAS, Section 3.3.2.1 B
WGPs, Section 3.3.3.2 Weps, Section 3.3.3.1 i
Hins, Section 3.3.1.4 Hins, Section 3.3.1.4 [
Hrrs, Section 3.3.2.3 Hpps, Section 3.3.2.3 1
Hgrs, Section 3.3.3.3 Hgps, Section 3.3.3.3 !
Hins, VINS,
6z = | Hggs, | 6%+ | vgrs, (3.4)
Hgps, VG ps,

‘The NRS truth model consists of the original fifteen staies of the filier wodel{represented
by Friier and wpiier ), 2ugmented by additienal INS, GPS, and RRS states. The total
number of states for the three navigation subsystems is 95; 39 INS states, 26 RRS states,
and 30 GPS states. Tables A.1-A.4, in Appendix A give a full description of each individual
state of the truth model. Also Tables B.1-B.5 and Tables B.6-B.7 in Appendix B have a
complete listing of the components of the F and the Q noise strengths associated with the

W matrices in Equation (3.3).

While the first fifteen truth states of the filter model are nearly identical io the
first fifteen states of the model, there is one crucial difference, The filter model dynamics
driving noise and measurement noise do not correlate with those of the first fifteen states
of the truth model. The filter model noise values have been altered to achieve good tuning
against the truth model [9]. The following sections will provide a detailed presentation into
the exact make-up of the truth and filter model propagation and measurement equations

for all three navigation subsystems.

3.3.1 The Inertial Navigation System(INS) Model. This section presents the

truth and filter models used for the INS. The INS model is a strapped—down wander




azimuth system that senses aircraft motion via gyres and acceierometers and is used as
the primary source for navigation. The INS model has been derived from the Litton 93-
State model (4]. First, the original 93-state Litton model will be presented, followed by
the reduced-ordered 39-state truth and ll-state filter models. After the truth and filter
state equations have been defined, barometric altimeter and Doppler velocity aiding INS

measurement equations will be presented.

3.8.1.1 The 98-State LN-93 Error Model.  The 93-state Litton INS MSOFE
computer model has been generated by the Wright Labs Avionics Directorate Research
Group. Their development uses both past AFIT research and Litton documentation to
fine tune past modelling efforts [4, 14, 18, 19]. The 93-state model generates a high num-
ber of documented error sources that are found in the Litton wander-azimuth LN-93 INS.

These errors are described using six categories of states:
§¢ =[ 627 627 627 627 62T 6ol | (3.5)
where éz is a 93 x 1 column vector and:

oz, represents the “general” error vector containing 13 position, velocity, attitude,

and vertical channel errors,

oz, consists of 16 gyro, accelerometer, and baro—altimeter exponentially time-

Markov processes in the truth (system) model.

bz, represents gyro bias errors. These 18 states are modeled as random constants

in the truth model.

bz, is composed of the accelerometer bias error states. These 22 states are modeled

in exactly the same manner as the gyro bias states.

bz, depicts accelerometer aud gyro initial thermal transients. The 6 thermal tran-

sient states are first order Markov processes in the system model.
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8¢ models the gyro compliance errors, These 18 error states are modeled as biases

in the system model.

The 93-State Litton model state space differential equation is given by:

\ _
éz, Fw F, F3 Fi. Fis Fls7 bz, W w, ]
5%, 0 F, 0 0 0 0 5z, w,
b, ¢ 0 0 0 0 O 5z, 0
< | = < + L (3.6)
5, o 0o o o o o || 6z 0
6(&5 0 0 0 0 F55 0 (53]5 0
L 52?6 ) L 0 0 0 0 0 0 i ké‘éﬂs ) L 0 )

A full description of the sub-matrices for this equation is given in the Litton LN-93 manual
[4]. This large state model represents the most accurate model available for the LN-93

navigation errors.

3.3.1.2 The 39-State INS Truth Model.  While the 93-state model is a very
accurate representation of the INS error characteristics, the high dimensionality of the
state equations makes the model impractical for failure detection analysis. Previous AFIT
theses have demonstrated that reduced-ordered truth models can be used in place of the
93-State model without losing a significant degree of accuracy [6, 14]. Therefore the INS
truth model has been reduced to a 39-state model. The reduced-ordered model retains
only the truly essential siates from Equaiion {3.8). The truih model state space equaiion

is defined in Equation (3.7):

( . A 3 1 7 3 ( 3
oz, F, F. Fiz Fyu bz, w,
6%, 0 Fp 0 0 oz L w

{ Ty = “ Jomm L bl (3.7)
b, O 0 0 0 éx, 0

lé, )] |0 o o o ||é&) (0]

It should be noted that the INS truth state vector éz, is a 39-state vector. The four

components of éz do not directly correlate to the first four components of the 93-state




Litton model. For a complete listing of the 39 states und how they relate to those in the

Litton model, see Tables A.1 and A.2 in Appendix A.

3.8.1.3 The 11-State INS Filter Model.  Vhe IN5 filter mode] retains the
essential states from the 39-state truth model. Through ya:t AFIT research, the 11-
state INS filter has been shown to perform adequately whei given frequent GPS and RRS
measurement updates [14, 19]. Table A.5 in Appendix A show= vLe 11 states used for the
INS filter model. Dynamics driving noise has also been addes: to ¢very state to compensate
for the order-reduction of the model. The final INS filter state dynamic driving noise values

can be found in Table B.8 of Appendix B.

3.3.1.4 INS Measurement Models. The two INS measuiements that are
used to update the filter are the barometric altimeter and the Doppler based velocity.
Both these signals are used to correct for inherent instabilities in the filter. First the
altimeter measurcment will be presented, followed by the Doppler based velocity measure-
ment. It should be noted that since the NRS filter is an error state filter, it is necessary to
develop difference measurement update equations for all the measurements. The altime-
ter measurement equation is based on the difference between the INS-predicted altitude,

Alt;ns and the barometric altimeter-predicied altitude Alty,,:

62Alt = A[t“vs - Altha,- (3.8)

Therefore it is necessary to develop the two separate measurement signals that will be
differenced to attain the proper measurement update for the error state filter. The INS-
predicted altitude is the sum of the true altitude, ., and the INS error in vehicle altitude
above the reference ellipsoid, 6h. The barometric altimeter readirg is modelled as the sum
of the true altitude, h,, the total error in the barometric altimeter, 6hp, and a random mea-
surement noise, v. The difference measurement update signal is formed in Equation (3.9)

by :.ubtracting the INS-predicted altitude from the barometric altimeter altitude:

0zaw = Allyns — Altpar

38




[he + 6h] — [he + 6hp + V)

i

= 6h—68hg+v (3.9)

A perfect Doppler system provides velocity aiding to the INS based on assumption 12
in Chapter I. The Doppler measurement has been added to lend numerical stability to the
NRS filter. A simple model is assuraed for the Doppler measurement. All three channels
(north, east, and up) are represented by the difference between the truth state velocity

error, 6V;,, and the filter state velocity error, §V;, as shown in Equation (3.10).
bz, = 6V, — 6V, where 1 =2,y,2 (3.10)

Although this model seems somewhat unrealistic, in that it provides the filter with an
ideal difference measurement for velocities, it does not skew the performance of the FDI
algorithm because these measurements are not used in the FDI calculations. The simplistic
model is being used until a more accurate modei can be developed. Use of this model also
allows the results of this thesis to be directly compared to past AFIT research [14, 17, 18,
19].

There is ro difference in the form of the INS truth and the filter model measurement
equations. Both use the same states to create the INS difference measurements. The
only distinction lies in the measurement noise values for each of the two equations. The
truth and fiiter measurement noise vaiues are iocated in Tabie B.9 of Appendix B. This
completes the presentation of the INS truth and filter state equations as well as the INS
measurement equations. The next section will develop similar equations for the ground-

based transponder system used in this thesis.

3.3.2 The Range/Range-Rate System(RRS) Model.  The RRS system is the pri-
mary CIGTF ground-based transponder system that has been installed for testing and
evaluating navigation equipment {14, 18]. The RRS interrogates the transponders, collect-

ing the electro-magnetic (EM) signals they emit. These signals give the user the range to

the transponder. In this thesis, the navigation information passed to the NRS filters is the




range to five transponders and the known location of those transponders. As done with
the INS models, first the RRS truth model state equations will be presented, followed by

the filter model state equations, and finally the measurement update equations.

3.3.2.1 26-State RRS Truth Model. The RRS truth model contains 26
states to simulate the real world errors that exist in the transponder system. The first two
error states are common error staies, i.e., these errors are common to all of the transpon-
ders. The two common states for the transponders are a result of errors in user hardware.
They appear as bias terms and are modeled as random constants. These state equations
are given by: _

6Ry 0 0 6Ry

o= (3.11)
6'Ub L 00 lS’Ub
where
OR, = Range error due to equipment bias

6’01,

Il

Velocity error due to equipment bias

The initial conditions for the truth model states were chosen to be consistent with CIGTF

and previous AFIT research [11, 17, 18, 19] and are:

SRy(t 0
A (3.12)
(5’05(%) 0
and
1f2 o |
Péﬂo,é'}y(to) = (3.13)

0 107%ft?/sec? J
Along with the two common error states for the transponder, each of the transponder
signals has four error states to model the unique errors of that specific transponder unit.
These errors represent the error in the surveyed position (x, y, and z) of the transponder’s
location and the atmospheric propagation delay between the transponder and the receiving
aircraft. The position errors are modeled as random constants and the atmospheric error

is represented by a first order Markov process. The state equations for these error sources
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are shown below where 7 represents the various transponders (1-6):

[ . 3 7 ( 3
x; 0 0 0 0 &g W w,,
i 0 0 0 0 : Wy,

S A (3.14)
2 00 0 0 Z wy,

L 6R‘""‘- J L 000 _STOls? i L 6Ra‘"h J \ Watm, )

The initial conditions for these states were chosen to be consistent with previous AFIT

research [14, 17, 18]. The initial mean and variance for the truth model are defined below.

j:,y,z,atm(to) =0 (315)
[ 25782 0 0 0
0 2512 0 0
P.-r,y,.-,atm(to) = (3.16)
0 0 25ft° ]
0 0 0 100/ |

The truth model dynamics driving noise that has been implemented for the transponder
error states was provided by Holloman test facilities through past AFIT research {14, 17,

18, 19]). The mean and variance of the dynamic driving noise are:

E{we,y,:,am(t); = 0 (3.17)
600 o |
000 0 ,
E {w*’-‘ny»‘-‘"""(f’)u"-'r-'l".;l,:,altm(;t + T)} = 6(7-) (3’18)
000 0
[0 0 0 “ghe |

2
aim

respectively, with o2, = 10‘10{;‘-2. Therefore the truth model will cousist of 26 states, two
commeon user error states plus six sets of four unique transponder error states. It should
be noted that the truth model as simulated will propagate six sets of unique transponder
error states, yet only five are used by each NRS filter. The extra state has been maintained

to ease the implementation of the MNRS model. However it is important to understand




that each individual NRS filter receives only five RRS transponder signals. This completes

the description of the RRS truth model. Next the RRS filter model will be presented.

3.5.2,.2 The 2-State RRS Filier Model.  Research at AFIT has shown that
retaining only the first two states, which are common to all the transpsnders, provides good
filter performance |19]. These states are the range and velocity errors due to equipment
bias and are represented as § R, and §v, in Equation (3.11). To compensate for the removal
of the other states and to prevent EKF gains from going to zero, dynamics driving noise
has been adaed to each of the two RRS filter states.

oR 0 0-| OR, - WeR,
' l = { R B (3.19)

é'vb J 0 0 J 'l 6‘0(, Wiy,
The initial mean and vasiance for the filter model is assumed to be zero for these two states.
Filter tuning sccounted for the exact magnitudes used for the strengths of the dynamics
driving noise, wsg, and ws,,. The final values implemented can be found in Table B.8 of

Aprendix B.

32.3.2.3 RRS Measurement Model.  Each NRS filter will receive five different
measurement update signals from the five different trauspouwax. incations. This section
describes the measurement equations for the RRS transponder updates. Each equation for
the iransponder updates is ideniical in form. First ihe truih model measurement equaiion
will be fully developed, followed by a brief description of the reduced-order filter model

measurement equation.

The RRS difference measurement is generated by forming two independent measure-
ments of the range from the transponder to the aircraft. The EKF then takes the difference
of these two measurements to form éz. The two range measurements differenced are the

INS-computed range ( R;ns) and the RRS-calculated range, (Rgrgps):

0zrrs = Hins — Rrrs (3.20)
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The RRS range measurement, Rgrgrs is the sum of the true range from the transponder to

the aircraft and the errors inherent in the measurement signal:

Rpps = Re + 8Rotm + 6 Ry + v (3.21)
where
R,.. = RRS range measurement, from transponder to user
R, =  true range, from transponder to user
§Rum =  range error due to atmospheric delay
SR, =  error due to cquipment bias
v =  zero—mean white Gaussian measurement noise

The second source of range information is provided by the INS. The NRS takes the
INS computed position, Xy and subtracts the known transponder position, Xy. Equa-

tion (3.22) shows the calculation of the R ns:

e e
‘ > .
|
R s X, - X = Yu - Yr (3.22)
%y *r

It should be noted that both X7 and Xy represent position vectors in the earth-centered
earth-fixed (ECEF) frame. While Fquation (3.22) provides the second source of transpon-
der range information, this equation is not a function of the EKF error state variables.

Therefore it is necessary to rewrite Equation (3.22) in the following form,

RINS = \//(zu - x'r)g + (yu —Yr )2 + (zu - ZT)z (3'23)

Equation (3.23) is equivalent to Equation (3.22). This new equation will now be ap-
roximated to generate a relationship for R;ys that is a function of the EKF error state
variables. Based on assumption 11 from Chapter I, Equation (3.23) can be approximated

and rewritten in terms of the true range and a truncated first—order Taylor series, with
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perturbations representing the errors in Xy and Xp:

IR, (X:r X))
Riye = R + ——mgonisoel - 6X
e ‘ ax, _I(,\'T X )nom v
SR, ( X .
Tonsy ;T’ (,) 6.)('1" (324)

(X'quu Jnom

The final expression for R;ns, Equation (3.25), is fcund by evaluating the partial deriva-
tives in Equation {3.24). It should be noted that Equation (3.25) is a function of ¢z,
by, z,, 6x,, 8y., and dz,. These variables can be directly transformed into the state

variables in the EKF truth state eguation.

Ir 7 Yr — U - 'i
PR AT P S I LT
e t IRINS‘ IRlnsl Y I‘RINSIJ
fl‘.*x_'_—/_ R - ZT_
+ [ |-R1Ng| ] xT + [ ].Rlei ] + ['Rl,\ql] bz (3-25)

The actual difference equation, Fanation (3.26) is now formed by taking the difference

SN

between R;ns and Hgps

67'!135‘ = Ruvs - Rnns
R ¥ ¥, Zp - 2,
), - [, - [
[lRINal] IR!NS!J yu IIZINS J v
Tr — Yoo — Yy z’r’-zv-1
+ [ ] dr,. + {—“—-——-} -0y + [ =1 bz,
T IR RGN AT
- {1]61.;,,,, - [1]6R,, - v (3.26)

The equation for the difference measurement, Equation (3.26), is the complete form of
the measurement for the truth model. In the above equation, ézy, 6y, and 6zy can be
translated through an orthogonal transformation into the state variables 66, 66,, and 46,

defined as truth model states in Table A.1 of Appendix A [1].

