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Abstract

While most previous work in planning manipulation tasks has relied on the
assumption of quasi-static conditions, there can be situations where the quasi-
static assumption may not hold, and the assumptions about the environment
must be relaxed. This is true, for example, in a situation where objects are
making and breaking contact at high enough velocities that contact dynamics
play a significant effect in the motion of the colliding objects.
There has been some work studying models of collision, in particular for the
design and analysis of systems with intermittent constraints, and for the design
of juggling robots. Our work extends previous studies in planar juggling to the
case of a polygonal object, using the model of rigid body impulsive collision.
Simulations verify the results of a linearized analysis.
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1 Motivation

Most previous strategies for planning manipulation tasks have relied on an as-
sumption of quasi-static mechanics in the analysis of the physical system. This
constrains the plans to situations that are slow moving, and in which contact
dynamics can be neglected.

One can imagine situations these assumptions do not hold or when a model
of the contact dynamics would be useful. In catching an already moving or
accelerating object, for instance, the inertial properties of the object affect the
motion which results from the applied forces of collision. Knowledge of the
magnitudes as well as the direction of forces and velocities becomes important.
Juggling and table tennis are two such domains that have been explored in
robotics. Catching of tossed objects is a related task in which such knowledge
is useful.

Another domain in which such a model may be useful is in the manipulation
of objects by sliding on a frictional support surface. Much work has been done
in the analysis of quasistatic pushing in the presence of friction ([13], [12], [14]).
[8] shows that the motion of an object on a frictional support surface can be
determined if the pressure distribution of the object is known. [12] and [14]
analyze this situation when the pressure distribution is not known. The analysis
of [8] implies that for large enough applied forces, the motion of the object is
essentially given by the acceleration due to the applied forces. Since the impact
model assumes that at the moment of collision the impact force "swamps out"
all other forces, the use of controlled collision can be useful in situations where
the pressure distribution is not completely known, particularly if the support
friction is fairly low.

Some work has been done to study models of dynamic collision for use in
robotic domains. [15] designed a dynamically stable hopping robot, modelling
the bounce as a spring and damper system with perfectly inelastic collision.
This system was further analyzed by [9]. [1] designed a ping-pong playing robot
which used a simple model of point-mass collision to predict the motion of the

ball after striking. [19] attempts to characterize the qualitative behavior change
in the motion of objects upon collision. [20] simulates and analyzes systems
with intermittent constraints, and uses models of those systems in planning

manipulation tasks. [5] analyses and designs a planar puck juggling system.
[16] extends this to the 3-D case. This work continues those studies, extending
the planar puck juggling work of [5] to objects with extent and orientation. The
intent is to evaluate the utility of the impact model for manipulation planning.

2 The Problem

We have a planar object on a frictionless inclined plane, pulled by the influence
of gravity down to a movable "table", against which it bounces with coefficient

7



41

X

Figure 1: Basic System Geometry

of restitution e. The coefficient of friction between table and object is /1. The
contact between the table and the object is a point contact, at a known point
on the object. We assume an impulsive impact model as described by [17] and
used by [19], [20].

The object is parameterized by (z, y, pO), where (x, y) are the coordinates
of the center of gravity of the object, 0 is the orientation of the object, and
p is the radius of gyration of the object ([6]). The desired orientation of the
object will be set to 0 = 0. For simplicity, we can abstract away the dimensions
of the actual object, and think of the object as a rod, whose center of gravity
is the center of gravity of the object, located at length I from the from the
contact point' (See figure 1). We want to have the object bouncing to a fixed
height while maintaining the desired orientation. Ideally, we would prefer the
bouncing to occur in a fixed (impact) position in the ix yj plane, but we will
initially disregard this constraint, and study the simpler, lower dimensional
unconstrained case.

In this examination, we will also assume perfect sensing and perfect control
of the motion of the table, for the purpose of examining the question of whether
the desired behavior is achievable in theory, before exploring problems in actual
implementation.

2.1 The Lossless Case

We first look at the simplest case, the case e = 1,i = 0. In this case, the
equation describing the change in velocity due to an impulsive collision can be

'This of course ignores the question of whether or not we can actually strike the object
at the angle desired at exactly the point desired, so in effect we are assuming the object is
"pointy enough" at the contact point.
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written in terms of the preimpact velocity v- as

Av = -2(fiTv-),a (1)

(see Appendix A), where

--sin o!1
Scos+ . (2)

-/P2 +l2sin2  L sin

As shown in Figure 1, a is the angle that the table makes with the horizontal
in the counterclockwise direction, I is the length from the center of gravity to
the contact point, and 0 is the angle that I makes with the table normal in the
counterclockwise direction. Note that fi = 0 - a.

