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ABSTRACT

As virtual environments grow in complexity and size, users are increasingly
challenged in assessing situations in large-scale virtual environment. This occurs because
of the difficulty in determining where to focus attention and assimilating and assessing
the information as it floods in. One technique for providing this type of assistance is to
provide the user with a first-person, immersive, synthetic environment observation post,
that permits unobtrusive observation of the environment without interfering with the
activity in the environment. However, for large, complex synthetic environments, this
type of support is not sufficient because the portrayal of raw, unanalyzed data in the
virtual space can overwhelm the user. To address these problems, this thesis investigates
the types of situational awareness assistance that need to be provided to users of large-
scale virtual environments. A technique developed, is to allow a user to place analysis
modules throughout the virtual environment. Each module provides summary
information to the user concerning the status of the section of the virtual environment that
the module was assigned to monitor. The prototype system, called the Sentinel, is
embedded within a virtual environment observatory and provides situational awareness

assistance for users within a large virtual environment.
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GRAPHICAL TOOLS FOR
SITUATIONAL AWARENESS ASSISTANCE FOR
LARGE SYNTHETIC BATTLE SPACES

I. INTRODUCTION

1.1 Background

With the end of the Cold War a few years ago, military doctrine has changed
dramatically. No longer is the perceived threat that of one large, powerful enemy. Instead,
due to the breakup of the Soviet Union block, many alliances have fallen to the wayside
which has renewed many long standing religious and ethnic hatreds that were subdued in
the old Soviet regime. Other political and economic problems throughout the world have
also caused many areas of unrest that could also be a potential threat to US and allied
interests.

Planners, both military and civilian, develop scenarios to plan for these threats.
They are forced to consider the use of armed forces covering the spectrum from full scale
war such as Desert Shield and Desert Storm to humanitarian relief efforts like those used in
Somalia. This unprecedented use of armed forces coupled with decreasing defense
expenditures, force military leaders to seek innovative and economical alternatives to
tactical battlefield analysis, mission planning, and training systems. One area receiving
increased attention is the use of virtual reality or synthetic environments.

One such synthetic environment viewer, the Synthetic BattieBridge (SBB), allows
the user to view the battlefield as a passive observer. This works fine for small scale
simulations as the user can observe almost everything in the battlefield. However, when
the simulation addresses a large scale battlefield, the user can see only what the simulation

can show them for the specific current view. If the user tries to back away to see the whole




battlefield, then the resolution of the objects in the simulation become blurred and distorted.
Therefore, the user can not make valid analysis of the risk assessment for the current
simulation.

The answer to such a problem is to have another system globally watch over the
entire simulation and provide situational awareness assistance for the user of the current
simulation. This other system can then inform the user of other areas (watchspaces) with
moderate or high risk, that they might want to view. Therefore, the other system can take
the burden of watching the entire simulation off the user and allow them to concentrate on
specific areas within the simulation. A Fuzzy Controller System, known as the Sentinel,
accomplishes this situational awareness assistance for the user of the overall battlefield

simulation.

1.2 Problem Statement

Design and implement a Fuzzy Controller System (Sentinel) to perform situational
awareness assistance of pre-defined areas (watchspaces) within a synthetic environment.
The particular synthetic environment targeted is the SBB. The Fuzzy Controller (Sentinel)
and support subsystems convey situational awareness information to the user with the
efficient use of on-screen displayé and sound cues. The on-screen displays use a variety of
colors to quickly let the user make an assessment of risk for each of their pre-defined
watchspaces of interest. The Fuzzy Controller System (Sentinel) works in the backgrouud
while the SBB processes and views the current simulation. Therefore, the user uses the
Fuzzy Controller (Sentinel) as a situational awareness tool that can be turned on or off as

needed.




1.3 Summary Of Current Knowledge

This thesis topic ties together three areas of research: the use of virtual reality and
synthetic environments to allow the user an immersive view of a simulation, the use of
fuzzy logic as a situational awareness tool, and the use of human/computer interface
techniques to enhance overall system usability.

The first area uses virtual reality and synthetic environments to provide a user with
a three-dimensional representation of moving and stationary vehicles dispersed over a large
area of terrain. The environment accommodates increasing levels of resolution for both the
terrain and the vehicles of interest and provides the user with an intuitive and modifiable
interface. The SBB developed by Capt. Rex Haddix in 1992 addresses many of the issucs
involved with a synthetic environment. Current work by Capt. Kirk Wilson ({Wil93]) and
I continues where Capt. Rex Haddix left off by making the SBB easier to use, more
capable, and technically applicable to users in the field.

The second area deals with using fuzzy logic to develop a system that can make
situational awareness judgments based on predetermined risk categories. Fuzzy logic can
do risk analysis based on variables that are conceptually vague in nature. Current papers
describe how fuzzy logic combines the uncertainty of given variables with user studies that
indicate what actions would actually take place. Using this information, we can design a
Fuzzy Controller (Sentinel) that for a given set of fuzzy inputs, it produces a single fuzzy
output. The fuzzy output is then attached to a color code and bar length that is viewed by
the user. The user then mentally converts this color and length information into a relative
assessment of the risk or activity in that watchspace. In other words, we can take actual
numbers, perform fuzzy set operations on them to produce a single relative number, that
the user can process in terms relative to themselves.

The third area, human/computer interface techniques, ties together the first two

areas mentioned above. How we display information to the user depends upon the type




and importance of the information. Visual and sound cues instantly give the user
information needed about the current state of the system. Determining what visual and

sound cues to use is the key to portraying information in a timely and efficient manner.

14 Scope

This thesis is the first attempt to apply fuzzy logic to a synthetic environment to
enhance situational awareness for the user. It is limited in capabilities and is primarily
being used as a proof of concept for the theory and techniques involved with fuzzy controi
and situational awareness. Additionally, the Fuzzy Controller (Sentinel) itself depends
upon limited user studies to fine tune the system. However, this thesis shows the practical
application of the Fuzzy Controller System (Sentinel) to an actual synthetic environment,
namely the SBB.

15 Approach and Methodology

The approach taken for the design and implementation of the Fuzzy Controller
(Sentinel) to the SBB, breaks up the Fuzzy Controller System (Sentinel) into a number of
distinct independent modules. Each one of these modules is then designed, tested, and
implemented separately using pre-defined interface specifications between modules.
Finally, the integration of all the modules together takes place along with testing the system
as a whole. These modules are then encapsulated from the user by the use of object-
oriented classes that ties together the whole system.

The Fuzzy Controller System (Sentinel) is composed of five distinct modules. The
first module, the Configuration Unit, takes in and translates user configuration information
into the configuration data structure used by the system. The second module, the Input

Unit, uses the configuration data structure along with current object information about the




simulation to calculate the fuzzy input parameters needed by the Fuzzy Logic Computation
Unit. This information feeds into the third module, the Fuzzy Logic Computation Unit,
which does the actual risk or activity assessment of the fuzzy parameters for each pre-
defined watchspace of interest. This information passes to the fourth module, the Output
Unit, that processes the watchspace assessment value received for each watchspace and
visually displays this information on the screen to the user. This module also takes care of
any interrupt handling that needs to go on based on watchspace assessments. The fifth
module, the Control Unit, is the actually interface between the user and the Fuzzy Logic
(Sentinel) watchspaces.

The nature of the Output Unit module indicates that further subdivision of the
module could take place. This subdivision takes into account the various different displays
that are needed to convey information to the user. We also need to take into account the
various sound cues required by the system. Overall, the Output Unit becomes the vital link
between the Fuzzy Controller System (Sentinel), the synthetic environment system (SBB),
and the user.

The classes play an important role in encapsulating the design and implementation
from the user. There are two classes that make up the Sentinel system. The first class, the
FL_Sentinel Class, is the main class that manages all the overhead and communication
between the modules (units), the FLS_Player Class, and the user. The second class, the
FLS_Player Class, handles all the rendering issues associated with the Sentinel
watchspaces. It is the FLS_Player Class that the Control Unit mentioned above has the
most impact on. User commands are interpreted from the Control Unit, communicated to
the FLS_Player Class through the FL_Sentinel Class, and then acted upon by the

FLS_Player Class that in turn displays the effects of the user selected function.




1.6 Materials and Equipment

The implementation of the Sentinel using fuzzy logic set theory requires that the
extra computational power needed to do the fuzzy logic does not slow down the rendering
process. If the use of the Sentinel system causes a significant drop in frame rate, then the
overall driving system, the SBB in this case, becomes less of a time analytical tool and
more of tool that performs analysis on the simulation data. In other words, if we wish to
use the Sentinel as a situational awareness tool to help the user make command decisions
about the current state of the simulation, then it must present information to the user in as
close to real time as possible without distortion.

There are many things that the Sentinel system introduces into the driving
application that could have a profound effect on the frame rate. Possible areas most
effecting the overall frame rate are as follows:

* Mathematical computations need by the fuzzy logic computational unit and

Sentinel volume watchspace containment functions;

*  Graphics rendering pipeline as affected by the display of additional Sentinel
user control panels and display of Sentinel watchspace geometric
representations;

* Z-buffering algorithm as it pertains to displaying transparent Sentinel
watchspaces in such a way as to make then visible by all other transparent
objezt= in the scene;

* User input delays associated with the Sentinel user control panels.

The frame rate issue is 7 key concern when trying to develop a system that will
evolve to having over 8000 objects in the simulation at a time in the near future. Frame
rates that are too slow look more like a series of pictures rather then a smooth animated
scene. This slowness injects jerkiness into the scene and cause user input to be hampered.

To achieve an acceptable frame rate, the Sentinel system, along with its driving application




(SBB), was designed to work with a multiprocessor parallel workstation. There are
currently two such workstation types for which the system can be run on:

¢ The Silicon Graphics IRIS 4D/440VGXT Workstation with two or more

Processors,
¢ The Silicon Graphics Onyx Rt:alityF.ngine2m Workstation with two or more
Processors.

Both workstations provide a hardware graphics pipeline and sufficient RS-232
ports for the external devices required.

The software was written in C++. It can be compiled with the AT&T C++,
version 2.1 or 3.0.1, compilers. It should also be noted that the two workstations above
can be equipped with either the version 4.0.x or 5.x Silicon Graphics Operating System.
Once again, the software was implemented with these various workstations, compilers, and

operating systems in mind.

1.7 Thesis Organization

The reminder of this document describes the steps taken to create the Sentinel
system. Chapter two describes user interactions with virtual environments and how they
can be extended through the use of situational awareness tools. Chapter two also talks
about the use of Fuzzy Logic Controllers in the decision making process. Chapter three
describes the design of the Sentinel system and how it pertains to both structured
programming and object-oriented methodologies. Chapter four describes the actual
implementation of the Sentinel system with the Synthetic BattleBridge as the driving
application. Chapter five discusses results and conclusions of integrating and using the
Sentinel system. Appendix I provides a users manual for a brief tutorial on using the

Sentinel system with the driving application (SBB). Finally, Appendix II provides a




programmers manual that talks about how to compile, modify, use certain method calls,
and change the parameters of the Sentinel system.




2.1 Introduction

As virtual environments grow in complexity, size, and scope users need assistance
in comprehending, assessing, and reacting to the state of the environment. One technique
for providing this assistance is to provide the user with a first-person, immersive, synthetic
environment observation post, an observatory, that permits unobtrusive observation of the
environment without interfering with the activity in the environment. However, for large-
scale, complex, rapidly changing environments, such as those that occur when simulating a
fire, natural disaster, air traffic control, or a battle, this type of support is insufficient. To
address this problem, this thesis investigates the types and forms of situational awareness
assistance that should be provided to users in these types of synthetic environments. The
prototype system provides situational assistance for users within the large virtal
environment that exists within the Advanced Research Projects Agency (ARPA) Distributed
Interactive Simulation project ([Tho88])1.

2.1.1 Fog of War

A battlespace is an excellent driving application for our investigation because of the
complexity and uncertainty inherent in the environment. The state of the battlespace is in
almost constant flux and the important portions of the battlespace differ from moment to
moment. For example, at one instant an important activity might be a reconnaissance
event, which could be followed by the beginning of an aerial operation, a ground

engagement, a dogfight, or the arrival of a resupply mission. The “interest” value of these

IThis ARPA project is designed to simulate large battlespaces for the purpose of evaluating weapons and tactics,
performing integrated engineering and design, performing top-down decision making and analysis, and
evaluation of emerging technologies.




and other potentially important events is not assessed in isolation by the user. Instead, their
interest value is judged in relation to other events happening at the same time in the same
location as well as events happening at the same time at other locations. Because of the
complexity and uncertainty, large staffs and management mechanisms have been developed
to assist commanders in assessing the state of a battlespace. However, these mechanisms
have not been completely successful, because uncertainty about the state of the battlespace
remains. This confusion has been termed the fog of war. The fog arises from two
complementary problems, information accuracy and information complexity. Information
accuracy is a problem caused by uncertain data, which can arise from deliberate enemy
deception, observational error, conflicting data, and errors within the information reporting
mechanisms. This thesis does not address the problem of confusion about the state of a
battlespace that arises from information accuracy problems. This thesis, however,
investigates a means for allowing correct situation diagnosis within an informationally
complex environment, which is currently difficult due to the rapidly changing and complex
information inherent in the battlefield.

Confusion caused by information complexity occurs because the data about a
battlespace, or any other large, thickly populated, active environment such as an airport, a
large building fire, or satellites in orbit, is complicated and rapidly changing. Because of
these characteristics, the state of the battlespace must be comprehended swiftly and its
important aspects grasped quickly. The task is further complicated by the fact that the state
continuously changes and the location of important information is unknown from moment
to moment. The problem of information complexity can be addressed using techniques for
data reduction and analysis that have been proven in the fields of computer graphics and
human-computer interaction. To test this hypothesis, this thesis effort intends to develop
and evaluate techniques for reducing information complexity and supporting situational

assessment within a distributed battlespace synthetic environment (discussed below).
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2.1.2 Distributed Synthetic Battlespace Environment

Sitmational assessment assumes the identification of a problem that requires some
action. The commander must decide on some course of action based on what occurs in the
battlespace. To determine the state of the battlespace, environmental cues, such as radar,
infrared, text, and observer sightings, are sampled to obtain a sitnational assessment, or
diagnosis, of the state of the battlespace. An accurate diagnosis requires the perception of a
large number of cues, which in turn must be interpreted against a knowledge base in long-
term memory to accurately construct a mental model of the situation. To form a mental
model of a combat situation, the commander needs to be aware of the disposition and
capability of his own forces and the disposition and capability of the enemy forces.
However, human characteristics work against this process. In forming the mental model,
subtle yet critical aspects of the battlespace may be missed, leading to incorrect decisions.
Humans have limits of attention that may cause them to process cues that are not the most
relevant ([Sol91]). Nevertheless it is vital for correct decision making that the user process
not the most salient symptoms, but instead the most relevant ones because they provide the
most important diagnostic information concerning the nature of the situation. Users may
also be biased by some event that they have stored in their long term memory. The user
may thus be heavily guided in his/her cue seeking based on some hypothesis that may have
already been tentatively chosen. This results in a bias to seek those cues that confirm the
pre-determined, but possibly faise, hypothesis1 . Therefore, one of the greatest challenges
faced by a commander assessing a situation in a battlespace (whether real or virtual) is
determining where to focus attention. This research is intended to help the user to

counteract these natural tendencies through the use of virtual environment based training

1The best way to test whether a hypothesis is true is to determine whether characteristics, or symptoms, exist that
prove it false ([Was72]).
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and commander situational awareness aids that are applicable to both virtual and real-world
battlespaces.