The actual measurement equation that is used for the reduced--order NRS filter does

not retain the terms éz,., dy,, aud 6z, since the reduced-ordered model does not contain

these states. Theisfore with those values set to zero  “yeation (3.27) is the {ilter model




measurement equation for the NRS filter.
6ZRHS, - Ruvs - RRRS

. — Y — Y .~z
oo [Emme] s - [_._U_]g - [.r U_].(szu
[lRINS|] IRINSI yU |RIN!

S

— [J6R, - v (3.27)

The filter meusurement noise strength, R will be tuned to attain adequate performance
despite the reducticn in order from the truth model and the Taylor series apr -oxirnation.
Table B.9 in Appendix B contains a complete listing of the measurement ncise values
for both the filter and the truth model models. This ends the description of the RR3

navigation subsystem. Next the GPS navigation equations are presented.

3.3.3 The Global Positicning System(GPS) Modei.  The third and final navigation
system is based on EM signals transmitted from orbiting GPS satellites. Although similar
in concept to the RRS, the GPS is modeled somewhat differently. This model has been
developed through research at AFIT, and many of its fundamental concepts are addressed
in a variety of sources [7, 14, 17, 18]. GPS is similar to the RRS in that it generates
navigation information by acquiring the range to multiple satellites of known position.
The navigation information passed to each NRS filters is the range to four satellites and
the ephemeris data position of those four satellites [7]. The next three sections will present

all the necessary equations to define the GPS truth and filter models fully.

3.3.3.1 The 30-State GPS Truth Model. There are five types of error
sources that are modeled in the GPS truth model siate equations. Tke first two states

represent the errors in the user clock and are modeled as follows:

6‘Rclku _ 01 Rk, (3.28)
6Dc"cu 00 6Dc.‘lcu
where
O R ik, = range equivalent of user clock bias




0D i, =z velocity equivalent of user clock drift

The initial state estimates and covariances for these states were chosen to be consistent

with previous AFIT research [14, 17, 18] and are:

6 R, (2 0
L (to) = (3.29)
6D iy (o) 0
and
9.0 x 104 f1? ¢
P6Rclku |6Dclku (t()) = (3-30)
0 9.0 X 10%°ft?/sec?

Because these error sources are a function of the user equipment, they are common to
all the satellite vehicles. The remaining five sources of errors are unique to each satellite
vehicle {5V), based on their individual equipment and their position with respect to the
user. The first SV-specific error source is the code loop error. Although the code ioop is
part of the user equipment shared by all the SV’s, its error magnitude is relative to each
SV. The second and third SV-specific errors are the atmospheric interference with the EM
signals, as related to the ionospheric and tropospheric delay in the signal’s propagation.
The code loop error, tropospheric delay, and ionospheric delay are all modeled as first
order Markov processes with time constants shown in Equation (3.31), consistent with
previous AFIT research [18, 14, 19]. All three are driven by zero-mean white Gaussian
noise with strengths shown in Equation (3.34). The fourth SV-specific error source is due

to inaccuracies in the c¢locks on board the SV’s, and the final error source is based on line-

of-sight errors between the SV’s and the receiver. The model for these states is shown in




Equation (3.31),

SR, | -1 0 0 o000 0] sry ) wa |
6Rivop 0 - 0 0000 6 Rirop Werop
6 Rion 0 ¢ - 0¢00 6Rion Wion

{ R, { = 0 0 0 000O0(|y6R, ¢ + 3 0
bz, 0 0 6 0000 bz, 0
8y, 0 0 0 0000 8y, 0

| bz, ) L0 0 0 0000} 6z, | | 0

(3.31)

where the initial covariances for the states is given by;

[ 025782 0 0 0 0 0 0 |
0 1.0 ft? 0 0 0 ] 0
¢ ¢ 18f2 o 0 0 o
Pors(to) = 0 0 0 25ft 0 0 0 (3.32)
0 0 0 0 25ft2 © 0
0 0 0 0 0 25ft2 0O
0 0 0 0 0 0 25ft° |

and mean values and strengths of the dypamics driving noise are given by;

E{weps(t)} =0 (3.33)
056 0 0 00 0 ¢|
¢ 0.004 0 00 00
0 0 0004 0 0 @ 0
Elwgps(twl _t+7)} =] 0 o0 0 0 0 0 0| ft/sez -6(r) (3.34)
¢ 0 0 G 0 00
0 0 0 0 000
o 0 0 000 0,
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A quick reference of the truth model non-zero GPS and RRS dynamics matrix components
is provided in Tables B.5 and B.5 of Appendix B. This ends the description of the 30-state

truth wodel. Now the filter model will be presented.

3.3.3.2 The 2-State GPS Filter Model.  Various research efforts have shown
that iwo states previde a sufficient model for GPS [14, 6]. The primary argument is that
the errors modeled by the other 28 states are small when compared to the two states
common to all SV’s. By adding dynamics driving noise, ¢, and re-tuning the filter, the
cveral] performance of the NRS can be maintained with the significantly reduced-order

model of Fquation 3.35:

. | {
6Rc U 91 6Rc.’ v WR
* ] b i 8 } (3.35)

5Dc1kg 0 OJ 6Dc1_'fu ’chu ;

The values implemented for the dynamics driving noise strengths can be fouud in Table B.S
of Appendix B. It should be noted that in the tuning pro..ess, the measurement noise
covariance values R have also been adjusted to achieve adequate tuning of the filter [9].
This completes the description of the GPS flter modei. The= next sectiou presents the GPS

measurement equations ror botk the truth and the filter inodels.

3.3.3.3 CPS Measurement Modei.  There are four GF3 measurement up-
dates, one for each of the satellite range signals received by the NRS filter, These mea-
surement vpdates are once again difference measurements similar in structure to the RRS
difference measuiements. First the GPS truth mode! difference measurement will be fully
presented, {ollowed by a brief descciption of the filter measurement. The GPS diffrience
measurement is formed by takivg the difference of vhe INS-calculated pseudorange, PRy s

and the actual psendorange, P Rgps:

bzgps = PRin: — PRaps (3.36)
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The real pseudorange, PRgps is the sum of the true range from the user to the satellite

plus all the errors in the pseudorange signal propagation.

R,po = Ri+0Ry+6Rop +6Rin +6R,, +6R,,, +v (3.37)

where

R =  GPS pseudo range measurement, from SV to user

R, =  true range, from SV to user

SR = range error due to code loop error

ORyop = range error due to tropospheric delay

6Ri;, =  range error due to ionospheric delay

éRsqr =  range error due to SV clock error

bRy = range error due to user clock error

v = zero—mean white Gaussian measurement noise

The second source of a range measurement is the INS itself, PR;ys. The derivation of
PR;ns parallels that of R;ys from Section 3.3.2.3. PRjys is the difference between the
NRS-calculated position, Xy, and the satellite position from the ephemeris data Xs. This

difference vector is represented below in the ECEF frame:

4 €
Ty Zs
I)Rle XU - Xs = Y, - Ys (3.38)
2y Zs
An equivalent form for Equation (3.38) is: N
PR:NS = \/(mu —Ts )2 + (yu - ys)2 +(z - 35)2 (3'39)

Based on assutuption 11 from Chapter I, Equation (3.39) can be approximated and rewrit-
ton in termns of the true range and a truncated first-order Taylor series, with perturbations

1epresenting the errors in X, and X:

PR.. = R, + 2uwsXeXy) . 6X,

e X, (Xs Xy Inom
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IR, s(Xor Xy)

+ aX,

C8X, (3.40)

(X5 Xy )dnom

The solution for R;ns is found by substituting Equation (3.39) into Equation (3.40) and

evaluating the partial derivatives to get:

zs—xu] Ys [ZQ— ]
= S Dor nk1’N Y PR By, — |22 g
R R s R = R e R
- yu ‘ZS_ *
+ ] SOy, o+ [—a——] bz 3.41) .
[ IRINSI :l Ts IR1N4| IRINSI ( 1

Finally, the GPS pseudorange truth model difference measurement is given as:

63GP5¢ = RINS RGPS
= s — 2, "'yu] _ [zs—zu]_éz
[ IRiNsl ] [ uvsl IRIN:>| ‘
P k4 [ s ] Sy, + [zf z”] bz,
l“’uvsi -‘ iﬁ'uvsl

|

(1]6Ry ~ [1)6Rirs, ~ [1]6}2,»0n

~ [1]6Ruas ~ [1]6R

<

Uclk

(3.42)

Similar to the RRS truch model measurements, the user position errors in Equation (3.42)
can be trausformed into the first three states of the filter or truth model using an orthogonai

transformation [1].

The filter model for the GPS measurement updates can be derived in similar fashion
as the RRS filter measurement updates. Since the filter model does not contain the states
for the errors in the satellite position, these terms are removed from the equation. The

filter model measurement equation can therefore be written as

‘5ZGP5; = B - Rgs

s ."TU] bz [ys_yu] § [zs—zu] 5
T, — by, - |- -6z

1Ry os ]| 1R, s g [Ronsl b

- [1]6Ruan - v (3.43)
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The filter measurement noise strength, K will be tuned to attain adequate performance
despite the reduction in order from the truth model and the Taylor series approximation.
The measurement noise variances for both the filter and the truth model equations are
provided in Table B.9 of Appendix B. This completes the description of the GPS mea-
surement equations and the entire NRS filter and truth model equations. More detail can
be found on these equations in past AFIT research [14, 18, 19]. The following sections will

present the failure models implemented in this thesis.

3.4 Failure Models

The models explained previous to this section do not incorporate the occurrance of
failures. This section explains how failures are added ic the simulation, and clarifies the
matching filter algorithms. This section begins with a restatement of the exact failures that
are modelled. Next, the necessary changes to the truth model for generating simulated

failures arc presented. Finally the two matching fiiters are defined.

3.4.1 Description of the Failures.  This section explains the mathematical models
for the three types of failures: step bias, ramp offset, and increased measurement noise.
The failures are restricted to single failures of a GPS satellite or RRS transponder range
measurement. Doppler failures and altimeter failures are not considered in this thesis to
maintain a reasonable nuinber of multiple models in the simulation. Therefore only a single

+
U

satellite or transponder measurement is affected during any one simuiation rua. Sateilite
3 and transponder 1 have been chosen at random to be the signals altered by the step,
ramp, and noise failures. The relative geometry of all the range measurements is presented
in Chapter IV. Detailed mathematical definitions are now presented for these three failure
types.

The step bias is modelled as a scalar increase in the range measurement of a satellite

or a transponder. The bias will begin at time ¢, and continue for a length of time,
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tiengtn. Therefore, for all time, ¢;, the step bias failure is defined as,

¢ if l; < t.fm'[
b(ti) =19 b ity <t < Lrait - tiengtn (3.44)

0 if t; > tjac'l + tlength

where

b(t;) =  Step Bias Failure

by =  Magnitude of the Step Bias
tfqil = Initial time of a failure
tiengtn =  Time duration of the failure

The definition for the ramp offset is similar to that of the step bias. The ramp offset
also begins at time t;,;; and continues for duration t;.,,:x. Yet the ramp offset is a scalar
magnitude that will actually increase during the duration of the failure. Equation (3.45)

ofines the ramp offsct for all time ¢,

0 if ti < t]u“
r(&) = re(ti = tran) if tpan < 4 < tpait + tiengen (3.45)
0 i & > trait + tiengen

where

r(t;) =  Ramp Offset lailure

Tk =  Slope of the Ramp Offset
Lyail = Initial time of a failure
Uength =  Time duration of the failure

The increase iu the maeasurement noise failure is inherently different from the other two
failures. The noise failure increases the variance of the pre-existing Gaussian white mea-

surement noise betweer times, ;. and tyqi +tiengn- Equation (3.46) shows how the failed
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nieasurement noise term is changed to reflect the existence of the failure:

o(t) i <tau
vp(ti) = 4 mev(t) i tran € 6 € trait + liengen (3.46)
v(t:) i & > trair + tiengin

where
vy(t:;) =  Measurement Noise for the Failed Satellite or Transponder Signal
v(t;) =  Scalar Measurement Noise, No Failure
g =  Strength of the Measurement Noise Failure
t1ail = Initial time of a failure
Uengty = Time duration of the failure

These three tailure definitions define the scope of the failure analysis for this thesis. It is
now necessary to integrate these failure definitions into the previously defined NRS truth

model. —

3.4.2 Failures in the Truth Measurement Equation.  Up to this point, the truth
model for the NRS filters has been defined without failure occurrences. To test the validity
of the failure detection algorithms, it is necessary to alter the truth model so that failures
will occur. To change the truth model, single failures are added tc specific measurement
updates over a predetermined window of time. For this work, all failures occur at time :e',f‘

t; = 2000s, and continue for 1000s (s = seconds).

Failures are added to the scalar measurement update equation for the failed measure-
ment signal. Sections 3.3.3.3 and 3.3.2.3 provide the definitions for the scalar measurement
equations for the satellite and transponder updates, assuming no failure has occurred.
These equations are now redefined specifically for satellite 3 and ¢ransponder 1 to produce
failures in the truth model. Equation (3.47) defines the new scal..r measurement update

equation for satellite 3:

Ts = &y -ys — Yu 2g — 2y '-.I “,“
6201)3!"‘“ = - [-—-——-————] . 6$U - [ Y ] . 6yu - [ IEIB I-] . 6ZU !
INS

T — & Ys— Uy Ze — %y,
¢ [l e+ Dol o+ i)«
[Ronsl 400 [Rowsl | Y T R




- [1](51{,:1 - [1]6R:rop - [1]6R|on

- [6Rsar = [U8Ryw = v(t) + bt) + r(t)  (347)

The new terms added to Equation (3.47), b(t;), r(t;), and v;(t;), are defined in Equa-
tions (3.44), (3.45), and (3.46) respectively. Within the definitions of these three new
variables, the magnitude of the failures is controlled by the scalar variables b,, ri, and n;.