Equation (1) simply says that in configuration space, the object upon im-
pact will reverse its normal velocity component while its tangential component
remains unchanged. Define the constraint surface to be the set of configurations
for which the object touches the table without penetration for a given table ori-
entation, a (see [11] for a discussion of configuration space). Then according to
equation (1), the object will reflect about the normal to the constraint surface.
This is a fairly intuitive extension of the usual example of a perfectly elastic,
frictionless point mass impact against a flat barrier.

In order to get some idea of possible solutions to our original problem, we
can first look at the case of this point mass bouncing against our table. If the
ball makes impact with a horizontal (a = 0) table with a velocity vector at angle
S= 0 with the vertical, it will leave after impact with angle -9, fall under the
influence of gravity, and then (if the table remains at the same height) strike the
table again at angle 0. We would like to control the strikes so that 0 eventually
goes to zero, and the ball bounces straight up and down. One way to do this is
tilt the table while simultaneously moving it so that impact always occurs at a
given height in the vertical plane, say y = 0.

Suppose, as in figure 3, that the ball first makes impact with velocity at
angle 0- to the vertical. If the table is tilted at angle a at impact, the ball will
leave the table at angle -0 = -(9- -a), which is equivaleL,. , .. angle -0- + 2a
to the vertical. Hence, on the next impact, it will strike with the negative of
that angle with respect to the vertical. This gives the system equation

n+l = On 9- 2an (3)

where On gives the velocity angle with respect to the vertical just before the the
nth impact. If we choose a to be proportional to 0, say a = PcO, the recurrence
relation becomes

0,,+1 = (1 - 2K)On (4)

or
S= (I - 2)"600. (5)
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Figure 2: Bouncing Ball example

This will eventually drive the system to its equilibrium state, 0 = 0, as long
as II - 2K1 < 1, or 0 < ic < 1. We can try to extend this strategy to the rigid
body case.

2.1.1 System Equations

We can rewrite equation 1 in the form

v+ = (I - 2inT)v- (6)

where v- is the velocity vector immediately before impact, v+ is the velocity
immediately after impact, and I is the identity matrix. After impact, during
the ballistic phase, we have the equations

i(t) =
y(i) = o- Gt (7)

PO(t) = Poo~
where the subscripted velocities are the velocities at the beginning of the ballistic
phase, i.e. the velocities given by v+. G is the acceleration of gravity. The next
impact occurs at y,,nt.t = 0, when the contact condition

Icos o + ot W Gt= I cos(O0 + O0t) (8)

is satisfied. The time until next impact is a function of 0 0, Oo, and Pc, which
in turn are functions of the configuration just prior to impact, (0-, v-). Let
the configuration at impact n be given by x, = (p6, z. P, p6), and call the time
of next impact r(x,). Then the impact equations plus the contact condition

10
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describe a nonlinear recurrence relation,

X'. + i = f ( a, X. , 7-( x. )). )

If we set a = K-O, then f is completely a function of x, and we can try
to find a fixed point x*. By inspection of (6), (7), and (8), we can see that
(9 = 0 = 0, ý = •*,i = i*) defines aset of fixed points, with r•= -2=*/G.
Further, we know that for a lossless system that the energy at contact, im(i

2 +
p2+p26 2)+mGl cos 0, is constant from impact to impact, so our initial conditions
determine the energy surface to which we are constrained. For specificity, we
choose an equilibrium point from our set of possible fixed points to study. Since
we would like our object to bounce in place horizontally, we choose i* = 0.
Then, if we drop the object from a (center of gravity) height yo, with a initial
velocity vector v0 , the corresponding value for y" is given by

" = -2G(yo -cos6) + voTvo. (10)

We wish to determine the stability of the state x" = (0, 0, ý', 0): if we start off,
not exactly at this point, but merely near it, can we balance the object?

2.1.2 Linearized Analysis

Given x* = f(x*) for the recurrence relation xn+1 = f(xn), Taylor expansion
about x* gives us

f(x* + 6x") -X + bx•+,

x* + J(xs)6x. + h.o.t (11)

where .7(x) is the Jacobian of f(.) evaluated at x. Ignoring higher order terms
gives the approximate linear system

xn+l ;-z J7(x*)6xn, (12)

or
6x" = [J(x')]h bxo. (13)

From the linearized systems, we can try to predict certain properties of the
nonlinear system in the neighborhood of x* (see Appendix B).