Historically, commanders have been prepared to face the fog of war using field
exercises and board-simulations. However, these techniques do not accurately portray the
diversity or complexity of the battlefield environment. In recognition of this problem and
to address this concern, ARPA sponsored the SIMNET distributed virtual environment
project ([Tho88]). The environment distribution approach, portrayed in Figure 2.1, uses
several networked virtual environment stations (using long-haul and/or local connections)
to form a single environment wherein each node has its own local model of the
environment and there are no clients or servers (see [Bes92], [Bla92], [Bl1a93], [Fal93],
[Pra92], [Tho88], and [Zyd92]). Each distributed simulation host node broadcasts the
significant changes in the host’s state to all the other nodes, thereby allowing the
participants to interact at a distance and to maintain a local modei of the distributed virtual
environment that is accurate. Each distributed simulation participant, or host, has the same
terrain descriptionl, the same geometric description for the actors2 in the simulation, the
dead reckoning model used by each of the other actors, and identification for the actors
involved in the simulation. To accurately maintain the state of the simulation, each host
knows the velocity and position of the other actors.

Anecdotal evidence from this ARPA project suggests that virtual environment
training effectively prepares individuals and small groups for the complexity and confusion
of the battlefield. This evidence is supported by studies of pilots and air traffic controllers
that prove that training in a realistic simulation environment transfers to the operational
environment ([Car73]) quickly and inexpensively. The requirement that the simulators

offer realism is vital to their successes, and is based on Thorndike’s common elements

10r as close as possible depending upon the rendering capabilities of the simulators. Standardization and
interoperability of terrain descriptions remains an open research issue.

2 Also called players in some of the literature.
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theory ([Tho31)) that suggests that transfer occurs to the extent that a simulator and the

environment simulated share common elements.
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Figure 2.1: The Environment Distribution Approach to the Implementation of a

Distributed Synthetic Environment.
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2.2 Situational Awareness Tools

Little work has been done to date to develop tools that help higher level
commanders comprehend the large stream of data fed to them about a battlespace. The
information presented to a commander during a battle should be as easy to assimilate as the
information presented to a fighter pilot during air-to-air combat. The information should be
clear, concise, readily usable, and directly to the point of winning the engagement.
Irrelevant information should be excluded and low level information should be coalesced
into higher level information. One way of viewing the situation is that the unit is to the
commander as the airplane is to the pilot. Therefore, it would be appropriate to provide a
set of instruments that inform the commander about his unit, much like the pilot’s gauges
tell him the status of the aircraft. The commander should have devices to assist in
identifying and resolving problems occurring on the battlefront for the unit. For example,
one “fault” might be that enemy forces are approaching the unit and the commander needs
to assess the danger to the unit and the impact on his mission of the presence of the
approaching force. This thesis effort develops tools to help the commander assess and
respond to real-world warfighting situations as well as gain and maintain situational
awareness.

Plan-view displays and high-altitude observation posts that view the synthetic
environment have been used as one means of improving the commander’s situational
awareness. Typically, these displays either obscure detail in the battlespace or present the
entire contents in one view. The first approach runs the real risk of hiding important
information from the commander. The second provides little help since the commander
must still sort through all the information. In my opinion, these techniques do not
adequately assist a commander in forming and maintaining a mental model of the
battlespace. I concluded that users need help determining where to focus their attention and

assessing the importance of information outside their field of view but should be aware of.

14




To reduce batiiespace informational complexity, and also improve the commander’s
situational awareness, one of the goals for this thesis project is to allow the commander to
monitor, in real-time, interesting activities within the battlespace without exceeding the

commander’s capacity to process the data.

2.3 Synthetic Virtual Environments

A survey of all the systems that are currently using virtual environment technology
is beyond the scope of this thesis. The review is limited to previous work that is
particularly relevant to this research. The work at the University of North Carolina at
Chapel Hill (UNC), ([Air90], [Ber93], [Bro86], [Bro88], [Chu89], [Mos86])), is relevant
because of its aim of improving the understanding of complex, spatial data using virtual
environment technology. There are several interesting similarities even though their
application areas are architectural design, molecular modeling, ard radiation treatment
planning and the research reported in this work supports battlespace visualization,
understanding, and analysis.

Comprehending the complexity and interplay between elements of large-scale
realistic plans, whether for a building or a military action, is beyond the ability of most
people, let alone perform an in-depth analysis for potential conflicts. Architects have
addressed this problem using 2D blueprints to convey plans to builders and clients.
However, this form of presentation still places a significant cognitive load upon the viewer,
and generally leaves the non-architect without a grasp of the spatial relationships in the
structure. Radiation treatment planning is a delicate procedure, requiring the doctor to
focus high voltage radiation beams upon a patient so that a tumor is killed without
destroying surrounding heailthy tissue. Because of the spatial complexity of the task and its
health risk, radiation treatment planning is performed using templates (protocols) that the

doctor and technicians modify to suit each patient’s situation. The UNC group posits that it
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might be advantageous to be able to generate treatment plans for each patient by interacting
with a portrayal of the patient’s anatomy (as depicted using 3D medical imaging in a virtual
environment) to place the treatment beams in space. This type of interaction may allow the
physician to construct a better treatment plan because some of the uncertainty of beam
interactions is eliminated through visualization and interaction. Finally, in molecular
modeling the location of active sites, the bending of bonds, and the interaction of molecules
are extremely complex spatial tasks. Here, the UNC research seeks to enhance
understanding by allowing a researcher to view the molecule(s) in a virtual environment
and sense the strength of interactions with a force-feedback device. In general, the UNC
approach seeks to present sensory events so that they are processed within the context of
the user’s knowledge of the real 3D world, thereby using previous 3D experiences to give
meaning to sensory experiences within the synthetic environment. Their expectation is that
a virtual environment system can provide a valuable adjunct to the 2D presentation of
complex 3D data.

Other virtual environments have been described in the literature. These serve a
variety of purposes, such as immersing an observer in an environment to observe the
geometry of curved space-time ([Bry92b]), CAD ([Wei89]), telerobotics and virtual
workstations ([Fis86a), [Fis86b]), examining n-dimensional virtual worlds ([Fei90a],
[Fei90b]), drawing in virtual space ([Sch82]), and performing surface modeling and virtual
environment construction from within a virtual world ({[But92]). Environments to enable a
person to enter and use a virtual laboratory to conduct experiments ([Mer90]), to perform
aircraft mission planning ([Ze192]), to conduct cooperative group work using distributed
synthetic environments ([Fah93]), to view and interact with atomic-scale data acquired with
a scanning-tunneling microscope ([Tay93]), and to analyze complex economic and
business data ([Smi91]) have also been described in the literature. Pausch’s work

([Pau91]) describes the design of a low-cost virtual environment interaction testbed built
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around inexpensive components for the display device, computing engine, user motion
tracking, and gesture input. Like the more recent of these projects, the goal is to allow the
user to vicariously experience a virtual world that is outside the everyday experience of
humans. The effect of the experience is heightened by immersing the user within an
environment that can not be experienced in the real world because the environment
portrayed is several orders of magnitude larger or smaller than the human user. In this
implementation, the virtnal environment is several orders of magnitude larger than the

human user.

2.3.1 Computation Distribution Approach

The virtual environments that have investigated both the distribution of
computations and the dispersion of the virtual environment among multiple hosts are related
to the thesis work currently being conducted. The computation distribution approach, see
Figure 2.2, typically partitions the workload among several cooperating machines using a
single shared model of the virtual environment (as in [App92a], [App92b], [B1a%90],
[Cod92], and [Hil92]). Figure 2.2 portrays some of the computations required to realize a
synthetic environment that can be distributed among multiple processors. In some cases,
the computations indicated by one CPU bubble could, and should, be accomplished by
several CPUs to minimize the throughput bottleneck caused by some computations, such as
rendering. The model need not necessarily reside in a single shared memory but may be
divided among several machines, wherein each machine only possesses that portion of the
model that is relevant to its tasks in effectuating the virtual environment. The cooperating
machines typically use message passing to update the portions of the distributed model

residing in other machines.
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Figure 2.2: The Computation Distribution Approach to the Implementation of a Synthetic

Environment.

In the distributed computation implementation, consistency of the environment
between CPUs is not a major concern since all the machines share a common description of
the environment and the environment is readily updated. However, computational
bottlenecks may arise out of the need to update the model’s shared description in memory
using either a low-bandwidth network or the computer’s bus before computing the model’s
new state and rendering the environment. The distributed environment implementation
must solve the environment consistency problem, which can only be partially addressed by
dead-reckoning since visual display consistency is also a problem (see [Fer92]). The use
of multiple CPUs to perform communication, audio, user interface, consistency

computations, and rendering is commonly t'sed within distributed simulation environments
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to maintain an acceptable frame-rate and to present the user with a reasonably accurate
portrayal of the virtual environment. In this regard, the distributed environment systems
build upon the work of the distributed computation systems and contribute to the realization
of distributed interactive simulations.

Distributed interactive simulation uses heterogeneous hosts using a common
synthetic environment definition to insert a wide variety of both human and computer
controlled actors into a single, shared synthetic environment. The hosts are connected
using high-speed (currently T1) data links and use a common simulation and network
protocol to communicate. The protocols currently in use are DIS and SIMNET (see
[BBN92], [B1a93], [Har91], [McD90], [McD91], [Mil88]), and ""EE standard 1278-
1993). Each host maintains a description of the virtual environment, the actors in the
environment, and the motion of the actors in the environment. To reduce network traffic to
manageable levels, each actor informs all the hosts of the appropriate dead-reckoning
algorithm to use to predict its motion between broadcasts. Each actor runs its own dead-
reckoning algorithm and broadcasts new position and velocity information whenever the
position predicted by the algorithm significantly differs from the actual position or at the
end of a time-out period.

Figure 2.3 contains a conceptual diagram of the overall set of systems used to
implement a distributed synthetic environment. The initial processing takes an input terrain
description (typically Defense Mapping Agency digital terrain and elevation data) and
converts it into a polygonal description (possibly multi-resolution, see [Fal93]) of the

terrain to desc:ibe the static elements of the synthetic environment.

19




Terrain

Description
§_> Dataset Polygonal
Generation | Descriptions of Environment
the Actors Specifications
Multi-resolution
Polygonal
Terrain
Description Virtual
Environment
Generator
Virtual Environment
Legend
Computed Dataset

Software System
External Data

Observatory Node

Figure 2.3: Generalized System for Constructing a Virtual Environment.

The Virtual Environment Generator combines the terrain description with the
environment specifications and polygonal descriptions of all the actors in the environment
to complete a description of the synthetic environment. The complete description contains

multi-resolution descriptions of the terrain, man-made structures, and the actors in the
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synthetic environment. The Virtual Environment Generator output files can be used for
rehearsal, planning, and training of operators and observers of the virtual environment.
Within the observer component, the user enters a virtual world that displays the synthetic
environment and the movement of the actors in the environment. The operator component
also provides the user with a display of the synthetic environment and the movement of
actors in the environment, but it constrains the operator to the types of motion permitted by
the user’s host actor in the virtual environment. Operator components can be either human-
controlled, computer controlled, or human-controlled with computer assistance.

After the virtual environment is constructed, it becomes an integral part of the
distributed simulation environment. However, because the nodes on the network use
different types of simulators to instantiate their actors there are differences in terrain
descriptions and accuracy of motion depiction that occur because of the differences in
processing speed and display fidelity. Resolving these problems in a distributed simulation
is a current research problem. Using the network, individual operators and computerized
simulations of actors in the synthetic environment can interact. Furthermore, computer-
controlled and human-controlled operator components can be fed data from previous
simulations (actual or simulated) that used the same (or similar) synthetic environment.

The results of the individual operator interactions with each other and with the
computerized simulations can also be used to update the virtual environment database and
to maintain a log for later reference.

Clearly, one way to monitor the action in a distributed synthetic environment is to
use an actor. However, a better technique is to use an observatory. Unlike an actor, which
is required to broadcast information about its state, an observatory is a receive only node.
Its presence within a distributed synthetic environment does not increase the network
bandwidth requirement nor does it interfere with the activity at any location. An

observatory allows a user to position him/herself anywhere, at any time, in the environment
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and watch the activity in that area. The user of an observer component is unconstrained in
the type of motion that can be performed. Most immersive observatories are limited to
allowing a user to jump from actor location to actor location and “see” the action from the
actor’s point of view. Immersive observatories can also be used to gain a wide-field

perspective on the activity in the synthetic environment.

2.3.2 The Synthetic BattleBridge

The work in reducing battlespace information complexity began with the
development of the Synthetic BattleBridge (SBB) ({Had93]). The point of departure for
developing the SBB was the realization that implementation of a virtual environment
requires the seamless melding of several different technologies. Users of the environment
must be given visual and audio cues that are sufficiently accurate to entice the user to
suspend disbelief and accept the synthetic environment illusion as being real. In addition,
sensors to determine the user's position and orientation and a mapping for them from the
real to synthetic world are needed. Finally, devices that allow the user to control
appropriate portions of the environment, his/her actor in the environment, and the display
of the environment are needed. With this in mind, they chose to implement a synthetic
environment using commercially available technology and object-oriented design and
programming in order to maintain flexibility in the implementation and in the devices that
we can attach to it for user input as well as visual and aural feedback. This choice was
appropriate since it has allowed us to refine the Synthetic BattleBridge design over time to
its present state. The Synthetic BattleBridge is an immersive observatory for large spaces,
much as the Virtual Windtunnel is an observatory for acrodynamics effects around an
airframe, ([Bry91], [Bry92a] and [Lev92]), and the Virtual Planetary Explorer is an
observatory for satellite data about planetary surfaces ([Hit92], [Pic92]). The same concept
has also been used for interactive walkthroughs of architectural models ({Air90], {[Fun92],
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[Tel91)) and analysis of molecular docking ([Ber93], [Bro90], [Min88]). The SBB project
was begun in recognition of the fact that the situational displays then in use placed a large
demand on the cognitive processes of their users. Part of this shortfall stems from the fact
that three-dimensional (3D) data is presented in two-dimensions, thereby forcing users to
mentally construct a 3D model of the action within a space. This mental transformation can
be error prone, particularly during times of stress. The Synthetic BattleBridge project’s
goal is to develop a system that allows users to make decisions in an accurate and timely
manner by providing several different types of cognitive support for performing analysis.
The Synthetic BattleBridge will eventually allow users to evaluate and interact with large-
scale (up to several hundred thousand cubic miles) synthetic environments as well as to
visualize the activity within a real-world battlespace of the same size. The SBB is designed
to provide a visually rich environment that is useful as a training and operational system to
a wide variety of users, from firefighters, air traffic controllers and orbital analysts to a
combat theater commander.