The values used for simulation purposes in this thesis are presented in Table 3.48

The changes made to the scalar measurement equations for transponder 1 parallel

those for satellite 3. The failed transponder equatior is defined as,

- Ir — Ty Yo = Yo Zp T Zy : N
— ———————— — .6 —— '6 — ——— . |
banS!“l“ [ IRINS ] o [ {Rms| ] Yo [ IRuvsl ] 6ZU N
z.—,] Yr — ¥ 2, — 2 R

+ [_T___(L '61:'1‘ + [ T U] .6y + [—.—T U] '6‘2'1‘

[Rowol | Rl 177 T TRl 1777

— [Y6Ram — [U6Rs — vp(ti) + b(t) + r(t) (3.48)

As before, the failure variables added to the above equation are defined in Equations (3.44), (3.45),
and (3.46). Once again Table 3.2 contains the failure magnitude values, b;, 7¢, and n,, for

each of the simulation runs. The magnitudes of the failures are based upon an analysis

Table 3.2 Definition of Failure Variables for each Simulation Run

[ Run | Failure Type | Failed Measurement | b, T T, T4 g 71
L 1 Jr- ] 2 = | K| Tk | "tk v | viengia |
| Baseline None ] 0| 1 | N/A| N/A
2 Step Bias Transponder 1 800 [ O | 1 | 2000} 1060
3 Ramp Bias Transponder 1 0 1| 1 |2000| 1000
4 | Noise Increase Transponder 1 0 0 | 10 { 2000 | 1000
5 Step Bias Satellite 3 3500 | 0 | 1 {2000 1000
6 Ramp Bias Satellite 3 0 4 | 1 }2000| 1000
7 Noise Increase Satellite 3 0 0 | 15| 2000 | 1000

of the impact of the failures on the filter residuals. The failure magnitudes displayed in

Table 3.2 are chosen high enough so that the impact of the failures on the residuals can

be clearly distinguisked from failure-free system dynamics, yet low enough not to induce

instantaneou. instabilities in the filter state propagation.
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The changes defined in this section are the only changes made to the truth model.
The changes preduce single failures (step, ramp, and noise) in either a single transponder

or satellite difference measuremernt.

3.4.3 The GLR Failure Models.  As defined in Section 2.3.2.2, the GLR algorithm
has been modified to become a simple matching filter. This new function, defined as Y(#:)
in Equation (2.58), is referred to as the modified GLR matching filter. The EKF produces
almost all the necessary variables to compute T(¢;) in Equation (2.58). However there are
three variables that need to be defined to complete the matching filler description. First
the Chi-Square test must provide the identity of the failed measurement. This allows the

matching filter to predefine the vector d(t;) as d,(#;). Therefore d,(t;) I be defined as,

T
d(t) = [SVl SV2 SV3 SV4 TRY TR2 TR3 TR4 TR5
T
=[001000000] (3.49)
for the satellite failure runs and,
T
dy(ti) = [SVI $V2 SV3 SV4 TR1 TR2 TR3 TR4 TRS
T
=[000010000] (3.50)

for irausponder fajlure runs.
The other two variables that must be defined for the GLR matching filter are the
step and the ramp failure models. These models are closely related to the definitions o1

the failures in the truth model (Equations (3.44) and (3.45)). The GLR failure model for

the step failure is defined as,

0 ift; <
Notep(ti) = J _ N (3.51)
l 1 if¢ > 0)5




The GLR failure model for thi: ramp failure is derived similarly to the step failure
model. Equatioa (3.52) gives the definition for the GLR ramp failure model:
0 if ¢, < 6, '
Nramp (i) = ) A (3.52)
(t; — GX) ift; > 9)(
For botk the step and the ramp GLR failure models, unity magnitude has been declared.
The GLR matching filter is merely attempting to determine the tvpe of failure, not its

magnitude.

The estimate of the failure magnitude is calculated from Equation (2.60). This

equation is rewritten below,

(3.53)

To estimate the magnitude of the step and the ramp failures, all the information available
needs to be incorporated into this expression. Therefore using the known quantities, d,(t.),

éx, Nyeep(ti), and Npgmp(li), the step and ramp magnitude estimates are defined as:

seep(tir 6
’}atcp '_"t_!;('—?')' (3.54)
nep 6 )
for the estimate of the step failure and:
‘I’ram t,-,é
i‘}rump = p( TQ (355)

~ g NN
‘-’ramp\[ia Ux)

for the estimate of the ramp failure. Depending upon the outcome of the modified GLR
matching filter, one of these two estimates will provide an estimate of the step or ramp

magnitude.

The GLR matching filter algorithm has now been completely defined. The following
section defines a second matching filter algerithm. In the end, the results of these two
matching filters will be analyzed to determine which provides better failure type identifi-

cation for the MNRS algorithm.
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3.4.4 The CSPR Matching Filter Models.  The CSPR algorithm identifies failure
type by examining the output of the Chi-Square test. The Chi-Square test results will
display specific characteristics that can specify the failure as a step, ramp, or noise failure.
In fact, the bias detected in the Chi-Square output when a failure occurs will generally
match the shape of the failure itself. Figure 3.3 shows the effect in the Chi-Square test
that will identify the three different types of failures. While the shape of the ramp and
noise failures correspond to the exact shape of their failures, the Chi-Square test will
tend to recover from a step bias failure. Therefore the CSPR filter will expect a slightly

negative slope on a step bias failure, While a human can merely look at the output of the

f

Step Bias Ramp Bias Increase in Notse

Figure 3.3 Shape Chi-Square Test as a Result of the Three Failure Types

Chi-Square test to determine the failure type, quantitative criteriaz need to be established
to differentiate between the types of failures. The criteria chosen are the slepe and the
intercept of a first order line fit of the Chi-Square test over the period of the failure. The
slope and intercept of the line fit are distinct for the thyee types of failures. The line fit
algorithm has been adopted from MATIAB [8]. The exact points interpolated will be
those that violate the Chi-Square failure threshold. Table 3.3 explains how the slope and

intercept criteria distinguish between the three failures.

The CSPR maichiug filter assumes, like the GLR, that the failed measurement has
already been identified. The CSPR algorithm estimates the type of failure for all time

after the Chi-Square test has exceeded the failure threshold at time, éx. 1t should be
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‘able 3.3 Slope ard Intercept Values for the Three Types of Failures

| Type of Failure II . Slope | Intercept j
Additive Zero or Large and
Step Bias Slightly MNegative Positive
Additive Positive Zero or1

Ramp Bias | Slightly Negative
Increase .n Zero Mean Zero Mean
Meas. Noise over Time over Time

noted that the estimate of failure type will improve over time as the first order line ft of
the Chi-Square output better matches the shape of the faiiure. The results of the CSPR

matching filter are compared against the GLR matching filier in Section 4.5.

3.4.5 Choosirg between the NRS Filters.  This section defines the exact algorithm
that will be used to select the filter both wher a failure has and has not occurred. The
algorithm uses the results of the bank of Chi-Square tests and the relative quality of the
satellite set’s geometries to determine which filter is yielding accurate results. The criteria
implemented to rate satellite geometry is the Pesition Dilution of Precision(PBOP). First
the no failu: e selection algorithm i¢ discussed, followed by an explanation of what happens

when a failurc occurs.

For all the Chi-Square tests, & threshold value has been established. As long as
all the filters are below the threshold, no failure has been declated, and the MNRS is
operuting in the no falure condition. When no failure has occurred, the NRS filter 1 is
used for navigatioa, because the filter has the best possible combination of satellites and
transponders for navigaticn (assuming that only four satellites and five transponders can
be used at a time). Ths navigation solution is the best since it uses the four satellites with
the best PDCP, and the five primary transponders. ldeally it weuld be beneficiz. to have
an eleventh filter updating with all the possible satellite and transponder measurements.
‘Theoretically, this filter would have the best navigation correction. The eleventh filter has
ot been impiemented in this work due to the computational load of simulating another

NRS ilter.




A failure is declared when the Chi-Square test for NRS filter 1 exceeds its threshold.
T'his means that the best navigation solutjon, filter 1, has been distorted with a failure. At
this point only one of the other filters should have a Chi-Square test that has not exceeded
its threshold. This unaffected filter is now used to correct the INS navigation solution. The
time at which the NRS filter 1 declares a failure becomes the Chi-Square estimate of the
time of failure, 9,( It should be noted that this estimate has varying degrees of accuracy
devending on the type of failure that has affected the system. Equation (3.56) expresses
the relationship between the actual time of failure and the Chi-Square estimated time of
failure:

traittime = échi = ldelay (3.56)

The unknown quantity, t4..y, varies dramatically depending on whether the failure is a
step bias, ramp offset, or a noise increase. In fact, the delay iu detecting the ramp offset
can seriously impact the results of \he matching filter algorithms. Chapter IV addresses
this issue of detection delay in ihe MNRS algoriitun. However for the purposes of this

research, 8, is considered the best estimate of the time of failure.

Thus the estimated time of failure and the identity of the failed measurement are
passed to the matching filter algorithms. ‘This allows the matching filter algorithms o
identify the type of failure. Chapter IV will provide more insight into these algorithms

with the results of the various failure runs.

3.5 Chapter Swarnary

This chapter has preseated the details {for both the navigation fiiter and failure mod-
els. The basis for the measurement modals has been discussed to help describe the intri-
cacivs of the NRS design. The state and dynamics model descciptions illustrate the high
degree of nonlincarity and time-variance of the system. The reduced-order filter rnodels
have also been presented. The methods used to induce the failures in the simujations have
been shown, along with the models for the matching filters designed to detect and isclate

these failures. Rests and arnalysis of these simulatinns are presented in the nexi chapter.
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IV. Results and Analysis

This chapter examines the results of the MNRS FDIR, algorithm, First the chapter
presents flight siraulation data to help define the bounds of this thesis study. Next, the
tuning of the NRS fiiter is analyzed with regard to filter performance in a failure-free
environment. Then the effects of cifferant failures are shown on a single MRS filter. Finally,
the results achieved with the MNRS FDIR algorithm are presented in {ull detail, including

a compariscn of matching filter algorithms.

4.1  The Simulclion Specifications

This section prerents the specifications of the simulation. The specifications are
defined as the flight profile of the aircraft, the location of the transpouders, and the position

of the satellites during the simnlation.

All the simulation rune in this study use a single flight profile generated by PROF-
EN. The light profile has been derived from a two-hour flight of a fighter aircraft. Due to
the comiputational load of rurning a multiple model simulation, only the first 4000 seconds
of the 7200 second flight profile are used in the simulation studies. Figure 4.1 prevides
a three rimensional rendition of the flight profils. The exact flight path is <hown as the
circraft climbs to altitude before proceeding through a high speed low altitude mission.
The time of failure onset is also displayed in Figure 4.1. This failure ¢cnset tiime of 2000
sesuds 1y the same for all {alluve simmulaiion runs. This failure orse. time is arbitrasily
chosewn ot vue mid-point of the flight profile.

The flight profile was chosen over & region of the CIGTF RRS test range tc allow
the transpouders to he mmplemented in the integrated navigation system. While the test
reng? has a multitude of transponders, the number of transponders used in this thesis has
been limited to six; five used for the measurement updates to any cne MRS {ilter. The
geographic coordinates of the six transponders sights are presented in Table 4.1. T'igure 4.2

shows how the focations of the transpond=ts correspond to the aircraft’s position during the

flight profile. Despite the proxinsity of the aircrafi to ike transponder rang >, transpoader

£y




34 335
Latitude, degrees

Figure 4.1 Flight Profile used for the MNRS Simulations

geometry has little impact on the quality of the navigation solution. Section 4.4 discusses

which geometric considerations do impact the results of the MNRS algorithm.

Along with the transponders, the aircraft also receives measurement updates from
GPS satellites. Table 4.2 gives the latitude and longitude of the five satellites used in
this simulation at both the beginning and end of the simulation. Figure 4.3 shows the

relative positions of the satellites during the simulation. In Figure 4.3, the orbit path of

[ # ] Name || Latitude | Longitude | Altitude |
1 ula PK, NM 33.01°36" | —106.08°20" | 1322.5272f¢
2 TDC, NM 32.55°58' | —106.08°50" | 1241.7552 ft
3 | Oscura Pk, NM | 33.44°58' | —106.22°14' | 2417.5144 f¢
4 Salinas, NM 33.17°55" | =106.31°44/ 2695.11 ft
5 | Sac Peak, NM || 32.47°16' | —105.49°15' | 2804.81ft
6 | Twin Buttes, NM || 32.42°12' | —106.07°38&’ 1365.71 ft ]

Table 4.1 Location of the Transponders Transmitters in the MNRS Simulation
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Figure 4.2 Location of the Transponder Transmitters with Respect to the Flight Profile

[ Satellite ‘“ Initial Latitude I Initial Longitude IrFinal Latitude | Final Longitude ]

1 67.90° —172.21° 58.63° 42.30°
2 34.75° —72 16° 38.29° —42.78°
3 —43.03° ~125.49° 18.18° —122.89°
4 78.43° | —49.15° —14.42° ~56.58°
5 3382° | 15C.69° 40.09° 176.34°

Table 4.2 Location of the GPS Satellites Auring the MNRS Simulation

the satellites is traced up to the final position of the satellites at time T = 4000 seconds.
The dashed lines in Figure 4.3 represent the range vector at time T = 4000 seconds between
the five satellites and the aircatt. Despite the movement of the satellites, all five sateilites
arein view throughout the flight profile of the aircraft. The five saiellites have been chosen

to prevent satellite switching during the simulation runs.

The purpese of this section has been to provide credibility for the simulation results.
A worthwhile computer simulation must demonstrate parallels to the real world. The
real world perallels for this thesis are the real world GPS satellite positions, the RRS
vransponder positions, and the flight profile. While the navigation information provided
to the NRS is simulated, it is a reasonable model for real world navigation data. Thz
nexi section presents the filter tuning results of a single NR3 filter within the simulated

envirenment.
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Figure 4.3 Satellites Orbit Profiles with Respect to the Flight Profile

4.2 Performance of the NRS Filter

This section documents the performance of the NRS filters in a failure free environ-
meni. This seciion presenis resuiis irom NRS filier 1 simulations. This section begius wiih
an overview of the changes made to the NRS filter during this thesis research. Next, cri-
tarion is established 1o evaluate the accuracy of the NRS filter tuning. Once criterion has
been established, the results of the NRE filter tuning are compared with past AFIT results
and specifications provided by CIGTF. Finally, the EKF tuning process is addressed with

an analysis of two trade-off decisions made in the tuning of the NRS filter,

The research for this thesis began in earnest with ihe bleuding of the work done by
the Avionics Directorate[3] and past AT research[19] into & new NRS computer model.

While this process required a great deal of time and effort, only two theoretical changes

were made to the NRRS algorithm. The first change is within the truth model of the INS.




Previously, little information was known about the barometric altimeter error states. The
model originates from the Litton documentation [4]. However research by the Avionics Di-
rectorate uncevered inconsistencies and problems withia the Litton documentation. These
errors were corrected by the Avionics Directorate with the help of Litton [3]. While the
corrections do not dramatically alter the results of the research, the changes do improve
the accuracy of the NRS truth modei. The second problem “incovered in the NRS model
existed in the GPS trath model states. Past AFIT work failed to include dynamics driving
noise to the following GPS truth model error states; tropospheric delay, ionospheric delay,
and code loop range errors. This oversight allowed vast NRS filters o demonstrate un-
usually good performance. By correcting the GPS and barometric altimeter error states,
the truth model becomes a ore credible bridge between computer simulation and the real
world. Without a highly accurate truth model, algorithmns developed in computer simula-
tion have little credibility in the real world. Due to the quality of support provided by the
Avionics Directorate and past AFIT research, the remaining model development problems

were easily overcome, and the NRS tuning process was able to proceed cu schedule.