The linearized system around x* is given by the system matrix

1 + 0 0
2r=i 1 0 (14)

0 0 1 0

12



which has eigenvalues Ai given by

1,

1,
2*'21(1 - ic) + Gp2G p 2 (15)

GpGO

If all the eigenvectors Vi are distinct, then the system solution is given by

4

6xnZciVi\i-, (16)
i=I

the ci being functions of the initial conditions. Clearly, in order for the solution
to be stable, all the eigenvalues must be contained in the closed unit disc of the
complex plane. Analyzing \3,4 for different values of K gives

I < 1 IA3I > 1,IA4I < 1 Unstable (17)

< 2• 14A3,41 = 1 Stable (18)

# >1+ f- : IAs3<1,1A41>I Unstable. (19)

The boundaries of the region given by (18) are special cases, because for
those values of K not all the eigenvectors are distinct, and the analysis is more
complicated (see Appendix C). For the region of stable P, (16) can be written
in the form

.0 0 a a+jb

x= [ = ] +c 2 [ C +2Re cseJan [ (20)

0 0 h

o,a,b,g,h E R

and the initial conditions give for the constants of proportionality:

cl = bi0--b , (21)

C2 = 64o, (22)p6G .00
6  P6 0o

C3 Po +j( b (23)c3 - 2h 2bh "2b"

The linear analysis predicts that in the neighborhood about the equilibrium
point, if there is any deviation from y°, it will stay constant; if 6z 0 = 0 and

13



go [rad] io [rad/s] yo [m] P ci.eol

Case 1 0.3 0 0.2 1.1 1.5
Case 2 0 0.1 0.2 1.1 1.5
Case 3 0.1 0 0.2 1.55 1.5

Table 1: Cases simulated for Loesless System. io = 0 and • = 0 when object
was dropped.

bio = 0, then bi, 60, and 66 will all oscillate about the origin at frequency a,
with amplitudes determined by MO. These, then, are the initial conditions that
determine the stability of x*. If either 6. 0 or 600 are nonzero, there will be a
net z velocity, and the object will remain balanced, but travel horizontally as
it bounces. Strictly speaking, this is not really stable, since z (which we have
been ignoring up until now) can increase without bound. But since x* does not
contain z, it does remain bounded. For the case K = Koc-ritic = l+(Gp2 )/(l/*21),
linear analysis predicts instability of the system (see Appendix C).

2.1.3 Empirical Verification

Simulation showed that the linear approximation predicted the stability of the
system reasonably well for different choices of r: the region described by (18)
was indeed stable for small initial velocities and for angular deviations up to
about -0.4 radians (st 230). When the initial impact angle was small, about
±0.15 radians (-- 8.6*) or less, the system was stable all the way up to and
including Kc = K¢fitt. When the initial impact angle was about in the range
±(0.15 to 0.4) radians, K had to be much closer to unity for stability. The K = 1
case is always unstable, but the K = ceritical case can be stable, despite the
linear prediction. Note for comparison that the range ±0.5 radians (; 306), is
the range over which the linear approximation sin r • z holds.

All examples shown are for simulations of an isosceles triangle of uniform
mass distribution, 10 centimeters wide at the base, and 20 centimeters high.
The radius of gyration about the center of gravity for this triangle is about
9.428 centimeters.

The figures for cases 1 and 2, which were stable, show projections of the
system orbit in the < 0 6 > plane (0 is on the horizontal axis) and the projection
in the <z i > plane. Notice in Figures 5 and 6 that the < 0 6 > projection
is centered about the origin in both cases, showing that 0 and i oscillate about
zero. In case I (Figure 5), where there were no initial velocities (when the
object was dropped), i is also centered about the origin, and j is bounded in
the neighborhood of lo, the y-velocity at first impact. In case 2 (Figure 6),
where there was some initial angular rotation, z is no longer centered about
zero. Case 3 (Figure 7), where K > Kicritcat, was unstable, and the curve in the
< 0 0 > plane eventually goes unbounded.

14
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Figure 4: Simulated system
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Figure 5: Lossless casel with 0o - 0.3rad,6o = Orad/s, . = 1.1
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Figure 6: Lossless case 2 with e0 = Orad,Oo0 = 0.2rad/s,K = 1.1

2.2 Extensions to More General Cases

We can extend the above analysis in order to generalize the lossless case.