The SBB is a platform for developing and evaluating advanced user interfaces,
information aggregation techniques, and information presentation techniques for presenting
synthetic environment generated data in a clear, concise, and accurate manner. The SBB is
also a platform for devising and investigating techniques that facilitate information
manipulation and user interaction in a virtual environment. The Synthetic BattleBridge
functions as a simulation and training platform that provides a capability for participants to
interact in real-time when performing group and individual tasks involving mission
visualization, mission planning, and training for commanders and planners. Finally, the
SBB is a platform that can be used operationally to help users comprehend and evaluate a
real-world battlespace. So, for example, a commander can move to any location in a
battlespace, observe the activity there, review the information presented about the area

being visualized, and analyze the situation without interfering with the action that is
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occurring. Or, as another example, air traffic controllers at major airports throughout the
world are faced with an overwhelming amount of data conceming the positioning and
status of aircraft and ground vehicles and the availability of runways and navigational
systems. Because of the complexity of the environment and the rapid changes that occur in
it, the controller is usually in the tenuous position of mentally filtering the data before
processing and acting upon it. This filtering process can result in the oversight of critical
information with life threatening consequences. A partial solution to these problems is a
real-time three-dimensional representation of the control-space that depicts the aircraft and
ground vehicles in the environment.

To provide these desired capabilities, the Synthetic BattleBridge immerses a person
within a 3D, large-scale, virtual battlespace using local- and wide-area network technology
and general-purpose workstations with Polhemus sensors, voice control, audio cueing, and
color helmet-mounted displays. By design, the SBB is capable of interacting with
distributed simulations taking place on the ARPA Distributed Simulation Internet (DSI).
Because we immerse the user, we can capitalize upon the human perceptual system’s
physiological cues! and depth cues provided by the traditional computer graphics
techniques2 to impart a feeling of being within the computer generated environment. These
technological capabilities provide the SBB with a wide range of realistic and varied
scenarios for evaluating its operation and for training because the commander is faced with
a situation that in some ways more closely resembles real-world situations than the field or
board exercises of the past.

The goal for the user interface and display is to give the user the impression that the
battlespace and each object in it are instrumented to provide the information needed by the

user to make decisions. The SBB is intended to function as a perfect assistant, providing

1The cues commonly cited as being triggered are movement parallax, motion perspective, and binocular parallax
(aka. stereo vision).

2Such as the use of shading, shadows, hidden-surface removal, and perspective computations to render images.




requested information about the battlespace as it is asked for. The information can be low-
level, unanalyzed data or data that has been analyzed by an autonomous agent. The only
restriction placed on the available information is that data not available in the real world is
not to be provided to the user. This restriction is necessary so that the user does not
become dependent upon types of information that are not available within a real-world
battlespace. Currently, unanalyzed information is presented to the user about the objects
and terrain. Regarding the objects, the SBB can provide information about armament,
speed, position, damage, type, alliance, force concentrations, missile (ground and air)
launch points, and direction of movement of formations. For the terrain, it is portrayed
itself, its roughness/smoothness, and major buildings, roads, railroads, etc. in the synthetic
environment.

This thesis describes how the Synthetic BattleBridge's immersion effect has been
augmented with a tool for the uscr of the SBB that provides a capability for remotely
monitoring the activity at specific locations in a space and allowing the user to view
aggregate informztion about the space. These capabilities allow the SBB user to determine
where activity is occurring in a large, complicated space and to assess its importance. The
first capability helps the user to detect critical activity in areas beyond visual range. The
second capability provides the user with an aid for analyzing activity over a large area.
These characteristics equate to increased situational awareness.

The SBB places the user within the synthetic environment using the components
depicted in Figure 2.4. The figure also presents a notional portrayal of the possible
interactions across the Distributed Simulation Network. The network interconnectivity
allows the observatory to witness and analyze distributed simulations composed of
interactions between one (or more) previously recorded simulation sessions (via log tape

replay) as well as with both human and computer controlled simulation objectsl. The user

1Computer controlled simulation objects are also called semi-autonomous forces or SAFOR.
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support functions allow it to generate displays of desired portions of the environment and
provides the interface that the user employs to control the observatory. We have identified
eight generic objects (components) for the observatory node. These objects are: Network
interface, Local environment database, Observatory position and viewpoint, User interface,

Local situation, Models for all actors, Observatory viewpoint-based rendering, and
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Figure 2.4: Observatory Node Components.
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The network interface module implements the network interface using a simulation
protocol (DIS, SIMNET, etc., (see [Bl1a93], [McD90] and [McD91]). The network
interactions allow it to maintain an accurate, local copy ot the virtual environment. The
local environment database module is responsible for updating the database at the node to
reflect the database changes broadcast across the network. The observatory position and
viewpoint detection module is part of the interface between the synthetic environment and
the user. It responds to the user's movement and/or orientation commands and passes
them to the display unit for use in rendering the scene. The local situation module
maintains the status of the local synthetic environment (the situation within visible and/or
sensor range) for use by the rendering module. The local situation database is a subset of
the global database maintained by the local environment database update module. The other
actors module holds the descriptions of other actors in the battlefield. This information
includes, but is not limited to: vehicle exterior description, dead-reckoning algorithms, and
sensor capabilities. The observatory viewpoint-based rendering module calculates an
image that portrays the synthetic environment from the viewpoint of the operator. This
module performs all the image rendering functions that are required for the type of
observatory that the node supports. For an immersive observatory, the module performs
hidden-surface removal, texturing, shading, stereo display (if desired), and shadowing.
For a “true 3D” observatory, as in {Hob93], the type of rendering computations are
determined by the “true 3D” display device.

The major SBB components and their interactions are presented in Figure 2.5. The
component choices have been made with the intention of providing the user with a direct
manipulation hands-free interface. A Macintosh computer, with the Voice Navigator voice
recognition system and a wireless microphone is connected to the Silicon Graphics
computer to provide the user with hands-free control of the system. Several display

technologies are available for synthetic environment display: a locally built color LCD head
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mounted display (HMD), the Folhemus Looking Glass™ fiber optics color CRT-based
HMD, and the Fake Space Labs BOOM2M™ monochrome CRT-based system. Viewer
position and orientation when using the HMD:s is obtained using a Polhemus 3-Space
Tracker " magnetic sensor attached to the HMD. The BOOM uses an internal mechanically
linked tracking system to determine viewer position and orientation. Viewer movement
through the display volume is assisted by a hand-held two button mouse for the HMDs or

the interaction buttons on the BOOM.
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wmf Node(s)

r Newwork Interface
Local Environment Database
Observer Position & Viewpoint
User Interface
Local Situation (weather, other
actors, etc)
Models for Other Actors

Observatory Operator
Viewpoint-Based Rendering

Display Drivers

Figure 2.5: Synthetic BattleBridge Architecture Schematic.
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This combination of movement techniques reduces the amount of physical
movement required by the user and helps ameliorate the limited range problem encountered
when using magnetic tracking technology. The user’s movement is unrestricted, the user is
allowed to move to any location in the virtual battlespace at any velocity without physical or
material restriction on the movement. There is also a terrain following feature, this allows
the user to move along the terrain at a low altitude at high speed. This type of movement is
sometimes useful to users when moving between locations.

The SBB is an immersive virtual environment observatory. The SBB is designed
to allow users to monitor, analyze and evaluate large-scale (several hundred thousand cubic
miles) virtual environments. The initial goal for the SBB was to give a user a sense of the
spatial orientation, type, motion, and distribution of objects in a synthetic environment.
Key issues included the ability to display real-time data at interactive display rates and to
provide a very large scale, immersive environment with a large range of object types, sizes,
and speeds. The SBB provides these capabilities by computing vehicle position, motion
and velocity data and presenting this information, in real-time, using a three-dimensional
rendering of the battlespace. The raw, unanalyzed information is presented using a
combination of visual icons and text. For example, threat envelopes are displayed for
active surface-to-air missile systems (SAMS) and anti-aircraft-artillery (AAA) vehicles.
Envelopes are derived from unclassified, published data and assume maximum capabilities
without consideration of terrain or atmospherics. Radar envelopes are displayed for active,
emanating SAMS, AAA, and radar systems. Radar envelope display criteria is the same as
that for threat envelopes ([Had93]). Locators, which are semi-transparent bubbles, are
placed around objects to help the user to locate various objects in the environment. The
locators can be activated selectively for different types, or classes, of objects. Aircraft trails
are displayed for all active aircraft and missiles. Trails show the flight path of the vehicle

over the previous fifteen seconds. Missile tracks are displayed for all active and de-active
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missiles ((Had93)). Tracks show the entire trajectory of the missile from initial activation
to deactivation or impact. The tracks remain viewable for the entire user session. The user
is also allowed to interactively designate up to one hundred locations in the battlespace as
viewpoints (both a position and view direction are specified) at any time during the
distributed simulation session and can move to any of them at any time using a voice
command. The system also allows users to attach to any vehicle and move with it as
though physically tethered to it. A plan-view display option is also provided, the user can
call up this form of display at any time.

2.3.3 Other Virtual Battlespace Environments

Others have also built virtual environments to allow operators to visualize
battlespaces as well as interact and orient themselves within battlespaces (see [Bes92],
[B1a92], [Fal93], {Pra92], [Pra93], [Tho88], and [Zyd92]). The work reported by Falby,
Pratt, and Zyda ([Fal93], [Pra92], [Pra93], [Zyd92]) on NPSNET complements our own,
especially in regard to their work in implementing large-scale virtual environment
battlespaces on commercial workstations. They implemented a distributed system that
allows users to view the activities of multiple actors within a medium-scale virtual
battlespace as well as place actors into the environment. They provide a 2D plan-view to
allow users to orient themselves within an environment and auditory cues to enhance the
sense of realism provided by the visualization of the environment. They do not provide
other assistance to help the commander determine where to direct his/her attention or to help

the commander to assess a situation.

2.4 Fuzzy Logic Controllers and Their Uses
The Fuzzy Logic Controller is intended to mimic, as much as possible, the way

human beings actually think and interact with their environment. The basic concept stems
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from the fact that humans do not think in “crisp” terms. When humans evaluate something,
they do not give that evaluation a single value, but rather they assign a range of values to
that concept. At the boarders of this range they make decisions as to whether something
belongs or does not belong in uncertain or “fuzzy" terms. For example, what do we
actually mean when we say a person is tall? Where is the start point and end point for the
concept of “tall"? In other words, humans think in terms of degrees of membership which
relates directly to the way they perceive the world around themselves. Fuzzy Logic
Controllers try to duplicate this thought process by developing membership functions and
rules that can be associated with the concepts that we are trying to model.

The uses for Fuzzy Logic Controllers stem from the need to model control
problems for which no mathematical model exists nor can the model be developed in a

reasonable time ([Alt92]).

The advent of fuzzy control systems has dramatically transformed the
control problem from one of exact mathematics, o the encoding of inexact,
commonsensical inference rules. This approach, besides being intuitive, has the
rewards of flexibility, ease of implementation, and elegance. Furthermore, an
increasing number of complex processes that could not be previously automated are
now machine controlled by fuzzy control systems ([Tob92}).

2.4.1 Key Definitions and Concepts

The following list contains key definitions and concepts needed to fully understand
the following paragraphs:

* Fuzzy Set: aclass of objects with a continuum of grades of membership.

* Membership Function fA(x): associates with each object a real number in

the interval [0, 1], with the value of f A(x) at x representing the grade of
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membership of x in A. Thus, the nearer the value of f A(x) to unity, the higher
the grade of membership of x in A.
 Linguistic Terms: words which represent a quality that can be ordered into a

natural hierarchy (large, medium, small, etc.).

2.4.1 Linguistic Evaluations in Risk Situations

C cia purposed that the calculation of the global risk of a structured system can be
found by evaluation the risk of each individual component ([Gar92]). This can be
accomplished in three steps. The translation of natural language expression to fuzzy set
notation is the first step. The next step is to combine all the fuzzy sets into a single
weighted value which in itself is a fuzzy set. The final step is to take the results from the
previous step and match that fuzzy value to the nearest natural expression that was
introduced in the first step. This final result is the risk of the entire system based on the
individual components of the system ([Gar92]).

The key to this process is in determining the proper set of natural expression to be
used. If the set is too restrictive or partitions the set space into broad categories then a good
deal of fuzziness is lost. We can therefore uses hedges to further partition up the natural
expressions. For example, instead of just using “big" we could use "very big", "extremely
big", or "more or less big". The terms before "big" are the hedges which further break up
the definition of the term "big" thereby introducing more fuzziness into the natural language

([Gar92]). These terms are commonly called linguistic variables.

2.4.2 Use of Color for Decision Making
Benson shows how through the use of fuzzy set theory, subjectively defined

categories can be presented to an analyst to help support decision making. For display
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data, Benson shows how the fuzzy nature of color can represent data in various categories
on a graphics terminal for visual inspection. Benson achieves this by giving two examples
in which the degree of color visually represents the subjective data presented.

The first example shows how the deliberate blurring of category boundaries can
correspond to how a color can gradually transform from one recognizable color to another.
In this example the use of color going from yellow to orange to red is used. The blurring
of data (color) represents the uncertainty or fuzzy nature of the information. Benson states
three reasons for the deliberate blurring of data:

In general, deliberate blurring is a useful strategy for at least three reasons:

undue precision is not needed for the purpose at hand; the data itself is

imprecise; and the level of anxiety in decision making is reduced.
([Ben82: 4301)

The second example is an extension of the first example. However, in the second
example we now combine several subjective variables or categories together to get an
overall evaluation of all the data represented. Each variable contains a color that represents
the degree of fuzziness of the associated data. Once all the information contains the correct
color coding, manipulation of all the fuzzy variables can be performed. By using various
fuzzy mathematics, the variables combined represent the overall evaluation of the data.
Also, note that by changing the mixture of the variables to represent the importance of some
variables over others, we can come up with a different color coding of the overall
performance.

Benson presents us with a color coding of membership functions for simple
linguistic terms and expressions. Benson then shows how color can represent the different
degrees of linguistic tenas as applied to the fuzzy set concept. ([Ben82: 432]) For
example, if we let red represent the greatest degree of membership and yellow represent the

lowest degree of membership (without being zero), then a blurring of color from yellow
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through orange to red instantly gives us the information we need about the particular
relationship.

Using fuzzy set theory to analyze and display subjective categories of data for
decision support and decision making frees the analyst from many cognitive and memory
tasks. The analyst can simply view the color coding and understand all the needed relations
between the data at hand. The use of color as a visual representation of the fuzzy concept
works extremely well. The natural perception of one color slowly blending to another in a
constant degree of change relates to the idea of the degree of membership for a fuzzy set
going from zero to unity. Combine this with the fact that humans can perceive color
information faster and more accurately then looking at raw data, and we get an efficient and
useful way to display subjective information. Color allows the viewer to shift easily
between two perceptual attitudes: association (disregarding variation in order to see
similarities) and selection (distinguishing variation to isolate similar instances). ({(Ben82:
436]) This by itself allows the analyst the ability to look at the subjective date from various

view points and perspectives.