To ensure accurate navigation performance, vwc {uning criteria are used to evaluate
the filter’s state variable performance. The first criterion is the ability of the fifteen filter
state variables to track the corresponding fifteen truth state variables adequately. Opti-
mally, the Monte Carle average of the difference between the fil*er and t1uth state variables
should be zero mean over the eatire profile. The cecond tuning criterion is the accvracy of
the filter’s standard deviation estimate. The filter-predicted zero 4 the standard deviation
of each state, 0 £+ o, should match the Monte Carlo computed standard deviation of the
difference between filter and truth states, &, .. £ 0y .. Both tuuing criteria can be plotted
on a single graph. Appendix C provides the mathematical description of all the variables

used in each of the fifter tuning plots.

Before the filter tuning plots are presented, a variable transformation used in this
thesis must be defined. While the first nine filter states are stored and propagated in a
cemptited true reference frame, this frame of reference does not provide a great deal of
physical insight. Therefore results of the filter tuning are transformed to the East-North-

Up (ENU) frame; hence, position errors are preseated in lativude, longitude, and altitude

.’. -
v
c"'.




error. The velocity and tilt errors are similarly documented in the East-North-Up frame,
The transformation used to present the material in the ENU frame is orthogonal and has

been documented in past AFIT research [14, 19].
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Figure 4.4 Longitude Filter Error Tuning Plot

ic longitude error tuning
plot is analyzed in Figure 4.4. This figure allows the two tuning criteria to be evaluated
at the same time. Within Figure 4.4, the Monte Carlo calculated mean value of the
difference between the filter and truth models longitude error is display2d by the solid line
tracking the x-axis. The filter’s ability to track the longitude error of the truth model
is demonstrated by the zero mean nature of this trace. The second tuning criterion is
evaluated by examining the two pair of symmetric traces in Figure 4.4. The pair of dotted
lines is the Monte Carlo calculated meanst standard deviation of the diilerence between
the filter and tiuth model longitude error. The dashed lines represent zero + the filter-
predicied standard deviation of the error. Optimal filter tuning would have these two pair

of lines overlapping over time. 'The pair of lines in Figure 4.4 are close to overlapping with
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the filter-predicted standard deviation greater then the Monte Carlo calculated (i.e., the
filter is less confidence in itself than it could be). The conservative nature of this tuning
proved to be necessary to maintain good tracking of the most important navigation states.

Filter tuning plots for all the filter states are located in Appendix C.

Table 4.3 Temporal Averages of True Filter Errors (10)

l Filter Lati- | Longi- | Alti- || East | North | Up Fast | North | Azi-
tude tude tude Vel Vel Vel Tilt Tilt | muth
(ft) {ft) (ft) || (fps) | (fps) | (fps) || (arcs) | (arcs) | (arcs)
[ Desired | 13.00 | 13.00 [ 40.00 ] 0.100 ] 0.100 J0.400 [ n/a | n/a [ n/a |
NRS 1992 || 4.00 | 7.22 | 8.63 [l 0.032] 0.029 [ 0.070 | 3.13 T 4.49 [ 17.57
NRS 1993 || 3.45 | 6.64 | 15.96 || 0.062 | 0.062 | .137 || 4.05 | 4.41 | 27.94

Despite the best possible filter tuning, the actual qualiiy of the filter performance is
also limited by the size and the structure of the model itself. Therefore good filter tuning
cannot be the final criterion used to evaluate & filter. The qualiiy of a navigation filter is
best described by the errors made in the estimation of position, velocity, and orientation.
Table 4.3 contains the temporal averages for these errors over the complete flight profile.
The table provides two references for comparison; the original CIGTF specifications for the
system and the results attained from a fifteen-state NRS filter implemented in past AFIT
research {19]. While the performance of the filter easily meets the CIGTF specifications, the
results are slightly degraded with respect to past AFIT research. The slight degradation in
perforwance of sone states is attributed to two factors. First, the model last year did not
employ cyna.sics driving noise on all iie GPS truth states. Second, the new NRS model
uses only fi ¢ transpounder sigriis for measurement updates while past AFIT research used
six. Therefore, given the resulic of the. NRS tuning process, the filter achieved is adequate

for the purposes of simulating tt » MM .5 FDLR algorithm.

To understand the n:cchanics @ -~ - - uning better, background is provided on two
specific tuning decisiors. The fiist tur »> '-cision is the choice of tuning criterion. If
residuaal performance is mors important t .-+ - ate variable peiformance, the residuals can

be used instead of state variables to evalu "~ >-ter tuning. In this case, the filter-predicted

(zero-)meanzsignia of the residuals is co. -.z.ed to the actual Monte Carlo calculated




meaunzsigma of the residuals. The standards for good performance are the same as for the
state variable tuning. An cxample of a residual plot for NRS filter 1 is given in Figure 4.5.
This figure clearly shows that the residuals are zero-mean and appear uncorrelated aver
time, yet highly conservative with regard to its estimate of residual standard deviation.
While the conservative nature of the residuals impedes FDIR, the importance of state
vaciable performance is ¢2emed to outweigh FDIR concerns. Degradation of the naviga-
tion quality for the sake of FDIR performance is not acceptable. Therefore, due to this
constraint, a trade-off has been made in favor of state variable estimation over residual

performance.

50 - - —_ — . _— _

Set. 1 Residusls, (R)
2
‘2
E
E
4

1 . 1 .l R -
V] 500 1000 1500 2000 2500 3000 3500 4000
Time (scc)

Figure 4.5 Example of Scalar Residual Tuning of the NRS Model

The second tuning decision that is addressed, regards the relative quality of tuning
between individual state variables. Quite often tuning quality on one state must be sacri-
ficed to achieve the desired performance of a more important state. Figure 4.6 shows the
two coupled GPS states in the filter, GPS user clock bias and drift. The user clock bias
shows excellent performance under both tuning criteria, while the drift appears to be tuned
far too conservatively. These two state: ire ceupled, so changes to the user GPS clock drift
also affect ithe user clock bias state. Attempts to improve the confidence of the dritt state

seriously degraded the tracking of the user clock bias state. Since the accuracy of the user
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Figure 4.6 Relative Tuning of the GPS User Clock Bias and Drift States

clock bias state is more important, the drift state has been left with its conservative tuning.
While this tuning is acceptable for the needs of this work, had GPS drift been more crucial

to the operation of the overall system, the tuning would need to be reevaluated.

By describing a few of the tuning decisions made in this thesis, hopefully the subjec-
tive nature of filter tuning has been established. Good filter tuning can change depending
on the situation and the stipulations placed upon the designer. The NRS filter has been
tuned to attain the best estimates for position, velocity, and attitude error. If the filter is
applied to other new applications in the future, the tuning criteria. and results should be

reconsiderad, This concludes tha disce

results from the MNRS FDIR simulation runs.

4.3 Performance of the MNRS Filter

The MNRS simulation runs provide definitive results in favor of multiple model FDIR
algorithms. The presentation of the MNRS results is divided into three sections. First the
effect of the failures on a single NRS filter is shown. These results are included to motivate
the need for a recoverable failure analysis algorithm. Once the need of for the MNRS has

been established, the results from the MNRS simulation runs are presented. Finally the

impact of satellite geometry on individual NRS filters is analyzed in the last section.
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Figure 4,7 Comparison of the Effect of Satellite Failures on the Longitude Error State

Tracking of NRS Filter 1

4.8.1 Impact of the Failures on the NRS Navigation Solution.  To justify the need
for an FDIR algorithm, the effect of the failures on the NRS filter are showi. 1o analyze
the effect, a single run of the filter-estimated longitude error is compared to the failure-free
truth longitude error. When the filter is operating in a failure-free environment, the filter
longitude error can track the truth model error, as seen in Figure 4.7.a. Each of the three
types of failures added to the truth model range measurements, bias the filter model such
that it can no longer track the truth model state variables. Figures 4.7.b, 4.7.c, and 4.7.d
show that the filter solution for longitude error deviates from the truth model. These
plots have been included to motivate the need for a recoverable system. The knowledge of

the existence of a failure alone does not aid the user in his navigation. Without recovery,

ali that can be done is to turn off the filter corrections to the INS. Yet with the MNRS




recoverable filter algorithm, the INS receives accurate navigation corrections throughout

the duration of the fajlure,

4.3.2 Resulls of the MNRS FDIR Algorithm.  The MNRS FDIR algorithm results
are discussed in this section, Seven failure runs are documented: six faiiure runs and a
baseline run for comparison. For each of these seven runs, all ten NRS filters have been
simulated runuing in parallel over the 4000-second flight profile. Each of the NRS filters is
updated with identical measurement signals every two seconds over a 15-run Monte Carlo
simulation. While past AFIT research implemented only 10-run Monte Carlo analysis,
the increased computing capacity of AFIT has allowed 15-run Monte Carlo analysis to be
implemented. This increase in the number of simulation runs improves the validity of the
Monte Carlo calculated mean and standard deviation of the state variables and residuais.
The analysis of the simulations not only focuses on the effectiveness of the MNRS as an

FDIR algorithm, but also on the different failure runs with regard to residual performance.

The majority of the MNRS results are contained in the Appendices D-J. Appen-
dices D, E, and H contain Monte Carlo scalar residual data {for each measurement update
of each NRS filter in each failure run. Appendices F, G, I, and J contain Monte Carlo
scalar residual data for only one measurement update of each NRS filter i 2ach failure
run. The one residual plot included is for the failed measurement. Thee~ single residual
plots have been included to allow the reader to see the actual .upact ci th: failure on the
periorinance of ihe filter. Appendix K contains the Chi-Square test r- 'ts of each NRS
filter in each failure run. Appendix K also includes a chart for eac. an, displaying
which filter is actively providing the navigation correction at each po,  'n time. The raw
data collected in this thesis has been included in these appendices, not to overwhelm the
reader, but to allow a chance to evaluate the conclusions reached by the auihor. Withcut

access to the ruw simulation data, analysis of the analyst can be difficult.

4.3.2.1 Baseline, No Failure. To provide a comparison with the failure
runs, one complete MNRS run is conducied with no faiiures induced in the truth model.
Individual scalar residual and the Chi-Square test results are analyzed to verify the oper-

ation of the ten NRS filters and to assist in the choice of a failure detection threshold.
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A 15-1an Monte Carlo simulation demornstrates the good residual performance of all
tie NRS filters. As can be seen in Appendix D, the Monte Carlo calculated scalar resid-
uals are zero-meak cver time. Looking specifically at NRS filter 1 {Figures D.1 and D.2),
the scalar residuals reflect conservative tuning with regard to measurement confidence.
This conservative tuning with regard to the residual covariance, [H P~HT + R], removes
high frequency cffects of the scalar measnrement updates: both unwanted noise and mea-
surement information. The navigation information lost due to the conservative tuning
is partially recovered by the high sampling rate of the measurements. The two-second
sampling rate used for wll the measurement updates is equal to or faster than any imple-

merted in past AFI1 research [14, 19). Therefore the effect of the reduced confidence in

the measuremaat updates is offset by the high sampling rate.
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Figure 4.8 Baseline Chi-Square Test Results with the Chosen Failure Threshold=15

The baseline simulation also provides the necessary data to select the threshold for
the Chi-Square test. Threshold selection, as discussed in Section 2,3.4, is dependent on the
failure-free respense of the residuals to normal system dynamics. The threshold must be
chosen to maintain a low false alarm rate in a failure-free environment. Figure 4.8 shows
vhe results of the Chi-Square test conducted on NRS filter 1. The threshold has been cho-
sen greater than the maximum value of the Chi-Square test. This conservative choice of
threshold eliminates the possibility of a false alarm for the purposcs of this simulation. This

simulation has been limited to the flight of one flight profile under 15 distinct represen-
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tations of dynamics and mmeasuremenrt truth model noise. More comprehensive simulation
testing and hardware testing would be subsequent steps to iterate the magnitude of the

threshold for the Chi-Square test further,

Since no failure has been introduced to the system for this failure run, none of
the NRS filters violate the threshold test during the simvlation, as seen in Figures K.1
and K.2. Therefore, by the criteria established in Section 3.4.5, the NRS filter 1 will
continue Yo provide the error state corre:tions to the INS navigation solution. Figure K.3
graphically displays which of the NRS filters provides the navigation correction to the INS
throughout the simulation. With the baseline residual performaice verified and the Chi-
Square threshold established in a failure-free simulation run, the response of the MNRS

zlgorithm to the six failures is presented next.

4.3.2.2 Transponder Bias Failure. The transponder step bias failure run
differs from the baseline run in that .a base of 800ft is added to the Transponder 1 range
signal between 2000-3000 seconds in the simulation. During the simulation, the Chi-
Square test exceeds its threshold in each filter that receives the failed measurement signal.
Figures K.4 and K.5 shcw that only NRS filter 10 does not exceed the threshold. Therefore,
the MNRS filter switches from NRS filter 1 to 10 for the duratior of the threshold test
violation on NRS filter 1 (see Figure K.6). Appendix E contains the individual scalar

residual plots for each filter for this simulation to support these results.

While the MNRS FDIR technique adequately performs during the failure run, the
residual response to the failures is somewhat unexpected. Past research of EKF ¥DI
techniques has shown that the residuals of a EXF tend to recover from a step failure over
time [2, 5]. The recovery from the failure is caused by the consistent nature of the step
failure. Slowly the filter wiil compensate for the existence of the step bias, and the residuals
will return to zero mean. When this occurs, the Chi-Square test will no longer signal a
failure, and an observer might conclude that the bias is no ionger affecting the systum.
This type of residual behavior does not allow for prolonged detection of additive constant

biases failures in the measurement signals.
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Figue 4.9 For NKS Filter 1, the Transponder 1 Measurenient Residual Response to a
Transponder Step Bias=800ft

In contrast to the expectud residual response to a step bias, the scalar residual of the
Transponder 1 measuremen’ does not recover from the failure aver time, As can be scen
in Figure 4.9, the residual bias is constant during the failure time. The lack of recovery
is caused by the modelling of the transponder error states in the NRS filter. Since both
transponder state variables are modelled as random biases with relatively amall levels of
dynamics driving noise, the filter has no state variables that can easily absorb the failure
offseis. The magnitude of the tuning noise covariance would need to be dramatically
increased to absorb unmodelled biases. However increasicg this tuning noise woald greatly
reduce the filter’s state variable performance. Therefore it is the choice of filter model and
the relative tuning strengths that causes the filter to maintain detection over the entire

lifetime of the failure.

4.3.2.3 Iransponder Ramp Failure.  As with the transponder step bias, the
ramp failure of transponder signal is easily detected by the MNRS FDIR algorithm. As
seen in Figures K.7 and K.8, each filter receiving the failed measureinent rapidly exceeds
the threshold of the Chi-Square test. Figure K.9 shows the effective switching of filters for

the duration of the threshold violation. For the transponder ramp failure, tie tireshold

violation directly corresponds to the duration of the measurement fajlure. Tl erefare the
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MNRS FDIR algorithm both detects and recovers from the transponder ramp failures.