2.2.1 Inelastic collision

For the case e 0 1 we can simulate the lossless case by giving velocity to the
table; if we assume that masstable > massobject, then

V+ = (I - (1 + e)fTiT)v- + (1 + e)6ltiTvtable (24)

(see Appendix A) and Vtible remains unchanged due to our assumption about
the relative masses. If we set

1-ale e V (25)-- e',,.oe = -- v-+(e

then (24) reduces to the equation for the lossless case. This choice of Vtable can
be thought of as having the table tracking the orientation of the object and the
velocity of the contact point, and striking the object with the table oriented at
angle a, and moving in its normal direction at the appropriate speed. This can
be seen by noting that

4ota+t = i + 1W cos 0

1/otact = i+ 1sin o, (26)

when measured in the global frame (co:responding to a = 0). Then another
choice for vtabl, that will give the same system equations as (25) is

[ a
Vtable = -Y-'lf I Ycontact (27)

0
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eo [rad] Oo [rad/s) yo [m] y* [m)] * [m/s] K Kcrtic., ICE Ed.,id [Nm]
Case 4 0.3 0 0.2 0.25 -1.27 1.1 1.28 0.165 1.73
Case 5 0 0.1 0.2 0.25 -1.27 1.1 1.28 0.165 1.73

Table 2: Cases simulated for system with energy feedback. e = 0.5

2.2.2 Energy Feedback

If in addition to having the object bounce straight up and down, one also wanted
the object to bounce to a specific (center of gravity) height, y*, the associated
(unit mass) energy level 17* = Gy* can be used as an additional feedback term.
As in [5], we can use the feedback law

Vtable = - I ++ KE(17* - 7) ? nlc

o" = Gy (28)
= G1 + !9" 2 , at impact

S= G1cos6+ ý1- 2  at impact.

For stability, IE should be in the range 0 < xE < 4 - KEma ([5]). &

still is set to KG, and the new critical value for K is now

2Gp 2

tSICGie - 1 + (1 + e)ý*2 1 (29)

The eigenvectors and eigenvalues of the linearized system are essentially the
same (for 0 < K < tcritica), except the eigenvalue corresponding to the eigen-
vector [0 0 1 0 ]T (which is the eigenvector corresponding to 6y) is now given by
the value (I - ' < 1, reflecting the linearized prediction that the devia-
tion in y goes to zero, i.e. that the system will converge to the correct energy
surface 2 . Experiments confirm that for low values of KE (about O.1KEmor) the
energy does indeed converge to the correct level (as seen in Figures 8 and 9 for
cases 4 and 5), and then the behavior of the system is similar to the lossless case.
For values of KE much higher than 0.1KEmar, the system is generally unstable.

2.2.3 Friction

If we remove the assumption that Ptabie = 0, the impact equations become
nonlinear, reflecting the nonlinearity of Coulomb friction. Although the analytic
approach becomes more difficult, empirical studies for various values of U found
this case to be unstable when using the table tilt rule explained above, somewhat

2Strictly speaking, because this is no longer a lossless system, the fact that three of the
eigenvalues are on the unit circle means we cannot use the linearized system to rigorously
prove anything about the nonlinear system (see Appendix B), although (5] does present some
complicated stability arguments for the point mass case. We can also use intuition, our
knowledge about the lossless case, and empirical evidence to help us.

18
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Figure 10: Tangential and Normal Impulses

contrary to expectations. Apparently, the law cannot compensate for the energy
lost in the tangential direction, and in fact often added an impulse in a direction
that increased 0, contributing to the tip-over of the object. This can be seen by
looking at the equation for the moment due to the impulse (see figure (10))

M = Pnlsinfl+PtlcosO

= P I sini3+ypPnsgn-vtlcos/3 (30)

for the case of sliding contact. Here Pt, P, are the tangential and normal com-
ponents of the contact, and vtc is the tangential contact velocity. For small
angles, sin 0 -- and cosfi • 1 -02 >»> 0, so when 0 is smaller thap M, the
moment due to frictional forces can potentially cancel out the desired moment,
and cause the object to rotate in the wrong direction. This problem can be com-
pensated for somewhat by increasing K, which in general causes 0 to be larger.
Increasing ICE also prolongs the time that the object can be kept upright, but
the tangential forces increase the horizontal motion of the object, and hence the
energy dissipated to friction, and eventually the object falls over. This difficulty
can probably be circumvented by striking the object at an angle that minimizes
tangential velocity, or by striking at a different place. Neither of these options
has been explored as yet, since both apparently require that more attention be
paid to the actual dimensions of the object.