2.4.3 Use of Weights as Applied to Fuzzy Rules

This subsection deals with the use of weights applied to the rule base that controls
the processing of the overall fuzzy value to be associated with the system in question. A
number of papers address the use of experts that evaluate the rule base and assign values to
each rule. The values represent the importance of the rule to the overall evaluation of the
system. A higher value indicates a rule that should be considered more important to the
calculation of the finally fuzzy value. These evaluations of the weights are themselves
expressed as fuzzy numbers. In this way there is no loss of generality when the final
calculations are performed ([Ram92]).




The model proposed by Ramakrishnan, uses the opinions of multiple experts on a
small subset of the entire rule base in assessing the weights for the system ([Ram92]). On
the other hand, the paper by Qiao uses a four step process to improve the rule base:

(1) translating the operators' experiences into fuzzy linguistic form directly;
(2) monitoring and summarizing the control behavior of the operators;

(3) modeling the process to be controlled, using fuzzy set theory;
(4) self organizing in running of the control systems. ([Qia92])

Both these authors present test results that show the fuzzy control system obtains an
optimized performance according to what the designers hoped, and this demonstrates the
effectiveness of fuzzy set theory in imitating human thinking ([Qia92], [Ram92]).

2.4.4 Implementation of a Feedback Controller

This unique method for implementing a Fuzzy Logic Controller stems from the idea
used in the design of amplifiers in electronic circuits. If the Fuzzy Logic System has both
fuzzy inputs and fuzzy outputs, then we should be able to feedback the output information
back into the Fuzzy Logic Controller. Then, just like in a amplifier, this new input to the
controller helps stabilize the output results. This then gives us a self correcting Fuzzy
Logic Controller. This mimics the way human beings perform a task. The human being is
constantly making small adjustments to the way they are doing things based on the results

they are getting back from their current output ([Ali92]).

2.5 Conclusion

By combining the idea of situational awareness with the fuzzy set theory concept, a
system can be developed that could mimic scouts reporting in from the field during a large
battle to report troop movements in areas of interest. We can combine the idea of the use of

color stated by Benson, to represent the level of activity, threat, or risk in a given area of

35




the battlespace. Commanders could then glance over to the comer of the screen to see if
any of the "hot spots” they defined are active. The degree of color associated with the area,
along with its bar length, would give commanders a relative feeling about the current
importance of the area. The rest of this thesis describes just how this is possible, along
with the design and implementation of the actual Sentinel system.
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3.1 Introduction

Complex skills, such as problem solving, are organized hierarchically ({And81],
[Car92], [Mic88], [Ras86]). Situational awareness usefully characterizes complex problem
solving skills. This thesis effort has been working to determine and incorporate the
strategies and sub-goals of the hierarchical skill organization used by commanders to assess
a battle situation and maintain situational awareness. A fuzzy logic processed semantic
network !, called the Sentinel2, within the Synthetic BattleBridge (SBB), captures and
processes the resulting problem solving hierarchy. Each of the semantic nodes has a
different input to the level of threat in the Sentinel's watchspace at any one time.

Consider the situation of a battlefield commander who must make decisions based
upon data gathered using several different modalities. Making these decisions requires that
the commander mentally combine the information to produce an overall mental model of a
battlespace. There are several reasons for the difficulties encountered in forming the
model, determining what the enemy is doing, and reacting appropriately, or even pro-
actively. First, the important portions of the battlespace environment differ from moment
to moment. At one instant it might be an enemy reconnaissance event, which could indicate
the beginning of an enemy aerial operation, a ground engagement, a dogfight, or the arrival
of a resupply mission. Second, the commander does not assess in isolation the “interest”
value of this and other potentially important enemy and friendly force actions. Instead, the

commander judges their values in relation to other events happening at the same time, in the

IThe semantic nodes of the network characterize an object, situation or concept. For example, a situation in an
area may have stabilized, the enemy lines may have been penetrated or nearly penetrated , or events along a front
may have settled down . These nodes can also be characterized as linguistic variables, which is well suited to a
fuzzy logic representation, and are all relevant aspects of situation assessment.

2The Sentinel contains the fuzzy logic-based situation assessment tools and is designed to monitor the activity
within an operator-designated portion of the battlespace. The function of the Sentinel is described later.
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same location as well as events happening at the same time at other locations. Third,
humans have a time and space limited focus of attention, meaning they are limited by the
amount of information perceived and processed at any time. Because the commander is
limited in the amount of information that can be perceived and processed at any time, the
commander can miss or forget important information about the battlespace. Fourth, the
search and discrimination task the commander must accomplish are serial tasks, so
processing time increases linearly with the number of objects in the battlespace. Since it
takes relatively constant time to process each object, the basic task of locating and
discriminating between objects can become easily overwhelming for the commander, let
alone assessing their importance. As a result of these four factors, commanders usually

lack complete situational awareness of events outside their field of view. Therefore, the

development of a software tool, called the Sentinel, addresses these factors and reduces
their negative impact on effective decision making. The Sentinel addresses the need for
tying together several, disjointed data gathering systems to present a clear, consistent
insight into the action within a real battlespace or a distributed simulation-based battlespace.

The Sentinel portion of the SBB helps address the four concerns mentioned above
by providing an information consolidation and analysis capability. The commander can
place each Sentinel in an area of the battlespace that the commander identifies as a possible
location of a future important activity (a watchspace). Figure 3.1 depicts a Sentinel
positioned within a notional battlespace. The transparent shaded cylinder volume shows
the location of the Sentinel’s watchspace within the battlespace. The watchspace
assessment bar shows the interest level of activity within each of the watchspaces in the
battlespace. The "Island” watchspace, shown in highlighted color in Figure 3.1, has a high
level of interest as indicated by the length of the status bar and its color. The other four
Sentinels (not pictured) have computed a much lower level of interest for their

watchspaces. As activity occurs within each Sentinel’s watchspace, the Sentinel
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automatically assesses the importance value of the total activity in its space and signals this
value to the commander. The commander thereby relieves himself of the necessity of
trying to determine the important areas of the battlespace from the raw data, he can make

his assessment based upon the ratings provided by the Sentinels.
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Figure 3.1: Display Showing GO Level of Interrupt for “Island” Sentine! After a Rule
Fires, and the Sliding Scales for a Set of Sentinels.

Since each Sentinel can assess the activity of friendly and enemy forces and
evaluate these actions, the assessment it provides the commander is a consolidated
assessment of the total activity within a watchspace. Therefore, the commander can
determine the relative importance of the different portions of the battlespace by simply

examining the ratings provided by the Sentinels! and reviewing previous Sentinel reports

1Of course the commander must insure that all important areas are monitored.
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to gain a perspective on the progress of the battle. Note that the Sentinel does not make
decisions, it consolidates data and functions as a situational awareness aid for the
commander. The Sentinel performs its information aggregation function using fuzzy logic.
The rest of this chapter pertains to the development issues of the design. Section
32 discusses the overall design methodology for the entire Sentinel system. Section 3.3
and 3.4 talks about the design of the structured programming units (libraries) and the
object-oriented class hierarchy, respectively. Finally, section 3.5 states some conclusions
about the overall design of the Sentinel system. Chapter four addresses the implementation

of the Sentinel system.

3.2 Design Methodology

The design of the Sentinel takes into account classical structured programming
techniques, as well as an object-oriented methodology. This section describes the current
design in relation to the above mentioned techniques and methods. This section also
addresses the chosen data structures associated with the design of the Sentinel as they apply
to design decisions.

A mixture of structured programming techniques and object-oriented methods
encompasses the overall design methodology for the Sentinel. The reasons for the mixture
of the two technologies stem from the use of an interface tool that does not support object-
oriented classes and methods. The next chapter on the implementation of the Sentinel
system addresses this interface tool called "Forms Library: A Graphical User Interface
Toolkit for Silicon Graphics Workstations." ([Ove92})

The basic design consists of a number of structured programming units (libraries)
connected using an object-oriented class structure. This object class then controls how the
driving application (in this case the Synthetic BattleBridge (SBB)) implements and uses the
Sentinel. By doing this, we have encapsulated non-class procedures and functions inside

the class methods. This then only allows access to these non-class procedures and




functions through method calls by the driving program (SBB). While this is not a pure
object-oriented design, (the driving application could make calls to the non-class
procedures and functions itself), if the driving application applies strict adherence to using
only the class method calls provided, then access only occurs through those method calls.

Figure 3.2 shows the overall design of the Sentinel system. The structured
programming units show only communication into and out of the Sentinel class structure.
The only communication with the driving application (SBB) is through the Sentinel class
methods. As long as this applies totally in the driving application (SBB), it appears that the
Sentinel has a complete object-oriented design.

3.3 Library Unit Structure

The Sentinel system comprises a number of structured programming units compiled
as libraries. These library units make up most of the input, output, control, and fuzzy logic
computation, needed by the Sentinel system. The main reason why these library units
could not compile as object-oriented classes, stems from the type of user interface
developed for the Sentinel system. A non-object-oriented tool (forms 2.1) created this user
interface. Due to this, the functionally of the system splits up into five functional areas or

units: configuration, input, control, output, and computational.

3.3.1 Configuration Unit

The configuration unit's main task is to set up all the configuration information as
needed by the Sentinel system. It does this by reading in a number of configuration and
default files that set up the locations of the initial Sentinel watchspaces and the weight
factors for all the different types of entities possible in the simulation. The system reads in
this information, and enters the information into the appropriate data structures as needed

by the other library units in the Sentinel system.
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The Sentinel system aiso performs error checking on the configuration files to make
sure the files are reasonably correct and consistent. The Sentinel system checks closely the
initial placement of Sentinel watchspaces. The positioning of a Sentinel watchspace
location in the simulation at start up happens by one of two methods. The first method
requires the lat-long position of the center point of the watchspace. The Sentinel system
thoroughly checks this lat-long for input errors. The second method requires an x-y-z
position of the watchspace. The Sentinel system then places that watchspace in the scene
according to a local origin.

The Sentinel system can use both ways with either a flat earth or a round earth
representation for the simulation. However, the x-y-z positioning currently uses a
configuration file. Changes to this file happen manually with the use of a text editor. The
Sentinel system accomplishes lat-long positioning through a stand alone utility that allows
the user to set up watchspaces interactively. Other error checking includes making sure that
the number of watchspaces specified match the number of watchspaces requested, the
number of watchspaces specified does not go over the maximum number of Sentinel
watchspaces allowed by the Sentinel systein, and the radius for each watchspace falls
within the maximum radius size currently allowed for a Sentinel watchspace.

The configuration unit also supplies a tool by which the user can change player
entity weights for the fuzzy logic assessment during execution of the simulation. This
allows the user to make changes that determine how the computational unit views certain
player entities and designations. Chapter four on implementation gives details on how the

uscr can change these weights.

3.3.2 Input Unit
The input unit's main task is to take in current information on the status of the

simulation and parse this information into data structures needed by the Sentinel's
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computational unit. The input unit contains five functional areas that together perform the
above mentioned main purpose.

The first functional area is the initialization phase. This phase, as the name implies,
initializes all the data structures needed to process the current state of the simulation. It
basically sets the state of the input unit to a state that has no prior knowledge of the current
simulation.

The second functional area is the entity checker phase. In large simulations there is
the possibility of great numbers of players participating. These players may take on a very
diverse number of different types or designations. The Advanced Research Projects
Agency (ARPA) Distributed Interactive Simulation project ([Tho88]) currently uses DIS
protocols that can broadcast more than 1000 different types of player entities and
designations. Therefore, the second phase is a first cut at limiting the number of different
entities and designations for the Sentinel computational unit cares about. The entity checker
simply goes through a series of switch statements to see if the Sentinel system needs the
current selected player entity. As shown in Figure 3.3, this visually represented a tree
traversal through all the different types of DIS entities and designations. If the Sentinel
system does not need the entity, the Sentinel system ignores the entity and the Sentinel
system checks the next player on the list.

The third functional area is the contained-in phase. Once the player has passed
through the second phase, the Sentinel system checks the player's position against each
Sentine] watchspace to see if the player currentiy falls within the bounds of that particular
Sentinel watchspace. There is one of two containment checks performed on the player
location depending on whether the driving application is in flat earth or round earth
representation. The Sentinel system bases both calculations on a cylinder representation of

a Sentinel watchspace (see subsection 4.2.7).
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The flat earth calculation simply projects the player onto the xy plane and checks the
player's distance to the center of the Sentinel watchspace and compares it to the Sentinel's
watchspace radius (see Figure 3.4).

The round earth calculation uses three points to determine the shortest distance from
the player to a line extending from the center of the earth through the center of the Sentinel
watchspace and comparing this distance to the radius of the Sentinel watchspace. The three
points used in the calculation are the center of the earth (0, 0, 0), the center of the Sentinel
watchspace (Sx, Sy, Sz), and the current player position (Px, Py, Pz). The Sentinel
system applies the law of cosines to find the angle between the player and the Sentinel
watchspace with the center of the earth being the common point. Once we know the angle,
the shortest distance between the player and the Sentinel watchspace axis is the
perpendicular distance between them. We then use the sin function to find this
perpendicular distance. Figure 3.5 shows pictorially this calculation.

The fourth functional area is the count phase. Once a player has passed through
both the second and third phases, the Sentinel system considers this player an entity that the
computational unit needs to know about. The Sentinel system does this by adding the
player's entity weight to a count array for the particular Sentinel watchspace that the player
is in. This count array has a cell for each of the different entity types and designations
denoted as being needed for the Sentinel computational unit.

The final functional area is the processing phase. The processing phase takes place
after all the players have gone through phases two through four above. At this time, each
Sentinel watchspace has a count array indicating how many of all the different entity types
and designations fall within the Sentinel watchspace's boundaries. The Sentinel system
now processes these counts according to the information the Sentinel system needs for the
Sentinel's computational unit. This "process" can vary depending on how the Sentinel

computation unit needs the information and in what form.
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If V(Sx - Projectedy)? + (Sy - Projectedy)2 <= Radius

Then Player Inside Volume

Else Player Outside Volume

Figure 34: Flat Earth Containment Calculation With Cylinder.
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The implementation subsection 4.2.5 on the computation unit discusses how the

Sentinel system performs this function for the SBB application.

3.3.3 Control Unit

The control unit's main task is to interpret user commands through the various
control panel interfaces supplied by the Sentinel system. There are two main types of
control: Sentinel watchspace manipulation and Sentinel watchspace information
visualization. The first type deals with how the user can control the actual Sentinel
watchspaces themselves, while the second type deals with how the user can visualize
information about the Sentinel watchspaces.

The user can currently control seven different operations that pertain to
manipulation of the Sentinel. The following paragraphs discuss the methodology of each
operation, while chapter four addresses the implementation.

The first operation is panel control. Panel control simply allows the user the ability
to navigate through the different Sentinel control screens that are available. It allows the
user to toggle from one mode to another. The rest of the Sentinel watchspace manipulation
operations deal with directly modifying or viewing the Sentinel watchspace of interest.