Appendix F contains the transponder 1 scalar residual plots for all ten NRS filters.
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Figure 4.10 The Effect of a Transponder Ramp Failure on the Residuals cf ovher Satellit?
and Transponder Measurements

One important aspect of any EKF is the state feedback into the F and H matrices of
the linearized state and measurement equations. After each measurement update, the EKF
will reevaluate the components of the F and H matrices based upon the new state estimate,
#(t]), and newly declared trajectory segments emanating from that new estimate. This
allows a failure added in one measurement to be reflected in the residuals of the other
measurements. Figure 4.10 compares the residuals of a satellite and transponder when a
second transponder signal has been failed. While the Satellite 1 measurement residual is
biased by the Transponder 1 failure, the effect on the Transponder 2 measureinent residual
is more severe. Therefore, it is easier for a failed transponder measurement to affect other
transponders rather than satellites. The translation of the failure into all the residuals

increases the fidelity of the Chi-Square test and allows for consistent failure detection.

4.3.2.4 Trensponder Noise Failure. Like the two other transponder fail-
ures, an increase in the transponder measurement noise is detected by the MNRS filter.
Figures K.10, K.11, and K.:2 show how the MNRS detects the failure in nine of the ten

filters and switches to the tenth filter for navigation. The window size, N = 3, of the
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Chi-Square test kecps the Chi-Square value above the threshold despite the occasional
low value of failed measurement noise semples. Therefore, due to the size of the failure
induced and the low-pass filtering effect of the Chi-Square window size, the MMRS FDIR
algorithm recognizes and compensates for the noise failure over the entire period of the
failure. Appendix G contains the number 1 transponder scalar residual plots for all ten

NRS filters.
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Vigure 4.11 Comparisou of Step, Ramp, and Noise Transponder Biases on the Scalar

Residual of icansponder Mnasurement 1 of NRS filter 1

As with the previous two transponder measurement failures, the transponder noise
failure generates a unique response in vhe scalar residual measurements, The failure type

can be visually identified in the scalar residual of the failed measurement. Figure 4.11
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compares the residucls of the Transponder 1 measurement for the tragsponder step, ramp,
and noise failures. As can be seen, each of the failures causes a unique reaction in the
scalar measurement residual. During the step bias, the Monte Carlo mean of the residual
rises to a peak and then maintains a constant value through the failure period. During the
ramp offset, the residual mean slowly slopes away fromr ~ero mean. Finally, the increase in
the measurement noise increases the standard deviavion of the residual without changing
its mean value. The two matching filter techniques described in Sections 2.3.2 and 2.3.3
will attempt to exploit this behavior in the residuals to identify the type of failure affecting

the system.

4.3.2.5 Satellite Bias Failure, ~ While the MNRS FDIR aigorithm correctly
identifies and recovers from a satellite step bias failure, the residual results differ in signif-
icant ways from the transponder step bias results of Section 4.2.2.2, Before the differences
are discussed, the Chi-Square test results for the satellite step bias failure run are presentead.
Figures K.13 and K.14 show the resulls for ihe individual Chi-Square iesis conducted on
each filter. As can be seen in the Chi-Square plots, NRS filter 3 is the only filter not
receiving the failed measurement signal. Therefore, as seen in Figure K.15, the navigation
correction switches to NRS filter 3 for the duration of the Chi-Square threshoid violation.
Therefore the MNRS FDIR. algorithm does isolate, detect, and recover from a satellite step

bias failure. Appendix H contains all transponder and satellite scalar residual plots for the

ten NRS filters.

Despite the fact that the MNRS filter detects and recovers from both satellite and
transponder step bias failures, the effect of the two failures on the scalar residuals differs
drastically. As previously discussed in Section 4.3.2.3, the transponder step bias causes a
coatinuous bias in the residual of the measurement residuals. This constant bias allows the
Chi-Square test to detect the failure accurately over the entire failure lifetime. While this is
true for a transponder failure, it is not true for a satellite failure. During the satellite step
bias simulation, the magnitude of the Chi-Square test initially spikes when the failure first
occurs. After the initial spike, the magnitude of the Chi-Square variable decreases back

down to a failure-free level. Figure 4.12 shows how the filter actually "learns* the failure
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and incorporates the erroneous data until it is impossible to distinguish that the failure
is still occurring. This result is expected, since the GPS filter model contains error states
that absorb the effect of the failure. The EKFE interprets the satellite step bias failure as
a change in the GPS user clock drift and bias error states. The filter uses these states to

account for the failure effect, thereby removing the bias from the measurement residuals.
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Figure 4.12 Effect of a Satellite Bias as Compared to a Transponder Bias on the Chi-
Square Test of NRS Filter 1

While this effect is expected, it is not desirable. Had the failure duration been
extended to 2000 seconds, the Chi-Square test would no longer have been a valid decision-
maker between the different NRS filters. One by one ecach Chi-Square test would fall below
threshold, despite the fact that the failure still existed. While this effect impairs the per-
formence of the MNRS algorithm, a proposal is considered in Section 4.5 to use the results
of a matching filter to compensate for the step bias failure. Given the implementation
NRS filters used in this thesis, the MNRS algorithm canuot counteract the learning of the

satellite step bias failure.

4.3.2.6 Satellite Ramp railure. The results from the satellite ramp bias
failure run are similar to the step offset results. While the MNRS FDIR algorithm is able
to identi{y and recove: from the failure correctly, the filter itself impedes the performance

of the algorithm, compared to the ¢ransponder ramp bias results. The results achieved
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Figure 4.13 Comparison of Satellite and Transponder Residuals, Each Affected with a
Additive Ramp Bias

by simulating the ten filters ruaning in parallel can be seen in the Chi-Square plots in
Figures K.16 and K.17. In these figures, each individual Chi-Square test experiences
significant delay in detecting the failure. Figure 4.13 compares the scalar residuals of
a salellite and transponder measurement, each biased with a ramp failure. While the
transponder residual immediately slopes away from zero mean at a high rate, the satellite
residual barely exceeds the filter-predicted standard deviation. Although the reader might
suspect that this effect is caused by the relative precision of the two types of measurement
updates, the relatively equal weighting of the tuning gains for satellite and transponder
measurements does not support such a conclusion (see Table B.9). This subdued failure
effect is directly related to the GPS user clock drift and bias states and their tendency to
compensate for sateilite failures. Despite the reduced response due to state comipensation
to failures, the MNRS can still detect and compensate for failures, thereby maintaining
robust navigation (see Figure K.18). Appendix I contains satellite 3 scalar residual plots

for the ten NRS filters,

4.3.2.7 Satellite Notse Failure.  The final failure run in the thesis simulates
an increase in measurement noise on a satellite measurement. While each of the NRS
filters is able to maintain residual stability (zero mean), the increase in the variance of the

measurement residuals i1s detected by the MNRS algorithm. As can be seen in Appendix J,
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the Moate Carlo calculated variance of the residuals increases during the time of the failure.
This increase in the variance of the residuals translates into large spikes in the output of the
Chi-Square tests on cach of the filters that receives the failed measurement. Figures K.19
and K.20 display the Chi-Square threshold tests for all ten filters. Figure K.21 shows the

navigation switches to NRS filter 3 for the duration of the increase in measurement noise.

Each of the failure runs, the three transponder and three satellite runs demonstrate
the effactiveness of the MNRS algorithm. By limit:ng the distribution of measurements to
identical filters, failures are casily detected and recovered. There is no need for feedback
since one of the NRS filters never updates with the failed measurcment. Therefore the
MNRS algorithm is successful in accomplishing failure detection, isolation, and recovery
within the scope of the failure environment imposed in this research. This concludes the

analysis of the MNRS FDIR algorithm.

4.4 Analysis of Measurement Geemetry

This section analyzes the effects of .atellite constellation zeometry on the perfor-
mance of individual NRS filters. Measuremer: geometry is defi w»d as the positioning of
the range measurement sources relative to the aircraft. Measurement geometry quite often
dictates the quality of the navigation solution of an integrated navigation system. Due to
the multiple model structure of the MNRS algorithm, the data collected in this thesis can

also be nsed to analyze satellite geometry. This is possible «ince each filter in the MNRS
model is updated with a unique set of measurem.
longitude erro1 of an NRS filter is used to study the effect of satellite geometry on the
performance of the state variables. Next the effect of satellite geometry on the residuals
is also examined. This section demonstrates that satellite gecometry impacts both state

variable tracking and the FDIR verformance of the NRS filter.

Of the two types of range measurements, GPS and RRS, GPS saiellite geometry
has a distinctly larger effect on the svate variable tracking of the NRS model. To explore
the impact of satellite geometry, the baseline simulation runs of NRS filters 1 and 4 are
compared. Table 1.1 shows how these two filters differ by only one satellite measurement.

The two filters are otherwise identicalin all regards in this simulation study. Figure 4.14
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Loagirade error, (1)

shows the impact of the different satellite geometries on the longitude ervor of the twy
filters. The two plots in the figure display the difference between the Monte Carlo calculated
mean £ 1 standard deviation of the diflerence between the filter longitude error-state

and the trudh model longitude error in a failure-free environment. The figure shows that
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Figure 4.14 Comparison of Longitude Error States of NRS Filters with Different Satellite
Geometry

NRS filter 4 docs not maintain zero mean tracking of the truth model longitude error.
The inability o *iack the ecrror is caused by the relatively poor PDOP of NRS filter 4
conpared to fiiter 1. [ue initial PDOP values for each of the two satellite measurement
sets are recorded below tie two plots in Figure 4.14. Since the direct relationship between
PDOP and .tate estimation 1:as becn anticipated, the satellite measurement set with the

best geometry is chosen to upcate the filter in the failure-iree environment.

While poor satellite geomety has a negative offect on filter navigation, poor geometry
actually makes failure detection easier. When a filter is affected with an unmodelled failure
bias, filters with poor geometry reflect this failure more clearly in the residuals. On the
other hand, when the geometry is good, the unmodelled failure bias is partially absorbed
into the filter state estimates. Figure 4.15 compares a scalar residual of NRS filters 1 and
4, each affected with a satellite step failure. The filter with the poor geometry, filter 4,

shows a larger faijure bias in the scalar residual than filter 1. Therefore, when a Chi-Square
3
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Figure 4.15 Comparison of Transponder 1 Scalar Measurement Residuals for NRS Fil-
ters 1 and 4 during a Step Bias Simulation Run

test is conducted on the two filters, the magnitude of the test will be greaier in the filter
with poor geometry. Figure 4.16 compares the two Chi-Square tests for filters 1 and 4 for
the satelliie siep bias simuiation. As can be seen in the figure, the Chi-Square test has an
eacier time detect.ng the failure in the iilter with poor geometry. Therefore 1t is concluded

that good measurement geometry hinders the ability of an FDIR algorithm to detect a

failure.
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The two conclusions about geometry reinforce preconceived notions about the NRS
model. Tirst, good geometry does improve the quality of state estimation. Since more
accurate state performance is desirable, pood geometry is also desirable. To go along with
the improved state estimation, pood geometry also helps the filter to track unmodelled
failure biases. This tracking makes failure detection more difficult. While this section has
addressed some of the issues involving measurement geometry considerations, the analysis
1s far from complete. Possibilities for future research endeavors will be discussed in Chapter

V.

4.5  Performance of the Matching Filter Algorithms

The last research undertaken has been the work to develop an accurate matching
filter algorithm to add to the MNRS FDIR algorithm. The purpose of the matching filter
is to identify the type of measurement error on a known failed measurement. Within the
scope of this thesis, it is desirable to identify between the three types of failures induced on
the satellite and transponder range measurement signals: an additive step bias, an additive
ramp offset, and an increase in measurement noise. Two matching filter algorithms are
presented as methods for identifying the failure type: the generalized likelihood ratio (GLR))
and the Chi-Square Pattern Recognition (CSPR) matching filters. The GLR technique
implements a ratio of hypothesis probability densities to identify failures, while the CSPR
attempts to match the shape of a failure offset vo pre-determined failure model. Both these
algorithms use the results of NRS filter 1 to attempt to identify the failure. The results of
the GLR and then the CSPR matching filters are presented, followed by a comparison of
the relative quality of the two algorithms, The goal of this analysis is to suggesi the best

direction for future FDIR work to pursue.

4.5.1 GLR Matching Filter Results.  Overall, the results for the GLR algorithm
have fallen short of expectations. While previous AFIT research has had limited success
using the algorithm as a method to identify which measurement fails [19], the fidelity of the

algorithm is not suflicient to identify the exact failure type. As stated in Section 2.3.2.2,

the GLR matching filter relies on the magnitude of the T(#;) function to determine the type
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Figure 4.17  Comparison of GLR matching filter results, T(;), for a Transponder Step,
Ramp, and Noise Failure

of failure. As explained in Equation (2.68), if the magnitude of Y(¢;) is much greater than
1, the failure is a ramp offset. Similarly if the magnitude is much less than 1, the failure is
identified as a step bias. If the magnitude remains in close vicinity of 1, ncither step nor
the ramp GLR failure model can identify the failure; therefore the algorithin assumes the

failure is an increase in the measurement noise.

Despite the efforts to fine tune the algorithm, the GLR matching filter is unable to
distinguish between different failure types. Figure .17 shows the response of the T(i;)
functjon for the three different transponder failures. While the algorithm seems to identify
the ramp failure correctly, the step bias cannot be distinguished from an incrcase in mea-
surement noise. In fact the GLR seems to believe both biases are increases in measurement,

noise. For the satellite measurement failures, all three failure types are identified as ramp
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failures. As can be seen in Figure 4.18, the GLR is more confident in the step bias being

a ramp failure than the actual ramp bias.
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Figure 4.18 Comparison of GLR Matching Filter Results, Y(t;), for a Satellite Step,
Ramp, and Noise Failure

While the results from the GLR simulation appear to be rzadom, there is a com-
mon fault in the system that produces these results. The problem lies in a fundamental
assumption, made in the derivation of the GLR equations. The GLR equations in Chap-
ter 1I are derived for a discrete-time system rmodel. Yet the model equations for the
NRS filter are continuous-time state equations. This research assumes that the F ma-
trix in the system dynamics equation can be discretized using a discretization algorithm
described in Section 2.2.2. Unfortunately, this discretization process does not retain essen-
tial dyuamics information necessary to match g(t,-,éx) to the residuals in Equation (2.58).
This discretization is hampered both by the coarse sampling time, 2 seconds, and the

assumed first-order approximation (Section 2,2.2). This theoretical breakdown prevents
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Y(t;) in Equatio. (2.67) from dist nguishing between the 1amp and step failures. Chapter
V discusses possible solutions to this dilemma. Results for the GLR estimates of the fail-
ure magnitudes have not been included since the GLR matchiug filters cannot accurately

specify f{ailure type.