2.2.4 Imperfect Sensing and Control

Although the system has only been simulated, not actually built, an attempt
was made to approximate imperfections in sensing and control by adding some
Gaussian noise to the calculation of impact time used by the table. This changes
the angle and velocity of the table at impact time, as well as the y-height at
which contact is made. Zero mean gaussian noise with a standard deviation of 10

21
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Figure 11: Case 1 with noise

ms., which is about an order of magnitude less than the time between collisions,
was used. Although the motion of the object with noise added appears much
less smooth, the system remains stable in a similar range of initial conditions
as the noiseless case. Cases 1 and 4 were resimulated, this time with noise, and
shown in Figures 11 and 12.
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3 Conclusions

The experiments show that, under ideal conditions, control of the object is
theoretically possible using knowledge of the collision parameters. The biggest
problems are, of course, dealing with friction and setting up the necessary sens-
ing and control. Although indications are that stability can be maintained for
reasonably accurate robot and sensors, handling friction will be necessary before
this scheme can be considered feasible.

In terms of applicability to other domains, the results may also be useful
in the dual problem of planning the acquisition of a stationary object with an
accelerating hand, or in catching. For these tasks, we consider the desired stable
state to be zero relative velocity (and distance) between the object and the robot
hand. Then we would like to plan the movements of the hand so that the object
does not fall or bounce away from the hand, but instead eventually settles there.
Work on this is underway.

A Appendix: Impact Dynamics

Following [17], the impulse equations for a body of mass rn colliding with point
contact against a barrier (where it is assumed that mbarrier >> m) are given
by

m(Vt - Vto) = Pt

m(vn - V•O) = Pr, (31)

Mp2(w - wo) = P, = P,1 cos0 + Pr,1sin 3

Here, v, is the relative velocity of the body tangential to the contact normal,
and v,, is the component normal to the contact. The subscript 0 designates
initial velocity. Pt and P,, are the components of the impulse in the tangential
and normal directions, respectively. The velocity of the contact point is given
by

v" = vt + lw cos,0

v, = v,,+iwsin 0. (32)

As in Figure 1, 3 is the angle of the line from the center of gravity of the object
to the contact point with respect to the contact normal, in the counterclockwise
direction.

Combining (31) with (32) gives us

vtC = vt0 + •Pp2 + 12 cos 2 3 t 2 sin 3 cos0 P".
C mp2  rP2

12 sin 0 cos3, p2 + 12 sin2 
2 pP, =v¢0++ P,(33)

Vrc = Vrco + m-:p-2  t +-Mp 2  P

24



Newton's model for impact (see [17], [19], or [4]) divides the (normal) impulse
into two parts, compression, when the colliding objects are moving into each
other, and restitution, when the objects move away from each other. Newton's
hypothesis is that the impulse of restitution and the impulse of compression
are in the ratio e. We define Pno as the impulse at full compression: that is,
when v, = 0. This assumption, plus the assumption of no friction give us the
expressions

Pt = 0: Pn = (1 + e)Po. (34)

Substituting (34) into (33) gives

P, -(l+ e) 'p 2

p2 + 12 sin•2 VncO

P, = -(1+e)/sin3 mp 2 (35)p2 + 12 sin2 3 ,•.(5

If now we assume (again following Figure 1) that the collision reference frame
is oriented at angle a with respect to the horizontal (the x-y frame), and 0 is
the angle the object makes with the vertical, then 3 = 0 - a. If we rotate (35)
and (32) into the x-y frame, we will get (using the notation from equation (1))

AV = -(1 + e)&,Tv-, (36)

from which (1) follows in the lossless (e = 1) case. (24) follows as well, if we
recall that (36) refers to relative velocity, and that the table velocity is zs'umed
unaffected by the collision.

B Appendix: Linear and Nonlinear Systems

Although the equations for our system are nonlinear, we might hope to gain
some understanding of its behavior, at least about x*, by the linear approxima-
tion. Nonlinear systems theory ([3]) tells us that if the linearized approximation
is asymptotically stable/unstable (in other words, if J(x*) has no eigenvalues on
the unit circle), then the nonlinear system is also asymptotically stable/unstable.
This would normally justify our examination of the linearized system. Unfortu-
nately, the system under consideration here always has at least two eigenvalues
on the unit circle, so we cannot use this standard argument. However, this sys-
tem is conservative, and therefore J has determinant 1. It can be shown ([10],
[2]) that the following are true in this case:

1. If A is an eigenvalue of the system, then A*, the complex conjugate, is also
an eigenvalue 3 .

3 This is always true for a system with real matrix entries.
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2. If A is an eigenvalue of the system, then 1/A is also an eigenvalue.