The second operation allows the user to add a new Sentinel watchspace to the
simulation provided there is still a slot available for a new watchspace. The current
Sentinel system allows for ten defined Sentinel watchspaces within a simulation. The
Sentinel system initializes the new watchspaces with a default radius of one mile that the
user can modify later as explained later on in this subsection.

The third operation allows the user to attach or detach to or from a given Sentinel
watchspace. Attachment automatically puts the user in a view directly over the Sentinel
watchspace and high enough above so that the user sees all the Sentinel watchspace's base

on the screen. Once there, the user can move about the view as they would with any other
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view and set a preferred view point and direction for that Sentinel watchspace. Once done,
if the user goes back to that Sentinel watchspace again, they return to the view specified on
the previous attachment. The user can also detach from a Sentinel watchspace that takes the
user back to the previous view they were looking at before they attached to any Sentinel
watchspace.

The Sentinel system can only perform the remainder of its operations if the user
attaches to the Sentinel watchspace of interest. Once attached, the user can move the
watchspaces, modify the watchspace's radius, reset the watchspace's view, and finally
delete the watchspace itself. With the move and modify radius operations, the user can
apply a number of changes to the Sentinel watchspace representation. However, the user
could reset these modifications to the state they were in before the modifications took place,
by pressing a reset command located within the respective sub-control panel. Once the user
has accepted the changes with the "ok" command, the Sentinel system permanently alters
the Sentinel watchspace to reflect the new position and/or radius change. The last two
operations, reset view and delete watchspace, are final and the user can not undo them.
The reset view operation simply resets the particular Sentinel watchspace's attach view to
the initial view as described above in the attachment operation. The delete watchspace
operation removes the selected Sentinel watchspace from the simulation. The Sentinel
system declares the watchspace invalid and performs no more computations for that
watchspace. However, once deleted, the watchspace's slot then becomes available for
reuse by the add watchspace operation.

There are currently two operations that the user can control that displays visual
information about selected Sentinel watchspaces. The first operation allows the user to
view a strip chart about the history of the Sentinel watchspace as it pertains to past
watchspace assessments. The second operation presents the user with a conceptual, two

dimensional view of the capability of the player entities within the chosen Sentinel
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watchspace. The idea here is to give the user a graphical view of how the player’s entity
capabilities combined within a given watchspace of interest. The color coding and size
variation based on capability and force type (friendly, opposing) gives the user a visual
view of where the action is and where the concentrations of forces fall within the Sentinel

watchspace. Chapter four discusses the implementation of the above operations.

3.34 Output Unit
The output unit's main task is to translate current simulation and Sentinel data into

visual information presented on the screen to the user. The output unit has four areas of

functionally. The following paragraphs address the design of this unit in terms of its areas
of functionally: initialization, display and update of watchspace assessments, interrupt
control, and virtual keyboard control.

The first area, initialization, sets up the required global variables and data structures
associated with the output unit's functionally. It also initializes the various user interfaces
associated with the Sentinel for display and control.

The second area, display and update of watchspace assessments, is the main
display method of the visual watchspace assessments made by the Sentinel. It is here that
numeric information from the fuzzy logic computational unit is transformed into visual
information and then displayed to the user on the screen. The numeric information is
quantized into red, green, and blue components used by the display form to produce the
desired color based on the given watchspace assessment value. The update function simply
performs the display function mentioned above at periodic time intervals. The display and
update function also handles a number of maintenance items associated with the display
forms. They keep track of what display form representation is currently being view by the
user and updates that form appropriately. If the Sentinel system adds or deletes Sentinel

watchspaces, the Sentinel system modifies the necessary forms to indicated the changes to
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the Sentinel watchspace slots. If Sentinel watchspace names change, the Sentinel system

keeps track of this and makes changes as needed.

We initially intended the fourth area, interrupt control, to be a separate unit.

However, as the design of the output unit evolved, it became apparent that the interrupt

controller would fit in as an extension of the output unit. The basics of the interrupt

controller are similar to how the Sentinel system determines the red, green, and blue

components for watchspace assessment. The numeric information acquired from the fuzzy

logic computational unit is quantized into one of four possible interrupt levels. Each of

these interrupt levels cause the Sentinel system to take some predefined actions. Table 3.1

describes each of the interrupt levels and the actions associated with them.

Priority

Table 3.1

Sentinel Interrupt Levels

Form Displayed

Actions Taken

None

None

None

Standby

Activity Message

Activity Message displayed about watchspace

Warning

Warning: Attach

Preference Message

Warning message displayed with question,

Yes answer indicates attachment to watchspace, |

No answer indicates do nothing

Attachment Message

High priority message displayed,

| JImmediately attach to indicated watchspace

The messages indicated in Table 3.1 are forms message panels that require

acknowledgment or choice selection from the user. Interrupt levels 1 and 3 just require an

acknowledgment from the user to perform the task described in the message. Interrupt

level 2 requires the user to make a choice of either going to the indicated Sentinel
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watchspace or doing nothing. Attachment to the Sentinel watchspace is described in
subsection 3.3.3. Doing nothing means to no action is taken by the Sentinel to move the
current view of the user.

There is also the added capability of a sound message being played when interrupt
levels 1 and 2 activate. The implementation subsection 4.3.6 on the Sound Class further
defines these sound messages.

The last area, virtual keyboard control, is more of an input/output task then just an
output task. The virtual keyboard allows for user input with just the mouse or any other
screen driven input device. The virtual keyboard could come in handy with applications
that employ the BOOM2M™ or a Head Mounted Display (HMD) and some type of data
glove or flying mouse. Development of the virtual keyboard with this application is

intended for a future use than with the current state of the SBB.

3.3.5 Computational Unit

The computational unit is the work horse of the Sentinel system. It is here that the
Sentinel system processes all the necessary data collected. All the other units either tie into
or receive information from the computational unit (see Figure 3.2). The flow of
information is from the input unit into the computational unit and back out to the control
and output units.

The computational unit uses fuzzy logic as its means of determining watchspace
assessments for the Sentinel. Simulation information is fed into the fuzzy logic software
for each Sentinel watchspace. This information includes the numbers and types of players
currently in each watchspace as well as other information such as watchspace size and
friend to foe ratio. The Sentinel system converts these inputs into fuzzy variables and
processes them against a set of decision rules to come up with a watchspace assessment
value for each Sentinel watchspace. After this concludes, the watchspace assessment

information on each Sentinel watchspace passes to the control and output units and is then
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displayed to the user. Chapter four has further information about the fuzzy logic

implementation within the Sentinel system.

3.4 Class Structure

As mentioned above, the Sentinel system is not a pure object-oriented system.
However, it is developed with a class hierarchy that encapsulates all the previously defined
structured programming units. In this way, provided the programmer uses just the class
methods provided, a programmer can develop an object-oriented "like" system. The
following subsections address only the classes provided by the Sentinel system. This
thesis does not address application (SBB) dependent classes.

There are two classes used by the Sentinel system. We use the first class for
encapsulation of most of the structured programming units, initialization, and
computational interfacing with the driving application (SBB). This class is called the
FL_Sentinel Class. We use the other class for manipulation of the Sentinel player object
with encapsulation of the control unit that directly controls the Sentinel players. This class
is called the FLS_Player Class. Figure 3.6 shows the class structure and hierarchy for the
Sentinel system. The following subsections discuss these aforementioned classes and their
methods in a general way. Detailed information about the classes method calls and

variables can be found in the programmers manual in Appendix II.

34.1 FL_Sentinel Class

The FL_Sentinel Class derives from the Attachable_Player Class that derives from
the Player Class (see Figure 3.6) of the ObjectSim application framework developed by
Capt. Mark Snyder ([Sny93]).
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Figure 3.6: Class Structure For The Sentinel System.
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The FL_Sentinel Class is the overall communication module for the Sentinel
system. The class represents the main interface between the application (in this case the
SBB), the FLS_Player Class, and the structured programming units. The design of the
FL_Sentinel gives the driving application access to the procedures and functions needed to
configure and initialize the Sentinel system. The class provides a method for the
application that allows for the transfer of information about the current simulation state to
the fuzzy logic computation unit of the Sentinel system. The class also provides a
communication capability with the FLS_Player Class to allow the user to manipulate and
modify the Sentinel watchspaces as required. The class also allows for the visual
presentation of Sentinel watchspace entity capability information without going through the
FLS_Player Class. Finally, the class provides a method that allows the application to
output watchspace assessments computed by the fuzzy logic computation unit to the output
unit for presentation to the user. The following paragraphs discuss the design of the
aforementioned functional areas. Chapter four addresses the actual implementation of this
class.

There are a number of method calls that allow the application access to the
configuration and initialization functions found in the structured pmgrmnnﬁng units. These
method calls also setup the shared memory needed by the Sentinel system to pass
information between control threads associated with Performer ((McL92]). The function of
these method calls allows the Sentinel system to setup based upon configuration
information located in configuration files.

There are three types of configuration information needed by the Sentinel system.
The first type deals with the rule base needed by the fuzzy logic computation unit. The
second type deals with Sentinel watchspace placement. The last type deals with player

entity and designation capability information. Currently the Sentinel is setup to only take

into account entity weight information for capability (relative numbers between 0.0 and 1.0




for overall capability). This could also include various other performance factors that
would combine to give a more accurate capability measure. Once the Sentinel system reads
the configuration information into the system and places the information into the
appropriate data structures, initialization of the Sentinel system continues. The initialization
amounts to setting up the proper placement and configuration of the various user control
panels associated with the Sentinel system. It also allows the application to read in the
current state of the simulation to initialize the fuzzy logic computation unit.

The methods that allow for the computation of the Sentinel watchspace assessments
are of two types. The first type allows for the transportation of the Sentinel watchspace
information over the Performer control threads. These methods allow for changes to the
initial watchspace configurations that can then propagate to the needed control thread for
processing and visual presentation. The second type accounts for the actual processing
needed to provide information to the fuzzy logic computation unit. The method provided
for this function calls the various procedures located in the input unit. The procedures ar~
called in such an order as to produce the desired results outlined for the input unit in
subsection 3.3.2.

Due to the framework of Performer, which does not allow for reading of
information across threads except by way of shared memory, information transfers from
the control unit to the FLS_Player Class through the shared memory allocated in the
FL_Sentinel Class. This shared memory is mostly flags and index numbers into the global
data structures to reflect user changes of the Sentinel watchspaces. Basically, the software
sets flags and indexes in the FL_Sentinel Class and uses them in the FLS_Player Class.
On the basis of these flags and indexes, the Sentinel takes certain actions on the appropriate
control threads within the scope of the FLS_Player Class. The next subsection on the
FLS_Player Class explains this further.
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Other methods allow for the presentation of visual information within the control
threads of the FL_Sentinel Class. One method allows for the presentation of visual
information not directly coupled with the presentation of the actual Sentinel player as
described in the FLS_Player Class or the output unit. There are currently two areas of
visual presentation that the FL._Sentinel Class directly controls. The first is the visual
representation of a two dimensional Sentinel watchspace cursor that gives the user an idea
of the size and placement of that Sentinel watchspace. The control unit functions that take
advantage of this visual cue are the following: moving an existing Sentinel watchspace and
adding a new Sentinel watchspace. The second area is the visualization of entity
capabilities within a Sentinel watchspace. It is here that the Sentinel system actually
determines and presents to the user a visual presentation of entity capabilities within a
Sentinel watchspac~. A flag set from the control unit into shared memory controls this
activation.

Finally, there is a method that allows for the transfer of computed watchspace
assessments from the computational unit through the FL_Sentinel Class and out to the
output unit for visual display to the user. A time variable that resides inside the method,
controls this periodically. Currently hardwired within the code, the time variable could
easily change to a configuration input or a user modifiable parameter that the user could

alter during the running of the program.

3.4.2 FLS_Player Class

The FLS_Piayer Class derives from the Base_Net_Player Class that derives from
the Attachable_Player Class that is derived from the Player Class (see Figure 3.6) of the
ObijectSim application framework developed by Capt. Mark Snyder ([Sny93]).

The FLS_Player Class handles all functionally for the Sentinel player within the
simulation (a player that has no physical presence in the world, only a transparent "volume"

with some meaning). Functionally means how the Sentinel system renders the transparent
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volume in the scene. Any modifications to the rendering parameters of the Sentinel player
must be taken care of by method calls from this class or setting shared memory parameters
that the FLS_Player Class can read from inside its own methods. This class manages the
visual representation of the Sentinel player. The design functionally takes into account
creation and initialization; placement, scale, and movement (if any) in the scene; geometric
representation in the scene; and rendering order within the Performer tree.

Creation and initialization establish the initial placement of the Sentinel player within
the Performer rendering tree and within the simulation. It is here that the Sentinel system
assigns space to each Sentinel player in the Performer tree and gives that Sentinel player a
model that represents the Sentinel player in the simulation. The Sentinel system allocates
shared memory for the location of each Sentinel watchspace and sets a default scale for the
size of the geometric representation based on initial configuration parameters.

The Sentinel system controls placement, scale, and movement of the Sentinel player
with method calls that modify the particular Sentinel player attributes. Each time the
Sentinel player goes through the propagate loop, the Sentinel system evaluates these
attributes, and makes the appropriate changes as to the size and placement of the Sentinel
player within the scene.

The Sentinel system can also control the geometric representation for each Sentinel
player in the scene. By just changing the model index number used by the Model Manager
(see subsection 4.3.5) associated with the particular Sentinel player, the Sentinel player's
geometric representation changes to whatever model the new index number references.
Therefore under the current design, the Sentinel player can have as many geometric
representations as desired. However, note that the contained-in function determines what
falls within a Sentinel player watchspace. If we chose a different geometric shape, we
must call (or develop) the appropriate contained-in function to insure that the Sentinel

system only counts entities that fall within the bounds of the new geometric representation.
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However, if we only require modifications to just the basic attributes of the geometric
representation (i.e., color, missing polygons, etc.), then we can accomplish this easily and
without modifying the contained-in function.

The last important aspect of the FLS_Player Class is the ability of the class to place
the Sentinel players in such a way in the Performer rendering tree that the Sentinel system
renders them last and in reverse sorted order based on distance from the current view point.
The reason for this is to ensure that each transparent Sentinel player volume can see all
other objects, including other Sentinel players. Performer handles transparencies in a
manner so that whatever renders last can see everything rendered before it. Therefore, at
every frame the Sentinel system removes the Sentinel players from the Performer tree, sorts
them in reverse order according to distance from the current view point, and then reinserts
them back into the Performer tree. Also, as mentioned earlier, the Sentinel system must
render this "branch"” of the Performer tree last after all other transparent objects in the tree.

The FLS_Player Class along with the FL_Sentinel Class make up the class
structure used by the Sentinel system. It is through these classes that the Sentinel system

uses the structured programming units and maintains the encapsulation of their existence.

3.5 Conclusions

The overall design of the Sentinel system takes into account both the object-oriented
class structure methodology and structured programming techniques. It mixes these two
approaches in such a way as to come up with a design that is both easy to attach to a
driving application and user friendly. The mix is such that the programmer, using the
Sentinel class structures for a particular application, never need know that the design is not
pure object-oriented. All the programmer need ever know is where to place the method
calls within their code to activate and use the Sentinel system.