4.5.2 CSPR Matching Filter Results.  While the resuits for the GLR algorithm are
less than heartening, the CSPR matching filter provides hope for the future of failure type
identification. While the GLR algorithm attempts to use information from the residuais,
the F matrix, and H matrix to determine the failure type, the CSPR concentrates solely
on the residual information to identify he failure. Therefore the CSPR. algorithm is not

limited by the validity of the discretization of the state dynamics matrix.

As explained in Section 3.4.4, the CSPR uses the Chi-Square output to determnine
the type of failure. The failure type is established by matching the shape of the failure
portion of the Chi-Square output to the actual shape of the failure. Two criteria are used
to evaluate the shape of the Chi-Square output. These criteria are the slope aud the
intercept of a first-order line fit of the Chi-Square output over the duration of the failure.
To implement this criteria in real time, a new line fit is taken every time another Chi-
Square output is above the failure threshold. Over time, the line fit will more accurately
match the shape of the failure, By analyzing the slope and intercept of the line fits over

time, the type of failure is determined.
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Figure 4.19 NRS Filter 1 Chi-Square Line Fit Data for a Satellite Step Bias
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Table 4.4 Final Slope and Intercept Values for the Six Failure Runs

[ Type of Failure || Desired Slope | Final Slope [ Desired Intercept | Final Intercept

Transponder Zero or Large and
Step Bias Negative 0.397 Positive 1.38 x 103
Transponder Zero or
Ramp Bias Positive 1.97 Negative -4,22 x 10%
Transponder Zero Mean Zero Mean
Noise Increase over Time 0.257 x 1072 over Time 1.68 X 107
Satellite Zero or Large and
Step Bias Negative -0.969 Positive 2.76 x 103
Satellite Zero or
Ramp Bias Positive 1.22 Negative —-2.99 x 10®
Satellite Zerc Mean Zero Mean
Noise Increase over Time 0.380 over Time 5.49 x 102

To explain this somewhat confusing critericn, a satellite step bias simulation is exam-
ined. Figure 4.19 plots the slope and the intercept of the iine fit to the Chi-Square output.
During the early portion of the failure, the line fit has not established sufficient points
of data, so the slope and intercept of the line fit deviate from expectations. However, as
the failure continues, the slope and the intercept correspond to expectations described in
Tab'z 4.4. The intercept of the line fit is a large positive value and the slope of the line be-
comui Sligntly negative. This identifies the failure as a step bias on satellite measurement

1.

As explained earlier, the wore data poinis available, the beiter the line fit maiches
the established criteria. Therefore, Table 4.4 documents the final slope and intercept values
of the line fit for all the failure runs. The final slope and intercept are determined from
the line fit incorporating all the Chi-Square outputs that are above the failure threshold.
Therefore, there does exist significant delay in identification of failure type using this
method. Appendix L contains the full slope and intercept plots for all the failure runs over

the complete failure window,

While the CSPR can identify most failures, the algorithm is limited by its own
definition. The CSPR will only correctly match the failure and the failure type when the
Chi-Square output resembles the failure itself. While this is usually the case, there are

exceptions, as can be seen in the Chi-Square output of NRS filter 1 during a satellite ramp
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Figure 4.20 NRS Filver 1 Chi-Square Results for a Satellite Ramp Failure

failure. This Chi-Square cutput, Figure 4.20, does not resemble a slope over the time of
failure. While the failure can be detected with the Chi-3quare test, the CSPR matching
algorithm will misinterpret the line fit, yielding an erronscus answer. Further study ints
the residual response to failures is necessary before a matching filter like the CSPR can

accurately identify ail failures.

While both the CSPR clearly outperforms the GLR matching filter, there are reasons
to pursue both algorithms in future research. While th» GLR requires a fundamental
change in definition to be reapplied to the NRS filter model, pursuit of the algorithm
does have a I ng-term payoff. Since the GLR equations are derived from the EKF model
equations, the GLR has the potential to be applied to other models besides the NRS. On
the other hand, the CSPR has provided reasonably successful identification nsing very little
computatior sl load and readily available inputs. However the CSPR algorithm has been
developed from post-process analysis of one model affected with finite number of failure
situations. If the scope of the research is broadened, there is no assurance that the CSPR

matching filter will be able to perform censistently.
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4.6 Chapter Summary
This ends the analysis of the data collected in the development of the MNRS FDIR

algorithm. The following chapter suminarizes the results of this thesis and presents rec-

ommendations for future research.
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V. Conclusions and Recommendations

This chapter presents the conclusions reached in the research and development of
the MNRS FDIR algorithm., The remarks will focus on the performance of the NRS
single filter, MNRS FDIR algorithm, and matching filters. The chapter concludes with

recommendations for future research endeavors.

5.1 NRS Filter Performance

The 15-State NRS filter has once again demonstrated accurate navigation corrections
in the simulated environment. This NRS filter matches the performance of past filters,
despite the reduction in the number transponder méasurements from six to five and the
correction of various errors in the NRS truth model. By keeping only the essential states

with increased tuning gains, the filter can track the truth model with acceptable accuracy.

An examination of the model has shown that the GPS filter state variables are the
key to this reduction in states. The coupling of the GPS drift and clock hias states
with increased tuning gain will quickly compensate for unmodeiled range biases. This is
a highly beneficial quality when many of the truth model range biases are unmodelled
in the filter. Yet this characteristic does hamper failure identification by tracking the
occurrence of failures like any other unmodelled range bias. This is a trade-off consideration
in developing the model. If the sensitivity of the GPS error states is reduced, the filter will
not compensate for unmodelied range biases such as ionospheric and tropospheric delay.
Since the choice in this thesis has always been to maintain the best possible performance
in the failure-free environment, the FDIR technique must function in a less than optimal

environment. This decision will be addressed again in Section 5.3.

The sensitivity of the model to changes in satellite geometry has also been investi-
gated. The filter has shown that the PDOP of the satellites will affect the accuracy of the
state estimation in the NRS implementation. Also, the negative effect of good PDOP has
been demonstrated on the FDIR algorithm. The investigation of measurement geometry

has been documented to encourage future research into this area.
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5.2 MNRS FDIR Performance

The MNRS has shown that a simplified implementation of FDIR concepts can solve
the problem of robust navigation in a failure envircnment. Researchers have a tendency
to attempt to produce one solution for all problems (i.e. fajlure detection, isolation, and
recovery). Both MMAE and the GLR algorithms have been proposed as cure-alls for
the ailments of I'DIR. Yet the MNRS algorithm exploits the positive qualities of several

theories rather than just one, to attain robust navigation.

Throughout various research endeavors at AFIT, the Chi-Square test has shown an
ability to detect the presence of a failure rapidly [2, 5]. Using residual information from
all the measureinents, the Chi-Square test detects failures as soon as the residuals deviate
from their {ailure-free zero-mean behavior. The MNRS uses the Chi-Square variatle only
for its best quality, rapid and accurate detection of failures. The MNRS does not ask the
Chi-Square test to isolate the failure or estimate the failure magnitude. This would be
couaterproductive, since the Chi-Square test does not perforin these tasks well. Instead
the MNRS uses other techniques better suited %o isolation and recovery of the failure.

Failure isolation and recovery are accomplished with the use of multiple models.
Assuming only single failures, the multiple models of the MNRS isolate the failed signal
at the rate of Chi-Square detection. Rather than waiting for a more time-consuming and
less reliable isolation algorithm, the MNRS has intermeshed the benefits of the Chi-Square
test and multiple modelling to identify the failed measurement signal. Since the MNRS
contains a model that does not receive updates from the failed measurement, recovery is

as simple as switching the filter used to correct the INS solution.

The real limitations for the MNRS lie in the assumptions made in its development,
The MNRS assumes that navigation with four satellites and five transponders is desirable.
If more satellites and more transponders are used to updaie the filter, more filters are
needed to mwaintain the FDIR capabilities of the algorithm. Also, reconfigurability must
be considered after a failure has occurred. Once a measurement has failed, the entire
MNRS should reset to be ready for another failure in the measurement signals. While these

problems have reasonable solutions, to simulate the more realistic system is beyond the
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scope this thesis. Nonetheless the performance of the MNRS demonstrates that exploiting
the benefits of multiple FDIR techniques in one algorithm, can solve the problem of robust

navigation in a single-failure environment.

5.3 Matching Filter Performance

The comparison of matching filter techniques has not yieided a clear favorite for fu-
ture research. Neither algorithm demonstrates a ciear superiority in performance. While
the discrete-time GLR matching filter is able to detect failures, the continuous-to-discrete
transformation of the F dynamics matrix does not retain sufficient information to distin-
guish between failure types. Either the definitions of the failure medels need to be altered
or the GLR algorithm ne~ds to be rederived using a continuous-time form of staie equation,
On the other hand, the CSPR matching filter does isolate failures accurately as long as the
residuals retain the shape of the failure. For the transponder failures, the CSPR filter has
absolutely no problewns, because the Chi-Square output exactly matches the shape of the
failure. This does not hold for the satellite failures. Due to the GPS filter state'’s tendency
to absorb the bias induced in the failure and the ability of satellite geometry to affect the
residual failure response, the Chi-Square test for satellite failures does not always match
the shape of the failure itself. When Chi-Square output of a failure varies greatly from
the expected shape of the failure, the CSPR will misinterpret the type of failure. This is
a fundamental limitation of the CSPR matching filter.

Therefore the GLR still must be considered the more viable candidate for future
failure type identification research. Algorithms like the CSPR. are limited by the assump-
tions made in there implementation (i.e. the shape of the failure is independent of system
dynamics). The GLR matching filter has the thecretical support to encourage future re-
searchers to decipher the different problems encountered in this research. Overall failure

type identification is still an extremely open ended area of research that needs further

investigation.
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5.4 Hccommendations

To conclude this thesis, recommendations are made for future AFIT research. These
ideas concentrate on improving the accuracy of the NRS modei and furthering the devel-

opment of failure type identification techniques.

» Verify the NRS filter in a new siminlation environment. All past research on the
NRS model has used consecutive generations of the same MSOFE Kalman filtering
computer code. There is a definite necd to transfer the code to a more interactive
and inodern programming environment. This process will allow reverification of past

work and a more comprehensible base for future work.

s Analyze the impact of high dynamic profiles on the NRS model. CIGTF is interested
in modelling the effects of GPS signal loss due to high dynamics maneuvers, By
developing new models, the impact of high dynamics on the NRS model can be

addressed.

Continue the analysis of filter sensitivity to measurement geometry. This thesis only
pursued this topic as an aside; measurement geometry is an impo: tant and unexplored

area of research at AFIT.

Implement a real-world NRS filter at AFIT. AFIT currently has the facilities and
equipment to put together and test a hardware version of the NRS filter. Produc-
tion of a real systein would open a myriad of future research avenues for the NRS

algorithm.

Reverify tae accuracy of the truth model for the NRS filter. The AFIT NRS truth
model has remained unchanged for numerous years. The relative accuracy of the
transponder measurements and the GPS measurements is of specific importance to

filter performance.

Research and develop a real velocity-aiding model for the NRS. Every generation of
NES research has shown that the fiiter goes unstable without velocity aiding. Yet an
accurate velocity model has never been explored by AFIT. Therefore an imaginary
model is still in place to maintain stability of the filter. The development of a

velocity-ziding model will improve the validity of the NRS simulation results.
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o Explore alternative failure identification algorithms. While the MNRS does provide
nearly perfect FDIR performance, the multiple model structure carries a signifi-
cant computational cost. Future research should explore the use of individual scalar
residuals of a single filter 1o detect and isolate failures in place of a multiple model )\“‘«
structure. The actual tuning of the single filter should be adjusted to enhance filter & N
residual performance. By imnproving the performance of the residuals at the expense
of the state variables, the filter now has the single purpose of FDI. This FDI filter can
be run in parallel with a second EKF tuned for the most accurate state estimation, v
By feeding failure data from the FDI filter to the state estimation filter, a two-filter

I'DIR technique can be developed.

e Derive and implement a continuous-time GLR matching filter. A real problem in
assessing the problems with the GLR matching filter is the discretization of the F
matrix inherent in the algorittun. This discretization may be causing the problems
experienced with failure type identification. Therefore to implement the GLR equa-
tions properly, a continuous-time GLR maiching filter is essential, rather than con-
tinuing to try to force feed a discrete time GLR matching filter into a sampled-data

NRS EKF model.

o Pursue a new CSPR based algorithm to recognize patterns in the output of the EKF.

Perhaps explore the possibilities of implementing a neural net to identify failure types.




Appendir A, Error State Definitions for the Truth and Filter Models

Tabular listings of the truth and filter models are presented. Tables A.1 and A.2 show
the 39 INS states for the truth model, with the LN-93 state numbers given for reference to
the Litton technical report cun the INS [4]. Tables A.3 and A.4 list the RRS and GPS states

respectively, and Table A.5 lists the states in the reduced-ordered NRS filter models.