Therefore, for a conservative system, stability is only possible if the linear
system values are all on the unit circle. The case where the eigenvalues are ±1
is even more problematic (see (2]), but fortunately in the case at hand, the two
complex exponential eigenvalues seem to be the critical values to examine.

C Appendix: The case K = - critical

For the case X = Kcritical, A3,4 both become 1, and the corresponding eigen-
vectors both become of the form [v31, V32, 0, v 33], V31, V32, V3 3 E R. This means
that 3' is no longer diagonalizable, but contains more general Jordan blocks; in
other words, the "generalized eigenvectors" must all satisfy either

'Vi "= AiVi or 3'VM = AiVi + Vi- 1  (37)

([18]). If we find the fourth "eigenvector" and expand our solution, we obtain

0 0 V31 V4 1

6x, = c, 1  +C2 1 +(c3(-1)'+nc4) V302 +c4(-1) 0 V (38)
0 0 V3 3  V43

which would appear to only be stable for a limited number of initial conditions,
at best. However, this case seems to be fairly stable in simulation.

26



References

[1] Andersson, R. L.; "Understanding and applying a robot ping-pong player's
expert controller", Proceedings of the 1989 IEEE International Conference
on Robotics and Automation, 1989.

[2] Arnold, V. I.; Mathematical Methods of Classical Mechanics, Springer-
Verlag, New York, 1978.

[3] Arrowsmith, D. K.; Place, C. M.; Dynamical Systems, Chapman and Hall,
London, 1992.

[4] Brach, Raymond M.; Mechanical Impact Dynamics, John Wiley & Sons,
New York, 1991.

[5] Biihler, Martin; Robotic Tasks with Intermittent Dynamics, Ph.D. Thesis,
Yale University, 1990.

[6] Erdmann, M.A; On Motion Planning with Uncertainty, M.S. Thesis, MIT,
AI-TR-810, 1984.

[7] Goyal, S.; Ruina, A.; Papadopoulos, J.; Planar Sliding with Dry Friction
1: Limit Surface and Moment Function, Technical Report 90-1108, Cornell
University, 1990.

[8] Goyal, S.; Ruina, A.; Papadopoulos, J.; Planar Sliding with Dry Friction 2:
Dynamics of Motion, Technical Report 90-1109, Cornell University, 1990.

[9] Koditschek, D.; Biihler, M.; "Analysis of a Simplified Hopping Robot", In-
ternational Journal of Robotics Research, vol. 10, no. 6, December 1991.

[10] Lichtenberg, A. J.; Lieberman, M. A.; Regular and Stochastic Motion,
Springer-Verlag, New York, 1983.

[11] Lozano-Pirez, T.; "Spatial Planning: A Configuration Space Approach",
IEEE Transactions on Computers, C-32(2):108-120, 1983.

[12] Lynch, K. ; "The Mechanics of Fine Manipulation by Pushing", Proceedings
of the IEEE International Conference on Robotics and Automation, 1992.

[13] Mason, M. ; "Mechanics and Planning of Manipulator Pushing Opera-
tions", International Journal of Robotics Research, vol. 5, no. 3, Fall 1986.

[14] Peshkin, M. A.; "The Motion of a Pushed, Sliding Workpiece", IEEE Jour-
nal of Robotics and Automation, vol. 4, no. 6, December 1988.

[151 Raibert, M.H.; Legged Robots that Balance, The MIT Press, Cambridge,
MA, 1986.

27



[16] Rizzi, A.A.; Koditschek, D.E.; "Progress in Spatial Robot Juggling", Pro-
ceedings of the 1992 IEEE International Conference on Robotics and Au-
tomation, 1992.

[17] Routh, Edward John; Dynamics of a System of Rigid Bodies, Vol. 1, Dover

Publications, New York, 1960.

[18] Strang, Gilbert; Linear Algebra and Its Applications, Academic Press, 1980.

[19] Wang, Yu; On Impact Dynamics of Robotic Operations, Technical Report
CMU-RI-TR-86-14, Robotics Institute, Carnegie Mellon University, 1986.

[20] Wang, Yu; Dynamic Analysis and Simulation of Mechanical Systems with
Intermittent Constraints, Ph.D. Thesis, Carnegie Mellon University, 1989.

28'