The next chapter deals with the actual implementation of the Sentinel system applied

to the SBB. The chapter addresses the data structures used and the system integration with




the SBB as well as other supporting frameworks and tools. The chapter also discusses the
use of stand alone utilities designed especially for the Sentinel system, as well as, Sentinel

system operation.
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4.1 Introduction

This chapter looks at the implementation of the Sentinel system within a large scale
synthetic environment. This large scale synthetic environment goes by the name of the
Synthetic BattleBridge (SBB). The SBB uses the Sentinel as an extension to enhance
situational awareness. This chapter looks at some of the implementation issues involved in
adding the Sentinel system to the SBB.

Five sections make up the rest of this chapter dealing with implementation. Section
4.2 examines the implementation decisions associated with the various data structures of
the Sentinel system. Section 4.3 addresses the issue of integration of the Sentinel system
with other major frameworks, applications, and toolkits that comprise the Sentinel and
SBB system. Section 4.4 discusses some Sentinel system utilities created for the
configuration of the Sentinel system environment. Section 4.5 describes the operation of
the Sentinel system within the framework of the SBB. Finally, section 4.6 presents some

conclusions about the overall implementation process.

4.2 Data Structures and Implementation Decisions

The following subsections look at the various data structures used in the Sentinel
system. Some of these data structures are global and available to the entire Sentinel
system. The following subsections point out where the Sentinel system initializes and uses
these global data structures. The subsections also talk about some of the implementation

decisions associated with the data structures themselves.

4.2.1 Configuration Unit
The computation unit handles most of the initialization of the global data structures

needed by the Sentinel system. The main global data structure used by nearly every
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structured programming unit and class of the Sentinel system, called current_config, carries
current information about the state of the Sentinel system. This state information includes
the current number of active Sentinel watchspaces, the positions of those watchspaces, the
maximum values associated with each of the fuzzy logic categories needed by the
computation unit, and a current list of players located within the Sentinel watchspaces.

Another global data structure, called obj_weight_array, holds the current entity
weight information for each of the predefined DIS entity types and designations required by
the Sentinel system. A header file, created by a Sentinel system utility, enumerates the
predefined DIS entity types according to a configuration file supplied by the user. The
configuration file, called Object_Types.dat, contains a list of all the DIS entity types
required and the category they belong in as designated by the user for the current simulation
run. This enumerated list supplies various array structures with easy access to their array
elements for processing.

Figure 4.1 shows how the user can modify these entity weights using the "Fuzzy
Category Configuration" control panel. The user activates this control panel by pressing
the "Config Sentinel" button on the screen. Subsection 4.2.3 explains the implementation
and use of this icon button. With this control panel, the user can choose from three main
categories of entities or objects. Each main category divides into six sub-categories. As
shown in Figure 4.1, the lit buttons indicate where the user made changes to the entity or
object weights. These buttons stay lit until the user saves this information using the "Save"
or "Save & Hide" buttons. The "Cancel & Hide" button returns without saving any
changes. The user also has the ability to load in a predefined object weight file by pressing
the "Load" button. The user can also make all the objects have the same level of
importance by pressing the "Reset 1.0 Weights" button. Finally, the user can see, but not
change, the current DIS protocol representation that the Sentinel system currently uses (flat

or round earth).
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When the user selects one of the sub-category buttons, the user sees a display as
shown in Figure 4.2. The user can change weight settings for a particular entity or object
here. Figure 4.2 shows that the user is about to changed the weight of the F_16_USA
designation (entity) from 1.00 to 0.42 The user selected this entity from a sub category
called "Combat Aircraft Friendly" that also is a sub category of "Air Objects".

Another implementation issue associated with the configuration unit deals with
converting positional information into a flat earth or round earth representation. A flag in
the configuration file called default_areas.dat indicates whether the data converts to flat
earth (DIS_FE) or round earth (DIS_RE) representation. Conversion to flat earth requires
a local origin at position 0,00 with a lat-long position. The Sentinel system then
interpolates the new x-y-z position from this local origin to the lat-long center of the
Sentinel watchspace. The system can also use an absolute x-y-z position for the Sentinel
watchspace from a configuration file called xyz_FE_default_areas.dat. This allows for the
direct input of x-y-z position information as opposed to lat-long position information. In
this case, the system ignores interpolation and uses the x-y-z position as absolute position
relative to the local origin. Conversion to round earth requires that the system converts lat-
long information to round earth x-y-z position data via the World Geodetic System 1984
(wgs84) database. Currently the system can use both flat and round earth methods.
However, implementation with the SBB requires that Sentinel watchspaces conform to the
x-y-z flat earth representation. This happens because the SBB converts all incoming round
earth position information into flat earth position information. Therefore, since the SBB
contains the Sentinel system, the Sentinel system must communicate only x-y-z flat earth

position information.

4.2.2 Input Unit
The main function of the input unit is to collect and process information about the

types and numbers of player entities within each Sentinel watchspace. To do this the input
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unit uses a number of global data structures. The input unit uses two global data structures
initialized by the configuration unit, one global data structure intended for use in the
computation unit, and one internal data structure used by the unit itself.

The input unit takes information about each Sentinel's position and size from the
Sentinel's state global data structure initialized by the configuration unit (current_config).
As the system sorts each entity within each Sentinel watchspace bound, the system loads a
count array for each different type of entity found within the Sentinel watchspace. Once the
system totals this information for each Sentinel watchspace, the system processes the count
arrays based on the required information needed by the fuzzy logic computation unit. The
system then stores this processed information in a global data structure
(Incoming_FLS_Data). The input unit then passes this global data structure to the
computation unit.

For the current implementation of the Sentinel, the fuzzy logic computation unit
requires a percentage of how many entities of a certain entity group are there within in each
Sentinel watchspace. Currently the fuzzy logic computation unit requires 18 different entity
group percentages, as well as, the watchspace size in square miles for each Sentinel
watchspace. Subsection 4.2.5 talks more about the implementation of the fuzzy logic

computation unit.

4.23 Control Unit

The main purpose of the control unit is to manage the various user interface control
pancls and to translate user input from those panels to a visual representation within the
scene.

The implementation of the Sentinel system's user interface hinges on the number of
control panels displayed to the user based on the current state of the Sentinel system.
Currently the Sentinel system can manage five levels of user interface control panels. Each

of these levels allows the user a different level of control over the Sentinel system. We
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identify these five control levels as follows: Icon level, Low Detail level, High Detail levei,
Attached Control level, and Functional Control level. The following paragraphs address
each of these levels.

The Icon level gives the user the most basic control over the Sentinel system. The
Sentinel system presents the user with two icon buttons, currently displayed in the lower
left hand corner of the screen. However, the programmer can choose to place these buttons
anywhere on the screen by using a method call from the FL_Sentinel Class. Each button
represents one of two main user interface control panel paths. The button with the file and
hand icon on it with the "Config Sentinel" text, opens up the main user interface control
panel for configuring entity weight values as described in subsection 4.2.1 (see Figure 4.1
above). The other button with the eye and magnifying glass icon on it with the "Sentinel"
text, opens up the Low Detail level associated with actual control and viewing of Sentinel
watchspaces. Figure 4.3 shows these icon buttons in the lower left hand corner of the
screen. Figure 4.3 also shows some Sentinel watchspaces in the current screen view.
Note that Figure 4.3 shows approximately 1/2 the actual screen width and height.

The Low Detail level gives the user some added visual information about each
Sentinel watchspace along with some limited functionally and viewing capabilities. The
user can see the watchspace assessment bar associated with each Sentinel watchspace and
its indicated value. Subsection 4.2.4 describes how the Sentinel system determines these
colors and associated bar lengths for each Sentinel watchspace. The Low Detail level also
gives the user the ability to attach or detach from any given Sentinel watchspace. The
paragraph on High Detail level addresses how attachment or detachment occurs. Note this
Low Detail level uses watchspace slot numbers for the names of the Sentinel watchspaces.
By doing this, we can keep the control panel small for casual viewing. However, the user
must make the connection between the slot number and the actual Sentinel watchspace

name. The buttons on the bottom of the control panel give the user access to either a higher
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or lower level of control from this point. The button labeled "Hide" reverts to the Icon
level of control while the button labeled "More” gives the user access to High Detail level
control panel. Figure 4.4 shows the Low Detail level control panel in the lower left hand
corner of the screen. Figure 4.4 also shows some Sentinel watchspaces in the current
screen view. Note Figure 4.4 shows approximately 1/2 the actual screen width and height.

The High Detail level gives the user more visual information and functionally than
does the Low Detail level. The user sees a bigger control panel along with two visual
pieces of information not available with the Low Detail level. First, the user now sees the
first nine characters of the Sentinel watchspace's name. Therefore, if the user chooses the
Sentinel watchspace's name carefully, the user can make a quick connection between the
name presented in the slot and where the Sentinel watchspace resides. The second added
piece of visual information shows the user at a glance what the current interrupt level is for
each watchspace. The watchspace assessment status bar now shows the actual interrupt
level text associated with each Sentinel watchspace. Figure 4.5 shows the High Detail level
control Panel. Once again, note that Figure 4.5 shows approximately 1/2 the actual screen
width and height.

A new functional button at the bottom of the control panel allows the user to add
new Sentinel watchspaces to the simulation provided the availability of a Sentinel
watchspace slot. When the user presses the "Add" button, the Sentinel system presents the
user with a Functional level control panel. This control panel instructs the user on how to
add a new Sentinel watchspace to the simulation. Other functionals associated with the
High Detail level allows the user once again to access other levels of control. The "Hide"
bution performs the same function as described in the Low Detail level. However, the
"Prev" button allows the user to go back to the Low Detail level control. The other
functionally allowed at this level is the ability to attach or detach from any Sentinel

watchspace.
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To attach to any Sentinel watchspace, all the user has to do is to push the
appropriately named Sentinel watchspace button. When this happens, the detach button
light goes out and the pushed Sentinel watchspace button goes on. Attachment to a
Sentinel watchspace causes the view to switch from the current view to the view for that
Sentinel watchspace as described in subsection 3.3.3. There are currently three scales of
attach viewing for Sentinel watchspaces (125, 5.0, and 10.0). The scale used depends on
the function being performed. A standard attachment uses a 1.25 scale
(STANDARD_ALT_SCALE) of the actual height needed to fit all the Sentinel watchspace
base just onto the screen. Once the user pushes an attachment button, the Sentinel system

goes to the Attached Control level as described next.
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The Attached Control level (see Figure 4.6) gives the user the ability to manipulate
the Sentinel watchspaces directly. Once attached to a Sentinel watchspace, the Sentinel
System presents the user with six buttons that can manipulate the Sentinel watchspace or
can view and correlate Sentinel watchspace information. The button's names are as
follows: Move, Modify Radius, Capability Contour, Show History, Reset View, and
Delete. The buttons themselves set flags and/or Sentinel watchspace index numbers in the
FL_Sentinel Class shared memory structure. On the basis of these flags and/or index
numbers, the FL_Sentinel and FLS_Player Classes react accordingly. Subsections 4.2.6
and 4.2.7 discusses this shared memory structure and how it applies to the Sentinel
watchspaces based on user input. With the exception of the six functional buttons
mentioned above, everything else is almost the same as the High Detail level control panel.
The only other difference is that now the "Detach" button indicates not only detaching from
the current Sentinel watchspace, but also allows the user to go back to the High Detail level
control panel.

Figure 4.6 shows the Attached Control level control Panel. Figure 4.6 indicates
that the user attached to a Sentinel watchspace named "Airport." We can tell this by the lit
attached button next to the name "Airport." This control panel is similar to the High Detail
level control panel, with the exception that now the control panel has a row of six
functional buttons to the left of the attachment buttons. Also, Figure 4.6 shows the user
located in the center of the attached Sentinel watchspace. The unshaded circle area is the
base of the Sentinel watchspace and the shaded part indicates looking out through the
transparent inside of the Sentinel watchspace volume (a cylinder in this case). Also, note
that now Figure 4.6 shows nearly all the height of the screen and about 5/6 of the width of

the screen. This is why the control panel appears smaller then in Figure 4.5 above.
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Figure 4.6: Attached Control Level Control Panel.

The last user interface control panel level, Functional Control, gives the user
instructions and control over the more complex functions allowed by other user interface
control panels. Currently there are five Sentinel functions handled by different Functional
Control ievels. The functional areas are as follows: Fuzzy Category Configuration
(Weight Values), Show Watchspace History, Modify Waichspace Radius, Add
Watchspace, and Move Watchspace. “ubsection 4.2.1 talks about the Fuzzy Category
Configuration (Weight Values) control panel (see Figure 4.1 in subsection 4.2.1).

The Show Watchspace History control panel (see Figure 4.7) presents the user with
a strip chart of past watchspace assessments for that particular Sentine] watchspace. The
use of a circular queue (array type) stores the watchspace assessments for each Sentinel
watchspace. Each item in the queue bolds a watchspace assessment value, a corresponding

red, green, blue triple, and a color map index. Subsection 4.2.4 on the Output Unit
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discusses how the Sentinel system derives the red, green, blue triple and the need for a
color map index. Currently the Sentinel system can store and show 50 time slices in one
chart. As new information arrives, old information moves to the left and the new piece of
information gets inserted at the far right of the strip chart. Figure 4.7 shows an example of
a full watchspace assessment history over time. Note that the "Return” button in the upper
right hand corner of the control panel allows the user to remove the strip chart from the
screen.

The Modify Watchspace Radius function has one control panel associated with it
(see Figure 4.8). This control panel gives the user current information on the radius for the
particular Sentinel watchspace of interest. The user can then "apply" changes to the radius
and see the effect of the change in the simulation. The user then has the option to "ok" the
change or "reset" the radius back to what the radius came in as. When the user invokes this
function, the Sentinel system resets the view position and sets the viewing mode to plan
mode. Also, since it would be hard to see the change of radius from within the Sentinel
watchspace of interest (remember, attachment puts the user into the watchspace and high
enough to see the full base of the watchspace on the screen), the Sentinel system temporary
places the user at the mid altitude scale (MID_ALT_SCALE) of 5.0 times the normal
attachment height above the scene. In this way, the user can see the effect of the radius
change on the surrounding area. Once the user completes the radius change (if any), the
view returns to the standard attachment view for the Sentinel watchspace with the radius
changes (if any) incorporated. Figure 4.8 shows the Modify Radius control panel. Notice
the highlighted Sentinel watchspace to the left of the control panel. This visually shows the

user what Sentinel watchspace the radius change effects.
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Figure 4.7: Sentinel Watchspace Assessment History Strip Chart

Figure 4.8: Modify Radius Control Panel
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The Move Watchspace and Add Watchspace functions (see Figures 4.9 - 4.13)
behave in much the same way. The difference is that the Move Watchspace function works
with an already defined Sentinel watchspace, while the Add Watchspace function creates a
temporary Sentinel watchspace to move and place in the simulation. Both functions cause
the Sentinel system to reset the view position (for Add Watchspace, the view position is the
center of the terrain) and set the viewing mode to plan mode. Just like the Modify
Watchspace Radius function, the Sentinel system temporary changes the view height so
that the user can better see the placement of the Sentinel watchspace. The Sentinel system
uses the high altitude scale (HIGH_ALT_SCALE) of 10.0 times the normal attachment
height above the scene. For both functions, the Sentinel system presents the user with a
pre and during control panel. The pre control panel gives the user instructions on how to
place or move a watchspace in the scene. When the user moves to where the Sentinel
watchspace position is to be and presses "ready” two things then happen.