Table A.1  39-State INS System Model: First 24 States

State State | Definition LN-93
Number | Symbol State

1 60, X-component of vector angle from true to computer frame 1

2 40, Y-component of vector angle from true to computer frame 2

3 &0, Z-component of vector angle from true to computer frame 3

4 R X-component of vector angle from true to platform frame 4

5 by Y-component of vector angle from true to platform frame 5

6 b, Z-component of vector angle from true to platform frame 6

7 ~ 8V, | X-component of error in computed velocity ' 7

8 -(ﬂy "~ | Y-component of erro. in computed velocity 18]

9 oV, Z-component of error in computed velocity 9

10 dh Error in vehicle altitude above reference ellipsoid 10

11 ohg Total baro-altimeter correlated error 23

[ 16 ¢hy Error in lagged inertial altitude 11

17 65, Error in vertical channel aiding state 12

18 65, Error in vertical channel aiding state 13

19 Ve X-component of accelerometer and 17
velocity quantizer correlated noise

20 V.. Y-component of accelerometer and - 18
velocity quantizer correlated noise

21 V.. Z-component of accelerometer and 19
velocity quantizer correlated noise

22 g, X-component of gravity vector errors 20

23 égy Y-component of gravity vector errors - 21

24 bg. Z-component of gravity vector errors 22
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Table A.2 39-State INS System Model: Sccond 19 States

State State | Definition LN-93
Number | Symbol State
25 b, X-component of gyro drift rate repeatability 30
26 b, Y-component of gyro drift rate repeatability 31
27 b, Z-component ot gyro drift rate repeatability 32
28 S X-component of gyro scale factor error 33
29 S, Y-component of gyro scale factor error 34
30 S, Z-component of gyro scale factor error 35
31 Vs, X-component of accelerometer bias repeatability 48
32 Vs, Y-component of accelerometer bias repeatability 49
33 v, Z-component of accelerometer bias repeatability 50
34 Sa, X-component of accelerometer and velocity 51
quantizer scale factor error

35 54, Y-component of accelerometer and velocity 52
quantizer scale factor error

36 Sa, Z-component of accelerometer and velocity 53
quantizer scale factor error

37 Sga. | X-compenent of accelerometer and velocity 54
quantizer scale factor asymmetry

38 Sga, | Y-component of accelerometer and velocity 55
quantizer scale factor asymmetry

39 Sqa, | Z-component of accelerometer and velocity 56
quantizer scale factor asymmetry

40 i X accelerometer misalignment about Z-axis 66

41 io Y accelerometer misalignment about Z-axis 67

42 i3 Z accelerometer misalignment about Y-axis 68

43 o) X-accelerometer misalignment about Y-axis 69




Table A.3 26-State RRS System Model

State State [ Definition

Number | Symbol
12 O R, Range error due to equipinent bias
13 vy Velocity error due to equipment bias ]
44 6Pr,_ | Transponder 1 x-compouent of position error
45 0Pp; | Transponder 1 y-component of position error
46 6 Pry, | Transponder 1 z-component of position error
A7 6Rr,, | Transponder 1 range error due to atm propagation
43 8Pr,_ | Transpondesr 2 x-component of position error
49 6Pr, | Transporder 2 y-component of position error
50 6 Pry. | Transponder 2 z-component of position error
51 ORqpo, | Transponder 2 range error due to atm propagation
52 0 Pps_ | Transponder 3 x-component of position error
53 0Pys; | Transponder 3 y-compcnent of position error
54 0 Pps, | Transponder 3 z-component of position error
55 6Rr3, | Transponder 3 range error due to atm propagation
56 6Ppy, | Transponder 4 x-component of position error
57 6Pry | Transponder 4 y-component of position error
53 6Py, | Transponder 4 z-compornent of position error
59 6Rr4, | Transponder 4 range error due to atm propagation
g0 8Pry_ | Transponder 5 x-component of position eitor
61 6Pry [ Transponder 5 y-component of position error
62 0 Prs, | Transponder & z-component of position error
63 6Rrs, | Transponder 5 range error due to atm propagation
64 O Prs, | Transponder 6 x-component of position error
65 6Prs, | Transponder 6 y-component of position error
66 0 Prs, | Transponder 6 z-component of position error
67 6Rps, | Transponder 6 range error due to atm propagation




Table A.4 30-State GFS System Model

State State | Definition
Number | Symbol

11 SRk, | User clock bias
15 8D, | User clock drift
68 dR.100p, | SV 1 code loop error
69 ORir.p, | SV 1 tropospheric error
70 6R,n, | SV 1 ionospheric error
71 R k,, | SV 1 clock error
72 0Ly, SV 1 x-component of positicn error
73 8y,,, | SV 1 y-component of position error
74 bz, SV 1 zycomponent of position error
75 R 100p, | SV 2 code loop error
6 8Rirop, | SV 2 tropospheric error
77 O0R;on, | SV 2 ionospheric error
78 6R.i,,. | SV 2 clock error
79 0z,,, | SV 2 x-component of position error
80 8Ygu, SV 2 y-component of position error
81 6240, SV 2 z-component of position error ’
82 bR 1o0p, | SV 3 code loop error
33 6Rm,pa' SV 3 tropospheric error
84 8R;on, | SV 3 ionospheric error
85 dR.,,, | SV 3 clock error
86 dz,,, | SV 3 x-component of position error
87 89y, | SV 3 y-component of position error
88 62,5, | SV 3 z-component of position error

| 89 O Reio0p, | SV 4 code loop error
90 OR op, | SV 4 tropospheric error
a1 0R;,., | SV 4 ionospheric error
92 OR.,,, | SV 4 clock error
93 6z, 1SV 4 x-component of position error
94 8y,y, | SV 4 y-component of position error
95 b2y, SV 4 z-component of position error




Table A.5 15-State Reduced~0;der Filter Model

State State Definition

Number | Symbol
1 40, X-component of vector angle from true to computer frame
2 06, { Y-component of vector angle from true to computer frame
3 68, Z-component of vector angle from true to computer frame
4 Pz X-component of vector angle from true to platform frame
5 by Y-component of vector angle from true to platform frame
6 ¢, Z-component of vector angle from true to platform frame
7 oV, X-component of error in computed velocity
3 oV, Y-component of error in computed velocity
9 6V, Z-component of error in computed velocity
10 bh Error in vehicle altitude above reference ellipsoid
11 bhg Total baro-altimeter correlated error
12 0R, Range error due to equipment bias
13 dv, Velocity error due to equipment bias
14 5T ik, User clock bias
15 8T x,, User clock drift
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Appendiz B. Dynamics Matrices and Noiwse Values
B.1 Definition of Dynamics Matrices

In Chapter 3, the truth and filter model dynamics mitrices aie defined by the subma-
irices, Frier; Finsas Finse, Frrs,, and Fgpg, of Equation (3.3). The Fpy.. represents
the filter dynamics matrix, which is also a submatrix in the larger truth model dynamics
matrix. The other three matrices represent the additional truth model non-zero portions of
the F matrix that simulate the real world. Tables B.1, B.2, B.3, B.4, and B.5 contain the
non-zero elements of the dynamics submatrices Feiuer, Fins,, Fins,s Frrs,, and Fgps,
respectively. All the undeclared variables shown in the following tables are defined in the
LN-93 technical report, along with their units [4]. The structure of the dynamics matrices

below correspond to the truth model state definitions in Appendix A.
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Table B.1 Elements of the Dynamics Submatrix Frjpep

| Element | Term || Element | Term
(1,3) — Py (1,8) 7 —-Cry
(2,3) ps_ (2,7) Crx
(311) Py (372) =Pz
(4,2) -Q, (4,3) Q,
(4,5) Wit, (4,6) —Wit,
(4,8) —Cry (5,1) Q,
(5,3) -Q, (5,4) —we,
(5,6) w,-,: (5,7) CR}(
(8,1) -, (6,2) Q.
(6.4) w.-;,' (6,5) —Wit,
(7.1) -2V,Q, -2V, Q, (7,2) 2V, 8,
(7,3) 2V, 9, (7,5) -A, |
(7,8) Ay (7,7) —V,Crx
(7,8) 20, (7,9) -p, = 29, e
(8,1) 2V,Q, (8,2) | -2v.9, - 2v.q,
(8,3) 2v,82, (8,4) A, e
(8,6) —-A; (8,7) -2Q,
(8,8) V. Cry (8,9) pr+ 29,
(9,1) 2V, 11, (9,2) 2V 8L,
[ (9.3) —2V,Q, -2V, Q, (9.4) —A,
(955) Ar (9’7) p + 2Qy + V:CRX
(9*8) —Pzr — 29: + VyCRY (9710) 290/“
L (11,11) —Bsn. (14,15) 1 ft?/sec




Table B.2 Elements of the Dynamics Submatrix Fyys,,

ﬁlementl Term |i Element ] Terin “ Elemenﬂ Term
(9,16) —k, (9,17) -1 (9,18) ks
(10,9) 1 (10,16) —k; (10,18) | %, -1
(16,10) 1 (16,16) -1 (17,16) ks
(17,18) —ks (18,10) k4 (18,16) —k,
(7,19) Cu (7,20) Ciz (7,21) Cig
(7,22) 1 (8,19) Ca (8,20) Cas
(8,21) Cas (8,23) 1 (9,19) Ca
(9.20) Css (9,21) Cas (9,24) 1
(9,11) ks (10,11) k; (17,11) —k;
(18,11) | k4/600 | (18.18) | ks—1 (9,43) | Cg3Af
(4,25) Ci (4,26) C1a (4,27 Cha
(4,28) | Cpws, (4,29) | Crowip, (4,30) | Crawis,
(5,25) Cop (5,26) Cos (5,27) Cas
(5,28) | Coywip, (5,29) | Chawis, (5,30) Cozw;s,
(6,25) Csy (6,26) Cag (6,27) Cs3
(6,28) Carwip, (6,29) Capwip, (6,30) Caawip,
(7,31) Ci (7,32) Cip || (7,33) Cis
(734) | CudZ 1 (7,35) | CiodA? | (7,36) [ CiaA?
(737) | CuldAf| || (7,38) | Cip|lAZ] || (7,39) | Cisl4F|
(7,40) | Cp, AP (7,41) | =CiAZ || (7,42) | C134F
(7,48) | CizAZ (3,31) Ca (8,32) Coy
(8733) C23 (8’34) CzlAf (8735) C22A!l,a
(8,36) | CaaAP" || (8,37) | Cou|AB| || (8,38) | CuplAF]
(8,39) | CaslA?'| || (8,40) | C;AB (8,41) | —Cyp AP
(8,42) | CysA/ (3,43) | CaaA] | (9,31) Ca
(9,32) Cs2 (9,33) Cs3 (9.34) | CaA;
(935) | CsAP | (9,36) | CasAP | (9,37) | Cy|AP
(9,38) | CalAB] || (9,39) | Cuaf AP | (9,40) | Cy AP
(9,41) | —CsA7 || (9.42) | CxAE
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Table B.3 Elements of the Dynamics Submatrix Fiys,,

[ Element | Term || Element | Term || Element | Term |

(19,19)

—Bo.. ] (20,20)

v,

(21,21)

—Bv..

(22.22)

—Bsg, || (23,23)

—'55951

(24,24)

"/369.

Table B.4 Elements of the Dynamics Submatrix Frps

| Element | Term [l Element | Term j \.1;_’;_.
(47.47) | -1/300 ft%/sec || (51,51) | -1/300 ft*/sec
(55,55) | -1/300 ft*/sec | (59,59) | -1/300 f£2/sec
(63,63) | -1/300 f1%/sec || (67,67) | -1/300 fi*/sec

Table B.5 FElements of the Dynamics Submatrix Fgps

[ Klement | Term [ Element |  Term [ Element | Term ]
(68,68) | -1 ft*/sec || (69.69) | -1/500 ft*/sec || (70,70) | -1/1500 fi?/sec
(73,75) | -1 ft*/sec || (70,76) | -1/500 ft*/sec || (77,77) | -1/1500 ft?/sec
(2282) | -1 ft®[sec || (83,83) | -1/500 ft*/sec || (84,84) | -1/1500 ft*/sec
(39,89 | -1 f&%]sec || (90,90) | -1/500 fe?/sec || (91,91) | -1/1500 f1*/sec |

B.2  Elements of the Process Neoise und Measurement Noise Matrices

This section defines the dynamics noie strengths and measurement noise variances
for the truch and filter models. The truth model non-zero dynamics noise strength are
defined in ‘fables B.6 and B.7. These noise strengths correspond to the driving noises
Weitter, WINs,, WrRS,> ald wgps, in Equation (3.3). Note that the ¢? terms in Ta%le B.6
are variable names as defined in the Litton technical report and do not represent . riance
terms typically associated with o2, The filter dynamics driving noise terms impleriented
after filter tuning are listed in Table B.8. Finally, the measurement noise variances used

in the truth and filter models are presented in Table B.9.
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Table 5.6 Elements of Truth Model Process Noise Submatrix for the INS Truth Model
rElemeutJ Term ” Element ] Term ||

() an. (5,5) Ta,, (6,6) az,
-~ p 2 2
(7.7) O';AI (8,3) O sy (9,9) Ty,

(1L,11) | 285,07, || (19,19) | 20y, a5 || (20,20) | 28y, 0%
(21,21) | 28, 0%, || (22,22) | 285,05, | (23,23) | 284,07,
(24,24) | 285,08,

Table B.7 FElements of Truth Model Process Noise for RRS and GPS States
[ Elememj Term LElenlent | Term ”

T4747) | 6.667210- fi2)sec || (51,51) | 6.6672107 13 f12/sec || (55,55) | 6.667z10-13 f1/sec
(59.59) | 6.667210~ 13 ft¥/sec || (63,63) | 6.667210~ 13 ftZ/sec || (67,67) | 6.667210 13 ft?/sec

' (68,83) 0.5 jt*/sec (69,69) 0.004 ft?/sec (70,70) 0.004 ft3/sec

(75,75) 0.5 f12]sec {76,76) 0.004 ft%/sec (77,77) 0.004 ft%/sec
782 32) 0.5 f1?[sec (83,33) 0.004 ft?/sec (84,84) 0.004 ft7/sec

[ (9.89) 0.5 ft*/sec (90,90) 0.004 ft%/sec (91,91) 0.004 f1*/sec

Table B.8 Filter Process Noise @ Values

| Element | Term [| Element | Term ]
(1,1} | 1.22107'3 rad?/sec (2,2) | 1.52107 '3 rad?/sec
(3,3) 0.0 rad?/sec (4,4) 5 rad?/sec
(5,5) 5 rad?/sec (6,6) 85 rad’/sec
{(7\7) 15000 fi*/sec” {8,8) 15000 fi*/sec’
9.9) 110000 f&/sec® || (10,10) 300 17/ sec?
iy 300 [ /sec? (12,12) 50 fi2]sec?
(13,13) 0.0 ft?/sec? (14,14) | 70 & 40 ft*/sec?
(15,15) | 0.55107' ft*/sec?

Table B.9 Truth and Filter Measurement Noises R Values

” Measurement | Truth Noise | Filter Noise—”

Baro Altimeter 2500 ft? 3500 fi?
Doppler 0.02 ft¥/sec® | 0.02 ft?/sec?
Transponders 4 ft? 100 jt& |

Satellites 2 ft? e




Appendiz C. Tuning Plots for an NRS Filter

These plots are the baseline filter tuning plots for a single NRS filter. The plots
demonstrate the effect of the tuning values implemented in all ten of the fiiters used in
the MNRS multiple model. These tuning plots have been run using satellites 1-4 and

transponders 1-5.

The plots in this section are error mean % 1 standard deviation plots. They reveal
the quality of the filter tuning and tl;e filter’s ability to track the truth r.odel. It should be
noted that the plots in this appendix are not comparing the actual filter and truth states,
The plots depict the filter and truth states translated into the more commonly recognized
navigation variables (latitude, longitude, north velocity, altitude, etc, =tc). The translation

of the variables has been used before and is documented in past AFIT theses [14, 18],

The solid center line on the following plots is the mean error time history for the
applicable navigation variable. The mean error is defined as the Monte Carlo average
of the difference between the filter estimate of a state and the actual truth state. The

following equation is the mathematical definition of the mean error [9, 19, 13]:

1 N 1 N
.A’Ic(t,) = N—ZPJ(t.) = NZ{I:’(t.)—x"ucl(ti)} (C.l)

j=l j=l1
where £;(2;) is the filter-computed estimate of a given navigation variable and ;p., (%)
is the truth model value of the same variable, at time ¢, for run j. N is the number of

Monte Carlo runs in the simulation (15 in this thesis).

In addition to the center trace, two more pairs of lines are plotted. The first pair is
the Mean+Sigma (represented by the - - lines in the plots). These lines are symmetricaily
displaced about the mean error, Mc(t.)- The MeantSigma is the sum of the previously
defined mean, M, (%), and the actual filter standard deviation +/P,(t;) , where P,(t,)

is the true error variance at time ;. The true standard deviation is calculated from the

following equation [9, 19):

N .
Utr'ut(ti) = \/Pe(r!) = J}T]%{Z}eful)—‘{vh_l]uz(tl) (CZ)
J:
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N is the number of runs in the Monte Carlo simulation, and Mf(t,-) is the square of the

mean of a given state at each time of interest.

The second pair of traces (- - lines) represent the filter-compuated + oy, values
for the same siates and are symmetrically displaced about zero because the filter “believes”
that it is producing zero-mean errors [10, 19]. These quantities are propagated and updated
in the MSOFE [13, 18] software, using the covariance prepagation equation shown in

Chapter II. These plotted lines represent the filter’s estimate o’ its own error.

A legend is provided for quick reference as to which of the iines on the graph corre-
sponds to which of the variables of interest. This section contains error state covariance

plots for fourteen navigation variables of interest.

Table C.1 Legend for Filter Tuning Plots

| Symbol | Definition ]
— Solid Line Mean Error
-+« Dotted Line Meaun ErforxTrue Sigma
- - Dashed Line || £ Filter-Predicted Sigma
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Figure C.1 Latitude and Longitude Error Filter tuning Plots
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Figure C.4 North and West Velocity Error Filter Tuning Plots
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Appendiz D. Baseline Plots for Residual Monitoring

The GLR and Chi-Square algorithms implemented in this thesis rely hea.i.y on the
residuals produced by the individual NRS filters in the MNRS. The onset of failures in
the system is reflected by the changes to the residuals of the extended Kalman filters. In
this appendix, the residuals of the suteilite and the transponder measurement updates are
plotted for a failure-free run. These plots are used for comparison with the failure ruans
in the following appendices. These residual plots are similar in structure to the tuning
plots of Appendix C. Each plot compares the Monte Carlo mean value of a residual, +
the Monte Carlo calculated standard deviation for a scalar measurement residual, and zero
4 the filter-predicted standard deviation, . The derivation of the three plotted values is

shown below.

The center solid line on the following plots is the mean value of a measurement
residual. Similar to the plots in Appendix C, the mean value is defined as the Monte Carlo
average of the residual over the time history of the filter run. The following equation is

the mathematical definition of the mean value for a scalar residual [9, 13].

N
1
M,(t) = —-Z Z{@(t ) = hi[2(4), 1)) (D.1)
N - N
where v;(%;) is the scalar residual for the scalar measurement update z;(¢;). The subscript,
j, refers to the jth Monte Cailo run. N is the total number of Monte Carlo tuns in the

simulation (15 in this thesis). h;[Z(2; ), ;] represents the jth scalar vector of the h[Z(t] ), t;]

vector that corresponds to the specific scalar measurement.

In addition to the center trace, two more pairs of lines are plotted. The first pair is
the Meanx Sigma (represented by the - - - lines in the plots). These lines are symmetrically
displaced about the residual mean value, M, (t;). The MeantSigma is the sum of the
previously defined mean, M,(t;), and the actual residual standard deviation :i:\/aﬁ

where P,(t;) is the true error variance at time ¢;. The true standard deviation is calculated




from the following equation [9, 19].

: 1 N
Tirue(ti) = F(L) = \]WZ‘Y}’UJ—N‘_—{M%#) (D.2)
] =

N is the number of runs in the Monte Carlo simulation, and M,?(t.-) is the square of the

calculated mean of a given residual at each time of interest,.

The second pair of traces (represented by the - - lines) are the filter-computed
t 0;ie, values for residual standard deviation [10, 19]. Equation (2.29) is used to calculate
the full covariance matrix for the residuals. The scalar residual variances are the diagonal
terms in the [H P~ HT + R] residual covariance matrix. These plotted lines represent the

filter’s confidence in the scalar residual.

A legend is provided for quick reference as to which of the lines on the graph cor-
responds to which of the variables of interest. This section contains baseline, no-failure
residual plots for the nine measurement updates (4 Satellites and 5 Transponders) in each
of the ten NRS filters. The first plots presented are for the NRS1 filter. The plots follow
in order for the other nine filters, the last being NRS10. Scalar residual plots are not
presented for the velocity or the barometric altimeter measurement updates, since these

are not used in the failure detection algorithm.

Table D.1 Legend for Filter Tuning Plots

| Symbol H Definition |
- Solid Line Mean Error

-+ Dotted Line || Mean Error+True Sigma
~ ~ Dashed Line || + Filter-Predicted Sigma
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Appendiz E. Residual Plots for a Transpondcr Signal Step Failure

This appendin contains all the scalar residual data for the ten NRS filters during
a simulated step bias of 800ft on the Transponder | range signal from time ¢ = 2000sec
through ¢ = 3000scc. The plots contained in this section are identical in format as those
in Appendix D. These plots arc presented to support the validity of the MNRS as a valid

EFDIR algorithm for an integrated navigation system,

A legend is provided for quick reference as to which of the lines on the graph corre-
sponds to which of the variables of interest. This section contains the plots for the nine
measurement updates (4 Satellites and 5 Transponders) in each of the ten NRS filters.
The first plots presented are for the NRS1 filter. The plots follow in order for the other
nine filters, the last being NRS10, Scalar residual plots are not presented for the velocity
or the barometric altimeter measurement updates, since these are not. used in the failure

detection algorithm.

Table E.1  Legend for Filter Tuning Plots

l Symbol —” Definition J
- Solid Line || Mean Error

-++ Dotted Line || Mean Error £ True Sigma

— — Dashed Line || £ FilterPredicted Sigma
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Appendiz . Residual Plots for a Transponder Signal Ramp Failure

This appendix contains limited scalar residual data for the ten NRS filters during
a simulated ramp offset of slope [1(¢ — 2000)]ft on the Transponder 1 range signal from
time ¢t = 2000sec through ¢+ = 3000sec. The plots contained in this section are identical in
format to those in Appendix D. These plots are presented to support the validity of the

MNRS as a valid FDIR algorithm for an integrated navigatio.a system.

A legend is provided for quick refer ce as to which of the lines on the graph corre-
sponds to which of the variables of interest. Unlike Appendices D, E, and B, this section
contains only the scalar residual plots for the failed measurement signal (Transponder 1)
in nine of the ten filters. Filter 10 is not included, because it does not receive the failed
measurement. The firsi plot presented is for the NRS1 filter. The plots follow in order for
the other nine filters, the last being NRS9. Scalar residual plots are not presented for the

velocity or the barometric altimeter measurement updates, since these are not used in

(3 Iy
LIE

failure detection algorithm.

Table F.1 Legend for Filter Tuning Plots

r Symbol || Definition [
- Solid Line Mear. Error

-+ Dotted Line || Mean Error & True Sigma

- - Dashed Line || & Filter-Predicted Sigma
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Appendiz (. Residual Plots for a Transponder Signal Noise Failure

This appendix contains limited scalar residual data for the ten NRS filters during
a simulated ncise increase of (150v)ft on the Transponder 1 range signal from time ¢ =
2000sec through ¢t = 3000sec. The plots contained in this section are identical in format
to those in Appendix D. These plots are presented to support the validity of the MNRS

as a valid FDIR algorithmn for an integrated navigation system.

A legend is provided for quick reference as to which of the lines on the graph corre-
sponds to which of the variables of interest. Unlike Appendices D, E, and H, this secvion
contains only the scalar residual plots for the failed measurement signal (Transponder 1)
in nine of the ten filters. Filter 10 is not included, because it does not receive the failed
measurement. The first plot presented is for the NRS1 filter. The plots follow in order for
the other uine filters, the last being NRS9. Scalar residual plots are not presented for the
velocity or the barometric altimeter measurement updates, since these are not used in the

failure detection algorithm.

Table G.1 Legend for Filter Tuning Plots

! Symbol || Definition }

- Solid Line || Mean Error
-+ Dotted Line || Meaa Error + True Sigma

— - Dashed Line || £ Filter-1 .edicted Sigma
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Appendir H. Residual Plots for a Satellite Signal Step Failure

This appendix contains limited scalar residual data for the ten NRS filters during a
simulated step bias of 3500ft on the Satellite 3 pseudorange signal from time ¢ = 2000sec
through ¢ = 3000sec. The plots contained in this section are identical in format to those
in Appendix D. These plots are presented to support the validity of the MNRS as a valid

FDIR algorithm for an integrated navigation system.

A legend is provided for quick reference as to which of the lines on the graph corre-
sponds to which of the variables of interest. This section contains the plots for the nine
measurement updates (4 Satellites and 5 Transponders) in each of the ten NRS filters.
The first plots presented are for the NRS1 filter. The plots follow in order for the other
nine filters, the last being NRS10. Scalar residual plots are not presented for the velocity
or the barometric altimeter measurement updates, since these are not used in the failure

detection algorithm. B

Table H.1 Legend for Filter Tuning Plots

L Symbol H Definition J
- Solid Line Mean Error

-+- Dotted Line || Mean Error + True Sigma

- — Dashed Line || + Filter-Predicted Sigma |
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Appendir I. Residual Plots for a Satellite Signal Ramp Failure

This appendix contains limited scalar residual data for the ten NRS filters during a
simulated ramp offset of slope [4(t ~ 2000)]ft on the Satellite 3 pseudorange signal from
time ¢t = 2000sec through ¢ = 3000sec. The plots contained in this section are identical in
format to those in Appendix D. These plots are presented to support the validity of the

MNRS as a valid FDIR algerithm for an integrated navigation system.

A legend is provided for quick reference as to which of the lines on the graph orre-
sponds to which of the variabies of interest. Unlike Appendices D, E, and H, this section
contains only the scalar residual plots for the failed measurement signal (Satellite 3) in
nine of the ten filters. Filter 3 is not included, because it does not receive the failed mea-
surement. The first plot presented is for the NRS1 filter. The plots follow in order for the
other nine filters, the Jast being NRS10. Scalar residual piots are not presented for the
velocity or the barometric altimeter measurement updates, since these are not used in the

failure detection algorithm.

Table I.1 Legend for Filter Tuning Plots

| Symbol | Definition |
- Solid Line Mean Error

-+~ Dotted Line || Mean Error & True Sigma

- - Dashed Line || + Filter-Predicted Sigma
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Appendic J. Residual Plots for a Satellite Signal Noise Failure

This appendix contains limited scalar residual data for the ten NRS filters during
a simulated noise increase of (300v)ft on the Satellite 3 pseudorange signal from time
t = 2000sec through ¢ = 3000sec. The plots contained in this section are identical in
format to those in Appendix D. These plots are presented to support the validity of the

MNRS as a valid FDIR algorithm for an integrated navigation system.

A legend is provided for quick reference as to which of tke lines on the graph corre-
sponds to which of the variables of interesi. Uniike Appendices 1), E, and H, this section
countains only the scalar residual plots for the failed measurement signal (Satellite 3) in
nine of the ten filters. Filter 3 is not included, because it dou:s not receive the fajled mea-
surement. The first plot presented is for the NRS1 filter. The plots follow in order for the
other nine filters, the last being NRS10. Scalar residual plots are not presented for the
velocity or the barometric altimeter measurement updates, since these are Lot used in the

e R NP tal
la.llure uetection 'aiguuuum.

Table J.1 Tegend for Filter Tuning Plots

[ Symbol ILDeﬁnition _l
- Solid Line Mean Error

««» Dotted Line j| Mean Error £ True Sigma
- - Dashed Line || + Filter-Predicted Sigma

J-1




sook
g F
o o
i i
ER ]
g 4
3 3
.m 1
-1000) o 1 1000
e e X . . e
4] 500 1000 1500 2000 2500 ¥ 00 3500 4000 0 500 1000 1400 2000 2500 3000 3500 4000
Time (yexc) Time (soc)
(Filter 1) (Filter 2)

$ar. 3 Residuals, (1)
$Sat. 3 Residuala, ()

0 S0 TTow 100 000 250 300 3500 4000

Time (scc)

{Filter 4)

Sar. 3 Residaals, ()

(Filter 6)

Figure J.1  Satellite 3 Scalar Residual Plots, Satellite Noise Increase for NRS Filters
1,24,5and 6 A

J-2




Sat. 3 Residuals, (ft)

Sat ’} Reaiduals, (ft)

Sat. 3 Residuals, ()

0 50 1000 1500 2000 500 300 30 4000

Sat. I} Residuals, (ft)

.l(]p[ 2 . o 4 _lm1
0 50 100 100 2000 250 3000 300 4000 30 100 1500 xin 250 3000 350 4000
Thme (i<c) Thme (s¢)

=

(Filter 9) (Filter 10)

Figure J.2 Satellite 3 Scalar Residual Plots, Satellite Noise Increase for NRS Filters 7-10



Appendiz K. Results of the NRS IFilter Chi-Square Tests

Within the MNRS faijlure detection algorithm, the Chi-Square test signals when
a failure occurs in any of the NRS filters. As described previously, a Chi-Square test is
conducted on the residuals of each of the ten NRS filters. The occurrence of a measurement
failure in a particular filter is determined by comparing the magnitude of the Chi-Square
variable to an established failure threshold. If the Chi-Square variable value exceeds the
threshold, a measurement failure is declared and the MNRS looks to a different NRS filter

for its navigation solution.

The following plots portrays this algorithm ccempletely for each failure. The plots
are organized according to failure run, beginning with the baseline run and concluding
with the noise failure on transponder 1. For each of the failure runs the following piots are

presented.

First the individual Chi-Square tests on the ten NRS filters are displayed. These

plots compare the Chi-Square magnitude,

k

x(t) = Y. ATEHATI () (K.1)

j=k=241

with a predetermined threshold, T = 15. The window size of the Chi-Square test was
chosen to be N = 3. The Chi-Square threshold and the window size have been chosen for
good performance (minimize false alarm rate and detection delay, while maximizing failure
detection taie). Ii should also be noted that the residual and covariance matrices, y(i;)
and A(t#;) respectively, contain only the measurement information corresponding to the
four satellite and five tranponder updates. Following the Chi-Square plots, the final two
plots show when the individual Chi-Square tests fail the threshold test. The first five filters
for each run are on the first plot, followed by the last five filters on the second plot. When
an individual filter’s Chi-Square test exceeds the threshold, the line corresponding to that
filter will switch high. The filter is considered to be navigating accurately, according to

the Chi-Square test, when the line is low.

These plots have been included to demonstrate the robust nature of the MNRS filter

to single failures. These plots also demonstrate the ability for the MNRS to determine

K-1




which of the ten filters is producing the accurate navigation solution during single mea-

surement failures,
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Appendir L. Slope and Intercept Results of the CSPR Matching Filter

This appenidx contains results of a CSPR matching filter simulation for cach of the
six failures used in this thesis. The magnitude and duration of the simulated failures are
identical to those used for the MNRS simulation runs. Two variables are documented: the
slope and intercept of a line fit of the Chi-Square test. As stated in Chapter IV, the slope
and intercept are plotted as a function of time over the duration of the detected failure.
This duration is defined as all points in time where the Chi-Square test exceeds the failure
threshold. The first order line fit of the Chi-Square data is performed in MATLAB [3]. The
intercept and slope for the three transponder failures (step, ramp, and noise) are presented
first, foilowed by plots for the three satellite failures (same order). Analysis for the CSFR

simulation is located in Section 4.5,
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