First, the control panel changes to the during phase that has new instructions and
different control buttons. Second, the Sentinel system changes the cursor to a transparent
disc that is the same size of the Sentinel watchspace base being moved or a default size if
adding a new Sentinel watchspace. The disc also has a cross hair on it along with the x and
y position relative to the scene. Subsection 4.2.6 discusses how the FL_Sentinel Class
implements this disc cursor. Once the user determines the new position for the
watchspace, the user can "position again", "undo", "reset", or "accept" the Sentinel
watchspace placement. When the user completes the move, the view transfers to this new
location with the standard attachment view. One additional thing happens when the user
adds a new Sentinel watchspace to the simulation. After the user accepts the placement of
the new Sentinel watchspace, the user must give this new Sentinel watchspace a name.

The user can do this by using the keyboard or using the virtual keyboard displayed on the

screen. The virtual keyboard allows the user to enter characters into an input area with the
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mouse, that when ready, transfers to the input area for the Sentinel watchspace's name.
The virtual keyboard can type both lower and upper case letters as well as numbers. The
Clear button clears the input window and the Enter button transfers the given input. There
is also a backspace button (blue solid triangle pointing left) that removes one character at a
time. Once the user gives the new Sentinel watchspace a name, the Sentinel system reflects
this new watchspace and name into the appropriate data structures and control panels.

The following figures show the Move Watchspace and Add Watchspace control
panels. Figure 4.9 and Figure 4.10 show the pre- and during- control panels for the Move
Watchspace function respectively. Figure 4.11 and Figure 4.12 show the pre- and during-
control panels for the Add Watchspace function resnectively. Notice how the transparent
discin  Figure 4.12 is smaller then the transparent disc in Figure 4.10. However, the
radii of both discs are the same size. This is because when we are adding a Sentinel
watchspace to the simulation, we are twice as high as we would be if we were just moving
an existing Sentinel watchspace. Therefore, the projection of the circular area from the
view point to the ground of the higher view point appears smaller on the ground. The final
figure in this subsection, Figure 4.13, shows the virtual keyboard and the Change

Watchspace Name control panel associated with adding a new Sentinel watchspace.

4.2.4 Output Unit

As mentioned in subsection 3.3.4 on the design of the output unit, the
implementation of the output unit breaks up into four functional pieces or areas. The
grouping of these functional areas are as follows: initialization and forms display control,
display of Sentinel watchspace information, interrupt control, and virtual keyboard control.
Clearly some of these functional areas are both output and control areas. However, the
following paragraphs on the individual functional areas address the design and

implementation decisions on grouping them in the output unit.
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Figure 4.9: Move Sentinel Watchspace Pre Control Panel

Figure 4.10: Move Sentinel Watchspace During Control Panel
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Figure 4.11: Add Sentinel Watchspace Pre Control Panel

Figure 4.12: Add Sentinel Watchspace During Control Panel




Figure 4.13: Virtual Keyboard and Change Watchspace Name Control Panel




The first function area of implementation of the output unit deals with initialization
and forms display control. Initialization means setting up all the correct initialization
information needed for the display of all the various user interface control panels associated
with the Sentinel system. The Sentinel system does this by using the global data structures
initialized by the configuration unit. In particular, the Sentinel system uses the number of
Sentinel watchspaces and Sentinel watchspace names to setup the watchspace assessment
control panels. The second part of initialization deals with setting up and displaying the
user interface control panels. The construction and display of the control panels use the
Forms 2.1 Library (see subsection 4.3.1). Therefore, there are a number of initialization
steps needed to set up and display the control panels. Each control panel represents a
"form" that contains a number of "form objects" that make up the form. We must initialize
each of these form objects before the application can use them. The Sentinel system does
this by one procedure call, Output_Form_Constructor, that builds all the control panels
specified. Once specified, other procedures set the form objects to certain values for start
up. These form objects also get updated by the Sentinel system during run time.

Interrupt control is the second functional area of the output unit. Interrupt control
resides with the output unit because interrupt control causes the Sentinel system to possibly
change the view that the user sees based on the interrupt level. The current implementation
uses four levels of interrupt (sce Table 3.1). Each interrupt level has an associated name
that appears centered on the watchspace assessment status bar for each Sentinel
watchspace. As shown in Table 3.1, the interrupt levels may have associated user control
with them. Table 4.1 shows the current watchspace assessment ranges and interrupt level
names used with the four interrupt levels. Note that currently the Sentinel system uses pre-
programmed interrupt level ranges. However, we could modify this so that the user could

define the interrupt level ranges in a configuration file. The Sentinel system would read in
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this file at start up and set up the parameters appropriately. Also, it would not be hard to

have the system modify these ranges during run time.

Table 4.1

7 ntinl Interru

Low Watchspace | High Watchspace
Assessment Value ]| Assessment Value Display Actions

<045 None

< 0.60 Centered on watchspace status bar

< 0.80 Centered on watchspace status bar

The third function area of the output unit deals with presenting the watchspace
assessments made by the computation unit to the user in a visual form. By using the
Forms 2.1 Library we can use sliders to represent values relative to one another ([Ove92]).
In other words, if we set the bounds of the sliders to handle values between 0 and 1 then a
longer slider would indicate a value closer to 1 then a shorter slider. If we add to this a
color coding that has a one-to-one mapping between a red, green, and blue triple and a
slider value, then we can present to the user a visual cue. The user can then quickly
compare this visual cue against other similar cues and come up with a comparative rating
between all the cues. Therefore, we present the user with two methods of comparison that
relate to one another. The first one is a comparison between sliders of different lengths
with a longer length relating to a higher watchspace assessment value (risk).

The second one is the mapping of color codes to higher watchspace assessment
value (risk). The Sentinel system does this by mapping the watchspace assessment value

obtained from the computational unit to a red, green, and blue triple that displays a certain
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color. The current implementation of the color coding goes from low to high value (risk)
as follows: blue, light blue, blue green, green blue, yellow green, green red, orange, light
red, medium red, and red. An association here could be that little or no risk relates to a
blue color, medium risk relates to a green yellow color, and high risk relates to red color.
Figure 4.14 shows a bar that goes from a value of 0.0 at the left to a value of 1.0 at the
right. At any place along the bar, the color at that position represc.ts the value at that
position. The three graphs above the bar indicated how much of each color component (0 -
255) makes up the color triple at any value from 0.0 to 1.0.

Figure 4.14: Sentinel Watchspace Assessment Status Bar Color Components
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The last functional area of the output unit controls the display of the virtual
keyboard. It is here that the virtual keyboard displays all the characters in the correct case
depending on whether or not the user pushed the shift button located on the virtual
keyboard. Also, it is here that user input through the virtual keyboard buttons (keys), get
transferred to the output window of the virtual keyboard. Finally, the control of
transferring the input from this window to the input window of the appropriate control

panel occurs within the output unit.

4.2.5 Computation Unit

The computation unit houses the heart of the Sentinel system. It is from here that
all the other units and classes interact directly or indirectly. The black box ties to the
computation unit are simple. There exist two global data structures for which information
passes into the computation unit and passes out of the computation unit. The configurziicn
and input units determine what the computation unit needs from the current state of the
simulation. This information passes into the computation unit. The computation unit then
passes out watchspace assessment information that the output unit then uses to visually
represent each Sentinel watchspace to the user. For design, this black box approach
simplifies the mechanism of the Sentinel system. The implementation of the support
mechanisms just needs knowledge of the particulars of the into and out of global data
structures. The support systems process the needed input data to the computation unit and
then visually process the output data from the computational unit. Therefore, the design
and implementation of the inside of the black box computational unit determines how
realistically the Sentinel system mimics human intelligence gathering in the field. The
following paragraphs discuss these issues and the choice of using fuzzy logic to mimic
human thought processes.

We have completed our initial investigation into the usefulness of the fuzzy logic

control paradigm (see [Kin77], [K0s92], [Lee90], [Mam74], [Zad73]) to assist a virtual




environment user in assessing interesting activity and automatically moving the commander
to an interesting portion of the battlespace at the appropriate time . We chose to use fuzzy
logic because it can recognize a pattern of activity and mimic human judgments concerning
the significance of the patterns. Because fuzzy logic allows us to assess the relative
importance of an input in relation to other inputs, the system can adaptively react to changes
in an environment. This characteristic effectively duplicates a human’s response to
environmental changes. We adapted the fuzzy logic controls paradigm to the problem of
assisting, informing, and automatically positioning a user in a virtual environment by
developing a fuzzy logic assistant, which is at the heart of the Sentinel, to monitor and
assess activity within the battlespace.

We have implemented the first version of the Sentinel. This implementation uses a
simplified model of the battlespace and was designed to determine the usefulness of fuzzy
logic and of our approach to improving situational awareness. The initial implementation is
based upon the process model outlined in Figure 4.15. To enable us to assess interest for
specific areas of the battlespace, we allow the user to interactively place Sentinels
throughout the battlespace, one for each desired watchspace. Each Sentinel operates
identically. The following discussion describes the operation of a single Sentinel.

The Sentinel provides the user with a visual signal indicating the appropriate level
of interest for a watchspace (output unit). The level of interest is a numerical representation
of the information that would be sent to the commander by a tactical operations center based
upon observations by scouts. Each Sentinel checks on the status of its watchspace during
each assessment cycle. At the beginning of each cycle, the Sentinel determines the
numbers and types of vehicles, troops, and other important information within its

watchspace (input unit).
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Figure 4.15: Process Model for Computing Interest Level for a Sentinel’s Watchspace.
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These inputs convert into fuzzy variables, after which we evaluate decision rules to
give an overall assessment of the appropriate level of interest for the watchspace. This
operation of the Sentinel is described later. The result of each assessment is communicated
to the commander using a visual display (output unit). The display allows the commander
to remotely monitor the overall activity within selected watchspaces without moving to an
observation point for the watchspace or trying to assess the activity for the entire
battlespace.

The procedure used by the Sentinel determines the appropriate level of interest, K,
for the Sentinel’s portion of the battlespace. The model we used employed general
categories for types of threats within each Sentinel’s watchspace of the battlespace. These
categories for both friendly and enemy formations are combat aircraft threat, combat
helicopter threat, infantry threat, armor threat, guided munition threat, and artillery threat.
Let i represent each category. Then T(i) is the term set of i, with each value being a fuzzy
number defined on the universe of discourse. Let O be an object in the battlespace. The

Sentinel begins by observing the state of the fuzzy system and finds the number of objects
belonging to each threat category X; within its volume, V.

X; = (£ 0 (O; within V)) Vi (1)

The total number of objects for each category is then assigned a membership function value
for each of the term sets (Big, Medium, Small, and Low). The membership functions,
wi(x;), within each T(i) are based on subjective evaluations and each fuzzy set is convex
and normal (as in Figure 4.16).

The next step in processing is to determine the linguistic variable of X; with the

highest membership function value, ®y;. Let A, B, C, D be the four fuzzy sets associated

with X;. Equation (2), the union operation, is applied across all four fuzzy sets to

determine the value of w,,.
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mxi = u( AU(BU(CUD)))(xi) where p.AUB(Xi) = maX{llA(xi), HB(xi)} (2)

The output from this step is then used to compute a numerical estimate for military
presence for enemy and friendly forces, 6, and 8¢, within the Sentinel’s volume. Military
presence is computed by taking a weighted sum of all the w,; for each force, and falls in

[0, 1].

n
6=>(w % 2D;) where p; is the weighting factor for @ x; 3)

i=]
The total military presence, 6; = 0, + 0y, is then assigned a membership function
value for each linguistic variable within T(8,) and application of the approach in equation
(2) results in the y value for presence. The membership functions for 6; are based on

subjective evaluations and each fuzzy set is convex and normal.
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Figure 4.16: Fuzzy Set Defining a Medium Threat by Armor.

Two other variables are used to evaluate the level of interest in the Sentinel’s
watchspace; the size of each watchspace, ¢, and whether the enemy forces outnumber the

friendly forces, T. The first step in determining ¢ is computing the projected area, A, of the
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watchspace being monitored by a Sentinel. The projected area, A, has a term set, T(A),
and the linguistic variable of A with the highest membership function value is found by
applying the approach described in equation (2).

We determine the outnumbers variable, T, by looking at the difference, D, between
enemy and friendly forces within the Sentinel’s watchspace. That difference is the input 10
the membership function evaluation of T(D), (Yes, No, Equal), with the value of T
determined by applying the approach we presented in equation (2).

The values for T, ¢, and y are used as input to the rule set to determine the
appropriate control action. The processing up to this point serves to summarize the
information within a watchspace into larger, conceptually related, information aggregates.
We exploited this aggregation process when we designed the rule set so as to minimize the
computational time required to evaluate the control actions. The rule set design produced
48 rules that are capable of responding to all input conditions. A few example rules are
presented in Table 4.2.

TABLE 4.2
: _ Sample Fuzzy Logic Rules ‘

Rule 1 | Ify is BIG and ¢ is SMALL and t is YES then level of interrupt is
GO and color is RED.
Rule 2 } If y is MEDIUM and ¢ is SMALL and t is EQUAL then level of interrupt is
‘ STANDBY and color is BLUE GREEN.
Rule 3 | If y is LOW and ¢ is LARGE and t is NO then level of interrupt is
NONE and color is BLUE.

The control actions that result from the rule set evaluation process provide the
commander with notification concerning the appropriate level of interest required for a

Sentinel’s watchspace. Feedback is provided using two general cueing mechanisms, a

89




-

sliding scale (see subsection 4.2.4) and a level of interrupt (see subsection 42 4). The
sliding scale gives visual feedback by changing color and length according to the value of
k. In addition, there are four interrupt levels that only engage under specific
circumstances. Subsection 4.2.4 addresses both of these cueing mechanisms and how the

current implementation of the Sentinel system uses them in relation to the SBB.

42.6 FL_Sentinel Class

As mentioned earlier in the design chapter, the FL_Sentinel Class' main role is to
act as a mediator between the driving application and the structured programming units.
The FL_Sentinel Class accomplishes this task by setting up method calls and shared

memory. The method calls act as the main go between for the structured programming
units. The shared memory allows for the transfer of global data structures between
Performer threads. This transfer is mainly along a path from the control unit, through the
FL_Sentinel Class, and to the FLS_Player Class. The FL_Sentinel Class mainly passes
data around the Sentinel system. However, the FL_Sentinel Class does have two drawing
capabilities associated with its draw thread.

The first of these drawing capabilities was pointed out earlier when we discussed
the implementation of the move watchspace and add watchspace commands. When either
one of the aforementioned commands takes place, the cursor gets replaced by a transparent
disk with red crosshairs and green terrain coordinates. Figure 4.10 and Figure 4.12 show
examples of this transparent disk. The graphics library (GL) procedure blendfunction
along with various other primitive GL calls made the transparent disk possible. The
following paragraphs cover more on the blendfunction and its usefulness within the
Sentinel system.

The other drawing capability that is possible within the FL._Sentinel Class directly
deals with the conceptual visualization of player information within each Sentinel

watchspace, as depicted in Figures 4.18 - 420. As mentioned in subsection 4.2.3 on the




control unit, one of the Sentinel system's functions allows the user to view a conceptual
capability contour as it exists within a Sentinel watchspace. The idea here is to give each
player entity a capability rating based on characteristics like speed, acceleration, armament,
friend or foe, etc.. This capability is then mapped to a particular color and a particular
radius of a slightly transparent disk. These capability disks are then placed upon a neutral
background in the same position as the corresponding player entity in the Sentinel
watchspace. These transparent capability disks then overlap one another on the
background. These transparent disks combine on the background with the use of the GL
call blendfunction. What results are transparent colors that blend together to form rough
contour lines of capability. How these transparent colors blend together are a function of
the parameters given to the blendfunction call.

For our implementation, we use the blendfunction with the following two
parameters: BF_DC and BF_ZERO. By doing this we scale each frame buffer color
component by the incoming color component with the blending function:

blendfunction (BF_DC, BF_ZERO)

Rdestination = min (255, (Rsource * (Rdestination / 255)))

Gdestination = min (255, (Gsource * (Gdestination / 255)))

Bdestination = min (255, (Bsource * (Bdestination / 255)))

Adestination = min (255, (Asource * (Adestination / 255)))" ({(McL91:15-7])

The following paragraphs describe the actual color coding and implementation of
the capability contour for the Sentinel system within the SBB. To begin with, we use only
two attributes when calculating the capability of any player entity: entity type and entity
force type. We use entity type to look up the entities weight factor as provided in the
configuration files. This number is between 0 and 1, and relates the relative capability of

this entity player to all others. We use this weight factor to calculate the radius of the disk
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for each entity type. A weight factor of one yields us the maximum capability radius
allowed by the Sentinel system. We also use the weight factor to determine the total green
color component of the rgb color for the disk. The green component can vary from 255
down to 55. This green component is then part of a rgb triple where the red and blue
components are predetermined based on entity force type.

If the entity force type is friendly, we use RGBcolor(S5, green_component,
200), else we use RGBcolor(200, green_component, 55) for foes. By doing this
we have color ranges of yellow to orange red for foes, and color ranges of light blue to
dark blue for friends. The reason we do not put the maximum values for red and blue in
the above procedure calls and only go down to 55 for green is so that when overlap occurs,
the blendfunction has some room to overlap the colors and produce a darker shade of red
for foes and a darker shade of blue for friends. In this way, we can see how conceptually
the darker areas indicate where capabilities overlap and therefore are a greater threat. The
same principle applies when opposing forces overlap. We immediately see darker colors
associated with this overlap that would indicate a clash of forces is eminent. Also, because
the way the blendfunction behaves, the red and blue components cancel each other out to
leave only the green component. In this way, the user can view the capability contour and
instantly see the disposition of forces in the watchspace. Levels of blue indicate friendly
forces, levels of red indicate opposing forces, and levels of green indicate overlap of both
forces.

Figure 4.17 consolidates the above information. Along the top of the graph the
triangular area shows the color and radii associated with the capability of friendly forces.
Along the side of the graph the triangular area shows the color and radii associated with the
capability of unfriendly forces. Together these mix with the use of the blendfunction to
create the square greenish area that represents the amount of overlap between opposing

forces.
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Figure 4.17: Capability Contour Color Mixing Graph

The following three figures show the capability contours of a Sentinel watchspace
within the SBB. There were four different types of player entities involved with the
simulation. Each of these entities had the following weights: F-15=0.75,F-16 =045,
M1 Tank = 025, and T80 Tank =0.35. As shown in the figures, we can see darker areas
of red or blue where overlap occurs within force types.

We can also see dark shades of green where opposing forces overlap. Also notice
that the disks that are much smaller and of lighter color represent the tanks that are of a
lesser weight value. We can also notice the difference between the F-15s and the F-16s by

watching how fast the disks move across the area and the disks relative size to one another.
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Figure 4.18: Capability Contour Map One

Figure 4.19: Capability Contour Map Two




Figure 4.20: Capability Contour Map Three

4.2.7 FLS_Player Class

The FLS_Player Class provides the actual representation, placement, and
manipulation of the Sentinel watchspaces within the simulation. All rendering issues, such
as initialization, size, movement, geometry, and viewing, are taken care of by the
FLS_Player Class. There are two main issues with handling the Sentinel watchspaces
within the simulation: geometric representation and transparency issues.

The first issue on geometric representation deals with what geometric volume best
characterizes a Sentinel watchspace. There is currently a choice between four geometric
volumes that could apply to a Sentinel watchspace: irregular shaped volumes, cube,
hemisphere, and cylinder. I address each of these in turn and discuss their strengths and
weaknesses. Finally, I talk about why we chose the last one, the cylinder, as the geometric

representation of a Sentinel watchspace.
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| Irregular shaped volumes: while the use of an irregular shaped volume
would allow the user total freedom on the shape of the Sentinel watchspace, it would be
computationally prohibitive to determine the Sentinel watchspaces that contain specific
entity players. Also we would have to have a different model for each Sentinel watchspace
specifically defined.

. Cube: while the cube is just a simplified version of the irregular shaped
volume, it would be much easier and less expensive to calculate the entities that are in
specific Sentinel watchspaces. However, while the cube is probably the easiest of all the
geometric volumes to do the contained-in calculations, it is not representative of the true
spirit of the Sentinel. The Sentinel, in theory, is suppose to mimic a scout out in the field.
With this in mind, the scout would not see the surrounding area as a cube, but he would
see the surrounding area in a radial fashion. This idea leads to the next two geometric
volumes.

. Hemisphere: the hemisphere seems like the perfect choice for representing a
Sentinel watchspace. However, if high flying aircraft and missiles are important to the
Sentinel, then these objects would not fall within the Sentinel watchspace representations
unless they were big enough to accommodate this. The choice of a hemisphere is a good
one if we could divide the Sentinel watchspaces into different types of Sentinel, i.e. a
ground Sentinel and a air Sentinel. In this case, the hemisphere would be a perfect choice
for a ground Sentinel. However, this current implementation of the Sentinel system does
not make allowances for different types of Sentinels.

. Cylinder: the cylinder is the implementation choice we have made for the
Sentinel. The cylinder can represent the radial viewing of a scout in the field, as well as, be
able to include high flying planes and missiles. Containment calculations can be done
without very much expense, although not as cheaply as a cube would be. Also,

modifications to the cylinder shape allows us to represent a Sentinel watchspace with a cage
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like volume representation. Figure 4.21 and Figure 4.22 shows both the regular cylinder
representation for Sentinel watchspaces and the cage representation for Sentinel
watchspaces respectively.

The second issue on transparency deals with implementing the Sentinel
watchspaces in such a way so that all other objects and features within the simulation are
viewable inside and through the transparent Sentinel watchspaces. The transparent Sentinel
watchspaces do not have a problem with solid objects inside of their volumes or beyond
their volumes. A problem occurs when we try to view other transparent objects or other
transparent Sentinels through a transparent Sentinel. The z-buffer algorithm for Performer
does not properly handle rendering transparencies in the scene. A simple fix to this
problem is to render the transparent objects last ([Fol90:755]). However, we must also
keep in mind that the Sentinel watchspaces themselves need to be rendered in back-to-front
order from the current view point so that we can view Sentinel watchspaces through other
Sentinel watchspaces.

Figure 4.23 and Figure 4.24 shows the Sentinel watchspaces in fly mode within the
SBB. Notice how the Sentinel watchspaces uappear darker when they are viewed through
other Sentinel watchspaces. Also notice that in Figure 4.23 one of the Sentinel
watchspaces appear to be highlighted in red. The FLS_Player Class does a model switch
everytime the user attaches to a Sentinel watchspace. This model switch shows the
attached Sentinel watchspace as highlighted to indicate to the user which watchspace they
are attached to. Figure 4.24 shows a number of objects located within the scene. These
objects have transparent locators around them so that they can be seen at great distances.
However, since they are rendered before the Sentinel watchspace cylinders are, we can see
them inside and behind the transparent Sentinel watchspaces. Once again, notice how the
transparent objects appear darker when viewed through a transparent Sentinel watchspace

cylinder.
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Figure 422: Sentinel Watchspace Cage Representation.




Figure 423: Transparenf Sentine] Watchspaces in Fly Mode

Figure 4.24: Transparent Sentine]l Watchspaces With Active Players.




Although not shown, the cage representation allows us to use a non-transparent
Sentinel watchspace within the scene. Because the spokes of the cage allow for easy
viewing into and through the Sentinel watchspace, making the cage transparent is not
necessary. However, while the cage representation works well in plan mode, it can be

confusing to the user in fly mode.

4.3 System Integration
This section deals with the integration of the Sentinel system with various other
programming libraries, frameworks, applications, and toolkits. The order of the

subsections indicates the relative importance of each component to the Sentinel system.

43.1 Forms 2.1

The main library that the Sentinel system integrates to for user interface is the
Forms 2.1 Library ([Ove92]). This library provides a graphical user interface toolkit for
the Silicon Graphics Workstations. The main purpose of this library is to allow the user to
develop graphical user interfaces that are easy to use and fast to develop ([Ove92: i]).

The main framework for each user control panel of the Sentinel system was created
using a forms design application included with the forms library package. This application
goes by the name of Forms Designer. Forms Designer created all the user interface control
panels associated with the Sentinel system ([Ove92: 33 - 47]).

Integration of the forms library with the Sentinel system requires four parts or
steps. The first is the inclusion of the actual code generated by the Forms Designer within
the units and classes of the Sentinel system. The second is the linking of the actual forms
library into the framework application (SBB). The third is the placement of the forms
library initialization call, fl_init(), into the framework application (SBB). The last is the

placement of a control loop that is responsible for checking all forms for user interaction.
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The previous chapters on design and implementation discussed the first item. The
second item requires the addition of the forms library to the makefile for the overall
application. The next subsection on the integration of the Sentinel system with the SBB
addresses the third and forth items.

4.3.2 Synthetic BattleBridge

The Synthetic BattleBridge (SBB), redesigned by Capt. Kirk Wilson, is the driving
application that the current version of the Sentinel system integrates with ((Wil93]). The
SBB takes care of assimilating all the simuiation data and passing it to the Sentinel system
for further processing. The SBB is the driving application, and the starting point for all the
managers, frameworks, and other support tools needed by the SBB and Sentinel System,
With this in mind, the SBB needs to pass information to the Sentinel system by means of
method calls to the FL_Sentinel Class. The FL_Sentinel Class also derives its draw thread
from the stealth draw thread located within the SBB framework.

The integration of the Sentinel system into the SBB consists of two parts. The first
part is just the inclusion of the structured programming library units and the Sentinel
system classes into the compiling and linking of the driving application. The second part
deals with the placement of Sentinel system class method calls within the framework of the
SBB application source code. The following paragraphs discuss these method calls at a
very basic level. The programmer's manual in Appendix II talks about the exact use of
these calls, and parameters needed by these methods.

The first part of the integration of the Sentinel system into the SBB requires that the
driving application's makefile be modified to include the needed Sentinel libraries and
classes. There are currently four libraries that need inclusion in the compilation of the
driving application: libfls_comp_os*.a, libfls_config_os*.a, libfls_counts_shared_os*.a,
and libfls_outputs_os*.a. The "*" in the library names indicate whether you want to

compile on the Silicon Graphics operating system version 4.0.x or version 5.x. Just
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replace the "*" with the appropriate number (4 or 5). The structured programming units
these aforementioned libraries hold are the computational unit, the configuration unit, the
input unit, and the output unit and control unit respectively. Note that the
libfls_outputs_os*.a library contains both the output unit and control unit. There are
currently two Sentinel system source code files that contain the Sentinel system classes that
must also be included in the compilation of the driving application: FL_Sentinel_mgr.cc
and FLS_player.cc. The classes contained in the aforementioned source code files are the
FL_Sentinel Class and the FLS_Player Class respectively. Note that the appropriate header
files for the classes must also be included.

The second part of the integration deals with the placement of Sentinel system
method calls within the source code of the SBB. There are two SBB source code files that
must be modified to integrate the Sentinel system: stealth.cc and sbb_app.cc.

In stealth.cc there are only two things that need to be done to integrate the Sentinel
system. The first is to include the Sentinel class header files and create the appropriate
Sentinel system variables needed. The second is to place the FL_Sentinel Class method
call, draw(), into the draw thread of the stealth player class. In this way, the FL_Sentinel
Class can now use the draw thread of Performer through ObjectSim, to place things on the
scieen.

In sbh_app.cc there are nine steps that need to be done to fully integrate the Sentinel
system into the SBB.

As in stealth.cc, the €irst step is to include and declare the appropriate header files
and Sentinel system variables.

The second step is to add a command line argument so that the Sentinel only comes
up with the SBB when the user gives the corresponding command line argument. For the
current application, a command line argumeat of -z invokes the Sentinel system upon

startup.
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The third step to do is to initialize the FLS_Player Class shared memory structure.
This is done in the SBB main by using the FLS_Player Class method called init_shared().

The fourth step is to setup and initialize Sentinel system shared memory variables
that control the overall geometric representation of the Sentinel players (cylinders). This
allows the user to hide or change all of the geometric representation of the Sentinel player.
This is done in SBB_App::initialize().

The fifth step to be done is to assign space to and initialize the Sentinel players
(cylinders). This is done by using two Sentinel system method calls in a row: config()
from the FL_Sentinel Class and assign_space_and_initialize_FLS_players() from the
FLS_Players Class.

The next four steps required to integrate the Sentinel system into the SBB are placed
in procedure calls that use the ObjectSim framework: SBB_App::init_sim,
SBB_App::init_draw_thread, SBB_App::pre_draw, and SBB_App::propagate.

In the SBB_App::init_sim we orient the Sentinel player’s initial view in the
simulation. This is done with the FLS_Player Class method call init_sim_FLS_players().

In the SBB_App::init_draw_thread we initialize the Sentinel system with the current
entity state of the simulation from the Object Manger (described in subsection 4.3.4). Also,
we start up the user interface control panels via the forms library. This is done by two
method calls: init() and start_forms() both from the FL_Sentinel Class. Lastly, we place
the initialization call for the forms library (fl_init()) here before we use the start_forms()
method mentioned above.

In the SBB_App::pre_draw we place the method that updates the Sentinel system
with the current entity state of the simulation. This is done with the FL._Sentinel Class
method update(). We also check to see if we need to reset the cursor back to normal mode
with the FL_Sentinel Class method reset_default_cursor(). It is done here because

redrawing the cursor has to be done on the draw thread. Also, we set up the use of the F11
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key with the Sentinel system to control representation of the Sentinel players. As
mentioned earlier, the user can toggle the Sentinel players on or off, or change their
geometric representation if setup to 